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Improve our understanding of the optical
properties of BC-containing particles and their
evolution during their lifetime

Link emissions of BC particles with particle
number concentrations over the US

Improve the ability of the existing regional models
to simulate the BC mass and number
concentrations

Quantify effects of changes in BC emissions in PM
and PN over the US
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Laboratory Studies
Primary emissions characterization
Aging of primary emissions

Emission inventory development

Source-resolved inventories
Inventories for number

Model extension

Particle number source attribution
Mixing state and optical properties

Black carbon number concentrations

Regional scale simulations - Scenarios and
controls
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Combustion Emissions

BC particles act as condensation sites for OA

Organic
Compounds +

Black Carbon Core =Shell
morphology

* Brown Carbon?
e How does the condensation and chemical aging of OA affec
the absorption of BC?

Carnegie Mellon University
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BrC in Biomass Burning: Chaos
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BrC in Biomass Burning: More Chaos
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Aethalometer

OA/BC from biomass burning
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Estimation of OA Optical Properties
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Morphology and Mixing State
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Morphology and Mixing State

* We simulate the condensation process of OA on BC.

* The growing distribution cannot go beyond the SMPS distribution.
* We can only constrain the maximum coating thickness.

* This maximizes the lensing effect, thus minimizes BrC absorption
» Conservative approach.
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The Fit
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The Flt (Absorption due to BC only-Mie calculations)
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The Fit (Absorption due to BC+ Lensing)
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The Fit (Absorption due to BC+ Lensing+BrC)
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The best fit, from which we obtain the absorptivity of OA.
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Chaos Returns!

FLAME IV

® BS: black spruce
= PP: ponderosa pine
< 0.02' o _ OH: organic hay
L

SG: saw grass
= ° WG: wire grass
0.01 e i - RS: rice straw
e - o Closed symbols: fresh
Open symbols: aged

BS PP OH SG WG RS

* A lot of variability across fuels, and even within the same fuel.
» Similar to previous work.
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BrC and OA Volatility
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BrC and OA Volatility
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CMU Smog Chamber
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Coating of BC with D-toluene SOA
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O/C during D-toluene SOA formation
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Absorption during D-toluene SOA

m formation
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Absorption Angstrom exponent

E during D-toluene SOA formation
E (fuel: White birch bark)
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ig of Monodisperse Cookstove
Soot

R

R. Subramanian ]
a-Pinene | O; Gen

| | PAX 405

DMA
—— o PAX 532
Denuder — T SP2
Chamber

SMPS
SP-AMS

e Absorption enhancement of mono-disperse aged BC particles.

*Three nascent BC core diameters (100, 130, 150 nm mass equivalent diameters).

*Soot was coated with a-pinene SOA in stages till a shell/core diameter ratio of ~2.5
*SP2 for BC mass; SP-AMS for organic aerosol mass; PAXs for light absorption/scattering.
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Organic/Elemental Carbon Emissions

Pre-LEV made before 1994
LEV-1 1994-2003
LEV-2 2004 and later
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Source-Resolved Total Number Emissions
(particles d* km)

Gasoline Industrial Non-road Diesel
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PMCAMXx-UF base number concentration
(particles cm™3)
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PMCAMx-UF Evaluation (Pittsburgh)
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Size-resolved Aerosol Number Source
Apportionment algorithm (SANSA)

TOMAS BOX MODEL
Initial Final
MWSYSIE 3 CONDENSATION [ COAGULATION [ JIeie
(N) (N)
. =
e 1 e N(lost)
N(initial, final) N(survived)
Initial Final
tagged N - tagged
N
Size i i
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Total primary particle number fractional source
contributions

Biomass Gasoline Industrial

- 10.15

Long-range transport

37



Primary particle number source apportionment
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Sources of Measureable (>3 nm) Particle
Number in Pittsburgh

PMCAMXx Calculated from Measurements

Power Plant Secondary
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Zhou et al., 2005

Predicted: 29,000 cm-3 “Measured”: 26,000 cm-3 39
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Fractional Change of EC

ﬂ
1

Average PM, : reduction around 3%.
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Fractional Changes of N, ¢ 5

0.1

0

Nucleation increases, creating more smaller particles due to the decrease in the
condensation sink.
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Fractional Changes of Ny 4,

These increases also suggest that nucleation may increase and nucleated
particles grow into this size range.
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Fractional Changes of N, ,

5

0.1
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_" I-0.05

-0.1

Particles in this size range are typically emitted or grown from nucleated
particles, so they see increases (from nucleation) and decreases elsewhere.
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Fractional changes of N¢y 140
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0.1

Fractional changes of N,
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Non-linear Response of CCN to Diesel
PM Controls

Predicted N50 Change Linear N50 Change
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50-100% higher reduction in N50 and N100 than the linear response
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Mixture
External
Mixture

Internal
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Conclusions

 Brown carbon in emissions from biomass burning is
associated mostly with organic compounds of
extremely low volatility

— Effect can be parameterized as a function of BC/OA
— Quite sensitive to burn conditions
 This effect was not observed in diesel emissions

* Condensation and chemical aging of biogenic and
anthropogenic SOA on BC was reproduced within
experimental error by core-shell Mie models.

— No effect of O:C during aging of SOA

e Estimated radiative forcing of 0.1-0.2 W m= due to
biomass burning BrC.

— Net effect of biomass burning is still cooling.
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Conclusions

* New particle number source apportionment algorithm
(SANSA) for TOMAS (used in PMCAMX, GIss-IF' and GEOS-CHEM)

* Diesel sources responsible for approximately 25% of
particle number emissions in the Eastern US during
summer

— 30% of emissions of N,

e Reduction of these emissions leads to increases of
nucleation rates

— Increases of very small particles predicted

— The N50 and N100 concentrations decrease more
than expected

— This reduction in CCN could result in warming

* Development of a computationally efficient multi-

distribution model to better simulate the mixing state of
BC in regional models
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