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Advancing Beyond the Basic Relationship
Between PM2.5 and Health Has Proven Difficult

Are central monitors providing poor exposure estimates that are
masking the more detailed associations?

“One in three” or “one in six” sampling schedules leave significant
time gaps
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Source: DOCKERY DW, POPE CA, XU XP, et al. “AN ASSOCIATION BETWEEN AIR-POLLUTION AND MORTALITY IN 6 UNITED-
STATES CITIES”, NEW ENGLAND JOURNAL OF MEDICINE 329 (24): 1753-1759 DEC 9 1993.
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Air Quality Models

Cloud+Fog
Processing

Condensation %+V(uci) =V(KVC,)+RIC,T]+P[C,T]+E, + COAG, - S,

&
Evaporation

Gas-Phase Aerosol
Emissions Emissions Deposition

Figure courtesy of Prakash Bhave, US EPA.



Each Grid Cell in the Model Has:

m Gas phase species

= O3, NO, NO2, NO3, N205, HNO3, HONO, HNO4,
RNO3, PAN, PPN, NPHE, GPAN, PBZN, NH3, SO2,
H2S504, HCL, CO, CO2, MEK, HCHO, CCHO,
RCHO, ACET, MGLY, PHEN, CRES, BALD, TOLU,
C6H6, AAR1, AAR2, AAR3, AAR4, AAR5, AARG,
AAR7, OLE1, OLE2, OLES, C/0OL, C8OL, C9OL,

ISOP, APIN, BPIN, HO2., RO2., OH, RCO3., etc

Particle phase species

= EC, OC, SO,#, SO,%, NOg, CI, NH,*, Na*, Ca?*, Fe,
Cu, Mn, SOA, etc.

Particle size distributions
Source apportionment information
Hourly time resolution
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Our Project Design
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(PMO.1, PM1.0, PM2 5,

PM10, PM10-2.5)

(OC. EC, Fe, Cu. Zn.
etc)

(PMO.1, PM1 .0, PM2 5,

PMI10, PBIO-2. S]I
(S04, NO;, NHy",
SOA. etc)

(PMO.1, PM1 .0, PM2 5, PMI0,
PM10-2.5)

(diesel, gasoline, wood smoke.
food cooking, coal combustion,
ship exhaust, paved road dust,
tire wear, etc)
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Hypothesis to Test

Hypothesis 1: Primary PM sources (diesel, gasoline, coal, etc) in
the PMO.1, PM2.5, PM10, or PM10-2.5 size fractions are associated
with acute and chronic human health effects.

Hypothesis 2: Primary PM species (EC, OC, Fe, Zn, etc) in the
PMO.1, PM2.5, PM10, or PM10-2.5 size fractions are associated
with acute and chronic human health effects.

Hypothesis 3: Exposure to PM generated by motor oll, diesel fuel,
and/or gasoline fuel is associated with acute and chronic human
health effects.

Hypothesis 4: Simultaneous exposure to acidic particles and high
concentrations of gas-phase oxidants is associated with acute and
chronic human health effects.

Hypothesis 5: Simultaneous exposure to particulate quinones and
trace metals is associated with acute and chronic human health
effects.



Transforming the Regulatory Inventory
Into a Source-Oriented Modeling Inventory
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Source Profiles that Differentiate Motor
Oil vs. Fuel Contributions to the Size
Distribution of PM Emissions

Heavy Duty Diesel Vehicle Light Duty Gasoline Vehicle

AM/AIogDp (ng)



Quinone Emissions From Motor
Vehicles

Emission Rate *° (ug L™)

Light-duty Gasoline Vehicles by FTP Heavy-duty Diesel Vehicles °
LEV (9.3) TWC (10) Smoker ¢ (8.8) 1999 Idle-creep (0.5) 1999 HHDDT (2.3) 1985 HHDDT (2.6)
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Source-Oriented External Mixture Representation
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Model Evaluation
CRPAQS PM2.5

0 " \
MaSS 12115 12/17 1219 12/21 12/23 12/25 12/27 12/29 12/31 01/02 01/04 01/06 01/08

Concentration (ug m™)

350
300
250
200
150
100
58 g : ¥,

1215 1217 1219 12/21 12/23 1225 12/27 12/20 12/31 01/02 01/04 01/06 01/08

' (b) Sdcramento (SDP)!

Black Line — measurements
Blue Line — predictions

Concentration (ug m™)

200 ,

Red Shading — Mid 50%
Quantile within 10km of
monitor

I(c) Fresr|10 (FSF)I

150

100

o,
v

50 1w S e, B U

Concentration (g m™)

0 : L L
12/15 1217 12149 12/21 12/23 12/25 12/27 12/29 12/31 01/02 01/04 01/06 01/08

Major trends are captured at
most stations

140 E | | T (d) Angiold (ANGIY ! 7]
120 = ‘M Ai—
100 |-

80
60
40
20
0
1215 1217 1219 12/21 12/23 1225 12/27 12/29 12/31 01/02 01/04 01/06 01/08

Under-prediction of mass at
Angiola and Bakersfield near
the end of the episode

Source: Q. Ying, J. Lu, P. Allen, P. Livingstone,
A. Kaduwela, and M. Kleeman “Modeling Air
Quality During the California Regional
PM10/PM2.5 Air Quality Study (CRPAQS) Using
the UCD/CIT Source-Oriented Air Quality Model
— Part |. Base Case Model Results.”, Atmos.
Env., in press, 2008.
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Model Evaluation
Relative Component
Contributions to PM

Average and standard deviation of predictions and
observations is based on 55 samples

Urban locations (Fresno and Bakersfield)
Predictions and observations match except for
nitrate under-prediction at Bakersfield (discussed
previously)

Rural location (Angiola)

OC under-prediction. What primary sources are
we missing? What SOA formation mechanisms
are we missing?

Source: Q. Ying, J. Lu, P. Allen, P. Livingstone, A. Kaduwela, and M. Kleeman “Modeling Air
Quality During the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) Using the

UCDI/CIT Source-Oriented Air Quality Model — Part |. Base Case Model Results.”, Atmos. Env.,

in press, 2008.
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Model Evaluation
Grid Model vs. CMB Source Apportionment
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Daily Variation of Predicted Source
Contributions at Fresno Dec 2000-Jan 2001

Unresolved
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Regional Source
Apportionment
Example:

We can use the source-

oriented model to predict

the regional distribution
of PM emitted from
different sources.

Regional source
contributions to PM in
Los Angeles on
September 25, 1996 .

Source: 2005 Held T., Q. Ying, M.J.
Kleeman, J.J. Schauer, M.P. Fraser.
A comparison of the UCD/CIT air
guality model and the CMB source-
receptor model for primary airborne
particulate matter. Atmospheric
Environment. 39: 2281-2297.
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Source-oriented models can
predict source contributions to
airborne particle size distributions

Source: 2005 Held T., Q. Ying, M.J.
Kleeman, J.J. Schauer, M.P. Fraser. A
comparison of the UCD/CIT air quality
model and the CMB source-receptor
model for primary airborne particulate
matter. Atmospheric Environment. 39:
2281-2297.
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Transect of PM
Concentrations
Between Sacramento

and Bakersfield Dec
2000 - Jan 2001

Initial Condition

Boundary Condition

Dust

Wood Smoke
Diesel Engines

Cat Engines

Non-cat Engines

Meat Cooking

High Sulfur Fuel

Other

Source: 2008 Ying, Q. Lu J., Kaduwela, A. and
Kleeman, M.J. Modeling Air Quality during the
California Regional PM10/PM2.5 Air Quality Study
(CPRAQS) using the UCD/CIT Source Oriented Air
Quality Model - Part Ill. Regional Source Apportionment
of Secondary and Total Airborne PM2.5 and PMO.1.
Atmospheric Environment, accepted for publication.
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Computational Challenges
Associated with Seven Years of
Simulated Air Quality

s Meteorology simulations using WRF
= 3 months of run time using 640 cores

= 6 TB of output data

m Air Quality simulations using UCD+CMAQ
= 5 months of run time using 1200 cores
= 25 TB of output data

m All data will be available for download at
conclusion of the project



Example: PM2.5 Averaged Between 2000-2006
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Source-Oriented

Emissions
Default Boundary

Conditions

Source-Oriented
UCD Model

Default Initial

Conditions
Nested Domain

Descriptions

Parent Domain

-Allow unlimited number of nested domains within a parent domain

Source-Oriented

Source-Resolved Emissions

Hourly BC, Spatially
Interpolated
Source-Oriented
UCD Model
Source-Resolved IC,
Spatially

Interpolated Nested Domain

Descriptions

Nested Domain(s)

-Allow multiple layers of nested domains

Texas A&M: One-Way Nesting in UCD
Source-Oriented Air Quality Model

Source-Resolved
Hourly
Concentration Fields
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Preliminary Testing — TexAQS 2000

L o8- 36 km East US
* BH- 12 km East Texas
- 4 km Southeast Texas

- August 16, 2000 to
September 7, 2000
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Summary of Epidemiological Studies

How do you find 50,000 deaths in a population of 300,000,0007?
= 50,000/300,000,000 = 1/6,000 (doesn’t consider sensitive populations)
MESA — Cohort Study

m 6,500 participants in Los Angeles CA, St. Paul MN, Chicago IL, New
York City NY, Baltimore MD, and Winston-Salem NC

m CIMT baseline evaluation in 2000-02

CTS — Cohort Study

m 133,000 current and former female public school employees in
California

m Subjects enrolled in 1995, with mortality and hospital discharge data
updated annually

WHI — Cohort Study
= 90,000 women from 45 cities in the continental U.S
= initial evaluation between 1994-1998
= annual updates for cardiovascular incidents and altered risk factors
CALFINE — time series study of deaths in 9 California counties
m Address for deaths 1999-2001
m Zip code for deaths 2002-2005




Results from CALFINE Time Series Study: Respiratory
Hospitalization and Components of Fine Particles

o Using time series analysis of acute exposures, we examined:
Hospital Admits for children age < 18 and <5 for various respiratory
diseases in six California counties from 2000 through 2003

Ambient concentrations of PM2.5 and several constituents, including EC,
OC, NO3, SO4, SI, Kand Zn

o Results:

Associations were observed between several components of PM2.5 and
hospitalization for all of the respiratory outcomes examined.

For example, for total respiratory admissions for children < 5, exposure to
the interquartile range of EC, OC and NO3 had an excess risk of:

o EC: 4.7% (95% CIl = 0.3, 9.3)
o OC: 3.0% (95% Cl =0.4, 5.8)
o Nitrates: 3.2% (95% CI = 0.5, 6.0)

US EPA ARCHIVE DOCUMENT

o Conclusion: Components of PM2.5 were associated with hospitalization for
several childhood respiratory diseases including pneumonia, bronchitis and
asthma. (source: Ostro et al., EHP, 2009)
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Results from California Teachers Cohort Study: Hazard
ratios per 10 uyg/m? increment of PM2.5 and PM10

‘#in analysis/ ‘ PM2.5 1999-2002 ‘#in analysis/ ‘ PM10 1995-2002

Model # events # events

HR 95% ClI HR 95% ClI

All-cause 89,962/3,056 1.19 (1.11,1.29) 68,957/3,525 0.99 (0.95,1.02)
mortality

Cardiopulmonary 89,962/1,526 1.28 (1.15,1.42) 68,957/1,739 . (0.95, 1.05)
mortality

Ml incidence® 88,916/1,224 1.28 (1.14,1.45) 68,477/1,460 . (0.97, 1.07)

Stroke 89,314/865 1.33 (1.15,1.53) 68,671/1,040 . (0.96, 1.08)
incidence?®

* All hazard ratios adjusted for smoking status, total pack years, BMI, marital status, alcohol consumption, second-hand
smoke exposure at home, dietary fat, dietary fiber, dietary calories, physical activity, menopausal status, hormone
replacement therapy use; and contextual variables (income, income inequality, education, population size, racial
composition, unemployment).

&Includes both mortality and hospitalization



MESA Cohort Study Q@es;\

MESA AIR POLLUTION STUDY
FIELD CENTERS
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WInstun Salem
The study follows

a diverse group of
men and women from
SOURGE: MESA AIR communities distrib-

POLLUTION DATABASE uted throughout six
AUTHOR: MICHALIS AVRAAM FEBRUARY 6, 2006 metropolitan areas.
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MESA Air Quality Monitoring for PM, .

s AQS/EPA fixed monitors
= hourly, daily or every third day observations

m MESA Air fixed monitors
= 2-week averages

m Home outdoor monitoring

= rotating sets of 4 sites, each with two 2-week
averages over 50 2-wk periods

m total of at least 50 sites each monitored in two
different seasons

m Speciated PM, . at MESA Air fixed and home
sites supplementing AQS STN sites




= Monitoring Data Structure for PM, 5
g (2-week time scale)

-

U Time (T=50)

o 1 2 3 4 5 6 7 .. 24252627 2829 30 31 32 33... 45 46 47 48 49 50
A Fixed EPA) | T[X X X X X X X . X X X X X X X X X X = X X X X X X
E; (numbervariesby U
LLI B location) 200X X X X X X X X X X X X XXX XX ..XXXXXX
\—F.d(MESA)1xxxxxxx,,_xxxxxxxxxx...xxxxxx
E (5 sites) '15§xxxxxx_,_xxxxxxxxxx...xxxxxx

" X
2 | x X
4 5 3 | X
- 4 :.‘—E 4 | x X
~{ 3 o x X
o 3 Home Outdoor | 7 X X
wils (100 sites) 8 X X
)] © 97 X X
o~ 98 X
= 99 X :
100 X X




University of Washington: Sub 4 km Spatio-
Temporal Model of Ambient Concentration

= Johan Lindstrom, Adam Szpiro, Lianne Sheppard

m Goal of sub-grid model

= Predict relevant functions of outdoor concentration throughout
areas where participants live (and work, etc)

= Incorporate information from multiple time scales and spatial
locations

= Inputs to sub-grid model

s Geographic Information System predictors and coords
m Spatial location
m Road network & traffic calculations
m Population density
m Other point source and/or land use information
= Monitoring data
m Air monitoring from existing EPA/AQS network
m Air monitoring from MESA Air data collection
m Meteorological information
s UCD/CIT 4 km grid model predictions
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Integrating model output EPA models Our model Initial analysis

Our model
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Integrating model output EPA models Our model Initial analysis

Adding model predictions as covariates

Option 1:

u(s,t) = oniM(s, t) + Z B

i=0
» One (few) additional parameters.
» Assumes a simple multiplicative bias and spatio-temporally
varying additive bias.
Option 2:

u(s, ) = Bu(s)M(s,t) + ) Gi(s)fi(t)

i=0
Pu(s) = Z Xaj(s)on,j + em(s)
]
» Assumes that the multiplicative bias depends on location.
» Several additional parameters.
» Identifiability 777
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Summary: Goals For Grid Models
Applied in Epidemiology Studies

= Fill in spatial data between measurement
stations using all known information about
emissions, meteorology, and chemical reactions

= Fill in time data for 1-in-3 or 1-in-6 sampling

days
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= Provide a full description of particle sources
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Summary: Limitations to Overcome
for Grid Models Applied in
Epidemiological Studies

m 4km spatial resolution

m Results agree better with measurements
at longer averaging times of ~1 week or
more

s Computationally expensive to run for long
cohort studies

m Requires help from atmospheric scientists
to generate and evaluate the predictions



