US ERA ARCHIVE DOCUMENT

Environmental Justice Screening Method:

Integrating Indicators of Cumulative Impact into Regulatory Decision-making

Source: CBE

Source: David Woo

Rachel Morello-Frosch, UC Berkeley **Manuel Pastor, USC** Jim Sadd, Occidental College

Purpose of Screening Methodology

- Developed under research contract with California Air Resources Board (CARB) and Calif. Energy Commission to identify most impacted and most vulnerable communities
- Develop Indicators of cumulative impact that:
 - Reflect research on air pollution, environmental justice, and health
 - Transparent and relevant to policy-makers and communities
 - Reviewed by community EJ groups, California Air Resources Board (CARB), academic peers and other agencies
- Apply EJ "screening method" to multiple uses:
 - Regulatory decision-making and enforcement
 - Community outreach
 - Local land use planning
 - (e.g. Cites of Commerce, Richmond, Los Angeles,)

EJSM Completed

In Progress

Air Basins

Focus of Screening Method

Developed with specific reference to ambient air quality Not screening for occupational, indoor, water, pesticides. Developed to incorporate land use information into environmental decision-making Performs best with detailed, high resolution land use data. Uses secondary databases This is screening not assessment First applied in So. California high quality land use data 7 Southern California counties – complete Others in progress Map where people are exposed

- Residential land use
- Sensitive land use categories (California ARB land use guidelines, 2005)

Categories of Impact & Vulnerability

Proximity to hazards & sensitive land uses

- Based on EJ literature
- CARB land use guidelines (sensitive land uses)
- State data on air quality hazards

Health risk & exposure

- Based on EJ and public health literature
- Available state and national data
- Modeling from emissions inventories

Social & health vulnerability

- Based on epidemiological literature on social determinants of health
- Based on EJ literature on area-level measures of community vulnerability

Screening Method Architecture

- Step 1: GIS Spatial Assessment
 - Derive land use layer
 - Create base map layer (CI polygons)
 - Identify land use and hazard proximity metrics

- Metrics & CI Scoring
 - QA/QC

Linking & Mapping

- Step 2: Programming (SPSS)
 - Data processing and cleaning
 - Derive CI scores
 - Analytics
- Step 3: GIS Mapping of Results
- Qa/QC essential to Steps 1 and 2:
 - Quality control of data layers
 - Document and verify metrics and scoring

GIS Spatial Assessment – Derive Land Use Spatial Layer

- 1. Isolate specific land uses from high quality spatial data (SCAG, 2005)
 - "Sensitive land uses" daycare, schools, medical facilities, urban parks and playgrounds (CARB, 2005)
 - Residential
- 2. Intersect land use polygons with census blocks
- 3. Resulting Base Map CI Polygons
 - Scoring System each polygon receives "points" related to indicators
 - Final mapping also done using census tracts (discussed later)

Each CI Polygon receives a Cumulative Impacts Score

Scoring – Land Use and Hazard Proximity

Screening score is based on a "points" system

- CI polygons receive 1 "point" if they are a sensitive land use category
- Hazard proximity points
 - CHAPIS (Priority emitters from California emissions inventories)
 - Chrome Platers
 - Hazardous Waste TSDs
 - Land Uses associated with high levels of air pollution
 - Rail, Ports, Airports, Refineries, Intermodal Distribution Facilities
- Proximity analysis using CI polygons
 - Number of sites within distance of CI polygon boundary
 - Distance-weighted approach to address locational inaccuracy
 - Aggregate these counts to census tracts using a population-weighting procedure

Defining Hazard Proximity Distance-weighted Approach - 1000 foot buffer

- Buffer CI polygon boundaries <u>at</u> <u>different</u> <u>distances</u>
- Hazard proximity based on number of facilities (pointsources) and hazardous land uses inside the buffer

Defining Hazard Proximity – Distance Buffers 2000 Foot Buffer

- Buffer CI polygon boundaries <u>at</u> <u>different</u> <u>distances</u>
- Hazard proximity based on number of facilities (pointsources) and hazardous land uses inside the buffer

Defining Proximity – Distance Buffers *3000 Foot Buffer*

- Buffers on CI polygon boundaries
- Hazard proximity based on number of facilities (pointsources) and hazardous land uses inside the buffer

Distance Weighting the Hazard Count

Because of the potential for inaccurate hazard locations, a distance weighted approach is used to get the hazard count for each CI polygon:

```
Distance Weighted Hazard Count =
```

```
(1 x #Hazards within 1,000ft) +
```

$$(0.5 \times \text{#Hazards } 1,000-2,000\text{ft}) +$$

(**0.1** x #Hazards 2,000-3,000ft)

^{*} The above weights can be set to any desired value

Distance weighted hazard count around CI Polygons (Jenks natural breaks)

Calculating Hazard Proximity & Sensitive Land Counts at the Tract Level

Why?

- Tracts are a consistent level of geography for many sources of data; avoid misrepresenting precision
- All of the health risk and social vulnerability measures (discussed later) are available at the tract level

How Calculated:

- Estimate population in each CI polygon (area-weighting)
- Calculate population-weighted average of the hazard and sensitive land use counts across all CI Polygons within each census tract

Hazard Proximity & Sensitive Land Use Count at the Tract Level

Distance weighted bazard count (+1 if sensitive land use), population weighted to

Distance weighted hazard count (+1 if sensitive land use), population weighted to the tract level, mapped on CI Polygons (Jenks natural breaks)

Scoring: Hazard Proximity & Sensitive Land Use

- Tract-level counts are ranked into quintiles (1-5) across all tracts in the region to produce the final hazard proximity and sensitive land use <u>score</u>
- Quintile distribution is used throughout the EJ Screening Method because it is an easily understood and normal ranking procedure
 - No "right" distribution to follow (magnitudes of hazards unknown)
 - Other distributions could easily be applied

Health Risk & Exposure Indicators (Tract Level)

- RSEI (Risk Screening Environmental Indicators)
 - (2005) toxic conc. hazard scores from TRI facilities
- NATA 1999 (National Air Toxics Assessment)
 - Respiratory hazard from mobile & stationary sources
- CARB Estimated Inhalation Cancer Risk 2001
- CARB estimated PM_{2.5} concentration

Scoring for Health Risk & Exposure

Scoring:

- Each indicator is ranked into quintiles (1-5) across all tracts in the region
- Quintile rank values are summed for each tract
- These sums are ranked into quintiles (1-5) across all tracts in the region

Social & Health Vulnerability Indicators

Census Tract Level Metrics (2000)

- % residents of color (non-White)
- % residents below twice national poverty level
- ◆ Home ownership % living in rented households
- Housing value median housing value
- ◆ Educational attainment % population > age 24 with less than high school education
- Age of residents (% <5)
- Age of residents (% >60)
- Linguistic isolation % pop. >age 4 in households where no one >age 15 speaks English well
- Voter turnout % votes cast among all registered voters in 2000 general election
- ◆ Birth outcomes % preterm or SGA infants 1996-03

²² Social & Health Vulnerability Scores

- Each social and health vulnerability metric is ranked into quintiles (1-5) across all tracts in the region
- Final score is derived by taking average ranking (across all metrics) for each tract, and ranking the average once again into quintiles (1-5)

A note on missing values:

To help ensure that the social and health vulnerability scores are reliable, we exclude tracts with less than 50 people, and those with 5 or more missing values among the 10 metrics considered. To account for missing values in tracts with 1 to 4 missing metrics, the average quintile ranking is taken across only the non-missing metrics.

Final Cumulative Impact Score

Combine three categories of impact and vulnerability to derive final Cumulative Impact Score

Cumulative Impact Score =

Hazard Proximity and Sensitive Land Use Score (1-5) +

Health Risk and Exposure Score (1-5) +

Social and Health Vulnerability Score (1-5)

Final Cumulative Impact Score Ranges from 3-15

Tract Level Cumulative Impact Score

Distance weighted hazard proximity, mapped on CI Polygons

Important Caveats

- Method was developed with specific reference to air quality and does not screen for other concerns (such as water quality or pesticides)
 - Performs best with well-classified, high spatial resolution land use data
 - Currently experimenting with other data types to apply the Screening Method more widely
 - This is <u>screening</u> not assessment, so neighborhood monitoring and ground truth verification is needed.

Potential Contributions

- Screening provides a way to examine the geographic pattern of cumulative impact and vulnerability
 - Can be used to highlight communities of potential regulatory concern
 - Our approach is transparent and all metrics come from publicly available data, so it is not too difficult to implement & update
 - Open to modification by sophisticated users (change weights, indicators, scoring approaches)

