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Overall Goals

* To unite emerging models, integrative
toolkits and data sets to explore multiple
stressor impacts on regional-to-global
landscapes, watersheds, and rivers

* Three examples

— Biofuel strategies viewed thru lens of C-N
interactions

— Threats to human water security and biodiversity

— Analysis of ecosystem services: Riverine N
processing
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Indirect Emissions from Biofuels: How Important?
Jerry M. Melillo, et al.

Science 326, 1397 (2009);

DOI: 10.1126/science.1180251

General Approach
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Carbon flux (Pg CO2-eq)

Effect of Biofuels on Cumulative Terrestrial
Carbon Storage

Case 1 - Deforestation Case 2 - Intensification
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Effect of Cellulosic Biofuels Production on
Net Greenhouse Gas Balance

Fossil Fuel Abatement

Net Land Carbon Flux
e Net N2O Emissions
————— Net Abatement

Case 1 - Deforestation Case 2 - Intensification
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Global Threats to Human Water Security and River Biodiversity

:\ @ | http://www.riverthreat.net/

v v ) (83 Google

g Started Latest Headlines 3  http:/ 1 http:/ fww I

Human Water Se... ﬂ +

RIVERS IN CRISIS

Mapping dual threats to water security for
biodiversity and humans
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Global Threats to Human Water Security and River Biodiversity

Download article and
Rivers maintain unique biotic resources and provide critical water supplies to people. The Earth's limited supplies Supplementary
of fresh water and i iodiversity are to human mi of and Information:
waterways. Multiple environmental stressors, such as agricultural runoff, poliution and invasive species, threaten
rivers that serve 80 percent of the world’s population. These same stressors endanger the biodiversity of 65
percent of the world’s river habitats putting thousands of aquatic wildlife species at risk. Efforts to abate fresh
water degradation through highly engineered solutions are effective at reducing the impact of threats but at a
cost that can be an economic burden and often out of reach for developing nations.

nature.com
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Major Sources of Threat to
Inland Waters: Four Themes

Watershed Disturbance
*Cropland
sImperviousness
Livestock density
*Wetland disconnectivity

Pollutants
«Soil salinization
*Nitrogen loads
*Phosphorus loads
*Mercury deposition
*Pesticide loads
*TSS loads
*Organic (BOD) loads
*Potential for acidification
» Thermal impacts

Water Resource Development
*Small dam density
«Large dam impacts (residency time A)
*River network fragmentation

*Consumptive use (loss/supply)
«Water crowding (population/supply)
*Cropland crowding (area/ supply)

Biotic Threats
Invasion level (non-native fish)
*Non-native fish species richness
«Catch pressure
*Aquaculture

N = 23 global data fields



-
"4
T
>3
-
O
®
-
L
>
=
=
@
4
¢
E Normalized scores: based on Vassolo and Doll (2005)
L

')

-

Vérosmarty et al. 2010, Nature (vol. 467)




T Glébal RIMS
CALCULATION OF a
0.25,0.25 0.0,0.0
Global Rapid Indicator Mapping System for
a } KEY WATE R IN DICATORS Water Cycle & Water Resource Assessment
DIAp = domestic, industrial, agricultural water use
(km3 yr-1)incell n
YDIAp = DIA in cell n plus all upstream cells (km3 yr-1)
n
= YDIA;
i=1
Rp = locally-generated runoff (mm/yr)
Ap = area of cell n (km2)
Qin = 108 « Rn * Ap = locally generated discharge
(km3 yr-1)
n
Qcn = 2(1) L; = river corridor discharge (km3 yr-1)
=

DIAn/Qcn = local relative water use (unitless)

g || £DIAn/Qcn = water reuse index (unitless) ey (cell n)
- 0.5
- = n = position of cell in river DlAn IDIAp
r - network
7 B = total number of DiA, ZDIA,
. - Qcn ’ Qcn
L L L I upstream cells plus
0.0 . A
cell in question
@ Distance along mainstream @ Qin Qcn

Combined Indicator: N Pollution + Timing Shift (normalized 0-1)

n used =
(d73 + d74) 7 2

Frequency Histogram for the Calculated Data
20 T 28
fiverage = 0.85892 (6357 cells)
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 Pandemic -+ Generally correlated to population, agriculture, development
» Transboundary: Atmospheric transport & river network legacies
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endemism...high risk

Globally 10,000-20,000
freshwater species are
extinct or imperiled

Have FW systems moved from the Holocene

into the Anthropocene?

Described species/108 km?
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From: Strayer and Dudgeon (2010), J-NABS




Two Views of Planet Earth: circa 2000
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Why so different?
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Infrastructure gap: Reservoir water storage
Haves and Have-Nots: Water storage per person (m3)
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Human Water Security

1.0

<—— Incident Threat

: Beneﬁciary Effect of Investments

0.5

<—V— Attenuated Threat

Point-of-service solutions
benefit rich countries

Threat to HWS

0

<0.5 1.0-25 5.0-10 >25

GDP (PPP) 103 USD per capita
Infrastructure investments are huge: $0.75Trillion/yr for OECD & BRIC alone by 2015

Large $$ & Energy Costs

* Treat symptoms rather
than causes

* Strand poor & BD under
high levels of threat

 Water management
impacts (like from dams)
impair BD and
Ecosystem Services

Why so different?




Inland Satellite Remote Sensing CZ Remote Sensing
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In Conclusion

* Well-intentioned global C management thru
biofuels convolved with unintended
consequences thru N cycle

* Pandemic fingerprint of human-induced impacts
on water systems...multi-stressors... local
effects move to regional and global syndromes

* Viewed as an ecosystem service, beneficial N
pollution processing by natural systems is
“overshot” by human impacts—affecting ~1Bn

* Overall: Coupled processes and multi-stressors
require integrated frameworks
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