US ERA ARCHIVE DOCUMENT

Linking Climate Change and Air Quality

Science to Support **Synergistic** Environmental Policies and Mitigation Strategies

A.R. Ravishankara and Jim Meagher

Earth System Research Laboratory
Chemical Sciences Division
National Oceanic and Atmospheric Administration
Boulder, Colorado 80305

A.R.Ravishankara@noaa.gov

Climate Forcing and Air Quality

- Quantification of "anthropogenic" forcings is the simplest way to evaluate climate influence of an emission (caution: global versus regional/local).
- Uncertainty in total forcing is due to chemically active species (now!).
- Chemically active agents have larger regional forcing than their global values.
- ➤ Future forcing by CO₂ (climate-carbon cycle interactions) and aerosols are key uncertainties (for the future).
- Ozone and aerosols are also "pollutants." The common "target" for both Air Quality and Climate.

Air Quality

474 Counties That Violate US Clean Air Regulations

Air Quality is a key issue for states and regions

- More effective national policies
- More efficient local/regional management strategies

More than half of the people in the US live where the air quality does not meet EPA's health-based standards

Emissions important to Air Quality and Climate BOTH come mostly from same regions

Changing Needs of Climate and Air Quality: Convergence of Scales

Decision to Maximize Benefits: Air Quality and Climate

Strategies / Scenarios

Examples

- 1. Remove CO₂ from fossil-fueled power plants?
- 2. Reduce in SO₂ from fossil-fueled power plants?
- 3. Reduce black carbon emissions from heavyduty vehicles?
- 4. Switch from gasoline to ethanol fuel for cars and light-duty vehicles?

Decision-makers need information / tools to support integrated strategies.

The New NOAA Initiative

What NOAA Plans for FY 2010

NOAA WP-3D Aircraft – Urban and power plant plume studies, emissions verification, regional and inter-regional transport, day/night O₃/PM chemistry, aerosol characterization and quantification (size, composition, optical properties, growth, etc.).

NOAA R/V Ronald H. Brown – Marine chemistry, marine emissions, coastal emissions, chemistry in the land/bay/sea breeze recirculation, aerosol characterization and quantification (size, composition, optical properties, growth, etc.).

NOAA LIDAR Aircraft – Regional distribution of O₃ and PM, urban and power plant plume studies, regional and inter-regional transport, boundary layer evolution and variability.

Other instrumentation?

Emissions: The key need

Quantification of emissions is essential for any mitigation strategy

- Quantify emissions different sources.
- Measure ambient levels outside of plumes.
- Measure constituents together to evaluate relative emissions.
- Quantify processes on time and spatial scales needed for air quality and for climate forcing.

Multiple goals- but highlighting one here.

Emissions Quantification: A Big Issue

Ship Emissions

Ship emissions can be significant in ports and coastal areas and for global air quality

NOAA ship emission measurements:

- Gases (CO, CO₂, NO_x, SO₂, VOCs)
- Aerosols (size, number, speciation)

2010: Test emission inventories for Los Angeles and Long Beach Ports Investigate transport of offshore ship emissions to land

Ship Emissions of Black Carbon During TexAQS/GoMACCS

- Measured using Photoacoustic Absorption Spectrometer and CO₂ sensor
- Over 1,100 individual plumes

- Direct method
- Accurate calibrations (<1%)
- Overall uncertainty = <5%
- Designed and built for aerosols
- Validated using aerosols

Calculating Emission Factors

Emission factors can be in absorption per CO_2 ...

but comparison with previous data requires MAC

Emission Factors for Absorbing Aerosols

Patriot Encounter

116 individual vessel plumes

(15 yet to be identified)

- Can quantify emissions different sources from ship and aircraft.
- Can measure ambient levels outside of plumes for long periods of time.
- Co-measurement of composition, size, etc. will enable better quantification of absorbing aerosols.
- Real quantification of absorbing aerosols.

Thank you for your attention!