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Hypothesis:

If BC is well mixed with organic hygroscopic
material, it will significantly alter droplet
growth rates and sizes.

This will impact droplet depostion rates in
the lungs and influence radiative forcing
estimates of the aerosol-indirect effect.
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The connection between aerosols and climate

DIRECT COOLING DIRECT WARMING
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The ability to cool/ or warm effects the global energy balance

4 Key Aerosol Factors
a. Number

b. Size

c. Composition

d. Hygroscopicity
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DROPLET SIZE AND GROWTH

Aerosols that activate and become droplets are called Cloud Condensation
Nuclei (CCN)

o CCN »
. ° °CCN° ° °
Clean Environment °
(few CCN) Polluted Environment

In addition to understanding CCN (dry particle) properties it is
important to measure and characterize droplet growth
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THE IMPORTANCE OF AEROSOL WATER-VAPOR INTERACTIONS

The ability of aerosol to uptake water
(hygroscopicity) has the potential to
impact health

Hygroscopicity affects
P the deposition rates of
particles in the lung

Droplet Growth

The hygroscopicity of complex

Enhanced Condensational aerosol, pollutant mixtures, needs
Growth of Particles affects to be characterized

lung deposition rates
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THE IMPORTANCE OF BC WATER-VAPOR INTERACTIONS

Organic components contribute the greatest variability to ambient
aerosol hygroscopicity and droplet growth
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(1) What is the mixing state of BC/OC

(2) Do BC/OC mixing states evolve in ageing systems?
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(3) How will the mixing state of BC impact water-uptake?




Soluble Mass

Mixing State

Droplet Size
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Form Biogenic SOA in Chamber from
Terpene pre-cursors

a-pinene (aP)
= Semi-Volatile Organics
= Dark ozonolysis
= O, and OH

Quickly Inject Anthropogenic POA

Motor Oil (MO)
e Semi-Volatile Organics
e Heated Injector System

Diesel Exhaust (DL)
* Semi-Volatile Organics
* Diesel Generator
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o-pinene SOA

(a) a-pinene SOA (Before Mixing)
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Asa-Awuku et al, 2009




a-pinene SOA <4 Diesel Exhaust POA

(b) a-pinene SOA + DL POA (After 15 min)
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STRONG / 1-PHASE MIXTURE



a-pinene SOA <4 Diesel Exhaust POA

(c) a-pinene SOA + DL POA ( After 1 hour 15 min)
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o-pinene SOA

Aerodynamic Vacuum diameter, d,, (nm)
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o-pinene SOA

(b) a-pinene SOA + (After 15 min)
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o-pinene SOA

(c) a-pinene SOA + ( After 4 hours)
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MIXING OBSERVATIONS

« Diesel exhaust (DL) POA readily mixes with a-pinene (aP) SOA
and forms a one phase mixture of lower volatility semi-volatile
compounds

— The mixing process occurs rapidly and takes one hour to form a singular
phase in the chamber
— The components of DL are more similar to a-pinene SOA than motor-oil

* In terms of VBS, they are closer in the 2-D space and are thus more likely to
favor each other

* Motor Oil (MO) POA plus a-pinene SOA form a weak two phase
mixture

— Some motor oil vapors will condense on the surface of a-pinene SOA
— However once saturated, the remaining Motor Qil stays in its own phase
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DROPLET FORMATION FROM REALISTIC AEROSOL

The aerosol hygroscopicity impacts the ability to form stable water droplet
Primary organic aerosol (POA) is emitted =i () | £ Br Tiacha
directly into the atmosphere il R

e.g. vehicular particulate emissions L 1 2 W

Motor Oil POA & Diesel Exhaust POA
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Secondary organic aerosol (SOA) is formed in the
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The ability of aerosol to form droplets at a given

supersaturation is governed
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2. The mixture quickly becomes active after injection
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3. After one phase is formed, hygroscopicity increases

: 1 hour for single phase mixture
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CCN & DROPLET MEASUREMENTS

Particle Diameter

Particle Diameter

We can apply this concept for dry
Scanning Mobility CCN

Analysis
Moore, Nenes and Medina, 2010
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DROPLET GROWTH KINETICS
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DROPLET GROWTH KINETICS
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DROPLET GROWTH KINETICS
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DROPLET GROWTH KINETICS

1.2
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What happens when we mix?




DROPLET GROWTH KINETICS
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o-pinene SOA
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Enough hygroscopic material is available for organic droplets to
grow to similar sizes as sulfate and a-pinene SOA
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o-pinene SOA
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o-pinene SOA
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o-pinene SOA
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o-pinene SOA
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A constant water accommodation coefficient can be applied to describe
the aerosol that contains hygroscopic material in the 2-phase system
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DROPLET GROWTH KINETICS
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a-pinene SOA <4 Diesel Exhaust POA
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a-pinene SOA <4 Diesel Exhaust POA
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a-pinene SOA <4 Diesel Exhaust POA
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MIXING STATE MATTERS
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The mixing state of the aerosol is important.

The extent of mixing will substantially modify CCN activation
parameters and droplet growth rates

The presence of hygroscopic materials will promote droplet growth
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Soluble Mass

Mixing State

Droplet Size
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US EPA ARCHIVE DOCUMENT

| . Design apparatus to control and modify BC/OC
aerosol mixing states

Il. Identify Online and Offline techniques to
characterize BC water uptake and droplet growth

lll. Test the ability to promote water uptake of BC
aerosol containing particles through oxidative
ageing properties

IV. Measuring the cloud droplet ability of BC engine
emissions from diesel & alternative fuel sources

V. Quantify droplet growth for climate and health.
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I-710 Field Site

*

*

In Collaboration with AQMD

Instrument trailer was located 15
meters downwind of freeway
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Filter Substrate

E Multi-Angle Absorption Photometer
L e Black Carbon (BC) is measured with a Multi-Angle Absorption
g Photometer (MAAP)
$) e BCtends to be insoluble
g e The MAAP uses multiple light sources to determine the
reflective aerosol properties Light Source (LED — 670nm)
g Reflectance J, Reflectance
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Changes in BC Concentration due to Wind Direction
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How are Particles counted?

* Dry nanoparticles are exposed to a supersaturation region in which wetted droplets
are grown to micron sizes

e Condensational Particle Counters (CPC) detects larger micron size droplets with an
optical particle counter (OPC)

e CPC supersaturation is generated with two different working fluids, Butanol (TSI 3772)
and Water (TSI 3785)

Optical Particle Counter R -
(OPC) . L ,

Condenser

Droplet Growth Region

Saturator



Differences in Weekday Particle Distribution
Butanol
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Differences in Weekend Particle Distribution
Butanol

Particle Size (Dp, nm)
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Particle Size (Dp, nm)

Counting Efficiency, Ratio of Water / Butanol
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Particle Volume Concentration

Why the Difference?

Butanol CPC

Water CPC

Water Insoluble
Composition

Is the Insoluble
Contribution from BC?

Particle Size (Dp, nm)
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4 Key Aerosol Factors
a. Number

b. Size

c. Composition
d. Hygroscopicity

OA
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Real Time
measurement to
Infer Soluble Mass
Composition of
Particles
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Ongoing BC and CCN Studies

Controlled Mixing State Apparatus

BC from Biomass Burning

Biodiesel Fuel Emissions (carB - 1D, GK)
Aromatic Fuel Emissions (aAr/— 7D, GK, RLR)

Source: NASA : Black Carbon
Cloud Droplets (artist 58
rendition) &8
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Aerosol-Climate Effects

Michael Giordano, Daniel Short, Xiaochen Tang, and Diep Vu
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