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ABSTRACT: 
Objectives: The central paradigm for EPA standard setting is risk assessment. This paradigm 

has served public health well for decades.   However, gaps have emerged in the fabric of this 

framework, causing some authors to challenge certain underlying assumptions. Our overall aim 

is to extend the risk assessment approach by examining, both conceptually and 

methodologically, how differential responses across population groups can be better integrated 

into the risk assessment process. We illustrate these issues, focusing on two specific examples: 

lead and air pollution.   

Relevance:  Addressing inequities in health risks and health outcomes will require an extension 

of the risk assessment paradigm.   Currently, methods and approaches are available for 

considering differential risk and vulnerability, but have not yet found their way into wide-spread 

usage.  Our proposed extension is intended to increase the precision and effectiveness of risk 

assessment generally, and to provide additional policy tools to help target resources to achieve 

greater equity in the health status of populations in addition to efficient risk reduction.   

Summary of Findings: Our central conclusion is that people respond differently, and this is an 

important enough phenomenon to require integration into risk assessment. Moreover, such 

integration is difficult with paradigms like reference dose, and flows more easily from a 

quantitative consideration of dose-response curves, which have the additional advantage of 

incorporating the non-trivial effects that may be observed at low dose for common exposures. 

We identify and discuss 6 assumptions implicit in standard risk assessment models that must 

change to accomplish this.  For convenience, we label these 1) risk independence, 2) risk 

averaging, 3,) risk non-transferability, 4) risk synchrony, 5) risk accumulation and chaining, and 

6) quantification of numbers of persons above certain thresholds or limit values is sufficient to 

characterize risk.  The literature on lead and air pollution are reviewed in order to illustrate how 

these assumptions might be modified to take account of differential risk and vulnerability.  Our 

main finding is that differential risk and vulnerability is a critically important but neglected area 

within risk assessment.  However, a wide range of methodological and conceptual tools are now 

available for addressing these gaps.   

Recommendations: If continued progress is to be made in incorporating these concepts into 

risk assessment, future studies of toxicant exposure-risk relationships must invest the resources 

necessary to measure contextual and individual-level factors that might modify these 

relationships. In most cases we do not know which subgroups are the most vulnerable or, if we 

do, subgroups are defined very broadly. We advocate defining vulnerable subgroups with 

greater specificity..  At the same time, information is available on differential susceptibility for 
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some agents, and EPA risk assessments have failed to characterize the impact of those 

differences on the distribution of risk. EPA should commit to making this a standard part of their 

risk assessments whenever the information is available to do so. To characterize more fully the 

bases of inter-individual differences in vulnerability, we recommend epidemiologic studies 

incorporate the measurements and analytical techniques to tease out effect modifiers at multiple 

levels.  In essence, we argue for moving beyond the reliance on standard uncertainty factors 

and working to explicitly unpack the “black box” that represents variability in vulnerability.   
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A. Introduction and statement of goals  

The central paradigm for EPA standard setting is risk assessment. Based on scientific 

data, EPA prepares quantitative estimates of the changes in health status that will result at 

different potential levels of a standard, and uses that quantification as input into decision-

making, where risk management depends on other inputs as well. Specific regulatory actions 

are targeted to particular environmental agents, whose marginal impacts, sources, and control 

strategies often differ. Often a cruder approach is taken. A regulatorily acceptable dose is 

defined (e.g. the RfD or reference dose) and risk assessment merely quantifies numbers above 

vs below this magic number. Implicit is the latter approach is that this quantity is meaningful, 

which implicitly assumes that risk is zero below the RfD, and the same no matter how much 

above the RfD the exposure is. This paradigm has served public health for decades.   However, 

gaps have emerged in the fabric of this framework causing some authors to begin to challenge 

and examine certain underlying assumptions.     

A recent NAS report declared that “..risk assessment is at a crossroads”1.  It’s key 

recommendation to to abandon the reference dose approach whenever possible and move to a 

quantitative estimate of changes in health. The purpose of this paper is to review some of the 

assumptions inherent in those studies and to propose an expansion of the current risk 

assessment approach.  Simply put, we suggest that risk assessment should be updated to 

consider, both conceptually and methodologically, the issue of differential vulnerability and 

susceptibility across population groups, and how this results in the inequitable distribution of 

risk, a key concern for environmental justice.  We address the conceptual and methodological 

issues in turn, and build our case around lead and air pollution as running examples.   

Susceptibility and Vulnerability: The standard definition of a person who is susceptible is 

that the person is more responsive to the exposure. More recently, the word vulnerability has 

been used to describe situations where the susceptibility arises from psycho-social or economic 

differences, rather than biologic differences among the people. We do not think this distinction is 

a good one, because recent research into how socio-economic factors, stress, etc exert 

influence on health has identified clear biological pathways. Stress is associated with differential 

baseline levels and differential response of the hypothalamic-pituitary-adrenal system for 

example. That is, these social factors really do describe people with different biological states. A 

more useful distinction is one vs many. Just as in physics, collections of particles are capable of 

behavior quite different than what one would expect examining them singly or via simple two 

way interactions, human’s health, and response to external stimuli, depends in part on the fact 
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that humans live in groups. And differences across persons in the groups they live in influence 

their responses.  

A.1. Assumptions underlying risk assessment 

In this section of the paper, we examine 6 assumptions that underlie the general risk 

assessment framework.  Some of these assumptions have been made explicitly in previous 

work, and others have been explored relatively little.   

A.1.1. Assumption 1: Risk independence (aka risk autonomy) 
Risk assessment traditionally assumes that exposures and their health impacts are 

independent of one other, and can hence be evaluated singly as distinct isolable factors.  

Evaluating different agents separately inherently presumes that the impacts are independent 

and additive at the exposure ranges of interest. Hence, one can compute the incremental effect 

of substance A, and make decisions on that basis, independent of exposure to substance B. 

Where there are interactions between A and B, this approach can produce spurious results. 

A.1.2 Assumption 2: risk averaging 
In addition, the standard risk assessment paradigm reduces the multidimensional 

aspects of risk (the risk of each individual in the population, given their particular attributes) to a 

single estimate: the overall risk in the population, or equivalently, the mean risk. Much work in 

risk assessment recently has focused on understanding the uncertainty in this scalar estimate. 

But recent work in epidemiology, toxicology, and exposure science has suggested that a more 

multidimensional approach may be more useful. Two main problems arise.  First, if risks are 

substantially elevated primarily in a subpopulation that is small, overall risk estimates may be 

low, masking the substantial burden of risk to the subpopulation.  A second problem is that if a 

risk factor has opposing effects in populations of approximately equal magnitude, pooled 

estimates will “wash out” the deleterious effect in more vulnerable groups. In such a case, 

regulatory options should take into account that there are beneficial effects in some and 

deleterious effects in others, rather than assuming there is no effect. Both issues point to the 

potential importance of the distribution of risk.  

The mean or population attributable risk is a good single metric when the typical risk of 

exposure to individuals is low, reducing concerns about the details of the distribution. This 

situation does not imply a trivial public health impact because for environmental agents, the 

population exposed is often large, resulting in an important population attributable risk. As an 

analogy, the relative risk of mortality associated with a 7 mmHg change in blood pressure 
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(typical of the reduction produced by most anti-hypertensive drugs) is modest, but the 

population impact of a seven mmHg shift in the mean distribution of the population is huge.  

Treating hypertension in individuals produces a small change in individual risk, masking large 

changes in population rates of heart disease. As an environmental example, EPA’s risk 

assessment for controlling off road Diesel engine emissions estimated it would save over 

12,000 lives per year by 2030, although individual risk reduction was estimated to be small2. 

Implicit in this focus on attributable risk is that while individual risks may vary about the mean, 

the risks in a definable subpopulation do not reach a level of concern (defined by decision 

makers such as the EPA Administrator) that would require additional efforts.  

Implicit in this is that while individual risks may vary about the mean, the risks in a 

definable subpopulation do not reach a level of concern. The risk assessment framework 

presumes that average risk is an appropriate and sufficient single estimate of population risk.  

That is, there is a focus on the distribution of outcomes within stochastic parameters, but an 

under-appreciation of two important factors that are the subject of much of this paper: a) the 

distribution of risks is not random or uniform, and b) the vulnerability of individuals and 

populations may vary as a function of factors related to persons or places.  

A.1.3 Assumption 3: Risk non-transferability 
One other standard assumption in risk assessment is that the risks may accumulate but 

that they apply to each person exposed without reference to the exposure status of others. But 

recent studies of the risks due to environmental exposures suggest that some risk may be 

transgenerational, and even hereditable. Epigenetics is the science of changes to the 

chromosome that do not involve changes in the nucleotides, but do affect transcription. The new 

field of environmental epigenomics has begun to show for the first time that heritable 

environmentally induced epigenetic modifications underlie reversible transgenerational 

alterations in phenotype 3, 4 Some of these changes can occur in children whose mothers are 

exposed during pregnancy; and while non-genetic, some may be hereditary. For example, 

exposure of rats to endocrine disrupting compounds during pregnancy resulted in reduced 

spermatogenesis in their male offspring, a pattern that was transmitted for at least 3 subsequent 

generations of unexposed animals5. This was the result of hereditable changes in DNA 

methylation patterns in the offspring. Further research indicated the same exposure produced 

transgenerational changes in gene expression in the hippocampal area in the brain, as well as 

transgenerational changes in anxiety behavior6. There is growing evidence that exposures to 

other environmental agents such as Bisphenyl A7, lead8, traffic pollution9, and metal-rich 

particles10 result in epigenetic changes in humans. 
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 Psychosocial factors may play a similar role in producing transgenerational effects. For 

example, lead exposure is associated with increased hyperactivity and reduced executive 

function, which may impact parents who were exposed as children by making them less able to 

cope with normal stresses, which would further impact their parenting ability.  Yehuda has 

recently shown that offspring of parents exposed to holocaust trauma have altered 

neuroendocrine responses suggestive of epigenetic programming across generations11. Collins 

has shown that parents exposed to poverty appear to transmit increased risk to their offspring 

through low birthweight and other deleterious effects12.   This research shows the myriad ways 

in which the social environment alters fetal programming in ways that extend across 

generations, suggesting both that the exposed person may not be the only person suffering the 

consequence of the exposure and that individuals may start life with varying degrees of 

vulnerability to subsequent environmental risk factors.    

A.1.4 Assumption 4: Risk synchrony 
Risk assessment  sometimes relies on snapshots of exposure based on one point in 

time or on a narrow time window, or alternatively lifetime exposure, without sufficient attention to 

the issues of critical windows, dose rate, or the ways in which underlying vulnerability changes 

as risk accumulates across the entire life course.   When available, methods for looking at 

critical windows and dose rates are considered in risk assessment, but less attention has been 

paid to the timing of vulnerability. Several models have been proposed to move from a 

synchronous (or snapshot) view of risk to a diachronic (or movie) approach.   These include the 

study of allostatic load13-15, the weathering hypothesis16-18 as well as life-course epidemiology 19, 

20.  Cumulative exposure to individual environmental agents, or to all environmental agents 

acting along similar pathways may, in some cases, represent a better metric for risk 

assessment. For example, tibia lead levels are a cumulative index of exposure to lead, and 

show stronger associations with some health outcomes. Also, as attention focuses on 

intermediary biomarkers of health (for example blood pressure and cholesterol levels rather 

than cardiovascular events, are now commonly used as surrogate markers for pharmaceutical 

agents that represent deliberate exposure to manmade chemicals) finding the best indicator for 

environmental exposures’ cumulative impact on health is acquiring greater importance. There 

are some candidate markers, which should be considered in risk assessments.  

A.1.2. Assumption 5: Risk accumulation and chaining 
Lastly, a single scalar estimate of risk will also fail to capture important aspects of the 

public health problem, even in the absence of differences in susceptibility and exposure, if there 
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are skewed distributions of other underlying risk factors, resulting in substantially different 

cumulative burdens in one subpopulation than in another. That is, one input into policy making 

may be how a given option changes the distribution of cumulative risk due to all risk factors in 

the population, and not merely how it changes the distribution of risk due to the targeted 

exposure. Again, because the distributions of multiple sources of risk are not independent, this 

can produce cascading inequities even in the absence of interactions. 

A.2. Moving toward differential vulnerability: interactions and beyond 

But what if the above set of assumptions are not met? What if the distribution of risk in 

the population is skewed, or markedly higher in one group and lower in another?  What if risk 

factors accumulate in synergistic ways to create subgroups that are differentially susceptible? 

This can happen in several ways. The first brings us back to interactions. Differential responses 

can result from differences in genetic susceptibility or due to exacerbations of the effect of 

exposure by underlying disease status, by psychosocial factors (e.g., stress) or by sociomaterial 

factors (e.g., poverty).    This is not to suggest that effect modification is always exacerbatory; 

diets rich in antioxidants and omega-3 fatty acids have been shown to blunt the effect of air 

pollution21, 22 for example.  Differential response can also flow from more complex social or 

physical factors or more than one interaction. Several examples are: persons with diabetes 

have twice the risk of cardiovascular mortality following exposure to particulate air pollution as 

persons without the syndrome,23 stress modifies the effects of lead on blood pressure and 

cognition24,  race and educational level strongly modify the mortality risk on very hot days25, and 

genes related to oxidative stress defenses modify the risk of air pollution26.  

These risk modifiers are rarely independently distributed, nor do they occur randomly 

throughout the population. Assuming independence often produces underestimates. For 

instance, risk assessments underestimated the risk of the Chernobyl disaster because they 

assumed independent distributions of individual actions, rather than the systemic behaviors that 

actually occurred27. In the case of environmental exposures, many modifiers are related and not 

independently distributed. For example, both diabetes and stress are more prevalent among 

black Americans. And for some pollutants, exposure is greater among this subgroup of the 

population as well. A risk assessment that seeks to capture the distributional aspects of risk 

must include the covariance of the risk modifiers, which could greatly increase the actual 

skewness of risk in the population. 
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A.3. Dose-Response Considerations 

Dose-response can be an important part of the improvement of risk assessment. For 

some substances, such as lead or air pollution, EPA has used quantitative risk assessment 

based on epidemiologic dose-response or exposure-response curves. In other cases they have 

computed reference doses, or some similar estimate of a dose that conveys de minimis risk. 

The National Research Council has recently recommended that EPA take an integrated 

approach, including moving to more quantitative risk assessment, in lieu of reference doses. 

This fits well with the emphasis here on cumulative risk, distribution of risk, and interactions, 

since it is difficult to incorporate those factors into “magic numbers” such as RfDs. It is important 

to consider that “de Minimus” exposure to large populations may not have “de Minimus” 

aggregate risks. For example, most of the lung cancer cases attributable to radon exposure 

occurs in homes below the EPA guideline, Similarly one must consider the possibility that some 

populations may be substantially more affected and that multiple exposures that accumulate 

may yield risks that are no longer de minimus.  

A.3.1. Dose-response and threshold effects  
One special topic is what the shape of the exposure-response or dose-response relation 

is.  Many studies fail to consider adequately whether there is a threshold in the association 

between exposure and response. Thresholds have traditionally been assumed in toxicology for 

most outcomes, possibly excepting cancer. However, as epidemiology studies have extended to 

consider more exposure-response relations in relevant exposure ranges, a striking finding is the 

lack of evidence for departure from linearity in many associations for non-carcinogens, down to 

the lowest observable exposures in the general population. For example, the concentration-

response between PM2.5 and mortality is linear, and the dose-response between blood lead 

levels and IQ is supralinear-that is, the slope is substantially higher at lower doses.    

 In a paper in 2000 reporting on a method (meta-smoothing) for combining data across 

studies to examine the shape of the exposure-response, Schwartz developed a theoretical basis 

for such findings28.  Suppose each subject has a threshold for a serious health response, for 

example mortality. These thresholds differ across subjects based on differences in existence 

and intensities of current illnesses, differences in intensities of chronic illnesses, and in general 

differences in all the genetic, social, psychosocial etc modifiers we have discussed in this paper. 

At any given exposure in a population, the number of individuals having the event will be the 

sum of all individuals whose threshold is at or below the given exposure. That is, the exposure-

response curve in the population will be the cumulative distribution curve of individual 
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thresholds. Because the distribution of thresholds in the general population is the sum of the 

distribution due to multiple acute illnesses, multiple chronic conditions, multiple social factors, 

multiple stressors, multiple genetic factors, etc, that distribution will tend, by the Central Limit 

Theorem, to approach the normal distribution, and hence the cumulative distribution of the 

thresholds (which, as noted above, is the exposure-response curve in the total population) will 

tend to approach the logit or probit curve. Since we are generally dealing with population 

exposures to environmental contaminants, with exposures at levels where the probability of an 

event in any individual is small, we are at the low dose end of those exposure-response curves. 

And the low dose ends of the logistic and probit curves are linear. Hence, as a population 

exposure-response to an exposure with multiple sources of susceptibility, a linear association is 

not unexpected, even in the presence of individual thresholds. Another implication is that when 

we look at populations exposed to higher doses, we might expect to be on a different part of the 

curve, with different slopes, including the part of the logistic curve where slopes are declining. 

This is important both for extrapolating epidemiologic results for risk assessment and for doing 

the risk assessment on population with a wide distribution of exposure. 

Since that paper many additional studies have reported no-threshold relationships 

between ambient levels of daily particles and daily deaths29-31, daily NO2 and daily deaths32, 

long term exposure to particulate air pollution and survival33, the effect of Lead on IQ34, the 

effect of Arsenic on cancer risk35, etc.  The implications of significant public health risks at low 

exposure concentrations are large, as recent EPA regulatory impact assessments have 

demonstrated. Hence identifying whether the association is linear, or what shape it has, has 

become a central issue. Among the other techniques introduced to determine the shape of the 

exposure-response are regression splines36, penalized splines37, and Bayesian model 

averaging38. The existence of these no-threshold, and often linear, associations is now widely 

accepted.  

For example, the National Research Council, in 2002 stated “For pollutants such as 

PM10 and PM2.5, there is no evidence for any departure of linearity in the observed range of 

exposure, nor any indication of a threshold” 39.  

Nonlinearities are still possible, and still observed. For example, the dose-response 

curve for the cognitive effects of lead, and for the cardiovascular effects of particles, show 

nonlinearities, with decreasing effects of incremental exposures when exposures are already 

high. Risk assessment must clearly consider such whether steeper responses at lower levels 

exist in each case, particularly if we seek to understand differential effects on subpopulations 

whose exposures may differ. But research must also identify the reasons. Are these general 
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physiologic phenomena—such as saturation, or do they result from a wide distribution of 

susceptibility? Knowing the answer to this question could result in different choices of policy 

options.  

A.4. Differential risk: exposure 

A single scalar estimate of risk may also fail to fully characterize the public health 

problem where there are substantial differences in the distribution of exposure, again resulting 

in a skewed distribution of risk. This is distinct from the case of risk chaining (A.1.5) where the 

issue was the differential distribution of risk factors other than the exposure of interest. For 

example, the distribution of lead exposure is highly skewed, with greater exposure among 

minorities and persons in poverty40-42. Over the last 30 years, multiple national surveys have 

documented increasing skewness of the blood lead distribution, as general sources of lead 

exposure (e.g. gasoline lead) have been reduced, while less universal sources of exposure 

have fallen more slowly. That is, the decrease in exposure in all parts of the population has not 

been proportional. Hence inequity in the sociogeography of risk has increased.   

 The main point is that much of the risk assessment literature regards the systematic 

patterning of risk in different places and in different populations as unproblematic.   The 

landscape of exposure to chemicals reflects inequities in the distribution of resources more 

generally, and should not be treated as exogenous (that is, something outside of the scope of 

the risk assessment and risk management decisions, and taken as given).    So while we know 

quite a bit about the impact of particular exposures on overall population risk, we know far less 

about the socio-environmental processes the deliver those risks differently to different groups.  

Insufficient attention has been paid in traditional risk assessment models to the social 

determinants of exposure. As Link and Phelan argue, we are obliged to consider as 

fundamental causes of disease, those factors that place individuals at risk for risk 43.   However, 

epidemiologic and toxocologic studies struggle to classify and incorporate “upstream” factors 

that account for differential distribution of risks.   Such factors as racial discrimination, social 

disintegration and marginalization, and social inequality are hard to incorporate into a causal 

modeling framework.  It is often difficult to envision meaningful counterfactuals, or to conduct 

experiments in which one factor (such as discrimination) is altered, and all other factors remain 

the same.   Glass and McAtee44 have suggested the concept of a risk regulator, features of the 

built and social environments that impact the distribution of risks across places or populations.   

Increasingly, systems analysis is also being used to generate new models and approaches for 

understanding the social patterning of risk 45-47 
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A.5. Conclusion 

These arguments about distributional aspects of risk derive ultimately from a moral 

judgment. Suppose an emission source increases the risk of dying by e.g. 1 in 100,000 in a 

large community around the source, resulting in an expectation of 1 additional death per year. 

Contrast this with an alternative: it increases the risk of dying by 1 in 10 in a small neighborhood 

around the plant, resulting in the same number of excess deaths per year. The attributable risk 

(i.e. the total number of cases attributable to the exposure) is the same, but many people would 

be less comfortable with the second scenario, because all the risk is concentrated in a small 

group, and because the level of the focused risk seems unconscionably high. That is, equity 

matters. How to deal with equity in public policy decisions is a societal judgment. But unless risk 

assessors provide the relevant information, those judgments will be made in ignorance. This 

example is for clarity, we are not suggesting that EPA does not take into account differential 

exposure in their risk assessments, e.g. for air toxics. But they rarely take into account different 

slopes, which can matter just as much for equity.   Failure to identify subgroups based on 

differential vulnerability can lead to a masking of pockets of inequity.  This in turn provides an 

excuse for ignoring the ethical issues that arise.   

B. Lead and Air Pollution: extended examples 

This paper seeks to expand on the issues raised above, illustrate them with examples 

that demonstrate that the issues are not hypothetical, and suggest approaches to generalize the 

risk assessments to incorporate these other dimensions. To provide clarity, we will attempt to 

always illustrate our points with examples, and for simplicity and consistency, we will emphasize 

the cases of lead exposure or air pollution as our examples.  

B.1. Sources of Susceptibility (Susceptibility in Response to Exposure) 

B.1.1. Genetic Sources of Variable Response 
B.1.1.i. General Issues 

Genetic susceptibility to environmental exposures is clear from the literature, and the 

field is rapidly advancing. As early as the 1970’s studies of subjects experimentally exposed to 

ozone in chambers demonstrated substantial variability in response. This variability was 

repeatable, and un-explained by phenotype48. Large scale animal studies have identified genes 

with human homologues that may explain this result49. The existence of common 

polymorphisms affecting Phase I and Phase II detoxification pathways indicates this is a likely 

source of important variations in response to multiple toxicants. If genetic susceptibility is 
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important for certain exposures, and several pathways contribute to that susceptibility, this could 

result in substantial differences in the distribution of risk.  

B.1.1.ii. Lead 

The evidence regarding the role of the genetic factors in health outcomes associated 

with increased lead exposure is mixed.  Some studies suggest that carriers of the 2 allele of the 

amino levulinic acid dehydratase gene (i.e.,ALAD-2 carriers) are at increased risk of lead-

associated neurobehavioral deficits50, 51, while other studies, focusing on similar endpoints, 

suggest that this subgroup is at reduced risk52, 53.  Some of the inconsistency in results across 

studies might be due to age-dependence in this association.  A recent study of lead and 

cognitive function using NHANES data suggested modification by ALAD status in 20 to 59 year 

olds, but not in 12 to 16 year olds or in adults older than 60 years54. This also highlights our 

point about the importance of age at time of exposure, and not exposure alone. A similar 

potential age-dependence in the relationship between genotype and risk has been reported for 

apoliprotein E (ApoE).  In adults, carriers of the APoE4 allele appear to be at increased risk of 

lead-associated neurobehavioral deficits55, while this was not found in a study of children56.  

There is also evidence that the impact of APoE4 depends on (and varies according to) 

environmental factors including stress57. In males, the adverse effects of lead exposure on a 

test of executive functioning were greatest among those lacking the dopamine receptor D4-758. 

In adult workers, those with the vitamin D B variant showed greater lead-associated impairment 

of renal function59. Vitamin D polymorphisms also modified the effect of lead on cognition in 

children in NHANES III60.   

Recent attention has been devoted to the hypothesis that lead increases the risk of 

neurodegenerative processes in later life by means of an epigenetic mechanism.  In rodents 

and primates, Zawia and colleagues found that early lead exposure causes a developmental 

reprogramming, resulting in over-expression in adulthood of the amyloid precursor protein 

(APP) gene, specifically APP mRNA, APP, and beta-amyloid61.Amyloid protein is a major factor 

in Alzheimer’s disease. An inverse association has also been reported between prenatal lead 

exposure (maternal bone lead) and DNA methylation in cord blood8, and between bone lead 

levels and DNA methylation in leukocytes in the elderly62. 

B.1.1.iii. Air Pollution 

There is strong and growing evidence that genetic polymorphisms modify the response 

to air pollution. The strongest evidence to date is for polymorphisms along the oxidative defense 

pathway. For example, polymorphisms along this pathway have been shown to modify the 

effects of particles on heart rate variability26, 63, the effects of traffic particles on homocysteine 
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levels64, the effects of traffic pollutants on lengthening of the QT interval on electrocardiograms, 

the effects of air pollution on lung function65, 66, the risk of ozone induced asthma67 and 

wheeze68, the risk of endothelial inflammation caused by traffic particles69etc. The specific 

genes along this pathway that matter vary amongst these studies, however, which may reflect 

differences in outcomes studied, stochastic variability in the results, or interactions with as yet 

unknown other risk modifiers. This makes it more difficult to use these results for risk 

assessment of specific genes, but not to acknowledge that there is a skewed distribution of risk. 

However, Glutathione S Transferase mu 1 (GSTM1) null variant is the most commonly reported 

modifier along this path. In addition, other genetic polymorphisms that may modify the effects of 

air pollution include those in the divalent metal metabolism pathway70, the angiotensin 

pathway71, the methyl metabolism pathway72,  and genes related to processing of micro RNA’s, 

which are small non-coding RNA’s that post-transcriptionally control gene expression73.  

In addition, there is growing evidence for a role of epigenetic mechanisms both as 

pathways for the effects of air pollution, and potential modifiers of response. Metal rich particles 

have been associated with reduced methylation of the promoter region of the iNOS gene10, for 

example. And traffic officers have changes in methylation of cancer suppressor and promotion 

genes similar to those seen in leukemia74. Exposure to traffic particles75 and polycyclic aromatic 

hydrocarbons76 has also been shown to alter DNA methylation patterns.  

 

B.1.2. Phenotypic  (Host characteristics) Sources of Variable Response 
B.1.2.i. General Issues 

There are a number of theoretical arguments to suggest that physiologic and disease 

states of individuals may influence their response to environmental agents. In the early 1800’s 

Scottish public health advocates, lead by William Pulteney Alison, chair of the practice of 

medicine at the University of Edinburgh argued that the (unkown) agents that caused infectious 

disease were ubiquitous, and what mattered was subject susceptibility, which was principally 

driven by malnutrition. They recommended prescribing food77.  Johns Cassel similarly argued in 

1976 that host factors that alter the underlying susceptibility of an individual to the deleterious 

effects of various exposures are of paramount importance 78.  The most obvious is that the 

phenotype may be characterized by disturbances among one or more physiologic pathways that 

are also important to the toxicity of the environmental agent. Environmental disturbances to 

those pathways may have greater effects if the reserve capacity for dealing with such 

disturbances is already impaired by the presence of disease, or allostatic load. This also has 

implications for cumulative risk assessment, as some pathways may be relevant to multiple 
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different exposures. For example, both lead and air pollution have been shown to work, in part, 

by increasing oxidative stress. Diabetes and obesity are phenotypes that are characterized by 

elevated baseline levels of oxidative stress before exposure, and co-exposure to multiple agents 

that produce further oxidative stress may result in nonlinear increases in risk. Indeed 

interactions between lead exposure and air pollution have already been reported79.  In addition 

dietary antioxidants, such as vitamin C and vitamin E, or methyl related substrates such as B-

vitamins or methionine, or N-3 fatty acids21  have also been reported to modify responses to 

environmental agents22, 72, 80.  The potential for highly skewed distributions in risk exist because 

these dietary intakes tend to be lower in more disadvantaged areas, where the prevalence of 

obesity and diabetes also tends to be higher, and where exposure to some environmental 

chemicals is also higher.  

B.1.2.ii. Lead 

Relatively few data are available on the issue of whether disease states modify the 

effects of lead. Some studies, which are somewhat controversial, suggest that lead-associated 

decrement in renal function is more pronounced in patients with pre-existing chronic kidney 

disease (e.g., hypertension, gout)81. In an elderly cohort, higher lead level was associated with 

impaired renal function, but only in diabetic subjects82.  Among adult men, the association 

between increased patella lead (but not tibia lead) and autonomic dysfunction (heart-rate 

variability) was reported to be greatest among those with metabolic syndrome83. 

B.1.2.iii. Air Pollution 

While a number of conditions have been reported to modify the effects of air pollution on 

health, the strongest evidence is for obesity and diabetes. The increasing prevalence of obesity 

and diabetes make these susceptibility factors especially important for risk assessment, since 

they need to take into account the changing proportion of the population that is susceptible. A 

2002 study of 4 US cities found that diabetics had double the risk of a PM10-associated 

cardiovascular admission compared with nondiabetics84 A study in Montreal found air pollution 

was associated with a much higher risk of death for diabetes than for all causes.85  Similarly, a 

2.0-fold higher mortality risk associated with PM10 exposure was found for diabetics than for 

controls in a 2004 case-crossover study23.  Likewise, PM10 effects on mortality were stronger in 

diabetics than in non-diabetics in 9 Italian cities.86 Other studies have reported that diabetes 

modified the effects of air pollution on endothelial function87, 88, and on systemic inflammation89, 

90.   

Obese individuals were found to have twice the PM2.5-induced reduction in heart rate 

variability than non-obese individuals, and had more PM2.5-mediated HR increases.91 Obesity 
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was a significant susceptibility factor for ozone (O3) acute effects on lung function, with twice 

the estimated decrease in FEV1 due to O3 in obese subjects compared to non-obese 

subjects.92 This is supported by animal data showing increased lung inflammation in response 

to ozone in obese animals93, 94.  In addition, obesity worsened the PM2.5 effects on the HF 

component of HRV,95 and there was a greater effect of traffic-related PM on inflammatory 

markers in obese individuals.96,97,89 Again, in the NHANES III, metabolic syndrome modified the 

PM10 effect on inflammatory markers.98 

Diet may also modify the effects of air pollution. For example, a randomized trial found 

that Omega-3 fatty acid supplementation reduced the effect of particles on heart rate 

variability.22 A chamber study of well characterized asthmatics also found that supplementation 

with vitamins C and E reduced the increase in bronchial responsiveness following controlled 

exposure to ozone99.  

B.1.3. Psychosocial hazards and stress 
B.1.3.i. General issues 

Psychological stress is a physiologic response to some environmental stimuli, that 

can be positive and adaptive, or, under conditions including prolonged exposure, can 

become dysregulated, leading to a variety of negative health consequences100.   The 

literature on stress is inconsistent about what it is in the environment that gives rise to a 

stress response.   Borrowing language from an environmental science perspective, we 

argue that stress arises from exposure to a psychosocial hazard, defined as relatively 

stable, visible features of the social and built environment that gives rise to a heightened 

state of vigilance, alarm and fear101, 102.    Previous studies have shown that dysregulation of 

the stress response system has been consistently linked to cardiovascular and other 

diseases.103 The Institute of Medicine reported that potential social causes of 

neurodevelopmental disabilities, including social isolation and psychosocial stress, have not 

been well studied.104  Recent animal studies and epidemiologic data suggest that social 

context modifies environmental neurotoxicants.105  In poor communities, social and chemical 

hazard exposure in childhood can jointly alter development and organization of the central 

nervous system.106   

B.1.3.ii. Lead 

The study of how stress exacerbates the influence of lead dates back to classic studies 

by Selye investigating how stressors (both systemic and local) act as “conditioners”, whose 

effect while minor in isolation, is, when combined with lead exposure, powerful and complex107  

In studying these “pluricausal” syndromes, Selye was concerned with physiologic stressors (skin 
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clip), however, the implications of this work have been carried forward into the study of stress of 

a psychological and social origins.   

A consistent finding is that stress may exacerbate the deleterious consequences of lead 

exposure. In a series of rodent studies of maternal stress during pregnancy (novelty, restraint, 

cold) and lead exposure through weaning, Cory-Slechta and colleagues showed that pups who 

experienced both lead-exposure and stress demonstrated more impaired learning, compared to 

controls, on fixed-interval schedule-controlled responding, as well as increased basal and 

stress-induced corticosterone responses than did pups exposed to stress alone or to lead 

alone108, 109.  In addition, Schneider110 demonstrated that animals raised in social isolation were 

more sensitive to the neurotoxic effects of lead than animals raised in an enriched environment. 

Animal studies have shown that stress can increase the hormonal mobilization of lead from 

bone to blood 111 and that lead exposure can alter responsiveness to environmental stress 112, 

113.  Exposure to psychosocial hazards in the laboratory increases cortisol production, the 

primary hormonal mediator of the hypothalamic-pituitary-adrenal (HPA) axis.  Cortisol itself is 

associated with impaired memory and executive ability in older adults 114-116.   Further, both lead 

and cortisol are thought to alter common pathways in the mesocorticolimbic system including 

calcium and glutamate-mediated processes 113, 117, 118.  Both cortisol and lead appear to be 

associated with similar domains of cognitive function (especially memory and executive 

functioning).  Glucocorticoid receptors are known to be present in relevant brain structures that 

govern these areas.  

To date, much less human evidence bears directly on the hypothesis that stress 

modifies lead effects.  In two studies of older men, the inverse associations between bone lead 

level and cognition (Mini-Mental Status Examination score) and blood pressure were more 

pronounced among men who self-reported greater stress24, 119.  

The potential importance of the social/physical environment in modifying lead 

neurotoxicity was demonstrated by a study that show that an impairment of spatial learning 

caused by exposing a pup to lead in utero or through lactation can be mitigated by rearing it in 

an enriched environment (i.e., larger cage, other rodents, toys)120.  Moreover, the learning 

effects were accompanied by differences in gene expression in the hippocampus (i.e., recovery 

of deficits in NMDA receptor subunit 1 mRNA, induction of BDNF factor mRNA).   

Another pathway by which lead effects might be expressed differentially by 

socioeconomic position (SEP) concerns the possibility that early life lead exposure impairs the 

response to a later brain insult.  For example, lead-exposed rats showed reduced behavioral 

recovery to an induced ischemic stroke in the hind limb parietal sensory-motor cortex in 



 20 

adulthood121.  Early lead exposure also impairs the topographic organization of the columnar 

processing units in the barrel field somatosensory cortex in rats122 as well as the reorganization 

of the barrel field that occurs following whisker follicle ablation123. 

This general finding has also been shown in human studies.   A study of children by 

Gump124 found that higher cord blood lead levels were associated with higher baseline systolic 

blood pressure (SBP), and higher early childhood lead levels were associated with greater total 

peripheral (vascular) resistance (TPR) responses to acute stress.  Very few studies have 

examined the environmental backdrop that gives rise to the spatial distribution of stress 

dysregulation.  In one such study of older adults, Glass102 found that in those living in 

neighborhoods with the most psychosocial hazards, tibia bone lead concentration had a more 

deleterious effect on three of seven domains of cognitive function examined.  Despite these 

findings, most studies assume risk uniformity and either do not systematically investigate how 

host characteristics (including stress) alter the effect of lead, or are underpowered to do so 

effectively125 

B.1.3.iii. Air Pollution 

Limited but growing epidemiological evidence suggests that psychological stress may 

also alter susceptibility to air pollution exposures. Social stress has been shown to modify 

traffic-related air pollution effects on asthma etiology126 or exacerbation.127, 128 A study of 

singleton births in Eastern Massachusetts examined the association between black carbon (BC) 

and birth weight, and investigated confounding and effect modification by individual and area-

based socioeconomic measures (SEP).129 Also, some air pollutants and psychosocial stress 

may independently affect common physiologic processes such as oxidative stress130 or 

inflammatory cell (IgE) production.131  Among adults, 8-hydroxy-deoxyguanosine, a marker of 

oxidative damage to DNA, has been linked to depressive symptoms,132 clinical depression,133, 134 

perceived stress and perceived impossibility for alleviating stress,132 and caregiving for 

advanced cancer patients (a measure of chronic stress).135 disease.136, 137  Given the evidence 

to date that both psychosocial stress and air pollutants may influence oxidative stress and 

cellular aging processes, further investigation of whether social-environmental interactions 

contribute to cardiovascular disease will be important to advancing risk assessment.   

B.1.4. Socio-economic Position 
B.1.4.i. General Issues 

Socioeconomic position (SEP) is known to have an enduring, robust and complex 

association with many health states.   While the mechanisms underlying the SEP gradients in 

health are not precisely known, different SEP groups clearly have markedly different health 
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status as well as vulnerability to the impact of common exposures.  The relationship between 

SEP and poor health is not confined to poor people alone. Although it is clear that the highest 

risks occur among the persons with the lowest position, the dose-response is continuous138. At 

each step of the socio-economic hierarchy, individuals tend to have better health compared with 

those below them. Hence this potential co-risk factor and risk modifier cannot be simply dealt 

with by looking at the extremes.  

Further, SEP can be conceptualized and measured at both the individual level and the 

area level (e.g., neighborhoods). Evidence suggests that each level exerts an independent 

influence on an individual’s chances of health. That is, a wealthy person living in a poor area is 

exposed to the same excess of fast food, lack of nearby fresh produce, higher crime rate, 

greater distance to pharmacies, lack of attractive green space, etc, as their neighbors, and this 

tends to impact their health, and potentially their response to environmental pollutants.    

B.1.4.ii. Lead 

Several studies have provided evidence that the impact of lead on human health is 

connected in complex ways to SEP139. In humans, some epidemiological studies have reported 

that children from families of low SEP either express an exposure-associated deficit at lower 

biomarker levels of lead or fail to recover/compensate as quickly or completely as children with 

higher SEP  levels125.  A recent analysis suggested that the effect of increased blood lead levels 

on children’s performance on an end-of-grade reading test was more pronounced at the lower 

than the upper tail of the distribution of reading scores140.  In other words, the effects of 

increased lead exposure were greater among children who faced other risk factors for lower 

reading achievement. This phenomenon is not restricted to lead. Rauh et al141 measured 

prenatal and post-natal exposure to ETS, social stress factors,  and Bayley Scales of infant 

development in 226 urban children enrolled during pregnancy and followed longitudinally. 

Prenatal ETS exposure was associated with a 5 point reduction in Bayley MDI scores. Material 

hardship was similarly associated with a 3 point reduction in MDI. However, the interaction of 

material hardship and prenatal ETS was associated with a further 7 point decline in MDI scores 

(p=0.03).  In order to understand the basis of this finding, it is necessary to deconstruct the 

complex construct of SEP into its component features.  These include nutrition, stress, other 

chemical exposures, and the social/physical environment.  Some evidence can be marshaled to 

suggest a role for each of these features in the apparent effect modification of lead neurotoxicity 

by SEP.   

Many studies have treated SEP solely as a confounder of the lead-health association142.  

Given the usual pattern of covariance between increased lead exposure and other risk factors 
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for adverse health states, there is no question that potential confounding by SEP must be 

considered, but careful consideration must be given, as well, to the possibility that treating  SEP 

as  a confounder could lead to bias. To the extent that blood lead level is an imperfect measure 

of lead exposure history, or is subject to misclassification bias, other factors (like SEP or 

race/ethnicity) may, in some circumstances, be better markers of cumulative  exposure than a 

biomarker measurement.  Secondly, lead exposure may be on the causal pathway between 

SEP and health.   This arises from the social patterning of lead exposure along socioeconomic 

lines42, 143 These considerations suggest that methodological tools such as directed acyclic 

graphs or techniques such as structural equation modeling might be useful in dissecting these 

complex relationships and controlling only those portions of the relationships that confound the 

exposure-outcome relationships of interest. 

B.1.4.iii. Air Pollution 

There is also a modest but consistent set of studies indicating that SEP modifies the 

effect of air pollution. For example, Forestiere and coworkers, using a city where it was the 

upper SEP subjects who had higher exposures, showed the effects of PM10 on daily death 

varied by SEP144, a result consistent with other findings145, 146. There is also a small, but 

developing literature on other outcomes such as preterm delivery147,  or birthweight129.   

B.1.4.iv. Age 

The elderly represent a particularly susceptible population, and the current growth in the 

number and proportion of older adults is unprecedented in the history of the United States. By 

2030, the proportion of the U.S. population aged 65 and older will double to about 71 million 

older adults, or one in every five Americans. Cognitive decline in the elderly is also a growing 

burden. Recent estimates are that 6.4% of people over age 60 years in North America have 

dementia, and the number with dementia is expected to almost triple by the year 

2040.  Importantly, small changes in cognition are strong predictors of eventual development of 

dementia. Previous studies have also reported that heterogeneity in cognition is especially 

pronounced in the elderly compared to younger adults.115 This raises the question of whether 

there are environmental causes of this heterogeneity. Air pollution exposure has been linked to 

increased inflammation in the brain,148 and brain inflammation has been implicated in the 

development of Alzheimer's disease.149  

The elderly are also at increased risk of cardiovascular disease, and air pollution has 

been shown to have differential effects on the elderly for a number of cardiovascular endpoints, 

including mortality23, 150-152. 



 23 

 Children are also generally considered to be a subgroup at increased risk of toxicant-

associated harm. Their greater vulnerability can be attributed to age-related differences in 

metabolism (e.g., greater absorption of toxicants from the gastrointestinal tract, reduced 

excretion, immaturity of detoxification pathways), developmental stage (e.g., ongoing 

development and organization of organs such as the central nervous system), and behavior 

(e.g., greater hand-to-mouth activity, greater relative dietary and respiratory intake of 

toxicants153.  

For example, children are more vulnerable with respect to air pollution because their 

lungs are only partially developed at birth and are not fully functional until about 6–8 years of 

age154. Infants are born with only one-tenth the number of alveoli of  

adults and an under-developed epithelium. Indeed, alveolar development begins only in the late 

3d trimester155. There are approximately 24 million alveoli present at birth, which grows 10-fold 

to 257 million between birth and age 4156. This is postnatal development pattern is not merely a 

theoretical concern for air pollutants.  Fanucchi and coworkers157  exposed infant monkeys to 5 

months of episodic exposure to 0.5 ppm of ozone.  Compared to controls, O3-exposed animals 

had fewer airway generations, hyperplastic bronchiolar epithelium, and altered smooth muscle 

in terminal and respiratory bronchioles.  

 

B.1.5. Other Environmental Agents 
Evidence that co-exposure to other neurotoxicants (e.g., manganese, arsenic) increases 

the likelihood of lead-associated impairments is limited and comes mostly from animal models 
158-161.  In humans, two studies162, 163 reported that the slope of the dose-effect relationship 

between blood lead level and neurodevelopment in infants is steeper among those with higher 

blood manganese levels. In NHANES (1999-2006), adults whose blood levels of cadmium and 

lead were both in the highest quartiles had greater odds of albuminuria and reduced GFR164. 

 

B.2. Sources of Susceptibility (Differential Dose/Exposure) 

The sections above describe how exposures to lead and air pollution may interact with 

other factors conveying risk, such as stress, SEP, genetics, and pre-existing disease. But in 

addition to interacting with such other risk factors, lead and air pollution often covary with them, 

resulting in a further skewness of the risk distribution.  
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Substantial socioeconomic and ethnic disparities in blood lead levels have been 

documented by the NHANES surveys since the 1980’s165 166.  In recent decades blood lead 

levels have declined across all subgroups of the U.S. population and the magnitude of the 

subgroups disparities has diminished.  Nevertheless, in the NHANES 1999-2002, the 

percentage of individuals with a level exceeding 10 µg/dL was greater among non-Hispanic 

blacks (1.4%) and Mexican-Americans (1.5%) than among non-Hispanic whites (0.5%).  In 

analyses of NHANES data 1999- 2004, among children 1-5 years of age, the frequencies of 

blood lead levels greater than 10 µg/dL, by race/ethnicity, were: non-Hispanic black 3.4%, 

Mexican-American 1.2%, non-Hispanic white 1.2%.  The frequency was greater among poorer 

children (poverty-to-income ratio ≤1.3)(1.8% vs. 0.8%) and among children on Medicaid (1.9% 

vs. 1.1%)The strongest risk factors for higher blood lead levels were residence in older housing, 

poverty, age, and being non-Hispanic black167 

Other subgroups that have been identified as being at risk of greater blood lead levels 

include children of immigrant parents 168, international adoptees (MMWR, 2000), and refugee 

children 169. It is uncertain, however, whether this reflects geographic differences in exposure 

opportunities (such as lead in folk and Ayurvedic medicines), genetic susceptibilities, or the 

prevalence of toxicokinetic modifiers. 

Several genetic variants or polymorphisms thought to affect lead metabolism have been 

evaluated in terms of their influence on lead biomarker levels or their influence on lead-

associated health effects.  These include amino levulinic acid dehydratase (ALAD), the 

dopamine receptor D4, the HFE protein (hemochromatosis gene), apolipoprotein E (APoE), and 

peptide transporter 2.  Several studies have compared lead biomarkers in individuals with the 

two co-dominant ALAD alleles (ALAD-1 and ALAD-2).  There are substantial inconsistencies 

across studies, although some have reported that carriers of the ALAD-2 allele (1-2 or 2-2) have 

greater blood or cortical bone lead levels 51, 170-172. One study of adults suggested that the 

plasma/whole blood lead ratio is greater in ALAD-2 carriers 173.  In a sample of Hispanic 

children, those homozygous for the peptide transporter 2 polymorphism had higher blood lead 

levels than those without or heterozygous for this polymorphism 172. Another study showed that 

children who were carriers of the variant hemochromatosis or transferrin gene had significantly 

higher blood lead levels than wild-type children, and children carrying both variants were more 

likely to have a blood lead level >10 µg/dL174 .  Adult workers with the vitamin D B allele had 

significantly higher patella lead levels 175.   

Systematic data are not available on the distribution of genetic variants of interest in 

relation to factors such as ethnicity and other demographic characteristics, and recent work 
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demonstrating the generally greater genetic variability within ethnic groups than between them 

suggests that this might not be a fruitful avenue of investigation in explicating differences 

between groups in toxicant-associated risks 176. However, the prevalence of some variants do 

appear to vary substantially by geographic region. For example, ALAD-2 carrier status has a 

prevalence of 3% in Indian workers 170, 8% in Chinese children177, and 16% in US men50 . In 

another study, the frequencies of ALAD-2 allele were comparable in Asian and Caucasian 

samples but absent in African samples 178. 

Based on epidemiologic associations, a variety of dietary variables have been proposed 

as modifiers of lead absorption or toxicity, most notably iron and calcium179. In the Normative 

Aging Study cohort of adult men, reduced dietary vitamin D was associated with increased bone 

lead levels, while decreased dietary vitamin C and iron were associated with increased blood 

lead level180. A study of children in the Philippines showed that higher folate and iron levels 

mitigated the inverse association between blood lead level and cognition 181. 

B.2.1.i. Air pollution 

There is strong evidence to support the view that socioeconomic position is strongly 

associated with increased exposure to a variety of air pollutants.  This in itself, helps explain the 

differential distribution of lung related diseases in populations.  For example, a study by Mohai 
182and colleagues found that Blacks and respondents at lower educational levels and, to a 

lesser degree, lower income levels were significantly more likely to live within a mile of a 

polluting facility. Similarly, traffic air pollution has been shown to be higher in persons of lower 

SEP129, 183, 184. In addition, exposure to pollution from concentrated animal feed lots varies by 

SEP and race185.  And Woodruff and coworkers showed that ambient air pollution 

concentrations in general were higher in neighborhoods of pregnant women at higher risk for 

adverse pregnancy outcomes because of lower social conditions186.  In one of the few studies to 

look at both indoor and outdoor air pollution concentrations, Baxter187 found evidence that 

persons living in disadvantaged communities had higher exposure to both.   They also showed 

that lower socioeconomic status not only was associated with greater exposure outside the 

home, but that factors associated with poverty such as cooking time, gas stove usage, occupant 

density, and humidifiers were contributors to higher indoor concentrations of PM2.5 and NO2.  

Using such covariation of exposures with susceptibility factors, a recent risk assessment 

showed a considerable disparity in the impact of air pollution on  mortality in Mexico188, and, 

relevant to cumulative risk assessment, showed the same disparity gradient for poor water 

quality and cooking fuel use. 
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B.3. Cumulative Exposure 

The phrase cumulative exposure has been used to described two separate phenomena: 

a) long term sequelae of continuing exposure to a substance, and b) the cumulative burden 

resulting from exposure to many stressors. That cumulative burden may be enhanced by 

interactions among the different stressors, as described above. Prior research in the Normative 

Aging Study and other cohorts has demonstrated a link between cumulative lead exposure (as 

measured by bone lead) and heart rate variability,83 hypertension,189, 190 ischemic heart 

disease191, 192 and death193.  Several frameworks have been established to conceptualize 

cumulative exposure to all stressors over the life course.  These include Geronimus’s concept of 

weathering17, 18 and more recently, the concept of allostatic load13, 14.  Both approaches attempt 

to capture the cumulative wear and tear that occurs as a result of long-term exposure to multiple 

stressors as reflected in increased vulnerability and decreased reserve capacity.   In 

environmental science, Zartarian summarizes various efforts undertaken by the EPA to assess 

cumulative exposure in communities including the “Cumulative Communities Research 

Program” within the National Exposure Research Laboratory194   Additional tools have been 

developed in “life course epidemiology”, although a great deal more work is needed to further 

refine these ideas.   As Menzie et al argue, a key requirement for thinking about cumulative 

exposures is the development of clear conceptual frameworks195.  Complications arise when 

there are interactions among multiple exposures, or when there are latencies in the onset of 

biological effect.   

Lead exposure shows strong socio-economic gradients, which are in turn associated 

with higher stress, and is higher in black Americans, who have a higher prevalence of renal 

disease. Hence, if, as suggested above, lead also has a multiplicative interaction with those risk 

factors, the distribution of lead associated risks, or of cumulative risks, can become highly 

skewed. Similarly, if as noted above, air pollution exposure is more common in populations with 

higher rates of diabetes, hypertension and obesity, and those conditions modify the effects of 

exposures, cumulative burdens may become large.  

B.4. Markers of Cumulative Exposure 

Assessing cumulative burden from multiple stressors is difficult, and consideration of this 

issue could be advanced if a biomarker of cumulative burden were available. Telomeres are 

regions of non-coding DNA at the ends of chromosomes that protect against structural 

degradation, inappropriate recombination, and end-to-end fusion of chromosomes.196, 197 
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Telomere length declines with each successive cell division and thus serve as a measure of 

biological aging.198  In addition to aging in general, shorter telomeres are associated with 

various chronic diseases, including diabetes,199 hypertension,199-202 atherosclerosis,203 coronary 

artery disease,204, 205 heart failure206 and increased cardiovascular risk.207, 208  Evidence from in 

vitro209-211 and human studies 199, 210 suggests that oxidative stress and inflammation accelerate 

telomere shortening. Reduced blood DNA telomere length has been also related to cumulative 

long-life exposure to tobacco smoking.212, 213Recently, exposure to traffic pollution has been 

associated with reduced telomere length214. It is too early to tell if this could be a useful 

biomarker either for susceptibility or cumulative burden, but the possibility deserves greater 

attention.  

C. Methodological considerations 

This next section addresses a partial set of methodological issues that might arise if the 

issues raised above were to be taken into greater account.  There are a number of other issues 

we do not address here having to do for example with problems in the measurement of lead 

dose.  A rich literature on measurement issues in lead research exists 139, 215-218  Instead, we 

focus here in issues related to the further elucidation of issues related to differential vulnerability 

and susceptibility.    

C.1. General overview of methodological issues.   

C.1.1.  Methods for exploring interactions 
A key issue in modeling interactions between environmental exposures and measures of 

susceptibility, whether social, genetic, or due to disease status, is that the variables often exist 

on multiple levels, with potentially different meanings. It is clear that in addition to individual level 

SEP, contextual aspects of place affect people’s health, and potentially, their response to 

exposure. Hence, a well off person residing in a geographic area that is predominantly poor will 

be exposed to the same excess of fast food, deficits of fresh fruits and vegetables, safe 

recreational areas and drug stores, as the poorer residents. This may affect their health, and 

their response to environmental contaminants. The presence of environmental contaminants 

may similarly, vary geographically, and this spatial patterning may effect exposure. For 

example, within city variation in airborne particles is predominantly driven by traffic particles, 

while cross-city, or cross time variations may be more due to secondary particles. These are not 

necessarily equally toxic. Similarly, soil lead declines with distance from a smelter, but some soil 

lead is from past emissions of leaded gasoline, or lead paint residues. These may vary on 
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different spatial scales, and have different bioavailability. Hence statistical modeling needs to 

recognize the presence of different scales of variation, both spatial and temporal.  

C.1.1.i. Hierarchical Mixed Models 

One approach that lends itself to examining these issues is the Hierarchical Mixed 

model. Where appropriate, such as where multiple measurements of each outcome are 

available for a subject (or for an area), it allows us to identify whether there is variation in 

baseline health across subjects (via the random intercepts), whether there is variability in 

response to exposure (via the random slopes), and to examine what individual level or area 

level, or temporal level factors modify baseline levels or responses. That is, if some subjects 

have higher blood pressures than average, and others lower than average, the repeated 

measurements of the first subject will all tend to be higher (or lower) than predicted and hence 

the residuals (measured – predicted) will all tend to have one sign, rather than varying randomly 

about zero. We may also have correlations over space. Suppose the jth observation in subject i 

and subject i´ depends on the spatial distance between them for example. The spatial patterning 

of residences by social status, ethnicity, etc. may induce such a structure. Again, there may be 

period effects or trends which may make observations in the same year more alike than 

average.  Mixed models can be used for binomial outcomes such as health events, or rates, but 

it is easiest to focus on continuous outcomes to illustrate the point. That model assumes:   

 
 
 

Where i denotes a level of aggregation:  usually subject (but census tract or year are 

also common), t denotes repeated measures, where present, ui is the difference from the overall 

mean in subject i, and vi is the difference from average response to pollution (X) for subject i, Z 

and Q are variables that explain some of the susceptibility. If i represents subject, for example, 

than the variables in Z and Q may be subject level, may be neighborhood level (for example 

median household income in a Census block group), or may represent periods. Similarly, we 

could decompose, where appropriate X. For example, we might let  
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Where Zt is the air pollution reading from a central monitor, tX is the average of the personal 

exposures of all the subjects on day t, and Xit is the exposure of the ith subject on day t. In this 

framework we replace the single coefficient (β1 above) with 3 coefficients—one representing the 

effect of area level pollution, one the effect of the difference of individual level exposure from the 
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mean exposure of the population on that day, and one the difference of population mean 

exposure from the monitored exposure. The latter is usually classical measurement error, but 

the first two can legitimately be different and tell different stories about exposure at different 

levels.  
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For example, the above figure, taken from a repeated measures study of air pollution 

and heart rate variability in an elderly panel in Boston, shows the distribution of the random 

slopes (vi), which is clearly skewed. This is explained by the next figure, showing that a past 

myocardial infarction modified the association.  The modifiers in multilevel modeling can be area 

based as well as based on individual characteristics. For example, Zeka et al showed that birth 

weight was influenced by SEP, by traffic exposure, and by interactions between the two129.   

Another example is Glass et al. 102 who used multilevel models to examine how the toxicity of 

lead is exacerbated by living in neighborhoods high in psychosocial hazards.   
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C.1.2. Methods for addressing risk chaining 
While standard regression methods are widely used to investigate both main and 

interaction effects, such models rely on the standard assumptions that go with such models.   

Among them, the assumption that each separate predictor variable is “distinct” in the sense of 

having the capacity to arise (or be experimentally set) without regard to the other variables 

entered.  As described in the classic paper by Gordon 219, this property of distinctiveness is a 

matter of the larger theory guiding model building, and not simply a property of the data or study 

design.   Risk chaining refers to the connectedness of multiple risk factors in time and space as 

a function of the arrangements of these variables in the world.   For example, if a factory 

releases multiple pollutants into the air, water and land, measurements of each individual 
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pollutant are not distinct from one another (due to arising from a common source). If the 

correlation among those exposures is high enough, it will not be possible to treat them all as 

independent variables.    In such cases, new metrics that combine multiple exposures (for say 

exposures that operate through a common biological pathway) can be generated.   Alternatively, 

various clustering approaches can be used to identify distinct groupings of exposures, treating 

them either as latent or manifest constructs (see 195).   Beyond regression approaches, these 

model constraints can be relaxed and the data explored for both clustering and interactions with 

fewer assumptions using decision tree and machine learning approaches220, including kernal 

machines221.   Finally, new methods drawn from engineering and computer science in systems 

dynamics offer ways of analyzing complex chains (or disease production algorithms) that can 

not be seen given the assumptions imposed by standard regression models 45, 222, 223.   

C.2.  Alternative approaches to quantification of inequity 

C.2.1. Underlying Issues.  
Thus far we have demonstrated that there are social, medical, and genetic factors that 

modify risk, but have provided little quantitative evidence for how important this could be for the 

equity issues. Doing so will require a measure. There are well-established methods to quantify 

the inequality of distribution of outcomes that can be brought to bear on this issue. For example, 

Levy et al quantified the risk reduction and equity considerations of alternative methods for 

reducing mortality risk associated with coal burning power plants224, 225. He showed alternative 

control strategies on two dimensions: efficiency (essentially risk divided by cost) and equity. 

Equity was quantified using the Atkinson’s Index, a measure of the inequality in the distribution 

of risk. This presupposes no judgment about what an acceptable inequality is, it merely 

quantifies the level. By plotting multiple alternatives policies on the two dimensional scale of 

efficiency and equity this approach provides decision makers with the necessary information to 

make decisions based on their judgments of appropriate societal tradeoffs. Moreover, by 

making the tradeoffs explicit rather than implicit, it encourages the appropriate public discussion 

during rulemaking that will allow decisions to reflect societal values.  

Another approach was taken by Su and coworkers, who adapted the “concentration 

index” from social science as a measure of inequality226. Using small geographic scale units 

they quantified the inequality in the distribution of risk from three pollutants, aggregated either 

on a multiplicative or additive scale, and applied it to a real world scenario in Los Angeles. While 

their metric was not risk per se, but the ratio of risk to, for example, an ambient standard, the 

approach could be adopted to an absolute risk scale, and clearly demonstrates the ability to 
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examine distributional issues in the context of assessing cumulative exposure in the sense of 

multiple exposures.  

Other dimensions may be necessary as well. A quantification of the inequity in the 

distribution of risks among individuals may be insufficient if the risks are also inequitably 

distributed among groups those individuals belong to. These groupings could be geographic, as 

in the example in A.6, race-ethnicity, persons with special diets, etc.  

C.2.2. Approaches and examples 
To illustrate this further, we now provide some examples. First, consider a hypothetical, 

but reasonable scenario, based on the literature. The underlying risk of having a heart attack 

varies by income, and we have taken estimates from Banks et al for this227. From the same 

source, we obtained estimates of how diabetes prevalence varies by income. Finally, from a 

recent paper from Denmark228, we take the relative risk for heart attack given diabetes to be 2.4. 

Given that, we can simulate the distribution of the probability of a heart attack in a hypothetical 

population of one million. If we then further assume that diabetes doubles the particle 

associated risk of having a heart attack (plausible given the interactions between diabetes and 

at least short term effects of particles), and that 20% of the population have genetic factors, 

independent of diabetes, that also double the particle associated risk, and finally, that the risk 

for a 10 µg/m3 increase in annual average PM2.5 is 1.2, we can then examine the distribution of 

incremental risk. Figure A, below, shows the baseline risk of heart attack in the population, 

under the simulated scenario. Figure B shows the distribution of incremental risk. Note that 

while the average incremental risk is only a few per hundred (still vast compared to the risk that 

EPA tolerates for cancer), for a small portion of the population the incremental risk is about 0.7. 

Are we really happy to impose a 70% risk of having a heart attack on a subset of the 

population? 
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So far, this just examines the distributional effects of modification by medical and genetic 

conditions, but geographic concentration of risk is also a key concern. Two figures illustrate how 

this can affect equity concerns. The first, from Reid et al, examined the geographic distribution 

of factors shown to modify the effects of high temperatures on mortality, to produce a map of 

temperature vulnerability on a census tract scale. It demonstrates geographic vulnerability 

varies substantially within a small area. Such neighborhood scales variations in vulnerability 

cause particular equity concerns. A similar pattern is illustrated in Worcester County, MA, where 

Tonne and coworkers found a factor of three range of variation in heart attack risk by census 

tract, again with clustering of the tracts at highest risk. The figure shows the incidence rate of MI 

in each census tract for the county as a whole, and below that, for the central area, relative to 

the community average rate, after adjustment for age, race, and sex.  
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Finally, Levy and coworkers examined the geographic distribution of risk of emissions 

from coal burning power plants in Washington DC assuming uniform risk, and then taking into 

account modification by income or diabetes229. The figure below shows the annual reduction in 

cardiovascular hospital admissions as a rate per million, assuming uniform risk in the population 

and stratifying by diabetes, and taking into account the differential numbers of diabetics in 

different census tracts in Washington.   The last figure is the ratio of the two risks.   This 

indicates that taking into account the differential spatial patterning of diabetes, and the 

differential vulnerability we find substantial inequity by geography in the particle associated risk.  

 

 
 

C.2.3.    Transgenerational Risk 
In a follow-up study of women exposed to dioxin in Seveso, Italy, Baccarelli and 

coworkers reported neonatal blood TSH concentrations and the risk of elevated TSH showed 

graded responses with distance from the site of the accident, even in births many years after the 

exposure occurred230. To even investigate this hypothesis required a long term follow-up of a 

cohort of children born to residents of Seveso, after the accident. This need for long term follow-

up after exposure has ceased, and possibly transgenerational follow-up represents a challenge 

for epidemiologic studies.  
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D. Conclusions and recommendations 

If continued progress is to be made in explicating these complex phenomena, future 

studies of toxicant exposure-risk relationships must invest the resources necessary to measure 

individual and contextual factors that might modify these relationships.  Risk assessments need 

to move from an RfD approach to estimating attributable risk and the distribution of that 

attributable risk, in order to allow the assessment of inequity and to allow risk mangers to have 

quantitative measures of both overall risk and the distributional aspects to use to in reaching 

judgments. Environmental rulemakings are often supposed to provide protection to the 

population subgroup most vulnerable to a toxicant (and thus, by extension, be protective for all 

other subgroups).  The reality is that in most cases we do not know which subgroups are the 

most vulnerable or, if we do, subgroup is defined very broadly, such as the fetus in the case of 

methylmercury, or young children in the case of lead.  Based on the evidence we have 

marshaled, however, it is likely that not all fetuses are equally sensitive to methylmercury or that 

all young children are equally sensitive to lead.  If the perspective that we are advocating were 

incorporated into epidemiology studies and subsequent risk assessments, the definition of the 

most vulnerable subgroup would therefore become much more specific and, therefore, much 

more useful in terms of targeting preventive strategies for reducing toxicant-associated 

morbidities.  But first, more studies must be conducted to provide the necessary data on factors 

that modify vulnerability. 

D.1. Unpacking the risk assessment black-box 

In most risk assessments conducted for the purpose of identifying an acceptable level of 

exposure, various uncertainty factors (UF) are applied to effect levels derived from empirical 

studies.  These are necessary to address inter-species extrapolation (if the critical effect level is 

based on a nonhuman model), human variability in vulnerability (which is usually interpreted as 

pertaining to toxicokinetic/toxicodynamic variability), absence of data on long-term sequela, or 

other gaps in the available database.  The specific value assumed for an UF varies, but often a 

generic default value of 10 is used. Most models regard this variability as stochastic, and not 

explainable given the data. A main recommendation implied by our paper is the need to move to 

modeling those sources of variability using data.   What we have proposed in this paper is a 

strategy for understanding, at a more precise quantitative level, human (or inter-individual) 

variability in vulnerability.  In essence, we have begun to address how the workings of the “black 

box” that represents this variability can be understood.  We have shown that considerable 
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progress has been made in understanding the myriad factors that influence the magnitude of an 

individual’s external dose to a toxicant, the association between the external dose and the 

internal (or absorbed) dose (i.e., toxicokinetics), and the biological response at the critical target 

organs to the internal dose (i.e., toxicodynamics).  That is, epidemiologic studies designed to 

identify susceptibility often do so—the goal is quite achievable. In the short run, EPA should 

incorporate those findings into quantitative risk assessment now while encouraging the research 

that will allow the approach to be extended to more pollutants in the future. Moreover, we have 

shown that the distribution of these important factors is not random within the population.  

Rather, they co-occur in patterns that result in some subgroups of the population bearing a 

disproportionate burden of the health morbidities that can be attributed to toxicants.  

 

D.2. Acknowledging the need for social justice in risk assessment 

The call to pay greater attention to the clustering of risk and differential vulnerability is 

more than a concern about technical or methodological issues.   In part, the emphasis of 

individual-level biological and genetic factors arises from the fact that these are the sort of data 

that are easier to collect and which we have more mature tools of investigation.  We cannot, 

however, escape that fact that the clustering of high and low exposure regimes in particular 

environments also represents social, political and economic processes at work 231.  While less 

familiar and harder to study, these “upstream” factors are important drivers of disparities in 

health outcomes.  Disparities in health arise from inequities in the distributions of resources and 

risks.  Those inequities are sensitive to policies that are often not considered part of the health 

policy domain, but which can be powerful levers of intervention.  The example of the ozone hole 

and the banning of CFCs is an important historical example.  But beyond the caliber of the 

science, we recognize a moral imperative to augment risk assessment approaches in the 

pursuit of greater social justice 232, 233.  In part, this involves the need to link to a greater extent 

exposure and health data to social and demographic data using Geographic Information 

Systems 234.  But it also means treating inequities in the delivery of exposure as a fundamental 

problem that requires explanation and action.    
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