Structure and Reactivity of Nano-Particles Containing Zero-Valent Iron: Bridging the Gap Between Ex Situ Properties and In Situ Performance

Paul Tratnyek
Department of Environmental and Biomolecular Systems
OGI School of Science & Engineering
Oregon Health & Science University

http://www.ebs.ogi.edu/tratnyek/
http://cgr.ese.ogi.edu/iron/
THE REACTION SPECIFICITY OF NANOPARTICLES IN SOLUTION

Application to the Reaction of Nanoparticulate Iron and Iron-Bimetallic Compounds with Chlorinated Hydrocarbons and Oxyanions

- Synthesis and characterization of Fe and Fe-Oxide nanoparticles
- Measurements solution and gas reactivity with Fe nanoparticles
- Vacuum based studies of supported Fe nanoparticles
- Models of particle structure and effects of structure on reactivity

Oregon Health & Science University: P. Tratnyek, J. Nurmi, V. Sarathy
University of Minnesota: L. Penn and M. Driessen
Iron and Iron Oxides Studied

<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Method</th>
<th>Particle Size (dia.)</th>
<th>BET Surface Area</th>
<th>Major Phase</th>
<th>Minor Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(^{H2})</td>
<td>Toda Americas, Inc.</td>
<td>High temp. reduction of oxides with H(_2)</td>
<td>70 nm</td>
<td>29 m(^2)/g</td>
<td>(\alpha)-Fe(^0)</td>
<td>Magnetite</td>
</tr>
<tr>
<td>Fe(^{BH})</td>
<td>W.-X. Zhang, Lehigh Univ.</td>
<td>Precip. w/ NaBH(_4)</td>
<td>10-100 nm</td>
<td>33.5 m(^2)/g</td>
<td>Fe(^0)</td>
<td>Goethite, Wustite</td>
</tr>
<tr>
<td>Fe(^{EL})</td>
<td>Fisher Scientific</td>
<td>Electrolytic</td>
<td>150 (\mu)m</td>
<td>0.1-1 m(^2)/g</td>
<td>99% Fe(^0)</td>
<td></td>
</tr>
<tr>
<td>Fe(_3)O(_4)</td>
<td>PNNL</td>
<td>Precip from FeSO(_4) w/ KOH</td>
<td>30-100 nm</td>
<td>4-24 m(^2)/g</td>
<td>Fe(_3)O(_4)</td>
<td></td>
</tr>
<tr>
<td>Fe(_2)O(_3)</td>
<td>Nanotek, Corp.</td>
<td>Physical Vapor Synthesis (PVS)</td>
<td>23 nm</td>
<td>50 m(^2)/g</td>
<td>(\gamma)-Fe(_2)O(_3)</td>
<td></td>
</tr>
</tbody>
</table>

Structure from TEM

Fe$^{\text{H}_2}$ (Toda) Fe$^{\text{BH}}$ (Zhang)

Particle Size from TEM

Composition from XPS

FeH2 (Toda)
FeBH (Zhang)

Summary of Structure/Composition

<table>
<thead>
<tr>
<th>Name</th>
<th>Sample History</th>
<th>Mean Particle Size from TEM (nm)</th>
<th>Shell Thickness (nm)</th>
<th>TEM Structure</th>
<th>XRD (Grain Size nm)</th>
<th>XPS</th>
<th>STXM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Fe}^{\text{H}2})</td>
<td>As-received</td>
<td>(~38 \text{ Fe}^0) (\geq 60) nm oxide plates</td>
<td>Fe-Oxide (~3.4)</td>
<td>“large” plates (oxide) and smaller Fe(^0) irregularly shaped particles with crystalline oxide shell</td>
<td>Fe(^0) (~30) oxide (~60)</td>
<td>Fe(^0)+Fe(^{+3})</td>
<td>Fe(^0) + oxide</td>
</tr>
<tr>
<td>(\text{Fe}^{\text{H}2})</td>
<td>Flash-dried</td>
<td>(~44 \text{ Fe}^0)</td>
<td></td>
<td>As above with more large plates</td>
<td></td>
<td>Less Fe(^0)</td>
<td></td>
</tr>
<tr>
<td>(\text{Fe}^{\text{BH}})</td>
<td>As-received</td>
<td>(~59) (20-100)</td>
<td>(~2.3)</td>
<td>Three levels of structure: i) small crystallites (<1.5 nm), ii) 20-100 nm spherical aggregates with an amorphous coating, and iii) chains of 20-100 nm particles</td>
<td>Mostly Fe(^0) (<1.5)</td>
<td>Fe(^0)+Fe(^{+3}) + B and Na</td>
<td>Mostly Fe(^0)</td>
</tr>
<tr>
<td>(\text{Fe}^{\text{BH}})</td>
<td>Flash-dried</td>
<td>(~67) (20-100)</td>
<td>(~3.2)</td>
<td>As above with thicker coating</td>
<td></td>
<td>Less Fe(^0) + B and Na</td>
<td></td>
</tr>
</tbody>
</table>

Solution Chemistry—Methods

Electrochemical Cell
- Flash drying
- Packed powder electrode
 • Fabrication
 • Validation
- Data presentation
- Electrochemical model

Batch Reactor
- Flash drying
- Pre-exposure period
- Buffer selection
- Ox/Fe ratio
- Mixing rate
- Kinetic model
Protocol for Batch Experiments

1. Fe0 → Adding deox. DI water
2. Time = t\textsubscript{0}
3. Spiking
4. Mixing
5. Sampling
 Time = t\textsubscript{1}, t\textsubscript{2}, t\textsubscript{3}...
6. Analysis
 - HPLC
 - GC/ECD
 - UV/VIS

- Flash drying
- Pre-exposure period
- Buffer selection
- Ox/Fe ratio
- Mixing rate
- Kinetic model

Batch Experiments with CCl₄

CCl₄ (CT) + Fe(0) → CHCl₃ (CF) + Unk + Cl⁻ + Fe(II)

1. pH:
 - 7.3, 8.4, 9.0
2. Buffers:
 - Borate
 - EPPS
3. Type:
 - Fisher Electrolytic
 - Nano (Zhang, Toda)
4. Pretreatment:
 - Flash drying

k_{sa} vs. k_m plots

From:

$$k_M = k_{SA} a_s$$

It follows that:

$$\log k_{SA} = \log k_M - \log a_s$$

Plotting $\log k_{SA}$ vs. $\log k_M$ gives contours of constant a_s.

Cimitan et al. (2005) J. Med. Chem. ASAP

Effect of Surface Area—Our Data Only

- k_M (Nano > Micro)
- k_M (FeBH ? FeH2)
- a_s (TEM < BET)
- k_{SA} (Nano ≈ Micro)
- k_{SA} (Nano < Micro)

... Uncertainties in a_s are important

... No “intrinsic” nano-size effect

Nurmi et al. (2005) ES&T 39: 1221-1230
Chloroform Yield

Nurmi et al. (2005) ES&T 39: 1221-1230. Sarathy et al. (in prep.)
Application to Site Remediation

- 200 W Area of Hanford
 - 750,000 kg spilled
 - Vadose and GW zones
 - 11 km² plume
 - up to 7000 ug/L

- ITRD TAG since 1999
 - Completed PITT
 - Reviewed Natural Attenuation
 - Modeled Reactive-Transport
 - Reviewed Treatment Options

- Status
 - Active intervention probably needed soon
 - “Critical” Need for Remediation Technology (TIP No. 0006)
Summary:
- Nano Fe\(^0\) has a shell of Fe\(_3\)O\(_4\), other oxides, and impurities.
- Specific surface area is an important and challenging property.
- Nano Fe\(^0\) gives greater \(k_m\), but not necessarily greater \(k_{SA}\).
- Some nano Fe\(^0\) gives more favorable products (low \(Y_{CF}\)).
- Low \(Y_{CF}\) and injectability offer prospects for remediation.

Funding:
- DOE Office of Science, Nanoscale Science, Engineering, and Technology Program (DE-AC05-76RLO 1830)
- DOE Office of Science, Environmental Management Sciences Program (DE-FG07-02ER63485)
- SERDP and ESTCP
Acknowledgements

1. Tratnyek Group
 Vaish Sarathy, Jim Nurmi, Joel Bandstra (PSU)
 Bumhan Bae (Kyungwon Univ.)

2. Pacific Northwest National Laboratory
 Don Baer, J. Amonette, E. Bylaska,
 Z. Dohnalek, M. Dupuis, A. El-Azab,
 B. Kay, J. Linehan, K. Pecher, J. Rustad

3. Other Collaborators
 R. Lee Penn and M. Driessen (U. Minnesota),
 Y. Qiang and J. Antony (U. Idaho),
 Rick Johnson (OHSU)

4. Samples
 K. Okinaka and Andy Jazdanian (Toda Kogyo Corp.)
 W.-X. Zhang (Lehigh U.)
 Clint Bickmore (OnMaterials, LLC)
 D. Vance (Arcadis), and others