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--Questions--

Overall:

How are is the probability, frequency, duration, and severity of high pollution episodes
likely to change under future emission and climate scenarios?

Related:

i) Under current conditions what is the probability of an extreme pollution event in the US?

ii) What are the geographic, meteorological, climatological, and chemical conditions that could
contribute to extreme pollution episodes in the US?

iii) What parts of the country are particularly sensitive to extreme pollution events now and in
the future?

iv) How do extreme pollution events relate to heat waves and temperature? What are the
feedbacks between heat waves and severe pollution events? How important is the presence
of biomass burning to extreme pollution events?
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Figure 1: Overview of Analysis Plan



Task 1: Measurement Analysis

Apply extreme value theory to measurements.
Regional description of extreme events

Extremal dependence between pollution and heat spells/
temperature

Relationship between the severity and duration of the
pollution events/blocking



Autocorrelation at Two Castnet Sites
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Ozone-Temperature Cross Correlations
(Regional Differences)

highOz & highTemp CCF between ozone and Temperature [daily]

California Connecticut
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Task 2: Extreme events in the Community
Earth System Model (CESM)

e Evaluate the ability of the CESM to simulate
extreme events

* Improve simulation of extreme events in CESM

— Meteorological Parameterizations

* Improve simulation of extreme events in CESM

— Chemical Parameterizations



Errors in Climate Models

» Many climate models exhibit longstanding
systematic model-errors, e.g. biases

» Individual models have problems in capturing
meteorological extremes (Kharin et al., 2005)

» Meteorological variability in coarse resolution
models is underestimated (Bell et al., 2010)

> One common source of model-error are
unresolved subgrid processes



Summertime blocking in CAM

* JJA blocking frequency in
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Methodologies for Improving Variability in Climate Models

|. Deterministic Methodologies
— Increasing horizontal resolution
— Improving the deterministic parameterizations

Il. Stochastic Methodologies
1. Stochastic kinetic-energy backscatter scheme (SKEBBS)

— Rationale: A fraction of the dissipated kinetic-energy is
scattered upscale and available as forcing for the resolved
flow (Shutts, 2005)

2. Stochastically perturbed parameterization scheme (SPPT)

— Rationale: Especially as resolution increases, the
equilibrium assumption is no longer valid and fluctuations
of the subgrid-scale state should be sampled (Buizza et al.
1999)



Potential to reduce model error

Stochastic
parameterizations can
change the mean and
variance of a PDF

Impacts variability of
model (e.g. internal

variability of the
atmosphere)

Impacts systematic
error (e.g. blocking
precipitation error)

/
Log-

likelihood

Weakinoise

Unimodal

Strong noise

Multi-modal



Mean systematic error of 500 hPa
geopotential height fields

Implemented in ECMWEF IFS
Reduction of z500 bias in all
simulations with a model-
error representation
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Blocking Frequency (%)

Frequency of wintertime Northern
Hemisphere blocking events in ECMWEF |FS

1990-2005
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20-yr return levels for maximum Temperatures at 2m

CAM - ERA CAM SKEBS - ERA
SKEBS TREFMXAV - ERA Interim: 20yr RL

CAM TREFMXAV - ERA Interim: 20yr RL

* Differences of 20-yr return levels for maximum temperatures at 2m from ERA-Interim

* In certain regions (e.g. Mid-west) SKEBS has higher 20-yr return levels than CAM4

e Over many land regions, CAM4 has higher 20-yr return levels than ERA reanalysis

* Hence the impact of SKEBS is negative in some regions (e.g. the Mid-west), but positive in
others Central Africa

Courtesy Tagle at al.




Variability in Climate Models

 NCAR task: Implement a stochastically perturbed physics
scheme (SPPT) into CAM4 (

— SPPT does not significantly impact the bias
— Impact on variability is under investigation
* Assess the impact of SPPT and stochastic kinetic-energy

backscatter scheme (SKEBS, partially implemented) on air
quality (not yet evaluated)
— previous results: SKEBS increases the 20yr return levels of T

in 2m, but base model seems to overestimate extreme
heat in the first place (completed)

— Impact of SPPT and SKEBS on summertime blocking, after
SKEBS is modulated with dissipation rates (started)

— Impact of SPPT and SKEBS on variability across temporal
and spatial scales (started)



Inclusion of Stochastic Processes in Fire Emissions
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improve this simulation.

(slide courtesy of Spencer Clark and Natalie
Mahowald)

Van der Werf etal: based on satellite data



Task 3: Evaluate extreme values in
Chemical Models (CTMs and GCMs)

e Evaluation of ability to capture extreme
events

* |mpact of non-stationarity in extreme events
e Sensitivity to model formulation of chemistry



Online GEOS5/MERRA
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DM8H O, (left) & DMT(right) Biases

* Higher DM8H O, bias in Ohio/Pennsylvania region

e All of the online simulations show a higher SD in both DM8H
O; and DMT than the offline simulation
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Climate Penalty Factor, comparis

* Climate Penalty Factor
(CPF) is the slope of the
DM8H O3 and DMT

relationships
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LRL117
Sample Quantles

PAR107

Sample Quantles

Gaussian Q-Q Plots
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* Q-Q plots show that DM8H O3 distributions are

not Gaussian, wider tails

 The two 26-level simulations do not behave the
same way the 56-level simulations behave



POT: Points over a Threshold
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 For LRL117, a 75 ppbv threshold yields 33

events during the 11 years of summers
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Conclusions and Next Steps

Research is just beginning...
-Understand/quantify T-O3 relationships in model and
observations

-Understand/quantify variability in GCMs and relate to
heat-waves and blocking and long climate runs

-Methodologies for modifying variability in GCMs
-Understand/quantify model O3 biases/variability
-Stochastic biomass burning algorithims

-Future Simulations



