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Climate Forcing and Air Quality

Radiative Forcing Components
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» Quantification of “anthropogenic” forcings is the simplest way to evaluate climate
influence of an emission (caution: global versus regional/local).

» Uncertainty in total forcing is due to chemically active species (now!).
» Chemically active agents have larger regional forcing than their global values.

» Future forcing by CO, (climate-carbon cycle interactions) and aerosols are key
uncertainties (for the future).

» Ozone and aerosols are also “pollutants.” The common “target” for both Air
Quality and Climate.
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474 Counties That Violate US
Clean Air Regulations

US EPA ARCHIVE DOCUMENT

. County nonattainment for 4 pollutants
|:| County nonattainment for 3 pollutants
. County nonattainment for 2 pollutants
. County nonattainment for 1 pollutants

Air Quality is a key issue for
states and regions

» More effective national policies

» More efficient local/regional
management strategies

More than half of the people in the US
live where the air quality does not
meet EPA’s health-based standards

Emissions important to Air Quality and Climate
BOTH come mostly from same regions




Changing Needs of Climate and Air Quality:
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Decision to Maximize Benefits:
Air Quality and Climate. . &
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Strategies / Scenarios

Examples

1. Remove CO, from fossil-fueled power plants?

2. Reduce in SO, from fossil-fueled power plants?

3. Reduce black carbon emissions from heavy-
duty vehicles?

4. Switch from gasoline to ethanol fuel for cars
and light-duty vehicles?

Worse
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Decision-makers need information / tools to support integrated strategies.
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Integrated Climate - Air Quality Decision Information>

Clim

= Stratospheric ozone

depletion

ate Forcing Air Quality
= Aerosol climate forcing * PM, ;& PM,, — health effects Regi0na|
= Aerosol-cloud interaction = Visibility C“m ate-
= Tropospheric O, forcing = Ozone health effects A|r Qua“ty
Decision
Support
Information
A
Climate u
Decision EEEEEER IIIIIIIIIIIIII.

Tools




NOAA WP-3D Aircraft — Urban and power plant plume studies,
emissions verification, regional and inter-regional transport,
day/night O,/PM chemistry, aerosol characterization and
quantification (size, composition, optical properties, growth, etc.).

NOAA R/V Ronald H. Brown — Marine chemistry, marine
emissions, coastal emissions, chemistry in the land/bay/sea breeze
recirculation, aerosol characterization and quantification (size,
composition, optical properties, growth, etc.).

NOAA LIDAR Aircraft — Regional distribution of O, and ¢ ©

PM, urban and power plant plume studies, regional and H
inter-regional transport, boundary layer evolution and "
variability.
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Other instrumentation?




Emissions: The key need

Emissions

Process

deli
r o /|modeling
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Global Regional Local

Quantification of emissions is essential for any mitigation strategy

» Quantify emissions different sources.

Measure ambient levels outside of plumes.

M easure constituents together to evaluate relative emissions.

Quantify processes on time and spatial scales needed for air quality and for climate
forcing.
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Multiple goals- but highlighting one here.




Emissions Quantification: A Big Issue
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NOAA ship emission measurements: o, , , , : , o , : : : .
. Gases (CO, CO,, NO,, SO,, VOCs) N e T T e
* Aerosols (size, number, speciation) 83.7 gm. NO, / kg. fuel burned 1.9 gm. SO,/ kg. fuel burned
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2010: Test emission inventories for Los Angeles and Long Beach Ports
Investigate transport of offshore ship emissions to land

Measurements from NOAA R/V Ronald H. Brown - E. Williams
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Ship Emissions of Black Carbon During
TexAQS/GoMACCS

Measured using Photoacoustic Absorption Spectrometer and CO, sensor
Over 1,100 individual plumes

Direct method

To CRD-AES 532nm Dry From CRD-AES 532nm Dry

Aerosol Filter

Accurate calibrations (<1%)

Overall uncertainty = <5%

Designed and built for aerosols /

Validated using aerosols

Photos: Richard Marchbanks & Dan Welsh-Bon



Calculating Emission Factors
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Emission factors can be in absorption per CO,...

but comparison with previous data requires MAC



Emission Factors for Absorbing Aerosols
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Patriot Plume Encounter Number

Can quantify emissions different sources — from ship and aircratft.

Can measure ambient levels outside of plumes — for long periods of time.

Co-measurement of composition, size, etc. will enable better quantification of
absorbing aerosols.
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Real quantification of absorbing aerosols.




Thank you
for your attention!
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