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Acronyms 

CHAD = Consolidated Human Activity Database 
EPA = Environmental Protection Agency 
ETS = Environmental tobacco smoke 
HVAC = Heating, ventilation, and air conditioning 
PM = Particulate matter 
MAACS = Metropolitan Acid Aerosol Characterization Study 
NAAQS = National Ambient Air Quality Standards 
NHAPS = National Human Activity Pattern Survey 
PMSA = Primary metropolitan statistical area 
RECS = Residential Energy Consumption Survey 
SHEDS = Stochastic Human Exposure and Dose Simulation 
TEOM = Tapered element oscillating microbalance 
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Abstract 

A population exposure model for particulate matter (PM), called the Stochastic Human 

Exposure and Dose Simulation (SHEDS-PM) model, has been developed and applied in a case 

study of daily PM2.5 exposures for the population living in Philadelphia, PA.  SHEDS-PM is a 

probabilistic model that estimates the population distribution of total PM exposures by randomly 

sampling from various input distributions.  A mass-balance equation is used to calculate indoor 

PM concentrations for the residential microenvironment from ambient outdoor PM 

concentrations and physical factor data (e.g., air exchange, penetration, deposition), as well as 

emission strengths for indoor PM sources (e.g., smoking, cooking).  PM concentrations in non­

residential microenvironments are calculated using equations developed from regression analysis 

of available indoor and outdoor measurement data for vehicles, offices, schools, stores and 

restaurants/bars.  Additional model inputs include demographic data for the population being 

modeled and human activity pattern data from EPA’s Consolidated Human Activity Database 

(CHAD).  Model outputs include distributions of daily total PM exposures in various 

microenvironments (indoors, in vehicles, outdoors), and the contribution from PM of ambient 

origin to daily total PM exposures in these microenvironments. 

SHEDS-PM has been applied to the population of Philadelphia using spatially and 

temporally interpolated ambient PM2.5 measurements from 1992-93 and 1990 U.S. Census data 

for each census tract in Philadelphia.  The resulting distributions showed substantial variability in 

daily total PM2.5 exposures for the population of Philadelphia (median=20 µg/m3; 90th 

percentile=59 µg/m3). Variability in human activities, and the presence of indoor residential 

sources in particular, contributed to the observed variability in total PM2.5 exposures.  The 

uncertainty in the estimated population distribution for total PM2.5 exposures was highest at the 
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upper end of the distribution and revealed the importance of including estimates of input 

uncertainty in population exposure models.  The distributions of daily microenvironmental PM2.5 

exposures (exposures due to time spent in various microenvironments) indicated that indoor 

residential PM2.5 exposures (median=13 µg/m3) had the greatest influence on total PM2.5 

exposures compared to the other microenvironments. 

The distribution of daily exposures to PM2.5 of ambient origin was less variable across the 

population than the distribution of daily total PM2.5 exposures (median=7 µg/m3; 90th 

percentile=18 µg/m3) and similar to the distribution of ambient outdoor PM2.5 concentrations. 

This result suggests that human activity patterns did not have as strong an influence on ambient 

PM2.5 exposures as was observed for exposure to other PM2.5 sources. For most of the simulated 

population, exposure to PM2.5 of ambient origin contributed a significant percent of the daily 

total PM2.5 exposures (median=37.5%), especially for the segment of the population without 

exposure to environmental tobacco smoke in the residence (median=46.4%). 

Development of the SHEDS-PM model using the Philadelphia PM2.5 case study also 

provided useful insights into the limitations of currently available data for use in population 

exposure models.  In addition, data needs for improving inputs to the SHEDS-PM model, 

reducing uncertainty and further refinement of the model structure were identified. 
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Introduction 

Air pollution epidemiology studies have found statistically significant associations 

between particulate matter (PM) concentrations and acute and chronic health outcomes (Pope et 

al., 1995; Samet et al., 1995; Dockery and Pope, 1994; Schwartz, 1994).  These studies typically 

use air pollution measurements from stationary air monitoring sites within a community as a 

surrogate for personal exposure levels for the population.  To better understand the relationship 

between personal exposures and stationary community measurements, human exposure field 

studies have been conducted that measure both community PM concentrations and personal PM 

exposures.  These PM exposure field studies have included population-based studies such as 

PTEAM and EXPOLIS (Clayton et al, 1993; Jantunen et al., 1998) and panel studies that target a 

subset of the population, such as the elderly (Ebelt et al., 2000; Evans et al., 2000; Janssen et al., 

2000; Sarnat et al., 2000; Williams et al., 2000a). 

Both types of studies have shown the impact of human activities on individual PM 

exposures (Howard-Reed et al., 2000; Oglesby et al., 2000; Sarnat et al., 2000; Williams et al, 

2000b; _zkaynak et al., 1996).  Personal PM exposure measurements were influenced by 

ambient outdoor PM as measured by a stationary community monitor, as well as other sources of 

PM located in indoor microenvironments. The observed relationship between personal exposure 

and community monitor levels has differed between studies, indicating this relationship may 

vary depending on the study population, location, season, and statistical method used for the 

analysis. 

Although human exposure field studies provide important information for understanding 

PM exposures, they also have limitations.  These studies are expensive to conduct, particularly 

for population-based studies that require a large number of participants.  Exposure studies are 
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also burdensome on participants, which causes problems with retaining participants and with 

including certain groups that may be particularly at risk for health effects, such as children and 

people with cardiac or lung disease.  In addition, results from an exposure study may only be 

applicable to the individual participants in that study and not representative of the general 

population. 

Exposure modeling can therefore be a useful tool for understanding human exposures to 

environmental pollutants, provided sufficient data exist to develop a model.  Exposure models 

combine microenvironmental concentrations with human activity data to estimate personal 

exposures, and allow analysis of the various exposure factors that influence personal exposures. 

Population exposure models use a probabilistic approach to randomly sample from distributions 

of available data for each exposure factor and predict the distribution of exposures for the 

population of interest (Zartarian et al., 2000; Law et al., 1997; MacIntosh et al., 1995; McCurdy, 

1995; Ott et al., 1988). Input distributions incorporate the variability in the exposure factor data 

across as many individuals and conditions as data are available.  The predicted distribution of 

exposures provides the range in exposures for the general population or sub-population of 

interest, and the likelihood of exposures above a particular level.  Population exposure models 

also have limitations, particularly when insufficient data are available to characterize variability 

in the exposure factors. 

A population exposure model for PM, called the Stochastic Human Exposure and Dose 

Simulation (SHEDS-PM) model (Version 1), has been developed.  The main objectives for the 

initial model development were: 

•	 to predict the distribution of daily averaged total exposure to PM for the population of an 

urban/metropolitan area 
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• to estimate the contribution of PM of ambient origin to total PM exposure 

• to determine the major factors that influence personal exposure to PM, and 

• to identify factors that contribute the greatest uncertainty to model predictions. 

To meet these objectives, a case study was selected for the SHEDS-PM model and appropriate 

input databases were developed. 

Population exposure to PM2.5 in Philadelphia, PA was selected for the case study.  PM2.5 

measurement data were obtained from the Metropolitan Acid Aerosol Characterization Study 

(MAACS) conducted in Philadelphia during 1992-93 (Wilson and Suh, 1997; Burton et al., 

1996). During this study, PM measurement sites were operational during multiple seasons, and 

the spatial distribution of these sites was fairly even across the most densely populated areas 

within Philadelphia County (Figure 1).  In addition to the availability of PM2.5 data, several 

epidemiology studies have reported an association between air pollution and daily mortality in 

Philadelphia (Neas et al., 1999; Kelsall et al, 1997; Samet et al., 1997; Li and Roth, 1995; 

Moolgavkar et al., 1995; Samet et al., 1995; Schwartz and Dockery, 1992). 

This paper describes the structure of the SHEDS-PM model, the algorithms used to 

estimate personal exposures and the types of input data required.  The specific input databases 

developed for the Philadelphia PM2.5 case study are also described, including both the 

microenvironmental data and the population/demographic data needed by the SHEDS-PM 

model.  Results from the Philadelphia PM2.5 case study are presented and discussed, along with 

the limitations of the model and the data needs identified through the case study. 
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Methods 

Population Exposure Model Description 

SHEDS-PM is a stochastic model, where input data for exposure factors are in the form 

of distributions that are randomly sampled for each individual in the simulation.  These input 

distributions represent the variability in the exposure factors across the population (Taylor, 

1993). Estimates of the knowledge- or measurement-based uncertainty associated with the 

exposure factor inputs are also required as input (Cullen and Frey, 1999).  The SHEDS-PM 

model utilizes two-dimensional Monte Carlo sampling of the input distributions to propagate the 

variability and uncertainty in the inputs through to the predicted exposure distributions (Buck et 

al., 2001; MacIntosh et al., 1995; Bogen and Spear, 1987).  Using this technique, the predicted 

output from the model includes estimates of both inter-individual variability in the population 

and uncertainty about any specific percentile of the predicted population distribution (see Figure 

1, MacIntosh et al., 1995). 

SHEDS-PM estimates PM exposures for individuals within a population.  The population 

for the simulation is generated using demographic data at the census tract level from the U.S. 

Census.  A fixed number of individuals are simulated to represent each census tract. 

Characteristics of the simulated individuals are randomly selected to match the demographic 

proportions within the census tract for gender, age, employment status and housing type.  A 

smoking status (smoker/non-smoker) is randomly selected for each individual in the simulation 

population using smoking prevalence statistics for the U.S. by gender and age.  Individual diaries 

of human activity pattern data are then randomly assigned to each individual by selecting from 

diaries that match the demographic characteristics of the simulated individual.  The diaries 
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contain data on the various microenvironments individuals spend time in during a day and the 

various activities performed while in each microenvironment. 

The SHEDS-PM model simulates individual exposures in 8 specific microenvironments, 

including outdoors, indoors (residence, office, school, store, restaurant, bar) and in vehicles.  PM 

concentrations in these microenvironments are needed to determine the individual PM exposures. 

For the outdoor microenvironment, the model requires a spatial field of PM concentrations at 

each census tract.  The outdoor PM concentration database can be developed from spatial 

interpolation of either ambient PM measurements from community air monitoring sites or 

atmospheric dispersion model predictions.  Typically, the temporal resolution of PM data from 

dispersion models is greater than ambient PM measurement data (hourly vs. 24-hour integrated), 

but measurement data may be available for a year or longer.  The current structure of the 

SHEDS-PM model requires the outdoor PM concentrations at each census tract to have a 

temporal resolution of 12 or 24 hours and seasonal data for at least one year.  For each simulated 

individual within a census tract, the SHEDS-PM model randomly selects an outdoor PM 

concentration from the input database for that census tract with equal proportions across all 

seasons. 

PM concentrations in the indoor and in-vehicle microenvironments are calculated using 

microenvironment-specific equations for the relationship between ambient outdoor and 

microenvironmental PM concentrations.  For the indoor residential microenvironment, a single-

compartment, steady-state mass balance equation (_zkaynak et al., 1996) is used to calculate 

indoor PM concentrations (Cresidential) from the infiltration of ambient PM indoors (Cresidential­

ambient) and indoor PM sources (Cresidential-nonambient) as shown below: 
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Cresidential = Cresidential-ambient  + Cresidential-nonambient 

P ach Esmk Ncig  + Ecook tcook  + Eother T 
= Cambient  + (1) 

ach + k (ach + k) V T 

where: Cambient = ambient outdoor PM concentration (µg/m3) 

P = penetration factor (unitless) 

k = deposition rate (h-1) 

ach = air exchange rate (h-1) 

Esmk = emission rate for smoking (mg cig-1) 

Ncig = number of cigarettes smoked during model time step 

Ecook = emission rate for cooking (mg min-1) 

tcook = time spent cooking during model time step (min) 

Eother = emission rate for other sources (mg h-1) 

T = model time step (h) 

V = residential volume (m3) 

The first term in (1) describes the infiltration of ambient PM indoors.  The penetration factor P is 

the fraction of particles that penetrate the building envelope.  The deposition rate k includes all 

processes except air exchange that result in loss of particles (sedimentation, adsorption, 

absorption, etc.). The second term in (1) describes the generation of particles from indoor 

sources. Indoor emissions from smoking and cooking are specified in the equation, while 

emissions from all other indoor sources are combined due to lack of data on these types of 

sources. Other indoor PM sources may include combustion sources such as wood-burning 

fireplaces and candle burning, cleaning activities, and/or resuspension of particles due to 

physical activity (Abt et al., 2000; _zkaynak et al., 1996; Wallace, 1996).  For smoking, the 

model includes only exposure to environmental tobacco smoke (ETS) and not direct inhalation 

from active smoking.  The estimation of particles emitted from smoking within the residence is 

determined from the number of cigarettes smoked in the residence by the individual (if a smoker) 
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and/or by someone else smoking in the individual’s residence.  Particle generation from cooking 

is determined using the time the individual spent preparing food from the assigned activity diary. 

Since preparing food may or may not include particle-generating cooking, the time spent 

preparing food is multiplied by a random factor (from 0 to 1.0) to estimate the time spent 

cooking in the mass-balance equation. 

For the non-residential microenvironments (office, school, store, restaurant, bar, vehicle), 

PM concentrations are determined using a linear regression equation developed from analysis of 

concurrent indoor and outdoor PM measurement data available for these microenvironments: 

Cmicroenvironment = b0 + b1 Cambient (2) 

This regression equation describes the relationship between microenvironmental and ambient 

outdoor PM concentrations (b1) and the contribution of indoor PM sources (b0). 

The microenvironment-specific equations used to calculate residential and non-residential 

PM concentrations require input data for each parameter of the equation.  The input data are 

distributions that characterize the variability in the measurement data for a parameter.  For 

example, variability in available data for residential volume, V, used in the mass-balance 

equation above can be described by a lognormal distribution with a certain geometric mean and 

standard deviation. Additionally, input data for a particular parameter may include more than 

one set of distributions when data are available to characterize the variability by different 

categories.  For the residential volume example above, separate distributions for a number of 

different housing types can be constructed.  The specific variability distributions used for the 

equation parameters in the Philadelphia PM2.5 case study are discussed in the following section. 

For each individual in the simulation, the SHEDS-PM model randomly selects values 

from these distributions for the equation parameters.  Microenvironmental PM concentrations for 
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each individual are calculated using the selected parameter values and the equations for the 

residential and non-residential microenvironments.  The individual’s total PM exposure is then 

calculated using the microenvironmental PM concentrations and the time spent in the various 

microenvironments from the assigned activity diary for that individual. 

The daily average total exposure for individual i (Ei) is calculated from the sum of daily 

average exposures for the m microenvironments encountered by the individual during the 

averaging time for exposure (24 hours), and each daily average microenvironmental exposure 

(Eij) is calculated as the average time-weighted PM concentration for the microenvironment over 

n time steps: 

m m n 

= Eij = (T 
1 C tijk ijk (3)Ei ∑ ∑ ∑  ) 

j=1 j=1 k =1 

where:	 Ei = daily average total exposure for individual i (µg/m3) 

Eij = daily average exposure for individual i for microenvironment j (µg/m3) 

T = averaging time for exposure (24 h) 

Cijk = PM concentration for individual i in microenvironment j for model time 
step k (µg/m3) 

tijk = time spent by individual i in microenvironment j for model time step k (h) 

It is important to note that the SHEDS-PM model does not keep track of the time series of 

microenvironmental exposures.  The time spent in a microenvironment within each model time 

step (tijk) is the total over the time step. Two 12-hour time steps (daytime and nighttime) were 

used in the daily average total exposure calculation for the Philadelphia PM2.5 case study. 

In the SHEDS-PM model, microenvironmental exposures for each individual are also 

separated into exposures to PM of ambient origin (Eij-ambient) and PM from indoor sources (Eij­

nonambient). The exposures are calculated as described in (3) using the ambient and non-ambient 
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components of the microenvironmental PM concentrations (Cij-ambient and Cij-nonambient, 

respectively): 

m m m 

Ei = ∑ Eij = ∑ Eij + ∑ Eijnonambient (4)ambient 

j=1 j=1 j=1

m n m n 
1 1= ∑ ∑ Cijkambient tijk + ∑ ∑ Cijknonambient tijk (5) 

j=1 k =1 j=1 k =1 

(T ) (T ) 

The SHEDS-PM model calculates the contributions of ambient and non-ambient PM to the 

average PM concentration in each microenvironment using the first and second terms, 

respectively, in the residential and non-residential equations above [(1) and (2)]. 

The estimated daily average total PM exposures for the simulated individuals in each 

census tract are combined to obtain a distribution of exposures for the entire population.  The 

resulting distribution represents a ‘cross-sectional’ distribution of PM exposures for the 

simulated population that corresponds to the time period of the ambient outdoor PM data used as 

input. The predicted distribution is ‘cross-sectional’ and not ‘longitudinal’, since each individual 

is randomly assigned an ambient outdoor PM concentration from a particular date in the input 

data with equal proportions across all seasons.  Therefore, SHEDS-PM simulates a different set 

of individuals for each date in the input data, whereas a longitudinal model would simulate the 

same individuals over time. 

The resulting output distribution for the population describes the inter-individual 

variability in the predicted PM exposures across the population.  The SHEDS-PM model also 

estimates the uncertainty in the output distribution using repeated model simulations and two-

dimensional Monte-Carlo sampling of the input distributions.  Estimates of the knowledge- or 

measurement-based uncertainty associated with each variability distribution for the equation 

parameters are required in the form of uncertainty distributions.  For instance, the uncertainty in 
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the geometric mean of the lognormal distribution for the residential volume example given above 

can be estimated by a normal distribution with a certain standard deviation around the value of 

the geometric mean.  Similarly, the uncertainty in the value of the geometric standard deviation 

can also be estimated by a normal distribution around the value of the geometric standard 

deviation. For each SHEDS-PM simulation, the uncertainty distributions are randomly sampled 

to select values for the mean and standard deviation of each variability distribution during that 

simulation. Then for each individual within that simulation, values for the equation parameters 

are randomly selected from these variability distributions and used to estimate individual 

exposures as described above.  This procedure is repeated for multiple model simulations, and 

the different population distributions obtained from the repeated simulations are used to 

characterize the uncertainty for any specific percentile of the predicted PM exposure distribution 

for the population. 

Philadelphia PM2.5 Case Study Inputs 

Inputs to the SHEDS-PM model include two types of data:  microenvironmental data and 

population/demographic data.  Microenvironmental data were obtained from available field 

study measurements for each microenvironment.  Population data for the model were obtained 

from available databases such as the U.S. Census and human activity pattern surveys.  The 

methods used to develop variability and uncertainty distributions from available measurement 

study data for the Philadelphia case study are based on the techniques described in Cullen and 

Frey (1999). 

Microenvironmental Data 

Outdoor Microenvironment.  PM2.5 mass data for the outdoor microenvironment were 

obtained from measurements at eight monitoring locations during the MAACS study in 
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Philadelphia (Figure 1) from May 1992 through September 1993 (Burton et al., 1996).  Daily or 

every-other-day PM2.5 mass measurements (24-hour) were collected at three sites for the entire 

503-day study period.  Daily or every-other-day PM2.5 mass was also collected at five additional 

sites during the summer of 1992 and at four of those sites during the summer of 1993.  TEOM 

measurements of hourly PM2.5 mass were also available at one site during the summer of 1992. 

To obtain census tract PM2.5 concentrations from the Philadelphia measurement study 

data, a spatial and temporal interpolation technique was applied to the daily PM2.5 mass and 

concurrent meteorological data (Kibria et al., 2001).  An analysis of the space-time structure of 

the data was conducted, missing values were imputed and spatial interpolation to the 482 census 

tract centroids within the defined model area (Figure 1) was performed.  The Bayesian 

interpolation technique used is a multivariate extension of the more traditional method of 

kriging.  An hourly model was also constructed from the hourly TEOM measurement data and 

used to predict hourly PM2.5 concentrations at each census tract from the interpolated daily 

values. The hourly values were averaged over two 12-hour periods to obtain average daytime 

(7am-7pm) and nighttime (7pm-7am) PM2.5 concentrations for each census tract that were used 

as input to the SHEDS-PM model. 

Summary statistics for the interpolated census tract PM2.5 concentrations used as input to 

the SHEDS-PM model by day/night and season are shown in Table 1.  On average, PM2.5 

concentrations were higher in the daytime than nighttime, and the highest concentrations 

occurred during the summer seasons.  A 24-hour average PM2.5 concentration above the new 

PM2.5 National Ambient Air Quality Standard (NAAQS) of 65 µg/m3 occurred for only one day 

during June 1993 and at less than 10% of the census tracts on that day. 
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The spatial variation in PM2.5 mass concentrations for Philadelphia was also investigated. 

Burton et al. (1996) report that during the summer the average daily PM2.5 mass was similar 

across the Philadelphia MAACS sites (18-21 µg/m3 in summer 1992; 21-25 µg/m3 in summer 

1993) and correlation among the sites was high (r ≥ 0.70). However, the authors did not report 

whether PM2.5 concentrations were consistently higher at certain sites compared to others.  To 

determine if such a spatial pattern existed in the data, a daily mean PM2.5 concentration across all 

the sites was calculated and the ratio to the daily all-site mean was determined for each site on 

each sample day.  Most of the calculated ratios were within ±10% of the daily all-site mean 

PM2.5 concentration, but a spatial trend was evident.  On average, sites closest to the city center 

had ratios above 1.0, while sites farther from the city center were below 1.0.  The same 

calculation was performed using the interpolated PM2.5 concentrations at each of the census 

tracts and a similar result was obtained.  PM2.5 concentrations at the census tracts closest to the 

urban center were typically higher than the daily mean PM2.5 concentration for all census tracts. 

Indoor-Residential Microenvironment. Input distributions used in the Philadelphia PM2.5 

case study for the parameters of the indoor residential mass balance equation are presented in 

Table 2. The table shows the two types of input distributions needed for each equation 

parameter (variability and uncertainty).  Air exchange rate distributions for each season were 

obtained from an analysis by Murray and Burmaster (1995).  These authors report distributions 

of the variability in measured air exchange rates for residential structures in the U.S. by region of 

the country and by season.  Distributions for the region with the most observations in the mid-

Atlantic states (PA, NY, NJ, MD) for each season were chosen for the Philadelphia case study. 

Uncertainty in the mean of the air exchange rate distributions was estimated using a normal 

distribution and the standard error of the mean (σ/n1/2) as the standard deviation of the 

- 12 ­



uncertainty.  Uncertainty in the standard deviation of the air exchange distributions was 

estimated using the upper and lower bounds of a 95% confidence interval for the standard 

deviation in a triangular distribution.  Air exchange rates were significantly higher for the 

summer season, with greater uncertainty in the mean of the summer distribution due to fewer 

data points. 

Distributions of the variability in residential volumes were obtained from an analysis of 

residential structures in the U.S. by Murray (1997).  In this analysis, data from a US Dept. of 

Energy population-based survey (1993 RECS database) were used to construct residential 

volume distributions by type of residential structure.  The volume distributions were derived 

from floor area measurements of the heated portions of homes and assumed an 8-foot ceiling 

height for all structures.  Residential volumes were greater for single-family, detached structures 

and lower for multi-family units.  The ‘other’ type of residential structure includes mainly 

mobile homes.  Uncertainty distributions for residential volumes were estimated in the same 

manner as for the air exchange distributions using the standard error of the mean and the upper 

and lower bounds of a 95% confidence interval for the standard deviation. 

Distributions for residential penetration, deposition and emission rates for PM2.5 were 

obtained from an analysis by _zkaynak et al. (1996).  In their analysis, a mass-balance equation 

was solved for these unknown parameters using non-linear least-squares regression of 

measurement data from the PTEAM study.  The measurement data were collected in 175 homes 

in Riverside, California for two periods over 24 hours, which allowed separate estimation of 

these mass-balance parameters for daytime and nighttime.  In Table 2, the means and standard 

deviations of the variability distributions correspond to the regression coefficients and one-half 

of their 95% confidence limits, respectively.  The variability distributions are consistent with 
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other estimates and measured data (Thornburg et al., 2001; Abt et al., 2000; Tung et al., 1999; 

Klepeis et al., 1996; Thatcher and Layton, 1995).  The amount of data available from these other 

sources was used to estimate the uncertainty associated with the values of the variability 

distributions. The standard deviations for the uncertainty distributions were calculated as 10%, 

25% and 30% of the mean values for penetration, deposition and indoor source emission rates, 

respectively. 

The regression analysis by _zkaynak et al. (1996) allowed distributions for parameters of 

the residential mass balance equation to be defined when insufficient measurement data were 

available to characterize the variability in these parameters.  Using regression coefficients 

instead of measurement data to define input distributions is not ideal, particularly when values 

outside the physical limits for some parameters could be produced using the predicted 

distribution. For example, negative emission rates could be obtained from some of these 

distributions. Negative emission rates were set to zero when this occurred (less than 5% of the 

simulated individuals). In addition, daytime penetration values slightly greater than 1.0 were 

often obtained from that distribution, when penetration can not physically exceed 1.0.  However, 

no significant difference between results was observed when an upper limit of 1.0 for penetration 

was used. 

Input data for the remaining mass balance equation parameters (number of cigarettes 

smoked and time spent cooking) are discussed along with the other population-related data in the 

following section. 

Non-residential Microenvironments. Input distributions used in the case study for the 

parameters of the linear regression equations for non-residential microenvironments are shown in 

Table 3. The indoor/outdoor PM2.5 measurement data used to develop these distributions are 
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summarized in a review article by Zufall et al. (2001).  The variability distributions for PM2.5 

concentrations in non-residential microenvironments were defined as normal distributions with 

means calculated from the linear regression equation (2) described above and standard deviations 

calculated from the actual measurement data.  Uncertainty distributions for the linear regression 

equation parameters (b1 and b0) were estimated from the regression coefficients and their 

standard errors.  Although these regression equation parameters may be significantly correlated, 

the distributions were sampled independently. However, the distribution of predicted 

concentrations in each microenvironment was compared with the distribution of measured 

concentrations and no outlying values were found in the predicted concentrations. 

For the restaurant and bar microenvironments, a similar regression equation developed by 

Ott et al. (1996) was used that includes smoking as an indoor source term.  The smoking source 

term consisted of the active smoking count, ASC, and a corresponding PM emission rate.  A 

uniform distribution from 0 to 3 was used for the active smoking count and the uncertainty 

distribution for the additional equation parameter (b2) is shown in Table 3. In addition, a random 

factor was also added to select whether smoking occurred for restaurants, while smoking was 

always included for bars. 

Values of the linear regression coefficients for offices with no smoking allowed (b1 "std. 

error=0.18"0.06; b0 "std. error=3.6"1.3) indicate that ambient outdoor PM2.5 did not efficiently 

infiltrate into the office microenvironments (most likely due to HVAC systems) and minimal 

indoor PM2.5 sources were present in non-smoking offices.  In contrast, ambient outdoor PM2.5 

did contribute significantly to indoor PM2.5 concentrations in schools, stores, restaurants and 

bars. Indoor PM2.5 sources were also significant for these microenvironments.  The regression 

equation for the vehicle microenvironment incorporated measurements from near roadways in 
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addition to data collected inside vehicles.  A low b1 for the ambient PM2.5 contribution was 

obtained in the fitted regression model for vehicle measurements, possibly due to limited 

penetration and high deposition within vehicles (Rodes et al., 1998).  A high b0 for vehicles was 

also obtained that accounts for the elevated concentrations often measured near roadways. 

Smoking exposure while in vehicles was not included in the model because information on the 

prevalence of smoking within vehicles was not available.  This excludes a potentially high short-

term exposure to non-ambient PM2.5 from the total exposure predicted by the model.  For all 

other indoor microenvironments not specified in the model, the parameters for one of the non­

residential microenvironments were randomly selected with equal probability and used to 

calculate the PM concentration for the other microenvironments. 

Population data 

Census data. Demographic data for the population living in Philadelphia during 1992-93 

were obtained from the 1990 U.S. Census.  The Primary Metropolitan Statistical Area (PMSA) 

for Philadelphia as defined by the U.S. Census includes Philadelphia County and portions of 6 

surrounding counties.  This PMSA was judged too large for the case study and a smaller area 

was selected that included Philadelphia County and parts of 3 adjacent counties.  Two of these 

counties are directly north and west of Philadelphia County, and the third is the city of Camden, 

NJ across the PA-NJ border from Philadelphia County. Figure 1 shows the area selected for the 

model case study.  This area includes a total of 482 census tracts and has a total population of 

approximately 2.2 million. 

The U.S. Census data provided population totals for 31 age categories for each gender, 4 

employment categories for each gender, and 10 housing type categories.  The relative 

proportions for each category within each of the 482 census tracts were calculated and used as 
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input to the SHEDS-PM model. Analysis of these proportions by census tract indicated that the 

percentage of working adults varied across the modeled area, as did the proportion of elderly and 

children. The majority of the population of Philadelphia included in the modeled area resided in 

single family homes, with most of those being attached units (row houses).  Large apartment 

complexes dominated certain census tracts and census tracts containing colleges or elderly 

housing were also evident. 

Smoking statistics. Input data on smoking was required to determine exposure to 

environmental tobacco smoke (ETS) in the residence for the case study.  Smoker prevalence 

during 1992-93 was obtained from a U.S. Dept. of Health report (National Center for Health 

Statistics, 1998). Only data for adults (18 years and older) were included in this report, so 

additional data for adolescents aged 12 to 17 during 1994-95 were obtained from another U.S. 

Dept. of Health report (Substance Abuse and Mental Health Services Administration, 1996). 

Children under age 12 were not included as possible smokers in the case study.  A limited 

amount of smoking prevalence data was also available for Philadelphia and Pennsylvania from 

more recent years to compare with the U.S. statistics.  In general, smoking prevalence in 

Philadelphia was higher than the average for Pennsylvania, and Pennsylvania was higher than the 

average for the U.S.  Therefore, smoker prevalence in the case study could be an underestimate 

for the population of Philadelphia. 

The smoking prevalence data used as input for the Philadelphia case study are shown in 

Table 4. Prevalence data from 1992 and 1993 were averaged for each age/gender category and 

used as the proportion of the population that were smokers (data for 1994 and 1995 were 

averaged for 12-17 year olds).  Variability distributions were not used since U.S. smoking 

prevalence data were available for a number of different age/gender categories and only one data 
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source was used for each age/gender category.  Uncertainty distributions for these proportions 

were estimated based on the difference between the values for the two years that were averaged. 

The data in Table 4 show that more males were smokers than females across all adult age groups 

and that smoking prevalence was highest in either the 25-34 or 35-44 year-old age groups. 

The number of cigarettes smoked by a smoker in their residence was obtained from 

questionnaire data for the National Human Activity Pattern Survey, or NHAPS (Klepeis et al., 

2001; Klepeis et al., 1996; Tsang and Klepeis, 1996).  NHAPS is a population-based telephone-

recall survey database for the U.S. that includes more than 9,000 questionnaires and diaries. 

Several questions regarding smoking exposures were asked of the survey respondents.  One 

question specifically asked smokers the number of cigarettes they smoked in their residence 

during the previous day.  Table 5 summarizes these data by age and gender that were used as 

input for the SHEDS-PM model. The model randomly selected a range for the number of 

cigarettes smoked in the residence by a smoker from these proportions according to the age and 

gender of the simulated individual and then randomly sampled from a uniform distribution from 

the minimum to the maximum of the selected range.  The data in Table 5 indicate that the older 

the smoker, the greater the number of cigarettes that were smoked in the residence and males 

generally smoked more cigarettes than females. 

The prevalence of smoking by others in a residence and the number of cigarettes that 

were smoked according to age, gender and smoking status were also obtained from the NHAPS 

questionnaire data. All respondents were asked whether someone else smoked cigarettes in the 

respondents home during the previous day, and if yes then how many cigarettes were smoked. 

Tables 6 and 7 display this data used to randomly select whether the simulated individual was 

exposed to ETS from others smoking in their residence and the number of cigarettes they were 
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exposed to.  Smokers had higher rates of exposure to others smoking in their residence than non­

smokers. 

Activity pattern data. Individual diaries of human activity pattern data were obtained 

from EPA’s Consolidated Human Activity Database (CHAD) that includes over 22,000 diary 

days from 10 surveys including NHAPS (McCurdy et al., 2000).  The CHAD diaries are 

sequential records of the time spent by each survey respondent in various microenvironments 

and what activities were performed while in the microenvironment over flexible time intervals 

(1-minute minimum). The total time in each of the 8 microenvironments specified in the 

SHEDS-PM model for two 12-hour periods (daytime:  7 am – 7 pm; nighttime: 7 pm – 7 am) 

was calculated for each of the CHAD diaries and used as input to the model for the case study. 

Time spent in all other indoor microenvironments not specified by the model was totaled to 

account for all 24 hours in the day for each individual.  In addition, time spent preparing food in 

the residence during daytime and nighttime was also totaled for use as input to the residential 

mass balance equation previously described. 

The CHAD database also includes corresponding questionnaire data for each survey 

respondent. The questionnaire data used in the case study included gender, age, employment 

status and smoking status.  These data were used to match individual diaries of human activity 

pattern data to each individual in the simulation population.  In most cases sufficient numbers of 

diaries were available for random assignment to the simulated individuals within each of the 

various combinations of gender, age group, employment status and smoking status.  However, 

for those cases when not enough diaries were available, duplicate copies of the diaries for the 

particular combination were generated until the total number of diaries needed was reached. 
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Results 

The following results for the Philadelphia PM2.5 case study were produced using the 

population and microenvironmental input data described above.  Each SHEDS-PM model 

simulation included realizations for 500 individuals per census tract for the 482 census tracts 

within the defined model area for Philadelphia.  Demographic characteristics were randomly 

selected for each individual according to the calculated proportions for each census tract from the 

U.S. Census data. Gender and age group were used to select a smoking status for each individual 

based on the U.S. smoker prevalence data.  Human activity diaries from CHAD were randomly 

assigned by selecting from diaries that matched the gender, age group, employment status and 

smoking status of that individual. 

Microenvironmental data were also randomly selected for each simulated individual.  A 

pair of day/night outdoor PM2.5 concentrations was selected for each individual from the 503 

days of interpolated measurement data.  Values for each microenvironment-specific equation 

parameter were randomly selected from the variability distributions and used along with the 

assigned outdoor PM2.5 concentrations to calculate daytime and nighttime PM2.5 concentrations 

in the residential and non-residential microenvironments for each individual.  Daily average 

microenvironmental exposures for each individual were calculated using the time spent in each 

microenvironment during the day/night from the assigned CHAD activity diary and the day/night 

PM2.5 concentrations for each microenvironment.  The daily microenvironmental exposures were 

then summed to obtain the daily total PM2.5 exposure for each individual.  The contributions 

from PM2.5 of ambient origin and indoor PM2.5 sources to the total and microenvironmental 

exposures for each individual were also calculated. 

- 20 ­



Results for the simulated individuals within each census tract were combined to obtain 

the population distribution of daily total PM2.5 exposures for Philadelphia for one model 

simulation. Uncertainty estimates for the population distribution were produced from 100 model 

simulations. Output from the model are summarized using cumulative frequency distributions of 

microenvironmental PM2.5 concentrations, time spent in microenvironments, total and 

microenvironmental PM2.5 exposures and ambient/non-ambient PM2.5 exposures for the 

simulated individuals representing the population of Philadelphia. 

Microenvironmental PM2.5 Concentrations 

Cumulative frequency distributions of daily average PM2.5 concentrations within the 8 

microenvironments specified in the model case study for the simulated population of 

Philadelphia are shown in Figure 2.  The PM2.5 concentration distribution for the outdoor 

microenvironment has a median of 12 µg/m3, with a range of 2 to 67 µg/m3. Variability in the 

outdoor PM2.5 concentrations was low, with 90% of the simulation population having 

concentrations between 7 and 27 µg/m3. In contrast, concentrations of PM2.5 in the indoor-

residential microenvironment varied greatly within the population.  The distribution has a 

median of 18 µg/m3, with 10% of the simulation population having PM2.5 levels greater than 69 

µg/m3 in their residence due to the contribution of indoor sources such as cooking and smoking. 

However, approximately 40% of the simulation population was not exposed to indoor sources in 

their residence and the PM2.5 concentration distribution for this segment of the population (not 

shown) has the same median value and low variability as observed for the outdoor PM2.5 

concentration distribution. 

The PM2.5 concentration distributions for most of the non-residential microenvironments 

(offices, schools, stores, and vehicles) have similar profiles in Figure 2 since they were estimated 
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from relationships with ambient PM2.5 levels. Office PM2.5 concentrations were lower than 

outdoor levels (median=6 µg/m3), school and store PM2.5 concentrations were similar to outdoor 

levels (median=15 and 18 µg/m3, respectively), and in-vehicle PM2.5 concentrations were greater 

than outdoor levels (median=37 µg/m3). For the office, school and store microenvironments, 

variability in PM2.5 concentrations across the population was low, while in-vehicle PM2.5 

concentrations were more variable.  Indoor sources of PM2.5 such as cooking and smoking 

influenced the PM2.5 concentration distributions for restaurants and bars, resulting in highly 

variable PM2.5 levels in these microenvironments across the population. 

Time Spent in Microenvironments 

The distributions of time spent in different microenvironments per day for the simulated 

population of Philadelphia are presented in Table 8.  The percent of the population that spent 

time in each microenvironment is also shown.  Nearly all individuals in the simulation 

population (99%) spent some time in the indoor-residential microenvironment, with most 

spending at least 9 hours per day in their residence.  Time spent in this microenvironment was 

also highly variable, with a median of 17.7 hours and the 90th percentile at 23 hours.  Nearly two-

thirds of the case study population spent some time traveling in vehicles, while just over half 

spent some time outdoors. Time spent outdoors for the NHAPS diary data may be negatively 

biased according to Klepeis et al. (2001).  The results suggest that brief periods of time outdoors 

could be missing from these recall diaries.  One quarter of the individuals who spent time 

outdoors, however, spent more than 3.5 hours outdoors.  Only 14% of the population spent time 

in an office and 17% spent time in a school, but 25% of these individuals spent more than 7 

hours in these microenvironments. The microenvironments specified in the SHEDS-PM model 

were sufficient to account for the daily activities of most individuals in the simulated population. 
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However, approximately 15% of the total population spent a significant amount of time (> 6 

hours) within indoor microenvironments not specified in the current version of the model. 

Total and Microenvironmental PM2.5 Exposures 

The cumulative frequency distribution of daily total PM2.5 exposures predicted by the 

SHEDS-PM model for the simulated population of Philadelphia is shown in Figure 3.  The 

median daily total PM2.5 exposure for the population was 20 µg/m3. Significant variability in 

total PM2.5 exposures across the population was evident in Figure 3, with total PM2.5 exposures 

less than 10 µg/m3 for 10% of the population and greater than 59 µg/m3 for the upper 10%. 

Also displayed in Figure 3 are the distributions of microenvironmental PM2.5 exposures 

(exposures due to time spent in the various microenvironments) that contributed to the total 

PM2.5 exposure distribution.  It is evident from this figure that indoor residential PM2.5 exposures 

had the greatest influence on total PM2.5 exposures compared to the other microenvironments. 

The median indoor residential PM2.5 exposure was 13 µg/m3 compared to medians of 3 µg/m3 or 

less for outdoor, in-vehicle and indoor non-residential exposures.  Microenvironmental 

exposures were determined from time-weighted microenvironmental concentrations; therefore, 

both time spent in the microenvironment and the concentration in the microenvironment 

contributed to the estimates of exposure.  The number of hours spent in the indoor residential 

microenvironment was generally much higher than the other microenvironments across the 

population (Table 8), resulting in a large contribution to total PM2.5 exposures from indoor 

residential exposures.  In contrast, the contribution of indoor non-residential exposures was less, 

due to the low amounts of time spent in microenvironments with relatively high PM2.5 

concentrations (restaurants and bars) or the low concentrations in microenvironments where 

individuals spent substantial time (offices). 
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Due to the fact that total PM2.5 exposures were strongly influenced by indoor residential 

exposures, the contribution of indoor PM2.5 sources within the residential microenvironment was 

further examined.  One-third of the simulation population was exposed to ETS in their residence. 

Distributions of indoor residential and total PM2.5 exposures for the two-thirds of the simulation 

population without ETS exposure in the residence are also shown in Figure 3.  The presence of a 

smoker in an individual’s residence added approximately 10 µg/m3 to the 75th percentile for the 

distribution of indoor-residential PM2.5 exposures, and approximately 28 µg/m3 to the 90th 

percentile.  The predicted distributions of total PM2.5 exposures are also significantly different 

for these populations. The median total PM2.5 exposure for those without ETS exposure in their 

residence was 16 µg/m3 compared to 20 µg/m3 for the entire population, and the 90th percentile 

of the distribution was 32 µg/m3 versus 59 µg/m3. 

Results from the SHEDS-PM model also included estimates of the uncertainty in the 

predicted exposure distributions.  Uncertainty for the total PM2.5 exposure distribution for the 

simulation population is displayed in Figure 4.  This figure shows the range in the values of 

selected distribution percentiles for the 100 uncertainty iterations of the model.  Uncertainty in 

the input distributions had an impact on the predicted total PM2.5 exposure distribution, 

particularly at the high exposure tail of the distribution.  The median (50th percentile) of the total 

PM2.5 exposure distribution ranged from 17-25 µg/m3 for the 100 iterations, while the 90th 

percentile ranged from 42-80 µg/m3. 

Ambient PM2.5 Exposures 

The SHEDS-PM model also estimated the contribution of PM2.5 of ambient origin to total 

PM2.5 exposure for the case study population.  Both ambient and non-ambient PM2.5 exposures 

were calculated for each microenvironment and totaled over all the various microenvironments 
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for each individual.  Distributions of daily exposure to ambient and non-ambient PM2.5 for the 

simulation population are shown in Figure 5 along with the distribution of daily total PM2.5 

exposures for comparison.  The median daily exposure to ambient PM2.5 was 7 µg/m3 for the 

simulation population. Variability in the distribution of ambient PM2.5 exposures was 

significantly less than for the distribution of total PM2.5 exposures, with 90% of the simulation 

population having ambient PM2.5 exposures between 3 and 18 µg/m3. Distribution statistics and 

percentiles are also presented in Table 9.  Exposure to ambient PM2.5 was less than the NAAQS 

level of 65 µg/m3 for all the simulated individuals in this case study. 

It is also evident in Figure 5 that total PM2.5 exposures were highly influenced by 

exposure to non-ambient PM2.5 (i.e. indoor sources of PM2.5). Exposure to ETS in the indoor-

residential microenvironment was again the main source of that influence.  The variability in 

non-ambient PM2.5 exposures was significantly less for those in the simulation population 

without exposure to ETS in their residence as shown in Figure 5. 

The contribution of ambient PM2.5 exposures was also calculated on a percentage basis. 

The distribution of daily ambient PM2.5 exposure as a percentage of daily total PM2.5 exposure is 

shown in Table 9. While the median value for the simulation population was 37.5%, the percent 

of total PM2.5 exposures from ambient PM2.5 was highly variable across the population.  For one-

quarter of the population, ambient PM2.5 exposure contributed less than 20% to total PM2.5 

exposure while for another quarter of the population (upper 25% of the population distribution) 

ambient PM2.5 exposure contributed more than 57% to their total PM2.5 exposure.  The percent 

contribution from ambient PM2.5 exposures was higher across the entire distribution for those 

without ETS exposures in the residence, as shown in Table 9, and the distribution was also 

highly variable for this segment of the population. 
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The predicted exposure distributions for the simulation population were also analyzed by 

various demographic characteristics.  For example, in Table 9 distributions for the percent of 

total PM2.5 exposures from ambient PM2.5 are displayed for selected age categories.  For the 

youngest (0-4 and 5-11 yr) and oldest (>65 yr) in the population, ambient PM2.5 exposures 

contributed more to their total PM2.5 exposures than for the other age categories.  The variability 

in each age group was consistently high and similar to the variability for the entire population. 

Spatial Analysis of Total and Ambient PM2.5 Exposure 

An analysis of spatial trends in the PM2.5 concentration data used as input to the SHEDS­

PM model was described above.  This analysis showed that PM2.5 levels were typically higher at 

the census tracts closest to the urban center, but the magnitude of the differences was small.  A 

similar spatial analysis for both total and ambient PM2.5 exposures did not find a similar spatial 

pattern in exposures.  The lack of spatial differences in the predicted total and ambient PM2.5 

exposures indicates that the inter-individual differences within a census tract were greater than 

any spatial difference in the ambient outdoor PM2.5 concentrations between census tracts. 

Apportionment of Total PM2.5 Exposure 

Results from the SHEDS-PM model were used to apportion total PM2.5 exposures by type 

of microenvironment and PM2.5 source. The apportionment as percent of total PM2.5 exposures 

is summarized in Table 10 for the entire population and for those without ETS exposure in the 

residence.  Comparison of the mean values indicates that, in general, residential exposures 

contributed the most to total PM2.5 exposures, with the percent contribution from ambient and 

non-ambient PM2.5 in the residence differing between the entire population and those without 

ETS exposure in the residence.  The mean values for the percent contribution from the outdoor 

and non-residential microenvironments were lower than for the residential microenvironment. 
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Contributions from non-ambient PM2.5 were significantly higher than for ambient PM2.5 in non­

residential microenvironments. The percentiles of the distribution for the simulated population 

of Philadelphia are also shown in Table 10.  While the mean values provide a useful summary 

statistic for comparison of the apportionment, high variability in the distributions demonstrate 

that these mean values do not represent the population as a whole.  The apportionment of total 

PM2.5 exposures between microenvironments and source types (ambient/non-ambient) differed 

across various segments of the population due to differences in activity patterns and other 

exposure factors. 

Discussion 

The SHEDS-PM population exposure model (Version 1) was developed using a case 

study of PM2.5 exposures for the population of Philadelphia.  While no personal PM2.5 exposure 

measurements were collected in Philadelphia during the time of the ambient PM2.5 

measurements, data from other urban areas are available for comparison with the model results. 

The population mean for daily total PM2.5 exposures (30 µg/m3) predicted by the SHEDS-PM 

model for Philadelphia is similar to personal PM2.5 exposure measurement data from population-

based studies in Toronto (Pellizzari et al., 1999) and Switzerland (Oglesby et al., 2000).  Mean 

personal PM2.5 measurements were 28.4 and 23.7 µg/m3, respectively, for those studies. Oglesby 

et al. (2000) also report a mean of 17.5 µg/m3 when no exposure to ETS occurred, which is 

similar to the SHEDS-PM population mean of 19.7 µg/m3 for individuals without ETS exposure 

in their residence.  Longitudinal studies of specific sub-populations within urban areas have also 

measured similar levels.  For example, Rojas-Bracho et al. (2000) report the mean personal 

PM2.5 measurement for 17 adults with COPD in Boston was 21.6 µg/m3 with a range of 1 to 128 

µg/m3. However, Williams et al. (2000) report a mean personal PM2.5 concentration of 13.0 
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µg/m3 for elderly adults in Baltimore (n=23), and Evans et al. (2000) report mean personal PM2.5 

concentrations of 13.3 and 11.1 µg/m3 for elderly adults in two studies in Fresno (n=24 and 12). 

Results from the SHEDS-PM model case study indicate the importance of including 

estimates of input uncertainty in population exposure models along with the input variability. 

Uncertainty in the predicted distribution of daily total PM2.5 exposures was highest at the upper 

end of the distribution where the 90th percentile varied by as much as 38 µg/m3 between the 100 

iterations of the model. This also emphasizes the need to evaluate the validity of the predicted 

extremes in the exposure distributions. 

The SHEDS-PM case study results showed that exposures to ambient PM2.5 were much 

less variable across the simulation population than total PM2.5 exposures.  This suggests that 

human activity patterns (the microenvironments encountered and the amount of time spent in 

each) do not have a strong influence on ambient PM2.5 exposures.  The predicted exposures to 

ambient PM2.5 were, however, dependent on the variability in the outdoor PM2.5 concentrations. 

Ambient PM2.5 exposure and outdoor PM2.5 concentration were highly correlated (r=0.89, 

p<0.001) for the simulation population.  Exposure to other sources of PM2.5 contributed more to 

the variability in predicted total PM2.5 exposures than ambient PM2.5 exposure.  Total PM2.5 

exposures were highly correlated with non-ambient PM2.5 exposures for the simulation 

population (r=0.99, p<0.001) and not correlated with ambient PM2.5 exposures (r=0.08).  In 

addition, there was no significant statistical relationship between exposure to ambient PM2.5 and 

exposure to non-ambient PM2.5 (r=-0.08). Individuals in the simulation population with the same 

ambient PM2.5 exposure had a wide range of exposures to non-ambient PM2.5. 

Age differences in the percent of total PM2.5 exposures from ambient PM2.5 for the 

SHEDS-PM case study indicated that certain sub-populations, such as the elderly, had a greater 
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percentage of their total exposure from ambient PM2.5 compared to the population as a whole, 

although the variability was high across all age groups.  Comparisons across other demographic 

characteristics such as employment status or housing type are also possible with the SHEDS-PM 

model output. In addition, the population could be ranked by time spent in a particular 

microenvironment (high/medium/low) and the distributions compared. 

The results from the SHEDS-PM model also allowed apportionment of the predicted total 

PM2.5 exposure by microenvironment and PM2.5 source type.  The apportionment results 

emphasized the importance of the residential microenvironment in contributing to total PM2.5 

exposures for the simulated population.  The majority of ambient PM2.5 exposures occurred in 

this microenvironment compared to outdoor and non-residential PM2.5 exposures.  When indoor 

residential PM2.5 sources were limited (i.e. no ETS exposure in residence), as expected, ambient 

PM2.5 exposures in the residence were an even greater proportion of predicted total PM2.5 

exposures. 

Limitations and data needs 

Development of the SHEDS-PM model (Version 1) using the Philadelphia PM2.5 case 

study has identified several key limitations, as well as data needs for improving inputs to the 

model, reducing uncertainty and further refining of the model structure.  For instance, few 

studies have been conducted that provide daily PM measurements over multiple seasons and 

across multiple sites within an urban area.  Without this type of measurement data for input to 

the SHEDS-PM model, statistical methods must be used to interpolate the data both spatially and 

temporally.  Improving the capability of dispersion models to predict ambient PM concentrations 

within urban areas at greater spatial resolution and over a year time period, would also provide 

useful input data for SHEDS-PM applications. 
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Personal exposure studies with appropriate study designs and sufficient measurements for 

a thorough evaluation of the SHEDS-PM model results are also limited.  While the predicted 

total PM2.5 exposures for the case study are similar to available personal PM2.5 measurements, a 

comprehensive population-based study in an urban area with both personal and 

microenvironmental sampling would allow for a full evaluation of all aspects of the model. 

Certain assumptions were made in the development of the structure of the SHEDS-PM 

model that may have had an impact on the predicted results.  For example, in using the mass 

balance equation to calculate residential PM concentrations it was assumed that the residence 

was a well-mixed single-compartment under equilibrium conditions.  The time dependence of 

the physical factors in the equation were thereby ignored, as well as the effect of several factors 

on mixing, including the extent of door/window opening, indoor/outdoor differences in 

temperature, type of heating/cooling system, etc.  However, the impact of these assumptions may 

be minimal considering the length of the time step for this version of the SHEDS-PM model (12 

hours). 

Measurement studies are needed to better characterize the physical factors governing 

infiltration of ambient PM2.5 into residential microenvironments, including the influence of 

opening doors and windows, the type and use of HVAC systems and other characteristics of 

residential buildings.  Diurnal patterns in residential air exchange rates may be an important 

factor that is currently not accounted for by the model.  Also, particle-generating sources within 

the residence such as smoking and cooking were shown to have a significant impact on total 

PM2.5 exposures and additional data are needed to reduce the uncertainty in the values used for 

those inputs. For example, sufficient information was not available in the human activity diary 

data to characterize residential cooking activities in detail.  Finally, the impact of other indoor 
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residential PM2.5 sources also needs further investigation, including differences between age 

groups (elderly, children) in the resuspension of particles due to physical activity. 

Currently insufficient data are available to fully apply a mass balance equation to 

determine PM concentrations in the non-residential microenvironments included in the SHEDS­

PM model. Further measurement data are needed to characterize the important physical factors 

for different types of vehicles, office buildings, schools, and stores (particularly mall stores vs. 

stores open to outdoors). In addition, data for the other indoor microenvironments not specified 

in the model could also improve the exposure predictions for certain segments of the population. 

The next version of the SHEDS-PM model (Version 2) is currently under development. 

The main objectives for this next phase in the model development include structuring the model 

to predict exposures on an hourly time-series basis and to estimate intake dose based on activity 

level and ventilation rate. These refinements to the model structure will also require input data to 

be on an hourly basis and therefore, more continuous measurements are needed to develop these 

model inputs. Adding the capability of estimating exposures for each individual over time 

(longitudinal exposures) to the model is also an objective and will require information on the 

longitudinal patterns of human activities. 

The continued development and evaluation of the SHEDS-PM population exposure 

model is being conducted as part of EPA/ORD’s effort to develop a source-to-dose modeling 

system.  This type of exposure and dose modeling system is considered to be important for 

scientific and policy evaluation of the critical pathways, exposure factors and source types 

influencing human exposures to a variety of environmental pollutants, including particulate 

matter. 
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Table 1. 	Summary statistics for the interpolated PM2.5 concentrations (µg/m3) at 482 census 
tracts within Philadelphia, PA for the 503-day MAACS study period (May 1992 – 
September 1993) by season and day/night. 

Standard 
Season Mean Deviation Median Range 

Winter	 Day 12.2 6.8 10.2 2.0 – 47.8 
Night 10.4 4.4 9.8 2.0 – 33.5 

Spring	 Day 13.6 7.2 11.7 3.1 – 56.6 
Night 12.4 5.1 11.5 1.0 – 32.5 

Summer	 Day 19.3 11.0 17.2 4.4 – 82.7 
Night 17.3 7.2 16.3 4.6 – 51.5 

Autumn	 Day 14.5 7.7 12.7 4.6 – 50.4 
Night 12.7 5.1 11.7 4.3 – 29.7 
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Table 2. 	Input distributions for parameters of the mass balance equation used to determine 
PM2.5 concentrations in the residential microenvironment1. 

Equation Variability Uncertainty Distributions 
Parameter Category Distribution Mean Standard Deviation Ref.2 

Air exchange rate Winter LogN(-0.8, 0.7)3 N(-0.8, 0.10) Tri(0.6, 0.7, 0.85) a 
(h-1) Spring LogN(-0.8, 0.8)3 N(-0.8, 0.06) Tri(0.7, 0.8, 0.9) a 

Summer LogN(-0.2, 0.7)3 N(-0.2, 0.26) Tri(0.6, 0.7, 0.9) a 
Autumn LogN(-1.0, 0.5)3 N(-1.0, 0.19) Tri(0.4, 0.5, 0.7) a 

Volume 
(m3) 

Single-family, detached 
Single-family, attached 

LogN(6.02, 0.50)4 

LogN(5.79, 0.50)4 
N(6.02, 0.03) 
N(5.79, 0.09) 

Tri(0.46, 0.50, 0.55) 
Tri(0.46, 0.50, 0.55) 

b 
b 

Multi-family, < 5 units LogN(5.16, 0.44)4 N(5.16, 0.05) Tri(0.37, 0.44, 0.54) b 
Multi-family, ≥ 5 units LogN(5.16, 0.44)4 N(5.16, 0.05) Tri(0.37, 0.44, 0.54) b 
Other LogN(5.34, 0.36)4 N(5.34, 0.08) Tri(0.28, 0.36, 0.50) b 

Penetration Day N(1.00, 0.080) N(1.00, 0.10) N(0.080, 0.008) c 
(unitless) Night N(0.89, 0.058) N(0.89, 0.09) N(0.058, 0.006) c 

Deposition Day N(0.27, 0.098)5 N(0.27, 0.07) N(0.098, 0.025) c 
(h-1) Night N(0.39, 0.090)5 N(0.39, 0.10) N(0.090, 0.023) c 

Cooking emission Day N(1.56, 0.412) N(1.56, 0.47) N(0.412, 0.124) c 
rate (mg min-1) Night N(0.69, 0.439) N(0.69, 0.21) N(0.439, 0.132) c 

Smoking emission Day N(10.9, 2.16) N(10.9, 3.27) N(2.16, 0.648) c 
rate (mg cig-1) Night N(16.9, 2.43) N(16.9, 5.07) N(2.43, 0.729) c 

Other emission Day N(1.46, 0.833) N(1.46, 0.44) N(0.833, 0.250) c 
rate (mg h-1) Night N(0.78, 0.517) N(0.78, 0.23) N(0.517, 0.155) c 

Notes:

1Shape of distribution: LogN=lognormal(geometric mean, geometric standard deviation), N=normal(mean, standard


deviation), Tri=triangular(minimum, mode, maximum). 
2References: a=Murray and Burmaster (1995), b=Murray (1997), c=Özkaynak et al. (1996). 
3Minimum value=0.01 h-1 

4Minimum value=50 m3 

5Minimum value=0.1 h-1 
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Table 3. 	Input distributions for parameters of the linear regression equations used to determine 
PM2.5 concentrations in non-residential microenvironments1. 

Microenvironment Variability Uncertainty Distributions 
Distribution2 b0 b1 b2 

Vehicle (no smoking)      N(Cµe, 12) N(33.0, 7.2) N(0.26, 0.14) 
Office (no smoking)  N(Cµe, 2.9) N(3.6, 1.3) N(0.18, 0.06) 
School  N(Cµe, 5.4) N(6.8, 1.4) N(0.60, 0.09) 
Store
Restaurant/Bar3

 N(Cµe, 2.1) 
N(Crest/bar, 10) 

N(9.0, 3.6) 
N(9.8, 0.5) 

N(0.74, 0.18) 
N(1.00, 0.05) Tri(32, 40.4, 50) 

Notes: 
1Data source:  Zufall et al. (2001); Shape of distribution: N=normal(mean, standard deviation), 

Tri=triangular(minimum, mode, maximum). 
2Mean of distribution calculated using linear regression equation: Cµe = b0 + b1Cambient. 
3Equation for restaurant/bar has additional term (see text):  Crest/bar = b0 + b1Cambient + b2ASC, where ASC 

is the active smoking count and varies uniformly from 0 to 3. 
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Table 4. Input data on smoking prevalence by age group and gender1. 

Proportion that Uncertainty 
Age Group Gender are Smokers Distribution 

12 – 13 yr Both 0.100 N(0.100, 0.004) 
14 – 15 yr Both 0.201 N(0.201, 0.004) 
16 – 17 yr Both 0.293 N(0.293, 0.004) 
18 – 24 yr Males 0.284 N(0.284, 0.008) 

Females 0.239 N(0.239, 0.008) 
25 – 34 yr Males 0.315 N(0.315, 0.008) 

Females 0.287 N(0.287, 0.008) 
35 – 44 yr Males 0.324 N(0.324, 0.008) 

Females 0.273 N(0.273, 0.008) 
45 – 64 yr Males 0.289 N(0.289, 0.012) 

Females 0.245 N(0.245, 0.008) 
> 65 yr Males 0.148 N(0.148, 0.008) 

Females 0.114 N(0.114, 0.008) 

Notes: 
1Data sources:  SAMHSA (1996) for children 12-17 years old; 

National Center for Health Statistics (1998) for adults. 
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Table 5. 	Input data on number of cigarettes smoked per day in residence by a smoker for 
various age groups1. 

Range for Number Male Female 
Age Group of Cigarettes2 Proportion Proportion 

12 – 17 yr 0 - 2 0 0.14 
3 - 5 0.40 0.43 
6 - 9 0.10 0.14 

10 - 14 0.30 0.14 
15 - 24 0.20 0 

25+ 0 0.14 

18 – 24 yr 0 - 2 0.17 0.11 
3 - 5 0.33 0.30 
6 - 9 0.11 0.20 

10 - 14 0.24 0.23 
15 - 24 0.09 0.16 

25+ 0.07 0 

25 – 34 yr 0 - 2 0.09 0.06 
3 - 5 0.30 0.23 
6 - 9 0.17 0.19 

10 - 14 0.26 0.23 
15 - 24 0.17 0.23 

25+ 0.01 0.06 

35 – 44 yr 0 - 2 0.02 0.07 
3 - 5 0.22 0.28 
6 - 9 0.14 0.16 

10 - 14 0.25 0.27 
15 - 24 0.28 0.18 

25+ 0.10 0.05 

45 – 64 yr 0 - 2 0.05 0.03 
3 - 5 0.16 0.21 
6 - 9 0.13 0.15 

10 - 14 0.24 0.37 
15 - 24 0.32 0.16 

25+ 0.11 0.08 

≥ 65 yr 0 - 2 0.03 0.06 
3 - 5 0.10 0.21 
6 - 9 0.16 0.08 

10 - 14 0.19 0.38 
15 - 24 0.45 0.25 

25+ 0.06 0.02 

Notes: 
1Data source: NHAPS questionnaire data (Klepeis et al., 1996; Tsang 

and Klepeis, 1996). 
2Uniform distribution from min. to max. of range was used. The maximum 

number of cigarettes was 40. 
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Table 6. Input data on prevalence of others smoking in residence by smoking status, age group 
and gender1. 

Smoking Age Proportion With Other Uncertainty 
Status Group Gender Smoker in Home Distribution 

Smoker 0 - 17 yr Males  0.73 N(0.73, 0.035) 
Females  0.89 N(0.89, 0.045) 

18 - 64 yr Males  0.35 N(0.35, 0.020) 
Females  0.38 N(0.38, 0.020) 

65+ yr Males  0.16 N(0.16, 0.010) 
Females  0.28 N(0.28, 0.015) 

Non-smoker 0 - 17 yr Males  0.31 N(0.31, 0.015) 
Females  0.35 N(0.35, 0.020) 

18 - 64 yr Males  0.10 N(0.10, 0.005) 
Females  0.12 N(0.12, 0.005) 

65+ yr Males  0.04 N(0.04, 0.005) 
Females  0.05 N(0.05, 0.005) 

Notes:

1Data source: NHAPS questionnaire data (Klepeis et al., 1996; Tsang and Klepeis, 1996).
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Table 7. Input data on number of cigarettes smoked in residence by other smokers by smoking 
status and age group1. 

Smoking Age Range for Number Male Female 
Status Group of Cigarettes2 Proportion Proportion 

Smoker 12 – 17 yr 0 - 2 0.11 0 
3 - 5 0.11 0.25 
6 - 9 0.22 0.13 

10 - 14 0.12 0.37 
15 - 24 0.22 0.13 

25+ 0.22 0.12 

18 – 64 yr 0 - 2 0.04 0.06 
3 - 5 0.14 0.16 
6 - 9 0.16 0.13 

10 - 14 0.33 0.24 
15 - 24 0.20 0.33 

25+ 0.13 0.08 

≥ 65 yr 0 - 2 0.20 0.25 
3 - 5 0 0.25 
6 - 9 0 0 

10 - 14 0.20 0 
15 - 24 0.40 0.38 

25+ 0.20 0.12 

Non-smoker 12 – 17 yr 0 - 2 0.06 0.02 
3 - 5 0.16 0.20 
6 - 9 0.17 0.14 

10 - 14 0.24 0.22 
15 - 24 0.25 0.27 

25+ 0.12 0.15 

18 – 64 yr 0 - 2 0.14 0.15 
3 - 5 0.19 0.31 
6 - 9 0.19 0.13 

10 - 14 0.22 0.19 
15 - 24 0.20 0.17 

25+ 0.06 0.05 

≥ 65 yr 0 - 2 0.29 0.22 
3 - 5 0 0.28 
6 - 9 0.14 0.17 

10 - 14 0.28 0.11 
15 - 24 0.15 0.05 

25+ 0.14 0.17 

Notes:

1Data source: NHAPS questionnaire data (Klepeis et al., 1996; Tsang and Klepeis, 1996).

2Uniform distribution from min. to max. of range was used. The maximum number of


cigarettes was 40. 
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Table 8.  Distribution statistics for time (hours) spent per day in various microenvironments for 
the simulated population of Philadelphia. 

Microenvironment 

Percent of 
population 

(%)1 
Mean 

(h) 

Std. 
Dev. 
(h) 0 5 10 

Percentiles 
25 50 75 90 95 100 

Outdoor 58 2.6 2.9 <0.1 0.1 0.2 0.6 1.5 3.5 6.6 8.8 24.0 
Indoor residential 99 17.4 4.6 <0.1 9.7 11.7 14.3 17.7 21.2 23.4 24.0 24.0 
Indoor office 14 3.7 3.7 <0.1 0.1 0.2 0.4 1.9 7.6 9.0 9.75 24.0 
Indoor school 17 4.6 3.1 <0.1 0.1 0.3 1.5 5.3 7.0 8.1 9.0 16.6 
Indoor store 34 1.5 1.8 <0.1 0.1 0.2 0.4 0.9 1.8 3.4 5.0 18.0 
Indoor restaurant 22 1.3 1.6 <0.1 0.2 0.3 0.5 0.9 1.4 2.5 4.0 15.4 
Indoor bar 3 2.6 2.0 <0.1 0.5 0.5 1.2 2.0 3.3 5.3 7.2 14.5 
Indoor other 55 3.9 3.9 <0.1 0.2 0.5 1.1 2.5 5.6 9.3 11.4 24.0 
In-vehicle 62 1.5 1.5 <0.1 0.2 0.3 0.6 1.1 1.9 3.0 4.0 22.6 

Notes: 
1Percent of population that spent time (at least 1 minute) in the microenvironment and were included in 

distribution statistics.  For example, 42% of the population spent 0 minutes outdoors. 

- 43 ­



Table 9.  Distribution statistics for total PM2.5 exposures for the simulated population of 
Philadelphia. 

Std. Percentiles 
Mean Dev. 0 5 10 25 50 75 90 95 100 

Total PM2.5 Exposure (µg/m3)
  - All 30.0 32.0 1.0 8.6 10.2 13.8 20.3 33.4 58.9 84.5 1259
  - No ETS in residence 19.7 14.0 1.0 7.9 9.3 12.1 16.3 22.9 32.4 41.9 450

  - From ambient PM2.5 8.2 5.0 0.3 2.9 3.5 4.9 7.0 10.1 14.4 17.9 63

  - From nonambient PM2.5

       - All 21.9 32.0 0.0 2.5 3.5 6.0 11.2 24.4 50.5 76.6 1233
       - No ETS in residence 11.6 13.5 0.0 2.1 2.9 4.7 7.8 13.5 23.0 32.7 443 

Percent of Total PM2.5 

Exposure from Ambient (%)
  - All 39.6 23.1 0.1 6.5 10.2 20.2 37.5 56.8 72.6 80.5 100
  - No ETS in residence 47.1 21.6 0.1 13.2 18.5 30.2 46.4 63.3 76.9 83.7 100

  - By age group (yr):
       0 – 4 45.8 24.4 0.2 8.0 12.4 25.5 45.4 65.2 79.4 85.8 100
       5 – 11 46.6 23.3 0.7 9.1 14.1 27.4 47.4 65.0 77.8 83.7 100
       12 – 17 40.8 23.5 0.4 6.4 10.1 20.3 39.6 59.1 73.6 80.9 100
       18 – 24 38.9 21.5 0.4 7.3 11.2 21.3 37.3 54.7 69.2 76.5 100
       25 – 54 36.4 22.6 0.1 5.6 8.7 17.6 33.2 52.4 69.1 77.9 100
       65+ 42.8 23.0 0.2 8.3 12.8 24.1 41.2 60.1 75.4 82.8 100 
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Table 10.  Distribution statistics for the apportionment of total PM2.5 exposures by micro­
environment and PM2.5 source type for the simulated population of Philadelphia. 

Std. 
Mean Dev. Percentiles (%) 
(%) (%)  0  5  10  25  50  75  90  95  100  

Percent of Total PM2.5 Exposure:
  - All
      Outdoor 4.6 9.3  0  0  0  0  0.5  4.9  14.1  22.8  100
      Residential ambient 27.6 19.7 0 3.3 5.5 11.7 23.5 39.4 56.1 66.5 100
      Non-residential  ambient  7.5  8.6  0  0  0  1.0  4.4  10.8  19.5  25.7  78.9
      Residential non-ambient 42.0 28.5 0 3.5 6.7 16.4 37.8 66.4 84.5 90.5 99.9
      Non-residential non-ambient  18.4 19.2  0  0  0  2.8  12.3  28.1  47.0  59.2  98.2  

Total 100

  - No ETS in residence
      Outdoor 5.3 10.2  0  0  0  0  0.6  6.0  16.4  25.9  100
      Residential ambient 33.1 19.8 0 6.4 9.9 17.8 30.0 45.5 61.4 71.1 100
      Non-residential  ambient  8.7  9.4  0  0  0  1.6  5.8  12.9  22.0  27.9  78.9
      Residential non-ambient 31.2 23.9 0 2.6 4.9 11.5 25.3 46.9 68.3 78.9 99.9
      Non-residential non-ambient  21.6 20.2  0  0  0  4.7  16.6  33.0  51.6  63.2  98.2  

Total 100 
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Figure captions: 

Figure 1. PM2.5 measurement site locations, census tracts and defined model area within 
Philadelphia, PA for the SHEDS-PM model case study. 

Figure 2. Cumulative frequency distributions of predicted daily average PM2.5 concentrations 
(µg/m3) for the 8 microenvironments included in the SHEDS-PM model case study 
for Philadelphia. 

Figure 3. Cumulative frequency distributions of daily total and microenvironmental PM2.5 

exposures (µg/m3) for the simulated population of Philadelphia (solid lines). 
Distributions of total and indoor residential PM2.5 exposures for the population 
without environmental tobacco smoke (ETS) exposure in the residence (dashed lines) 
are also shown. 

Figure 4. Horizontal box plots showing the uncertainty associated with selected percentiles of 
the predicted distribution of daily total PM2.5 exposures for the simulated population 
of Philadelphia determined from 100 model iterations. 

Figure 5. Cumulative frequency distributions of daily total, ambient and non-ambient PM2.5 

exposures (µg/m3) for the simulated population of Philadelphia (solid lines). 
Distributions of daily total and non-ambient PM2.5 exposures for the population 
without environmental tobacco smoke (ETS) exposure in the residence (dashed lines) 
are also shown. 
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Figure 1. 
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