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Materials and methods
Figure 2 below illustrates graphically the key steps in a criteria pollutant health impact assessment (HIA).  
Software packages including the environmental Benefits Mapping and Analysis Program (BenMAP) relate 
changes in air quality, population exposure risk estimates and baseline incidence estimates to  calculate a 
change in health impacts.  

The finer the spatial scale of these key inputs, the more useful they may be to the Environmental Justice analysis.  Figures 
3, 4 and 5 illustrate how fine-scale air quality, population distribution and baseline health status can reveal the location of 
populations at greatest risk of air pollution health impacts. 

Figure 3: African-
American males aged 0-17 
at 1km cells

Figure 4:  Hospitalization 
rate among all children aged 
0-17 at ZIP codes

Figure 5:  Distribution of 
baseline PM2.5 air quality 
levels at 1km cells

As we demonstrate below, these fine-scale data may be used to identify populations most vulnerable and susceptible to air 
pollution.  In Figure 7 we have multiplied the population in figure 3 against the hospitalization rate in figure 4 to create a 
map of the population-weighted hospitalization rate. The red outline identifies those areas that are at or above the 75th 
percentile or higher of the population-weighted hospitalization rate (i.e. populations most susceptible). Figure 7 identifies 
areas in which baseline PM2.5 levels are at or above the 75th percentile of PM2.5 exposure (i.e. populations most vulnerable). 
Finally, Figure 8 joins these two maps to identify populations most vulnerable and susceptible. 

Figure 6:  Populations 
susceptible to air pollution

Figure 7:  Populations 
vulnerable to air pollution

Figure 8: Populations 
vulnerable and susceptible to 
air pollution

Table 2:  Per-person change in PM2.5 among populations vulnerable and susceptible to 
air pollution impacts

Per-person change in PM2.5 exposure

Among susceptible and vulnerable 
populations Among rest of population

Status-quo strategy 0.33 0.28

Risk-based, multi-pollutant strategy 1 0.5

Percentage change
300% 180%

Table 1:  Per-person change in PM2.5 by scenario and air quality modeling 
resolution

Status-quo approach Multi-pollutant, risk-based approach

12km 
resolution

1km 
resolution % Difference

12km 
resolution

1km 
resolution % Difference

Total
Population 0.249 0.271 8% 0.706 0.721 2%

Black Non-
Hispanic 0.249 0.258 3% 0.802 0.803 <1%

Asian Non-
Hispanic

0.254 0.282 10% 0.626 0.652 4%

White Non-
Hispanic 0.249 0.278 10% 0.613 0.658 7%

Introduction
In 2004 the National Research Council (NRC) report “Air Quality Management in the United States (2004)” recommended that the U.S. EPA transition from a pollutant-by-pollutant 
approach to air quality management to a multi-pollutant, risk-based approach . . .” In response, EPA selected the Detroit metropolitan area as a test bed to evaluate multi-pollutant, 
risk-based approaches to air quality management. This overall goal of this analysis was to: (1) demonstrate a framework with available technical tools, methods and data that 
implemented and evaluated multi-pollutant, risk based control strategies; and (2) evaluate the benefit of implementing such a framework as compared to a single-pollutant, SIP-based 
approach to air quality management. 

As part of this analysis, we simulated two contrasting air quality management strategies. While both met PM2.5 and ozone air quality targets, one strategy reflected a “status quo” 
approach where controls are selected separately to address ozone and PM2.5 nonattainment at monitor locations, while the other strategy reflected a “multi-pollutant, risk-based” 
approach aimed at further reducing population risk from exposure to ozone, PM2.5 and selected air toxics while still addressing ozone and PM2.5 nonattainment.

By considering local air quality, demographic and health data jointly, we: 

•Achieved the same or greater reductions of PM2.5 & O3 at monitors as a status-quo strategy
• Improved air quality regionally and across the urban core for O3, PM2.5 and selected air toxics
• Produced approximately 2x greater benefits for PM2.5 and O3 as compared to a status-quo strategy
• Reduced non-cancer risk

Figure 1 shows the locations of key point sources in Detroit and the incremental change in PM2.5 air quality between strategy the status-quo and multi-pollutant risk-based strategies. 
The latter strategy achieves greater incremental air quality improvements in the most populated portion of the urban core. 

Having utilized these local scale data to demonstrate how multi-pollutant, risk-based approaches can maximize air quality benefits across the population of Detroit, we next wanted to 
assess the change in air pollution health impacts among those populations most vulnerable and susceptible to air pollution. Specifically, we aimed to answer the following questions:

1. Where are the populations most vulnerable to air pollution and susceptible to air pollution health impacts located?

2. To what extent does the multi-pollutant, risk-based air quality management plan benefit these populations?

Figure 1: Incremental change 
in annual mean PM2.5 levels 
between control strategy
1 and 2

Results
Table 1 below summarizes the per-person change in PM2.5 across the total population, black 
non-hispanics, Asian non-hispanics and white non-hispanics. The per-person change in PM2.5 is 
consistently larger using 1km air quality modeling.  The multi-pollutant, risk-based strategy 
demonstrates the largest per-person change across all populations as well as minority 
populations. 

Table 2 presents the per-person change in PM2.5 exposure among vulnerable and susceptible 
populations (identified in Figure 8) and among the rest of the population.  The multi-pollutant, 
risk-based approach produces the largest per-person change in PM2.5 exposure among 
vulnerable and susceptible populations.

Conclusions
Integrating spatially resolved information regarding air quality data, population demographics and 
baseline health statistics can allow analysts to identify those populations most vulnerable and 
susceptible to air pollution impacts.  These data may then be used to inform air quality 
management strategies designed to maximize air pollution benefits among these populations. 

Using Detroit as a pilot, we demonstrated how following this approach resulted in air quality 
strategies that produced benefits among both the total population as well as among those 
individuals at greatest risk of air pollution-related health impacts. 

While in this analysis we  used asthma hospitalization rates and PM2.5 air quality levels to define 
vulnerable and susceptible populations, alternate criteria are possible.  Susceptibility might 
alternately be defined using asthma prevalence rates or hospitalization rates for other key health 
endpoints including cardiovascular endpoints. Vulnerability might be defined using ozone or air 
toxic air quality levels. The approach described above can be readily adaptable to use the local 
fine-scale data available. 

1. Where are the populations most vulnerable to air pollution and susceptible to air pollution health impacts located?

2. To what extent does the multi-pollutant, risk-based air quality management plan benefit these populations?




