Commodity-Grade Mercury
U.S. Supply, Demand, and Reduction

Commodity-Grade Mercury Stakeholder Meeting
May 8, 2007

Maria J. Doa, Ph.D.
Director, National Program Chemicals Division
Office of Prevention, Pesticides, and Toxic Substances
U.S. Environmental Protection Agency
Purpose

- Identify issues relating to mercury demand and domestic commodity-grade mercury.
- Discuss efforts by the U.S. to reduce demand and manage mercury supplies.
- Facilitate panel discussions on supply versus changing demand.
Overview

• Reductions in U.S Mercury Demand
• Existing U.S. Product and Process Demand
• Sources of U.S. Supply
• U.S. Efforts to Address Mercury Supplies
• Between 1980 and 2001, annual mercury use in the U.S. decreased from 2,225 to 271 metric tons.
• Reductions largely due to:
 – Limits on mercury use in batteries.
 – EPA cancellation of pesticide registrations for the use of mercury in paint.
 – Closure or conversion of mercury cell chlor-alkali production facilities.
 – Progress under the United States-Canada Great Lakes Binational Toxics Strategy.
 • Voluntary agreement which set forth a goal of 50 percent reduction of deliberate use and release of mercury by 2006.
 – Other international mercury partnerships: UNEP, CEC.
• In the U.S., there continues to be focus on reducing use where cost-effective substitutes exist.

• Increased efforts to identify and promote mercury alternatives in products and processes:
 – Reductions in mercury use in products.
 – Reductions in the use of mercury in processes.
 • Two of eight remaining U.S. mercury cell chlor-alkali production facilities scheduled to close in 2008.
 • From 1995 to 2005, 91 percent decrease in the amount of mercury used in production of chlorine and caustic soda.
 • Final rule issued in 2003 will further reduce emissions from the use of mercury in mercury cell chlor-alkali production.
 • Other regulations prohibit the new construction of mercury cell chlor-alkali production facilities.
Reductions in U.S. Mercury Demand (cont’d)

U.S. Mercury Product and Process Use Trends

Existing U.S. Product and Process Demand

• Major U.S. Products
 – Wiring devices and switches
 – Measuring and control devices
 – Electrical lighting
 – Button cell batteries
 – Dental amalgam

• Major U.S. Processes
 – Mercury cell chlor-alkali production
Existing U.S. Product and Process Demand (cont’d)

Total U.S. Mercury Use in Products (2001)

Existing U.S. Product and Process Demand (cont’d)

- **Wiring Devices and Switches**
 - 2001 Baseline: 103 metric tons
 - Current: 88 metric tons
 - 15 percent reduction
 - By 2006, Honeywell International ceased manufacture of mercury switches and reduced mercury use by 11.5 metric tons.
 - U.S. motor vehicles produced after January 1, 2003 do not contain mercury switches.
 - Eight states enacted legislation prohibiting the purchase of new mercury-containing thermostats.
Existing U.S. Product and Process Demand (cont’d)

• Measuring and Control Devices
 – 2001 Baseline: 69 metric tons
 – Current: 65 metric tons
 • 6 percent reduction
 – Hospitals for a Healthy Environment estimates a 3.9 metric ton decrease by 2012.
 – Fifteen states enacted legislation prohibiting the purchase of new mercury-containing thermometers.
Existing U.S. Product and Process Demand (cont’d)

- Electrical Lighting
 - 2001 Baseline: 21 metric tons
 - Current: 5 metric tons
 - 74 percent reduction
 - Mercury use in motor vehicle headlamp lighting is being phased out.
 - Increased promotion of fluorescent lamps shifts emphasis from mercury demand reduction to disposal and recycling.
• Button Cell Batteries
 – 2001 Baseline: 17 metric tons
 – Current: 15 metric tons
 • 12 percent reduction

 – Members of National Electrical Manufacturers Association (NEMA) plan to phase out mercury use in button-cell battery production by 2011.
 – Four states enacted legislation prohibiting the distribution of items containing mercury-added button cell batteries.
• **Dental Amalgam**
 - 2001 Baseline: 34 metric tons
 - Between 1979 and 1990, CDC reports a 38 percent decrease in use of mercury dental amalgam.
 - 17 states enacted legislation to regulate dental amalgam, including bans, informed consent requirements, and mandatory notification of available alternatives.
 - EPA’s Office of Water is conducting a two-year study geared toward developing effluent guidelines for dental amalgam wastes.
• Mercury Cell Chlor-Alkali Production
 – Current Inventory: >2,300 mt
 – Average per facility: 300 mt

 – Largest U.S. private-sector source of stored and in-use mercury.
 – Facilities generally operate 40 to 60 years.
 • No new construction in U.S. since 1970.
 – By 2008, two plants anticipate closure or conversion.
 • Remaining six plants expected to close/convert during next 30 years, but rate uncertain.
Sources of U.S. Mercury Supply

- Recycling
- Industrial Mining By-Product Recovery (Gold & Copper)
- Industrial Waste Recovery
- Importing, Exporting, & Brokering
- Elemental Mercury (Primary Industrial Mining)
 - Inactive in the U.S. since 1990.
Sources of U.S. Mercury Supply (cont’d)

• Recycling
 – Nearly all mercury used in U.S. derives from secondary sources (e.g., mercury recovered from spent batteries, chlor-alkali wastewater sludge, mercury vapor and fluorescent lamps, dental amalgams, electrical apparatus, and measuring instruments).
 – Approximately 35 mt/yr recovered in recycling of mercury-added products.
 • Highly variable per annum.
 • Approximately 2,000 mt in products currently in use.
 – Approximately 42 mt/yr disposed.
 – Amounts of mercury recovered anticipated to increase.
 • Increased number of collection programs.
 • Increased use of certain mercury-added products (e.g., fluorescent lamps).
Sources of U.S. Mercury Supply (cont’d)

- **Industrial Mining By-Product Recovery (Gold, Silver, & Copper)**
 - Generally second-largest source of U.S. mercury supply.
 - Highly variable per annum.
 - More than 110 mt/yr from domestic mines.
 - Nevada gold and silver mines.
 - Imported from Chilean and Peruvian gold mines for domestic processing and resale.
 - Future increases anticipated.
 - Emissions capture technologies in Nevada.
 - Increased gold production drives market for by-product mercury.
Sources of U.S. Mercury Supply (cont’d)

• **Industrial Waste Recovery**
 – Approximately 35 mt/yr recovered from mercury process waste.
 • Highly variable per annum.
 – Potential sources of recoverable mercury:
 • Contaminated soil and debris at closed mines.
 • Contaminated soil near natural gas pipelines.
 • Discarded dental amalgam from dental offices.
• Importing, Exporting, & Brokering
 – U.S. mercury trade significantly driven by distillers and brokers, not merely domestic use/production.
 • Amount of mercury imported highly variable per annum.
 • Recent estimates indicate that U.S. domestic production is able to meet or exceed U.S. domestic demand.
 – Future U.S. imports of mercury anticipated to be driven by short-term domestic need and non-domestic trade interests of brokers and distillers.
• The wholesale price of mercury is increasing.
 – The price of gold also has increased significantly.

• As demand decreases in developed countries, it appears that mercury flows from developed countries to developing countries.
 – Use of mercury for artisanal mining in developing countries increased ~54 percent (2000-2005).

• Difficult to track global origins, destinations, end-use/users, as uniform standards for tracking global mercury flows do not exist.
U.S. Efforts to Address Mercury Supplies (cont’d)

• Current U.S. stocks: ~8,010 metric tons.

• Progress to date:
 – More than half is already in long-term storage.
 – DOD maintains 4,436 metric tons of mercury in strategic stockpile.
 • Will be stored at one location for at least 40 years.
 – DOE stated it will continue to store 1,200 metric tons.
 – Remaining mercury stores in non-federal stocks is ~2,400 metric tons.
• Other stockpiles and potential stockpiles:
 – Of ~2,400 metric tons in mercury cell chlor-alkali production facilities, ~1,800 metric tons recoverable at closure or conversion.
 – Smaller quantities from other sources:
 • Recovered mercury.
 • By-product mercury (e.g., mining of other ores).