US ERA ARCHIVE DOCUMENT

Biosensors: Development and Environmental Testing

Investigators:

Anne J. Anderson, Charles D. Miller and Joan E.

McLean
Utah State University
Logan, Utah 84322-5305

Metals of interest

Copper: maximum drinking water level standard 1.3 mg/L aquatic chronic exposure limit 30.3 µg/L

Human tolerance relatively high
Used for microbial pest control
Some lower organisms acute toxicity (phytoplankton, zooplankton, amphibians)

Cadmium: maximum drinking water standard 0.005 mg/L aquatic chronic exposure limit 2.7µg/L

Higher animal toxicity: accumulates in kidneys and liver, produces bone and blood problems

Carcinogenic (Group B1)
Minor use as pesticide

Cu is a trace element: required for certain enzymatic and carrier proteins

Cd no known cellular use—toxic- may disrupt Ca and Zn metabolism

Both cause oxidative stress Both act on –SH proteins

Cell concentrations regulated by chelation, sorption, uptake, and efflux mechanisms

Biosensors

Final goals:

1) An array of promoter fusions that respond differentially and specifically with light output upon exposure to toxic metals

2) A gene chip array to detect transcript abundance from cells responding to toxic metals. Pattern of gene activation would specify the metal.

Test organisms: P. putida strains

Cells of both pseudomonads are killed by concentrations of Cu starting between 1 and 10 mg/L

The pseudomonad cells show little change in culturability with Cd even at doses of 100 mg/L.

Both wild type isolates behave similarly showing resistance to Cd

Generation of Luciferase Biosensor

Cadmium detection

FeSOD mutant is most sensitive

Ca inhibits the Cd response

Response of KT2440 mutants to Cu

Response of KT2440 mutants to Cd

Corresponded to lipoamide dehydrogenase in TCA cycle

Peptides of increased Intensity.

KT2440 0.01M Ca(NO₃)₂ 100 ppm Cd

Conclusions

- 1) The two approaches for biosensor development are feasible
- 2) IuxAB::Insertional mutants that detect Cu and Cd differentially have been identified
 Gene loci await determination
- 3) Peptides that increase upon Cu exposure are detected and one has been correlated with a specific function

