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Presenter
Presentation Notes
As of 2000, the Susquehanna drainage basin population was 3,968,635. Its total area is 27,486 square miles (71,188 km2), and in 2000 612 square miles (1,585 km2) were developed, 8,041 square miles (20,826 km2) were used for agriculture, 18,181 square miles (47,089 km2) were forested, 27,486 square miles (71,188 km2) were open water, 127 square miles (329 km2) were wetland, and 201 square miles (521 km2) were barren. By area, the Susquehanna basin accounts for 45% of Pennsylvania, 11% of New York, and 3% of Maryland . The drainage basin is divided into six subbasins by the Susquehanna River Basin Commission. These are:
Lower Susquehanna (green on the map at right)
Juniata River (pink)
West Branch Susquehanna River (orange)
Middle Susquehanna (purple)
Chemung River (Yellow)
Upper Susqehanna River (brown)
444 miles, longest non-navigable river in North America, floods on average once every 14 years







Presenter
Presentation Notes
Some 43% of ChesBay watershed and 85% of Susquehanna watershed are underlain by Marcellus


CO,, Climate, and Ecological Processes
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Aquatic Ecosystem Responses
Organism metabolism
Geographic range of species
Habitat stability
Nutrient supply, productivity
Lake mixing
Water chemistry

Poff et al 2005
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_________ T co, At what scale?

=
Selection of Climate Model and Management of

Output

Construction of Land
Cover Change
Scenarios

| Water Temperature| EERIETVEVESIN[IrS

Hydrologic Metric
Output

Hydrologic Scenario/Ecological
S~ Response Model

Aquatic Ecosystpm Responses

Plant and
Macroinvertebrate
Habitat Response

Poff et al 2005



When one has finished building one's house, one suddenly
realizes that in the process one has learned something that

one really needed to know in the worst way - before one
began.

Friedrich Nietzsche



http://www.brainyquote.com/quotes/quotes/f/friedrichn138631.html�
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Presentation Notes
Existing data; biological data tend to be site-specific, with no agreed-upon way to scale up.
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Presentation Notes
Existing data; biological data tend to be site-specific, with no agreed-upon way to scale up.
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Reach Characterization

= Response variables: known locations of
wetlands

= non-open water National Wetlands
Inventory (n=40)

= Field identified wetlands (n=30)
= Non-wetland reaches (n=35)

= Predictor variables: Topographic indices
characterizing each reach derived from 10-
m DEM using NetTrace (Miller 2003)

= valley width
*" mean stream slope
= contributing area

= specific stream power
= valley width index



Likelihood of Wetland Occurrence
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CO,, Climate, and Ecological Processes

_________ T co, At what scale?
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Poff et al 2005
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Presenter
Presentation Notes
Mean annual cycle of monthly means of temperature (top) and precipitation (bottom) at grid cell 4 in the SRB for the models and the observations.  Each thin black line is a realization.



Metrics for Model Selection

Annual cycle of mean temperature

Annual cycle of mean precipitation

Annual cycle of interannual temperature variability (standard deviation)
Annual cycle of interannual precipitation variability (standard deviation)
Mean annual cycle of intramonthly temperature variability (std. dev.)
Mean annual cycle of intramonthly precipitation variability (std. dev.)

Mean annual cycle of the maximum number of consecutive dry days within a
month

Mean annual cycle of the maximum 5-day precipitation total within a month

Mean annual cycle of precipitation intensity (total monthly precipitation divided by
the number of wet days*)

Mean annual cycle of the number of days with precipitation exceeding 10 mm

*A wet day is considered to be a day in which precipitation exceeds 1 mm.

Selection of Climate Model and Management of

Output



Multi-metric index for model

evaluation
[approach of Reichler and Kim (2008)]
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Presenter
Presentation Notes
Overall model performance index for the 21 models and the multi-model average.  This index was computed using the mean annual cycles in monthly means, interannual variability, and intramonthly variability in temperature and precipitation. The first message I would convey from the climate modeling part of the project is that global climate models are skillful enough to provide meaningful information about future changes in hydrologically relevant climate variables brought about by increases in greenhouse gases.  That message comes across clearly from the model evaluation we did, which was based on a wide variety of metrics (temperature, precipitation, wind speed, humidity, and solar radiation).
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Presenter
Presentation Notes
The second message I would convey is that the models show consensus (and therefore some level of certainty) in future projections of certain metrics:  temperature in all seasons, precipitation in winter and spring, and the intensity of precipitation.  All of these metrics are projected to increase. these figures are for PA but are nearly identical to SRB results
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_________ T co, At what scale?
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Poff et al 2005



Projecting a Future Land Use Scenario

 Objective: Create a map of land use in 2050
for each study basin

— Start with 2001 NLCD
— Project total land use change in each basin

— Allocate land use change within the basin to areas
where it is more likely to occur

— Distribute change on the landscape in a plausible
way, matching observed patchiness

— Models calibrated using observed population and
land use change from 1990/1992 to 2000/2001


Presenter
Presentation Notes
Notes:
Want to generate a future land use scenario that is “correct” in the following senses:
	- has the “right” total amount of developed land in each basin
	- puts the development in places where development is more likely to occur
	- gets the patchiness right
Definition of land use change: conversion of less developed areas (ag, forests, wetlands) to more developed areas (residential, commercial, industrial)
Not trying to model ag to forest or forest to ag






Multilevel Model

Population Population
Change in Each Change in Each
County Township

Allocate Land
Use Change to
Individual Pixels

Repeat for Next
Decade

Total Land Use
Change in Each
Township

Allocate Land
Use Change
Within Township



Presenter
Presentation Notes
Notes:
Model runs on a 10-year time step
- Box 1: County-level population projections are exogenous – based on birth/death rates and projected job growth
 Box 2: Allocated county population change to township population change based on county-level population growth (+), existing population density (-), amount of land available for development (+). Model based on observed population change between 1990 and 2000.
 Box 3: Amount of LUC in each township depends on population growth rate (+), initial population density (+), initial amount of open space (-). Model based on observed land use change 1992 to 2001.
 Box 4: Each township divided up into 1km X 1km squares. Two models estimated, one to determine where in township LUC will occur (which squares), the other to determine how much will occur in each place (how much in each square). Did it this way because LUC tends to be patchy – happens in clumps, rather than evenly spread out. Both models estimated based on 1992-2001 observed LUC patterns






Presenter
Presentation Notes
Spring Creek between State College and Bellefonte. 

2050 map is not realistic in the sense that developed land in the real world clumps together along roads, while map makes it look more like a shotgun blast.  But, we are only really worried about getting the right amount of development into each TIN. Not worried about realism at the small scale (less than 100 hundred meters).


Land Cover Change

Basin Name 1992 2001 2050 2001-2050 %
%Developed %Developed %Developed Increase in
Developed
Shaver Creek 4.8 4.8 5.7 18.8
Little 39.8 41.4 48.9 18.2
Conestoga
Spruce Creek 5.5 5.6 8.0 42.3

Construction of Land

Cover Change
Scenarios
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Penn State Integrated Hydrologic Model (PIHM)

PIHM Modelling,

Hydrologic Metric
Output
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Presentation Notes
Estimates recharge, bank storage, ephemeral stream losses, climate and landuse effects across river basins



Observed and Simulated, 2004-2009
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Presentation Notes
Tracks very nicely, see seasonal water table and event response.  10 is land surface


Predicted vs. NWI, 30 cm rule
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Presentation Notes
30 cm rule, most all cases predicted qwetland presence without resolving individually
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Presentation Notes
First 10 yrs is lower, 2nd ten years higher precip; temp shows 2 degrees; means are in blue.  Persistence can last a decade at a time; 


Water Budget Comparison

1979-1988 Annual Water Budget
As a percentage of precipitation

Transpiration Interception Precipitation
29% 11% 100%

Throughfall
89%

Evaporation
19%  Surface Runoff
1

2056-2065 Annual Water Budget from IPCC
Estimated as a % relative to 1979-1988

Transpiration Interception Precipitation
38% 12% 120%

Throughfall
108%

Evaporation
24%  Surface Runoff



Presenter
Presentation Notes
Shale hill, can make budget at every wetland.  Anxious to pursue; uatomate watershed modellonmg process, people can utilize ina practical way for every watrshed in Bay.  Simulated water budget for HUC 12 online resource. Group resources, synthesizing models and data, built reanalysis products that are darn good, reanalysis of watersheds on a national basis.  Synthesize point data and regional data.  Models constantly evolve with physics and data, resolve new processes.  Watershed reanalysis, all data and models.  Is there a theory of hydrology, or do we still have boxes (lumped models)?  Need spatially explicit results. Not that many fundamental laws of physics, super position of layers make reponse comlicated.  80% of hydrology is topography; unexpected, but not unpredictable.
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Presenter
Presentation Notes
Kruskal-Wallace test: - time in growing zone significantly higher in future than past (p<0.01) - mean flow higher in future (not stat sig) - mean flashiness higher (not stat sig) - baseflow index significantly lower in future scenario (p<0.1) 


Spatially Heterogeneous
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PIHMgis Applications Team | Publications and Events

rologic Modeling System ] ‘ . m
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OVERVIEW

The Penn State Integrated Hydrologic Model (PIHM ) is a multiprocess, multi-scale hydrologic model where the major hydrological

open-source Geographical Information System designed for PIHM. The PIHMgis provides the interface to PIHM, access to the digital
data sets (terrain, forcing and parameters) and tools necessary to drive the model, as well as a collection of GIS-based pre- and
post-processing tools. Collectively the system is referred to as the Penn State Integrated Hydrologic Modeling System. The modeling
system has been written in CfC+4, while the GIS interface is supported by Qt. The Penn State Hydrologic Modeling System is open
source software, freely available for download at this site along with installation and user guides.

It is our intention to begin a debate on the role of "Community Models™ in the hydrologic sciences. Our research is 8 response to
recent trends in US funding for "Observatory Science" that have emerged at MSF over the last few years, namely, the NSF-funded

CUAHSI program {Consortium of Universities for Advanicing Hydrologic Sciences).

PIHM represents our strategy for the synthesis of multi-state, multiscale distributed hydrologic models using the integral
representation of the underlying physical process equations and state variables. Our interest is in devising a concise representation
of watershed andfor river basin hydrodynamics, which allows interactions among major physical processes operating
simultaneously, but with the flexibility to add or eliminate states/processes/constitutive relations depending on the objective of the
numerical experiment or purpose of the scientific or operational application.




Products for Public Use

PIHM :: Wetland
[ + €A http://cataract.cee.psu.edu/EPA_Wetlands/ ¢ | (G-
& [ 8 Apple Yahoo! Google Maps YouTube Wikipedia MNews (234)v Popular~

GIS, PIHMgis Project, PIHM Data-Model and Simulation Outputs for Wetlands Response to Climate Change Study

& Directornes, and & files

name type size last modified
LackawannaRiver =DIR>
LittleJuniataRiver =DIR=
MahantangoCreek =DIR=>
MuddyCreek <DIR>
ShaverCreek =DIR>
o YoungWomansCreek =DIR=>
U _PIHM Qutput File Format.pdf pdf 2%0.34kb 0B8/30/11 11:04
U _Wetland_Study_Sites.pdf pdf &.64mb 08/30/11 12:08
meteo.dat.readme. pdf pdf &9.78kb OR/08/11 12:58
U Rivershape.pdf pdf 8%.55kb 0%/08/11 03:08
U Watershedaverage.readme.pdf pdf 25.37kb 0%/13/11 03:07
| watershedsinfo.dat dat Sédbytes 09/13/11 02:44




CO,, Climate, and Ecological Processes

{ co, At what scale?

Hydrologic Scenario/Ecological
Response Model

Aquatic Er::usys Bm _Respnnses

Poff et al 2005



Building a Translator

* Predicting changes in wetland ecosystem function to
climate change

— Riverine wetlands provide habitat for aquatic plants and
macroinvertebrates; habitat structured by hydrologic processes

 Changing precipitation and temperature patterns
— Loss of low magnitude (below bankfull) flood events and
groundwater recharge during ecologically critical seasons
e Land use a surrogate

— Stream channels cutoff from adjacent floodplains and wetlands
(incision/excessive sedimentation)

— Loss of connection during below bankfull flood events

— Wetlands experience spatial and temporal changes in
groundwater levels

Hydrologic Scenario/Ecological
Response Model




——— Floodplain Inundation (Above Bankfull)

Main Channel
Active Zone

Mkm_ | AW

20 +

— Active Zone Inundation (Below Bankfull)

PO ot/

0:ZTOTOT/ET/TT
06T 0TOT/TT/TT
00:5T'0T0Z/50/2T
0:2T OTOT/BE/TL
0:6 0TOZ/TZAT
005 0TOZ/F1/1T

'€ OTOZ/L/TT
b0:0 0TOZ/TE0T
DO:TT OTOT/E2/0T

LeoTaTaTinT lax

Late Fall/

0i5T OTOT/6/0T
02T OTOZ/Z/0T

J\ N\

‘6 0T02/52/6

< 00'9 0T0Z/81/6
“ ooce 0TOZ/TL/E

000 0T0Z/¥/6

0011 OTOT/LE/8
00T OTOT/0E/8
00T OTOT/ET/S

- oozt 0TOT/0/8
1 006 oToZ/ 08/«
| oo otoz/ez/e

o 0o€ oT0Z/aL/L
) Q00 0T0E/E/

'\ / Winter

TTOTOT/T/L

]

08T OTOT/FE/9
05T OTOT/LT/9
02T OTOT/OT/9
0:6 0T0Z/E/9
019 0T0Z/L2/5
h0:€ 0T0Z/0Z/5
oo otoz/Er/s
1Porzotonss/s
08T OTOT/2E/ ¥
0:ST DTOZ/TE/ ¥
0:2T OTOT/FT/ ¥
06 0TOZ/L/F
10:9 OTOZ/TE/E
0:E 0T0Z/FL/E

S 8

g

TOZiiT )

Spring

SEASONAL PREDICTABILITY

0T0z/6/E
010%/T/E
otoz/ent
010Z/91/T

00:8T 0TOZ/#/T
00:ST 600T/BE/TT
DOEZT GOOT/TE/TT
00:6 600Z/FT/TT
009 600Z/L/TT
00'€ G0OZ/OEMT
00:0 600Z/ET/TT
00:TTE00T/ST/TT
00:8T BO0T/BAT
00'5T BOOT/TAT
00:2T 600T/52/01
00'6 600Z/8T/0T
00:9 600Z/TT/0T
00:€ 600Z/+/0T
00:0 600E/LT/6
0011 BOOT/ET/6
00:8T BODT/TT/6
00'ST 600T/5/6
00:TT BODT/6E/8

00:TT BO0T/VE/L
00:8T BOOT/LT/L
00:5T BO0T/OT/L
00:2T GO0T/E/L
00'6 600E/9T/9
009 600Z/61/9
00:€ 600/ Z1/9
000 600Z/5/9
00112 BO0T/AT/S
00:BT BO0T/TE/S
e g

HYDROLOGIC
CONNECTIVITY

HABITAT
CREATION

(wd) [9na 491eMN

MONITORING PERIOD: 5/21/09 —12/30/10


Presenter
Presentation Notes
This slide illustrates frequency of inundation for active zone and floodplain.  So when the stream water levels are 40cm or above (black line), the active zone (including the well habitat below)
should be inundated with flood waters); the orange line shows threshold for above bankfull events (so when the floodplain would be inundated from overbank flooding), which amounts to a frequency of approximately 8-9 times during monitoring period (5/21/2009 to 12/30/2010).  Compare that to the estimated frequency of inundation of active zone (
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Presenter
Presentation Notes
Specialized floodplain taxa either utilize the floodplain during certain life cycle stages (e.g., mayflies Leptophlebia and Siphlonurus migrate from
Stream to floodplain during spring high water where they complete majority of their larval growth and emerge as adults) or move back and forth
Between stream and floodplain (e.g., caddisfly Pycnopsyche forages in well-connected side channels and backwater channels)

Many stream taxa prefer areas in side channels where velocity is slower and flood waters are less likely to wash them away.  Some (like the 
Water penny) actually need substrates that dry periodically for pupal stages.

Taxa in lentic waters with fine organic substrates may require permanent habitat (e.g, isopod Caecidotea) or can
Withstand periodic droughts (e.g., fingernail clams)

Temporary taxa are well-adapted to surviving in highly ephemeral habitats and can be found in many areas in floodplain.
Some, like mosquitoes and midges, have extremely short life cycles; others, like dytiscid beetles, can invade from
Nearby permanent habitats.
Permanent lentic taxa are adapted to wetland areas of deeper, standing water with vegetation 

As hydrological complexity and connectivity disappears, fewer taxa remain.


RIVERINE BIODIVERSITY IS HIGHLY DEPENDENT ON THE
FLOW REGIME, WHICH DETERMINES THE PHYSICAL
HABITAT IN WHICH SPECIES RESIDE.
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Presenter
Presentation Notes
Before we can answer that question, we have to first classify stream reaches in order to identify the types that hold the greatest potential for providing aquatic habitat—a.k.a. ones that contain wetlands and/or are characterized by high hydrological connectivity along all 4 dimensions.    We call these unconstrained floodplain reaches (newest HGM classification terms for them are headwater complex and floodplain complex).   Look at the plan view above of a stream corridor from headwaters to mouth, the beads along this string represent the floodplain reaches where you have a mix of groundwater and headwater exchange.  As you move along the corridor, the dominant process that creates and maintains aquatic habitat will change from groundwater (creating more wetland complexes) to surface water (creating floodplain complexes).  
system composed of four dimensions
riverine integrity is manifested most where the hydrological exchange pathways predominate.  Specifically, we need to select the proper type of stream reach.  Stanford and Ward describe these floodplain reaches as ‘beads on a string’ and indeed that is what they look like from this top view.  It’s in the floodplain reaches where you’re likely to find lateral and vertical hydrological links with the stream.  The end result is often a series of riverine wetlands embedded within a floodplain mosaic of both surface and groundwater habitats that are both spatially and temporally linked.
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HYDROLOGY
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RIVERINE RAPID ASSESSMENT
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HABITAT AREA: Floodplain Forested Site
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HABITAT AREA: Mixed Forested Site
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RESULTS: FLOODPLAIN HABITAT AREA
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MAGNITUDE OF MAGNITUDE & FREQUENCY & RATE &
MONTHLY DURATION OF DURATION OF FREQUENCY OF

CONDITIONS ANNUAL EXTREME | ABOVE AND WATER CONDITION
CONDITIONS BELOW BANKFULL | CHANGES
PULSES*

Mean monthly values Annual minima 1-day means Number of flood (above bankfull) Means of all positive differences
pulses/year between consecutive daily means
Mean value for each 3-mo season (J- Annual maxima 1-day means Number of active zone (below Means of all negative differences
M, A-J, J-S, O-N) bankfull) pulses/year between consecutive daily values
Mean annual flow Annual minima 3-day means Number of flood pulses/3 mo. Season No. of rises
Annual maxima 3-day means Number of active zone pulses/3 mo. No. of falls
Season
Annual minima 7-day means Mean duration of flood pulses within
each year
Annual maxima 7-day means Mean duration of active zone pulses

within each year

Annual minima 30-day means Mean duration of flood pulses within
each 3 mo. season

Annual maxima 30-day means Mean duration of active zone pulses
within each 3 mo. season

Annual minima 90-day means

Annual maxima 90-day means

December minimum value

Hydrologic Scenario/Ecological

Response Model




Future?

Wetter, with probable expansion of wetland
area

Habitat may be simpler, lower diversity

Spatially variable within watersheds; variable
within reach types; variable across ecoregions

Currently evaluating hydrologic metrics for
predictive capability; events are important

Mechanistic understanding of habitat
creation/maintenance processes
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Presenter
Presentation Notes
The third message I would convey regards the watershed-wide hydrological modeling we are doing with the Bay Program.  The message we can convey at this point is that the watershed model has will provide meaningful information about future climate-induced changes in the fluxes of water, sediment, and nutrients to the Bay.  We can say this because of our work on the climate projections as well as our evaluation of the watershed model, which really nails the seasonal and interannual variability in the historical record of water, sediment and nutrient fluxes.



When one has finished building one's house, one suddenly
realizes that in the process one has learned something that

one really needed to know in the worst way - before one
began.

Friedrich Nietzsche



http://www.brainyquote.com/quotes/quotes/f/friedrichn138631.html�
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House-Building Hints

e Spatially-explicit results are highly

uncertain

e Scales of prediction are matched with

scales of management anc
* Process is meaningful, too

 Web-sharing of results and
difficult

vulnerability
s are useful
tools is
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