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Notice

The United States Environmental Protection Agency (EPA) through its Office of
Research and Development (ORD) funded and managed the research described here. It
has been peer reviewed by the EPA and approved for publication. Mention of trade
names and commercial products does not constitute endorsement or recommendation by
the EPA for use.

The Scout 2008 software was developed by Lockheed-Martin under a contract with the
USEPA. Use of any portion of Scout 2008 that does not comply with the Scout 2008
User Guide is not recommended.

Scout 2008 contains embedded licensed software. Any modification of the Scout 2008
source code may violate the embedded licensed software agreements and is expressly
forbidden.

The Scout 2008 software provided by the USEPA was scanned with McAfee VirusScan
and is certified free of viruses.

With respect to the Scout 2008 distributed software and documentation, neither the
USEPA, nor any of their employees, assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed. Furthermore, the Scout 2008 software and documentation are supplied “as-
is” without guarantee or warranty, expressed or implied, including without limitation, any
warranty of merchantability or fitness for a specific purpose.
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% NDs
ACL
A-D, AD
AM
ANOVA
AOC

B*

BC

BCA

BD

BDL
BTV
BW
CERCLA

CL
CLT
CMLE
COPC
CvV
D-D
DA

DL
DL/2 (t)

DL/2 Estimates

DQO

DS
EA
EDF

EM
EPA
EPC
FP-ROS (Land)

Acronyms and Abbreviations

Percentage of Non-detect observations
alternative concentration limit

Anderson-Darling test
arithmetic mean
Analysis of Variance

area(s) of concern
Between groups matrix

Box-Cox-type transformation
bias-corrected accelerated bootstrap method
break down point

below detection limit

background threshold value

Black and White (for printing)

Comprehensive Environmental Response, Compensation, and
Liability Act

compliance limit, confidence limits, control limits
central limit theorem

Cohen’s maximum likelihood estimate
contaminant(s) of potential concern

Coefficient of Variation, cross validation
distance-distance

discriminant analysis
detection limit

UCL based upon DL/2 method using Student’s t-distribution
cutoff value

estimates based upon data set with non-detects replaced by half
of the respective detection limits

data quality objective
discriminant scores

exposure area
empirical distribution function
expectation maximization
Environmental Protection Agency

exposure point concentration

UCL based upon fully parametric ROS method using Land’s H-
statistic
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Gamma ROS (Approx.)
Gamma ROS (BCA)

GOF, G.OF.

H-UCL
HBK

HUBER
D

IQR

K

KG
KM (%)

KM (Chebyshev)
KM (t)
KM (z)

K-M, KM

K-S, KS

LMS

LN

Log-ROS Estimates

LPS
MAD

Maximum
MC

MCD
MCL

MD
Mean
Median
Minimum
MLE
MLE (t)

UCL based upon Gamma ROS method using the bias-corrected
accelerated bootstrap method

UCL based upon Gamma ROS method using the gamma
approximate-UCL method

goodness-of-fit
UCL based upon Land’s H-statistic

Hawkins Bradu Kaas
Huber estimation method
1dentification code

interquartile range
Next K, Other K, Future K

Kettenring Gnanadesikan

UCL based upon Kaplan-Meier estimates using the percentile
bootstrap method

UCL based upon Kaplan-Meier estimates using the Chebyshev
inequality

UCL based upon Kaplan-Meier estimates using the Student’s t-
distribution cutoff value

UCL based upon Kaplan-Meier estimates using standard normal
distribution cutoff value

Kaplan-Meier
Kolmogorov-Smirnov
least median squares

lognormal distribution

estimates based upon data set with extrapolated non-detect
values obtained using robust ROS method

least percentile squares

Median Absolute Deviation
Maximum value

minimization criterion

minimum covariance determinant
maximum concentration limit
Mahalanobis distance

classical average value

Median value

Minimum value

maximum likelithood estimate

UCL based upon maximum likelihood estimates using Student’s
t-distribution cutoff value



MLE (Tiku)

Multi Q-Q
MVT
MVUE
ND
NERL
NumNDs
NumObs
OKG
OLS

ORD

PCA
PCs

PCS
PLs
PRG
PROP
Q-Q
RBC

RCRA
ROS

RU

S
SD, Sd, sd
SLs

SSL
S-W, SW
TLs

UCL

UCL95, 95% UCL

UPL

UPL9S, 95% UPL

USEPA
UTL

Variance
W*

UCL based upon maximum likelihood estimates using the
Tiku’s method

multiple quantile-quantile plot
multivariate trimming

minimum variance unbiased estimate
non-detect or non-detects

National Exposure Research Laboratory
Number of Non-detects

Number of Observations

Orthogonalized Kettenring Gnanadesikan
ordinary least squares

Office of Research and Development
principal component analysis

principal components
principal component scores
prediction limits

preliminary remediation goals
proposed estimation method

quantile-quantile

risk-based cleanup
Resource Conservation and Recovery Act

regression on order statistics

remediation unit
substantial difference
standard deviation

simultaneous limits
soil screening levels
Shapiro-Wilk
tolerance limits

upper confidence limit
95% upper confidence limit

upper prediction limit

95% upper prediction limit

United States Environmental Protection Agency
upper tolerance limit

classical variance

Within groups matrix
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WiB matrix
WMW
WRS

WSR
Wsum
Wsum?2

Inverse of W* cross-product B* matrix
Wilcoxon-Mann-Whitney

Wilcoxon Rank Sum

Wilcoxon Signed Rank

Sum of weights

Sum of squared weights
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Chapter 10
Multivariate EDA

The Multivariate Exploratory Data Analysis (EDA) module of Scout performs principal
component analysis (PCA) and discriminant analysis (DA). The data should have a minimum of
two variables. In order to perform a DA, a group variable (column) should be included in the
data set. The values (alphanumeric) of the group variable represent the various group categories.

10.1 Principal Component Analysis

Principal component analysis is one of the well recognized data dimension reduction techniques.
While the first few high variance principal components (PCs) represent most of the systematic
variation in the data, the last few low variance PCs provide useful information about the random
variation that might be present in the experimental results. Graphical displays of the first few
PCs are routinely used as unsupervised pattern recognition and classification techniques. The
normal probability Q-Q plots and scatter plots of the PCs are also used for the detection of
multivariate outliers.

Since the MLE of the dispersion matrix and the correlation matrix get distorted by outliers, the
classical PCs (obtained using the covariance or correlation matrix) also get distorted by outliers.
The robust PCs give more precise estimates of the systematic and random variation in the data by
assigning reduced weights to the outlying observations.

Let p= (p1 sDosees P p) represent the matrix of eigen vectors corresponding to the eigen values

(A1, A2, ..., Ap) of the sample dispersion (correlation) matrix (classical or robust). The eigen
vector, p;, corresponds to the largest eigen value, A, ..., and the eigen vector, p,, corresponds to
the smallest eigen value, A,. The equation, y = px, represents the p principal components, with

¥y, = p'.x representing the i"™ principal component.

Q-Q plots of the principal components are sometimes used to reveal suspect observations and
also to provide checks on the normality assumption. Scatter plots of the first few high-variance
PCs reveal outliers which may inappropriately inflate the variances and covariances. Plots of the
last few low-variance PCs typically identify observations that violate the correlation structure
imposed by the main stream of the data, but that are not necessarily outlying with respect to any
of the individual variables.

Scout can compute the PCs for both the classical dispersion (correlation) matrix and the robust
dispersion (correlation) matrix. The iterative or robust procedures available in Scout are: the
sequential classical, PROP, Huber, MVT, and MCD procedures.

Few rules have been incorporated into Scout for the ease of graphing in the Multivariate EDA
module.
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e A rule, called the proportion rule, exists where only the scores and loadings
corresponding to the proportion of eigen values greater than 0.0001 will be plotted.

e Ifany of the final matrix used to compute the eigen values and the loadings are singular,
then the graphing is based on the proportions rule.

e [Ifthe any of the eigen values of the final matrix is less than 102 or greater than 10™°

then those loadings and the scores based on those eigen values will not be plotted.

e [fthe classical initial matrix used for generating the scores in any of the robust method is
singular, then a message will be displayed and further calculations will be stopped.

e Ifthe standard deviation of any of the scores is less than 10”7 or greater 10”7, then
contours will not be plotted on their respective scatter plots.

e Ifthe coefficient variation of any of the scores is less than 107 or greater 10”7, then
contours will not be plotted on their respective scatter plots.

e If the absolute value of the correlation between the two variables used in scatter plots is
greater than 0.99, then the contours will not be plotted.

e [f the absolute difference between the standard deviations of the two variables used in the
scatter plot is less than 102°, then contours will not be plotted.

10.1.1 Classical Principal Component Analysis

1. Click on Multivariate EDA » PCA » Classical.

¥ Scout 4.0 - [D:\Marain'Scout_For_ WindowsiScoutSource\WorkDatinExce MasonsAENGIMET 4]
ol File Edit Configure Data Graphs  StatsfGOF  Outliers/Estimates  Regression BuMag=(= 0208 GeoStats  Programs  ‘Window Help

T T T E————

Mavigation Fanel \

| Name J‘ | Count | Kook I T i | Discriminant Analysis (Da)  » Robust ¥
g = e 1 add REE] 179 T FO7 I
2. The “Select Variables” screen (Section 3.4) will appear.

e Click on the “Options” button for the options window.
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[® Classical PC Options

kdatrin To Uze

" Print Scores

" Covarance

' Comelation

Print to Output
* Mo Scores

Scores Storage

* Mo Storage

" Same Worksheet

" MNew Worksheet

k. Cancel

A

o Specify the storage of principal component scores. No scores will be
stored when “No Storage” is selected. Scores will be stored in the
data worksheet starting from the first available empty column when
the “Same Worksheet” is selected. Scores will be stored in a new
worksheet if the “New Worksheet” is selected. The default is “No
Storage.”

o Specify the printing of scores in the output in the “Print to Output”
option. The default is “No Scores.”

o Specify the “Matrix To Use” to compute the principal components.
The default is “Correlation.”

o Click “OK” to continue or “Cancel” to cancel the options.

e Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

(™ Classical PC Graphics Options @

Select Graphics

¥ Scree Plat

W Harm Plot

W Load Matrix Plat

W PCA Scatter Plot

W 00 of PCAz

Title for Scree Plat:

Select Contour for %Y Scatter Plot

" Mo Contaur

Scree Plot of Eigen Walues

Title far Horn Flat:

" Individual [MD]

Huorn Plat of Classical PCs

Title for Load Matrix Flot

f* Individual/Simultanecus

Load Matrix Plat - Clagsical

Title for Scatter Plat:

{« Beta

Cutaff for Contour Lines

Scatter Plot of Classical PCs

Title for Q-0 Plat:

Critical Alpha

0.05

-0 Plot of Clazsical PC Scores

|

™ Simultaneous [MD M ax]

MDs Distribution
" Chisquare

Cancel
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The “Scree Plot” provides a scree plot of the eigen values.

The “Horn Plot” provides a comparison of the computed eigen values
to the multi-normal generated eigen values.

The “Load Matrix Plot” provides the scatter plot of the columns of
the load matrix.

The “PCA Scatter Plot” provides the scatter plot of the principal
components scores and also the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for the distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

The “Q-Q Plot of PCA” provides the Q-Q plots of the component
scores.

Click on “OK” to continue or “Cancel” to cancel the graphics options.

e Click on “OK” to continue or “Cancel” to cancel the PCA computations.

Output example: The data set “BUSHFIRE.xls” was used for the classical PCA. It has 38
observations and five groups. The initial estimate of scale matrix was the classical covariance
matrix. The classical correlation matrix was obtained from this covariance matrix and the
principal components (eigen values) and the principal component loadings (a matrix of eigen
vectors) were obtained from the correlation matrix.
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Output for the Classical Principal Component Analysis.

Data Set used: Bushfire.

Date Time of Computation
IJzer Selected Options
From File

Full Precision

Dizplay Scores Option

PC Scores Storage

b atrin |zed to Compute PCz
Graphics

Scree Plat Title

Graphics

Horn Plot Title

Graphics

Load katrix Plat Title
Graphics

=7 Scatter Plot Title
Corkour

Graphics

Scorez Plot Title

Principal Components Analysizs uzsing the Classical Method

1/29/2008 10:40:15 Ak

D:\MarainhScout_For_wWindowshS coutS ourcetwork D atlnExcel»BuzhFire

OFF

Do not Digplay PC Scores in Dutput
Do Mat Store Scores to Work sheet
Correlation

Scree Plot Selected

Scree Plot of Eigen Yalues

Horn Plot Selected

Horn Flot of Clazsical PCs

Load M atrix Plot Selected

Load katrix Plat - Clazsical

#r' Scatter Plot Selected

Scatter Plat of Clazzical PCs

Mo Contour Lines will be Dizplayed
Scores Plot Selected

[1-0 Plot of Clazsical PC Scores

Summary Statistics

Mumber of Observations 38

Mumnber of Selected ¥ ariables &

Caze 1
103.6

Caze 1
2015

Mean
Caze 2 Caze 3 Caze 4 Caze
1291 2886 2279 2866

Standard Deviaton
Caze 2 Caze 3 Caze 4 Caze
Kia] 177.2 64.06 5217
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Output for the Classical Principal Component Analysis (continued).

Determinant 1.195E+12
Laog of Determinant. 27.81

Eigenvalues of Classical Covariance 5 Matmx
Evwal 1 Ewal 2 Ewal 3 Evwal 4 Ewal &
1.825 4818 MLE 1035 38435
Sum of Eigenvaluss 39862

Classical Comrelation B Matrx

Caze 1 Case 2 Casze 3 Casze 4 Caze

Caze 1 1 0.802 -0.585

Caze 2 0.a0z2 1 -0.525 -0.528 -0.516
Caze 3 -0.585 0525 1 0.974 0.976
Caze 4 -0.528 0974 1 0.339
Case b 0516 0976 0.933 1

Determinant £.8489E-6

Eigenvalues of Clazsical Correlation R Matm
Ewal1 Ewal 2 Ewal 3 Ewald4 Ewal 5
5.5901E-4 0.0155 0213 0479 3792

Sumn of Eigenvalues I3

Summary T able [Eigenvalues)

Eigen Walue Difference  Proportion  Cumulative

PC1 3732 2813 0.758 75.84
pC2 0.979 0.7EE 0136 95.42
PC3 0213 0133 0.0426 3965
PC4 00155 0.0149 0.003 9599

PC5  553ME-4  MAA 1.1180E-4 100

PC Loadings [EigenYectors]

PC1 pC2 PC3 PC4 FCH
Casze 1 -0.383 0.536 0.663 -0.226 0.00614
Case 2 -0.283 0.591 -0.692 0189 -0.01E5
Case 3 0.43 0.267 0227 -0.798 -0.0115
Caze 4 0.434 033 0119 0333 -0.704
Case s 0.432 034 0.0327 0.373 0.71

Note: If the proportion of a principal component is less than 0.01, then that principal component will not be used
in the graphing of the load matrix plot, scatter plot of the scores and the Q-Q plots of the scores.
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Output for the Classical Principal Component Analysis (continued).

8 Scout 2008 - [PC_Scores]

Bl File Edit Configure Data

MNavigation Panel l

DoiMarainiScout_Fo...
PCA_Out.ost
PCA_Scree.gst
PCA_Horn.gst
PCA_Load.gst
PCA_Scatter.gst
PCA_ScoresQQ.gst
PCA_Out_a.ost
PCA_Scree_a.gst
PCA_Horn_a.gst
PCA_Load_a.gst
PCA_Scatter_a.gst
PCA_ScoresQ0_a....

Graphs  Stats)GOF  Outliers/Estimates Regression  Multivariate EDA  GenSt:

MNarme

(== RN RS RS

10
1
12
13
14

0 1 2 3 4

PC5_1 PC5_2 PC5_3 PCS_4 FCE5
3634253050 1183934961 3583863293 3115253352

| 367875374 7682516768 50852207 04 720375067 31827 732046
473582489011 91585734 1730445233 1645349206 730233401 4
3718773500 33446431 200366896205 7158862651 3610648320
3667370154 1030309727 26754736101 310566971 3001243610
318630852 4350210349 3977055038 3573009521 1359302676
1286201157 2802007026 3877255474 396353753831 57652000
a764973363 3531928836 234281 3507 3033534706 5717383701
FO74596333 1034340558 3542546747 3501 372485 2651541661
F291709281 21147332256 | 567105977 700093651 53825773225
13104183376 3020343705 1262500154 1514758675 236231 4650
31573477931 094188872 3593713170 3071389350 2486421597
028761554 2385505324704031 70703910984267 1902177815
5851954396 1022183602 1937934551 2756758764 3062712282

&

Note: The scores storage in the “New Worksheet” option was chosen in the “Classical PC Options” window. This
resulted in a new worksheet named PC_Scores being generated and the principal component scores being stored in
that worksheet. Those scores are available to the user for further computations. The score storage option of PCA

remains the same for all of the other PCA procedures incorporated in the principal component module of Scout.

Output for the Classical Principal Component Analysis.

Eigen Values
S s e o
2 & & &
3 8 8 B

=
&

120

Scree Plot of Eigen Values

3
Principal Component Number
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Output for the Classical Principal Component Analysis (continued).
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Output for the Classical Principal Component Analysis (continued).

Observations outside of the simultaneous ellipse (tolerance ellipsoid) are considered to be anomalous. Observations
between the individual (prediction ellipsoid — inner ellipse) and the simultaneous (tolerance ellipsoid — outer ellipse)
ellipses may also represent outliers.

! 04
Quantiles
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Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of
the components scores and the selected variables, and the Q-Q plots of the component scores, as explained in
Chapter 2.

10.1.2 Iterative and Robust Principal Component Analysis

1. Click on Multivariate EDA » PCA » Robust®» Sequential Classical, Huber, MVT
or PROP.

= Scout 4.0 - [D:¥Narain¥Scout_For_ Windows¥ScoutSourceMWorkDatInExce ABRADU]

ol File Edit Configure Data Graphs StatsfGOF  Outliers/Estimates Regression N4 808 GeoStaks  Programs  Window  Help
Mavigation Panel I 0 1 A 3 Classical ER=9
TE J h Court 7 I 2 : Discriminarut analysis (FJR) 3 F!.:-tnust 4 -:al
D:AMaraimScout_Fo... 14 i 37 101 s 283 Her
3 2 101 35 208 2849 s
3 3 10.3 10,7 20.2 k1l MCD
A 1 95 39 215 ki
2. The “Select Variables” screen (Section 3.4) will appear.

e (lick on the “Options” button for the options window.

™ Robust Proposed [PROP) PC Options

katris T ze Select |nitial E stimates Select Hurmber af [terations
" Covan . 10
OvANAnce " Classical |
{+ Comelation [Max = 50]

" Sequential Clazzical

Cutkaff far Outliers

Print to Output ¢ Fiobust [Median, MAD] 3

& NoScores Critic:al Alpha
f+ OKG [Maronna Zamar | 0.05

" Print Scores

" EG [Mot Orthogonalized) _
Influence Function Alpha

Scores Storage " MCD Influence Function
* Mo Storage | 0.05
™ Same Workshest MDg Distribution Alpha
* Beta " Chisquare
7 Mew Worksheet ok | Cancel

A

o Specify the storage of principal component scores. No scores will be
stored when “No Storage” is selected. Scores will be stored in the
data worksheet starting from the first available empty column when
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the “Same Worksheet” is selected. Scores will be stored in a new
worksheet if the “New Worksheet” is selected. The default is “No
Storage.”

Specify the printing of scores in the output in the “Print to Output”
option. The default is “No Scores.”

Specify the “Matrix To Use” to compute the principal components.
The default is “Correlation.”

Specify the initial estimates. The default is “OKG (Maronna
Zamar).”

Specify the distribution for MDs. The default is “Beta.”

Specify the number of iterations. The default is “10.”

Specify the cutoff for the outliers and the influence function alpha (or
trim percentage for MVT). The defaults are “0.05” and “0.05 (0.1 for
MVT).”

Click “OK” to continue or “Cancel” to cancel the options.

e Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

™ Robust Classical PC Graphics Options

Select Graphicz

[ Scree Plat

[ Hom Plat

[ Load Matrix Plat

v PCA Scatter Plat

[~ 0-0 of PCs

Select Contour for 3y Scatter Plot
" Ma Contor

" Individual [MD]

" Simultaneous [MD Max)]

*  |ndividual/Simultaneous

MDD Distribution
{+ Beta " Chisquare

Title for Scatter Plat: Cutaff for Contour/Elipsoids
| Scatter Plot of Sequential Classical PCs Critical Alpha
0.05

ok, Cancel

A
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o The “Scree Plot” provides a scree plot of the eigen values.

o The “Horn Plot” provides a comparison of the computed eigen values
to the multi-normal generated eigen values.

o The “Load Matrix Plot” provides the scatter plot of the columns of
the load matrix.

o The “PCA Scatter Plot” provides the scatter plot of the principal
components scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for the distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o The “Q-Q Plot of PCA” provides the Q-Q plots of the component
scores.

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

e Click on “OK” to continue or “Cancel” to cancel the robust PCA computations.

10.1.2.1  Sequential Classical PCA

Output example: The data set “BUSHFIRE.xIs” was used for the sequential classical PCA. It
has 38 observations and five groups. The initial estimate of scale matrix was the classical
covariance matrix. The outliers were found iteratively and the observations were given weights
accordingly. The weighted covariance matrix was calculated. The correlation matrix was
obtained from this weighted covariance matrix and the principal components (eigen values) and
the principal component loadings (a matrix of eigen vectors) were obtained from the correlation
matrix.
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Output for the Iterative Sequential Classical Principal Component Analysis.

Data Set used: Bushfire.

{ Robust Principal Components Analysis using the Classical lterative Method

Date/Time of Computation
Uzer Selected Options

Fram File

Full Precision

Dizplay Scores Option

PC Scores Storage

Matrix Uzed to Compute PCz
Critical Alpha to Determine Dutliers
Imitial Estimates

Mumber of Iterations
Graphics

o Geatter Plat Title

Cortour

Summary Statistics

1/23/200811:33.72 AM

DM arainhScout_For_Windows'S coutS ourcetwork D atinE scel\BushFire
OFF

Do not Display PC Scores in Dutput

Do Mot Store Scores to Worksheet

Carrelation

0.05

Robuzt OKG [Maronna Zamar) b atnix

10

X1 Scatter Plot Selected

Scatter Plot of Sequential Classical FCs

Contour Elipses drawn at Individual Beta MD[0.05) and at Max MD(0.05]

Murnber of Observations 38

Mumber of Selected Variables 5

Mean

Caze 1 Caze 2 Caze 3
1036 1231 2B8E

Case 4 Case 5
2279 Z2BER

Standard Deviation

Caze 1 Caze 2 Caze 3
2015 cia] 177.2

Caze 4 Caze b
£4.06 5217

Classical Covariance 5 Matm

Caze 1 Caze 2 Caze 3
4081 BER 4 2091
BEG.4 1225 -3258
209 3258 31405
B38BT 1184 11060
B15E Q425 3021

Caze 4 Caze s

-B38.7 5166

1154 9425
11060 021
4103 3340
3340 2722

Deterrninant 1.135E+12

Log of Determinant

278
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Output for the Sequential Classical Principal Component Analysis (continued).

Initial Robust OKG [M aronna Zamar] Covariance 5 M atmx
Caze 1 Caze 2 Caze 3 Caze 4 Caze b

427 B52.6 1014 3446 177.4
B52.E 1826 3306 B02.7 555
1014 3306 20637 3455 3206

3446 B02.7 2455 15597 857k
177.4 585.5 3206 8576 7387

Determinant 5.282E+14
Log of Determinant 34.07

3envaluesz of Initial B obust OK.G [Maronna Zamar] Covariance 5 Ma
Caze 1 Caze 2 Caze 3 Caze 4 Caze b
104.6 1776 954 1581 22405

Initial Comrelation B M atm:
Caze 1 Caze 2 Caze 3 Caze 4 Caze b

1 0.733 0342 0417 0316
0739 1 0539 0.47 0.505
0342 0.533 1 0.602 0.823
0417 0.47 0.e02 1 0,791

0316 0.505 0.823 0791 1
Determinant 00332

Eigen¥alues of Comrelation B M atro
Caze Caze 2 Caze 3 Cazed Cazef
0111 0216 0425 1.012 3236

Final MeanYector
Caze 1 Caze 2 Caze 3 Caze 4 Cazeh
107.5 141.9 2.7 201.4 2ER.3

Final Covanance 5 Matro

Caze 1 Caze 2 Caze 3 Caze 4 Cazeh

3378 N5 -961 -140.2 -115.4
3151 5108 134 4109 346
-961 324 16183 4712 2922
-140.2 4109 4112 1529 1271
-115.4 346 2922 1271 10E0

Determinant 2.033E+10
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Output for the Sequential Classical Principal Component Analysis (continued).

Final Correlation B M atrix
Caze 1 Caze 2 Caze 3 Caze 4 Cazeh

1 0.753 -0.411 -0.195 -0.133
0759 1 0.248 0.465 0.47
-0.411 0.245 1 0.347 0.347
-0.1595 0.4E5 0.947 1 0.934

0153 0.47 0.347 0.333 1

Determinant 4.5043E-6

Eigenvalues for Final Comrelation B M abmt
Caze Caze 2 Caze 3 Caze 4 Cazeh
000153 0.015E 0.0334 1.779 317

Summary T able [Eigen ¥ aluesz]

Eigen*alue Difference  Propaortion  Curnulative

PC a7 1.3 0.634 B34

FC2 1.779 1.74E 0.356 9299
PC3 0.0334 0.0178 000663 99.66
FC4 0.0156 0014 0.00311 93.97

PCE 000153 MAA 3.0684E-4 100

Load M atnix [Eigen¥Yectors]
FC1 PCZ2 FC3 PC4 FCh
Caze 1 011 073z 014 0.653 -0.0691
Caze 2 0.265 0.653 -0.0B08 -0.698 0.07a6
Caze 3 0.54 0175 -0.816 011 -0.00554
Caze 4 056 -FETFTE-4 0.4 0.253 0.E3
Cazeld 0.56 000216 0333 00339 0,725
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Output for the Sequential Classical Principal Component Analysis (continued).

Scatter Plot of Sequential Classical PCs
49

14

34

24

04

PC2

06

26

<36

48
&5

PC1

Observations outside the tolerance ellipse are considered to be anomalous. Observations between the prediction and
the tolerance ellipses are observations with reduced (but > 0) weights. Those observations may represent potential
outliers needing further investigation.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of
components scores and selected variables, and Q-Q plots of the component scores, as explained in Chapter 2.

10.1.2.2 Huber PCA

Output example: The data set “BUSHFIRE.xls” was used for the Huber PCA. It has 38
observations and five groups. The initial estimate of scale matrix was the classical covariance
matrix. The outliers were found iteratively using the Huber influence function and the
observations were given weights accordingly. The weighted covariance matrix was calculated.
The correlation matrix was obtained from this weighted covariance matrix and the principal
components (eigen values) and the principal component loadings (a matrix of eigen vectors)
were obtained from the correlation matrix.
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Output for the Principal Component Analysis Based Upon the Huber Influence Function.

Data Set used: Bushfire.

D ate/Time of Computation
User Selected Options
Fram File

Full Precision

Dizplay Scares Option

PC Scores Storage

tatrix Uzed to Compute PCs
Distributional 5 quared MD 2
Influence Function Alpha
Initial Estimates

Murnber of Iterations
Graphics

HY Scatter Plat Tithe

Contaur

: Robust Principal Components Analpsiz uzing the Huber Influence Funcion
1/29/2008 11:48:33 AM

DrAMaraint Scout_For_WwindowshScoutS ourcedwiorkD atinE =celsBushFire
OFF

Do nat Dizplay PC Scaores in Output

Do Mot Stare Scores to Worksheet

Carrelation

Beta Distribution

0.0s

Fobust OKG [Maronna Zamar] Matrix

10

¥ Scatter Plot Selected

Sizatter Plat of Huber PCs

Contour Elipzes drawn at Individual Beta MD[0.05) and at b ax MDI0.05]

Summary Statistics
Mumber of Obzervations 38
Mumber of Selected Yariables 5

Mean
Caze 1 Caze 2 Casze 3 Caze d Caze
1036 1231 288.6 2279 2866

Standard D eviation
Caze Casze 2 Casze 3 Casze 4 Caze
2015 ] 177.2 E4.05 5217

Classical Covariance 5 Matix
Caze Caze 2 Caze 3 Caze 4 Caze

406.1 965.4 -2091 6387 -515.6
5664 1225 -3258 1184 9425
-2091 -3258 31405 11060 3021
-B38.7 1184 11060 4103 3340
-516.6 9425 3021 3340 2722

Determinant 1.195E+12
Lag of Determinant.  27.81
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Output for the Principal Component Analysis Based Upon the Huber Influence Function (continued).

Initial Robust OKG [MaronnaZamar] Covaniance 5 Mot
Caze 1 Caze 2 Caze 3 Caze 4 Caze 5

427 E526 1014 3446 1774
E52.E 1826 3306 B027 585.5
1014 3306 20637 3455 3208

3446 B02.7 3455 15397 8576
177.4 585.5 3208 8576 7357

Determinant 5. 282E+14
Log of Determinant 34.07

nenvalues of Initial Robust OKG [Maronna.Zamar) Covariance 5 Ma
Caze 1 Caze 2 Caze 3 Caze 4 Caze
104.6 1776 954 1581 22405

Initial Correlation B M atnx
Caze 1 Caze 2 Caze 3 Caze 4 Caze

1 0.739 0342 0417 0316
0739 1 0539 0.47 0.505
0342 0.539 1 0.602 0.823
0417 0.47 0602 1 073

0316 0.505 0823 0.7491 1
Determinant 00332

Eigen¥alues of Comelation B M atrix
Caze 1 Caze 2 Caze 3 Caze 4 Cazeh
011 0216 0425 1.012 2236

Final Mean'Yector
Caze 1 Caze 2 Caze 3 Caze 4 Cazeh
103.8 1298 2941 2301 2885

Final Covanance 5 Matrx
Caze 1 Caze 2 Caze 3 Caze 4 Caze 5

4179 5751 -2274 -704.5 -569.9

5751 1232 -3704 -1365 -1032

-2274 -3704 30006 10416 8473
-F04.5 -1365 10416 3808 anes

-BE9.9 1092 a473 3089 2h09
Dreterminant 7. 753E+11
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Output for the Principal Component Analysis Based Upon the Huber Influence Function (continued).

Caze 1 Caze 2

1 0.802

0.20z2 1
-0.642 -0.609
-0.558 -0.E2
-0.557 -0.621

Final Correlation B Matrix

Caze 3

-0.642

-0.609
1
0974
0977

Determinant 5 25238 -6

Caze 4

-0.558

-0.63
0.974
1
[0.933

Cazeh

-0.557

0621
0977
0939
1

Eigenvalues for Final Correlation B M abtm

Caze 1 Case 2
G.0315E-4 0027

Case 3
0.215

Case 4
n.a

Caze b
35972

Summary Table [Eigen¥ alues]

Eigen*alue Difference  Propartion  Cumulative

PC1 2972
PC2 0.8

PC3 0.215
FC4 00127

FCH  E.O315E-4

173

0.535

0.202
0.mz2
I A

0.734
016
0.043

0.00253

1.2163E-4

79.45
9544
93.73
9339
100

Load Matrix [Eigen ¥ectors]

PC1
Caze 1 -0.391
Caze 2 -0.404
Caze 3 043

Case 4 0476
Cazeh 0476

PC2
0E15
0.552
0.2a
0.342
0.35

FC3
0.643
-0.705
-0.263
0.1
0.0242

FC4 PCa
-0.234 0.00221
0185 -0.012
-0.738 -0.026
0337 -0.697
0362 0.71E
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Output for the Principal Component Analysis Based Upon the Huber Influence Function (continued).

Scatter Plot of Huber PCs

PC2

Observations outside of the simultaneous tolerance ellipse are considered to be anomalous. Observations between
the individual prediction ellipsoid and the simultaneous tolerance ellipsoid received reduced weights (< 1) and may
also represent potential outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain the different load matrix plots, scatter plots
of components scores and the variables and the Q-Q plots of the component scores, as explained in Chapter 2.

10.1.2.3 Multivariate Trimming PCA

Output example: The data set “BUSHFIRE.xls” was used for the MVT PCA. It has 38
observations and five groups. The initial estimate of scale matrix was the classical covariance
matrix. The outliers were found iteratively using the trimming percentage and a critical alpha
and the observations were given weights accordingly. The weighted covariance matrix was
calculated. The correlation matrix was obtained from this weighted covariance matrix and the
principal components (eigen values) and the principal component loadings (a matrix of eigen
vectors) were obtained from the correlation matrix.
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Output for the Principal Component Analysis Based Upon the MVT Method.

Data Set used: Bushfire.

Critical Alpha

Caze 1
1036

Caze 1
2015

Caze 1
406.1
5E5.4
2091
6387
5156

Date/Time of Camputation

|Jzer Selected Options

Fran File

Full Precision

Dizplay Scores Option

PC Scores Storage

Matrix Uzed to Compute PCz

Trirrnirng Percentage
to Determing Outliers
Initial Estimates
Hurnber of terations
Graphics

#7 Scatter Plat Title

Cantour

Summary Statistics

Robust Principal Components Analyzsis using the MyT Method
1/29/2008 11:54:03 AM

DM arainhS cout_Faor_twindowshS coutS ourceiworkD ating xeelB ushFire
OFF

Do not Dizplay PC Scores in Qutput

Do Mot Store Scores bo Worksheet

Carrelation

10%

0.05 [planted to be used for verfication of timrming non-outliers
Robust OKG [Maronna Zamar] Hatris

10

7 Scatter Plot Selected

Scatter Plot of MWT PCs

Contour Elipses drawn at Individual Beta MD[0.05] and at Max MD(0.05)

Mumber of Obzeryations 38

Murber of Selected Variable: 5

Mean

Caze 2 Caze 3
129.1 288.6

Caze 4 Case b
2279 2866

Standard Deviation

Caze 2 Caze 3
) 177.2

Caze 4 Case b
G4.06 5217

Claszical Covariance S Matnx

Caze 2 Caze 3

5E5.4 2091
1225 3258
3258 31405
1184 11080
9425 9021
Determinant

Log of Determinatt

Caze 4 Case b

6387 5156
1134 9425
11060 301
03 3340
3340 2722
1.195E+12
273
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Output for the Principal Component Analysis Based Upon the MVT Method (continued).

Initial Robust OKG [MaronnaZamar] Covaniance 5 M amx
Caze 1 Caze 2 Caze 3 Caze 4 Caze b

427 E526 1014 3446 177.4
E52E 1826 3306 B02.7 555
1014 3306 20637 3455 3208

346 B02.7 3485 15397 857k
177.4 585.5 3208 8576 37

Dreterminant 5. 282E+14
Log of Determinant. 34.07

nenvalues of Initial Robust OKG [MaronnaZamar) Covariance 5 Ma
Caze 1 Caze 2 Caze 3 Caze 4 Caze b
104.6 1776 954 1581 22405

Initial Correlation B M atmx
Caze 1 Caze 2 Caze 3 Caze 4 Caze b

1 0.739 0342 0.417 0316
0739 1 0539 0.47 0.505
0342 0.539 1 0.602 0823
0417 0.47 0.e02 1 0.791

0316 0.505 0.823 0.791 1
Determinant. 0.0332

Eigen¥alues of Comrelation B M atrx
Caze 1 Caze 2 Caze 3 Cazed Cazeh
0111 0.21E 0425 1.012 3236

Final MeanYector
Caze 1 Case 2 Caze 3 Caze 4 Cazeh
104.4 1316 0.3 2363 2937

Final Covariance 5 Matr
Caze 1 Caze 2 Caze 3 Caze 4 Caze b

431.9 5871 -2523 7334 -633.8

5871 1245 -42Ek -1582 1272

-2523 -4266 27335 3521 7a0a
-783.4 -1582 3621 3479 230

-539.8 1272 Fa00 2810 2272
Determinant 2. 729E+11
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Output for the Principal Component Analysis Based Upon the MVT Method (continued).

Final Correlation B Matrix
Caze 1 Caze 2 Caze 3 Caze 4 Caze

1 0.8 -0.726 -0.644 -0.646
0.2m 1 -0.722 -0.76 -0.75E
-0.726 0.722 1 0.975 0.973
-0.644 -0.7E 0.975 1 0.339

-0.646 -0.756 0974 0.339 1

Determinant 2. 2922 -6

Eigenvalues for Final Comrelation B M atmx
Caze 1 Caze 2 Caze 3 Cazed Cazeh
E.1EEEE -4 0.0074 0212 [0.BE3 4218

Summary T able [Eigen ¥ aluesz]

Eigen Yalue Difference  Proportion Cumulative

FC 4.218 3655 0.544 84.36
PC2 0.563 0.351 0113 95.61
PC3 0.212 0.204 0.0423 99.84

FC4 0.0074 000673 000148 93.99
PCS  BIBBEE-4  M/A 1.2333E-4 100

Load Matrix [Eigen¥Yectors]

PC1 FC2 PC3 FC4 PCH
Caze 1 -0.4 0675 0.567 -0.244 00152
Caze 2 -0.42E 0.456 -0.75 0.2 0.0075
Caze 3 0.47 0273 -0.323 -0.763 00822

Caze 4 0.463 0.358 n.aw3z2 0.451 -0.BES
Caze b 0.463 0361 00531 0z 0742
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Output for the Principal Component Analysis Based Upon the MVT Methods (continued).

Scatter Plot of MVT PCs

Observations outside of the simultaneous ellipse are considered to be outlying. Observations between the individual
and the simultaneous ellipses receiving reduced weights may also be considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of
components scores and selected variables, and the O-Q plots of the component scores, as explained in Chapter 2.

10.1.2.4 PROP PCA

Output example: The data set “BUSHFIRE.xIs” was used for the PROP PCA. It has 38
observations and five groups. The initial estimate of scale matrix was the classical covariance
matrix. The outliers were found iteratively using the PROP influence function and the
observations were given weights accordingly. The weighted covariance matrix was calculated.
The correlation matrix was obtained from this weighted covariance matrix and the principal
components (eigen values) and the principal component loadings (a matrix of eigen vectors)
were obtained from the correlation matrix.
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Output for the Principal Component Analysis Based Upon the PROP Influence Function.

Data Set used: Bushfire.

Date/Time of Computation
Uger Selected Options
From File

Full Precizion

Display Scores Dptian

PLC Scores Storage

tdatrix zed to Compute PCs
Diztributional Squared MDs
Influznce Function Alpha
Imitial E stimates

Murnber of lterations
Graphics

v Scatter Plot Title

Cotbar

{ Robust Principal Components Analysis using the PROP Influence Function

1/29/20028 12:12:42 PM

D:AMarainsScout_For_Windows'S coutS ourcewiorkD atinE sceBushFire
OFF

Do nat Display PC Scores in Dutput

Do Mot Store Scores to'wWorksheet

Correlation

Beta Distribution

0.05

Robust OKG [Maranna Zamar) M atris

10

#1' Scatter Plot Selected

Scatter Plat of PROP PCs

Contour Elipzes drawn at Individual Beta MD(0.05) and at Max MD(0.05)

Summary Statistics
Murnber of Observations 38
Mumber of Selected Variables 5

Mean
Caze 1 Caze 2 Caze 3 Caze 4 Caze B
1036 1291 2886 2274 Z8E.E

Standard Devistion
Caze 1 Caze 2 Caze 3 Caze 4 Caze B
2015 il 177.2 £4.06 5217

Classical Covaniance S Matmx
Caze 1 Caze 2 Caze 3 Caze 4 Caze B

4061 BEE.4 -2091 6387 B16E6
BED.4 1228 -3268 1184 9425
2091 -3258 1405 11060 3021
6387 1184 11060 4103 3340
B156.6 9425 a021 3340 2722

Determinant 1.135E+12
Log of Deteminant. 27.81
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Output for the Principal Component Analysis Based Upon the PROP Influence Function (continued).

Initial Bobust OKG [M aronna Zamar] Covanance 5 M atmx
Caze 1 Caze 2 Caze 3 Caze 4 Caze b

427 BE2.E 1014 3446 177.4
BB E 1826 3308 g0zy 5855
1014 3306 20837 2455 3206

344E g0zy 3455 1597 2576
177.4 5855 3206 8576 7357

Determinant 6.282E+14
Log of Determinant. 34,07

genvalues of Initial R obust OK.G [MaronnaZamar] Covariance 5 Ma
Caze 1 Caze 2 Caze 3 Caze 4 Caze b
104.6 1776 a54 1581 22405

Initial Comrelation B M atmx
Caze 1 Caze 2 Case 3 Caze 4 Cazeh

1 0.733 0342 0.417 0316
0739 1 0539 0.47 0.505
0342 0.533 1 0,602 0823
0417 0.47 0602 1 079

0316 0,505 0.823 0.7 1
Determinant 00332

Eigen¥alues of Correlation B M atrm
Caze Caze 2 Caze 3 Caze 4 Cazeh
0111 02186 0425 1.M2 3236

Final Mean¥Yector
Caze Caze 2 Caze 3 Caze 4 Cazeh
104.6 1461 27R.2 27T 2782

Final Covariance 5 Matrix
Caze Caze 2 Caze 3 Caze 4 Cazeh

280.4 2138 -1449 -326.5 -2B4.7
2136 187.5 -956.1 -195.2 1636
-1449 -956.1 8Eaa 2136 1695
3265 -195.2 2136 563 4332
-2B4.7 -1B3.E 1695 43392 3454

Determinant 33022620
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Output for the Principal Component Analysis Based Upon the PROP Influence Function (continued).

Final Cormrelation B M atrix
Caze 1 Caze 2 Caze 3 Caze 4 Cazeh

1 0.93 -0.929 -0.822 -0.851

0.93 1 -0.743 -0.601 -0.643
-0.929 -0.743 1 0.966 0.973
-0.822 -0.601 0.96E 1 0.936
-0.851 -0.643 0.973 0.336 1

Deterrminant 3.7134E-7

Eigenvalues for Final Correlation B M abtm
Caze 1 Caze 2 Case 3 Caze 4 Caze b
Q005 000427 0.021 0541 4.4

Summary T able [Eigen¥alues]

Eigen*alue Difference  Propartion  Cumnulative

PC1 4.4Mm 3829 084 22.m
PC2 0.5 0.543 0114 33.44
PC3 0.0221 IRINI] 0.004432 99.94
FC4 0.00427 000271 S.546EE-4 33.97
FCH 0.0M5E Mo J1278E-4 100

Load M atrix [Eigen ¥Yectors]

FC1 PC2 PC3 PC4 FCE
Caze 1 -0.4E 0.33 0.54 0.5 -0.326
Case 2 -0.395 0732 -0.433 0197 016

Caze 3 0.472 01589 -0.505 -0.564 -0.423
Case 4 0.443 0.433 0.354 0.523 -0.455
Caze b 0.457 0.37 0.29 -0.296 0.694
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Output for the Principal Component Analysis Based Upon the PROP Influence Function (continued).

Scatter Plot of PROP PCs

31
28

OteFEnCE Elipsoi

03

02

22

PC2

R

42

52

B2

72

Hg

Observations outside of the simultaneous (tolerance) ellipsoid are considered to be outliers. Observations (if any)
between the individual (prediction ellipsoid) and the simultaneous (tolerance) ellipses received reduced (< 1)
weights and may represent potential intermediate outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of
principal components scores and selected variables, and the Q-Q plots of the component scores, as explained in
Chapter 2.

10.1.2.5 Minimum Covariance Determinant PCA

1. Click on Multivariate EDA » PCA » Robust » MCD.

= Scout 4.0 - [D:¥NarainA\Scout_For_Windows\ScoutSourcesWorkDatInExce RBRADU]

Bl File Edit Configure Data Graphs Stats/GOF  Outliers/Estimates  Regression B GeoStats  Programs  Window  Help
MNavigation Panel l i} 1 2 3 - I a | g
Name J Count y 3.1 w2 .' . Discrin.'lirlnallﬂt Analysis ([.)F\) » : ¥ | Iiqu:n:ntial Classical
D:iMarainiScout_Fo. . 1. e 47 L 12k e .
2 2 101 95 20.5 28.9 T
3 10.3 10.7 20.2 3 PROP
2. The “Select Variables” screen (Section 3.4) will appear.
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e Click on the “Options” button for the options window.

[ Robust MCD PC Options X]

b atrin To Use Scores Storage
" Cowvarance (+ Mo Storage
f+ Cormrelation " Same worksheet
. {
Frint to Output bl s
(* Mo Scaores
" Print Scores Ok Cancel

A

o Specify storage of the principal component scores. The default is “No
Storage.”

o Specify the “Matrix To Use” to compute the principal components.
The default is “Correlation.”

o Click “OK” to continue or “Cancel” to cancel the options.

e (lick on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

™ Robust MCD PC Graphics Options

Select Graphics Select Contour for =7 Scatter Plot
I Secree Plot " Ma Contaur
" Individual [MD1]

r c
™ Ham Plat Simultaneous [MD Max]

* Individual/Sirmulkaneous

D= Distribution

I Load Matrix Plat i+ Beta " Chisquare

Title for Scatter Plat: Cutaff for Contour/E lipsaids
¥ PCa Scatter Plat Scatter Plat of MCD PCs Critical Alpha
0.05

[ 043 of PCs

ag Cancel

v)
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o

The “Scree Plot” provides a scree plot of the eigen values.

The “Horn Plot” provides a comparison of computed eigen values to
the multi-normal generated eigen values.

The “Load Matrix Plot” provides the scatter plot of the columns of
the load matrix.

The “PCA Scatter Plot” provides the scatter plot of the principal
components scores and also the selected variables. The user has the
option of drawing contours on the scatter plot to identify outliers. The
default is “No Contour.” Specify the distribution for distances and
the “Critical Alpha” value for the cutoff to compute the ellipses. The
defaults are “Beta” and “0.05.”

The “Q-Q Plot of PCA” provides the Q-Q plots of the component
scores.

Click on “OK” to continue or “Cancel” to cancel the graphics options.

e Click on “OK” to continue or “Cancel” to cancel the robust PCA computations.

Output example: The data set “BUSHFIRE.xIs” was used for the MCD PCA. It has 38
observations and five groups. The MCD estimate of scale was calculated. The correlation
matrix was obtained from this MCD covariance matrix and the principal components (eigen
values) and the principal component loadings (a matrix of eigen vectors) were obtained from the

correlation matrix.
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Output for the MCD Principal Component Analysis.
Data Set used: Bushfire.

{ Principal Components Analysiz using the MCD Method

Caze 1
1036

Caze 1
2015

Case 1
4081
5ER.4
-2091
-B38.7
156

Caze 1
105.5

Date/Time of Computation

Dizsplay Scores Ophion

|Jzer Selected Options

1/29/2008 12:13:438 PM

Fram File  D:WMarainhScout_For_'wWindows' S coutS ource’\Work D atlnExcel\BuzhFire

Full Precizion |0OFF

Do not Display PC Scores in Output

PC Scores Storage Do Mot Store Scores to Waorksheet

Matriw Uzed to Compute PCe Comrelation

Graphics  #Y Scatter Plat 5elected
¥ Scatter Plat Title  Scatter Plat of MCD PCs
Contour  Contowr Ellipses drawn at Individual Beta MD[0.05) and at Max MD(0.085]

Summary Statistics
Murmber of Observations 38
Murnber of Selected Variables 5

Mean
Caze 2 Caze 3 Caze 4
1291 2886 2279

Standard D eviation
Caze 2 Caze 3 Caze 4
25 1772 E4.08

Covariance 5 M atri
Case 2 Case 3 Case 4
5E5.4 -2091 -B38.7
1225 -3258 1184
-3258 405 11060
1184 11060 403
9425 801 3340
Determinant 1.195E+12
Log of Determinant 27,81

MCD Mean
Caze 2 Caze 3 Caze 4
1469 2744 2175

Caze b
2066

Caze b
217

Case &

-H15.6

9425
9021
3340
2722

Caze b
279
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Output for the MCD Principal Component Analysis (continued).

482

Caze 1
287.9
2228
-1408
-3EB7
-2h8.4

Caze 1

0.936
0.9
-0.205
-0.837

Ewvall
0007

PC1
PC2
PC3
FC4
FCH

Caze 1
Caze 2
Caze 3
Caze 4
Cazeh

MCD Covariance 5 Matrix
Caze 2 Caze 3 Cazed Cazeh
2228 -1408 3BT -2h8.4
1966 936 -191.2 -1E1.E
-93E6 g314 2043 1623
-191.2 2043 5321 4203
-161.6 1623 4203 an
Determinant ¥5211116
Log of Determinant 1814
MCD Cormrelation B M atrix
Caze 2 Caze 3 Cazed Cazeh
0.936 -0.91 -0.805 -0.837
1 0732 -0.588 -0.634
0,732 1 [.96E 0,973
-0.588 [.96E 1 0,935
-0.634 0,973 [0.996 1
D eterminant 8.9753E-7
Eigenvalues for MCD Comrelation B M atm:
Ewal 2 Ewal 3 Evwal 4 Ewal b
0.00735 0.0214 0.E02 4 367
Summary T able [Eigen ¥ aluesz]
Eigen*alue Difference  Propartion  Cumnulative
4367 3.7EE 0.873 87,35
0.E02 058 01z 99,38
00214 0.014 0.00428 99.81
000735 000518 000747 99,96
0.O0217  MAA 43397E-4 100
PC Load Matnx [Eigen Yectors]
PC1 PC2 PC3 PC4
-0.458 0351 0482 [.E5
-0.395 0723 -0.47 -0.305
0472 0176 -0.567 [.E28
0.449 0436 0.37 -0.299
[0.453 [0.365 0293 0.0339

FC5
0m
-0.089
0176
0618
-0.753



Output for the MCD Principal Component Analysis (continued).

Scatter Plot of MCD PCs
31
28

[Freferanez Elip=cid |
.

PC2

Observations outside of the simultaneous (Tolerance) ellipse are considered to be anomalous. Observations (if any)
between the individual and the simultaneous ellipses may represent potential outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix plots, scatter plots of
the components scores and the selected variables, and the Q-Q plots of the component scores, as explained in
Chapter 2.

10.1.3 Kaplan-Meier Principal Component Analysis

Principal component analysis of data with non-detects can be conducted in Scout. The Kaplan-
Meier estimates of the covariance matrix and the correlation matrix is used for this analysis.

1. Click on Multivariate EDA » PCA » With NDs.

Scout 2008 - [D:\Warain\WorkDatInExce\FULLIRIS-nds]
g-l File Edit Configure Data Graphs Stats/GOF  Outliers/Estimates QA/QC  Regression

M GeoStats  Programs  Window  Help

Mavigation Panel l i} 1 2 3 4
Mame | calnt sprlength | zpewidth | prlength k-t ISETTTT .C\nal?fi M(IDA) b.
D:\NarainWvorkDatl... || 1 >1 35 14 ! !
2. The “Select Variables” screen (Section 3.4) will appear.

e Click on the “Options” button for the options window.
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o

e C(Click on th

Kaplan Meier PC Options

tatrix To Use Compute Scares Using
" Covariance [KM)]

%

Detection Limit [Mo Change)
* Carelation [KM)

-

Mormal ROS Estimates
Print to Output

a3

Gamma RO5 Estimates
& Mo Scores

3

i Lognormal ROS Estimates
" Print Scores

-

One Half [1/2) Detection Limit
Scores Storage

(* MNoStorage " Zem

(" Same 'Worksheet

" Mew Warksheet 0K ‘ Cancel ‘

4

Specify storage of the principal component scores. The default is “No
Storage.”

Specify the “Matrix To Use” to compute the principal components.
The default is “Correlation (KM).”

Specify the estimates of the data to compute scores. Default is
“Detection Limit.”

Click “OK” to continue or “Cancel” to cancel the options.

e “Graphics” button for the graphics options window and check all of

the preferred check boxes.

Classical PC on Kaplan Meier Cov/Corr, Matrix Graphics Options
Select Graphics (KM Estimates) Select Contour for 5y Scatter Plot

Title far Scree Plat: ™ Ma Contour
¥ Scree Plot [Scree Plot of Classical PCs Using Kaplan £ Individual [MD]

Title for Harn Plat: ' Simultaneous [MD Max]
v Harn Flot |Herm Plat of Classical PCs Using Kaplan M £ Individual/Simulkaneous

Title for Load Matrix Plot Cutaff for Contour/Elipsoids

IV Load Matrix Plat |Load Matrix Plat - Classical PCs Using Kapl Critical Alpha

Title for Scatter Plat: 0.05
v PC& Scatter Plot |Scatter Plat of Clazsical PCs Using F.aplan

Title for Q-G Flat:
v 0O-0 of PCs |Q-Q Plot of Classical PC Scores Using Kap

ak Cancel
A
o The “Scree Plot” provides a scree plot of the eigen values.
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o

The “Horn Plot” provides a comparison of computed eigen values to
the multi-normal generated eigen values.

The “Load Matrix Plot” provides the scatter plot of the columns of
the load matrix.

The “PCA Scatter Plot” provides the scatter plot of the principal
components scores and also the selected variables. The user has the
option of drawing contours on the scatter plot to identify outliers. The
default is “No Contour.” Specify the distribution for distances and
the “Critical Alpha” value for the cutoff to compute the ellipses. The
defaults are “Beta” and “0.05.”

The “Q-Q Plot of PCA” provides the Q-Q plots of the component
scores.

Click on “OK” to continue or “Cancel” to cancel the graphics options.

e Click on “OK” to continue or “Cancel” to cancel the KM PCA computations.
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Output example: The data set “Fulllris.xls” was used for the KM PCA.
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Date/Time of Computation
Uger Selected Optiong

Fram File

Full Precision

Dizplay Scores Option

PC Scoresz Storage

I atri zed to Compute PCs
Graphics

Load Matrix Plot Title
Graphics

»" Scatter Plat Title
MHaon-Detect Values Displayed Az

Contour

Summary Statistics

Principal Components Analysis using the Claszical Method
10/30/2008 7:43:49 Ak

D:\MaraintworkD atinE xcel\FULLIRIS -nds

OFF

Do nat Display PC Scares in Output

Do Mot Store Scores to Worksheet

Correlation

Load Matrix Plot Selected

Load Matris Flot - Classical PCz Using Faplan Meier Estimates
A" Scatter Plot Selected

Scatter Plot of Clazgical PCz Uszing Kaplan Meier Estimates
Detection Limit (Mo Change ta Qriginal Data)

Contour Elipses drawn at Individual Beta MD[0.05] and at Max MD{0.05)

Mumber of Obzervations 150

Mumber of Selected Vanablas 4

KM Mean
splenath | zp-width | pt-length pt-width
5.845 3037 3754 1.175
KM Varance

splenath | zp-width | pt-length pt-width

0.675 0199 ang 0.604
KM Standard Deviabion

splenath | zp-width | pt-length pt-width

0822 0.446 1.765 0777
KM Covariance 5 Matrix

splenath | zp-width | pt-length pt-width

0.675 -0.0763 1.245 0522

-0.07E3 0193 -0.428 -0.152

1.245 0.428 anq 1.288

0522 0152 1.288 0.604

Determinant  0.00327



Output for the KM Principal Component Analysis (continued).

Ewal

Eigenvalues of Classical Covariance 5 Matm
1 Eval 2 Ewal 3 Eval 4

423 0.244 0.0203 0.0235

Sum of Eigervalues 4,594

Clazsical Correlation B M atrx

sprlength sp-width ptdength ptawidth

sprlenath 1 -0.208 0,858 0.a18
sp-width -0.208 1 -0.543

pt-length 0.858 -0.543 1 0939
pt-width n.e18 0933 1

Determinant 0013
Log of Determinant. -3.345

Eigenvalues of Classzical Comrelation B Matmx

Ewal Eval 2 Ewal 3 Eval 4
2987 0.83 0147 [0.0355
Sum of Eigervalues 4
Summary T able [Eigenvalues]
Eigen*falue Difference  Propartion  Cumnulative
PC1 2.987 2158 0.747 74,68
PC2 0.83 0.E83 0.207 95.43
PC3 0.147 0112 00368 3911
PC4 0.0355 M8 0.oosss 100
PC Loadings [EigenYectors]
PC1 pC2 PC3 PC4
gplength [0.509 0433 -0.631 -0.30
sp-width -0.33 0,894 0,237 0189
pt-length 0.571 0.0187 0078 0817
ph-width 0.552 0118 0629 -0.455
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Output for the KM Principal Component Analysis (continued).

Load Matrix Plot - Classical PCs Using Kaplan Meier Estimates Classical PCs usingKaplan Meier
110 KM Correlation R Matrix Used

n 150
[ !
Graphics MDs. Beta Distribution

090

070

plenaty

g

spelen

74.68%)]

E

2.987, % Variability
e

010
n
@
3
T
g
s -0.30
=) sp-width
m,
E 050
-0
-0.90
1.0
110 090 070 -050 -0.30 010 010 030 0.50 070 0.80 110
PC2 [Eigenvalue = 0.83, % Variability = 20.75%]
Scatter Plot of Classical PCs Using Kaplan Meier Estimates Classical PCs using Kaplan Meier
36 KM Correlation R Matrix Used
5% Tolerance-EHT n 150
P 4
Graphics MDs: Beta Distribution
29
19
R
w
~
(=]
~N
n
z. 08
=
K]
s
>
ﬁ,.—m
[e]
<
(=]
n
®
3
3
g1
@
-
T}
o™
O
o
-21
-31
44
73 53 53 a7 57 BY 73

=33 -23 13 03 o7 17 27 37
PC1 [Eigenvalue = 2,987, % Variability = 74.68%]

Observations outside of the simultaneous (Tolerance) ellipse are considered to be anomalous. Observations (if any)

between the individual and the simultaneous ellipses may represent potential outliers.

Note: The drop-down bars in the graphics toolbar can be used to obtain different load matrix
plots, scatter plots of the components scores and the selected variables, and the Q-0 plots of the

component scores, as explained in Chapter 2.
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10.2 Discriminant Analysis (DA)

Discriminant and classification analyses are multivariate techniques concerned with separating
distinct groups of observations (Johnson and Wichern, 2002) and with allocating new
observations (classification analysis) to previously defined groups (populations). The separation
procedure is rather exploratory. In practice, the investigator has some knowledge about the
nature and the number of groups. The study might be about k known groups (e.g., parts of a
polluted site, type of species, geographic regions of a country). Some of those groups may be
similar in nature and can be merged together.

The objective here is to establish g < k significantly different groups. Let s = min (g-1, p).
Then, s linear (Fisher) discriminant functions (also known as classification rules) can be
computed for those g multivariate p-dimensional groups. Those functions (rules) are then used
in all of the subsequent classifications.

Classification procedures are less exploratory. Discriminant functions (rules) obtained in the
separation procedures are used to assign current and new observations into previously defined
groups. The correct classification of the current observations with known group membership is
the basis for the validity of discriminant functions. Scout outputs the classification, the
misclassification matrices (confusion matrix), and the apparent error rates. The apparent error
rate is the percent of misclassified observations. This number tends to be biased because the data
being classified are the same data used to calculate the classification rules. The validity of the
discriminant rules can be judged by performing cross validation. Several cross validation rules,
including bootstrap cross validation methods, have been incorporated into Scout.

Outliers can distort the discriminant functions and the corresponding scores significantly. This
can result in several misclassifications. Scout incorporates the robust procedures to minimize the
distortion of various estimates and classification rules.

Three commonly used discriminant analysis methods are available in Scout. For Fisher
Discriminant Analysis (FDA), one can also plot the scatter plots of discriminant scores.
Moreover, simultaneous (tolerance) and individual (prediction) ellipsoids can be drawn on the
scatter plots of the discriminant scores. The methods included in Scout are briefly described as
follows. The details of the robustified methods (especially based upon the PROP influence
function) can be found in Singh and Nocerino (1995).

e Fisher Discriminant Analysis

Assignxgtom,i=1,2, ..., g, if:

D (xg =%, 1 =min[ Y [[/(x, - X P Li=12,...g
i=1 i=l1
and the Fisher discriminant score, y;, is given by

y. =I'x i=1,2,...,s

1
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where /; are called the scaled (normalized) eigen vectors and are obtained from the

eigen vectors of the W 'B” matrix and are given by

] =&

i P
e.S

i™ pooled ei

e Linear Discriminant Analysis

Assignxotom,i=1,2, ..., g, if:

d; (x,) = maxd; (x,),d5 (%, ), (x,)]

where the linear discriminant scores, di*(x), are given by
d; (x)=pE " x~ 3 Luilz_llui ]+ In p,

wherei=1,2, ..., g.

¢ Quadratic Discriminant Analysis
Assignxotom,1=1,2, ..., g, if:

df (xo) = max[dP (x,),d5 (x,).....d ¢ (x,)]

. . . . * .
where the linear discriminant scores, d; (x), are given by

d2(x) = =4InfE [~ [(x - 4,)E] (x = 1)] +1In p,

wherei=1,2,...,g.

As mentioned before, cross validation can be used to verify the validity and effectiveness of
discriminant or classification rules. Various cross validation techniques have been provided in
Scout. The user can select any of those techniques and compare their performances.

e Leave One Out (LOO) cross validation, where the classification rules are obtained
using (n — 1) observations (training data or set) and testing is done on the
classification test data with the left out observation. This is the most commonly used
cross validation method employed in statistical software. Details can be found in
Lachenbruch and Mickey (1968).
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e Split cross validation, where the data is split to form two sets: the training set and test
set. The training set is used to compute the classification rules, and the test set is used
to validate those rules.

e M-Fold cross validation, where the data is divided into M equal (roughly) subsets.
For each of the M subsets, combined data for the (M — 1) subsets are used as the
training set and the remaining subset is used as the test set. This process is repeated
M times for each of the M subsets.

e Simple Bootstrap
e Standard Bootstrap
e Bias Adjusted Bootstrap

The details of the bootstrap methods can be found in the referenced provided with the Scout
software package.

Note: The training sets and the test sets used in the various cross validation methods are obtained randomly. This
random selection of the training sets (e.g., in robust methods) may result in some singular matrices needed to obtain
the discriminant rules. Scout provides appropriate error or warning messages whenever such a condition occurs.
Many times, in practice, matrices used to derive discriminant functions (e.g., in robust methods) become singular.
This is especially true when not enough observations are available in each of the groups. When this happens, Scout
gives an error message and further computations are stopped.

Scout also provides an option to classify new observations or unknown observations into existing
groups. There are certain logistical rules that need to be followed when using the classification
of unknown or new observations.

e The first three letters of the group name of the new or unknown observations should
be “UNK” or “unk” only.

e The set of unknown or new observations should be the last subset of observations in a
data set. Otherwise an error message is obtained.

There are a few rules in the DA module of Scout which will not allow the contours to be plotted
on the scatter plots. These rules are:

e Ifthe standard deviation of any of the scores is less than 107 or greater 10™, then
contours will not be plotted on their respective scatter plots.

e Ifthe coefficient variation of any of the scores is less than 107 or greater 10”, then
contours will not be plotted on their respective scatter plots.

e Ifthe absolute value of the correlation between the two variables used in scatter plots is
greater than 0.99, then the contours will not be plotted.
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e [fthe absolute difference between the standard deviations of the two variables used in the

scatter plot is less than 10?°, then contours will not be plotted.

10.2.1 Fisher Discriminant Analysis
10.2.1.1 Classical Fisher DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Fisher DA » Classical.

492

ﬂg Scout 4.0 - [D:\Narain\Scout_For_WindowsiScoutSourcesWorkDatInExce RASHALL]
BS File Edit Configure Data Graphs SkatsGOF  OutliersiEstimates Regression BUBEAREHEA-RER S GeoStats Programs  Window  Help

Mavigation Panel ] 0 1 2 3 PCA P | B | 9
- T T | : Discriminant Analysis (DAY ®|  Fisher DA
Mame ‘ | Site 1D __SampleID_ 5L Ratio Time - - - 7 S e
—— : > 3 : T inear | uber

D:AMarain\Scout_Fo...

| Quadratic D& k) PROP
1 1 2 2 1 11.32 — —— T E
1 1 i 2 1 An 4R 1274 17 4R o

A “Select Variables” screen (Section 3.5) appears.

e Click on the “Options” button for the options window.

5] Options Fisher Classical Discriminant Analysis

Crosz W alidation
[ Leave One Out (LOO])

[ Split

b Fold

Simple/Maive Bootstrap by Data Set
Simple/Maive Bootstrap by Group
Standard Bootstrap by Data Set
Standard Bootstrap by Group

Biaz Adjusted Bootstrap by Data Set

1 1 1 1 71 71 7

Biaz Adjusted Bootstrap by Group

Print to Dutput

+ Mo Scares " Print Scores
Ok Cancel

A

o  Specify the preferred “Cross Validation” methods and their respective
parameters.

o  Specify the “Print to Output.” The default is “No Scores.”



o  Click “OK” to continue or “Cancel” to cancel the options.

e Click on the “Graphics” button for the graphics options window and check all of
the check boxes.

E] OptionsDiscriminantGraphics

Select Graphics Scatter Plat Title:

v Scatter Plat | Scatter Plat of Discriminant Scores

Scree Plot Title:

v Scree Plot
| Scree Plot of Eigen Yalues for Fizher Dby

Cutaff far Graphics Plat Cantar

{
Ciitical dlpha | 0.05 Ha Eontour

% |ndividual [d0cut]
kD= Distribution for Graphics " Simultaneous [d2max]
* Beta £ Chi " Simultaneousndividual

k. Cancel
£

o The “Scree Plot” provides a scree plot of the eigen values.

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also the selected variables. The user has the option
of drawing contours on the scatter plot to identify any outliers. The
default is “No Contour.” Specify the distribution for distances and
the “Critical Alpha” value for the cutoff to compute the ellipses. The
defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.
e Specify the storage of the discriminant scores. No scores will be stored when “No
Storage” is selected. Scores will be stored in the data worksheet starting from the
first available empty column when the “Same Worksheet” is selected. Scores
will be stored in a new worksheet if the “New Worksheet” is selected. The

default is “No Storage.”

e C(Click on “OK” to continue or “Cancel” to cancel the DA computations.
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Output example: The data set “BEETLES.xls” was used for the classical Fisher DA. It has 74
observations and two variables in three groups. The initial estimates of location and scale for
each group were the classical mean and the covariance matrix. The classification rules were
obtained using those estimates. The output shows that one observation was misclassified.

Output for the Classical Fisher Discriminant Analysis.

Data Set: Beetles (2 variables 3 groups).

Idzer Selected Options
Date/Time of Computation
Fram File

Full Precigion

Storage Options

Group Prababilities:
Graphics Options

Contour Optians

Alpha for Graphics
Digtribution of MDs

i Claszical Fizher Linear Discriminant Analpsiz

1/A18/2008 10:22:23 &M

LM arainyScout_For_Windows\ScoutSourcehwork D atinExcel\BEETLES
OFF

Mo Digcriminant Scores will be stored to Worksheet

Equal Priors Azzumed

Both Scree Plat and Scatter Plats are Selected

Contour Elipses drawn uzing Individual MD[0.05]

0.05

Beta Distnbution uzed in Graphics

Total Mumber of Observations 74

Mumber of Selected Variables 2

Mumber of D ata Bows per Group

1 2 3
2 A 22

Mean¥ector for Group 1

#1-1 wz-1
14E.2 141

Covanance S Matnx for Group 1

Mean¥ector for Group 2

w1-1 we-1

A1.66 -0.9659
0989 074

wl-2 He-2
124.6 14.29

Covariance S Matnx for Group 2

wl-2 w2
21.37 0327
0327 1.213
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Output for the Classical Fisher Discriminant Analysis (continued).

MeanYector for Group 3
wl-3 w3
138.3 10.09

Covanance 5 Matrix for Group 3

u1-3 w23
1716 -0.502
-0.502 0.944
Grand MeanVector for Data
x1 w2
134.8 1299

Pooled Covanance Mamx

| e
23.02 0.56
-0.56 1.014

Between Groups Matnx B

u1 w2
E187 -3BE.5
-3BER 263
Within Groups M atro '
x1 w2
1635 -39.73
39,73 2.0
W Inverse B Matrix (wiB)
u1 w2
a7 0137
-3.041 35676

Unordered Eigenvalues of WiB
Ewall Evwal 2
4293 2.994
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Output for the Classical Fisher Discriminant Analysis (continued).

496

Evall
0.0237
-0.973

di
4.293

Azsociated Matrix of Eigen¥ectors of WiB
Eval 2
00235
0932

Ordered EigenYalues of WiB
dz
2994

Mormalized EigenVYectors for Ordered Eigen ¥ aues

Evall
0.0234

Evall
0.0243

Actual
1
2
3

# Coarrect
Prop Comrect 95.24% 100% 100%

Mormalized Eigen¥Yector 1
Ewval 2
-0.963

Mormalized EigenVector 2
Ewval 2
1.M7

Classification Summarny

Predicted Membership
1 2 3
20 1 1]
1] £l
1] 0 22
20 £l 22

Total Observations 74
Correctly Clazzified 73

[nizomectly Classified 1

Mizclaszification Summany

Ohs Ma.

17

Actual Fredicted
1 2
Apparent Errar Rate 00135



Output for the Classical Fisher Discriminant Analysis (continued).

Cross¥Yalidation Results

Leave One Out [LOD] Crosz Yalidation B esuls

LO0 Classification Summary

Predicted Memberzhip
Actual 1 2 K]
1 17 4 0
2 7 23 1
K] 0 1] 22
#t Cormrect 17 23 22
Prop Correct 80,953 T419% 100%

Total Obzervations 74
Cormectly Clazzified 62

|nzomectly Classified 12

LOD Misclassification Summany
Obs Mo Actual Predicted
4
B
10
17
K]
a2
9
40
141
44
47
A1

—_
R

e R S R LY R LY R L B L R S R e

LOO Errar R ate 0162

Split (50/50) Crosz Yalidation R esukts
Error R ate for Training S et: 00245
Error Rate for Test Set: 0.0878
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Output for the Classical Fisher Discriminant Analysis (continued).

3 Fold Cross Yalidation Hezults

Average Error Rate: 0.2158

Simple/N aive Bootstrap [for whole dataset] Cross ¥ alidation Results
Average Ermror B ate from Bootztrap: 000408

Simple/Naive Bootstrap [Groupwize] Crosz W alidabon Besults
Average Ermmor B ate from Bootstrap: 000447

Standard Bootstrap [for whole dataset] Cross Waldabon Results
Error R ate from Bootstrap Training Set 0.0436
Error R ate from Bootstrap Test Set: 00636

Standard Bootstrap [Groupwise] Crozs Validation Results
Error B ate from Bootstrap Traimng Set 0.0377
Error B ate from Bootstrap Test Set: 000570

Biaz Adjusted Bootztrap [for whole dataset] Cross ¥alidation Resukts
Average Comect Training Set 701700
Average Incorrect Training Set 3.8300
Average Comrect Test Set: 635100
Average Incorrect Test Set: 104900
Error R ate Bias: -0.0900
Bias Adjusted Ermor Rate: 01035

Biaz Adjusted Bootztrap [Groupwize] Crozz ¥ alidation Results
Average Comrect Training Set 70,8000
Average Incorrect Traiming Set 32000
Average Comect Test Set: 620600
Average Incorrect Test Set: 11.9400
ErrorRate Bias: -0.1181
Bias Adjusted Error Rate: 01316
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Output for the Classical Fisher Discriminant Analysis (continued).

The color-coded big “+” represents the mean of the respective group, as shown in the above figure. Observations
outside of the simultaneous (Tolerance) ellipse (if specified by the user) of a group category (e.g., #2) are considered
to be anomalous for that particular group.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of discriminant
scores and selected variables, as explained in Chapter 2.
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10.2.1.2 Huber Fisher DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Fisher DA » Huber.

Eg Scout 4.0 - [D:\Narain\Scout_For Windows\ScoutSourceMorkDatInExce AFULLIRIS]

B5 File Edit Corfigure Data Graphs Stats/GOF  Outliers/Estimates Regression MABWEEEELCRa8S GenStats  Programs  Window  Help

Mavigation Panel l ] 1 2 3 PCA Lo | 7 | =& | q
| I I E I | iscriminant Analysis (DA)  * isher D i
| o e Discriminant Analysis {0A) Fisher D& Classical

51 35 14 0z = teearnd o [EEECEEE

| QuadraticDA b PROP

Marme |
D:AMarainyScout Fo...

] 43 3 14 02 o
1 A7 1 17 na
2. A “Select Variables” screen (Section 3.5) appears.

e (lick on the “Options” button for the options window.

5] Options Fisher Huber Discriminant Analysis

Select Initial Estimates MNumber of [terations Influence Function Alpha
™ Classical 'T 005

" Sequential Classical
[Max = 50] Range [0.0-1.0]

-

Fiobust [Median, MAD]

& OKG [Maronna Zamar | Cross Validation
™ Leave One Out [LOO)
" KG [Mot Orthogonalized)

Split
" MCD
M Fold

-
-
MDs Diistribution
™ Simple/Maive Bootstap by D ata Set
¢ Beta 1 Chisquare
™ Simple/Maive Bootstrap by Group
-
m
-
m

FPricit to Dutput Standard Bootstrap by Data Set
* MNaScores
Standard Boatstrap by Group
" Print Scores
Biaz Adjusted Bootstrap by Data Set
K Cancel Bias Adjusted Boatstrap by Group

o  Specify the options to calculate the robust estimates of location and scatter
(scale).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

e (lick on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.
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] OptionsDiscriminantGraphics

Select Graphics Scatter Plot Title:

v Scatter Plot | Scatter Plat of Dizcriminant Scores

Scree Plat Title:
| Screa Plot of Eigen W alues for Fisher Dd,

[v Scree Plot

Cutaff for Graphics Plat Contour

Citical Alpha | 0.05 L ite

o Individual [d0cut]

MO = Distribution for Graphics " Simultaneous [d2max]
{¢ Beta {” Chi " Simultaneousndividual
(] Cancel

A

o  The “Scree Plot” provides a scree plot of the eigen values.

o  The “Scatter Plot” provides the scatter plot of the discriminant analysis
scores and also of the selected variables. The user has the option of
drawing contours on the scatter plot to identify any outliers. The default is
“No Contour.” Specify the distribution for distances and the “Critical
Alpha” value for the cutoff to compute the ellipses. The defaults are
“Beta” and “0.05.”

o  Click on “OK” to continue or “Cancel” to cancel the graphics options.

Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. Scores will be stored in the data worksheet starting from the
first available empty column when the “Same Worksheet” is selected. The
scores will be stored in a new worksheet if the “New Worksheet” is selected.

The default is “No Storage.”

Click on “OK” to continue or “Cancel” to cancel the Huber Fisher DA
computations.

Output example: The data set “IRIS.xIs” was used for the Huber Fisher DA. It has 150
observations and four variables in three groups. The initial estimates of location and scale for
each group were the median vector and the scale matrix obtained from the OKG method. The
outliers were found using the Huber influence function and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using those weighted estimates. The output shows that
three observations were misclassified. The cross validation results suggest the same.
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Output for the Huber Fisher Discriminant Analysis.
Data Set: IRIS (4 variables 3 groups).

i Robust Fisher Linear Dizcriminant Analysis using Huber Influence Function

M urnber

1 2
A0 ]
sple™th-1 - zp-width-1
5006 3.428

sple™th-1 - zp-width-1
0124 0.0932
0.0932 0.144
00164 00117
0.0103 0.0093
1GR Fix!
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IJzer Selected Ophions

Drate/Time of Computation

Fram File

Full Precizion
Influence Funchon Alpha
Squared MD=

Irnitial E stimates

af [terations

Storage Options
Group Probabilities:
Graphicz Optionz
Contour Optionz
Alpha for Graphics
Digtribution of WD =

3
50

11842003 10:54:42 Ak
C:AMarainhScout_For_wWindows'ScoutS ourcehwork D atinE scelsFIULLIRIS
OFF

0.05

Beta Distibution

Robust Median Yector and OKG [Maronna-Zamar] batrix

10

Mo Dizcriminant Scorez will be stored to Workzhest

Equal Friors Agzumed

Both Scree Plot and Scatter Plotz are Selected

Contour Elipzez drawn uzing Individual MO[0.05] snd Max MD[0.05]
0.05

Beta Diztibution used in Graphics

Total Humber of Obzervations 150

Murber af Selected Yarables 4

Mumber of D ata Rows per Group

MeanYector for Group 1

pt-le™th-1
1.462

pt-le™th-1
00164
00117
00302
[0.00s07

pt-width-1
0.24E

Covariance 5 Matrix for Group 1

pt-width-1
0.0103
0.0093
000607
0011



Output for the Huber Fisher Discriminant Analysis (continued).

Final Bobuszt Mean Yector for Group 1
gp-le™th-1 - zpowaidth-1 - ptle™th-1 | ptasidth-
h.008 343 1.463 0245

Final Robuszt Covariance 5 M atrix For Group 1
gp-le™th-1 - zpowaidth-1 - ptle™th-1 | ptasidth-

0123 [0.0965 00162 0.0108

0.0965 0137 00115 0.00989

00162 0.0115 0.02839 000585

00108 000988 000585 0.0105

Mean¥ector for Group 2
gp-le~th-2  szp-width-2  phle™th-2  ptwidth-2
5936 277 428 1.326

Covanance 5 M atnx for Group 2
gp-le~th-2  szp-width-2  phle™th-2  ptwidth-2
[0.2EE [0.0852 0183 [0.0553
0.0852 [0.0935 0.0827 00412
0183 0.0827 0.221 0.0731
[0.0558 00412 0073 0.0391

Final Bobust Mean¥Yector for Group 2
gple™th-2  spowidth-2 | ptle™th-2 | ptasidth-2
hA36 2773 4 261 1.326

Final Robuszst Covariance 5 M atrix for Group 2
gple™th-2  spowidth-2 | ptle™th-2 | ptasidth-2
[.2EE [0.0864 0181 [0.0554
0.0864 [0.0969 0.0834 0.0421
0181 0.0834 0218 0.0727
0.0554 0.0421 00727 0.0391

Mean¥ector for Group 3
gp-le™th-3  zp-width-3 ptle™th-3  ptwidth-3
E£.583 2974 b.5RZ2 2028
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Output for the Huber Fisher Discriminant Analysis (continued).

504

zp-le™th-3
0.404
[0.0933
0303
0.0491

zple~th-3
6578

zple~th-3
0389
0.0318
0287
0.04E9

zp-length
5,843

zp-length
026
0.0915
0162
0.0378

zp-length
E1.68
-19.79

162
70.04

Covariance 5 Matrix for Group 3
gprwnidth-3d | pl-le™th-3  ptwidth-3
00938 0303 00491
0.104 0.0714 0.047E
00714 [0.305 00488
0.047E 0.0483 0.0754

Final Robust Mean¥ector for Group 3
gp-width-3  ptde™th-3  pt-width-3
2.973 h.h42 2.025

Final BRobust Covanance 5 Matrix for Group 3
gp-width-3  ptde™th-3  pt-width-3
00318 0287 0.04E9
0.0937 0.0716 00491
00716 0287 0045
00491 0.04E 00753

Robust Grand Mean Yector for Data
sp-width | phlength  ptsidth
3.057 3.758 1.199

Robust Pooled Covariance Matnx
sp-width | phlength  ptsidth
00315 0162 00378
0111 [0.0857 0.0338
00557 01ve 00417
0.0338 0.0417 00419

Between Groups Matnx B
zpewidth  pl-length pt-width
-19.79 162 70.04
11.26 -BE.89 2284
-BE.89 4305 184.3
2284 184.3 7356



Output for the Huber Fisher Discriminant Analysis (continued).

zp-length

3755
1224
2339
5468

zp-length
2912
-6.357
8332
11.03

Ewal 1
3411

Ewall

-0.188

-0.418
0542
0,705

di
4N

Within Groups M atrn'w
gp-wndth | ptlength | ptsidth
13.24 2339 5 468
16.07 8.047 4.884
a.047 25.79 E.023

4.934 £.023 E.059

W inverse B Matnx [WhiB]
gp-width | phlength pt-width

1.04 -7.755 3315
2437 1715 252
-3.073 2229 9.491
-3.666 231 1253

Unordered Eigenvalues of Wi
Ewal 2 Ewal 3 Ewval 4
028 -408E15 -304E-16

Aszszociated Matrix of Eigen Yectors of Wi
Ewal 2 Ewal 3 Ewal 4
-0.0056 0.E24 -0.479
0539 -0.445 0136
-0.243 -0.478 -0.199
0763 043 0844

Ordered Eigen¥alues of Wb
dz
029

Mormalized EigenYectors for Ordered Eigen 'y aues

Ewal 1
-3.147

Ewal 1
-0.0762

Mormalized Eigen¥Yector 1
Ewal 2 Ewal 3 Ewval 4
-6.981 9.051 11.74

Mormalized EigenYector 2
Ewal 2 Ewal 3 Ewval 4
a.14a 332 10.38
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Output for the Huber Fisher Discriminant Analysis (continued).

506

Claszification Summany

Predicted Membership
Actual 1 2 3
1 B0 1] 1]
2 0 4a
3 0 1 49
# Correct A0 47 43
Frop Corect  100% 95% 933

Tatal Observations 150
Comectly Claszified 147

Incomectly Clazsified 3

Mizclaszification Summany
Obs Mo Actual Fredicted

1 2 3
a4 2 3
124 3 2

Apparent Error Rate

Leave One Out [LO0O] Cross ¥alidation Hezulks

LO0O Classification Summary

Predicted Membership
Actual 1 2 3
1 ] 1] 1]
2 0 43
K] 0 1 43
#t Cormrect A0 43 43
Frop Correct 100% 965 98

Total Obzervations 150
Cormectly Clazsified 147

|nzomectly Clazsified 3

0.0z

Crozs Yalidation Results



Output for the Huber Fisher Discriminant Analysis (continued).

LOO Mizclassification Summany
Obs Mo Actual Predicted

l 2 3
54 2 3
134 3 2

LOO Error Rate 002

Split [50/50] Crosz Walidation B esults
Error Rate for Traiming 5 et: 0.0093
Error Rate for Test Set: 0.0M07

Bias Adjusted B ootztrap [for whole dataset] Cross ¥ alidation Resukts
Walidation F ailed becuase of not enough Non-Outliers in Grouwp 1 mes.
Average Correct Traiming Set 1475556
Average Incomect Training Set 2 4444
Average Comrect TestSet: 1471111
Average Incomect Test Set: 2 5889
Error Rate Biaz: -0.0030
Bias Adjusted Error B ate: 00230
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Output for the Huber Fisher Discriminant Analysis (continued).

On a scatter plot of discriminant scores, it is desirable to use only one ellipsoid (e.g., prediction ellipsoid) for each
group. That will reduce the clutter on a graph.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of discriminant
scores and selected variables, as explained in Chapter 2.

508



10.2.1.3 PROP Fisher DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Fisher DA » PROP.

™ Scout 4.0 - [D:¥arainiScout_For_Windows\ScoutSourceMWorkDatinExce MSHALL . xls]
BL File Edit Configure Data Graphs  Stats/GOF  Oubiers/Estimates Regression NQEGEEGER-R=8r® GeoStats Programs  Window  Help

Mavigation Panel ] o [ 1 2 [ 3 PCA [ | 7 | a [ 9
T=% [ I | 7 | ( Classical
te|D | Sample D | SLFat Time |
MNarme | : il ||Blli 2 g 'D-z- e '-_I-- 1 1059 Lingar DA b Huber =
! | QuadraticDa » i
5 ] 1 2 7 1 11.32 e m———
- 1 1 2 2 1 1N 4R 1774 17 4R
2. A “Select Variables” screen (Section 3.5) appears.

e Click on the “Options” button for the options window.

A Options Fisher PROP Discriminant Analysis

Select Initial Estimates Mumber of [terations Influence Function Alpha
(" Classical ’T 00

" Sequential Classical
[Max = 50] Range [0.0-1.0]

“

Robust [Median, MAD)

(' OKG [Maronna Zamar | Crozs Validation
™ Leave One Out [LOO)]
" KG [Mot Orthogonalized)

[~ Split
" MCD
[~ M Fold
D'z Distribution
[™ Simple/Maive Bootstrap by Data Set
& Beta 1 Chizquare
I™ Simple/Maive Boaotstrap by Group
it to Output ™ Standard B ootstrap by Data Set
+ MNaoScores
I™ Standard B ootstrap by Group
™ Print Scores
I” Bias Adjusted Bootstrap by Data Set
K Cancel ™ Bias Adjusted Bootstrap by Group

o  Specify the options to calculate the robust estimates of location and scatter
(scale).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

e (lick on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.
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= OptionsDiscriminantGraphics

sElu e e Scatter Plot Title:
v Scatter Plot | Scatter Plat of Discriminant 5 cores
W Sores Plat Scree Plot Title:
| Scree Plot of Eigen W alues for Figher DA
Cutaff for Graphics Plot Contour
" Mo Contaur

Critic:al Alpha 0.05
¢ |ndividual [d0cut]

tCre Distribution for Graphics " Simultaneous [d2max]
fe Beta " Chi O Simultaneous/ndividual
(] Cancel

A

o The “Scree Plot” provides a scree plot of the eigen values.

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

e Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

e (lick on “OK” to continue or “Cancel” to cancel the computations.

Output example: The data set “IRIS.xls” was used for the PROP Fisher DA. It has 150
observations and four variables in three groups. The initial estimates of location and scale for
each group were the median vector and the scale matrix obtained from the OKG method. The
outliers were found using the PROP influence function and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using those weighted estimates. The output shows that
three observations were misclassified. The cross validation results suggest the same.
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Output for the PROP Fisher Discriminant Analysis.
Data Set: Iris (4 variables 3 groups).

i Robust Fisher Linear Discriminant Analysiz using PROP Influence Funchon

Ilzer Selected Options
Drate/Time of Computation
Frarm File

Full Precision

[rfluence Function &lpha
Squared MD=

Initial E stirnates

Murmber of [terations
Storage Options

Group Probabilities:
Graphicz Optionz
Contour Options

Alpha for Graphics
Digtribution of MD=

1118/2008 11:53:51 &M

D:4MarainhScout_For_wWindowshScoutSource’\workD atlnE scel\FULLIRIS

OFF
0.05

Beta Diztibution

Robuzt Median Yector and OFEG [Maronna-<amar] b atris

10

Mo Dizcriminant Scarez will be stored ta Woark sheet

Equal Priors Azsumed

Both Scree Plot and Scatter Plot: are Selected
Contour Ellipzes drawn using Individual MD[0.05) znd Ma= MD[0.05]

005

Beta Distibution used in Graphics

Total Mumber of Dbservations 150
Mumber of Selected Vanables 4

Mumber of D ata Bows per Group

1 2 3
50 50 50
Mean¥ector for Group 1
zple™th-1 - zp-width-1 | pt-le™th-1  plvidth-1
5.006 3428 1.462 0246

Covanance S Matrix for Group 1

sple™th-1  sp-width-1 | pt-le™th-1
0124 0.0332 0.0164
n.03sz2 0144 0017
00164 00117 0.0302
o103 00033 000607

IGR Fixl

pt-width-1
0.0103
0.00393
000607
0.1

(Complete results are not shown.)
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Output for the PROP Fisher Discriminant Analysis (continued).

512

Evwal 1

0163

-0.477
0.511
[0.B96

di
39.09

Ewval 1
-3.305

Ewval 1
-0.283

Actual

# Comect

Frop Correct

Obz Mo
a4
134

Aszociated M atrix of Eigen'¥Yectors of Wi
Ewval 2 Ewval 3 Ewval 4

-0.0206 -0.53 -0.322
0.e07 0172 0.454
0.237 0178 0.475

0.758 0.8Mm -0.682

Ordered Eigen¥Yalues of'WiB
dz
0288

Mormalized Eigen Yectors for Ordered Eigen ¥ dues

Mormalized EigenYector 1
Ewval 2 Ewval 3 Ewval 4
-9.675 10.37 1411

Mormalized EigenYector 2
Ewval 2 Ewval 3 Ewval 4
a.358 -3.266 10,45

Claszification Summany

Predicted Memberzhip
1 2 3
50 1] 0
0 49 1
0 1 45
50 49 43
100% 98% 8%

Taotal Observations 150
Corectly Clazzified 148

Incorectly Classified 2

Mizsclazzification Summany

Actual Predicted
2 3
3 2
Apparent Error Rate 0.0133



Output for the PROP Fisher Discriminant Analysis (continued).

CrozsValidation Results

Leave One Out [LOO] Cross Walidation Hesuls

LO0 Claszification Summary

Predicted Memberzhip
Actual 1 2 K]
1 B0 1] 0
2 ] 4a
3 ] 1 49
# Correct a0 4a 43
Prop Correct 1005 955 985

Tatal Observations 150
Cormectly Clazsified 147

Inzarecty Claszified 3

LO0 Misclassification Summany
Ohbs Mo Ahiaal Predicted

1 2 3
24 2 3
134 3 2

LOO Error Rate 0.02

Bias Adjusted Bootstrap [for whole dataset] Crozs Validation Results
WYalidation Failed becuase of not enough Mon-Outliers in Grouwp 1 Bmes.
Average Comect Training 5et 1466667
Average Incorrect Training Set 3.3333
Average Comrect Test Set: 139 5556
Average Incorrect Test Set: 104444
Error Rate Bias: -0.0474
Bias Adjusted Error Bate: 0.0607
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Output for the PROP Fisher Discriminant Analysis (continued).

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.
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10.2.1.4 MVT Fisher DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Fisher DA » MVT.

= Scout 4.0 - [D:\Naraini\Scout_For_Windows\ScoutSourceXWorkDatInExce \BookAHEMOPHILIA]
oL File Edit Configure Data Graphs Stats/GOF  Outliers/Estimates Fegression NuREiE-E-0ae 0 GecStats Frograms  Window  Help

Mavigation Panel l 0 1 . 2 3 PCA L 7 I | | q
| I | gl | lagliu Discriminant Analvsis (DAY # Classical
Marme ] | G_rp_Narne | Giroup L Thetisabl | (& nbinenir T * _| Linear D& ¥ Huber
: MonCarriers 1 01507 0.0933
DevMaraimScout Fo. 22

| uadratic DA » PROP
DMarain'Scout Foo 23 |MonCarriers 1 01259 -0.0669 L _Q—_
24 | MonCariers 1 01881 01232 :

2. A “Select Variables” screen (Section 3.5) appears.

e Click on the “Options” button for the options window.

= Options Fisher MYT Discriminant Analysis

Select Initial Estimates Mumber of |terations Cutoff for Outliers Select Trimming

. Percentaoe
® Dl [ 10 [ oo o

- ) !
Sequential Classical [Max = 50] Critical Alpha Fange (- 0.95)

" Robust [Median, MAD]

% OKG (Maranna Zamar | Crogs Validation
™ Leave One Out [LOO)
" KG [Not Orthogonalized)

[~ Spiit
" MCD
[~ MFald
™ Simple/Maive Bootstrap by Data Set
™ Simple/Maive Bootstrap by Group
Fririt to utput ™ Standard Bootstrap by Data Set
* Mo Scores
™ Standard Bootstrap by Group
" Print Scores
™ Bias Adjusted Bootstrap by Data Set
ok | Cancel | ™ Bias Adjusted Bootstrap by Group

Zi |

o  Specify the options to calculate the robust estimates of location and scatter
(scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

e (lick on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.
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Output example: The data set “Salmon.xls” was used for the MVT Fisher DA. It has 102
variables in two groups. The initial estimates of location and scale for each group were the
median vector and the scale matrix obtained from the OKG method. The outliers were found
using the trimming percentage and critical alpha and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The W'B matrix used for computing the classification rules was singular and the calculations
were stopped.
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] OptionsDiscriminantGraphics

Select Graphics Scatter Plot Title:

v Scatter Plot | Scatter Plat of Dizcriminant Scores

Scree Plat Title:
| Screa Plot of Eigen W alues for Fisher Dd,

[v Scree Plot

Cutaff for Graphics Plat Contour

Citical Alpha | 0.05 L ite

o Individual [d0cut]

MO = Distribution for Graphics " Simultaneous [d2max]
{¢ Beta {” Chi " Simultaneousndividual
(] Cancel

A

o The “Scree Plot” provides a scree plot of the eigen values.

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.

The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

Click on “OK” to continue or “Cancel” to cancel the DA computations.



Output for the MVT Fisher Discriminant Analysis.
Data Set: Salmon (2 variables 2 groups).

i Robust Fizher Linear Dizcriminant Analysis using MYT Method

Ilzer Selected Options
D ate/Time of Computation
From File

Full Precizion
Trimming Percentage
Initial E stimates
MHumber of lterations
Starage Options
Group Probabilities:
Graphics Options
Contour Dptions
Alpha for Graphics
Distribution of MDg

11842008 2:01:48 P
C:AMaraintScout_For_windowshScoutSouwrcetwork D atl nExcel\BookhSALMOM. xls
OFF

10%

Robuzt Median Yector and OEG [Maronna-Lamar) batris
10

Mo Digcriminant Scores will be stored to Worksheet

Equal Priors dzsumed

Both Scree Plot and Scatter Plotz are Selected

Contour Elipzes drawn using Individual kMOD[0.05)

0.05

Beta Distribution used in Graphics

T otal Mumber of Obzervations 100

Mumber of Selected Vanables 2

Humber of D ata Bows per Group

canadian
Al

alaskan
a0

Mean¥Yector for Group alaskan

Fresh™zkan bMarin™zkan
98,38 428.7

Covariance 5 M atrix for Group alaskan

Fresh™zkan bMarin™zkan
2B0.6 -188.1
1881 1399

Final Bobuszt Mean¥ector for Group alaskan

Fresh™zkan Mann™zkan
93,42 429.8

(Complete results are not shown.)

517



Output for the MVT Fisher Discriminant Analysis (continued).

Final Robust M ean ¥ ector for Group canadian
Fresh™dian Marnn™dian

1381 3664

Final Bobuszst Covariance 5 M atrix for Group canadian
Fresh™dian Marn™dian
3003 2247
2247 B10.7

Robust Grand Mean Yector for Data
Freshiwiater  Marine
117.9 3981

Robust Pooled Covanance Matmt
Freshiw/ater  Marine
241.8 0425
0.425 946.5

Between Groups Matrnix B
Freshisfater  Marine
35403 -BEE24
-BEE24 0567

Within Groups M atroc '
Freshiw/ater  Marine
2123 37.38
ICFNC = B = C i v

W Inverse B Matrix [wiB]
Freshisfater  Marine
1.EE5 -2.663
-0.631 1.089

Failed in calculating Eigen ¥ alues - WiB produce S ingular Condiion

Note: When a matrix obtained during the calculations of discriminant scores is singular, an appropriate message is
displayed and the computations are stopped.
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10.2.2 Linear Discriminant Analysis
10.2.2.1 Classical Linear DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Linear DA »
Classical.

™ Scout 4.0 - [D:¥Marain¥Scout_For_ Windows¥ScoutSource\WorkDatinExce BBEETLES]

Bl File Edit Corfigure Data Graphs StaksfGOF  Cutliers/Estimates Regression BUMAdEA-0a8:0 GeoStats Programs  Window  Help
Mavigation Panel I 0 1 2 3 PCA i S ZL__dl 3
I ! | ) | | Discriminant Analysis (DAY # Fisher DA (3 ] |
Name Il Sl =, | el ]
DAMarain\Scout_Fo... 1 Quadratic DA #|  Huber
5 147 13 — nop
] 1 144 14 MyT
2. A “Select Variables” screen (Section 3.5) appears.

e Click on the “Options” button for the options window.

= Options Linear Classical Discriminant Analysis

Crozs Walidatian
Leave One Out [LOO]

Split

M Fold

Simple/Maive Bootstrap by Data Set
Simple/Maive Bootztrap by Group
Standard Bootstrap by Data Set
Standard Bootstrap by Group

Biaz Adjusted Bootstrap by Data Set

1 1 1 7 71 71 71 71 7

Biaz Adjusted Bootstrap by Group

Print to Olutput
% Mo Scores " Print Scores ‘

o  Specify the preferred cross validation methods and their respective
parameters.

o  Specify the “Print to Output.” The default is “No Scores.”
o  Click “OK” to continue or “Cancel” to cancel the options.

e (lick on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.
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= OptionsDiscriminantGraphics

el Scatter Plat Title:
[w Scatter Plaot Scatter Plat af Dizcriminant Scores
Cutaff for Graphicz Flat Cantaur
T Mo Conbour

Critical Alpha 0.05
@ |ndividual [d0cut]

kD= Diztribution for Graphics " Simultaneous [d2max]

{+ Beta T Chi O Simultaneousdndividual

k. Cancel

4

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on the number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from “Select Group
Priors Column.” The default is “Equal” priors.

Specify the storage for the discriminant scores. No scores will be stored when
“No Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

Click on “OK” to continue or “Cancel” to cancel the DA computations.

Output example: The data set “BEETLES.xls” was used for the classical linear DA. It has 74
observations and two variables in three groups. The initial estimates of location and scale for
each group were the classical mean and the covariance matrix. The classification rules were
obtained using those estimates. The output shows that one observation was misclassified.
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Output for the Classical Linear Discriminant Analysis.
Data Set: Beetles (2 variables 3 groups).

i Classical Linear Discriminant Analysts

Uzer Selected Options
Date/Time of Computation
Fram File

Full Precision

Storage Ophions

Group Probabilities:
Graphics Options

Contour Ophions

Alpha for Graphics
Distribution of MDs

1/18/2008 2:09:58 PM

[:\Marain'S cout_For_‘WindowssScoutS ource\warkD atinExce\BEEETLES
OFF

Mo Discriminant 5Scores will be stored to Worksheet

Equal Priors will be uzed

Scatter Plots selected

Contour Ellipzes drawn uzing Individual MD[0.03]

(IR 13]

Beta Distribution uzed in Graphics

Total Mumber of Obzervations 74

Mumber of Selected Variables 2

Humber of D ata Rows per Group

1 2 3
21 Kl 22

MeanYector for Group 1

w11 %21
1462 14.1

Covariance 5 Matrix for Group 1

Mean¥ector for Group 2

#1-1 w1

.66 -0.969
-0.969 073

wl-2 w22
1246 14.29

Covariance S M atrix For Group 2

¥1-2 we-2
21.37 -0.327
0.327 1.213

(Complete results are not shown.)
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Output for the Classical Linear Discriminant Analysis (continued).

522

Clazsihcation Summany

Predicted Membership

Actual 1 2 3
1 20 1 1]
2 1] A
3 1] ] 22
# Cormrect 20 A 22

Prop Correct 95243 100% 100%

Total Obzervations 74
Comrectly Classified 73

Incomrectly Clazsified 1

Mizclaszification Summany
Obs Ma. Actual Predicted

17 1 2
Apparent Error Rate 00135

Linear Dizcriminant Function Conztants and Coefficients

1 2 3
Constant -620.8 -483.4 -506.7
u1 E.778 5.834 E.332
x2 17.64 17.31 13.44




Output for the Classical Linear Discriminant Analysis (continued).

CroszsYalidation Results

Leave One Out [LO0O] Cross ¥ alidation Hezulks

LOO Classification Summary

Predicted tMembership
Actual 1 2 3
1 20 1
2 1] i
3 1] 0 22
# Correct 20 A 22
Prop Comrect 95.24% 100% 100%

Total Observations 74
Correctly Clazsified 73

[nizomectly Claszified 1
LO0 Mizclassification Summany
Obz Mo Actual Predicted
17 1 2
LOO Error Rate 0.0135
Split [50/50] Cross Walidation B esults

Error B ate for Training Set: 0.0051
Error B ate for T est Set: 0.0078

JFold Crossz¥alidation Hesults

Average Error Rate: 0.0139

Simple/N aive Bootztrap [for whole dataset] Crozz ¥ alidation Results
Average Error B ate from Bootstrap: 00099

Simple/N aive Bootstrap [Groupwise] Crosz ¥ alidabon Results

Average Error B ate from Bootstrap: 0.0N07
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Output for the Classical Linear Discriminant Analysis (continued).

Standard Bootstrap [for whole datazet] Cross Validabon Besukts
Error Rate from Bootstrap Traimng Set 0L0M19
Error Rate from Bootstrap Test Set: 0.0051

Standard Bootstrap [Groupwize] Crozs Yahdation Fesults
Error Rate from Bootstrap Training 5et 000N03
Error Rate from Bootstrap TestSet: 0.0059

Bias Adjusted Bootstrap [for whole dataset] Cross Walidation Resulkts
Average Correct Traiming Set 733300
Average Incomect Training Set 06700
Average Correct TestSet: 731100
Average Incomect Test Set: 0.8900
Error Rate Biaz: -0.0030
Bias Adjusted Error B ate: 0.0N65

Biaz Adjusted Bootztrap [Groupwize] Croz s Y alidation Results
Average Correct Training Set 732600
Average Incomrect Training Set 0L7400
Average Comrect Test Set: 73,0800
Average Incomrect Test Set: 00952200
Error Rate Biaz: -0.0024
Biaz Adjusted Error R ate: 0.0159
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Output for the Classical Linear Discriminant Analysis (continued).

Scatter Plot of Discriminant Scores

750

664

[ | Prediction
[ | Tolerance

Ds1

464

348 448 548 B43 730

Dsz2

W@z A3
Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.2.2 Huber Linear DA
1. Click on Multivariate EDA » Discriminant Analysis (DA) » Linear DA » Huber.

= Scout 4.0 - [D:ANaraini\ScoutFor Windows\ScoutSourcedWorkDatinExce AFULLIRIS. xlIs]

85 File Edit Configure Data Graphs Stats/GOF  CutliersiEstimates Regression NUMANEGEA-038 0 GeaStats  Programs  ‘Window  Help
Mavigation Panal ] 1] 1 2 3 PCA [ | 7 | a q
T | S| e phlength Discriminant Analysis (DA) » F|sher D L3 | .
_ SN | SR e e T Clssca
D:AMaraimyScout Fo.. i i i i | QuadraticDa »
49 3 14 nz T
1 47 3z 13 nz MYT

“r A “r )

3. A “Select Variables” screen (Section 3.5) appears.

e Click on the “Options” button for the options window.
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= Options Linean Huber, Discriminant Analysis

Frint to Output
+ Mo Scores

" Prirt Seores

Select Initial E stimates MHurnber of [terations Influence Function Alpha
™ Classical ,T oS
™ Sequential Classical
[Max = 50] Range [0.0-1.0]
" Robust [Median, MAD)
' OKG [Maronna Zamar | Crosz Walidation

™ Leave One Out (LOO)

" KG [Mot Orthogonalized)

~ MCD Split
M Fold
MDDz Distribution
Simple/M aive Boatstrap by Data Set
@ Beta (" Chisquare

-
-

-

™ Simple/N aive Bootstrap by Group
[™ Standard Bootstrap by Data Set

[™ Standard Bootstrap by Group

[™ Bias Adjusted Bootstrap by Data Set
m

Bias Adjusted Bootstrap by Group

Ok Cancel
Y

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

Click on the “Graphics” button for the graphics options window and check all of

the preferred check boxes.



= OptionsDiscriminantGraphics

Select Graphics Scatter Plat Title:

v Scatter Plot | Scatter Plot of Discrirminant 5 cores

Scree Flot Title:
| Scree Plot of Eigen YWalues for Fisher Dé

[+ Scree Plot

Cutoff for Graphics Plat Contour

L

Citical dpha |  0.05 g oo
o |ndividual [d0cut]

tDrz Distribution for Graphics O Simultaneous [d2max]

+ Beta " Chi £ SimulaneousIndividual

0k Cancel

A4

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

e Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

e Specify the storage for the discriminant scores. No scores will be stored when
“No Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

e C(Click on “OK” to continue or “Cancel” to cancel the DA computations.

Output example: The data set “IRIS.xlIs” was used for the Huber linear DA. It has 150
observations and four variables in three groups. The initial estimates of location and scale for
each group were the median vector and the scale matrix obtained from the OKG method. The
outliers were found using the Huber influence function and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using those weighted estimates. The output shows that
three observations were misclassified. The cross validation results suggest the same.
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Output for the Huber Linear Discriminant Analysis.
Data Set: IRIS (4 variables 3 groups).

i Linear Dizcniminant Analysis with Huber

Uzer Selected Options
Date/Time of Computation
Frarn File

Full Precizion

Influence Function Alpha
Squared MOz

Initial Estirmates

Murnber of [terations
Storage Options

Group Probabilities:
Graphicz Options
Contour Optionz

Alpha far Graphics
Distribution of MD=

1/18/2008 2:35:20 P

D4 arainhS cout_For_windowsz\S coutS ource\yw ark D atlnE mcelhFLILLIRIS
OFF

0.05

Beta Distibution

Robust Median Wector and OKG [Maronna-Zamar] M atrix
10

Mo Digcriminant Scores will be stored to Worksheet
Equal Priorz will be uzed

Scatter Plots selected

Contour Ellipzes dravwn using Individual tMD[005]

0.05

Beta Distibution wsed in Graphics

Total Mumber of Obzervations 150

Mumber of Selected Y ariables 4

Mumber of Data R ows per Group

1 2 3
50 50 50

528

MeanVYector for Group 1

plethl | gpewidtb-1 - ptde™th-1 | ptwidth-1

5.008 3428 1.462 0245
Covanance 5 Matrix for Group 1

sple™thel | spewidth-1 0 pte™thel | plwidth-1
0124 0.0932 00164 noo3
0099z 0144 ooy 00093
noed 0.onmz 00302 000807
noo3 0.0033 0.00607 0o

IGR Fixl

(Complete results are not shown.)



Output for the Huber Linear Discriminant Analysis (continued).

Classification Summany

Fredicted Memberzhip
Actual 1 2 3
1 a0 1] 1]
2 1] a3
3 1] 1 49
# Corect il 4a 43
Frop Correct  100% 6% 985

Total Observations 150
Cormectly Classified 147

Incomecty Clazsified 3

Misclaszification Summany
Ohs Mo Actial Predicted

71 2 3
a4 2 3
134 3 2

Apparent Eror Rate 0.02

Linear Dizcriminant Function Conzstants and Coefhcients

1 2 3
Constant 8915 4.4 -106.8
zp-length 2318 187 1259
sp-width 2h.92 7.246 1B
pt-length -16.28 E.078 13.92
pt-width -19.74 5.586 206
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Output for the Huber Linear Discriminant Analysis (continued).

CrossValidation Results

Leave One Out [LOO] Cross Yalidation Bezuks

LOO Classification Summary
Predicted Membership

Actual 1 2 3
1 50 ] 1]
2 1] 4a
3 1] 1 49
# Cormrect 50 43 43
Prop Correct 100% 967 958

Total Obzervations 150
Corectly Classified 147

Incomrectly Clazsified 3

LO0 Mizclassification Summany
Obs Ma. Actual Predicted

1 2 3
a4 2 3
134 3 2

LOO Errar Rate 002

3Fold Crossz¥ahdation Results

Average Error Rate: 0.2667

Bias Adjusted B ootstrap [for whole dataset] Cross Validation Results
Yalidation F alled becuase of not enough Hon-0Outhers in Growp 9 mes.
Average Correct Training Set 147 2857
Average Incomrect Training Set 27143
Average Cormrect Test Set: 146.8132
Average Incomrect Test Set: 31868
Error Rate Bias: -0.0032
Biaz Adjusted Error Rate: 0.02232
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Output for the Huber Linear Discriminant Analysis (continued).

Scatter Plot of Discriminant Scores

1758

166.4

156.4

1464

136 4

1264

1164

1064
[ | Prediction
[ | Tolerance

Ds1

42 142 242 342 442 542 642 742 842 942 1042 1142 1242 1342 1442 1542

@2 A3

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.2.3 PROP Linear DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Linear DA » PROP.
™ Scout 4.0 - [D:i\Narain¥Scout_For_Windows\ScoutSource\WorkDatinExce MSHALL . xls]
B! File Edit Configure Data Graphs Stats/GOF  Outliers/Estimates Regression ML RN GeoStats  Programs  Window  Help
Mavigation Paneal ‘ 0 . 1 2 [ 3 PCA r 7 g [ g
R J SitelD | SamplelD| SLRatio e Discriminant Analysis { Flsher D v B [ eny
- | T 5 1 1 1059 1 Classical
D:AMaraimScout Foo 1 i Quadratic D& »| Huber 3
2 i 1 2 2 1 11.32 . s
3 1 1 2 3 1 10.45 1374 1245 BT
== 1 1 2 A 1 =¥ =] (=R =g in 74 T
2. A “Select Variables” screen (Section 3.5) appears.

e Click on the “Options” button for the options window.
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= Options Linear, PROP Discriminant Analysis

Select Initial E stimates

™ Classical

" Sequential Clazsical

q

Fobust (Median, MaD]

Mumber of Iterations

[

[Max = 50]

Cross Validation

+ OKG [Maronna Zamar |
[ Leave One Out (LOO)
™ KG [Mot Orthogonalized)
™ Split
" MCD
[ M Fold
MOz Distribution
[ Simple/Maive Bootstrap by Data Set
* Beta 1 Chizquare
™ Simple/Maive Bootstrap by Group
Frint to Dutput [ Standard Boaotstrap by Data Set
* Mo Scores
[ Standard Bootstrap by Group
" Print Scores
™ Bias Adjusted Bootstrap by Data Set
[ Bias Adjusted Boctstrap by Group

0K | Cancel |

Influence Function Alpha

008

Range [0.0-1.0]

4

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective

parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

e Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

= OptionsDiscriminaniGraphics

Select Graphics

v Scatter Plat

W Scree Plat

Cutoff for Graphics

Critical &lpha 0.05

D2 Distribution for Graphics

* Beta " Chi

Scatter Plat Title:

] Scatter Plot of Digcriminant Scores

Scree Plot Title:
J Scree Plat of Eigen Yalues for Fisher DA,

Flot Contour

" Mo Contour
" |ndividual [d0cut]
7 Simultaneous [d2max]

" Simultaneousd ndividual

ak, Cancel

A



o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

e Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

e Specify the storage for the discriminant scores. No scores will be stored when
“No Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

e Click on “OK” to continue or “Cancel” to cancel the DA computations.

Output example: The data set “ASHALL7grp.xlIs”” was used for the PROP linear DA. It has
214 observations and six variables in seven groups. The initial estimates of location and scale
for each group were the median vector and the scale matrix obtained from the OKG method.
The outliers were found using the PROP influence function and the observations were given
weights accordingly. The weighted mean vector and the weighted covariance matrix were
calculated. The classification rules were obtained using those weighted estimates. The output
shows that six observations were misclassified. The cross validation results suggest the same.
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[Jzer Selected Options
Date/Time of Computation
From File

Full Precizion

Influence Function Alpha
Squared MDs

Initial Estirmates

Mumber of lterations
Storage Optiohs

Group Probabilities:
Graphics Optionz

Contour O ptiohs

Output for the PROP Linear Discriminant Analysis.
Data Set: Ashall (6 variables 7 groups).

i Linear Discriminant Analysizs with PROP

1/18/2008 307-47 PM

%M arainsScout_For wWindowshS coutS ourcehwforkD atl nE xeel dSHALL Y arp
OFF

0.05

Beta Distribution

Robust Median Yectar and OKG [Maronna-Zamar] Matris

10

Mo Digcriminant Scores will be stored bo workshest

Equal Priors will be uzed

Scatter Plots zelected

Contour Ellipzes drawn uging Individual D005

0.05

Beta Distribution used in Graphics

Alpha for Graphics
Distribution af MOz

Total Humber of Observations 214

Mumber of Selected Yariables B

Mumber of Data Rows per Group
1 2 3 4 5 5
51 35 a7 35 23 20 13

MeanV¥ector for Group 1

Ca-1 Ma-1 k-1 C 50441 ALEA

10.02 16.81 17.22 3235 24,86 0503
Covariance 5 Matrix for Group 1

Ca1 Ma-1 k-1 CH 50441 ALKA

7539 B.&74 541 -11.89 13.04 033
B.274 2401 2475 14.42 10,28 -0.309
541 2475 2.a7h 13497 10,47 -0.306
-11.89 14.42 13.97 296 21,27 -0.555
1304 1028 10,47 2127 26.83 0,536

033 -0.309 -0.306 -0.555 0586 00394

(Complete results are not shown.)
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Output for the PROP Linear Discriminant Analysis (continued).

Classzification Summany

Predicted tembership
Actual 1 2 3 4 5 G 7
1 A1 1] 1] 1] 1] 1] 1]
2 1] a2 1] 1] 3 1] 1]
3 1] 1] ar 1] 1] 1] 1]
4 1] 1] 1] A 1] 1] 1]
] 1] 1] 1] 23 1] 1]
G 1] 1] 1] 18 2
7 1] 1] 1] 1 12
# Comrect a1 a2 cr A 23 18 12
Prop Cormect  100% N .43% 100% 100% 100% a0 2 Nx
Total Observations 214
Corectly Clazsified 208
Inizomectly Claszified &
Mizclasszification Summany
Obs Mo, Actual | Predicted
42 2 ]
43 2 ]
44 2 ]
154 E 7
155 E 7
160 7 G
Apparent Error Rate  0.028
Linear Discriminant Function Constants and Coefficients
1 2 3 4 h [ ¥
Constant 3852 1814 -270.1 179 137 -134.9 -156.8
Ca -0.455 -1.697 -1.708 2.892 045 2.198 3695
Ma -1.252 4.025 R277 0.42 0413 0.573 0238
4 20.89 -1.94 2423 1.E696 E.038 -1.306 1.907
Cl 20 5.015 4,279 4,729 2067 4518 4019
S04 10.39 5206 7884 3463 4722 1.E26 2135
ALK, 10.04 1274 1411 8.793 10.05 3101 8.204
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Output for the PROP Linear Discriminant Analysis (continued).

CrossValidation R esults

Split (50/50) Crosz ¥ alidation B esults
Error R ate for Training Set: 0.0827
Error R ate for Test Set: 0.0923

5Fold Cross Yalhdation Results

Average Error Rate: 0.0476

Standard Bootstrap [for whole datazet] for whole datazet
Error B ate from Bootstrap Traiming Set 00234
Error B ate from Bootstrap Test Set: 000154

Biaz Adjusted B ootztrap [for whole dataset] Cross Yalidation Results
Average Comect Training Set 2096000
Average Incorrect Traiming Set 4. 4000
Average Comect Test Set: 207 8000
Average Incorrect T est Set: 62000
Error Rate Bias: -0.0084
Bias Adjusted Error B ate: 0.0364
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Output for the PROP Linear Discriminant Analysis (continued).

Scatter Plot of Discriminant Scores

[of]

J [ | Tolerance
264 /

16.1

3 103 203 303 403 03 575

W@z A304@s=—6 | 7

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.2.4 MVT Linear DA
1. Click on Multivariate EDA » Discriminant Analysis (DA) » Linear DA » MVT.

™ Scout 4.0 - [D:’Narain\Scout_For WindowsA\ScoutSourceMWorkDatinExce Mook HEMOPHILIA. x1s]

oYl File Edit Configure Data Graphs Stats/GOF  OublisrsiEstimates Redression NGllsgeq-eRa0 8 Geostats Programs  Window  Help
Mavigation Panel l 1] 1 2 3 FCA . L 7 | a q
Name | GirpMame BT r ‘;.oqﬁl:_; : mlgﬁ r|| :L-lni Discriminant Analvsis (DAY # F|sher [ :
: ianCariers: 1 0008  -D16s7 ' — EEEN e
DivMarainiScout_Fo... 1l - : | Cuadratic DA »| Huber
2 |MonCariers 1 -0.1638 -0.1585 —— pn e
3 MonCaries 1 0MEI 01879
2. A “Select Variables” screen (Section 3.5) appears.

e (lick on the “Options” button for the options window.
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= Options Linear MYT Discriminant Analysis

Select Initial E stimates Mumber of [terations Cutoff for Outliers Select Trimming

. Percentane
® (Hloesiee] L 005 01

- ) !
Sequentisl Classical [Max = 50] Critical Alpha Fange [0 - 0.95)

~

Fiobust [Median, MAD]

OKG [Maronna Zamar | Cross Y alidation
™ Leave One Out [LOO)

B!

" KG [Not Orthogonalized)

[~ Spiit
" MCD
[~ MFald
™ Simple/Maive Bootstrap by Data Set
™ Simple/Maive Bootstrap by Group
Frinit to Qutput ™ Standard Bootstrap by Data Set
* Mo Scores
™ Standard Bootstrap by Group
" Print Scores
™ Bias Adjusted Bootstrap by Data Set
ok | Cancel | ™ Bias Adjusted Boaotstrap by Group

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

] OptionsDiscriminantGraphics

Select Graphics Scatter Plot Title:

v Scatter Plot I Scatter Plat of Dizcriminant Scores

Scree Plat Title:
I Screa Plot of Eigen W alues for Fisher Dd,

[v Scree Plot

Cutaff for Graphics Plat Contour

Citical Alpha | 0.05 L ite

o Individual [d0cut]

MO = Distribution for Graphics 7 Simultaneous [d2max]
{¢ Beta {” Chi " Simultaneous/ndividual
(] Cancel

A



o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

e Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

e Specify the storage of the discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

e Click on “OK” to continue or “Cancel” to cancel the DA computations.

Output example: The data set “Salmon.xls” was used for the MVT linear DA. It has one 102
variables in two groups. The initial estimates of location and scale for each group were the
median vector and the scale matrix obtained from the OKG method. The outliers were found
using the trimming percentage and critical alpha and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using those weighted estimates. The output shows that 13
observations were misclassified.
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Output for the MVT Linear Discriminant Analysis.
Data Set: Salmon (2 variables 2 groups).

Usger Selected Options
Date/Time of Computation
Fram File

Full Precizion
Trirmrming Percentage
Initial E gtimates
Mumber of lterations
Storage Options
Group Probabilities;
Graphics Options
Contaur Options
Alpha for Graphics
Distribution of MDs

Linear Digcriminant Analysis Uzing MYT Method

1/18/2008 3:16:35 P
[D:AMaraintScout_Far_wWindowshS coutS ource\w/ark D atlnE scelhBook \HEMOPHILIA
OFF

10%

Fobust Median Wector and OKG [Maronna-Zamar) tatris
10

Mo Dizcriminant Scores will be stored to Woarksheet

Equal Priors will be uzed

Scatter Plats selected

Contour Ellipses drawn uzing Individual MD[0.05)

0.05

Beta Distribution uzed in Graphics

Total Humber of Observations 75
Mumber of Selected Variables 2

Mumber of Data Hows per Group

MeanVector for Group carmiers

Covaniance S M atrix for Group carriers

Final Robust Mean¥ector for Group carrers

cariers | noncaTiers
46 29
log10~iers  logl 0™iers
0,303 -0.00708
log10~iers | logl0™iers
0.0243 o148
0.0148 00236
log10~iers  logl 0™iers
0.3 -0.00157
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Output for the MVT Linear Discriminant Analysis (continued).

Clazzihcation Summany

Predicted kemberzhif
Actual CAlers | nonCarmiers
Carmiers ar 3
NONCAarmers 4 2h
#t Corect ar 25

Prop Correct 80.43% 896 21%

Tatal Obzervations 75
Comectly Claszified 62

Incormecty Clazsified 13

Mizclazzification Summany
Obs Mo. Actual Fredicted

3 NoOncarers carmers
3] NONCAINers Camers
7 NoOncarers carmers
17 NONCAINers Camers
a0 caners | noncarners
35 CAliers  noncarniers
h3 caners | noncarners
B0 CAliers  noncarniers
B2 caners | noncarners
B3 CAliers  noncarniers
B4 caners | noncarners
B CAliers  noncarniers
B9 Caners | noncarners

Apparent Error A ate 0173

ir Dizcnminant Funchion Constants and Coefh

CAImers noncarmiers

Conztant 5435 -1.285
log1 O chivity) .72 9478
log1 Dftntigen] 18.68 1.402
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Output for the MVT Linear Discriminant Analysis (continued).

542

CrossYahdation Results

Simple/N aive B ootstrap [for whole dataset] Cross ¥ ahdabon Besults
Average Ermor Bate from Bootstrap: 0.0760

Standard Bootzstrap [for whole dataszet] for whole dataset
Error Rate from Bootstrap Training Set 00730
Error Rate from Bootstrap Test Set: 00330

Biasz Adjusted Bootstrap [for whole dataset] Cross ¥ alidation RBesults
Average Correct Traiming S et 929000
Average Incomect Training Set 71000
Average Correct Test Set: 929000
Average Incomect Test Set: 71000
Error Rate Biaz: 0.0000
Bias Adjusted Error B ate: 0.0700




Output for the MVT Linear Discriminant Analysis (continued).

Scatter Plot of Discriminant Scores
2092
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Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.3 Quadratic Discriminant Analysis
10.2.3.1 Classical Quadratic DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Quadratic DA »
Classical.

= Scout 4.0 - [D:\Narain}Scout_For_ Windows\ScoutSounce\WorkDatinExce ABEETLES.xlIs]

ul! File Edit Configure Data Graphs Stats)GOF  Outliers/Estimates Regression
Mavigation Panel l o | 1 2 2 | z | g | 3
T J [ S | ol [ 2 | | Fisher D 4 ' |
ame - : 180 15 Lingar Dy 3
DAMarainyScout_Fo. 1 Quadratic D& »
2 147 13 -
3 1 144 14
4 1 144 16

543



2. A “Select Variables” screen (Section 3.5) appears.

e Click on the “Options” button for the options window.

L] Options Quadratic Classical Discriminant Analysis

Crogs Walidation
Leave One Out (LOO)

Split

I4 Fold

Simple/M aive Bootstrap by Data Set
Simple/M aive Bootstrap by Group
Standard Bootstrap by Data Set
Standard Bootstrap by Group

Bias Adjusted Bootstrap by Data Set

1 1 1 71 71 71 71 71 7

Bias Adjusted Bootstrap by Group

Print ta Output

* Mo Scaores ™ Print Scores |

ok, Cancel |

A

o  Specify the preferred cross validation methods and their respective
parameters.

o  Specify the “Print to Output.” The default is “No Scores.”
o  Click “OK” to continue or “Cancel” to cancel the options.

e Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

6] OptionsDiscriminantGraphics

[ et G Scatter Plok Title:
[w Scatter Plot Scatter Plat of Dizcriminant S cores
— Cutaff far Graphics —Plat Contaur
" Mo Contaur

Critical Alpha 0.05
" Individual [d0cut]

MDDz Distribution for Graphics " Simultaneous [d2mas]
{* Heta T Chi " Simultaneous| ndividual
] Cancel

4
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o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

e Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on the number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

e Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

e Click on “OK” to continue or “Cancel” to cancel the DA computations.
Output example: The data set “BEETLES.xIs” was used for the quadratic linear DA. It has 74
observations and two variables in three groups. The initial estimates of location and scale for

each group were the classical mean and the covariance matrix. The classification rules were
obtained using those estimates. The output shows that one observation was misclassified.

545



Output for the Classical Quadratic Discriminant Analysis.
Data Set: Beetles (2 variables 3 groups).

{ Clazsical Quadratic Discriminant Analysis
Uszer Selected Options .
Date/Time of Computation  1/18/2008 3:23.37 PM
From File  D:“MarainhScout_For_windowshScoutSource\\work D atinE «cel\EEETLES
Full Precision OFF

Storage Optioh: Mo Discriminant Scores will be stored to Work sheet
Group Probabilities:  Equal Priors will be used

Graphicz Optionz  Scatter Plots selected

Contour Optionz Contour Elipzes drawn wzing Individual kMD0.05]
Alpha for Graphice 005
Distribution of MDe  Beta Digtnbution wzed in Graphics

Total Mumber of Obzervations 74
Mumber of Selected Variables 2

MHumber of D ata Rows per Group

1 2 3
21 1| 22
MeanVectorfor Group 1
w1-1 w1
146.2 141
Covanance 5 Matnx for Group 1
wl-1 w1
I.EE -0.969
-0.965 0va
Mean¥ector for Group 2
x1-2 ui-2
1245 1429
Covariance 5 Matrix for Group 2
x1-2 ui-2
21.37 0327
0.327 1.213
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Output for the Classical Quadratic Discriminant Analysis (continued).

Classification Summan

Fredicted Memberzhip
Actual 1 2
1 20 1
2 0 A
3 0 1] 22
# Corect 20 K] 22
Prop Corect 95.24% 100% 100%

Tatal Observations 74
Comectly Claszified 73

Incormectly Clazsified 1
Mizclaszification Summany
Obs Mo. Actual Fredicted
17 1 2
Apparent Eror Rate 00135

Crozs Yalidation Results

Leave One Out [LOO] Crosz Walidation B esuls

LOO Classihication Summary

Predicted kMemberzhip
Actual 1 2 K]
1 20 1
2 0 K]
3 0 1] 22
#t Correct 20 A 22
Prop Comrect 95.24% 100% 100

Total Obzervations 74
Corectly Clazsified 73

[ncomectly Clazzified 1
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Output for the Classical Quadratic Discriminant Analysis (continued).

LO0 Mizclassification Summany
Obsz Mo. Actual Fredicted
17 1 2
LOO Error Rate 0.0135

Spht [50/50]) Cross Yalhdation R esults
Error R ate for Training Set: 0.0000
Error Rate for Test Set: 0.0081

J Fold Crosz ¥Yalidation R ezults

Average Error Hate: 0.0267

Simple/H aive Bootstrap [for whole dataset] Cross ¥ ahdabon Fesults
Avwerage Error Hate from B ootztrap: 0.0068

Standard Bootztrap [for whole datazet] Cross Yalidabon Results
Error B ate from B ootstrap Training 5et: 0.0041
Error Rate from Bootztrap T est Set: 0.00F1

Biasz Adjusted Bootstrap [for whole dataset] Cross Y alidation Besults
Average Correct Traming S et 738000
Average Incomect Training Set 02000
Average Correct Test Set: 727000
Average Incomect Test Set: 1.3000
Error Rate Biaz: -0.0149
Bias Adjusted Error B ate: 00284
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Output for the Classical Quadratic Discriminant Analysis (continued).

Scatter Plot of Discriminant Scores
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Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.

10.2.3.2 Huber Quadratic DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Quadratic DA »
Huber.

= Scout 4.0 - [D:ANarain’Scout_For Windows\ScoutSourceMWorkDatInExce A\FULLIRIS]
Bl File Edit Configure Data Graphs  Stats/GOF  Ouiers/Estimates Regression NORAE=GE-R=8"S GeoStats Programs Window  Help

Mavigation Panel l 1] 1 ) 3 PCA L 7 il q
Discriminant Analysis (DAY # Fisher DA [ [

Mame J | count _sp-length sp-width | ptlength

3 T o T 1 Linear D& 4 i
D:\MaraintScout_Fo... 1 i; 3‘2 ]i Ei Quadratic Do » e P
2 i 3 : S U — Hul:-er
a 1 47 3.2 1.3 02 PROP
4 1 4E 31 15 02 MWT
2. A “Select Variables” screen (Section 3.5) appears.
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e Click on the “Options” button for the options window.

i) Options Quadratic Huber Discriminant Analysis

Select Initial Estimates Mumber of lterations Influence Function Alpha
" Classical ,T 0w
" Seguential Classical
[Max = 50] Range [0.0-1.0]
" Robust (Median, MaD)
% OKG (Maronna Zamar | Crozs Validation

" KG [Mot Orthogonalized)

[ Leave One Out (LOO)

[ Split
" MCD
[ M Fald
MDDz Digtribution
I Simple/Maive Bootstrap by D ata Set
% Beta  Chizquare
[ SimplesM aive Bootstrap by Group
Print to Qutput [ Standard Bootstrap by Data Set
& MoScomes
[~ Standard Bootstrap by Group
" Print Seores
[ Bias Adjusted Bootstrap by Data Set
ok | Cancel | [” Bias Adjusted Bootstrap by Graup
|
o  Specify the options to calculate the robust estimates of the location and the

O

scatter (scale or dispersion).
Specify the “Print to Output.” The default is “No Scores.”

Specify the preferred cross validation methods and their respective
parameters.

Click “OK” to continue or “Cancel” to cancel the options.

e Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.

= OptionsDiscriminantGraphics

Selsct Graphics Scatter Plat Title:

v Scatter Plot I Siatter Plot of Discriminant Scaones

Scree Plat Title:
I Scree Plat af Eigen Walues far Fizher DA,

v Scree Plot

Cutoff for Graphics Plot Contour

~
Critical &lpha 0.05 Hio Cantaur

* |ndividual [d0cut]

MO = Digtribution far Graphics  Simulkaneous [d2max]
' Beta £ Chi " Simultaneousndividual
QK. Carncel

i



o  The “Scatter Plot” provides the scatter plot of the discriminant analysis
scores and also of the selected variables. The user has the option of
drawing contours on the scatter plot to identify any outliers. The default is
“No Contour.” Specify the distribution for distances and the “Critical
Alpha” value for the cutoff to compute the ellipses. The defaults are
“Beta” and “0.05.”

o  Click on “OK” to continue or “Cancel” to cancel the graphics options.

e Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

e Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

e Click on “OK” to continue or “Cancel” to cancel the DA computations.

Output example: The data set “IRIS.xlIs” was used for the Huber quadratic DA. It has 150
observations and four variables in three groups. The initial estimates of location and scale for
each group were the median vector and the scale matrix obtained from the OKG method. The
outliers were found using the Huber influence function and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using those weighted estimates. The output shows that
three observations were misclassified. The cross validation results suggest the same.
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Output for the Huber Quadratic Discriminant Analysis.
Data Set: IRIS (4 variables 3 groups).

{ Quadratic Dizcriminant Analysis with Huber

Uzer Selected Options
Date/Time of Computation
Fram File

Full Precizion

Influence Function &lpha
Squared MD=

Initial E stimates

Mumber of [terations
Storage Options

Group Probabilities:
Graphicz Optiohs
Contaur Options

Alpha for Graphics
Distribution of MDs

1/18/2008 3:30:55 PM

D:AMarainh 5 cout_For Windows\ScoutS ource®WorkD atinE xcel\FULLIRIS
OFF

0.05

Beta Distribution

FRobust Median Vector and OEG [Maronna-Zamar) Matris

10

Mo Dizcriminant Scores will be stared to Worksheet

E qual Priorz will be uzed

Scatter Plots selectad

Contour Ellipzes drawn uging Individual MD[0.05]) =nd Max kD0.05)
0.05

Beta Diztibution uzed in Graphics

Tatal Murmber of Observations 150
Murnber of Selected Yanables: 4

Mumber of D ata R ows per Group

MeanVYector for Group 1

1 2 3
A0 a0 a0
spele™thel | spewidthel | phleTthR
.00 3428 1.462

pt-width-1
0245

Covariance 5 M atrix for Group 1

spele™thel | spewidthel | phleTthR
0124 0.093z2 0.0164
0.0532 0144 0.0117
0.0164 00117 0.0302
00103 [0.0093 0.00607
IQR Fix!

pt-width-1
0.0103
0.0093
0.00607
0.0111

(Complete results are not shown.)



Output for the Huber Quadratic Discriminant Analysis (continued).

Classification Summany

Fredicted Memberzhip
Actual 1 2 3
1 A0 1] ]
2 0 4a
3 0 1 49
# Corect a0 4a 43
Prop Correct 100 963 98%

Tatal Dbservations 150
Comectly Clazzified 147

Incomecty Clazsified 3

Mizclaszification Summany
Obs Mo. Actual Fredicted

1 2 3
24 2 3
134 3 2

Apparent Eror Rate 0.02

CrossValidation Results

Split (50/90) Crosz ¥ alidation R esults
Error Rate for Training Set: 0.0063
Error Rate for Test Set: 0.0493

3 Fold Crossz WYaldation Results

Avwerage Error Hate: 0.2667

Bias Adjusted Bootstrap [for whole dataset] Crozs Walidation Results
Average Correct Traimng S et 133.6000
Average Incomect Training Set 1.4000
Average Correct Test Set: 1376000
Average Incomect Test Set: 12 4000
Error Rate Biaz: -0.0733
Bias Adjusted Error Bate: 0.0933
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Output for the Huber Quadratic Discriminant Analysis (continued).

Scatter Plot of Discriminant Scores
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Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations

between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant

scores and the variables, as explained in Chapter 2.

10.2.3.3 PROP Quadratic DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Quadratic DA »
PROP.

@ Scout 4.0 - [D:\MarainA\Scout_For_Windows}ScoutSourcelWorkDatInExce WMiSHALL . xls]

BS File Edit Configure Data Graphs StatsGOF  Cutliers/Estimates Regression BGBA0MEA-Ra5:0 GeoStats Programs  Window Help
Mavigation Panel I 1 2 PCA _ L | 7 1B q
Name I Sample 1D | SL Ratio Discriminant Analysis (] Fllsher DA : l ol 504
S 1 1 z 1 1 1053 Liheat D CXY a6 34
D:AMarainScout Fo.. Cuadratic DA Classical
2 1 2 2 1 11.32 Huber |26
3 1 1 2 3 1 10.45 1374 12.45 .83
4 1 1 2 4 1 8.43 a.61 10.74 .43
2. A “Select Variables” screen (Section 3.5) appears.

e Click on the “Options” button for the options window.
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= Options Quadratic PROP Discriminant Analysis

Select Initial Estimates Mumber of [terations Influence Function Alpha
" Clazsical ,T 0w

" Sequential Classical
[Ma = 50] Range [0.0-1.0]

-

Fobust [Median, MAD]

DKG [Maronna Zamar | Cross Validation
™ Leave One Out (LOO)

B}

" KG [Mot Drthogonalized)

™ Split
" MCD
[ M Fald
MOz Distribution
[ Simple/Maive Bootstrap by Data Set
* Beta  Chizquare
™ Simple/Maive Bootstrap by Group
Pririt to Output ™ Standard Bootstrap by Data Set
* Mo Scares
™ Standard Bootstrap by Group
" Print Scores
™ Bias Adjusted Bootstrap by D ata Set
™ Bias Adjusted Bootstrap by Group

oK | Cancel |

A

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective
parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

e Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.
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] OptionsDiscriminantGraphics

Select Graphics Scatter Plot Title:

v Scatter Plot | Scatter Plat of Dizcriminant Scores

Scree Plat Title:
| Screa Plot of Eigen W alues for Fisher Dd,

[v Scree Plot

Cutaff for Graphics Plat Contour

Citical Alpha | 0.05 L ite

o Individual [d0cut]

MO = Distribution for Graphics " Simultaneous [d2max]
{¢ Beta {” Chi " Simultaneousndividual
(] Cancel

A

o  The “Scatter Plot” provides the scatter plot of the discriminant analysis
scores and also of the selected variables. The user has the option of
drawing contours on the scatter plot to identify any outliers. The default is
“No Contour.” Specify the distribution for distances and the “Critical
Alpha” value for the cutoff to compute the ellipses. The defaults are
“Beta” and “0.05.”

o  Click on “OK” to continue or “Cancel” to cancel the graphics options.

Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group; or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

Specify the storage of discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

Click on “OK” to continue or “Cancel” to cancel the DA computations.



Output example: The data set “ASHALL7grp.xls” was used for the PROP quadratic DA. It
has 214 observations and six variables in seven groups. The initial estimates of location and
scale for each group were the median vector and the scale matrix obtained from the OKG
method. The outliers were found using the PROP influence function and the observations were
given weights accordingly. The weighted mean vector and the weighted covariance matrix were
calculated. The classification rules were obtained using those weighted estimates. The output
shows that seven observations were misclassified. The cross validation results suggest the same.

Output for the PROP Quadratic Discriminant Analysis.
Data Set: Ashall (6 variables 7 groups).

: Quadratic Discriminant Analysis with PROP

|Jzer Selected O ptions
Date/Time of Computation
Fram File

Full Precizion

Influence Function Alpha
Squared MOD=

Initial E stimates

Mumber of lterations
Storage Options

Group Probabilities:
Graphics Options
Cantaur Options

Alpha for Graphics
Digtribution of MD=

141872008 3:33:25 PM

DA arainS cout_For_windowshS coutSourceswork D atinE xcehASHALL Farp
OFF

0.05

Beta Distribution

Riobust Median Wector and OKG [Maronna-<Lamar] b atrix
10

Mo Digcriminant Scores will be stored o wWork sheat
Equal Priorz will be used

Scatter Plots selected

Cantaur Elipses drawn uzsing Individual MD[0.05)

0.05

Beta Distribution used in Graphics

Total Mumber of Obgervations 214

Mumber of Selected Waniables B

MHumber of D ata Rows per Group
1 2 3 4 5 5
A1 & 7 & 23 20

Mean¥ector forGroup 1

Ca Ma-1 k-1 CH 50441 ALKA

10,02 16.81 17.22 3235 34.86 0.508
Covanance 5 Matrix for Group 1

Ca Ma-1 k-1 C 5041 ALkA

7.599 5274 541 -11.89 13.04 033
5,274 8.901 B.475 14.42 -10.28 -0.309
-5.41 B.475 B.579 13597 10,47 -0.306
-11.89 14.42 13597 296 -21.27 -0.555
13.04 -10.28 10,47 -21.27 26.83 0.586

033 -0.309 -0.306 -0.555 0.586 0.03594

(Complete output is not shown.)

557



Output for the PROP Quadratic Discriminant Analysis (continued).

558

Actual
1

2
3
4
b
G
7

# Corect
Frop Correct

Claszification Summany

Predicted Memberzhip
1 2 3
51 1] 0
0 K] 4
0 1] ch
0 1] 1
0 1] 1
0 1] 1
0 1] 0
A1 K] i

100% ge.e7E 100%

Total Obzervations 214
Cormectly Clazzified 207

Incorectly Classified 7

Mizclaszification Summany

Obs Mo.
42
43
BE
E7

143
195
21

Actual
2

Lo R R o R L R L )

Predicted
3

3
3
3
3
3
3

Apparent Error R ate

4 5 B
1] 0 1]
1] 0 1]
1] 0 1]
34 0 1]
1] 22 1]
0 13
1]
34 22 13

97.14% 95.65% 8%

0.0327



Output for the PROP Quadratic Discriminant Analysis (continued).

Crozs Yalidation Besults

leave One Out [LO0O] Crozs Validation Besull

LOO Classzification Summary

Predicted Memberzhip
Actual 1 2 K] 4 4] B 7
1 A1 n n n n n n
2 n an 4] n n n n
Z] n n ar n n n n
4 n n n i3] n n n
By n n 1 n 22 n n
B n n n 17 n
7 n n n 10
# Correct A1 an ar i3] 22 17 10

Prop Corect 100% 85.71% 100% 100% 95.65% 85% 76.92%

Total Observations 214
Correctly Classified 202

|nicarrectly Claszified 12

LO0O Mizclassification Summany
Obz Mo Actual Predicted

42 2 3
43 2 3
=1 2 3
67 2 3
62 2 3
143 5 3
145 E 3
152 E 3
158 E 3
163 7 3
164 i 3
170 7 3

LOO Eror Rate  0.0581
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Output for the PROP Quadratic Discriminant Analysis (continued).

Split (50/50) Crosz Yalidation B esukts
WYalidation F ailed Mot Enough Mon-0utliers 9 mes.
Error R ate for Training Set: 0.0561
Error Rate for Test Set: 0.0327

Bias Adjusted Bootstrap [for whole dataset] Crozs Validation Results
Average Correct Training S et 1777000
Average Incorrect Training Set 36,3000
Average Correct Test Set: 1843000
Average Incomect Test Set: 29,7000
Error Rate Biaz: 0.0308
Bias Adjusted E rror B ate: 0.0636

Scatter Plot of Discriminant Scores
162

135

D31

P [ | Tolerance

-165

285
-2806 -1806 -606 194 1064

Ds2

W1 @2 A3D4@s—s | 7

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.
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10.2.3.4 MVT Quadratic DA

1. Click on Multivariate EDA » Discriminant Analysis (DA) » Quadratic DA »

MVT.

= Scout 4.0 - [D:(NaraindScout.For Windows\ScoutSourcelWorkDatinExce\Book\HEMOPHILIA. xls]

ol File Edit Configure Data Graphs Stats)GOF  Outliers/Estimates Regression

-0.0834

GINEEEGE SR GeoStats  Programs  Window  Help

PCA vl 7 | a8 g

Mavigation Panel I i} 1 2 3
Marrie | Giphame | Gioup | 200 | i 8
D:\MaraimScout Fo. . 1 100005y~ 0188
2 MonCarriers 1 -0.1638 -0.1585
3 |MonCarriers 1 -0.3469 -0.1873
4 |MonCariers 1

0.0064

Discriminant Analysis (DA Fisher DA 4
i Linear DA 4 [ -
Quadratic DA+ EEREETIEY
Huber
PROP

T

A “Select Variables” screen (Section 3.5) appears.

e Click on the “Options” button for the options window.

= Options Quadratic MYT Discriminant Analysis

Select Initial Estimates MHumber of Iterations Cutoff for Outliers Select Trimming
© Classical Percentane
AEAIEA [ 10 0.05 01
~ . .
Sequential Classical [Max = 50] Ciitical Alpha Range [0-0.95)
™ Raobust [Median, Ma)
% OKG (Maronna Zamar | Crozz Walidation
[™ Leave One Out [LOD)
" KG [Mot Orthogonalized)
[~ Split
" MCD
[~ M Fold
[ Simple/Maive Bootstap by Data Set
[7 Simple/Maive Bootstap by Group
Prinkt to Output [ Standard Bootstrap by Data Set
* Mo Scores
[ Standard Bootstrap by Group
™ Print Scores
[ Bias Adjusted Boatstrap by Data Set
ok | Cancel | [ Bias Adjusted Boatstrap by Group

o  Specify the options to calculate the robust estimates of the location and the
scatter (scale or dispersion).

o  Specify the “Print to Output.” The default is “No Scores.”

o  Specify the preferred cross validation methods and their respective

parameters.

o  Click “OK” to continue or “Cancel” to cancel the options.

e Click on the “Graphics” button for the graphics options window and check all of
the preferred check boxes.
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A OptionsDiscriminantGraphics

SR bt Scatter Plot Title:
[¥ Scatter Plat | Scatter Plot of Dizcriminant Scores
W Seres Flot Scree Plat Title:

| Scree Plot of Eigen Walues for Fisher DA

Cutoff for Graphics Plat Contour

Critical #lpha 0.05 " MNa Cantaur

&+ |ndividual [d0zut]

MOz Digtribution for Graphics " Simultaneous [d2max]
f* Beta " Chi " Simultaneousd| ndividual
0K Cancel

4

o The “Scatter Plot” provides the scatter plot of the discriminant
analysis scores and also of the selected variables. The user has the
option of drawing contours on the scatter plot to identify any outliers.
The default is “No Contour.” Specify the distribution for distances
and the “Critical Alpha” value for the cutoff to compute the ellipses.
The defaults are “Beta” and “0.05.”

o Click on “OK” to continue or “Cancel” to cancel the graphics options.

Specify the prior probabilities. The prior probabilities can be: “Equal” for all of
the groups; “Estimated,” based on number of observations in each group, or
“User Supplied,” where a column of priors can be obtained from the “Select
Group Priors Column.” The default is “Equal” priors.

Specify the storage of the discriminant scores. No scores will be stored when “No
Storage” is selected. The scores will be stored in the data worksheet starting
from the first available empty column when the “Same Worksheet” is selected.
The scores will be stored in a new worksheet if the “New Worksheet” is selected.
The default is “No Storage.”

Click on “OK” to continue or “Cancel” to cancel the DA computations.



Output example: The data set “Salmon.xls” was used for the MVT quadratic DA. It has one
102 variables in two groups. The initial estimates of location and scale for each group were the
median vector and the scale matrix obtained from the OKG method. The outliers were found
using the trimming percentage and critical alpha and the observations were given weights
accordingly. The weighted mean vector and the weighted covariance matrix were calculated.
The classification rules were obtained using those weighted estimates. The output shows that six
observations were misclassified. The cross validation results suggest the same.

Output for the MVT Quadratic Discriminant Analysis.
Data Set: Salmon (2 variables 2 groups).

{ Quadratic Discriminant Analysis Using MYT Method

Uzer Selected Options
Dated/Time of Computation
Frarn File

Full Precizion

Trmming Percentage
Initial E stimates

Murnber of [terations
Storage Ophions

Group Probabilities:
Graphicz Options

Contour Options

1/18/2008 3:48:10 P

[:AMarainhS cout_For_windowsScoutS ource\ywork D atlnErcelhBook \SaLMOM
OFF

10%

FRaobust Median VYector and OKG [Maronna-Zamar) b atrix

10

Mo Digcriminant Scores will be stored bo Worksheet

Equal Priorz will be uzed

Scatter Plots selected

Contour Ellipzes drawn uzing Individual MD[0.05] end kax MD[0.05)

0.05

Beta Distribution wsed in Graphics

Alpha for Graphics
Diztribution of MO

Total Mumber of Observations 100

Murmber of Selected Vanables 2

Mumber of Data R ows per Group
canadian

50

alazkan

50

Mean¥Yector for Group alaskan
Frezh™skan Marin™skan
9338 4297

Covariance S5 M atrix for Group alaskan
Fresh™skan Marin™zkan
260.6 -188.1
1881 1339

Final Robust Mean¥ector for Group alaskan
Fresh™skan Marin™zkan

98.42 4238

(Complete output is not shown.)
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Output for the MVT Quadratic Discriminant Analysis (continued).

564

Classification Summan

Predicted Membership
Actual alagkan canadiar
alazkan a7 3
zanadian K] 47
# Comrect a7 a7
Frop Correct 4% 4%

Total Obzervations 100
Correctly Claszified 34

Incomrectly Clazsified &

Mizclaszification Summany
Obs Ma. Actual Predicted

2 alagkan canadiar
12 alazkan canadian
13 alagkan canadiar
A1 canadian alazkan
o] canadian alagkan
1 canadian alazkan

Apparent Error Rate

Leave One Out [LOO] Cross Yalidation Bezuks

LO0 Classification Summary

Predicted Membership
Actual alazkan canadian
alaskan 4B 4
canadian K] a7
# Correct 4B 47
Prop Correct 92% 94%

Total Observation: 100
Cormectly Classified 33

Incarrectly Clazsified 7

0.06

Cross Yalidation Results



Output for the MVT Quadratic Discriminant Analysis (continued).

LOO Mizclazsification Summany
Obs Mao. Actual Predicted

2 alazkan canadian
12 alazkan canadian
13 alazkan canadian
a0 alazkan canadian
51 canadian alazkan
53] canadian alaskan
Fal canadian alazkan

LOO Eror Fiate 0.07

Bias Adjusted Bootstrap [for whole dataset] Cross ¥ alidation Resuks
Average Conrect Training Set 909000
Average Incormrect Training Set 91000
Average Comrect Test Set: 26000
AverageIncommect Test Set- 74000
Error Bate Bias: D.0170
Bias Adjusted Emor Rate: 00770

Scatter Plot of Discriminant Scores

[ | Prediction
[ | Tolerance

D31
w

507 507 -40.7 307 207 107 07 93 182
Ds2

alaskan () canadian

Observations outside of the simultaneous (Tolerance) ellipses are considered to be anomalous. Observations
between the individual and the simultaneous ellipses are considered to be discordant.

Note: The drop-down bars in the graphics toolbar can be used to obtain different scatter plots of the discriminant
scores and the variables, as explained in Chapter 2.
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10.2.4 Classification of Unknown Observations

Unknown or new observations can be classified into existing groups. There are certain rules that
need to be followed when using the unknown or new observations.

e The first three letters of the group name of the new or unknown observations should
be “UNK” or “unk” only.

e The set of unknown or new observations should be the last set of observations in a
data set; otherwise, an error message is obtained.

e Unknown or new observations will not be used in the cross validation.
e Unknown or new observations will not be used in the graphs.

e The results of the classification of the unknown observations are printed at the end of
the output sheet.

Last set of observations.

i 1 2 3 : 5 5 7 3 3 10 T
SielD | SamplelD| SLRatio | Time | 1d5 Ca Ne | Kk | © | soa | ax |
188 3 1 2 2 B sm 128 801 1752 1956 1834
8 | 3 1 s 2 § 531 i85 791 1807 ;55 1397
190 | 3 1 4 2 1 0me zi0s 1074 215 2208 1073
191 3 1 4 2 3 a4 18en asE 214 2343 a7
19 | 3 1 4 2 s 03 1732 803 243 266 8.49
193 | 3 1 4 2 5 02 1729 806 2362 1818 1047
tas | 3 1 s 2 § 911 19m asa 541 213 1187
19 | 4 1 2 2 5 M 78 802 4878 1727 57
198 4 1 2 2 T 548 427 BE 1313 507
9 | 4 1 2 2 1 zs 503 4@ w4 124 436
198 | 4 1 2 2 IR 507 384 23 1169 5.86
199 4 1 2 2 :  zm 553 424 3\ 1235 1033
| 4 1 4 2 s EE 7 521 :er 1237 438
| 4 1 4 2 1 2:A 711 545 3954 1165 224
| 4 1 s 2 1 =W 749 se7 423 1072 163
| 4 1 4 2 I 587 52 3888 123 335
04 4 1 4 2 s mm 678 52 4nex 1259 223
a5 | 5 1 2 2 IR ¥ 1) 429 3% 965 1263 1378
5 | 5 1 2 2 1 um 476 422 1048 1322 1363
07 5 1 2 2 3 um 584 512 1276 1533 1279
28 | 5 1 4 2 3 4 812 544 1358 1269 1262
9 | 5 1 4 2 1T s 619 543 1328 1252 1399
a0 | 5 1 s 2 1 m 813 74 1739 1463 1079
| 5 1 2 2 I [T 243 162 729 104 1219
22 G 1 2 2 1 a4 241 167 13e2 04z 1499
23 | 5 1 4 2 s n% 427 284 812 127 118l
a1 | 5 1 4 2 1 2s 485 313 I 046 1018
25 |UNK 1 5 1 1 =m 64 73 4405 297 159
26 unk 1 3 2 1 #E: 753 sl 477 205 266
217 |UNE 1 3 4 1 =a 77 821 4% 219 229
2 |
213 |
220
21 |
2 |
23
24 |
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Unknown observations in-between data.

Error Message.

0 1 2 3 1 5 B 7 8 5 10 11
StelD | SamplelD SLRato | Tme | 15 | Ca | MNa | K o S04 | ALK |
o8 3 1 2 2 & 1511 1za 601 1752 1988 1834
189 3 1 4 2 3 535 asr 7a ia07 218 1347
o0 3 1 4 2 1 100 209 a7 27ds 2208 1073
Ta1 3 1 4 2 3 EXCITT gse 214 248 78
g2 |UNE 1 6 i 1 = 778 821 4a% 218 b¥L]
13 | 3 1 4 2 5 w2 1724 gos 2362 1418 1047
o 3 1 1 2 6 atl 1am gs &4 23 16
1% 1 1 2 : EITE! 762 g0z 4are 177 57
1% 1 1 2 2 1 zme2 548 127 @mie 133 507
197 1 1 2 2 28 503 402 ae 1241 13
198 1 1 2 2 3 218 507 a8 ®3 1 588
5 4 1 2 2 4 s 553 424 3 123 0@
op | LMK 1 5 s 1 2268 63 73 405 227 358
o0t 4 1 1 2 1 2209 711 545 351 1168 324
o 4 1 1 2 : &m 743 Bg7 423 1072 163
o3 Fl 1 1 2 EIcET! 687 B2 3888 1238 X
04 Fl 1 1 2 IR T 678 528 4083 1288 b¥x]
205 5 1 2 2 g 1547 42 1 ags 1283 137
0 5 1 2 2 1 1am 478 422 e 13z 136
oo |uk 1 6 2 1 @ 758 and 477l 205 266
s | 5 1 4 2 g 1408 612 544 138 1288 1262
209 5 1 4 2 1 11 613 545 13 1282 13@
210 5 1 1 2 @ fos2 813 74 1783 1483 1078
11 & 1 2 : EITTH 243 182 72 (NI FAT
12 G 1 2 2 1 1848 241 TR 1ae2 043 149
713 G 1 1 2 . 2 027 281 2812 127 16
14 G 1 1 2 1 288 445 EREI- T 046 1018
715
716
217
718
719
220
221
22

Uzer Selected Options

RobustFisher Linear Dizcriminant Analysis using Huber Influence Function

Drate/Time of Computation  1/16/2008 10:34:14 Ak
From File  D:%Marainh5 cout_For_‘Windows'S coutS ourcetwork D at nE sceNASHALL <ls
Full Frecision  OFF
Influence Function Alpha  0.05
Squared MDz  Beta Distribution
Imitial Estimates  Robust Median Yector and OKG [Maronna-2amar) b atris
Mumber of lterations 10

Storage Optionz
Group Probabilities:
Graphics Options
Contaur Dptions
Alpha for Graphicz
Diztribution of MDg

Mo Discriminant Scores will be stored o *Work sheet
Equal Priors Aszsumed

Both Scree Plot and Scatter Plats are Selected
Contaur Elipzes drawn uzsing Individual +D(0.05]
0.05

Beta Distribution uzed in Graphics

Unknown Group data not inzerted at end of dataset

Please reorder your data to place 'unknowns' Last
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Results of the Classification of Unknown Observations.

568

7 1] 1] 1] i
# Carrect a1 A a7 M
Frop Correct 100% a8.87x% 100% 7 14%

Total Obzervations 214
Correctly Classified 207

Incorectly Classified 7

Misclassification Summany
Obs Mo Actual  Predicted
42 2 3
43 2 K]
BE 2 3
67 2 3
142 5 3
195 4 3
211 B 3
Apparent Eror Flate. 00327

as Adjusted Bootstrap [Groupwize] Cross Validation Bes
Average Comrect Traiming Set 1865000

Average Incommect Traimng Set 275000

Awverage Comrect Test Set: 176.3000

Average Incomect Test Set: 37 7000

Error Rate Bias: -0.0477

Bias Adjusted Eror R ate: 0.0804

Unknown Dbservation Resuks
215 3
216 3
217 3

0
22
95.65%

0
13
5%

CrozsWalidation Results

13
13
100%
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Chapter 11
Programs

Access to two additional standalone statistical packages is provided through Scout. Those
additional packages are ProUCL 4.00.04 and ParallAX.

11.1  ProUCL

ProUCL 4.00.04 is a statistical software package developed to address environmental
applications.

More information on ProUCL 4.00.04 and the ProUCL Technical and the User Guide can be
downloaded from the following web site: http://www.epa.gov/esd/tsc/software.htm.

™ Scout 2008 - [D:¥MarainiScout_Fon_WindowsAScoutSourceMWorkDatInExce SFULLIRIS]
oS File Edt Configure [Data Graphs Staks/@OF  OutliersjEstimates Regression  Mulbivariate EDA  GeoStats N

window Help

a 1 2 3 4 3
count splength | sp-width | ptlength pl-width

Mavigation Panel l

| Mame ||

Clicking on the “ProUCL” option in the “Programs” drop-down menu will bring up a prompt.

e

?’) Clicking OK will skart a ProlCL as a seperate Program

(0’4 | Cancel ‘

When the “OK” button is clicked on, ProUCL 4.00.04 is opened in a new window.
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11.2 ParallAX

ParallAX software offers graphical tools to analyze multivariate data using a parallel coordinates
system. This is a standalone program developed in 1997 by MDG Corporation, Israel.

ParallAX is started in Scout by default whenever the user starts the Scout program. A message
in green text appears in the log panel with the successful starting of ParallAX. The screen of the
ParallAX (see below) will be running in the background. The user can access ParallAX by
minimizing Scout. If Scout failed to start ParallAX, then a message in red text appears in the log
panel stating the unsuccessful starting of ParallAX. The user can then start ParallAX by either
restarting Scout or by going to the directory where the file, “Scout.exe,” is installed on the
computer and then by clicking on the “ParallAX.exe” file twice.

™ Scout 2008 - [D:iMarain\Scout_For_WindowsYScoutSourceyWorkDatInExce lBODY FAT. xls]

B0 File Edit Configure Data Graphs Stats/GOF  OutliersjEstimates Regression  Multvariate ED&  GeoStaks Naglag=nel Window Help

0 il 2 B 4 =
Count | Skinf1) | Thighls2) %7

Mavigation Panel }

Tl
i 1aF A4 110

| MName |‘
r

Clicking on the “ParallAX” option in the “Programs” drop-down menu will bring up a prompt.

Parallix

Scout 2008 attempted to stark ParalléX as separate program. The first entry in the log panel indicates if Scout 2008 was successfully in opening
.q_#/ Parallaz. IF Parallay is not still running the user can restart Parallay by either double clicking Parallax. exe in the Scout directory or restarting Scouk

2008,
(a4 | Cancel |

When the “OK” button is clicked on, ParallAX is opened in a new window.

ParalliX E]@

Eile  Amows Query  Yars  Tupes  wlew Scales  Window  alMalysis  Classifiers  sEtup  Help

| -k | [

’D | Total size: Lewvel:
#‘ Combinaton:
P29 | [Display Type:



Note to the User

When the user wants to work with the software, ParallAX, an Excel file named “ParallAX-
Fix.xls,” provided along with the Scout package, should be opened first. Then, the ParallAX
software can be opened using the drop-down menu. This happens because the standalone
program ParallAX looks for its initializing files in the folder from which the data file (*.xls or
* dat) was last accessed.

If the ParallAX software is opened immediately after opening the Scout program, then the
process explained above does not need to be done.

The ParallAX User’s Manual along with classification examples are provided in the appendices
that follow.
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Chapter 12

Windows

™ Scout 4.0 - [D:¥MaraintScout_For_Windows\ScoutSourcelWorkDatinbExcelBRADU]

oY Fle Edt Configure Data Graphs Stats/GOF  Outliers/Estimates Regression  Mulbivariate ED&  GeoStats  Programs
Mavigation Panel I 0

1 2 3 4 5 5 Casrade

Marne Count y « X2 Pe] Tile Hotizontally {
D:4MaraimSeout_Fo T 1 a7 10 136 283 | Tieierticaly:
PCA MCD ost - 2 2 101 ah 205 289 v 1 DiiMaraintScout_For_MindowsiScoutSourcelworkDatInExcel\BRADU
PCA_Load gst 3 3 103 107 02 3 2 PCA_MCD. st
4 4 95 93 25 7 3 PCAload.0st

Click on the Window menu to reveal the drop-down options as shown above.

The following Window drop-down menu options are available:

Cascade option: arranges windows in a cascade format. This is similar to a typical
Windows program option.

Tile option: resizes each window vertically or horizontally and then displays all of the
open windows. This is similar to a typical Windows program option.

The drop-down options list also includes a list of all of the open windows with a check mark in
front of the active window. Click on any of the windows listed to make that window active.

This is especially useful if you have more than 20 windows open, as the navigation panel only
holds the first 20 windows.
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1.0 Introduction

ParallAX is a novel, some say revolutionary, tool for effectively analyzing multivariate data
sets, 1.e., software, discovering patterns, properties, and relations. There are two main parts for
the ParallAX: the Visual Analysis portion (for doing what sometimes is called Visual Data
Mining or Exploratory Data Analysis), and the Automatic Classifiers that find rules to
distinguish elements from a given category or set of categories. The software is based on the
Parallel Coordinates (abbreviated ||-coords) methodology, which transforms the search for
relations in a data set to a pattern recognition problem. Intuitive interactive commands enable
the user to work with data sets having many (i.e., hundreds or more) variables that are displayed
without the loss of information. Of course, to really understand and appreciate this statement,
one needs familiarity with the ||-coords methodology. However, such familiarity is not necessary
in order to become an expert user of ParallAX and have lots of fun in the process. Everything
needed is described below using as an example a real data set.

The main window of ParallAX, shown in Figure 1, has the familiar structure of GUI’s in
popular Windows applications. Starting from the top, it is composed of the: Operational, Graph,

Queries and Summary areas.
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Figure 1. The ParallAX main window or Graph area.
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e The “Operational” area consists of a main menu with the related pull-down menus, and a

toolbar including the most frequently used operations for one touch access. The toolbar is
self-explanatory and the names of the buttons are displayed when the mouse icon is pointed at

them.

The data set input is a table; the precise format is given below, where each column consists of
values of a single variable. In ||-coords each variable has its own vertical axis. Typically, the
scale ranges from the minimum to the maximum value occurring in the data set for that
variable (see, for example, the 2" axis labeled “Time” in Figure 1). A data record is on a
single row of the table with the values for each variable separated by a blank. It is represented
in ||-coords by a polygonal line whose vertices are at the position on each axis corresponding
to its value for that variable. For example, the data item (3, -2, 0, 1.5, -4) is represented by the
polygonal line having a vertex at a value of 3 on the first axis, a value of -2 on the second

axis, 0 on the 3", 1.5 on the 4™ and —4 on the 5" (last) axis. The “Graph” area of the
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ParallAX’s main window includes the axes, with their minima and maxima, the variable’s
label button on each axis, and the polygonal lines representing the data. The user may choose,
using the sEt-up pull-down menu (second from the right), either a white or a black (which is
the default) background for this area. A particular axis may be selected by pressing its button.
A large number of variables may generate a very dense display. In such a case, the user may
choose either to see the entire graph or to scroll through enlarged portions of the graph (these
options are found using the sEt-up menu). Note: Very important - in the last line of the sEt-
up menu make sure that the “sort points at graph loading” on the last option is chosen. This
is especially important for improving the performance with large data sets. In real data sets
some of the variable values may be missing. In ParallAX, a point below the actual minimum
value on the variable’s axis indicates missing values for some data items. In the example data
set shown in Figure 1, the variable, “FileTable,” has several missing values, which are

displayed by the lowest point on the third from the left axis.

Below the Graph is the “Query” area and contains a rectangular button for each query. The
button’s color is the same as the color of the polygonal lines selected by the query (see Figure
4 for an example). The rectangle contains the query label (“q” and the number in the sequence
of invoked queries), size, and percent (% of the total data set captured by the query). As the
analysis progresses many query boxes may accumulate. They may be moved with the
horizontal slider under the query rectangles. Clicking on the small “Edit” button, in the query
rectangle, produces a list of other color choices.

In the “Summary” area, in the bottom right, general information is displayed. It includes the
total number of polygonal lines currently appearing, the level of isolation (how many queries
have been sequentially isolated to produce this state), the active query type, and the active

query logical (Boolean operator) combination. These terms are defined below.

Scatter plot windows (see Figure 2 for example) are opened by selecting a pair of axes
buttons (they do not have to be adjacent) and then clicking on the iconized button fourth from
the right. The representative points of the polygonal lines selected in the main window are
also highlighted by the same color. Several scatter plot windows may be opened

simultaneously.
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Figure 2. ParallAX scatter plot of the “Computer” number
versus the “SwapSpace” variable of the example data set.

2.0 Visual Data Exploration
2.1 Getting Started

This is a good time to install ParallAX with all four of its directories: Bmp, Dat, Ini and
ParallAX, into a separate directory. It may be helpful to prepare a data set for practice as we go
through the paces. Call your data set any name you like and use the extension .dat, e.g.,
testdata.dat. The data set format is:

# Comment — Write something about the data set to help your recall later on
nvars = # Here write the number of variables
ids =  # Here write the labels (as short as possible) for the variables separated by blanks
undefined data = M # You can define any symbol here and use it consistently below
data =

Data table is placed here. Each data item is in a row with blank (not tab) separated values.
Missing data values are marked with M (or any other symbol to the right of the relation,
“undefined data =)

For example,

#  This is a small data set with 5 variables, 2 data items, and 1 missing value marked by M
nvars = 5

ids=ABCDE

undefined data=M

data =
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1 44 M 175 333

3 31 9 911 82

Input the data set into the “Dat” directory of ParallAX. From there double-click on the ParallAX
icon and the Main Window should appear on the screen. Click “open” in the “File” menu and the
list of the data sets in the Dat directory appears. Select a data set and press OK; a bunch of
polygonal lines appear. Do not let the picture intimidate. Very soon you’ll learn to discover
quite a bit from it. This is done by means of queries which are commands selecting subsets of
the data set. The simplest queries are defined by two arrowheads which may be placed anywhere
in the main window (on the axes or between axes, depending on the query type). The colored
polygonal lines lying between the arrows are those included in the query. From the sEz-up menu,
the background may be changed to white (black is default), and the distance between the axes
may also be changed. The default is “Viewing the whole graph.” 1f there are many variables, the
distance between the axes may be increased and then the graph may be “scrolled” using the
slider under the axes labels. The permutation of the axes may be changed using the “Permutation
Editor,” whose button is iconized by a Rubik’s Cube discussed later.

A query may be combined with other queries using set (Boolean) operators (union, intersection,
and complement). Many complex queries can be constructed and displayed, either one at a time
using the single “?”” button (default) or all at a time with the “???” button on the lower left
corner. From the Query menu above the button iconized by a stethoscope some or all of the
queries may be deleted. To concentrate on the selected query, isolate it using the upper-half of
the fourth button from the left. The previous state can be recovered with the lower-half button.
Besides the queries, there are other features in addition to the Automatic Classification

Algorithms.

2.2 Queries

2.2.1 The Basics
ParallAX’s three basic queries are:

e The Interval denoted by I — defines an interval range on a specific variable axis. The end-
points are selected delimiting the variable’s values within the interval, and, in turn, the

polygonal lines (data items) having these values.



e The Angle denoted by A — defines an angle range between two variable axes, and, in turn,
selects the polygonal lines having segments within this angle range.

e The Pinch denoted by P — selects a subset of the polygonal lines between a pair of axes.

2.2.1.1 Interval Query

The Interval is the most frequently used query. It is activated by selecting its icon, /, on the
tool bar and also selecting the desired variable axis. Placing the cursor on the axis and clicking
the left mouse button causes down and up pointing arrowheads to appear. Each arrowhead is
then dragged in the desired directions to specify the upper and lower end-points of the required
interval. The polygonal lines, which are positioned within the specified interval, are selected. On
each arrowhead the variable’s value at that position is displayed next to it. This feature may be
switched off using the sE#-up button (Hide Interval Limits). An example is shown on the second
axis in Figure 3. To move a particular arrowhead, it is first selected by pointing at it with the
cursor and pressing the left mouse button. When one arrowhead is selected, it is enlarged and the
other becomes deselected. On occasion, it is useful to select both arrowheads. Pointing at the
deselected arrowhead and pressing the right mouse button selects it. Once both arrowheads are
selected, dragging on any of the arrowheads moves the whole interval while preserving its
length. When a specific value is wanted for an interval end-point, the particular arrowhead is
pointed at and the left mouse button is double-clicked. A dialogue box appears and the desired
value is entered.

Within the query rectangle appear the query number (q#), and the percentage (% of the total)
of the selected polygonal lines. The color of the query rectangle is the same as that appearing on
the selected polygonal lines.

The “Query” pull-down menu (third position from the left) offers choices for query deletion
and new query creation. New queries may also be added with the button iconized by a
stethoscope. Having generated one or more queries, one may want to delete some of them.
Clicking on the “New query” produces a new current query and an associated differently colored
query rectangle. All the subsequent query commands will act on this and not on the previous

queries.
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Figure 3. The Interval query applied on the second (Time) axis. Note the arrowheads with
the indicated variable values. Here, the bottom arrow (enlarged) is selected.

2.2.1.2 Angle Query

One of the most valuable relations (correlations) among an adjacent pair of variables occurs

when the corresponding portion (between the adjacent axes) of the polygonal lines are parallel
(or almost parallel) segments; or those lines intersect (if at all) outside the pair of adjacent

parallel axes. This, of course, is something that the user learns to “extrapolate” with practice.
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Figure 4. The Angle query shown between the third and fourth axes. Note the selected
polygonal lines (colored yellow) whose segments between those axes have the specified
angle range.

From a basic result of the parallel coordinates methodology, it is known that this pattern
corresponds to a positive correlation between the two variables. Among other reasons, the Angle
query is provided in order to search for such parallel or nearly parallel lines. To activate it, the
icon A is selected on the toolbar. Place the cursor on the centerline of the right axis, say X;, and
click the left mouse button. Two arrowheads connected to the centerline of the left axis, X,
appear and an example is shown between the third and the fourth axes in Figure 4. The selected
arrowhead is moved to the desired angle. The same can be done, after selecting it, with the
second arrowhead. This results in the coloring (i.e., selecting) of the polygonal lines whose

segments between these two axes are within the specified angle range.
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2.2.1.3 Pinch Query
The Pinch query is complementary to the Angle type, in the sense that it looks for the

intersection points between a pair of adjacent axes. Reasoning geometrically, this pattern

corresponds to negative correlation between the adjacent variables.
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Figure 5. The Pinch query shown here between the third and the fourth axes.

As with the other queries, the Pinch is defined by two arrowheads that can, in principle, be
located anywhere on the graph. Typically, the arrowheads are located between the adjacent axes,
X; and X;1;. All of the polygonal lines whose segments between those axes (or the extension of
the segments outside of those axes) that pass between the arrowheads will be included in the
query, as in the example shown in Figure 5.

Although those queries may be activated (started) from the main window, they also appear on
the corresponding scatter plots and may be manipulated from there by dragging a red square in
the scatter plot. The arrowheads are represented in the scatter plots by lines (there is a basic

point-to-line duality, or correspondence, between orthogonal and parallel coordinates). It is
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instructive to view those queries also in the scatter plot window. As an example, in Figures 6, 7,
and 8, the scatter plot counterparts of the query types shown in the relative Figures 3, 4, and 5,
are displayed (for different axes). Note that the axes labels have a button from which a different

axis may be selected, thus changing the scatter plot.

q
1 23
Time [ !
1
Create polygon FileTable
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Figure 6. The Interval query on the scatter plot of FileTable vs. Time.
Compare with Figure 3.
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Figure 7. The Angle query on the scatter plot of InodeTable vs. FileTable.
Compare with Figure 4.
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Figure 8. The Pinch query on the scatter plot of InodeTable vs. FileTable. Compare with
Figure 5.

2.2.2 More Queries
2.2.2.1 Polygon
Another very useful query is the Polygon that is activated and operated only on a scatter plot.

The polygon is specified by sequentially marking (clicking) with the cursor the vertices in the
scatter plot (there are no restrictions and the polygon may have as many vertices as needed and
may be convex or not). The construction of the polygon commences after the “Create Polygon”™
button is selected. All the points inside the polygon are included in the query, and the polygon
may be moved after its creation, either all of it or a particular vertex (chosen by the user), by
selecting and dragging any of the vertices. This query is especially useful when there are points
which cannot be picked conveniently by means of the other query types (see the example in
Figure 9). The polygon may be deselected with the lower button and deleted with the “Delete
Query” option of the Query menu.

2.2.2.2 Complex Queries

A single query defines a subset of the data elements. A complex query is the result of
combining a set of queries by means of the set (Boolean) operations: union (L), intersection (M),

and complement. The corresponding operator buttons, appropriately iconized, (as digital



electronic Boolean operators), appear in the second position from the left on the toolbar. The
complement (or negation) is relative to the data elements displayed when the query atom is

defined; i.e., if the set of data elements included in the original query is denoted by 4, and the
29116
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Figure 9. The Polygon query.

set of displayed data elements is denoted by P, then the complemented query, A, will be defined
as:

A=P\A ={a;| a;e P,aie¢ A} (11)
To define a complex query, the desired set operation must first be selected (the and, N, operation
is the default). To construct the complement of a query, the negation operation is selected before
the query is constructed. For the next query, ParallAX will apply the existing combination of the
selected buttons (union, union + negation, intersection, or intersection + negation). So be careful
with this; it requires care. A very useful option is the construction of multidimensional intervals
or a “multidimensional box.” Select the appropriate axes buttons and also the interval, 7, button.
Place the cursor at any of the selected axes and click the left mouse button; pairs of arrowheads
will appear on all of the selected axes. Dragging any one of the arrowheads causes all of the

arrowheads pointing in the same direction to move simultaneously.
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2.3 Supplementary Operations
ParallAX has additional operations to help the exploratory data and analysis which act on the
axes, the display, or portions of the Graph.

2.3.1 Inverting Axes

This operation is complementary to the Angle query that searches for groups of polygonal lines
that (nearly) intersect outside a pair of axes (i.e., clusters having a positive correlation for a
particular pair of variables). The intersections may be quite distant and difficult to spot. By
contrast intersections in between a pair of axes are much easier to notice. Inverting one of the
adjacent axes (i.e., interchanging the minimum and maximum of the variable) reverses the
situation, that is, the distant intersections now appear as intersections between the axes and vice
versa. Such clusters of polygonal lines can now by picked with the Pinch operation. To carry
out this operation, the axis to be inverted is selected and the “Flip axes” button (iconized third
from the right) is clicked and has its minimum and maximum values marked in red (see Figure

10).
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Figure 10. The ||-coords graph with one inverted axis (SwapSpace).

2.3.2 Permutations

Even though mathematical relations have clear patterns (see Bibliography) which are easily
recognized by their regularity (see any elementary paper on ||-coords), the graph of most data sets
do not look terribly “regular.” However, patterns between adjacent axes are the easiest to
discover. In order to discover all possible pair-wise patterns, it is not enough to look at the |-
coords graph in the form that it first appeared. Rather all of the possible adjacencies need to be
inspected. It is possible to change the order of variables in a very efficient way. ParallAX

allows the user to chose about N/2 (actually [y / 2] ), where N is the number of variables,

cleverly constructed permutations which contain all possible adjacencies, and these are
automatically provided. Click the Rubik’s cube button, the fourth from the left icon, and those
permutations are listed on the upper right window. It is a good idea to view the data with each

one listed, and then construct, by means of the permutations editor there, a customized
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permutation containing the axes adjacencies of choice. Of course, a particular axis can be
included more than once and in any position. If it is desired to view as adjacent a particular pair
of variables, then enter that pair in the lower left editor window and a permutation is displayed

where the required adjacency appears and the remaining variables are randomly ordered.

2.3.3 Isolate/Previous/Scale

After defining a query (or a set of queries), the user may wish to concentrate on the selected
data items (i.e., polygonal lines). As already mentioned, in order to do that, clicking the top half
of the fourth button from the left may isolate the current query. This yields a new graph
containing only the data selected by the previous query. The graph is displayed with the values
of the minima and maxima of the variables in the previous graph (before isolation). In order to
update the minima and maxima of the new graph, which enlarges the space used by the graph,
the user may choose Scales from the menu. Clicking on the button below Isolate returns to the

Previous state.

2.3.4 Relative Complement

A query defines a subset of the data elements. When two or more queries have been defined,
two or more subsets of elements have been specified. The user may wish to use set operations,
such as the union (L), intersection (M), or relative complement (\), to operate on the queries
(sets). The use of the union and intersection operations has already been described (see
“Complex Queries”). The “Relative Complement,” iconized by \, is a specialized and advanced

query. When choosing this function, ParallAX displays the list of all of the possible
n
combinations (2(2) possible combinations). The user chooses one of them, and a new query is

defined which is the set difference of the 2 queries chosen; i.e., if the first query is denoted by Q4
and the second query is denoted by O, the resulting query, denoted by Ok, is:

Or=04\Op={ai| ai€ Qs,ai¢ O} (12)
The new query is not directly composed of basic queries or polygons and it depends on the two

other queries.
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2.3.5 Zooming
When we want to view a portion of the graph in greater detail, a rectangular portion of the graph
can be isolated and enlarged by means of the “Zoom” button, iconized by a magnifying glass.

An example is shown in Figure 11.
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Figure 11. The Zoom function.

2.3.6 More Supplementary Operations

e Save as (from the “File” menu). It is possible to save, in the Dat directory, a subset of the data
set by a separate name. This can be done by isolating the data set and using the “Save as”
option from the File button. A dialogue box appears. Enter a file name with the .dat extension
and the file is saved.

o Select off screen arrows (from the “Arrows” menu). Pointing at it and clicking the left mouse
button selects an arrowhead. At times, arrowheads get off the screen. In order to delete them,

they need to be selected first by means of this function.
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e Delete selected arrows (from the “Arrows” menu). One may select, or delete, as many
arrowheads as desired. If both of the arrows of a query are deleted, then the whole query is
deleted. If only one arrow is deleted, then the query remains unbounded on that side, and all
of the data elements found lower or higher than the remaining arrow are included in the query.
This is a good way to delete a query, when many queries are operating on the data, without

destroying other queries that may be present.

e New query (from “Query” menu) - A new query rectangle is added and becomes the current

query.

o Clear current query (from “Query” menu) - All of the displayed queries are cleared: all
arrowheads are deleted and the polygonal lines receive their original color. So, make sure that

this is what you want before using.

e Delete variable (from the “Vars” menu) - If the user presses some variable(s) button(s), and
then chooses this function, the selected variable(s) are deleted from the display. This is
equivalent to choosing the current permutation without the chosen variables. This can be very

useful when there are many variables.

e Find variable (from the “Vars” menu) - In a data set with a large number of variables, it is
hard to find variables by their names. ParallAX comes to the rescue. Choose this from the
“Vars” menu and a list of variables in alphabetical order appears. Choose the desired variable,

and on the Graph the corresponding axis button is shown selected (i.e., depressed).

e Show one query | Show many queries - The user may choose to see a single query or many
queries simultaneously by selecting “?” or “???” respectively in the lower left hand corner.
When “?” is selected, and there are several queries, the active query is chosen by selecting the
appropriate query rectangle. Viewing many queries in large data sets still may cause some
problems with the query colors; hopefully it will be fixed soon, so some care should be

exercised.

The Vars menu contains a number of useful functions.
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1. When there are a large number of variables, it is tedious searching for individual
variables. Clicking on “Find Variable” produces the list of variables alphabetically.
Selecting the desired variable in the list selects the axes button of this variable. By the
way, this renders that variable axis ready to operate on with the Interval Query.

2. At times it is useful to know the order in which the data appears in the data table.
Clicking on the “Add Index Variable” produces a dialog box where the name of the new
variable can be specified. The variable then appears at the right end of the graph and has
as the value of each data item its position (rank) on the data table at input.

3. On occasion the user wants to designate a subset of the data set into a separate category.

In such a case, the “Add Categorical Variable” 3"

entry on the menu is invoked and
given whatever name is desired. The new variable then appears on the right hand end of
the graph with the designated subset assigned the category value 1 while it’s complement
takes the value 0. Further subdivisions of the data set can be assigned other category
values using the “Set Category” option on the menu.

4. One or more variables can be omitted from the graph by selecting the variable buttons

and then invoking the “Delete variable(s)” options.

24 Preprocessing

Some operations may be used for preprocessing to provide the user with insights on the
structure of a data set easily and early in the analysis process. Then, the data items or variables
that seem superfluous, and whose presence may obscure the information, can be eliminated. In

fact, such elimination plays an important part in focusing on the desired information.

2.4.1 Zebra

Zebra (banding) is a multidimensional contouring operation. It is designed to portray easily
variations in al// of the variables due to variations in one variable. To operate this function, select
the axis of the desired variable and the “Zebra” button iconized in the last (most right) position
of the toolbar. In the dialogue box that appears, enter the number of intervals. The selected axis
is then divided into equal length intervals. It is a good idea to start with 2, view the result and
then increase the number. The polygonal lines ranging in each interval are colored by a different
color. The result of this operation is a contoured view of the data, highlighting different aspects,

especially dependencies, intersection points, data clusters and extreme points and others. It can
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also point out areas with high density and reveal periodic events. An example of Zebra results is

shown in Figure 12.
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Figure 12. An Example of the “Zebra” function applied with 7 subdivisions on the
Computer Axis (1 from the left).

2.4.2 Outliers

This is an automated algorithm suited to large data sets having a number of outliers. In
general, application of this algorithm is recommended only for expert users (which, of course,
you will soon be). It is a good idea to study the outliers of a data set and try to determine the
reason that they are outliers. On the other hand, outliers determine the display scale and
removing them enlarges the scale for the remaining data. This allows for the observation of
patterns that may be hidden by the high density of data. It is really best to manually remove the
outliers after examining each one of them. A convenient place to start eliminating data is close to
the limits of the axes. Points near the limits and far from the large mass of data are good

candidates for elimination.
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The Outliers function starts an iterative algorithm that performs this task. The user may

supply some parameters to the algorithm, or leave their default values. The parameters are:

e The maximum (relative) number of outliers (the default is 5%). If the algorithm reaches this
value, it will stop searching fore more outliers.

e A factor, whose default value is 6, which influences the distances between elements on an
axis; considered by the algorithm as a starting point for the outliers search.

e A divider (whose default value is 10) indicating the length of a segment on the axis. If we
denote the divider by d and the axis length by /, the algorithm will ignore outliers whose

distance to the closest element (non-outlier) is less than // d.
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Figure 13. The result of the Outliers operation (before user approval).

The algorithm starts looking for outliers from the leftmost variable in the displayed permutation
to the right. After finding all of the outliers on an axis, it passes to next axis, until the last one in
the permutation is reached. Then, it starts again from the first axis, and so on. The algorithm
stops when the maximum relative number of outliers is reached, or, if that does not happen,

when it does not find any more outliers after passing on all of the variables in the permutation.
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After that, it displays all of the outliers found highlighted (colored in green) and waits for the
user to approve this. The user may not approve of the choice, retaining the current graph.
Otherwise, the algorithm issues an Isolate operation and displays the graph without the outliers.
Even in this stage, there is a possibility to return to the previous graph, by performing the
previous operation. The example shown in Figure 13 is the result of the Outliers function applied
to the demo data set, with the default parameters, before the actual removal of the outliers (i.e.,

before the user approved it).

3.0 Automated Classification

Even though the Visual Exploration is fun and effective, it requires time and skill. Hence, the
most frequent and insistent requests have been for automation of at least some of the discovery
process. Some of the functions we have already presented have, of course, elements of
automation. It was recently discovered that it is possible to do automatic classification (patent
pending) effectively based on |- coords. Given a data set, P, and a subset, .S, a rule is sought that
distinguishes elements of § from the others. Obviously, we would like this to be as accurate and
efficient as possible. This is the basic classification problem and it can be directly generalized to
the case where there are a number of subsets (also called categories) that need to be
distinguished from each other. There are important trade-offs between the rule’s complexity and
precision. In our case, we are able to state the rule precisely (unlike the “learning” of “black
boxes”) as well as visually. This as we will see, turns out to be very helpful. In addition, our
algorithms find the minimal subset of the variables needed to state the rule and order these
variables according to their information content. The basic idea of our algorithms is geometrical
and it entails the construction of a (hyper) surface that contains as many of the points of § and as
few of the points of P-S (the complement of §). This brings up the important matter of
measuring the precision of the rules obtained by our classifiers. We discuss this later on. There

are three classifiers and they are found by clicking the “Classifier” menu’s first line.

3.1 Wrapping

The simplest approach to geometrical classification is to wrap, in some efficient way, the points
of § and then state, in as simple a way as possible the rule (which is actually the description of

the wrap — an approximation of a convex surface). The algorithm, even at the expense of some
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precision, further simplifies the description of the wrap. The rule is stated in terms of conditions
on the variables needed to fully state the rule. Also these variables are optimally ordered (in
terms of their information content). To apply this and any of the other classifier algorithms, the
subset § needs to be specified and used as the input. In many data sets, there are one or more
variables that specify various categories or classes. In that case, using the interval query isolates
a specific category. Otherwise S is defined by means of the queries. When this is done, choose
“Wrapping” from the Classifiers menu. The “Select axes” dialog box appears and provides an
important choice; namely, to choose the variables in terms of which we would like to have the
rule stated (think of the many applications where this is essential). We can “Select all” with the
button and then skip the ones we want to skip. If the subset S is specified in terms of interval
queries only, be sure to deselect those variables at this stage or the rule is likely to be a trivial
restatement of the defining conditions. Click the OK button and the “Classifier summary”
appears with the expression with the approximate conditions for the rule as well as the
percentages of the misclassification for the “Training phase” (see below). That is, “False
positives” refer to those data items in P-S that were misclassified as belonging to S, while “False
negatives” are data items in S that were misclassified as belonging to S. If those errors are small,
then this rule may suffice. Still, look in the Graph where the last query displayed contains all of
the elements of § and the “False positives.” The variables needed to state the rule are displayed
first with arrowheads in the suggested order of their importance. It is possible to save the rule
and to apply it to another data set. To do so, select the “Save classifier” option and give the rule a
name in the dialog box that appears; click OK and the rule is saved in the Data directory. To
apply it again on another set of data §”’, which is already displayed in the graph, select the
category variable on which the rule is to be applied and also select the “Apply classifier” to chose
the rule from the list. The result has the format already described.

As an example, we can see in Figure 14 an Interval query on the axis INodeTable. After
performing the wrapping algorithm on all of the axes except for the INodeTable, the resulting

query and permutation are shown in Figure 15 and the difference in Figure 16.
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Figure 14. An Interval query defining the input set in the Wrapping operation.
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Figure 15. The result of the Wrapping operation.
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Figure 16. Set of “unwanted” elements by the Wrapping operation (obtained using the
relative complement, “\”).

3.2 The Classification Process

ParallAX includes two very advanced classifiers: the “Nested Cavities” NC and “Enclosed
Cavities” EC. Compared with 23 other well-accepted classifiers, as applied to some benchmark
data sets, in all cases, they were the most accurate. Also, they are computationally very efficient.
The classifiers exploit the inherent property of this tool, visualization, as well as the
computational advantages of the ||-coords methodology. The classification results are displayed
graphically on the screen giving the analyst the ability to understand the results. The ability to

visualize the rules is lacking in many other classifiers.

The classification problem arises in a variety of fields and can be divided into two phases. In
the training phase, the classifier “/earns” to discriminate between classes using a data set called
the training data, consisting of solved cases having samples associated with correct classification.

The output of the classifier in our case is a rule, which is based on the solved cases. Then, there
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is the testing phase, where the rule is applied to a new data set and the results it provides are

compared to the known correct cases. Figure 17 illustrates the classification process in general.

Solved } Learning

cases J

a) The training phase.

Rule

\4
A

New ] R f Comparisons

cases J Rule ’L

b) The testing phase.

Figure 17. The classification process.

3.2.1 Analyzing the Errors

For the classes designated as “positive” and “negative,” the error committed when predicting
a positive sample as negative is called a “false negative” and the error committed when a
negative sample is predicted positive is called a “false positive.” The error rate of these two types

of misclassification is calculated based on the following equations:

number misclassified positive cases

False positive error rate = -
number of negative cases

number misclassified negative cases

False negative error rate = —
number of positive cases

Keep these formulae in mind when examining the error rates given by the classifier.
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3.3 Nested Cavities Classifier — NC

This new classifier is based on an iterative top-down process of creating a (hyper)surface
containing as many points of the designated subset, S, and as few points of its complement, P-S.
The algorithm involves creating an exterior wrap, then constructing and removing a wrap
containing all the unwanted points (and some of the wanted ones), then returning a smaller wrap
with the wanted points (and some of the unwanted ones) creating a fine nesting of cavities which
provide an increasingly more precise approximation for the desired subset, . If this process
converges, and it does NOT always converge, then the result (i.e., the approximate description of
the (hyper) surface) is the rule, which can be quite complex. Again it is stated as conditions on
the variables needed for the classification. The queries that add points have an even number
while those that remove points have an odd number (except for the first one which contains the
class elements). To apply the NC, select the class on which the rule is to be defined, choose
“Nested Cavities” from the Classifiers menu, select the variables as for Wrapping, limit the
number of iterations allowed (100 is default) and then press OK. In the beginning, especially for
large sets, it is worth picking a smaller number of iterations, and if convergence looks likely,
then remove the iteration restriction. A great deal can be learned from studying the classification
rule. Notice the leading list of variables occurring in the successive iterations. Those who tend to
occur consistently or most frequently are the most important and there are other clues that come
with experience. An example of the spectacular results that may be obtained is shown in Figures
18 and 19. The classifier was applied to a data set with 32 variables and 2 classes shown in
Figure 18. It is sought to find a rule to distinguish elements of class 1 from its complement class
2 whose elements are colored black. Notice how interwoven the two classes are as shown in the
scatter plot of the first 2 variables shown in Figure 18. The result is displayed in Figure 19. The

NC is the one used most frequently, as it tends to be more successful.

3.4 Enclosed Cavities Classifier — EC

On occasion, when the NC does not give satisfactory results, it is worth applying the next
classifier EC. Basically, classification using the EC is based on obtaining an exterior wrap of the
wanted data points. Then, removing the unwanted points with cavities that do not contain any of
the wanted points. The result is something akin to “Swiss cheese.” The operation is the same as

for NC with the EC tending to be slower especially for large data sets. It is advised to use the
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default settings of the 2™ dialog box until enough experience has been obtained to make

judicious choices.

3.5 Error Analysis
Once a rule is obtained, it is possible and desirable to assess its precision. Two ways are

provided and they are accessed from the “Check Classifier” option of the Classifier menu.

3.5.1 Train-and-Test

This is the most frequently used method. The data is randomly split in two. The usual
proportions are either 2/3 or 1/2 for training, i.e., deriving the rule, and applying the rule (i.e.,
testing) on the remainder. The actual portion chosen for training is prescribed in the dialog box.
Then the classifier used is chosen (Note: Extended Cavities and Wrapping with Cavities are
synonyms for NC and EC respectively). Make sure to use the same list of variables and iterations

as used in the derivation of the rule.

3.5.2 Cross Validation
Here all of the data set is partitioned in a number of subsets and split randomly for training and

testing. This gives a better error estimate than Train-and-test but also takes much longer.
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Figure 18. A real data set with 32 variables and 2 classes (categories) — the rule is sought
for class 1 shown in color. The complement class 2 is shown in black. In the insert is the
scatter plot of the first 2 variables in the permutation on input. An effective classification
should lead to a physical separation of the 2 classes.
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Figure 19. Above are seen some of the results obtained by the NC classifier. It turns out
that only 9 of the variables are needed to specify the rule. They are placed up front sorted
according to their information content. In the insert is the scatter plot of the first two
variables showing a remarkable separation. Viewing the remaining scatter plots of the
variables shown in the list provides a “road map” to actually seeing the RULE as
represented by a 9-dimensional hypersurface embedded in the 32-dimensional space of the

original data set.
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The reader is requested to send any questions or comments to

A. Inselberg aiisreal@math.tau.ac.il

or mail to:

MDG Ltd

36A Yehuda Halevy Street
Raanana 43556, ISRAEL
Tel/FAX: 972 -9 -771 - 9726

Thank you for using ParallAX!
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Classification Examples

The following is an example using the data set, Allsites.dat.

" parallAX - C:/Documents and Settings/USER/Desktop/Lfparallax/parallaxiparallaxreg/dat/ALLSITES . DAT =
File  Arows  Querp  Yare  Types aMalvsiz  Classifiers  sEtup  Help

4 | Total zize: 175 Level
9 i |Combination: dnd 0
& :I i IlDisp‘Iay;Dne Type:Mone

Above is the full data set; there are eight sites considered as the “classes” for classification.




ParallAX - C:/Documents and Settings/USER/De: pll!parallax/parallax/parallaxreg/dat/ALLSITES.DA

File  Amows Query Vars Twpes wlew Sceles  ‘window  aMalysis  Classifiers  sEtup  Help

Total size: 175 Lewvel:
Combination: And 0
Display:.0One  Typelnterval

Site one is selected and is the input to the classifier.

ParallAX - C:/Documents and Settings/USER/Mesktop/l/parallax/parallax/parallaxregfdat/ALLSITES. DAT
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Wrapping
Display classifier expression
Save classiier Enclosed cavities (I
Apply classifier

Check classifier

Total size: 175 Level
Combination: And [t}
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The “Classifiers” button is selected by the cursor and then the “Nested Cavities” is chosen,
which is the most powerful algorithm (there are 3).

= - =[]

Fle Amows Query Yas  Types  wlew Scales  Window aMalysis  Classifiers  sEtup  Help

cl
Select al Unselect all

Bt Size: 41
wl Broni: 234

This window appears. Click on “Select All” and deselect “Sites,” which is the class variable.
Then click OK.

™ MEE
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& Automatic

£ Manual
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[Total size: 175
Combination. And
ayOne  Typelrterval
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The next box appears; click OK (accept the default).

™ - =[]
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|| Expression:
q2
g2

K:1074- 2445 and
S04:243-4271

Mumber of emors:

W False positives: 0.00%
B False negatives: D00%
Total eror rate: 0.00%

mdi | Size: 41
2 Prent: 23%

" start

The classification result is in the above window.
The rule distinguishing Site 1 from the rest is:

K: 10.74 - 24.45 and SO4: 24.3 - 42.71.
Those are the ranges for K and SO4. Note that the axes order is changed, with K being first (K is
the best single predictor), SO4 being second and Site (the class variable) being last. Next, the

rule’s precision is tested.

From the boxes on the bottom left, select the BLUE (leftmost) box.
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Choose a classifier type:
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Gamplesa

i Bize; 41 | Bizerdl Eie[Sizer 41 Total size: 175 Level
Wl Pront: 2305 | 42 Pront:25% | Fl Proni: 23% Combination: And i
Typeinterval

Click on “Classifiers,” then (at the bottom) “Check Classifier” and then choose “Train-and-
Test.”

In the box which appears next, input 67 (chooses at random 67% of the data) and pick “Nested

Cavities” (for the classification algorithm). A rule is then constructed based on 67% of the data,
which is then tested on the remaining 33% of the data; click OK.
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Again, “Select All” and deselect “Site,” which is now at the end of the list; click OK.
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Check classifier results

Mumber of errars:
False positives: 2.22%

False negatives: 0.00%
Total emor rate: 1.72%

sample-id!

it Size: 41 B Bizesal it Size 41
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In the above window is the answer in percent of false positives, false negatives and the
(weighted) average error. A high false negatives indicates that the sample is too small for a
reliable rule.

Click OK and then click on the second GREEN box at the bottom left. Then click the scatter
plot button on top to obtain the K vs. SO4 plot and visually see the result of the classification.
Data from Site 1 is colored GREEN and is separated from the rest of the data.
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Go to the Query button on top and “Delete all queries”; the following display is next.
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Repeat the classification for any other site. Here, Site 4 is chosen (the last axis).
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The above window is obtained.
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The rule distinguishing Site 4 from the others is:
Na: 4.78 - 9.35 and Ca: 16.63 - 27.11 and SO4: 6.72 - 15.3.

The error is 0% and the plot of the first two variables is in the next window.
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Appendix C

Benford's Law

(Available in pdf version only)
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Glossary

Anderson-Darling (AD) test: The Anderson-Darling test assesses whether known data come from a
specified distribution.

Bias: The systematic or persistent distortion of a measured value from its true value (this can occur during
sampling design, the sampling process, or laboratory analysis).

Biweight: An influence function based on Tukey’s or LAX/Kafadar’s methods.

Bootstrap Method: The bootstrap method is a computer-based method for assigning measures of
accuracy to sample estimates. This technique allows estimation of the sample distribution of almost any
statistic using only very simple methods. Bootstrap methods are generally superior to ANOVA for small
data sets or where sample distributions are non-normal.

Break Down point: This point represents that fraction of observations which can be altered (e.g., can be
made very large) arbitrarily without affecting (influencing, distorting, changing drastically) the values of
the estimates.

Central Limit Theorem (CLT): The central limit theorem states that given a distribution with a mean p
and variance o, the sampling distribution of the mean approaches a normal distribution with a mean (y1)
and a variance 6*/N as N, the sample size, increases.

Coefficient of Variation (CV): A dimensionless quantity used to measure the spread of data relative to
the size of the numbers. For a normal distribution, the coefficient of variation is given by s/xBar. Also
known as the relative standard deviation (RSD).

Confidence Coefficient: The confidence coefficient (a number in the closed interval [0, 1]) associated
with a confidence interval for a population parameter is the probability that the random interval
constructed from a random sample (data set) contains the true value of the parameter. The confidence
coefficient is related to the significance level of an associated hypothesis test by the equality: level of
significance = 1 — confidence coefficient.

Confidence Interval: Based upon the sampled data set, a confidence interval for a parameter is a random
interval within which the unknown population parameter, such as the mean, or a future observation, x0,
falls.

Confidence Limit: The lower or an upper boundary of a confidence interval. For example, the 95%
upper confidence limit (UCL) is given by the upper bound of the associated confidence interval.

Correlation: A measure of linear association between two ordered lists.

Coverage, Coverage Probability: The coverage probability (e.g., = 0.95) of an upper confidence limit
(UCL) of the population mean represents the confidence coefficient associated with the UCL.

Critical Alpha: The cutoff level for finding outliers.

Cross validation: The method of checking if the classification of observations in discriminant analysis
are valid or not.
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Data Quality Objectives (DQOs): Qualitative and quantitative statements derived from the DQO process
that clarify study technical and quality objectives, define the appropriate type of data, and specify
tolerable levels of potential decision errors that will be used as the basis for establishing the quality and
quantity of data needed to support decisions.

Detection Limit: A measure of the capability of an analytical method to distinguish samples that do not
contain a specific analyte from samples that contain low concentrations of the analyte. The lowest
concentration or amount of the target analyte that can be determined to be different from zero by a single
measurement at a stated level of probability. Detection limits are analyte- and matrix-specific and may be
laboratory-dependent.

Empirical Distribution Function (EDF): In statistics, an empirical distribution function is a cumulative
probability distribution function that concentrates probability 1/n at each of the » numbers in a sample.

Estimate: A numerical value computed using a random data set (sample), and is used to guess (estimate)
the population parameter of interest (e.g., mean). For example, a sample mean represents an estimate of
the unknown population mean.

Expectation Maximization (EM): The EM algorithm is used to approximate a probability function (p.f.
or p.d.f.). EM is typically used to compute maximum likelihood estimates given incomplete samples.

Exposure Point Concentration (EPC): The contaminant concentration within an exposure unit to which
the receptors are exposed. Estimates of the EPC represent the concentration term used in exposure
assessment.

Extreme Values: The minimum and the maximum values.

Goodness-of-Fit (GOF): In general, the level of agreement between an observed set of values and a set
wholly or partly derived from a model of the data.

Graphics Alpha: The alpha values used for identifying outliers on the graphs. This is usually same as
critical alpha.

Gray Region: A range of values of the population parameter of interest (such as mean contaminant
concentration) within which the consequences of making a decision error are relatively minor. The gray
region is bounded on one side by the action level. The width of the gray region is denoted by the Greek
letter delta in this guidance.

H-Statistic: The unique symmetric unbiased estimator of the central moment of a distribution.

H-UCL: UCL based on Land’s H-Statistic.

Hypothesis: Hypothesis is a statement about the population parameter(s) that may be supported or
rejected by examining the data set collected for this purpose. There are two hypotheses: a null
hypothesis, (Hy), representing a testable presumption (often set up to be rejected based upon the sampled
data), and an alternative hypothesis (H,), representing the logical opposite of the null hypothesis.
Individual MD(a): The a100% critical value from the distribution of the distances (also called dOcut).

Individual Contour/Ellipsoid: Contour at Individual MD(a). Also called a prediction ellipsoid.
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Influence Function Alpha: The values used for minimizing in Huber and PROP methods.

Jackknife Method: A statistical procedure in which, in its simplest form, estimates are formed of a
parameter based on a set of N observations by deleting each observation in turn to obtain, in addition to
the usual estimate base d on N observations, N estimates each based on N-1 observations.
Kolmogorov-Smirnov (KS) test: The Kolmogorov-Smirnov test is used to decide if a sample comes
from a population with a specific distribution. The Kolmogorov-Smirnov test is based on the empirical
distribution function (EDF).

Kurtosis: Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.

Level of Significance: The error probability (also known as false positive error rate) tolerated of falsely
rejecting the null hypothesis and accepting the alternative hypothesis.

Leverage Distances: The distances (robust or classical Mahalanobis) obtained using the independent
variables in regression.

Leverage Outliers: The outliers among the independent variables in regression.
Lilliefors test: A test of normality for large data sets when the mean and variance are unknown.
M-Estimation: The process of obtaining an M-estimators.

M-Estimators: A class of statistics which are obtained as the solution to the problem of minimizing
certain functions of the data.

Max MD: Largest Mahalanobis distance obtained from the dataset.

Max MD(a): The a100% critical value of the test statistic (also called d2max).

Maximum Likelihood Estimates (MLE): Maximum likelihood estimation (MLE) is a popular statistical
method used to make inferences about parameters of the underlying probability distribution of a given

data set.

Mean: The sum of all the values of a set of measurements divided by the number of values in the set; a
measure of central tendency.

Median: The middle value for an ordered set of n values. Represented by the central value when n is odd
or by the average of the two most central values when n is even. The median is the 50th percentile.

Minimization Criterion: The criterion used in minimizing the residuals of regression.

Minimum Detectable Difference (MDD): The minimum detectable difference (MDD) is the smallest
difference in means that the statistical test can resolve. The MDD depends on sample-to-sample
variability, the number of samples, and the power of the statistical test.

Minimum Variance Unbiased Estimates (MVUE): A minimum variance unbiased estimator (MVUE or

MVU estimator) is an unbiased estimator of parameters, whose variance is minimized for all values of the
parameters. If an estimator is unbiased, then its mean squared error is equal to its variance.
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Non-detect (ND): Censored data values.

Nonparametric: A term describing statistical methods that do not assume a particular population
probability distribution, and are therefore valid for data from any population with any probability
distribution, which can remain unknown.

Optimum: An interval is optimum if it possesses optimal properties as defined in the statistical literature.
This may mean that it is the shortest interval providing the specified coverage (e.g., 0.95) to the
population mean. For example, for normally distributed data sets, the UCL of the population mean based
upon Student’s t distribution is optimum.

Outlier: Measurements (usually larger or smaller than the majority of the data values in a sample) that are
not representative of the population from which they were drawn. The presence of outliers distorts most
statistics if used in any calculations.

p-value: In statistical hypothesis testing, the p-value of an observed value #,pserveq Of SOme random
variable 7T used as a test statistic is the probability that, given that the null hypothesis is true, 7 will
assume a value as or more unfavorable to the null hypothesis as the observed value Zopserved-

Parameter: A parameter is an unknown constant associated with a population.
Parametric: A term describing statistical methods that assume a normal distribution.
PC Loadings: A matrix of eigen vectors for the covariance or correlation matrix.

Population: The total collection of N objects, media, or people to be studied and from which a sample is
to be drawn. The totality of items or units under consideration.

Prediction Interval: The interval (based upon historical data, or a background well) within which a
newly and independently obtained (often labeled as a future observation) site observation (from a
compliance well) of the predicted variable (lead) falls with a given probability (or confidence coefficient).

Probability of Type 2 Error (=p): The probability, referred to as B (beta), that the null hypothesis will
not be rejected when in fact it is false (false negative).

Probability of Type I Error = Level of Significance (= a): The probability, referred to as a (alpha), that
the null hypothesis will be rejected when in fact it is true (false positive).

p™ Percentile: The specific value, X, of a distribution that partitions a data set of measurements in such a
way that the p percent (a number between 0 and 100) of the measurements fall at or below this value, and
(100-p) percent of the measurements exceed this value, X,,.)

p™ Quantile: The specific value of a distribution that divides the set of measurements in such a way that
the proportion, p, of the measurements falls below (or are equal to) this value, and the proportion (1-p) of
the measurements exceed this value.

Quality Assurance: An integrated system of management activities involving planning, implementation,

assessment, reporting, and quality improvement to ensure that a process, item, or service is of the type
and quality needed and expected by the client.
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Quality Assurance Project Plan: A formal document describing, in comprehensive detail, the necessary
QA, QC, and other technical activities that must be implemented to ensure that the results of the work
performed will satisfy the stated performance criteria.

Quantile Plot: A graph that displays the entire distribution of a data set, ranging from the lowest to the
highest value. The vertical axis represents the measured concentrations, and the horizontal axis is used to
plot the percentiles of the distribution.

Range: The numerical difference between the minimum and maximum of a set of values.

Regression on Order Statistics (ROS): A regression line is fit to the normal scores of the order statistics
for the uncensored observations and then to fill in values extrapolated from the straight line for the
observations below the detection limit.

Resampling: The repeated process of obtaining representative samples and/or measurements of a
population of interest.

Reliable UCL: This is similar to a stable UCL.
Regression Outliers: The outliers in the dependent variable of regression.

Robustness: Robustness is used to compare statistical tests. A robust test is the one with good
performance (that is not unduly affected by outliers) for a wide variety of data distributions.

Sample: A sample here represents a random sample (data set) obtained from the population of interest
(e.g., a site area, a reference area, or a monitoring well). The sample is supposed to be a representative
sample of the population under study. The sample is used to draw inferences about the population
parameter(s).

Shapiro-Wilk (SW) test: In statistics, the Shapiro-Wilk test tests the null hypothesis that a sample
X1, ..., X, came from a normally distributed population.

Simultaneous Contour/Ellipsoid: Contour at Max MD(a). Also called a tolerance ellipsoid.

Skewness: A measure of asymmetry of the distribution of the characteristic under study (e.g., lead
concentrations). It can also be measured in terms of the standard deviation of log-transformed data. The
higher is the standard deviation, the higher is the skewness.

Stable UCL: The UCL of a population mean is a stable UCL if it represents a number of practical merits,
which also has some physical meaning. That is, a stable UCL represents a realistic number (e.g.,
contaminant concentration) that can occur in practice. Also, a stable UCL provides the specified (at least
approximately, as much as possible, as close as possible to the specified value) coverage (e.g., ~0.95) to
the population mean.

Standard Deviation (sd): A measure of variation (or spread) from an average value of the sample data
values.

Standard Error (SE): A measure of an estimate's variability (or precision). The greater the standard
error in relation to the size of the estimate, the less reliable the estimate. Standard errors are needed to
construct confidence intervals for the parameters of interests such as the population mean and population
percentiles.

E-5



Trimming percentage: The percentage value used for trimming outliers in MVT method.

Tolerance Limit: A confidence limit on a percentile of the population rather than a confidence limit on
the mean. For example, a 95 percent one-sided TL for 95 percent coverage represents the value below
which 95 percent of the population values are expected to fall with 95 percent confidence. In other
words, a 95% UTL with coverage coefficient 95% represents a 95% upper confidence limit for the 95"
percentile.

Unreliable UCL, Unstable UCL, Unrealistic UCL: The UCL of a population mean is unstable,
unrealistic, or unreliable if it is orders of magnitude higher than the other UCLs of population mean. It
represents an impractically large value that cannot be achieved in practice. For example, the use of
Land’s H statistic often results in impractically large inflated UCL value. Some other UCLs, such as the
bootstrap t UCL and Hall’s UCL, can be inflated by outliers resulting in an impractically large and
unstable value. All such impractically large UCL values are called unstable, unrealistic, unreliable, or
inflated UCLs.

Upper Confidence Limit (UCL): The upper boundary (or limit) of a confidence interval of a parameter
of interest such as the population mean.

Upper Prediction Limit (UPL): The upper boundary of a prediction interval for an independently
obtained observation (or an independent future observation).

Upper Tolerance Limit (UTL): The upper boundary of a tolerance interval.

Winsorization method: The Winsorization method is a procedure that replaces the n extreme values with
the preset cut-off value. This method is sensitive to the number of outliers, but not to their actual values.
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The CD accompanying the hard copy of this report, “Scout 2008 Version 1.0 User Guide,”
contains the following contents:

Scout 2008 Version 1.00.01 statistical software.

J.M. Nocerino (editor), A. Singh, R. Maichle, N. Armbya, and A.K. Singh, “Scout 2008
Version 1.0 User Guide.” U.S. Environmental Protection Agency, February 2009.
(Microsoft Word format and pdf)

A. Singh and A.K. Singh; J.M. Nocerino (editor), “ProUCL Version 4.00.04 Technical
Guide.” U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-07/041
(NTIS PB2007-107919), February 2009. (Microsoft Word format and pdf)

A. Singh, R. Maichle, A K. Singh, and S.E. Lee; J.M. Nocerino (editor), “ProUCL
Version 4.00.04 User Guide.” U.S. Environmental Protection Agency, Washington, DC,
EPA/600/R-07/038 (NTIS PB2007-107918), February 2009. (Microsoft Word format and

pdf)

“Robust Procedures for the Identification of Multiple Outliers,” A. Singh and J.M.
Nocerino. A chapter in Chemometrics in Environmental Chemistry, J. Einay, ed., a
volume (2.G, Volume 2, Part G) in The Handbook of Environmental Chemistry, O.
Hutzinger, ed. (Heidelberg, Springer-Verlag), 1995, pp. 229-277. (pdf format)

A. Singh; J.M. Nocerino (editor), “On the Computation of a 95% Upper Confidence

Limit of the Unknown Population Mean Based Upon Data Sets with Below Detection
Limit Observations,” EPA/600/R-06/022, March 2006. (Microsoft Word and pdf)
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