

Building a scientific foundation for sound environmental decisions

The Detroit Exposure and Aerosol Research Study (DEARS):

Study Overview

Ron Williams U.S. Environmental Protection Agency

Stakeholder Meeting October 24, 2007

Building a scientific foundation for sound environmental decisions

Understanding Exposure Research

- Individuals experience adverse health effects from particulate matter (PM) in the air they breath (personal exposure)
- EPA regulations to protect human health are based on **ambient** monitoring data
- Epidemiological studies that show adverse health effects to PM often use ambient monitoring data as a surrogate of true personal exposure to a regulated source

Building a scientific foundation for sound environmental decisions

Personal Exposure Research

- Provide the link
 between
 source/regulatory
 monitoring and
 health outcomes
- Goal:
 Evaluate/model
 the relationship
 between PM at
 ambient sites and
 personal exposure

- •Outdoor sources
- •Indoor sources
- •Personal sources
- •Physical factors
- •Environmental factors

Building a scientific foundation for sound environmental decisions

Personal Exposure – Key Questions

- What are the relationships between PM concentrations measured at ambient sites and indoor, outdoor, and personal exposure?
- Can PM measurements at central sites adequately represent exposures to ambient PM?
- Do the relationships differ for toxic components of PM?

Building a scientific foundation for sound environmental decisions

Detroit Was Selected Because...

- Was an non-attainment area for $PM_{2.5}$
- Projected non-attainment status after sulfur reductions in 2010
- Large number of industrial point sources
- Heavy mobile source impact including diesel
- Potential for pollutant spatial variability
- Possibility of summer and winter season variability
- Historic Speciation Trends Network site and National Air Toxics Network Site data
- State and local interest
- Existing community partnerships

Building a scientific foundation for sound environmental decisions

DEARS- GOALS

- Describe the relationship between concentrations at a central site and residential/personal concentrations for
 - PM constituents
 - PM characteristics
 - PM from specific sources (mobile and point)
 - Air toxics
 - PM and gaseous copollutants

Building a scientific foundation for sound environmental decisions

DEARS Emphasis

Understanding the impact of:

- Local sources (mobile and point)
 on outdoor residential
 concentrations
- Housing type and house operation on indoor concentrations
- Locations and activities on personal exposure

Planned Modeling

- Spatial analysis
 - Spatial variability in concentrations
 - Relationship between residential and source location
 - Combine monitoring data with air quality model output to improve spatial analysis
 - Land Use Regression (DCHS and WOEAS)
- Air quality modeling
 - Urban-scale modeling of key sources: impact on residential monitoring locations
 - Regional-scale modeling for transport into airshed
 - CMAQ-AERMOD and ConCEPT
- Exposure modeling
 - Links concentrations with population and the activities that impact exposures
 - Predict population exposures due to time spent in residential locations, work/school locations, vehicles
 - PM-SHEDS and associated

Building a scientific foundation for sound environmental decisions

Source Apportionment

- Use of data collected at central site, indoors, and outdoors (greatest extent possible)
- Detailed analysis for source markers
 - elements, EC/OC, sulfate, nitrate, carbonyls
 (e.g. acrolein), VOCs (e.g., 1,3 butadiene),
 Hopanes, alkanes, PAHs, and levoglucosan
- Source apportionment ultimately using the latest approaches (e.g., multilinear engine, positive matrix factorization) that incorporate exposure, human activity and environmental survey information

Building a scientific foundation for sound environmental decisions

Detroit Study – Other Elements

- Mobile Source Characterization-near road emphasis-Ambassador Bridge
- Detroit Children's Health Study, including MICA
- Detroit Healthy Heart
- Detroit Tox Study (Hi Vol Trailer)
- Evaluation of biogenic markers for PM (carbon 14)
- Secondary Organics data collections
- Health Canada and Environment Canada collaborations (including collocation and mobile monitoring

Building a scientific foundation for sound environmental decisions

DEARS Monitoring Design

- 3 year field study initiated in July 2004 and completed on February 25, 2007
- Randomize household purposeful study design
- Non-smoking with no health or vocational exclusion
- Each year (winter/summer) had 40 enrollees
- Households were monitored for 5 days in winter and 5 days in summer (~1200 total sampling days)
- Concurrent monitoring at:
 - Central community site
 - Residential outdoors and indoors
 - Personal level

Building a scientific foundation for sound environmental decisions

Exposure Monitoring Approach

- Measure concentrations PM/components/ gases
 - Ambient
 - Outdoors
 - Indoors
 - Personal
- Collect data on personal activities/locations, house characteristics, and indoor/personal sources
- Characterize the relationships
- Evaluate the factors that influence these relationships

Building a scientific foundation for sound environmental decisions

DEARS Measurements

<u>Parameter</u>	Personal	Indoor	<u>Outdoor</u>	<u>Ambient</u>
PM _{2.5} (mass, elements)	X	X	x	X
PM _{coarse} (mass, elements)		x	x	x
EC-OC (PM _{2.5})		X	X	X
EC (PM _{2.5})	X	X	X	X
Nitrate		X	X	X
Gases (O_3 , NO_2 , SO_2)	X		X*	X
Aldehydes	X	X	X	X
VOCs	X	X	X	X
SVOCs		X	X	X
PAHs		X	x	X
Air Exchange Rate		X		

* NO2 only

Building a scientific foundation for sound environmental decisions

Use of Novel Passive or Active Samplers

•25VOCs (aromatics/HCs
(9) + halogenated HCs (16))
• 3 carbonyls
•Continuous PM_{2.5}
•O₃, NO₂, SO₂

Building a scientific foundation for sound environmental decisions

Passive Badges

Ogawa

PE Tube-Carbopack X

Building a scientific foundation for sound environmental decisions

Additional Novel Exposure Monitoring

- Coarse particle PM Exposure Monitoring (CPEM)
- Active PM2.5 Personal Nephelometer
- Canadian "CRUISER" monitoring at DEARS study areas.

Building a scientific foundation for sound environmental decisions

DEARS Study Sites

- 6-Highway
- 7-Regional

Building a scientific foundation for sound environmental decisions

Sampling Vest

- Personal monitoring vest
- Time Activity Diary
- 5 days, 2 seasons

Building a scientific foundation for sound environmental decisions

Indoor & Outdoor Monitoring

- Matched to personal and ambient instrumentation

Building a scientific foundation for sound environmental decisions

Central Community Site Monitoring

•Community-based monitoring at Allen Park, an MDEQ air site central to the study area

Building a scientific foundation for sound environmental decisions

Study Initiated- July 2004

Building a scientific foundation for sound environmental decisions

Field Deployment Rates (%)

Metric	~Nominal attempts	Summer '04	Winter '05	Summer '05
PM	800-1930	97	98	96
EC-OC	470-560	93	96	99
Nitrate	460-560	93	93	94
Gases	820-1020	100	99	99
Carbonyl	680-770	99	99	98
VOC	720-870	99	99	98
MIE	600-660	> 90	92	96
SVOC	450-540	95	94	97
PFT	190-210	100	100	98

The DEARS performed data collection at a very high rate. In addition, a very high rate of valid data collection was typical (> 90%).

Building a scientific foundation for sound environmental decisions

Completion of Field Monitoring

- Approximately 36,000 total individual daily records of individual pollutant or survey data
- Completion of formal interactions with human participants. Close out of Dearborn field office

Building a scientific foundation for sound environmental decisions

Progress to Date

- Recovery of raw data from seasons 1-6 (SVOC, elemental exceptions)
- Validation of all primary seasons 1-4 datasets. Continued work secondary measures
- Development of integrated internal datasets for seasons 1-4
- Ongoing validation of season 5-6 primary measures.
- Preliminary analyses on <u>select</u> objective goals using data from first four seasons

Building a scientific foundation for sound environmental decisions

Future Efforts

- Full recovery and validation of remaining raw data (2008- most measures)
- Primary database development inclusive of all seasons (2008-most measures)
- Full integration of DEARS data within the NERL and associated modeling/source apportionment (select datasets by 2008)
- Development of peer review journal articles (some drafts already in progress). Many in 2008
- Development of public version of database (after 2010) and highly dependent upon funding

Building a scientific foundation for sound environmental decisions

Today's Discussion

- Current data findings by study area leads on the areas most advanced
- Please ask questions
- Will include updates on related or non-DEARS associated studies involving the Detroit area