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+ (How) Can we use “air

Air Quality Models and

quality models” to help
identify associations
between ozone PM
sources and health

impacts?
- Species vs. sources

- Very different than for
traditional air quality
management

* Though this is still a very
important application




Use of Source Apportionment
Results in Epidemiologic Studies
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Receptor vs. Emissions-Based

Source-compositions

Receptor Model

Models

Source
Impacts

Emissions Inventory

Meteorology

(3D Air-quality Model)
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Daily source apportionment (SA) results for Atlanta
Th e P rO b I e m ' based on receptor and grid-based model results

CMB

CMAQ
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diesel impact fraction of primary BN

Diesel Impact Variation
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Source correlations
about 0.9 for
CMAQ SA’s
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Both Results are Flawed

Receptor

— Too much day-to-day variability

« Hard to imagine that diesel and coal burning impacts go to zero on
some days and are significant on others

— Missing sources
« Little way around this
— Source profiles uncertain and variable (plus that SOA issue)

Grid-based

— Too little variability
* Tied to lack of small scale structure in met and emissions
* |Inconsistent with data

— Inventories everywhere are uncertain (wrong)

Can try to justify results

— Our tests suggest arguments on both sides fail

Use of source apportionment results for acute response
epidemiologic analyses rely on getting day-to-day
variability correct

— Want to develop a more accurate SA for acute studies
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Executive Summary

Develop a flexible and extensible approach for
source apportionment (SA)

— Air quality management and epidemiologic studies

Ensemble-trained approach

— Integrate grid-based and multiple receptor modeling
approaches

Provide a tested method that directly addresses

limitations in current SA methods, in particular

variability, biases, and intensive resource

requirements

— Use SA results in epi studies of Atlanta and St. Louis
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Limitations of Source
Apportionment (SA) Approaches

Receptor-based SA models:

— biased estimates of primary source impacts

— inability to identify or separate source impacts
— excessive day-to-day variability

— multiple zero impact days for sources that are known to be present
(e.g. diesel vehicles, power plants)

— results are representative for only the observation location
— Some approaches resource intensive (detailed organic speciation)

Emission-based chemical transport models (CTM):

— large computational cost

— results lack significant day-to-day variation in relative source impact
Is it possible to improve results by taking an ensemble
average of multiple approaches?

— Then use ensemble results to train a receptor model
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Ensemble SA and Training

Develop SA results from weighted average of multiple
methods over limited period
— Chemical transport model (CTM)

— Chemical mass balance models (CMB)
» Regular (metals, ions, EC/OC)
* Molecular Marker (MM: detailed organic speciation)
» LGO (optimized profiles and constraints)

— Positive matrix factorization (PMF)

— Limited period allows using methods that are more resource
intensive

— Multiple methods allow estimating uncertainties

Use ensemble results to develop optimized source
profiles

— Seasonally varying, location specific

Use new profiles to calculate SA results over
extended periods




-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

Initial Application

Ensemble source impacts for July 2001 and January 2002 were

developed by weighted averaging source impacts from a CTM
(CMAQ) and multiple receptor-based approaches (CMB, CMB-
MM, CMB-LGO, PMF).

Ensemble-based source profiles (EBSPs) for summer (July

2001) and winter (January 2002) were developed using
ensemble-trained source impacts in CMB-LGO.

New source impacts were determined using CMB-LGO for a 12

month data set of daily PM2.5 measurements at the Atlanta, GA,
Jefferson Street (JST) site using EBSPs.



Step 1: Ensemble-Trained Source
Impacts

* Run L individual SA methods (CMB, CMB-MM, CMB-LGO, PMF,
CMAQ) to develop weighted source impacts

L
i > w, (). S, () .
Sj(tk): = L W“:G_Z_

ijl (t) |
|=1
. S_j (tk)is the ensemble-calculated impact of source j (in ug/m3) at

time tk
« S;(t) is the impact developed by method |

+ Weights, w,, are inversely proportional to uncertainty (derived
from method application)
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CMB-LGO

Ensemble results mGY mDV [ODUST [QOBURN mCOAL [mSULFATE mNITRATE [QDAVMMONIUM mSOC
have less day-to-day |
variation in source
impacts and fewer
biases between
observed and
estimated PM2.5
mass compared to the "

ull
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Orlglnal receptor Daily fractional coutribution to PM2.5 in SAresults developed from CMB-LGO
method, at Jefferson St in Atlanta US, during January 2002
model results. 9 y
ENSEMBLE

{ mGvY mbV [ODUST [OBURN ECOAL @EmSULFATE mENITRATE QOAMMONIUM mSOC J
1.0

-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

Ensemble results 1 I I I "y
show increases in 7 I I LA | _ ||||
road dust, biomass 0'5_ il I III 11| H L |||I
burning, and coal I "—-__—l | ii_'ll
combustion impacts, 1L il H H i H 1 H H

but SOC impaCtS > 1/1 116 A1 116 121 1126 131
decrease. Daily fractional coutribution to PM2.5 in SA results developed from CMB-LGO

method, at Jefferson St in Atlanta US, during January 2002
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Ensemble Sensitivity to CMAQ

Fractional Source Contril
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Step 2: Ensemble-Based Source
Profiles (EBSPs)

* Problem: won’t usually have multiple methods to
ensemble for large data sets (e.g. 10 yrs).

— CMAQ and CMB-MM

« Use ensemble source impacts from small data set (e.g. 1
month) to determine ensemble based source profile.

* EBSPs (f;) were treated as the unknown in the CMB
equation and solved by minimizing least squares error.
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= source = source profile

J f,
k = sample §,k = ensemble source impact




Step 3: New Source Impacts

* Develop new source impacts, S¥, by minimizing least squares error
using EBSPs

« CMB-LGO was run using EBSPs for a summer period (Mar - Oct)
and a winter period (Jan - Feb, and Nov - Dec) and compared with
measurement based source profiles (MBSPs)

*

L — |
C., = f.-S., +e P _
k Z,: j ik k X, Z

| = species — '
. P f; = EBSPs
j = source )
k = sample S; = new source Impacts
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Conclusions

Ensemble-based source apportionment method developed to address
limitations in current methods
— Initial application to Atlanta

Ensembling decreases variability and number of zero impact days
— Assessed impact of including CMAQ results
E_ns:[emble-trained/based source profiles (EBSPs) developed for summer and
winter
— Results suggest seasonal variability in OC:EC ratios in profiles
Application of EBSPs decreased variability, improved performance
— Increased biomass burning and road dust impacts, decreased SOA in winter
Future work will include
— Applying the method to longer time periods and other locations
— Assessing variability and refining the ensemble method
— Using different approaches to estimating weights and assessing uncertainties
— Conduct spatial analyses
— Apply to more routine monitoring data
— Incorporating source impacts into epidemiology studies
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CMAQ Results

Source impacts at Jefferson Street, SEARCH site, Atlanta

ug/m3
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