

Scout 2008 Version 1.0 User Guide Part III

RESEARCH AND DEVELOPMENT

Scout 2008 Version 1.0 User Guide

(Second Edition, December 2008)

John Nocerino

U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory Environmental Sciences Division Technology Support Center Characterization and Monitoring Branch 944 E. Harmon Ave. Las Vegas, NV 89119

> Anita Singh, Ph.D.¹ Robert Maichle¹ Narain Armbya¹ Ashok K. Singh, Ph.D.²

¹Lockheed Martin Environmental Services 1050 E. Flamingo Road, Suite N240 Las Vegas, NV 89119

²Department of Hotel Management University of Nevada, Las Vegas Las Vegas, NV 89154

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names and commercial products does not constitute endorsement or recommendation for use.

U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460

Notice

The United States Environmental Protection Agency (EPA) through its Office of Research and Development (ORD) funded and managed the research described here. It has been peer reviewed by the EPA and approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation by the EPA for use.

The Scout 2008 software was developed by Lockheed-Martin under a contract with the USEPA. Use of any portion of Scout 2008 that does not comply with the Scout 2008 User Guide is not recommended.

Scout 2008 contains embedded licensed software. Any modification of the Scout 2008 source code may violate the embedded licensed software agreements and is expressly forbidden.

The Scout 2008 software provided by the USEPA was scanned with McAfee VirusScan and is certified free of viruses.

With respect to the Scout 2008 distributed software and documentation, neither the USEPA, nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed. Furthermore, the Scout 2008 software and documentation are supplied "asis" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

Acronyms and Abbreviations

% NDs	Percentage of Non-detect observations
ACL	alternative concentration limit
A-D, AD	Anderson-Darling test
AM	arithmetic mean
ANOVA	Analysis of Variance
AOC	area(s) of concern
B*	Between groups matrix
BC	Box-Cox-type transformation
BCA	bias-corrected accelerated bootstrap method
BD	break down point
BDL	below detection limit
BTV	background threshold value
BW	Black and White (for printing)
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CL	compliance limit, confidence limits, control limits
CLT	central limit theorem
CMLE	Cohen's maximum likelihood estimate
COPC	contaminant(s) of potential concern
CV	Coefficient of Variation, cross validation
D-D	distance-distance
DA	discriminant analysis
DL	detection limit
DL/2 (t)	UCL based upon DL/2 method using Student's t-distribution cutoff value
DL/2 Estimates	estimates based upon data set with non-detects replaced by half of the respective detection limits
DQO	data quality objective
DS	discriminant scores
EA	exposure area
EDF	empirical distribution function
EM	expectation maximization
EPA	Environmental Protection Agency
EPC	exposure point concentration
FP-ROS (Land)	UCL based upon fully parametric ROS method using Land's H-statistic

Gamma ROS (Approx.)	UCL based upon Gamma ROS method using the bias-corrected accelerated bootstrap method
Gamma ROS (BCA)	UCL based upon Gamma ROS method using the gamma approximate-UCL method
GOF, G.O.F.	goodness-of-fit
H-UCL	UCL based upon Land's H-statistic
HBK	Hawkins Bradu Kaas
HUBER	Huber estimation method
ID	identification code
IQR	interquartile range
Κ	Next K, Other K, Future K
KG	Kettenring Gnanadesikan
KM (%)	UCL based upon Kaplan-Meier estimates using the percentile bootstrap method
KM (Chebyshev)	UCL based upon Kaplan-Meier estimates using the Chebyshev inequality
KM (t)	UCL based upon Kaplan-Meier estimates using the Student's t- distribution cutoff value
KM (z)	UCL based upon Kaplan-Meier estimates using standard normal distribution cutoff value
K-M, KM	Kaplan-Meier
K-S, KS	Kolmogorov-Smirnov
LMS	least median squares
LN	lognormal distribution
Log-ROS Estimates	estimates based upon data set with extrapolated non-detect values obtained using robust ROS method
LPS	least percentile squares
MAD	
	Median Absolute Deviation
Maximum	Maximum value
MC	minimization criterion
MCD	minimum covariance determinant
MCL	maximum concentration limit
MD	Mahalanobis distance
Mean	classical average value
Median	Median value
Minimum	Minimum value
MLE	maximum likelihood estimate
MLE (t)	UCL based upon maximum likelihood estimates using Student's t-distribution cutoff value

MLE (Tiku)	UCL based upon maximum likelihood estimates using the Tiku's method
Multi Q-Q	multiple quantile-quantile plot
MVT	multivariate trimming
MVUE	minimum variance unbiased estimate
ND	non-detect or non-detects
NERL	National Exposure Research Laboratory
NumNDs	Number of Non-detects
NumObs	Number of Observations
OKG	Orthogonalized Kettenring Gnanadesikan
OLS	ordinary least squares
ORD	Office of Research and Development
PCA	principal component analysis
PCs	principal components
PCS	principal component scores
PLs	prediction limits
PRG	preliminary remediation goals
PROP	proposed estimation method
Q-Q	quantile-quantile
RBC	risk-based cleanup
RCRA	Resource Conservation and Recovery Act
ROS	regression on order statistics
RU	remediation unit
S	substantial difference
SD, Sd, sd	standard deviation
SLs	simultaneous limits
SSL	soil screening levels
S-W, SW	Shapiro-Wilk
TLs	tolerance limits
UCL	upper confidence limit
UCL95, 95% UCL	95% upper confidence limit
UPL	upper prediction limit
UPL95, 95% UPL	95% upper prediction limit
USEPA	United States Environmental Protection Agency
UTL	upper tolerance limit
Variance	classical variance
W*	Within groups matrix

WiB matrix	Inverse of W* cross-product B* matrix
WMW	Wilcoxon-Mann-Whitney
WRS	Wilcoxon Rank Sum
WSR	Wilcoxon Signed Rank
Wsum	Sum of weights
Wsum2	Sum of squared weights

Table of Contents

Notice Acronym	s and Abbreviations	iii v
Table of G	Contents	ix
Chapter 9		341
Regressio	n	341
9.1	Ordinary Least Squares (OLS) Linear Regression Method	
9.2	OLS Quadratic/Cubic Regression Method	
9.3	Least Median/Percentile Squares (LMS/LPS) Regression Method	
9.3.	Least Percentile of Squared Residuals (LPS) Regression	
9.4	Iterative OLS Regression Method.	
9.5	Biweight Regression Method	
9.6	Huber Regression Method	400
9.7	MVT Regression Method	411
9.8	PROP Regression Method	
9.9	Method Comparison in Regression Module	
9.9.	Bivariate Fits	
9.9.2	2 Multivariate R-R Plots	
9.9.3	3 Multivariate Y-Y-hat Plots	445
Reference	S	449

Chapter 9

Regression

The Regression module in Scout also offers most of the classical and robust multiple linear regression (including regression diagnostic methods) methods available in the current literature, similar to the Outlier/Estimates module. The multiple linear regression model with p explanatory (x-variables, leverage variables) variables is given by:

$$y_i = (x_{i1}b + x_{i2}b_2 + \dots + x_{ip}b_p) + e_i$$

The residuals, e_i , are assumed to be normally distributed as $N(0, s^2)$; i = 1, 2, ..., n.

The classical ordinary least square (OLS) method has a "0" break down point and can get distorted by the presence of even a single outlier, as in the classical mean vector and the covariance matrix.

Let
$$x'_{i} = (x_{i1}, x_{i2}, ..., x_{ip}), b' = (b_{1}, b_{2}, ..., b_{p}).$$

The objective here is to obtain a robust and resistant estimate, \hat{b} , of b using the data set, (y_i, x'_i) ; i = 1, 2, ..., n. The ordinary least squares (OLS) estimate, \hat{b}_{OLS} , of \hat{b} is obtained by minimizing the residual sum of squares; namely, $\sum_{i=1}^{n} r_i^2$, where $r_i = y_i - x'_i \hat{b}_{OLS}$. Like the classical mean, the estimate, \hat{b}_{OLS} , of b has a "zero" break down point. This means that the estimate, \hat{b}_{OLS} , can take an arbitrarily aberrant value even by the presence of a single regression outlier (y-outlier) or leverage point (x-outlier), leading to a distorted regression model. The use of robust procedures that eliminate or dampen the influence of discordant observations on the estimates of regression parameters is desirable.

In regression applications, anomalies arising out of p-dimension space of the predictor variables, (e.g., due to unexpected experimental conditions), are called leverage points. Outliers in the response variable (e.g., due to unexpected outcomes, such as unusual reactions to a drug), are called regression or vertical outliers. The leverage outliers are divided into two categories: significant leverages ("bad" or inconsistent) and insignificant ("good" or consistent) points.

The identification of outliers in a data set and the identification of outliers in a regression model are two different problems. It is very desirable that a procedure distinguishes between good and bad outliers. In practice, in order to achieve high break down point, some methods (e.g., LMS method) fail to distinguish between good and bad leverage points.

In robust regression, the objective is twofold: 1) the identification of vertical (y-outliers, regression outliers) outliers and distinguishing between significant and insignificant leverage points, and 2) the estimation of regression parameters that are not influenced by the presence of the anomalies. The robust estimates should be in close agreement with classical OLS estimates when no outlying observations are present. Scout also offers several formal graphical displays of the regression and leverage results.

Scout provides several methods to obtain multiple linear regression models. Those available options include:

- Ordinary Least Squares Regression (OLS) Minimizes the least squared residuals.
- Least Median/Percentile Squares Regression (LMS/LPS) Minimizing the "hth" ordered squared residuals (Rousseeuw, 1984).
- **Biweight Regression** Conducted using Tukey's Biweight criterion (Beaton and Tukey, 1974).
- Huber Regression Conducted using Huber influence function (Huber, 1981).
- **MVT Regression** Conducted using Multivariate Trimming Methods (Devlin et al., 1981).
- **PROP Regression** Conducted using PROP influence function (Singh and Nocerino, 1995).

Scout also provides the user with the option of identifying leverage outliers. If the leverage option is selected, then the outliers arising in the p-dimensional space of the predictor variables (X-space) are identified first. Those leverage points can be identified using various options available in Scout. The leverage points are identified using the same outlier methods as incorporated in the outlier module of Scout. The MDs for the leverage option are computed using the selected x-variables only. The weights obtained used in the leverage option are used at the initial regression option. The regression option is iterated some number of times to identify all of the regression outliers and bad leverage points.

9.1 Ordinary Least Squares (OLS) Linear Regression Method

🔡 Scout 2008 - [D:\	Varaiı	n\WorkD	atInExcel\	Wood]										
📑 File Edit Configure	Data	Graphs	Stats/GOF	Outliers/E	stimates Q	A/QC	Regression	Multivariate	EDA	GeoStats	Progr	ams	Window	Help
Navigation Panel	[0	1	2		OLS	Ì		Multiple Line	ar	1	8	
Name			Case	×1	x2	×	LMS/LPS			Quadratic Cubic				
D:\Narain\WorkDa	tl	1	1	0.573	0.1059		Biweight	OLS	L.,	Cabic		1		
OLSOut.ost		2	2	0.651	0.1356		Huber		17	0.535				
OLSresQQ.gst		3	3	0.606	0.1273		MVT		12	0.57				
OLSresXY.gst		4	4	0.437	0.1591		PROP		12	0.45				
OLS VVbat get		5	5	0.547	0.1135		Method C	omparison 🕨	5	0.548				

1. Click **Regression** ► **OLS** ► **Multiple Linear**.

- 2. The "Select Variables" screen (Section 3.3) will appear.
 - Select the dependent variable and one or more independent variables from the "Select Variables" screen.
 - Click on the "Options" button.

- The "Display Intervals" check box will display the "Summary Table for Prediction and Confidence Limits" in the output sheet.
- The "Display Diagnostics" check box will display the "Regression Diagnostics Table" and the "Lack of Fit ANOVA Table" (only if there are replicates in the independent variables).
- Click "OK" to continue or "Cancel" to cancel the options.
- If the results have to be produced by using a Group variable, then select a group variable by clicking the arrow below the "**Group by Variable**" button. This will result in a drop-down list of available variables. The

user should select and click on an appropriate variable representing a group variable.

🔜 Select OLS Graphi	cs Options	×
V Plots	XY Plot Title Linear OLS Regression - Y vs X Pl	Regression Line - Fixing Other Regressors at
🔽 Y vs Y-Hat	Y vs Y-Hat Title Linear OLS Regression - Y vs Y-H	Minimum Values Image: Second Structure and Struct
🗹 Y vs Residuals	Y vs Residuals Title Linear OLS Regression - Y vs Res	• Mean Values
🔽 Y-Hat vs Residuals	Y-Hat vs Residuals Title Linear OLS Regression - Y-Hat vs	C Maximum Values Confidence Coefficient C Zero Values 0.95
🔽 Index Plots	XY Plot Title Linear OLS Regression - Residual	
🔽 QQ Residuals	QQ Residuals Title Linear OLS Regression - Residual	OK Cancel

• Click on the "Graphics" button and check all boxes.

- A regression line can be drawn in the multivariate setting by choosing a single independent (regressor) variable and fixing other variables at the provided options using "**Regression Line – Fixing Other Regressors at**" option.
- Specify the confidence or/and prediction band for the regression line using the "Confidence Intervals" and the "Prediction Intervals" check boxes.
- Specify the "Confidence Level" for the bands.
- Click "OK" to continue or "Cancel" to cancel the options.
- Click "OK" to continue or "Cancel" to cancel the OLS procedure.

Output for OLS Regression. Data Set used: Wood (predictor variables p = 5).

	Ordinary Least Squares Linear Regression Analysis Output
Date/Time of Computation	10/30/2008 11:05:40 AM
User Selected Options	
From File	D:\Narain\WorkDatInExcel\Wood
Full Precision	OFF
Confidence Level for Intervals	0.95
ay Confidence and Prediction Limits	True
Display Regresion Diagnostics	True
Title for Residual QQ Plot	Linear OLS Regression - Residuals QQ Plot
Title Residual Index Plot	Linear OLS Regression - Residuals Index Plot
Title For Y vs X Plots	Linear OLS Regression - Y vs X Plot
onfidence Level for Regression Line	0.95
Display Confidence Band	True
Display Prediction Band	True
Title for Y-Hat vs Residuals Plot	Linear OLS Regression - Y-Hat vs Residuals Plot
Title for Y vs Residuals Plot	Linear OLS Regression - Y vs Residuals Plot
Title for Y vs Y-Hat Plot	Linear OLS Regression - Y vs Y-Hat Plot

		Number of (Observations	20				
		Depend	dent Variable	у				
Nu	mber of Sele	cted Regressi	ion Variables	5				
		Independ	dant Variable	x1				
		Independ	dant Variable	x2				
		Independ	dant Variable	xЗ				
		Independ	dant Variable	×4				
	Independant Variable				x5			
		Cor	relation Ma	trix				
	У	x1	×2	xЗ	×4	x5		
у	1	-0.145	0.611	0.47	-0.6	0.629		
×1	-0.145	1	-0.246	-0.604	0.528	-0.641		
x2	0.611	-0.246	1	0.388	-0.498	0.248		
xЗ	0.47	-0.604	0.388	1	-0.24	0.659		
×4	-0.6	0.528	-0.498	-0.24	1	-0.512		
x5	0.629	-0.641	0.248	0.659	-0.512	1		

Eigenvalues of Correlation Matrix							
Eval 1	Eval 2	Eval 3	Eval 4	Eval 5	Eval 6		
3.357	1.114	0.713	0.588	0.173	0.054		
	Sumo	of Eigenvalues	6				
		Regressio	on Estimate	s and Infer	ence Table		
Paramater	DOF	Estimates	Std. Error	T-values	p-values	Tol Values	VIF
intercept	1	0.422	0.169	2.494	0.0253	N/A	N/A
×1	1	0.441	0.117	3.77	0.00222	0.27	3.701
×2	1	-1.475	0.487	-3.029	0.00931	0.264	3.786
x3	1	-0.261	0.112	-2.332	0.0339	0.583	1.715
×4	1	0.0208	0.161	0.129	0.388	0.299	3.346
x5	1	0.171	0.203	0.84	0.27	0.268	3.725
		OLS	ANOVA Ta	able			
So	urce of Vari	iation	SS	DOF	MS	F-Value	P-Value
	R	egression	0.0344	5	0.00687	11.81	0.0001
		Error	0.00814	14	5.8158E-4		
		Total	0.0425	19			
			R Square	0.808			
		Adjust	ed R Square	0.74			
		Sqrt(M	(SE) = Scale	0.0241			
		Re	gression Ta	ble			
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	
1	0.534	0.551	-0.0175	0.278	-0.725	-0.853	
2	0.535	0.534	0.00114	0.132	0.0472	0.0507	
3	0.57	0.54	0.03	0.22	1.243	1.407	
4	0.45	0.441	0.00855	0.258	0.355	0.412	
5	0.548	0.524	0.0242	0.222	1.002	1.137	
6	0.431	0.442	-0.0109	0.259	-0.452	-0.525	
7	0.481	0.459	0.0219	0.53	0.907	1.323	
8	0.423	0.424	-8.415E-4	0.289	-0.0349	-0.0414	
9	0.475	0.485	-0.00955	0.348	-0.396	-0.49	
10	0.486	0.496	-0.01	0.449	-0.415	-0.559	
11	0.554	0.506	0.0479	0.317	1.986	2.403	

Output for	· OLS Regression	(continued).
------------	------------------	--------------

		Sur	nmary Table	ion and Co	nfidence Li	nits			
Obs	Y Vector	Yhat	s(Yhat)	s(pred)	LCL	UCL	LPL	UPL	Residuals
1	0.534	0.551	0.0127	0.0273	0.524	0.579	0.493	0.61	-0.0175
2	0.535	0.534	0.00875	0.0257	0.515	0.553	0.479	0.589	0.00114
3	0.57	0.54	0.0113	0.0266	0.516	0.564	0.483	0.597	0.03
4	0.45	0.441	0.0123	0.0271	0.415	0.468	0.383	0.499	0.00855
5	0.548	0.524	0.0114	0.0267	0.499	0.548	0.467	0.581	0.0242
6	0.431	0.442	0.0123	0.0271	0.416	0.468	0.384	0.5	-0.0109
7	0.481	0.459	0.0176	0.0298	0.421	0.497	0.395	0.523	0.0219
8	0.423	0.424	0.013	0.0274	0.396	0.452	0.365	0.483	-8.415E-4
9	0.475	0.485	0.0142	0.028	0.454	0.515	0.424	0.545	-0.00955
10	0.486	0.496	0.0162	0.029	0.461	0.531	0.434	0.558	-0.01
11	0.554	0.506	0.0136	0.0277	0.477	0.535	0.447	0.565	0.0479
12	0.519	0.548	0.0154	0.0286	0.515	0.581	0.486	0.609	-0.0289
13	0.492	0.504	0.0129	0.0274	0.476	0.531	0.445	0.562	-0.0117
14	0.517	0.547	0.00866	0.0256	0.529	0.566	0.492	0.602	-0.0304
15	0.502	0.516	0.00941	0.0259	0.496	0.536	0.461	0.572	-0.0141
16	0.508	0.495	0.0175	0.0298	0.458	0.533	0.431	0.559	0.0126
17	0.52	0.526	0.013	0.0274	0.498	0.554	0.467	0.585	-0.00615
18	0.506	0.499	0.0131	0.0274	0.471	0.527	0.44	0.558	0.00685
19	0.401	0.427	0.013	0.0274	0.399	0.455	0.368	0.486	-0.0261
20	0.568	0.555	0.0136	0.0277	0.526	0.584	0.495	0.614	0.0131
No repli	cates in the d	lata - Lack (of Fit ANOVA	A Table not	displayed				

	Re	gression Dia	agnostics Ta	able			
Obs. #	Residuals	H[i,i]	CD[i]	t[i]	DFFITS		
1	-0.0175	0.278	0.0466	-0.876	-0.543		
2	0.00114	0.132	6.4894E-5	0.0507	0.0197		
3	0.03	0.22	0.0929	1.518	0.806		
4	0.00855	0.258	0.00985	0.414	0.245		
5	0.0242	0.222	0.0616	1.193	0.638		
6	-0.0109	0.259	0.0161	-0.53	-0.314		
7	0.0219	0.53	0.329	1.414	1.502		
8	-8.415E-4	0.289	1.1582E-4	-0.0414	-0.0264		
9	-0.00955	0.348	0.0214	-0.495	-0.362		
10	-0.01	0.449	0.0425	-0.566	-0.511		

9.2 OLS Quadratic/Cubic Regression Method

Į	🖶 Scout 2008 - [D:Waraii	n\WorkD	atInExcel\	Wood]										
	幔 File Edit Configure Data	a Graphs	Stats/GOF	Outliers/E	stimates Q	A/QC	Regression	Multivariate E	DA	GeoStats	Progr	ams	Window	Help
	Navigation Panel		0	1	2	3	OLS	۱.		Multiple Line	ar	1	8	
	Name		Case	×1	x2	×	LMS/LPS	0.5		Quadratic Cubic				
	D:\Narain\WorkDatl	1	1	0.573	0.1059		Biweight	OLS						
	OLSOut.ost	2	2	0.651	0.1356		Huber		17	0.535				
	OLSresQQ.gst	3	3	0.606	0.1273		MVT		12	0.57				
	OLSresXY.gst	4	4	0.437	0.1591		PROP		12	0.45				
	OLSresNDX.gst	5	5	0.547	0.1135		Method C	iomparison 🕨	5	0.548				
	I OLS YYhat.dst 🛛 🛛		-											

1. Click **Regression** ► **OLS** ► **Quadratic or Cubic.**

- 2. The "Select Variables" screen (Section 3.3) will appear.
 - Select the dependent variable and one or more independent variables from the "Select Variables" screen.
 - Click on the "Options" button.

- The "Display Intervals" check box will display the "Summary Table for Prediction and Confidence Limits" in the output sheet.
- The "Display Diagnostics" check box will display the "Regression Diagnostics Table" and the "Lack of Fit ANOVA Table" (only if there are replicates in the independent variables).
- Click "OK" to continue or "Cancel" to cancel the options.
- If the results have to be produced by using a Group variable, then select a group variable by clicking the arrow below the "**Group by Variable**" button. This will result in a drop-down list of available variables. The

user should select and click on an appropriate variable representing a group variable.

🔜 Select OLS Graphi	cs Options	
V Plots	XY Plot Title Linear OLS Regression - Y vs X Pl	Regression Line - Fixing Other Regressors at
🔽 Y vs Y-Hat	Y vs Y-Hat Title Linear OLS Regression - Y vs Y-H	C Minimum Values
🔽 Y vs Residuals	Y vs Residuals Title Linear OLS Regression - Y vs Res	Mean Values
☑ Y-Hat vs Residuals	Y-Hat vs Residuals Title Linear OLS Regression - Y-Hat vs	C Maximum Values
🔽 Index Plots	XY Plot Title Linear OLS Regression - Residual	
🔽 QQ Residuals	QQ Residuals Title Linear OLS Regression - Residual	OK Cancel

• Click on the "Graphics" button and check all boxes.

- "**Regression Line Fixing Other Regressors at**" option is not used in this quadratic regression module.
- Specify the confidence or/and prediction band for the regression line using the "Confidence Intervals" and the "Prediction Intervals" check boxes.
- Specify the "Confidence Level" for the bands.
- Click "OK" to continue or "Cancel" to cancel the options.
- Click "OK" to continue or "Cancel" to cancel the OLS procedure.

Output for OLS Regression. Data Set used: Wood (predictor variables p = 5).

			Ordinary Least Squares Quadratic Regression Analysis Output								
Dal	te/Time of Co	omputation	10/30/2008	1:14:57 PM							
	User Select	ed Options									
		From File	D:\Narain\WorkDatInExcel\Wood								
	Fu	Il Precision	OFF								
Confid	ence Level fo	or Intervals	0.95								
y Confidenc	e and Predic	ction Limits	True								
Display	Regresion D	iagnostics)	True								
	Residu	ial QQ Plot	Not Selected	1							
	Residua	Index Plot	Not Selected	1							
	Title For Y	vs X Plots	Quadratic Ol	S Regress	ion - Y vs X F	Plot					
onfidebae Le	vel for Regre	ession Line	0.95								
Di	splay Confide	ence Band	True								
Display Prediction Band			True								
	Y vs Res	iduals Plot	Not Selected								
	Y vs Res	iduals Plot	Not Selected	1							
	Y vs	Y-Hat Plot	Not Selected	1							
		Number of (Observations	20							
		Depend	lent Variable	У							
Num	iber of Selec	ted Regressi	on Variables	1							
		Independ	lant Variable	lant Variable x1							
		Correlati	on Matrix								
		v1	Squared								
П	у 1	0.997	0.629								
y v1	0.997	1	0.023								
Squared	0.629	0.588	1								
oquaica	0.020	0.000	•								
	Eiger	nvalues of (Correlation I	A atrix							
Eval 1	Eval1 Eval2 Eval3										
2.493	0.505	0.0015									
	Sum of	Eigenvalues	3								

		Regressi	on Estimate	es and Infer	ence Table		
Paramater	DOF	Estimates	Std. Error	T-values	p-values	Tol Values	VIF
intercept	1	-0.643	0.26	-2.47	0.0252	N/A	N/A
×1	1	3.906	0.957	4.08	9.1497E-4	0.00573	174.6
Squared	1	-3.237	0.863	-3.75	0.00185	0.00573	174.6
		01	ς ΑΝΟΥΑ Τ	abla			
C.	waa afMarii	UL:	CC		ме	E Value	D Value
300			0.0204	2	m 3 0.0142	170	0.0001
	ne	gression	0.0204	17	0.0142	17.2	0.0001
			0.0141	17	0.2003E-4		
		i otal	0.0425	13			
			R Square	0.669			
		Adjust	ed R Square	0.63			
		Sqrt(N	ISE) = Scale	0.0288			
		Re	gression Ta	able			
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	
1	0.534	0.532	0.00157	0.103	0.0545	0.0576	
2	0.535	0.528	0.00697	0.116	0.242	0.258	
3	0.57	0.535	0.0346	0.0923	1.204	1.264	
4	0.45	0.446	0.00411	0.16	0.143	0.156	
5	0.548	0.525	0.0229	0.106	0.795	0.84	
6	0.431	0.453	-0.0223	0.137	-0.774	-0.833	
7	0.481	0.493	-0.0121	0.0873	-0.421	-0.441	
8	0.423	0.418	0.00481	0.293	0.167	0.199	
9	0.475	0.521	-0.0457	0.103	-1.591	-1.68	
10	0.486	0.514	-0.0278	0.247	-0.966	-1.114	
11	0.554	0.523	0.0305	0.149	1.062	1.151	
12	0.519	0.503	0.0158	0.391	0.549	0.703	
13	0.492	0.527	-0.0354	0.12	-1.231	-1.313	
14	0.517	0.534	-0.0174	0.0993	-0.606	-0.639	
15	0.502	0.52	-0.0179	0.103	-0.621	-0.656	
16	0.508	0.515	-0.00653	0.099	-0.227	-0.239	
17	0.52	0.534	-0.0136	0.101	-0.475	-0.501	
18	0.506	0.457	0.0487	0.126	1.692	1.81	
19	0.401	0.423	-0.0221	0.264	-0.767	-0.895	
20	0.568	0.517	0.0509	0.101	1.772	1.869	

		Su	mmary Table	e for Predic	tion and Co	nfidence Li	mits			
Obs	Y Vector	Yhat	s(Yhat)	s(pred)	LCL	UCL	LPL	UPL	Residuals	
1	0.534	0.532	0.00925	0.0302	0.513	0.552	0.469	0.596	0.00157	
2	0.535	0.528	0.00981	0.0304	0.507	0.549	0.464	0.592	0.00697	
3	0.57	0.535	0.00874	0.0301	0.517	0.554	0.472	0.599	0.0346	
4	0.45	0.446	0.0115	0.031	0.422	0.47	0.381	0.511	0.00411	
5	0.548	0.525	0.00934	0.0302	0.505	0.545	0.461	0.589	0.0229	
6	0.431	0.453	0.0106	0.0307	0.431	0.476	0.389	0.518	-0.0223	
7	0.481	0.493	0.0085	0.03	0.475	0.511	0.43	0.556	-0.0121	
8	0.423	0.418	0.0156	0.0327	0.385	0.451	0.349	0.487	0.00481	
9	0.475	0.521	0.00925	0.0302	0.501	0.54	0.457	0.584	-0.0457	
10	0.486	0.514	0.0143	0.0321	0.484	0.544	0.446	0.582	-0.0278	
11	0.554	0.523	0.0111	0.0308	0.5	0.547	0.458	0.589	0.0305	
12	0.519	0.503	0.018	0.0339	0.465	0.541	0.432	0.575	0.0158	
13	0.492	0.527	0.00998	0.0304	0.506	0.548	0.463	0.592	-0.0354	
14	0.517	0.534	0.00906	0.0301	0.515	0.554	0.471	0.598	-0.0174	
15	0.502	0.52	0.00922	0.0302	0.5	0.539	0.456	0.584	-0.0179	
16	0.508	0.515	0.00905	0.0301	0.495	0.534	0.451	0.578	-0.00653	
17	0.52	0.534	0.00916	0.0302	0.514	0.553	0.47	0.597	-0.0136	
18	0.506	0.457	0.0102	0.0305	0.436	0.479	0.393	0.522	0.0487	
19	0.401	0.423	0.0148	0.0323	0.392	0.454	0.355	0.491	-0.0221	
20	0.568	0.517	0.00913	0.0302	0.498	0.536	0.453	0.581	0.0509	
No replic	ates in the d	lata - Lack	of Fit ANOV	A Table no	t displayed					
	Baa	waasian Di	a an action T	-bla						
050 #	Residuals		CDG	alue:						
1	0.00157	0.102	1 2758E-4	0.0576	0.0196					
2	0.00137	0.105	0.00292	0.0070	0.0130					
2	0.00037	0.0923	0.00232	1 328	0.0000					
4	0.0040	0.16	0.0042	0.156	0.920					
- 5	0.00411	0.106	0.00134	0.150	0.0001					
6	-0.0223	0.137	0.0200	-0.851	-0.200					
7	-0.0121	0.0873	0.00621	-0 444	-0.137					
8	0.0121	0.0010	0.00021	0.199	0.101					
9	-0.0457	0.200	0.00040	-1.84	-0.625					
10	-0.0437	0.103	0.103	.1.157	-0.023					
10	-0.0270	0.247	0.130	-1.107	-0.003					

Output for OLS Regression (continued) – Quadratic Fit.

Output for OLS Regression (continued) – Cubic Fit.

9.3 Least Median/Percentile Squares (LMS/LPS) Regression Method

Break Down Point of LMS Regression Estimates

The break down (BD) points for LMS (k~0.5) and least percentile of squared residuals (LPS, k>0.5) regression methods as incorporated in Scout are summarized in the following table. Note that, LMS is labeled as LPS when k>0.5. In the following the fraction, k is given by $0.5 \le k < 1$. For example, for median, the fraction, k =0.5, for 75th percentile, fraction, k = 0.75, and so forth.

Approximate Break Down Point for LMS or LPS Regression Estimates

No. of Explanatory Vars., $p = 1$	
Minimizing Squared Residual	BD
Pos = [n/2], k = 0.5	(n-Pos)/n
Pos = [(n+1)/2]	(n-Pos)/n
Pos = [(n+p+1)/2]	(n-Pos)/n
LPS ~ Pos = $[n^*k]$, k > 0.5	(n-Pos)/n

No. of Explanatory Vars., p > 1

Minimizing Squared Residual	BD
Pos = [n/2], k = 0.5	(n-Pos-p+2)/n
Pos = [(n+1)/2]	(n-Pos-p+2)/n
Pos = [(n+p+1)/2]	(n-Pos-p+2)/n
LPS ~ Pos = $[n^*k], k > 0.5$	(n-Pos-p+2)/n

Here [x] = greatest integer contained in x, and k represents a fraction: $0.5 \le k < 1$. Pos stands for position/index of an entry in ordered array (of size n) of squared residuals. The squared residual at position, Pos is being minimized. For example, when Pos = [n/2], the median of squared residuals is being minimized.

1. Click **Regression** ► **LMS**.

🔜 Scout 2008 - [D:\Narain\Scout_For_Windows\ScoutSource\WorkDatInExcel\Wood]											
🖳 File Edit Configure Dat	a Graphs	Stats/GOF	Outliers/E:	stimates	Regression	Multivariate EDA	A GeoSta	ts Program	is Window	Help	
Navigation Panel		0	1	2	OLS	ī	5	6	7	8	
Name		Case	×1	x2	LMS/LPS		x5	у			
D:\Narain\Scout Fo	1	1	0.573	0.10	Biweight		0.841	0.534			
	2	2	0.651	0.13	Huber		0.887	0.535			
	3	3	0.606	0.12	MVT		0.92	0.57			
	4	4	0.437	0.15	PROP		0.992	0.45			
	5	5	0.547	0.11	Method C	omparison	0.915	0.548			

2. The "Select Variables" screen (Section 3.3) will appear.

- Select the dependent variable and one or more independent variables from the "Select Variables" screen.
- If the results have to be produced by using a Group variable, then select a group variable by clicking the arrow below the "**Group by Variable**" button. This will result in a drop-down list of available variables. The user should select and click on an appropriate variable representing a group variable.
- Click on the **"Options"** button to get the options window and then click on **"User Specified"** in **"Subset Search Strategy"** box.

🔜 LMS Regression Options			×
Subset Search Strategy C All Combinations User Specified Extensive Quick Minimization Criterion (n/2) Squared Res (LMS) (n + 1) / 2) Squared Res. (n + p + 1) / 2) Squared Res. Percentile Squared Res.	Subsets to Search All C <= 10,000 C <= 1,000,000 C <= 1,000,000 C <= 10,000,000 Outlier Probability 0.95	Percentage Outliers Maximum < 5% Maximum < 10% Maximum < 15% Maximum < 20% Maximum < 25% Maximum < 30% Maximum < 40% Maximum < 50%	 ✓ Display Intervals Confidence Coefficient 0.95 ✓ Display Diagnostics OK Cancel

Note: The Subset Search Strategy allows the user to specify the number of initial subsets of size p+1 to be used to obtain the residuals (regression models) from a total of $\binom{n}{p}$ subsets. The user can specify the **Percentage of Outliers, Outlier Probability** (usually closer to 1), and the **Minimization Criterion** (order of the squared residual to minimize) (Leroy and Rousseeuw, 1987).

- Specify "Subsets to Search." The default is "<=100,000."
- Specify "Percentage Outliers." The default is "< 25%."
- Specify "Outlier Probability." The default is "0.95."
- Specify "Minimization Criterion." The default is "Median Squared Residual."
- Click on "OK" to continue or "Cancel" to cancel the options.

• Click on "**Graphics**" for the graphics options and specify the preferred graphs.

😸 Select LMS Graphi	cs Options	×
VY Plots	XY Plot Title LMS Regression - Y vs X Plot	Regression Line - Fixing Other Regressors at
🔽 YvsY-Hat	Y vs Y-Hat Title LMS Regression - Y vs Y-Hat Plot	C Minimum Values Image: Predection Interval
🔽 Y vs Residuals	LMS Regression - Y vs Residuals	Mean Values
☑ Y-Hat vs Residuals	Y-Hat vs Residuals Title LMS Regression - Y-Hat vs Resid	C Maximum Values C Zero Values 0.95
🔽 Index Plots	XY Plot Title LMS Regression - Residuals Index	
🔽 QQ Residuals	QQ Residuals Title S Regression - Residuals QQ Plot	UK Cancel

- Specify the required graphs and the input parameters.
- Click on "OK" to continue or "Cancel" to cancel the options.
- Click on "**OK**" to continue or "**Cancel**" to cancel the computations.

Output example: The data set "**WOOD.xls**" was used for LMS regression. It has 5 predictor variables (p) and 20 observations. A total of 38760 subsets of size p+1 (6) observations were used find the best subset meeting the minimization criterion of least median of squared residuals.

Output for LMS Regression. Data Set used: Bradu (predictor variables p = 5, Minimization Criterion = Median Squared Residuals).

			Least Med	lian Square	ed (LMS) Re	gression A	nalysis Out	put		
Da	ite/Time of C	omputation	3/4/2008 9	:35:11 AM						
	User Select	ted Options								
		From File	D:\Narain\9	D:\Narain\Scout_For_Windows\ScoutSource\WorkDatInExcel\Wood						
	Fu	Ill Precision	OFF							
	Subset Sear	ch Strategy	User Specified Criteria							
	Percenta	age Outliers	Maximum Outliers <= 0.25							
	Percenta	age Outliers	Outlier Prob	ability <= 0.9	5					
	Searc	h All Cutoff	Do all comb	inations if <=	100000					
	Minimizati	on Criterion	Median of S	quared Resi	iduals					
Т	itle for Resid	ual QQ Plot	LMS Regre	ssion - Resid	duals QQ Plo	t				
	Residua	il Index Plot	Not Selecte	d						
	Y	′ vs X Plots	Not Selecte	d						
Title for	Y-Hat vs Re	siduals Plot	LMS Regre	ssion - Y-Ha	t vs Residua	ls Plot				
	Y vs Re	siduals Plot	Not Selecte	d						
	Y vs	: Y-Hat Plot	Not Selecte	d						
Nur	nber of Selec	cted Regress Number of Depen	ion Variables Observations dent Variable	n Variables 5 bservations 20 ent Variable y						
		Co	rrelation Ma	atrix						
	У	x1	x2	xЗ	×4	x5				
у	1	-0.145	0.611	0.47	-0.6	0.629		_		
×1	-0.145	1	-0.246	-0.604	0.528	-0.641				
x2	0.611	-0.246	1	0.388	-0.498	0.248				
xЗ	0.47	-0.604	0.388	1	-0.24	0.659				
×4	-0.6	0.528	-0.498	-0.24	1	-0.512				
×5	0.629	-0.641	0.248	0.659	-0.512	1				
	Eige	nvalues of	Correlation	Matrix						
Eval 1	Eval 2	Eval 3	Eval 4	Eval 5	Eval 6					
0.054	0.173	0.588	0.713	1.114	3.357					
	OLSEst	imates of R	egression P	arameters						
Intercept	×1	x2	x3	×4	×5					
0.422	0.441	-1.475	-0.261	0.0208	0.171					

	Stdy of E	stimated R	egression F	arameters?			
Intercept	×1	×2	x3	×4	x5		
0.169	0.117	0.487	0.112	0.161	0.203		
		013	5 ΑΝΠ ΥΑ Τ.	able			
So	urce of Vari	ation	SS	DOF	MS	F-Value	P-Value
	Re	egression	0.0344	5	0.00687	11.81	0.0001
Error			0.00814	14	5.8158E-4		
		Total	0.0425	19			
				OLS S	cale Estimate	0.0241	
					R Square	0.808	
		Least Medi	an of Squa	red Residu	al Regression	า	
		Total Nu	umber of Eler	mental Subse	ets of size (6)	38760	
	Total	Number of E	lemental Sub	sets of size	(6) Searched	38760	
	Nun	ber of Non-	Singular Elem	iental Subse	ets of size (6)	38760	
	В	est Elemen	tal Subset o	of size 6 Fou	und	-	
	У	x1	x2	xЗ	x4	x5	
Obs # 7	0.481	0.489	0.123	0.562	0.455	0.824	
Obs # 10	0.486	0.685	0.156	0.631	0.564	0.914	
		1 0 664	0.159	0.506	0.481	0.867	
Obs # 11	0.554	0.004					
Obs # 11 Obs # 12	0.554 0.519	0.703	0.134	0.519	0.484	0.812	
Obs # 11 Obs # 12 Obs # 15	0.554 0.519 0.502	0.703	0.134 0.114	0.519 0.521	0.484 0.57	0.812 0.889	
Obs # 11 Obs # 12 Obs # 15 Obs # 16	0.554 0.519 0.502 0.508	0.703 0.534 0.523	0.134 0.114 0.132	0.519 0.521 0.505	0.484 0.57 0.612	0.812 0.889 0.919	
Obs # 11 Obs # 12 Obs # 15 Obs # 16	0.554 0.519 0.502 0.508	0.703 0.534 0.523	0.134 0.114 0.132	0.519 0.521 0.505	0.484 0.57 0.612	0.812 0.889 0.919	
Obs # 11 Obs # 12 Obs # 15 Obs # 16 Best Subs	0.554 0.519 0.502 0.508 et satisfies	0.504 0.703 0.534 0.523	0.134 0.114 0.132	0.519 0.521 0.505	0.484 0.57 0.612	0.812 0.889 0.919	
Obs # 11 Obs # 12 Obs # 15 Obs # 16 Best Subs	0.554 0.519 0.502 0.508	0.004 0.703 0.534 0.523	0.134 0.114 0.132	0.519 0.521 0.505	0.484 0.57 0.612	0.812 0.889 0.919	
Obs # 11 Obs # 12 Obs # 15 Obs # 16 Best Subs	0.554 0.519 0.502 0.508 et satisfies timates of F	0.004 0.703 0.534 0.523 minimizatio	0.134 0.114 0.132 on criterion. Parameters	0.519 0.521 0.505 (Using Be	0.484 0.57 0.612 st Subset)	0.812 0.889 0.919	
Obs # 11 Obs # 12 Obs # 15 Obs # 16 Best Subs LMS Es Intercept	0.554 0.519 0.502 0.508 eet satisfies timates of F ×1	0.004 0.703 0.534 0.523 minimizatio	0.134 0.114 0.132 on criterion. Parameters x3	0.519 0.521 0.505 (Using Be: x4	0.484 0.57 0.612 st Subset) x5	0.812 0.889 0.919	
Obs # 11 Obs # 12 Obs # 15 Obs # 16 Best Subs LMS Es Intercept 0.37	0.554 0.519 0.502 0.508 et satisfies timates of F ×1 0.172	0.004 0.703 0.534 0.523 minimization Regression ×2 -0.073	0.134 0.114 0.132 on criterion. Parameters x3 -0.524	0.519 0.521 0.505 (Using Be: ×4 -0.441	0.484 0.57 0.612 st Subset) x5 0.644	0.812 0.889 0.919	
Obs # 11 Obs # 12 Obs # 15 Obs # 16 Best Subs LMS Es Intercept 0.37	0.554 0.519 0.502 0.508 et satisfies timates of F x1 0.172 E stimated	0.004 0.703 0.534 0.523 minimizatio Regression ×2 -0.073	0.134 0.114 0.132 on criterion. Parameters x3 -0.524 Parameters	0.519 0.521 0.505 (Using Be ×4 -0.441	0.484 0.57 0.612 st Subset) x5 0.644	0.812 0.889 0.919	
Obs # 11 Obs # 12 Obs # 15 Obs # 16 Best Subs LMS Es Intercept 0.37 Stdv of Intercept	0.554 0.519 0.502 0.508 eet satisfies timates of F ×1 0.172 E stimated I	0.004 0.703 0.534 0.523 minimizatio Regression x2 -0.073 Regression x2	0.134 0.114 0.132 on criterion. Parameters x3 -0.524 Parameters x3	0.519 0.521 0.505 (Using Be ×4 -0.441 s (Using Be ×4	0.484 0.57 0.612 st Subset) x5 0.644 st Subset) x5	0.812 0.889 0.919	

Mir	himizing 10th	Ordered So	quared Resid	ual					
	Value of Minimum Criterion					2.0999E-6			
	Approximate Breakdown Value								
	Unweigh	ted Sigma E	stimate base	0.125					
Initi	al Robust Ll	MS Scale E	stimate (Adju:	0.00691					
		L	.MS Regres	sion Table	BasedUpo	n Best Subs	xet (
Obs #	Y	Yhat	Residuals	Hat[i,i]	- Res/Sigma	Student	Res/Scale	Weights	C Res~cale
1	0.534	0.522	0.0122	0.278	0.0976	0.115	1.761	1	-0.725
2	0.535	0.527	0.00787	0.132	0.0632	0.0678	1.139	1	0.0472
3	0.57	0.569	8.8370E-4	0.22	0.00709	0.00803	0.128	1	1.243
4	0.45	0.652	-0.202	0.258	-1.625	-1.887	-29.31	0	0.355
5	0.548	0.538	0.00972	0.222	0.078	0.0885	1.407	1	1.002
6	0.431	0.662	-0.231	0.259	-1.857	-2.158	-33.5	0	-0.452
7	0.481	0.481	-3.43E-14	0.53	-2.75E-13	-4.02E-13	-4.97E-12	1	0.907
8	0.423	0.65	-0.227	0.289	-1.824	-2.163	-32.91	0	-0.0349
9	0.475	0.489	-0.0141	0.348	-0.113	-0.14	-2.037	1	-0.396
10	0.486	0.486	-4.35E-14	0.449	-3.49E-13	-4.71E-13	-6.30E-12	1	-0.415
11	0.554	0.554	-1.14E-14	0.317	-9.18E-14	-1.11E-13	-1.66E-12	1	1.986
12	0.519	0.519	-3.52E-14	0.41	-2.82E-13	-3.68E-13	-5.09E-12	1	-1.198
13	0.492	0.491	0.00145	0.287	0.0116	0.0138	0.21	1	-0.485
14	0.517	0.522	-0.00472	0.129	-0.0379	-0.0406	-0.684	1	-1.261
15	0.502	0.502	-6.55E-14	0.152	-5.26E-13	-5.71E-13	-9.48E-12	1	-0.587
16	0.508	0.508	-7.33E-14	0.526	-5.88E-13	-8.54E-13	-1.06E-11	1	0.524
17	0.52	0.521	-0.00114	0.289	-0.00913	-0.0108	-0.165	1	-0.255
18	0.506	0.522	-0.0161	0.294	-0.129	-0.154	-2.329	1	0.284
19	0.401	0.666	-0.265	0.292	-2.129	-2.53	-38.4	0	-1.084
20	0.568	0.567	9.6663E-4	0.318	0.00776	0.00939	0.14	1	0.545
Rew	eighted LM	IS Estimate	es of Regres	sion Paran	neters				
Intercept	×1	x2	x3	×4	x5				
0.377	0.217	-0.085	-0.564	-0.4	0.607				
Rewein	ahted LMS	Stdy of Est	timated Rea	ression Pa	rameters				
Intercent	x1	x2	x3	×4	x5				
0.054	 በ በ421	0.198	0.0435	0.0654	0.0786				
0.004	0.0421	0.100	0.0400	0.0004	0.0100				

		neweigh	CEC LMS AND	JVA Table			
Source of Variation			SS	DOF	MS	F-Value	P-Value
Regression			0.0128	5	0.00255	46	0.0000
		Error	5.5517E-4	10	5.5517E-5		
		Total	0.0133	15			
	0.958						
		F	inal Reweighte	d LMS Sc	ale Estimate	0.00745	
	F	Reweighte	d LMS Regr	ession Tal	e de		
Obs #	Y	Yhat	Residuals	Hat[i,i]	Student	Res/Scale	
1	0.534	0.526	0.00802	0.278	1.267	1.076	
2	0.535	0.531	0.00444	0.132	0.639	0.595	
3	0.57	0.57	2.3614E-4	0.22	0.0359	0.0317	
4	0.45	0.64	-0.19	0.258	-29.67	-25.55	
5	0.548	0.535	0.013	0.222	1.979	1.745	
6	0.431	0.651	-0.22	0.259	-34.32	-29.54	
7	0.481	0.474	0.00658	0.53	1.288	0.883	
8	0.423	0.639	-0.216	0.289	-34.37	-28.98	
9	0.475	0.483	-0.00775	0.348	-1.288	-1.04	
10	0.486	0.486	-2.958E-4	0.449	-0.0535	-0.0397	
11	0.554	0.557	-0.00274	0.317	-0.445	-0.368	
12	0.519	0.525	-0.00642	0.41	-1.122	-0.862	
13	0.492	0.489	0.00319	0.287	0.507	0.428	
14	0.517	0.524	-0.00712	0.129	-1.023	-0.955	
15	0.502	0.502	4.6552E-4	0.152	0.0679	0.0625	
16	0.508	0.508	-7.691E-5	0.526	-0.015	-0.0103	
17	0.52	0.521	-7.971E-4	0.289	-0.127	-0.107	
18	0.506	0.515	-0.00928	0.294	-1.482	-1.246	
19	0.401	0.655	-0.254	0.292	-40.5	-34.07	
20	0.568	0.569	-0.00145	0.318	-0.235	-0.194	

Final Weighted Correlation Matrix

	У	x1	х2	xЗ	x4	x5
У	1	0.75	0.271	-0.0958	-0.173	0.147
×1	0.75	1	0.497	-0.132	-0.0367	-0.097
×2	0.271	0.497	1	-0.226	-0.0031	-0.755
xЗ	-0.0958	-0.132	-0.226	1	0.733	0.138
×4	-0.173	-0.0367	-0.0031	0.733	1	0.245
x5	0.147	-0.097	-0.755	0.138	0.245	1

Eigenvalues of Final Weighted Correlation Matrix

Eval 1	Eval 2	Eval 3	Eval 4	Eval 5	Eval 6	
0.012	0.196	0.39	1.431	1.604	2.368	

Output for LMS Regression (continued).

Interpretation of Graphs: Observations which are outside of the horizontal lines in the graph are considered to be regression outliers.
9.3.1 Least Percentile of Squared Residuals (LPS) Regression

1. Click **Regression** ► **LMS/LPS.**

🖶 Scout 2008 - [D:\Narain\Scout_For_Windows\ScoutSource\WorkDatInExcel\Wood]													
🖳 File Edit Configure Dat	a Graphs	Stats/GOF	Outliers/E	stimates	Regression	Multivariate EDA	GeoStal	ts Program	s Window	Help			
Navigation Panel		0	1	2	OLS	ī	5	6	7	8			
Name		Case	×1	x2	LMS/LPS		x5	y					
D:\Narain\Scout Fo	1	1	0.573	0.10	Biweight		0.841	0.534					
SCLASS_Out.ost	2	2	0.651	0.13	Huber		0.887	0.535					
D:\Narain\Scout_Fo	3	3	0.606	0.12	MVT		0.92	0.57					
	4	4	0.437	0.15	PROP		0.992	0.45					
	5	5	0.547	0.11	Method C	omparison	0.915	0.548					

2. The "Select Variables" screen (Section 3.3) will appear.

- Select the dependent variable and one or more independent variables from the "Select Variables" screen.
- If the results have to be produced by using a Group variable, then select a group variable by clicking the arrow below the "**Group by Variable**" button. This will result in a drop-down list of available variables. The user should select and click on an appropriate variable representing a group variable.
- Click on the "**Options**" button to get the options window and then click on "**User Specified**" in "**Subset Search Strategy**" box.

- Specify "Subsets to Search All." The default is "<=100,000."
- Specify "Percentage Outliers." The default is "<25%."
- Specify "Outlier Probability." The default is "0.95."

- Specify "Minimization Criterion" as "Percentile Squared Res." The default is "0.75."
- Click on "**OK**" to continue or "**Cancel**" to cancel the options.
- Click on "**Graphics**" for the graphics options and specify the preferred graphs.

🔜 Select LMS Graphi	cs Options	×
VY Plots	XY Plot Title LMS Regression - Y vs X Plot	Regression Line - Fixing Other Regressors at
🔽 YvsY-Hat	Y vs Y-Hat Title LMS Regression - Y vs Y-Hat Plot	C Minimum Values
🔽 Y vs Residuals	Y vs Residuals Title LMS Regression - Y vs Residuals	Mean Values Confidence Coefficient
🔽 Y-Hat vs Residuals	Y-Hat vs Residuals Title LMS Regression - Y-Hat vs Resid	C Zero Values
🔽 Index Plots	XY Plot Title LMS Regression - Residuals Index	
🔽 QQ Residuals	QQ Residuals Title S Regression - Residuals QQ Plot	OK Cancel

- Click on "OK" to continue or "Cancel" to cancel the options.
- Click on "**OK**" to continue or "**Cancel**" to cancel the computations.

Output for LPS Regression. Data Set used: Bradu (predictor variables p = 3, Minimization Criterion = 0.75 percentile).

	Least Percentile Squared (LPS) Regression Analysis Output
Date/Time of Computation	2/25/2008 11:08:20 AM
User Selected Options	
From File	D:\Narain\Scout_For_Windows\ScoutSource\WorkDatInExcel\BRADU
Full Precision	OFF
Subset Search Strategy	User Specified Criteria
Percentage Outliers	Maximum Outliers <= 0.25
Percentage Outliers	Outlier Probability <= 0.95
Search All Cutoff	Do all combinations if <= 100000
Minimization Criterion	The 0.75 Percentile of Squared Residuals
Residual QQ Plot	Not Selected
Residual Index Plot	Not Selected
Y vs× Plots	Not Selected
Title for Y-Hat vs Residuals Plot	LMS Regression - Y-Hat vs Residuals Plot
Y vs Residuals Plot	Not Selected
Y vs Y-Hat Plot	Not Selected

Nun	nber of Selec	cted Regress	ion Variables	3		
		Number of	Observations	75		
		Depen	dent Variable	у		
		Correlat	ion Matrix			
	у	x1	x2	xЗ		
У	1	0.946	0.962	0.743		
×1	0.946	1	0.979	0.708		
x2	0.962	0.979	1	0.757		
x3	0.743	0.708	0.757	1		
	Eiger	nvalues for	Correlation	Matrix		
Eval 1	Eval 2	Eval 3	Eval 4			
0.0172	0.0556	0.368	3.559			
	OLS Est	imates of R	egression P	arameters		
Intercept	×1	×2	x3			
-0.388	0.239	-0.335	0.383			
		1		1	1	

	Stdy of E	stimated R	egression F	arameters			
Intercept	×1	×2	x3				
0.416	0.262	0.155	0.129				
		OLS	6 ANOVA T	able			
Sou	rce of Varia	ation	SS	DOF	MS	F-Value	P-Value
	Re	gression	543.3	3	181.1	35.77	0.0000
		Error	359.5	71	5.063		
		Total	902.8	74			
			,	OLS So	cale Estimate	2.25	
					R Square	0.602	
	Lea	st 0.75 Per	centile of S	quared Re:	sidual Regre	ssion	
		Total Num	ber of Eleme	ental Subsets	Searched	10000	
		Number	of Non-Sing	jular Element	tal Subsets	10000	
	BestEle	emental Su	bset of size	4 Found			
	У	x1	x2	х3			
Obs # 19	0.1	0.8	2.9	1.6			
Obs # 1	9.7	10.1	19.6	28.3			
Obs # 3	10.3	10.7	20.2	31			
Obs # 72	-0.2	0.6	2	1.5			
Best Subse	et satisfies	minimizatio	on criterion.				
			-	n .	al : p .		
ercentile 5	quared E s	timates of H	egression	rarameters	s (U sing Besl		
Intercept	XI	×2	×3				
-1.045	0.219	0.272	0.113				
Crdu of (atimated [Dogramian	Darameter	(Using Do	at Cubaat)		
Jutercent	_sumateur	negression 		s (O sing de	st Subsetj		
o 570	×1	82	x3 0.177				
0.972	0.36	0.213	0.177				
ka in	nimizina 564	Ordered Sc	uared Resid	lual			
1911	anneng oou		uarea mesia Val	lue of Minim	m Criterion	0.606	
				imate Breakd	lown Value	0.000	
	المسما	ted Sieme F	Approxi	nd upon LPC	Desiduala	2,000	
	onweigr	keu sigma b	sumate pase	sa upon LPS	nesiduais	3.000	

Ini	tial Robust I	LPS Scale E	stimate (Adju	sted for dim	ensionality)	0.901			
		LPS	(0.75th)Ber	uression T.	able Based	llnon Rest	Subset		
Obs #	Y	Yhat	Residuals	Hat[i,i]	Res/Sigma	Student	Res/Scale	Weights	C Res~cale
1	9.7	9.7	1.356E-11	0.063	4.393E-12	4.538E-12	1.506E-11	1	1.502
2	10.1	9.882	0.218	0.0599	0.0707	0.073	0.242	1	1.775
3	10.3	10.3	1.530E-11	0.0857	4.954E-12	5.181E-12	1.698E-11	1	1.334
4	9.5	10.56	-1.058	0.0805	-0.343	-0.357	-1.174	1	1.138
5	10	10.47	-0.469	0.0729	-0.152	-0.158	-0.52	1	1.36
6	10	10.17	-0.173	0.0756	-0.0559	-0.0582	-0.192	1	1.527
7	10.8	10.23	0.568	0.068	0.184	0.191	0.631	1	2.006
8	10.3	9.713	0.587	0.0631	0.19	0.196	0.652	1	1.705
9	9.6	10.22	-0.617	0.08	-0.2	-0.208	-0.685	1	1.204
10	9.9	9.778	0.122	0.0869	0.0394	0.0412	0.135	1	1.35
11	-0.2	11.85	-12.05	0.0942	-3.903	-4.101	-13.38	0	-3.48
12	-0.4	12.03	-12.43	0.144	-4.024	-4.349	-13.79	0	-4.165
13	0.7	12.5	-11.8	0.109	-3.822	-4.049	-13.1	0	-2.719
14	0.1	14.46	-14.36	0.564	-4.65	-7.04	-15.94	0	-1.69
15	-0.4	0.725	-1.125	0.0579	-0.364	-0.375	-1.249	1	-0.294
16	0.6	0.266	0.334	0.0759	0.108	0.113	0.371	1	0.385
17	-0.2	-0.587	0.387	0.0393	0.125	0.128	0.43	1	0.287
18	0	0.12	-0.12	0.0231	-0.0387	-0.0392	-0.133	1	-0.175
19	0.1	0.1	-2.54E-12	0.0312	-8.24E-13	-8.37E-13	-2.82E-12	1	0.29
20	0.4	0.807	-0.407	0.0476	-0.132	-0.135	-0.452	1	0.151
21	0.9	0.337	0.563	0.0294	0.182	0.185	0.625	1	0.299
22	0.3	0.128	0.172	0.0457	0.0557	0.057	0.191	1	0.415
23	-0.8	0.109	-0.909	0.0293	-0.294	-0.299	-1.009	1	-0.19
24	0.7	-0.0783	0.778	0.0261	0.252	0.255	0.864	1	0.602
25	-0.3	-0.781	0.481	0.022	0.156	0.158	0.534	1	-0.136
26	-0.8	0.333	-1.133	0.0318	-0.367	-0.373	-1.257	1	-0.214
27	-0.7	0.685	-1.385	0.0417	-0.449	-0.458	-1.538	1	-0.612
28	0.3	-0.207	0.507	0.0235	0.164	0.166	0.563	1	-0.108
29	0.3	-0.447	0.747	0.0178	0.242	0.244	0.829	1	0.176
30	-0.3	-0.208	-0.0924	0.0466	-0.0299	-0.0307	-0.103	1	-0.564
31	0	0.127	-0.127	0.059	-0.0412	-0.0424	-0.141	1	-0.12
32	-0.4	-0.249	-0.151	0.0364	-0.049	-0.0499	-0.168	1	0.247
33	-0.6	0.296	-0.896	0.0264	-0.29	-0.294	-0.995	1	-0.0485
34	-0.7	-0.879	0.179	0.032	0.0578	0.0588	0.198	1	-0.301
35	0.3	0.626	-0.326	0.0342	-0.105	-0.107	-0.361	1	-0.178

Rev	eighted LP	PS Estimate	s of Regres	sion Param	eters		
Intercept	×1	х2	x3				
-0.93	0.143	0.191	0.184				
Rewei	ghted LPS :	Stdv of Esti	imated Reg	ression Par	ameters		
Intercept	×1	х2	x3				
0.13	0.0795	0.0718	0.0505				
		Reweight	ed I PS AN	1VA Table			
Sou	irce of Varia	ation	SS	DOF	MS	F-Value	P-Value
	Re	gression	865.3	3	288.4	635	0.0000
		Error	30.43 67		0.454		
		Total	895.7	70			
					R Square	0.966	
		Fi	nal Reweight	ed LPS Sca	le Estimate	0.674	
		Reweighte	d LPS Regr	ession Table	8		
Obs #	Y	- Yhat	Residuals	Hat[i,i]	Student	Res/Scale	
1	9.7	9.475	0.225	0.063	0.346	0.335	
2	10.1	9.671	0.429	0.0599	0.657	0.637	
3	10.3	10.17	0.127	0.0857	0.197	0.189	
4	9.5	10.44	-0.936	0.0805	-1.448	-1.388	
5	10	10.31	-0.306	0.0729	-0.471	-0.454	
6	10	9.893	0.107	0.0756	0.165	0.158	

73	0.4	-0.157	0.557	0.0426	0.844	0.826	
74	-0.9	-0.215	-0.685	0.05	-1.043	-1.016	
75	0.2	-0.331	0.531	0.0621	0.813	0.788	
	Fina	Weighted	Correlation	n Matrix			
	У	x1	x2	хЗ			
У	1	0.939	0.946	0.943			
x1	0.939	1	0.985	0.977			
х2	0.946	0.985	1	0.98			
xЗ	0.943	0.977	0.98	1			
E	igenvalues	for Final W	eighted Co	rrelation Mat	ńx 🛛		
Eval 1	Eval 2	Eval 3	Eval 4				
0.0142	0.0244	0.0762	3.885				

371

Output for LPS Regression.

Data Set used: Bradu	(predictor variables	p = 3, Minimization	Criterion $= 0.9$	percentile).
----------------------	----------------------	---------------------	-------------------	--------------

	Le	ast 0.9 Perc	centile of So	quared Res	idual Regre:	ssion				
		Total Nur	nber of Elema	ental Subsets	s Searched	10000				
		Numbe	r of Non-Sing	10000						
				-						
	BestEl	lemental Su	bset of size	4 Found						
	У	x1	x2	xЗ						
Obs # 31	0	3.1	1.4	1						
Obs # 32	-0.4	0.5	2.4	0.3						
Obs # 3	10.3	10.7	20.2	31						
Obs # 45	-0.5	1.9	0.1	0.6						
Best Subs	et satisfies	minimizati o	on criterion.							
	·		- i	D	(1)-: D					
ercentile :	oquared Es	stimates of F	regression	Parameters	s (U sing Bes					
Intercept	×1	82	×3							
-0.951	0.167	0.171	0.194							
Crduaf	Estimated	Degraaian	Daramatar	a (Ulaina Ba	at Crabaat)					
Intercent		negression		s (o sing be	st Subsetj					
0.554	0.349	0.206	0.171							
0.004	0.040	0.200	0.171							
м	inimizina 67t	h Ordered S	ouared Resid	dual						
			Va	lue of Minimu	um Criterion	1.664				
			Approx	imate Breakc	Jown Value	0.0933				
	Unweigł	hted Sigma E	 Estimate base	ed upon LMS	6 Residuals	2.991				
	-	-								
Ini	tial Robust I	LPS Scale E	stimate (Adju	usted for dim	ensionality)	0.909				
		LPS	(0.9th) Re	gression Ta	ble Based l	Jpon Best 9	Subset			
Obs #	Y	Yhat	Residuals	Hat[i,i]	Res/Sigma	Student	Res/Scale	Weights	C Res~cale	
1	9.7	9.573	0.127	0.063	0.0424	0.0438	0.139	1	1.502	
2	10.1	9.743	0.357	0.0599	0.119	0.123	0.393	1	1.775	
3	10.3	10.3	1.723E-13	0.0857	5.760E-14	6.024E-14	1.895E-13	1	1.334	
4	9.5	10.52	-1.024	0.0805	-0.342	-0.357	-1.126	1	1.138	
5	10	10.41	-0.406	0.0729	-0.136	-0.141	-0.447	1	1.36	
6	10	10	-0.00147	0.0756	-4.906E-4	-5.102E-4	-0.00161	1	1.527	
7	10.8	10.02	0.783	0.068	0.262	0.271	0.861	1	2.006	
8	10.3	9.637	0.663	0.0631	0.222	0.229	0.729	1	1.705	

8	10.3	9.637	0.663	0.0631	0.222	0.229	0.729	1	1.705	
9	9.6	10.22	-0.618	0.08	-0.207	-0.215	-0.68	1	1.204	
10	9.9	9.845	0.0552	0.0869	0.0185	0.0193	0.0607	1	1.35	
11	-0.2	11.77	-11.97	0.0942	-4.003	-4.206	-13.17	0	-3.48	
12	-0.4	12.16	-12.56	0.144	-4.199	-4.538	-13.82	0	-4.165	
13	0.7	12.09	-11.39	0.109	-3.807	-4.034	-12.53	0	-2.719	
14	0.1	13.29	-13.19	0.564	-4.408	-6.673	-14.5	0	-1.69	
15	-0.4	0.52	-0.92	0.0579	-0.307	-0.317	-1.011	1	-0.294	
16	0.6	5.8698E-4	0.599	0.0759	0.2	0.208	0.659	1	0.385	
17	-0.2	-0.639	0.439	0.0393	0.147	0.15	0.483	1	0.287	
18	0	0.0945	-0.0945	0.0231	-0.0316	-0.0319	-0.104	1	-0.175	
19	0.1	-0.0122	0.112	0.0312	0.0375	0.0381	0.123	1	0.29	
20	0.4	0.574	-0.174	0.0476	-0.0582	-0.0596	-0.191	1	0.151	
21	0.9	0.228	0.672	0.0294	0.225	0.228	0.74	1	0.299	
22	0.3	0.0303	0.27	0.0457	0.0902	0.0923	0.297	1	0.415	
23	-0.8	-0.0692	-0.731	0.0293	-0.244	-0.248	-0.804	1	-0.19	
24	0.7	-0.244	0.944	0.0261	0.316	0.32	1.039	1	0.602	
25	-0.3	-0.706	0.406	0.022	0.136	0.137	0.447	1	-0.136	
26	-0.8	0.247	-1.047	0.0318	-0.35	-0.356	-1.152	1	-0.214	
27	-0.7	0.59	-1.29	0.0417	-0.431	-0.44	-1.419	1	-0.612	
28	0.3	-0.126	0.426	0.0235	0.142	0.144	0.468	1	-0.108	
29	0.3	-0.442	0.742	0.0178	0.248	0.25	0.816	1	0.176	
30	-0.3	0.0288	-0.329	0.0466	-0.11	-0.113	-0.362	1	-0.564	
31	0	2.146E-14	-2.15E-14	0.059	-7.17E-15	-7.39E-15	-2.36E-14	1	-0.12	
32	-0.4	-0.4	2.520E-14	0.0364	8.425E-15	8.583E-15	2.772E-14	1	0.247	
33	-0.6	0.119	-0.719	0.0264	-0.241	-0.244	-0.791	1	-0.0485	
34	-0.7	-0.748	0.0484	0.032	0.0162	0.0165	0.0533	1	-0.301	
35	0.3	0.559	-0.259	0.0342	-0.0865	-0.088	-0.285	1	-0.178	
36	-1	0.132	-1.132	0.0231	-0.378	-0.383	-1.245	1	-0.522	
37	-0.6	0.0819	-0.682	0.0587	-0.228	-0.235	-0.75	1	-0.102	
38	0.9	-0.457	1.357	0.021	0.454	0.458	1.493	1	0.557	
39	-0.7	-0.367	-0.333	0.035	-0.111	-0.113	-0.366	1	-0.567	
40	-0.5	-0.294	-0.206	0.03	-0.069	-0.0701	-0.227	1	-0.0102	
41	-0.1	0.453	-0.553	0.0524	-0.185	-0.19	-0.608	1	-0.49	
42	-0.7	-0.206	-0.494	0.0554	-0.165	-0.17	-0.543	1	-0.482	
43	0.6	-0.197	0.797	0.0606	0.266	0.275	0.877	1	0.766	
44	-0.7	0.0561	-0.756	0.0406	-0.253	-0.258	-0.832	1	-0.801	
45	-0.5	-0.5	-4.16E-14	0.029	-1.39E-14	-1.41E-14	-4.58E-14	1	-0.339	
46	-0.4	0.0173	-0.417	0.0377	-0.14	-0.142	-0.459	1	-0.634	

Rev	eighted LF	PS Estimate	s of Regres	sion Param	eters			
Intercept	×1	x2	x3					
-0.93	0.143	0.191	0.184					
Rewei	ghted LMS	Stdy of Est	imated Reg	ression Pa	rameters			
Intercept	×1	x2	xЗ					
0.13	0.0795	0.0718	0.0505					
		Reweight	ed LPS AN	DVA Table				
Sou	irce of Varia	ation	SS	DOF	MS	F-Value	P-Value	
	Re	gression	865.3	3	288.4	635	0.0000	
		Error	30.43	67	0.454			
		Total	895.7	70				
					R Square	0.966		
		Fir	hal Reweighte	ed LMS Scal	e Estimate	0.674		
		_						
		Reweighte	d LPS Regr	ession Tabl	e			
Ubs #	Y	Yhat	Residuals	Hat[i,i]	Student	Res/Scale		
1	9.7	9.475	0.225	0.063	0.346	0.335		
2	10.1	9.671	0.429	0.0599	0.657	0.637		
3	10.3	10.17	0.127	0.0857	0.197	0.189		
4	9.5	10.44	-0.936	0.0805	-1.448	-1.388		
5	10	10.31	-0.306	0.0729	-0.471	-0.454		
6	10	9.893	0.107	0.0756	0.165	0.158		
7	10.8	9.927	0.873	0.068	1.341	1.295		
8	10.3	9.538	0.762	0.0631	1.168	1.13		
9	9.6	10.13	-0.525	0.08	-0.812	-0.779		
10	9.9	9.748	0.152	0.0869	0.236	0.225		
11	-0.2	11.68	-11.88	0.0942	-18.52	-17.63		
12	-0.4	12	-12.4	0.144	-19.89	-18.4		
13	0.7	12.02	-11.32	0.109	-17.79	-16.79		
14	0.1	13.4	-13.3	0.564	-29.88	-19.74		
15	-0.4	0.497	-0.897	0.0579	-1.372	-1.332		
16	0.6	-0.0111	0.611	0.0759	0.943	0.907		
17	-0.2	-0.588	0.388	0.0393	0.587	0.575		
18	0	0.0736	-0.0736	0.0231	-0.11	-0.109		
19	0.1	0.033	0.067	0.0312	0.101	0.0994		
20	0.4	0.568	-0.168	0.0476	-0.256	-0.25		

The 75^{th} percentile minimization criterion finds 14 observations (1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) as outliers and 90^{th} percentile minimization criterion finds four observations (11, 12, 13 and 14) as outliers.

9.4 Iterative OLS Regression Method

1. Click **Regression** ► **Iterative OLS.**

🖶 Scout 4.0 - [D: WarainV	Scout_Fo	or_Windov	vs\ScoutSo	urce\\	NorkDatInI	xcel\BRADU]				
🖳 File Edit Configure Data	Graphs	Stats/GOF	Outliers/Est	imates	Regression	Multivariate EDA	GeoStats	Programs	Window	Help
Navigation Panel		0	1	2	OLS		5	6	7	8
Name		Count	у	×1	LMS					
D:\Narain\Scout_Fo	1	1	9.7	11	Riveight	OLS				
D:\\\arain\Scout_Fo	2	2	10.1		Huber					
	3	3	10.3	11	MVT					
	4	4	9.5		PROP					
	5	5	10	11	Method C	Comparison				
			10			1 20.2			-	

- 2. The "Select Variables" screen (Section 3.3) will appear.
 - Select the dependent variable and one or more independent variables from the "Select Variables" screen.
 - If the results have to be produced by using a Group variable, then select a group variable by clicking the arrow below the "**Group by Variable**" button. This will result in a drop-down list of available variables. The user should select and click on an appropriate variable representing a group variable.
 - Click on the "**Options**" button to get the options window.

🖶 IRLS Options			×
Regression Value Alpha for Residual Outliers 0.05 Number of Regression Iterations 10 [Max = 50] Residuals MDs Distribution © Beta O Chisquare Intermediate Iterations	Identify Leverage Points Image: Leverage Select Leverage Distance Method Classical Sequential Classical Huber PROP MVT (Trimming)	Initial Leverage Distances Classical Sequential Classical Robust (Median, 1.48MAD) OKG (Maronna Zamar) KG (Not Orthogonalized) MCD	 Display Intervals Confidence Coefficient 0.95 Display Diagnostics
 Do Not Display Display Every 5th Display Every 4th Display Every 2nd Display All 	[Max = 50] Leverage MDs Distribution © Beta © Chisquare	0.05 Leverage Influence Function Alpha	OK Cancel

• Specify the "Regression Value." The default is "0.05."

- Specify the "Number of Regression Iterations." The default is "10."
- Specify the "**Regression MDs Distribution**." The default is "**Beta**."
- Specify the "Identify Leverage Points." The default is "On."
- Specify the "Select Leverage Distance Method." The default is "PROP."
- Specify the "Number of Leverage Iterations." The default is "10."
- Specify the "Leverage Initial Distances" The default is "OKG (Maronna Zamar)."
- Specify the "Leverage Value." The default is "0.05."
- Click "OK" to continue or "Cancel" to cancel the options.

🖶 OptionsRegressionGra	phics	
🔽 XY Plots	XY Plot Title IRLS Regression - Y vs X Plot	Regression Line - Fixing Other Regressors at
✓ Y vs Y-Hat	Y vs Y-HatTitle IRLS Regression - Y vs Y-Hat Plot	Minimum Values Predection Interval Mean Values Confidence Coefficient
▼ Y vs Residuals	Y vs Residuals Title IRLS Regression - Y vs Residuals	C Maximum Values C Zero Values 0.95
✓ Y-Hat vs Residuals	Y-Hat vs Residuals Title IRLS Regression - Y-Hat vs Resid	Graphics Distribution
🔽 Residuals vs Leverage	Residuals vs Leverage Title IRLS Regression - Residuals vs U	Residual/Lev. Alpha
🔽 QQ Residuals	QQ Residuals Title	0.05 OK Cancel

• Click on the "Graphics" button to get the options window.

- Specify the preferred plots and the input parameters.
- Click "OK" to continue or "Cancel" to cancel the options.
- Click "OK" to continue or "Cancel" to cancel the computations.

Output example: The data set "**BRADU.xls**" was used for iterative OLS regression. It has 3 predictor variables (p) and 75 observations. When the "**Leverage**" option is on, the leverage distances are calculated and outlying observations are obtained iteratively using initial estimates as median and OKG matrix and the leverage option as PROP (i.e., using PROP influence function). Then the weights are assigned to observations and those weights are used in finding the regression outliers iteratively. When the leverage option is off, all observations are assigned one (1) as weights and then the regression outliers are found iteratively. Finally, the estimated regression parameters are calculated.

Output for Iterative OLS (Leverage ON with PROP function and OKG initial start). Data Set Used: Bradu (predictor variables p = 3).

			Regressio	n Analysis	Output						
Da	ate/Time of (Computation	3/4/2008 9:	50:32 AM							
	Liser Seler	ted Options									
	000, 00,00	From File	D:\Narain\9	cout For V	/indows\Sec	utSource\\	/orkDatinEvc				
	F		OFF	cou(_1 oi_+	111001131000	acoource m	OIKE/GUILEAG	CINDINADO			
Solor	' Nod Dogros	vian Mathad	Iterative Be	unind to d Lo	ant Courses	((D) C)					
	olea for Dooid	sion method	0.05 (Lood	weighteu Le	ast Squares (artical Dear	(in i⊑o) sesions Outlie					
Al	pha for Hesi	Juai Oudiers	0.05 (0sed	to Identity v	/enical negr	ession Outlie	usj				
Number	or Regressi	on Iterations	TU (Maximur	n Number i	doesn't Lor	ivergej					
L		Leverage	Identify Lev	erage Point	s (Uutliers in	X-Spacej					
Sel	ected Lever	age Method	PRUP								
Initial Lev	verage Dista	nce Method	OKG (Maror	ina Zamar)	Matrix						
	S	quared MDs	Beta Distrib	ution used	for Leverage	Distances I	based upon	Selected Re	gression (Le	verage) Varia	ables
L	everage Dis	tance Alpha	0.05 (Used)	o Identify L	everage Poin	ts)					
Numb	er of Leveraj	ge Iterations	10 (Maximu	n Number i	i doesn't Cor	iverge)					
	۲ı	/s Y-hat Plot	Not Selecte	Ч							
	Y vs R	lesidual Plot	Not Selecte	4							
	Y-hat vs R	esidual Plot	Not Selecte	4							
	,	Y vs X Plots	Not Selecte	d							
Т	itle for Resid	lual QQ Plot	IRLS Regre	ssion - Resi	duals QQ Plo	t					
	Residual	Band Alpha	0.05 (Used i	n Graphics	Residual Bar	nds)					
Title R	esidual vs D	istance Plot	IRLS Reare	ssion - Resi	duals vs Un	souared Lev	erage Distar	ce Plot			
Sh	ow Intermed	liate Besults	Do Not Disc	lav Interme	fiate Besults						
			Intermediate	Besults Sk	iown on Ano	ther Output !	Sheet				
		1.0	verage Poir	te are Out	liere in X-Sr	ace of Sel	ected Bear	eccion Varia	hloe		
			reruger on				ootoarrogi				
Mur	mbor of Colo	otod Dogroo	vion Voriables	2							
- Nu	IDEI OF SEIE	Number of		3							
		Number of	ODServations	75							
		Depen	ident variable	y							
	Residual	Values use	d with Graph	nics Display	,						
	Upper Re	sidual Indvid	ual (0.05) MD	1.94							
	Lower Re	sidual Indvidi Casa Ia V	ual (0.05) MD	-1.94							
		LUITEIAU	un maux								
	y ,	×1	×2	x3							
у	1	0.946	0.962	0.743							
×1	0.946	1	0.979	0.708							
x2	0.962	0.979	1	0.757							
×3	0.743	0.708	0.757	1							
	Eige	nvalues of (Correlation N	l atrix							
Eval 1	Eval 2	Eval 3	Eval 4								
0.0172	0.0556	0.368	3.559								
		01	dinary Leas	t Squares	(OLS)Regr	ession Res	ults				
	Estima	ates of Reg	ession Para	meters							
Intercept	×1	×2	x3								
-0.388	0.239	-0.335	0.383								
	Stdy of F	stimated D.	egression D	arametere							
Internet	J(14 U) E	ະເຫດເຮັບກິເ	egression Pa	nameters							
intercept	×1	82	×3								
0.416	0.262	0.155	0.129								

		A	NOVA Tabl	e					
Sou	rce of Varia	tion	SS	DOF	MS	F-Value	P-Value		
	Reg	gression	543.3	3	181.1	35.77	0.0000		
		Error	359.5	71	5.063				
		Total	902.8	74					
		R Squa	are Estimates	0.602					
	MAD) Based Sca	ale Estimates	1.067					
	W	/eighted Sca	ale Estimates	2.25					
		-	R Estimates	1.468					
Det. of	COV[Regres	ssion Coeffic	cients] Matrix	5.5107E-8					
	Rogrossi	on Parame	tore Vector	E etimatae					
Intercent	of	onn araine ري	ເອເຈ + ອບເບ ເ	Latinduca					
.0.0105	0.0624	0.0119	.0 107					1	
-0.0105	0.0024	0.0113	-0,107						
	Stdv of	Regressio	on Estimates	Vector					
Intercept	×1	x2	x3						
0.197	0.0689	0.0684	0.0713						
		٨		e					
Sou	rce of Varia	tion	SS	DOF	MS	F-Value	P-Value		
	Red	aression	0.898	3	0.299	0.94	0.4272		
	2018	Error	18.14	57	0.318	0.507.0%			
		Total	19.04	60					
		R Squa	are Estimates	0.0472					
	MAD	D Based Sca	ale Estimates	0.902					
	Weighted Scale Estimates								
	Individual MD(0)								
		IG	R Estimates	1.236					
	Determinant of Leverage S Matri								

Obs Yvector Yhet Residuals Half[1] Res/Scale Stude "Res Walf[1] Res 2015 Lev Dist OLS Prist 1 9.7 -2174 1187 0.063 21.92 2261 1.074 2364E-13 21.92 22.01 1.074 2364E-13 21.92 22.01 1.074 23.92 22.04 331E-15 21.32 32.06 11.38 5 10 -2.418 12.24 0.0050 21.62 22.52 7.205E-14 21.66 32.28 1.38 5 10 -2.217 12.22 0.0056 22.91 1.546E-14 23.08 30.59 1.57 7 10.8 -2.217 12.24 0.0631 22.23 2.257 7.20E-14 21.4 23.08 30.59 1.705 9 6. -2.475 12.07 0.08 21.4 22.38 1076E-14 21.47 30.94 1.35 11 0.2 -2.437 12.34 0.0669 0.087				-	.everage l	Jption Regi	ession lab	e			
1 9.7 -2.174 11.87 0.063 21.05 21.74 2.384E-13 21.05 23.44 1.502 2 10.1 -2.265 11.26 0.0699 21.92 22.61 1.074E-13 21.92 30.21 1.775 3 10.3 -2.448 12.72 0.0665 22.54 22.36 6391E-15 21.32 32.66 1.38 5 10 -2.443 12.24 0.0756 21.66 22.52 7.228E-14 21.66 30.59 1.527 7 10.8 -2.217 12.22 0.0766 21.64 22.02 1.364E-13 22.03 23.08 1.04 1.36 1.204 10 9.9 2.437 12.34 0.0693 0.187 26.89 5.077E-14 <td< th=""><th>Obs</th><th>Y Vector</th><th>Yhat</th><th>Residuals</th><th>Hat[i,i]</th><th>Res/Scale</th><th>Stude~ Res</th><th>: Wts[i,i]</th><th>Res Dist.</th><th>Lev Dist.</th><th>OLS R~ist.</th></td<>	Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	: Wts[i,i]	Res Dist.	Lev Dist.	OLS R~ist.
2 10.1 -2.265 12.36 0.0699 21.92 22.61 1.074E-13 21.92 30.21 1.775 3 10.3 -2.418 12.72 0.0697 22.54 23.58 1.886E-14 22.54 31.89 1.334 4 9.5 -2.528 12.03 0.0005 21.32 22.23 6.331E-15 21.32 32.28 6.31E-15 21.32 32.236 6.375E-14 22.08 30.68 2.006 8 10.3 -2.247 12.24 0.0631 22.23 2.287 1.636E-14 21.44 21.45 1.515 1.207 9 9.5 -2.475 1.207 0.088 21.87 22.89 5.017E-14 21.47 30.94 1.35 11 0.2 -2.782 2.582 0.0942 4.577 4.609 1.424E-16 4.577 36.64 3.48 12 0.4 -2.946 2.546 0.144 4.513 4.617 4.513 3.6.32 2.119 </td <td>1</td> <td>9.7</td> <td>-2.174</td> <td>11.87</td> <td>0.063</td> <td>21.05</td> <td>21.74</td> <td>2.364E-13</td> <td>21.05</td> <td>29.44</td> <td>1.502</td>	1	9.7	-2.174	11.87	0.063	21.05	21.74	2.364E-13	21.05	29.44	1.502
3 10.3 -2.418 12.72 0.0867 22.54 23.58 1.886E-14 22.54 31.98 1.334 4 9.5 -2528 12.03 0.0865 21.32 22.23 6.931E-15 21.32 32.66 1.138 5 10 -2.4243 12.24 0.0756 21.66 22.52 7.26E-14 22.06 32.08 30.68 2.006 6 10.3 -2.247 12.24 0.068 23.08 23.93 6.57E-14 23.08 30.68 2.006 9 9.66 -2.475 12.07 0.08 21.47 22.32 1.76E-14 21.47 30.94 1.35 10 9.3 2.437 12.34 0.068 21.87 22.89 5.07T-14 21.87 30.94 1.35 11 -0.2 -2.782 2.582 0.092 4.777 4.809 1.424E-16 4.577 3.664 3.49 12 -0.4 0.0115 0.412 0.0579	2	10.1	-2.265	12.36	0.0599	21.92	22.61	1.074E-13	21.92	30.21	1.775
4 9.5 -2.528 12.03 0.0005 21.32 22.23 6.331E-15 21.32 32.86 1.138 5 10 -2.443 12.44 0.0726 22.06 22.91 1.266E-14 22.06 32.28 1.36 6 10 -2.217 12.22 0.0756 21.66 22.52 7.228E-14 21.68 30.08 2.006 8 10.3 -2.247 12.24 0.0631 22.23 22.97 1.634E-13 22.23 29.8 1.705 9 9.6 -2.477 12.07 0.08 21.47 22.32 1.768E-14 21.87 30.94 1.35 11 -0.2 -2.772 2.562 0.0542 4.777 4.809 1.42E-16 4.777 3.64.64 3.48 12 -0.44 -2.946 2.546 0.144 4.513 4.807 3.64.64 3.48 13 0.7 -2.589 3.289 0.109 5.83 6.177 1.630	3	10.3	-2.418	12.72	0.0857	22.54	23.58	1.886E-14	22.54	31.89	1.334
5 10 -2.443 12.44 0.0729 22.06 22.91 1.266E-14 22.06 32.28 1.36 6 10 -2.217 12.22 0.0756 21.66 22.52 7.228E-14 21.66 30.59 1.527 7 10.8 -2.219 13.02 0.068 22.30 22.37 16.344-13 22.23 23.84 1.705 9 9.6 -2.475 12.07 0.08 21.47 22.23 1.636E-14 21.44 31.95 1.204 10 9.9 -2.475 12.07 0.08 21.87 22.89 50.7E-14 21.87 30.94 1.35 11 -0.2 -2.782 2.566 0.044 4.573 4.807 3.684E-17 4.533 37.96 4.165 13 0.7 -2.598 3.288 0.109 5.83 6.177 1.058-16 5.83 3.632 2.719 14 0.1 -2.556 2.656 0.564 4.708	4	9.5	-2.528	12.03	0.0805	21.32	22.23	6.931E-15	21.32	32.86	1.138
6 10 -2217 1222 0.0756 21.66 22.52 7.228E-14 21.66 30.59 1.527 7 10.8 -2219 13.02 0.068 23.08 23.9 6.576E-14 22.08 30.68 20.08 9 9.6 -2.475 12.07 0.08 22.43 22.92 5.017E-14 21.87 30.94 1.35 10 9.9 -2.437 12.34 0.0869 21.87 22.89 5.017E-14 21.87 30.94 1.35 11 -0.2 -2.762 2.582 0.0942 4.577 4.809 1.424E-16 4.577 36.64 3.48 12 -0.4 -2.946 2.566 0.564 4.708 7.127 1.476E-18 4.109 1.69 14 0.1 -2.556 2.666 0.564 4.708 7.127 1.476E-18 4.408 4.109 1.69 15 0.4 0.0115 0.412 0.0759 0.73 0.752	5	10	-2.443	12.44	0.0729	22.06	22.91	1.266E-14	22.06	32.28	1.36
7 10.8 -2.219 13.02 0.068 23.08 23.9 6.576E-14 23.08 30.68 2.006 8 10.3 -2.24 12.54 0.0631 22.23 22.97 1.634E-13 22.23 23.8 1.705 9 9.6 -2.475 12.07 0.086 21.87 22.89 5.07E-14 21.87 30.94 1.355 10 9.9 -2.437 12.34 0.0869 21.87 22.89 5.07E-14 21.87 30.94 1.355 11 -0.2 -2.762 2.562 0.0942 4.577 4.809 1.426 4.573 3.684E-17 4.513 3.6.92 2.719 14 0.1 -2.569 3.289 0.109 5.83 6.177 1.069E-16 5.83 36.92 2.719 14 0.1 -2.566 2.656 0.554 4.708 7.17 1.78E-18 4.708 41.09 1.69 15 0.4 0.0115 0.412	6	10	-2.217	12.22	0.0756	21.66	22.52	7.228E-14	21.66	30.59	1.527
8 10.3 -2.24 12.54 0.0631 22.23 22.97 1.634E-13 22.23 29.8 1.705 9 9.6 -2.475 12.07 0.08 21.4 22.32 1.766E-14 21.4 31.95 1.204 10 9.9 -2.437 12.34 0.0869 21.87 22.89 5.017E-14 21.87 30.64 3.48 11 -0.2 -2.762 2.562 0.0942 4.577 4.809 1.424E-16 5.83 36.92 2.719 14 0.11 -2.556 2.656 0.564 4.708 7.127 1.478E-18 4.708 41.09 1.69 15 -0.4 0.0115 -0.412 0.0579 -0.73 -0.72 1 0.73 2.002 0.284 16 0.6 0.177 0.423 0.0759 0.76 1 0.322 1.938 0.287 17 -0.2 -0.0128 -0.187 0.0332 -0.39 1 0.33	7	10.8	-2.219	13.02	0.068	23.08	23.9	6.576E-14	23.08	30.68	2.006
9 9.6 -2.475 12.07 0.08 21.4 22.32 1.768E-14 21.4 31.95 1.204 10 9.9 -2.437 12.34 0.0869 21.87 22.89 5.017E-14 21.87 30.94 1.35 11 -0.2 -2.762 2.582 0.0942 4.577 4.809 1.42E-16 4.577 36.64 3.49 12 -0.4 -2.266 2.566 0.564 4.708 7.127 1.478E-18 5.83 36.92 2.719 14 0.1 -2.566 0.564 4.708 7.127 1.478E-18 5.408 41.09 1.69 15 -0.4 0.0115 -0.412 0.0579 -0.73 -0.752 1 0.73 2.067 1.18 0.75 2.165 0.385 17 -0.2 -0.0128 0.187 0.0332 -0.339 1 0.332 1.938 0.267 18 0 -0.0519 0.0619 0.0231	8	10.3	-2.24	12.54	0.0631	22.23	22.97	1.634E-13	22.23	29.8	1.705
10 9.9 -2.437 12.34 0.0869 21.87 22.89 5.017E-14 21.87 30.94 1.35 11 -0.2 -2.782 2.582 0.0942 4.577 4.809 1.424E-16 4.577 36.64 3.49 12 -0.4 -2.946 2.566 0.114 4.513 4.877 3.694E-17 4.513 37.96 4.165 13 0.7 -2.589 3.289 0.109 5.83 6.177 1.069E-16 5.83 3.6.92 2.719 14 0.1 -2.556 2.656 0.564 4.708 7.127 1.476E-16 5.83 3.6.92 0.2719 15 -0.4 0.0115 -0.412 0.0579 -0.78 1 0.75 2.165 0.385 17 -0.2 -0.0128 -0.187 0.0331 0.11 0.11 1 1.034 1.287 0.29 18 0 -0.0519 0.0619 0.0231 0.11 0.11 <	9	9.6	-2.475	12.07	0.08	21.4	22.32	1.768E-14	21.4	31.95	1.204
11 -0.2 -2.782 2.582 0.0942 4.577 4.809 1.424E-16 4.577 36.64 3.48 12 -0.4 -2.946 2.546 0.144 4.513 4.877 3.684E-17 4.513 37.96 4.165 13 0.7 -2.589 3.289 0.109 5.83 6.177 1.069E-16 5.83 36.92 2.719 14 0.1 -2.556 2.656 0.564 4.708 7.127 1.478E-18 4.708 41.09 1.69 15 -0.4 0.0115 -0.412 0.0579 -0.73 -0.752 1 0.73 2.002 0.294 16 0.6 0.177 0.423 0.033 -0.339 1 0.32 1.338 0.287 17 -0.2 -0.019 0.017 0.0312 0.349 0.355 1 0.349 1.287 0.291 10 -0.019 0.041 0.0476 0.73 0.748 1 0.73 <td>10</td> <td>9.9</td> <td>-2.437</td> <td>12.34</td> <td>0.0869</td> <td>21.87</td> <td>22.89</td> <td>5.017E-14</td> <td>21.87</td> <td>30.94</td> <td>1.35</td>	10	9.9	-2.437	12.34	0.0869	21.87	22.89	5.017E-14	21.87	30.94	1.35
12 0.4 -2.946 2.546 0.144 4.513 4.877 3.684E-17 4.513 37.96 4.165 13 0.7 -2.589 3.289 0.109 5.83 6.177 1.069E-16 5.83 36.92 2.719 14 0.1 -2.556 2.656 0.564 4.708 7.127 1.476E-18 4.708 41.09 1.63 15 -0.4 0.0115 -0.412 0.0579 0.75 0.78 1 0.73 2.002 0.284 16 0.6 0.177 0.423 0.0759 0.75 0.78 1 0.732 2.003 1.938 0.287 18 0 -0.0128 -0.187 0.0312 0.349 0.355 1 0.349 1.287 0.291 20 0.4 -0.0119 0.412 0.0476 0.739 0.748 1 0.73 2.067 0.151 21 0.9 -0.0253 0.325 0.0291 0.451	11	-0.2	-2.782	2.582	0.0942	4.577	4.809	1.424E-16	4.577	36.64	3.48
13 0.7 -2.589 3.289 0.109 5.83 6.177 1.069E-16 5.83 36.92 2.719 14 0.1 -2.556 2.656 0.564 4.708 7.127 1.478E-18 4.708 41.09 1.69 15 -0.4 0.0115 -0.412 0.0579 -0.73 -0.752 1 0.73 2.002 0.294 16 0.6 0.177 0.423 0.0759 0.75 0.78 1 0.75 2.165 0.385 17 -0.2 -0.0128 -0.187 0.0333 -0.332 -0.339 1 0.332 1.938 0.287 18 0 -0.0619 0.0619 0.0231 0.11 0.111 1 0.11 0.786 0.175 19 0.1 -0.0971 0.197 0.0312 0.349 0.355 1 0.349 1.287 0.292 20 0.4 -0.019 0.412 0.0476 0.739 0.818 <	12	-0.4	-2.946	2.546	0.144	4.513	4.877	3.684E-17	4.513	37.96	4.165
14 0.1 -2.556 2.656 0.564 4.708 7.127 1.478E-18 4.708 41.09 1.69 15 -0.4 0.0115 -0.412 0.0579 -0.73 -0.752 1 0.73 2.002 0.294 16 0.6 0.177 0.423 0.0759 0.75 0.78 1 0.73 2.055 0.385 17 -0.2 -0.0128 -0.187 0.0393 -0.332 -0.339 1 0.332 1.938 0.287 18 0 -0.0619 0.0619 0.0231 0.11 0.111 1 1 0.11 0.78 0.29 20 0.4 -0.019 0.412 0.0476 0.73 0.748 1 0.73 2.067 0.151 21 0.9 -0.0253 0.925 0.0294 1.64 1.665 1 1.64 1.059 2.057 0.151 22 0.3 -0.151 0.0457 0.799 0.818	13	0.7	-2.589	3.289	0.109	5.83	6.177	1.069E-16	5.83	36.92	2.719
15 -0.4 0.0115 -0.412 0.0579 -0.73 -0.752 1 0.73 2.002 0.294 16 0.6 0.177 0.423 0.0759 0.75 0.78 1 0.75 2.165 0.385 17 -0.2 -0.0128 -0.187 0.0393 -0.332 -0.399 1 0.332 1.938 0.287 18 0 -0.0619 0.0619 0.0231 0.11 0.111 1 0.11 0.756 0.73 19 0.1 -0.0971 0.197 0.0312 0.349 0.355 1 0.349 1.287 0.29 20 0.4 -0.0119 0.412 0.0476 0.73 0.748 1 0.73 2.067 0.151 21 0.9 -0.0253 0.925 0.0294 1.64 1.665 1 1.64 1.059 0.299 22 0.3 -0.151 0.457 0.799 0.818 1 0.739	14	0.1	-2.556	2.656	0.564	4.708	7.127	1.478E-18	4.708	41.09	1.69
16 0.6 0.177 0.423 0.0759 0.75 0.78 1 0.75 2.165 0.385 17 -0.2 -0.0128 -0.187 0.0393 -0.332 -0.339 1 0.332 1.938 0.287 18 0 -0.0619 0.0619 0.0231 0.11 0.111 1 0.11 0.111 0.786 0.175 19 0.1 -0.0971 0.197 0.0312 0.349 0.355 1 0.349 1.287 0.29 20 0.4 -0.0119 0.412 0.0476 0.73 0.748 1 0.73 2.067 0.151 21 0.9 -0.0253 0.925 0.0294 1.64 1.665 1 1.64 1.059 0.299 22 0.3 -0.151 0.451 0.0457 0.799 0.818 1 0.799 1.746 0.415 23 -0.8 0.0561 -0.856 0.0221 -0.548 -0.554 <td>15</td> <td>-0.4</td> <td>0.0115</td> <td>-0.412</td> <td>0.0579</td> <td>-0.73</td> <td>-0.752</td> <td>1</td> <td>0.73</td> <td>2.002</td> <td>0.294</td>	15	-0.4	0.0115	-0.412	0.0579	-0.73	-0.752	1	0.73	2.002	0.294
17 -0.2 -0.0128 -0.187 0.0393 -0.332 -0.339 1 0.332 1.938 0.287 18 0 -0.0619 0.0619 0.0231 0.11 0.111 1 0.11 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.044 0.0775 0.29 20 0.4 -0.0119 0.412 0.0476 0.73 0.748 1 0.73 2.067 0.151 21 0.9 -0.0253 0.925 0.0294 1.64 1.665 1 1.64 1.059 0.299 22 0.3 -0.151 0.451 0.0457 0.799 0.818 1 0.799 1.746 0.415 23 -0.8 0.0561 -0.856 0.0293 -1.518 -1.54 1 1.518 1.163 0.19 24 0.7 0.0446 0.655 0.021 1.162 1.177 1 1.162 1.317 0.602 0	16	0.6	0.177	0.423	0.0759	0.75	0.78	1	0.75	2.165	0.385
18 0 -0.0619 0.0619 0.0231 0.11 0.111 1 0.11 0.786 0.175 19 0.1 -0.0971 0.197 0.0312 0.349 0.355 1 0.349 1.287 0.29 20 0.4 -0.0119 0.412 0.0476 0.73 0.748 1 0.73 2.067 0.151 21 0.9 -0.0253 0.925 0.0294 1.64 1.665 1 1.64 1.059 0.299 22 0.3 -0.151 0.451 0.0457 0.799 0.818 1 0.739 1.746 0.415 23 -0.8 0.0561 -0.856 0.0293 -1.518 -1.54 1 1.518 1.163 0.19 24 0.7 0.0446 0.655 0.0261 1.162 1.177 1 1.162 1.317 0.602 25 -0.3 0.00912 -0.309 0.022 -0.548 -0.554 1	17	-0.2	-0.0128	-0.187	0.0393	-0.332	-0.339	1	0.332	1.938	0.287
19 0.1 -0.0971 0.197 0.0312 0.349 0.355 1 0.349 1.287 0.29 20 0.4 -0.0119 0.412 0.0476 0.73 0.748 1 0.73 2.067 0.151 21 0.9 -0.0253 0.925 0.0294 1.64 1.665 1 1.64 1.059 0.299 22 0.3 -0.151 0.451 0.0457 0.799 0.818 1 0.799 1.746 0.415 23 -0.8 0.0561 -0.856 0.0293 -1.518 -1.54 1 1.518 1.163 0.19 24 0.7 0.0446 0.655 0.0261 1.162 1.177 1 1.162 1.317 0.602 25 -0.3 0.00912 -0.309 0.022 -0.548 -0.554 1 0.548 1.986 0.136 26 -0.8 -0.182 -0.615 0.0417 -1.09 -1.114 1 </td <td>18</td> <td>0</td> <td>-0.0619</td> <td>0.0619</td> <td>0.0231</td> <td>0.11</td> <td>0.111</td> <td>1</td> <td>0.11</td> <td>0.786</td> <td>0.175</td>	18	0	-0.0619	0.0619	0.0231	0.11	0.111	1	0.11	0.786	0.175
20 0.4 -0.0119 0.412 0.0476 0.73 0.748 1 0.73 2.067 0.151 21 0.9 -0.0253 0.925 0.0294 1.64 1.665 1 1.64 1.059 0.299 22 0.3 -0.151 0.451 0.0457 0.799 0.818 1 0.799 1.746 0.415 23 -0.8 0.0561 -0.856 0.0293 -1.518 -1.54 1 1.518 1.163 0.19 24 0.7 0.0446 0.655 0.0261 1.162 1.177 1 1.162 1.317 0.602 25 -0.3 0.00912 -0.309 0.022 -0.548 -0.554 1 0.548 1.965 0.136 26 -0.8 -0.182 -0.618 0.0318 -1.095 -1.113 1 1.095 1.706 0.214 27 -0.7 -0.085 -0.615 0.0417 -1.09 -1.114 <td< td=""><td>19</td><td>0.1</td><td>-0.0971</td><td>0.197</td><td>0.0312</td><td>0.349</td><td>0.355</td><td>1</td><td>0.349</td><td>1.287</td><td>0.29</td></td<>	19	0.1	-0.0971	0.197	0.0312	0.349	0.355	1	0.349	1.287	0.29
21 0.9 -0.0253 0.925 0.0294 1.64 1.665 1 1.64 1.059 0.299 22 0.3 -0.151 0.451 0.0457 0.799 0.818 1 0.799 1.746 0.415 23 -0.8 0.0561 -0.856 0.0293 -1.518 -1.54 1 1.518 1.162 0.17 24 0.7 0.0446 0.655 0.0261 1.162 1.177 1 1.162 1.317 0.602 25 -0.3 0.00912 -0.309 0.022 -0.548 -0.554 1 0.548 1.986 0.136 26 -0.8 -0.182 -0.618 0.0318 -1.095 -1.113 1 1.095 1.706 0.214 27 -0.7 -0.085 -0.615 0.0417 -1.09 -1.114 1 1.09 1.994 0.612 28 0.3 -0.103 0.403 0.0235 0.714 0.722 <td< td=""><td>20</td><td>0.4</td><td>-0.0119</td><td>0.412</td><td>0.0476</td><td>0.73</td><td>0.748</td><td>1</td><td>0.73</td><td>2.067</td><td>0.151</td></td<>	20	0.4	-0.0119	0.412	0.0476	0.73	0.748	1	0.73	2.067	0.151
22 0.3 -0.151 0.451 0.0457 0.799 0.818 1 0.799 1.746 0.415 23 -0.8 0.0561 -0.856 0.0293 -1.518 -1.54 1 1.518 1.163 0.19 24 0.7 0.0446 0.655 0.0261 1.162 1.177 1 1.162 1.317 0.602 25 -0.3 0.00912 -0.309 0.022 -0.548 -0.554 1 0.548 1.986 0.136 26 -0.8 -0.182 -0.618 0.0318 -1.095 -1.113 1 1.095 1.706 0.214 27 -0.7 -0.085 -0.615 0.0417 -1.09 -1.114 1 1.09 1.994 0.612 28 0.3 -0.0105 0.31 0.0125 0.555 1 0.555 1.136 0.176 30 -0.3 -0.0214 -0.0926 0.059 -0.164 -0.164 1 <	21	0.9	-0.0253	0.925	0.0294	1.64	1.665	1	1.64	1.059	0.299
23 -0.8 0.0561 -0.856 0.0293 -1.518 -1.54 1 1.518 1.163 0.19 24 0.7 0.0446 0.655 0.0261 1.162 1.177 1 1.162 1.317 0.602 25 -0.3 0.00912 -0.309 0.022 -0.548 -0.554 1 0.548 1.986 0.136 26 -0.8 -0.182 -0.618 0.0318 -1.095 -1.113 1 1.095 1.706 0.214 27 -0.7 -0.085 -0.615 0.0417 -1.09 -1.114 1 1.09 1.994 0.612 28 0.3 -0.103 0.403 0.0235 0.714 0.722 1 0.714 1.036 0.108 29 0.3 -0.0105 0.31 0.0178 0.55 0.555 1 0.55 1.136 0.176 30 -0.3 -0.0926 0.0264 -0.0164 -0.164 1 <td< td=""><td>22</td><td>0.3</td><td>-0.151</td><td>0.451</td><td>0.0457</td><td>0.799</td><td>0.818</td><td>1</td><td>0.799</td><td>1.746</td><td>0.415</td></td<>	22	0.3	-0.151	0.451	0.0457	0.799	0.818	1	0.799	1.746	0.415
24 0.7 0.0446 0.655 0.0261 1.162 1.177 1 1.162 1.317 0.602 25 -0.3 0.00912 -0.309 0.022 -0.548 -0.554 1 0.548 1.986 0.136 26 -0.8 -0.182 -0.618 0.0318 -1.095 -1.113 1 1.095 1.706 0.214 27 -0.7 -0.085 -0.615 0.0417 -1.09 -1.114 1 1.09 1.994 0.612 28 0.3 -0.103 0.403 0.0235 0.714 0.722 1 0.714 1.036 0.108 29 0.3 -0.0105 0.31 0.0178 0.555 0.555 1 0.55 1.136 0.176 30 -0.3 -0.291 -0.0901 0.0466 -0.0164 1 0.016 2.111 0.564 31 0 0.0926 -0.0926 0.059 -0.164 -0.169 1 <td< td=""><td>23</td><td>-0.8</td><td>0.0561</td><td>-0.856</td><td>0.0293</td><td>-1.518</td><td>-1.54</td><td>1</td><td>1.518</td><td>1.163</td><td>0.19</td></td<>	23	-0.8	0.0561	-0.856	0.0293	-1.518	-1.54	1	1.518	1.163	0.19
25 .0.3 0.00912 .0.309 0.022 .0.548 .0.554 1 0.548 1.986 0.136 26 .0.8 .0.182 .0.618 0.0318 .1.095 .1.113 1 1.095 1.706 0.214 27 .0.7 .0.085 .0.615 0.0417 .1.09 .1.114 1 1.09 1.994 0.612 28 0.3 .0.103 0.403 0.0235 0.714 0.722 1 0.714 1.036 0.108 29 0.3 .0.0105 0.31 0.0178 0.55 0.555 1 0.55 1.136 0.176 30 .0.3 .0.0291 .0.00901 0.0466 .0.0164 .0.0164 1 0.016 2.111 0.564 31 0 0.0926 .0.026 0.059 .0.164 .0.169 1 0.164 1.715 0.12 32 .0.4 0.0173 .0.417 0.0364 .0.74 .0.754	24	0.7	0.0446	0.655	0.0261	1.162	1.177	1	1.162	1.317	0.602
26 .0.8 .0.182 .0.618 0.0318 .1.095 .1.113 1 1.095 1.706 0.214 27 .0.7 .0.085 .0.615 0.0417 .1.09 .1.114 1 1.09 1.994 0.612 28 0.3 .0.103 0.403 0.0235 0.714 0.722 1 0.714 1.036 0.108 29 0.3 .0.0105 0.31 0.0178 0.55 0.555 1 0.55 1.136 0.176 30 .0.3 .0.291 .0.0901 0.0466 .0.016 .0.0164 1 0.016 2.111 0.564 31 0 0.0926 .0.059 .0.164 .0.169 1 0.164 1.715 0.12 32 .0.4 0.0173 .0.417 0.0364 .0.74 .0.754 1 0.74 1.763 0.247 33 .0.6 .0.0404 .0.56 0.0264 .0.992 .1.005 1 <td< td=""><td>25</td><td>-0.3</td><td>0.00912</td><td>-0.309</td><td>0.022</td><td>-0.548</td><td>-0.554</td><td>1</td><td>0.548</td><td>1.986</td><td>0.136</td></td<>	25	-0.3	0.00912	-0.309	0.022	-0.548	-0.554	1	0.548	1.986	0.136
27 -0.7 -0.085 -0.615 0.0417 -1.09 -1.114 1 1.09 1.994 0.612 28 0.3 -0.103 0.403 0.0235 0.714 0.722 1 0.714 1.036 0.108 29 0.3 -0.0105 0.31 0.0178 0.55 0.555 1 0.55 1.136 0.176 30 -0.3 -0.291 -0.0901 0.0466 -0.016 -0.0164 1 0.016 2.111 0.564 31 0 0.0926 -0.0926 0.059 -0.164 -0.754 1 0.164 1.715 0.12 32 -0.4 0.0173 -0.417 0.0364 -0.74 -0.754 1 0.74 1.763 0.247 33 -0.6 -0.0404 -0.56 0.0264 -0.992 -1.005 1 0.992 1.277 0.0485 34 -0.7 -0.0604 -0.64 0.032 -1.134 -1.152	26	-0.8	-0.182	-0.618	0.0318	-1.095	-1.113	1	1.095	1.706	0.214
28 0.3 -0.103 0.403 0.0235 0.714 0.722 1 0.714 1.036 0.108 29 0.3 -0.0105 0.31 0.0178 0.55 0.555 1 0.55 1.136 0.176 30 -0.3 -0.291 -0.00901 0.0466 -0.016 -0.0164 1 0.016 2.111 0.564 31 0 0.0926 -0.0926 0.059 -0.164 -0.169 1 0.164 1.715 0.12 32 -0.4 0.0173 -0.417 0.0364 -0.74 -0.754 1 0.74 1.763 0.247 33 -0.6 -0.0404 -0.56 0.0264 -0.992 -1.005 1 0.992 1.277 0.0485 34 -0.7 -0.0604 -0.64 0.032 -1.134 -1.152 1 1.134 2.042 0.301 35 0.3 -0.109 0.409 0.0342 0.726 0.738	27	-0.7	-0.085	-0.615	0.0417	-1.09	-1.114	1	1.09	1.994	0.612
29 0.3 -0.0105 0.31 0.0178 0.55 0.555 1 0.55 1.136 0.176 30 -0.3 -0.291 -0.00901 0.0466 -0.016 -0.0164 1 0.016 2.111 0.564 31 0 0.0926 -0.0926 0.059 -0.164 -0.169 1 0.164 1.715 0.12 32 -0.4 0.0173 -0.417 0.0364 -0.74 -0.754 1 0.74 1.763 0.247 33 -0.6 -0.0404 -0.56 0.0264 -0.992 -1.005 1 0.992 1.277 0.0485 34 -0.7 -0.0604 -0.64 0.032 -1.134 -1.152 1 1.134 2.042 0.301 35 0.3 -0.109 0.409 0.0342 0.726 0.738 1 0.726 1.885 0.178 36 -1 -0.204 -0.796 0.0231 -1.41 -1.427	28	0.3	-0.103	0.403	0.0235	0.714	0.722	1	0.714	1.036	0.108
30 -0.3 -0.291 -0.00901 0.0466 -0.016 -0.0164 1 0.016 2.111 0.564 31 0 0.0926 -0.0926 0.059 -0.164 -0.169 1 0.164 1.715 0.12 32 -0.4 0.0173 -0.417 0.0364 -0.74 -0.754 1 0.74 1.763 0.247 33 -0.6 -0.0404 -0.56 0.0264 -0.992 -1.005 1 0.992 1.277 0.0485 34 -0.7 -0.0604 -0.64 0.032 -1.134 -1.152 1 1.134 2.042 0.301 35 0.3 -0.109 0.409 0.0342 0.726 0.738 1 0.726 1.885 0.178 36 -1 -0.204 -0.796 0.0231 -1.41 -1.427 1 1.41 1.144 0.522 37 -0.6 -0.247 -0.353 0.0587 -0.626 -0.646	29	0.3	-0.0105	0.31	0.0178	0.55	0.555	1	0.55	1.136	0.176
31 0 0.0926 -0.0926 0.059 -0.164 -0.169 1 0.164 1.715 0.12 32 -0.4 0.0173 -0.417 0.0364 -0.74 -0.754 1 0.74 1.763 0.247 33 -0.6 -0.0404 -0.56 0.0264 -0.992 -1.005 1 0.992 1.277 0.0485 34 -0.7 -0.0604 -0.64 0.032 -1.134 -1.152 1 1.134 2.042 0.301 35 0.3 -0.109 0.409 0.0342 0.726 0.738 1 0.726 1.885 0.178 36 -1 -0.204 -0.796 0.0231 -1.41 -1.427 1 1.41 1.144 0.522 37 -0.6 -0.247 -0.353 0.0587 -0.626 -0.646 1 0.626 2.014 0.102	30	-0.3	-0.291	-0.00901	0.0466	-0.016	-0.0164	1	0.016	2.111	0.564
32 -0.4 0.0173 -0.417 0.0364 -0.74 -0.754 1 0.74 1.763 0.247 33 -0.6 -0.0404 -0.56 0.0264 -0.992 -1.005 1 0.992 1.277 0.0485 34 -0.7 -0.0604 -0.64 0.032 -1.134 -1.152 1 1.134 2.042 0.301 35 0.3 -0.109 0.409 0.0342 0.726 0.738 1 0.726 1.885 0.178 36 -1 -0.204 -0.796 0.0231 -1.41 -1.427 1 1.41 1.144 0.522 37 -0.6 -0.247 -0.353 0.0587 -0.626 -0.646 1 0.626 2.014 0.102	31	0	0.0926	-0.0926	0.059	-0.164	-0.169	1	0.164	1.715	0.12
33 -0.6 -0.0404 -0.56 0.0264 -0.992 -1.005 1 0.992 1.277 0.0485 34 -0.7 -0.0604 -0.64 0.032 -1.134 -1.152 1 1.134 2.042 0.301 35 0.3 -0.109 0.409 0.0342 0.726 0.738 1 0.726 1.885 0.178 36 -1 -0.204 -0.796 0.0231 -1.41 -1.427 1 1.41 1.144 0.522 37 -0.6 -0.247 -0.353 0.0587 -0.626 -0.646 1 0.626 2.014 0.102	32	-0.4	0.0173	-0.417	0.0364	-0.74	-0.754	1	0.74	1.763	0.247
34 -0.7 -0.0604 -0.64 0.032 -1.134 -1.152 1 1.134 2.042 0.301 35 0.3 -0.109 0.409 0.0342 0.726 0.738 1 0.726 1.885 0.178 36 -1 -0.204 -0.796 0.0231 -1.41 -1.427 1 1.41 1.144 0.522 37 -0.6 -0.247 -0.353 0.0587 -0.626 -0.646 1 0.626 2.014 0.102	33	-0.6	-0.0404	-0.56	0.0264	-0.992	-1.005	1	0.992	1.277	0.0485
35 0.3 -0.109 0.409 0.0342 0.726 0.738 1 0.726 1.885 0.178 36 -1 -0.204 -0.796 0.0231 -1.41 -1.427 1 1.41 1.144 0.522 37 -0.6 -0.247 -0.353 0.0587 -0.626 -0.646 1 0.626 2.014 0.102	34	-0.7	-0.0604	-0.64	0.032	-1.134	-1.152	1	1.134	2.042	0.301
36 -1 -0.204 -0.796 0.0231 -1.41 -1.427 1 1.41 1.144 0.522 37 -0.6 -0.247 -0.353 0.0587 -0.626 -0.646 1 0.626 2.014 0.102	35	0.3	-0.109	0.409	0.0342	0.726	0.738	1	0.726	1.885	0.178
37 -0.6 -0.247 -0.353 0.0587 -0.626 -0.646 1 0.626 2.014 0.102	36	গ	-0.204	-0.796	0.0231	-1.41	-1.427	1	1.41	1.144	0.522
	37	-0.6	-0.247	-0.353	0.0587	-0.626	-0.646	1	0.626	2.014	0.102

		THE BREA	KBETWEE	N LEVER/	AGE AND R	EGRESSIO	N IS HERE	l		
			Results	From the R	egression (Operation				
				F						
lutre est	Hegress	on Parame	cers vector	E stimates						
-0.18	×1 0.0814	×∠ 0.0399	-0.0517		-					
0.10	0.0014	0.0000	0.00110							
	Stdv o	f Regressio	n Estimate:	s Vector						
Intercept	x1	x2	xЗ							
0.104	0.0667	0.0405	0.0354							
		A	NOVA Tab	le						
Sou	urce of Varia	ation	SS	DOF	MS	F-Value	P-Value			
	Re	gression	0.847	3	0.282	0.909	0.4421			
		Error	18.94	61	0.31					
		Total	19.79	64						
		D Cour	ra Estimatos	0.0420					-	
		n oqua	ile Estimates	0.0420						
	MA Vi	/ Diased Sca	le Estimates	0.640	-					
	v	veignied sca	ie Estimates	0.007						
		inar Io	Vidual MD(U)	1 1 2 2						
Data		14 i C	H Estimates	1.132		6				
Det. o	r LUV(Regre	ssion Coerric	ientsj matrix	2.031E-12						
			Re	gression T	able					
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.		
1	9.7	-0.0386	9.739	0.063	17.48	18.06	0	17.48		
2	10.1	-0.0825	10.18	0.0599	18.27	18.85	0	18.27		
3	10.3	-0.105	10.41	0.0857	18.67	19.53	0	18.67		
4	9.5	-0.155	9.655	0.0805	17.33	18.07	0	17.33		
5	10	-0.107	10.11	0.0729	18.14	18.84	0	18.14		
6	10	0.00379	9.996	0.0756	17.94	18.66	0	17.94		
7	10.8	0.00449	10.8	0.068	19.37	20.07	0	19.37		
8	10.3	-0.0807	10.38	0.0631	18.63	19.25	0	18.63		
9	9.6	-0.167	9.767	0.08	17.53	18.27	0	17.53		
10	9.9	-0.203	10.1	0.0869	18.13	18.98	0	18.13		
11	-0.2	-0.136	-0.0641	0.0942	-0.115	-0.121	1	0.115		
10	~ •	0.400	0.000	~ * * *	0.000	0.000	4	0.000		

	Fina	l Weighted	Correlatior	Matrix			
	У	x1	x2	х3			
у	1	0.89	0.917	0.0893			
×1	0.89	1	0.961	0.063			
x2	0.917	0.961	1	0.0261			
xЗ	0.0893	0.063	0.0261	1			
E	Eigenvalues	s of Final ₩	eighted Co	rrelation Mat	nix 🛛		
Eval 1	Eval 2	Eval 3	Eval 4				
0.035	0.117	0.997	2.851				

Interpretation of Graphs: Observations which are outside of the horizontal lines in both of the graphs are considered to be regression outliers. The observations to the right of the vertical lines are considered to be leverage outliers. Observations between the horizontal and to the right of the vertical lines represent good leverage points.

Question: What are really bad leverage points for this data set in the context of a regression model?

Answer: There are contradictory opinions in this respect. So far as outliers are considered, several methods (e.g., MCD, PROP) can identify all of the 14 outliers present in this data set. However, observations 1 through 10 should be considered to be good leverage points as they enhance the regression model and increase the coefficient of determination. Without those 10 points, fitting a regression model to the rest of the 65 points is meaningless. Observations 11 through 14 are outliers and bad leverage points.

Output for Iterative OLS (Leverage OFF).

			Regressio	n Analysis () utput					
Da	te/Time of C	omputation	3/4/2008 9:	54:08 AM						
	User Select	ed Options								
		From File	D:\Narain\S	icout_For_W	indows\Sco	utSource\W	orkDatInExce	si\BRADU		
	Fu	II Precision	OFF	OFF						
Selec	ted Regressi	on Method	Iterative Reweighted Least Squares (IRLS)							
Alp	ha for Resid	ual Outliers	0.05 (Used to Identify Vertical Regression Outliers)							
Number	of Regression	n Iterations	10 (Maximu	m Number if	doesn't Con	verge)				
		Leverage	Off							
	Y v:	s Y-hat Plot	Not Selecte	d						
	Y vs Re	esidual Plot	Not Selecte	d						
	Y-hat vs Re	esidual Plot	Not Selecte	d						
	Y	vs X Plots	Not Selecte	d						
Ti	itle for Residu	ual Q.Q. Plot	IRLS Regre	ssion - Resid	uals QQ Plot					
	Residual E	and Alpha	0.05 (Used	in Graphics F	Residual Ban	ids)				
Title Re	esidual vs Dis	stance Plot	IRLS Regre	ssion - Resid	luals vs Uns	quared Leve	erage Distan	e Plot		
Sho	ow Intermedia	ate Results	Do Not Disp	olay Intermedi	iate Results					
			Intermediate	Results Sho	own on Anot	her Output S	Sheet			
Num	nber of Selec	ted Regress	ion Variables	3						
		Number of (Observations	75						
		Depend	dent Variable	у						
	Residual	/alues used	l with Graph	nics Display						
	Upper Res	idual Indvidu	ial (0.05) MD	1.94						
	Lower Res	idual Indvidu	ial (0.05) MD	-1.94						
		Correlati	ion Matrix							
	у	x1	x2	хЗ						
У	1	0.946	0.962	0.743						
×1	0.946	1	0.979	0.708						
×2	0.962	0.979	1	0.757						
x3	0.743	0.708	0.757	1						
	Eige	nvalues of (Correlation	Matrix						
Eval 1	Eval 2	Eval 3	Eval 4							
0.0172	0.0556	0.368	3.559							

	Estima	tes of Regi	ession Par	ameters				
Intercept	x1	х2	x3					
-0.388	0.239	-0.335	0.383					
	Stdy of E	stimated R	egression F	arameters				
Intercept	x1	x2	xЗ					
0.416	0.262	0.155	0.129					
		A	NOVA Tab	le				
Sou	rce of Varia	tion	SS	DOF	MS	F-Value	P-Value	
	Re	gression	543.3	3	181.1	35.77	0.0000	
		Error	359.5	71	5.063			
		Total	902.8	74				
		R Squ	iare Estimate	0.602				
	MA	ND Based Sc	ale Estimate:	1.067				
	١	Weighted So	ale Estimate:	2.25				
	IQR Estimate of Residuals							
Det. of	Det. of COV[Regression Coefficients] Matrix							

Ordinary Least Squares (OLS) Regression Results

Final Reweighted Regression Results

	Estima	tes of Regr	ession Para	ameters				
Intercept	×1	х2	xЗ					
-0.388	0.239	-0.335	0.383					
	Stdv of E	stimated Ro	egression P	arameters				
Intercept	×1	х2	x3					
0.416	0.262	0.155	0.129					
		A	NOVA Tabl	e				
Sou	irce of Varia	ation	SS	DOF	MS	F-Value	P-Value	
	Re	gression	543.3	3	181.1	35.77	0.0000	
		Error	359.5	71	5.063			
		Total	902.8	74				
		R Squ	iare Estimate	0.602				
	M	AD Based Sc	ale Estimate	1.067				
		Weighted So	ale Estimate	2.25				
	I	QR Estimate	of Residuals	1.468				
Det. o	f COV[Regre	ssion Coeffic	cients] Matrix	5.5107E-8				
			Re	gression Ta	able			
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.
1	9.7	6.32	3.38	0.063	1.502	1.552	1	1.502
2	10.1	6.105	3.995	0.0599	1.775	1.831	1	1.775
3	10.3	7.297	3.003	0.0857	1.334	1.396	1	1.334
4	9.5	6.939	2.561	0.0805	1.138	1.187	1	1.138
5	10	6.939	3.061	0.0729	1.36	1.413	1	1.36

Interpretation of Graphs: Observations which are outside of the horizontal lines in the graph are considered to be regression outliers. The Leverage Distances vs. Standardized residuals plot is not produced. The sequential classical method failed to identify all of the regression outliers.

9.5 Biweight Regression Method

1. Click **Regression** ► **Biweight.**

🔜 Scout 4.0 - [D: WarainW	Scout_Fo	or_Windov	vs\ScoutSo	urceV	WorkDatInB	xcel\DEFINE]				
🖳 File Edit Configure Data	Graphs	Stats/GOF	Outliers/Est	imates	Regression	Multivariate EDA	GeoStats	Programs	Window	Help
Navigation Panel		0	1	2	OLS		5	6	7	8
Name		Y	×		LMS	a.c.				
D:\Narain\Scout_Eo	1	6	1		Rimoiabt					
	2	8.5	1		Huber					
	3	8.5	2		MVT					
	4	10	2		PROP					
	5	12	4		Method C	Comparison				

2. The "Select Variables" screen (Section 3.3) will appear.

- Select the dependent variable and one or more independent variables from the "Select Variables" screen.
- If the results have to be produced by using a Group variable, then select a group variable by clicking the arrow below the "**Group by Variable**" button. This will result in a drop-down list of available variables. The user should select and click on an appropriate variable representing a group variable.

🔜 Biweight Options			X
Regression Value 6 Residual Scale Tuning Constant Number of Regression Iterations 10 [Max = 50] Residuals MDs Distribution	Identify Leverage Points Leverage Select Leverage Distance Method Classical Sequential Classical Huber PROP MVT (Trimming)	Initial Leverage Distances C Classical Sequential Classical Robust (Median, 1.48MAD) OKG (Maronna Zamar) KG (Not Orthogonalized) MCD	 Display Intervals Confidence Coefficient 0.95 Display Diagnostics
Beta C Chisquare Intermediate Iterations Do Not Display Display Every 5th Display Every 4th Display Every 2nd Display All	Number of Leverage Iterations 10 [Max = 50] Leverage MDs Distribution © Beta © Chisquare	Leverage Value(s) 0.05 Leverage Influence Function Alpha	OK Cancel

• Click on the "**Options**" button to get the options window.

- Specify the "Regression Value." The default is "4."
- Specify the "Number of Regression Iterations." The default is "10."
- Specify the "**Regression MDs Distribution**." The default is "**Beta**."
- Specify "Identify Leverage Points." The default is "On."
- Specify the "Select Leverage Distance Method." The default is "PROP."
- Specify the "Number of Leverage Iterations." The default is "10."

- Specify the "Leverage Initial Distances" The default is "OKG (Maronna Zamar)."
- Specify the "Leverage Value." The default is "0.05."
- Click "OK" to continue or "Cancel" to cancel the options
- Click on the "Graphics" button to get the options window.

😸 OptionsRegressionGra	phics		×
🗹 XY Plots	XY Plot Title Biweight Regression - Y vs X Plot	Regression Line - Fixing Other Regressors at	
☑ Y vs Y-Hat	Y vs Y-HatTitle Biweight Regression - Y vs Y-Hat	Minimum Values Predection Interval Mean Values Confidence Coefficient	
🔽 Y vs Residuals	Y vs Residuals Title Biweight Regression - Y vs Residu	C Maximum Values C Zero Values 0.95	
☑ Y-Hat vs Residuals	Y-Hat vs Residuals Title Biweight Regression - Y-Hat vs R	Graphics Distribution	
🔽 Residuals vs Leverage	Residuals vs Leverage Title Biweight Regression@Residuals vs	Residual/Lev. Alpha	
🔽 QQ Residuals	QQ Residuals Title Biweight Regression - Residuals Q	0.05 OK Cancel	

- Specify the preferred plots and the input parameters.
- Click "OK" to continue or "Cancel" to cancel the options
- Click "OK" to continue or "Cancel" to cancel the computations.

Output example: The data set "**DEFINE.xls**" was used for Biweight regression. It has 1 predictor variables (p) and 26 observations. When the "**Leverage**" option is on, the leverage distances are calculated and outlying observations are obtained iteratively using initial estimates as median and OKG matrix and the leverage option as PROP (i.e., using PROP influence function). Then the weights are assigned to observations and those weights are used in the finding the regression outliers iteratively. When the leverage option is off, all observations are assigned one (1) as weights and then the regression outliers are found using the Biweight tuning constant iteratively. Finally, the estimated regression parameters are calculated.

Output for Biweight (Leverage ON). Data Set Used: Define (predictor variables p = 1).

	Regressio	n Analysis Output						
Date/Time of Computation	on 3/4/200810):03:07 AM						
User Selected Optio	ns							
From F	ile D:\Narain\S	cout_For_Window	s\ScoutSource	WorkDatInE	xcel\DEFINE			
Full Precisi	on OFF							
Selected Regression Meth	od Biweight							
Residual Biweight Tuning Consta	int 4 (Used to I	dentify Vertical Re	gression Outlie	rs)				
Number of Regression Iteratio	ns 10 (Maximur	n Number if doesn	't Converge)					
Levera	ge Identify Lev	erage Points (Outlie	ers in X-Space]]				
Selected Leverage Meth	od PROP							
Initial Leverage Distance Meth	od OKG (Maror	na Zamar) Matrix						
Squared MI	Ds Beta Distrib	ution used for Lev	erage Distance	es based upo	n Selected F	Regression (Le	everage) Var	iables
Leverage Distance Alp	ha 0.05 (Used t	o Identify Leverage	e Points)					
Number of Leverage Iteratio	ns 10 (Maximur	n Number if doesn	't Converge)					
Y vs Y-hat P	lot Not Selecte	1						
Y vs Residual P	lot Not Selecte	1						
Y-hat vs Residual P	lot Not Selecte	1						
Title For Y vs X Pla	ots Biweight Re	gression - Y vs X Pl	lot					
Title for Residual QQ P	lot Biweight Re	gression - Residual	ls QQ Plot					
Residual Band Alp	ha 0.05 (Used i	n Graphics Residu	al Bands)					
Title Residual vs Distance P	lot Biweight Re	gression - Residua	ils vs Unsquar	ed Leverage	Distance Plot			
Show Intermediate Resu	lts DoNotDisp	lay Intermediate Re	esults					
	Intermediate	Results Shown or	n Another Outp	ut Sheet				
	Leverage Poir	its are Outliers in	X-Space of 9	elected Re	gression Va	iables.		
Number of Selected Reg	ression Variables	1						
Numbe	r of Observations	26						
De	pendent Variable	Y						
Residual Values u	used with Graph	ics Display						
Upper Residual Inc	lvidual (0.05) MD	1.903						
Lower Residual Inc	lvidual (0.05) MD	-1.903						
Corre	elation Matrix							
Y X								
Y 1 0.2	18							
X 0.218 1								

	Eigenva	lues of	Correlation H	atrix				_
Eval 1	Eval 2							
0.782	1.218							
		0	rdinary Leas	t Squares (OLS)Reg	ression Res	ll's	
	Estimates	ofReg	ression Para	meters				
Intercept	X							
22.06	0.256							
	Stdu of Eatin	a stad D	ograssion Pr					
Intercent		lateun	eyressionra	namerers				
A 107	0.222							
4.107	0.233							
			NOVA Table	9				
Sou	rce of Variatio	n	SS	DOF	MS	F-Value	P-Value	
	Regre	ssion	224.9	1	224.9	1.202	0.2838	
		Error	4490	24	187.1			
		Total	4715	25				
			-	0.0477				
		H Squ	uare Estimate	0.0477				
	MAD I	Based Si	cale Estimate	8.862				
	We	ighted So	cale Estimate	13.68				
	IQR	Estimate	of Residuals	25.79				
Det. of	COV[Regressio	n Coeffi	cients] Matrix	0.391				

Initial Weighted Regression Iteration with Identified Leverage Points

	Estima	tes of Reg	gression P	arameters		
Intercept	×					
22.06	0.256					
	Stdy of E	stimated l	Regression	n Parameter	\$	
Intercept	×					
4.107	0.233					

				-						
		A	NUVA Tab	e						
So	urce of Varia	ation	SS	DOF	MS	F-Value	P-Value			
	Re	gression	224.9	1	224.9	1.202	0.2838			
		Error	4490	24	187.1					
		Total	4715	25						
		R Squ	iare Estimate	0.0477						
	MA	AD Based So	cale Estimate	8.862						
	1	Weighted So	cale Estimate	13.68						
Unsqua	red Leverage	Distance In	div-MD(0.05)	1.903						
		QR Estimate	of Residuals	25.79						
	Determin	nant of Lever	age S Matrix	137.6						
			Re	gression T	able with L	everage Opl	ion			
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.	Lev Dist.	OLS R~ist.
1	6	22.32	-16.32	0.0827	-1.193	-1.246	1	1.193	1.052	1.193
2	8.5	22.32	-13.82	0.0827	-1.01	-1.055	1	1.01	1.052	1.01
3	8.5	22.58	-14.08	0.0758	-1.029	-1.07	1	1.029	0.966	1.029
4	10	22.58	-12.58	0.0758	-0.919	-0.956	1	0.919	0.966	0.919
5	12	23.09	-11.09	0.0638	-0.811	-0.838	1	0.811	0.796	0.811
6	40	23.09	16.91	0.0638	1.237	1.278	1	1.237	0.796	1.237
7	42.5	23.09	19.41	0.0638	1.419	1.467	1	1.419	0.796	1.419
8	45	23.34	21.66	0.0587	1.583	1.632	1	1.583	0.711	1.583
9	50	23.34	26.66	0.0587	1.949	2.009	1	1.949	0.711	1.949
10	13	23.09	-10.09	0.0638	-0.737	-0.762	1	0.737	0.796	0.737
11	14	23.09	-9.086	0.0638	-0.664	-0.687	1	0.664	0.796	0.664
12	17	23.34	-6.342	0.0587	-0.464	-0.478	1	0.464	0.711	0.464
13	17.4	23.34	-5.942	0.0587	-0.434	-0.448	1	0.434	0.711	0.434
14	22	24.62	-2.62	0.0417	-0.192	-0.196	1	0.192	0.284	0.192
15	24	24.62	-0.62	0.0417	-0.0454	-0.0463	1	0.0454	0.284	0.0454
16	25	24.62	0.38	0.0417	0.0277	0.0283	1	0.0277	0.284	0.0277
17	42.5	27.18	15.32	0.0514	1.12	1.15	1	1.12	0.568	1.12
18	43	27.18	15.82	0.0514	1.157	1.188	1	1.157	0.568	1.157
19	44.1	27.69	16.41	0.0603	1.2	1.238	1	1.2	0.739	1.2
20	45.3	27.82	17.48	0.0629	1.278	1.32	1	1.278	0.781	1.278
21	20	29.73	-9.734	0.119	-0.712	-0.758	1	0.712	1.421	0.712
22	22	29.73	-7.734	0.119	-0.565	-0.602	1	0.565	1.421	0.565
23	21	29.99	-8.99	0.129	-0.657	-0.704	1	0.657	1.506	0.657
24	23	30.25	-7.245	0.14	-0.53	-0.571	1	0.53	1.591	0.53

			Final Re	weighted	Regressior	n Results		
	Estima	tes of Regi	ession Para	meters				
ercept	Х							
1.64	0.358							
	Chdu - (F		i D					
	Stay of E	stimated H	egression P	arameters				
ercept	0.000							
.372	0.0636							
		A	NOVA Tabl	e				
Sour	rce of Varia	tion	SS	DOF	MS	F-Value	P-Value	
	Re	gression	346	1	346	26.45	0.0002	
		Error	173.3	13.25	13.08			
		Total	519.3	14.25				
		R Squ	iare Estimate	0.666				
	M4	AD Based Sc	ale Estimate	7.695				
	١	Weighted Sc	ale Estimate:	3.617				
	l	QR Estimate	of Residuals	25.53				
Det. of	COV[Regre	ssion Coeffic	cients] Matrix	0.00416				
			Bay	vocaion T	shia			
]be	Vector	Yhat	Besiduale	Jiession i a Hatiji	Bee/Scale	Stude~ Bee	Whali il	Res Dist
	6	11.99	-5 993	0.0827	-1.657	-1.73	0.678	1 657
, ,	85	11.99	-3 493	0.0827	-0.966	-1.008	0.883	0.966
-	8.5	12.35	-3.852	0.0758	-1.065	-1.108	0.859	1.065
1	10	12.35	-2.352	0.0758	-0.65	-0.676	0.946	0.65
5	12	13.07	-1.068	0.0638	-0.295	-0.305	0.989	0.295
6	40	13.07	26.93	0.0638	7.446	7.696	0	7.446
7	42.5	13.07	29.43	0.0638	8.138	8.41	0	8.138
3	45	13.43	31.57	0.0587	8.73	8.998	0	8.73
9	50	13.43	36.57	0.0587	10.11	10.42	0	10.11
0	13	13.07	-0.0681	0.0638	-0.0188	-0.0195	1	0.0188
1	14	13.07	0.932	0.0638	0.258	0.266	0.992	0.258

(The complete regression table is not shown.)

Final Weighted Correlation Matrix										
	Y	Х								
Y	1	0.867								
Х	0.867	1								

Eigenvalues of Final Weighted Correlation Matrix

Eval 1	Eval 2		
0.133	1.867		

Output for Biweight (Leverage ON) (continued).

Interpretation of Graphs: Observations which are outside of the horizontal lines in the graphs are considered to be regression outliers. The observations to the right of the vertical lines are considered to be leverage outliers. The regression lines are produced since there is only one predictor variable.

Output for Biweight (Leverage OFF).

			Regression	n Analysis (Jutput			
Da	te/Time of C	omputation	3/5/2008 7:	38:34 AM				
	User Select	ed Options						
		From File	D:\Narain\S	cout_For_W	indows\Sco	utSource\W	orkDatInExc	el\DEFINE
	Fu	II Precision	OFF					
Selec	ted Regressi	ion Method	Biweight					
Residual Bi	weight Tunin	ig Constant	4 (Used to I	dentify Verti	cal Regressi	on Outliers)		
Number	of Regressio	n Iterations	10 (Maximur	n Number if	doesn't Con	verge)		
		Leverage	Off					
	Y v:	s Y-hat Plot	Not Selected	1				
	Y vs Re	esidual Plot	Not Selected	1				
	Y-hat vs Re	esidual Plot	Not Selected	1				
	Title For Y	′ vs X Plots	Biweight Re	gression - Y v	vs X Plot			
Ti	tle for Residu	ual QQ Plot	Biweight Re	gression - Re	esiduals QQ	Plot		
	Residual E	3and Alpha	0.05 (Used i	n Graphics F	Residual Bar	ids)		
Re	esidual vs Di:	stance Plot	Not Selected	1				
Sho	ow Intermedia	ate Results	Do Not Disp	lay Intermed	ate Results			
			Intermediate	Results Sho	own on Anot	her Output 9	Sheet	
Num	nber of Selec	cted Regressi	on Variables	1				
		Number of (Observations	26				
		Depend	lent Variable	Y				
	Residual	¥alues usec	l with Graph	ics Display				
	Upper Res	sidual Indvidu	al (0.05) MD	1.903				
	Lower Res	sidual Indvidu	al (0.05) MD	-1.903				
		Correlati	on Matrix					
	Y	X						
Y	1	0.218						
×	0.218	1						
	Eige	nvalues of (Correlation	Matrix				
Eval 1	Eval 2							
0.782	1.218							

		01	dinary Leas	t Squares (OLS)Reg	ression Res	ults
	Estima	ates of Reg	ession Para	meters			
Intercept	×						
22.06	0.256						
	Stdy of E	stimated R	egression Pa	arameters			
Intercept	X						
4.107	0.233						
		٨	NOVA Tabl	e			
Sou	ce of Varia	ation	SS	DOF	MS	F-Value	P-Value
	Re	gression	224.9	1	224.9	1.202	0.2838
		Error	4490	24	187.1		
		Total	4715	25			
		R Squ	iare Estimate	0.0477			
	MA	AD Based So	ale Estimate	8.862			
		Weighted So	ale Estimate:	13.68			
	I	QR Estimate	of Residuals	25.79			
Det. of	COV[Regre	ssion Coeffic	cients] Matrix	0.391			
			Final Re	weighted	Regressio	n Results	
	Estima	ites of Regi	Final Re ression Para	weighted meters	Regressio	n Results	
Intercept	Estima ×	ates of Regi	Final Re ression Para	weighted meters	Regressio	n Results	
Intercept 11.64	Estima × 0.358	ates of Regi	Final Re ression Para	weighted meters	Regressio	n Results	
Intercept 11.64	Estima X 0.358	ates of Reg	Final Re ression Para	eweighted meters	Regressio	n Results	
Intercept 11.64	Estima × 0.358 Stdy of E	ates of Regi	Final Re ression Para egression Pa	eweighted I meters arameters	Regressio	n Results	
Intercept 11.64 Intercept	Estima × 0.358 Stdv of E ×	ates of Regi	Final Re ression Para egression Pa	eweighted I meters arameters	Regressio	n Results	
Intercept 11.64 Intercept 1.372	Estima × 0.358 Stdv of E × 0.0696	ates of Regi	Final Re ression Para egression Pa	eweighted meters arameters	Regressio		
Intercept 11.64 Intercept 1.372	Estima × 0.358 Stdv of E × 0.0696	ates of Register	Final Re ression Para egression Pa	eweighted meters arameters	Regressio		
Intercept 11.64 Intercept 1.372	Estima × 0.358 Stdv of E × 0.0696	ates of Regi stimated Ri A ation	Final Re ression Para egression Pa NOVA Table SS	eweighted meters arameters e DOF	Regressio	n Results	P-Value
Intercept 11.64 Intercept 1.372 Sour	Estima × 0.358 Stdv of E × 0.0696 ce of Varia Re	ation	Final Re ression Para egression Para NOVA Table SS 346	eweighted meters arameters e DOF 1	Regressio MS 346	F-Value 26.45	P-Value 0.0002
Intercept 11.64 Intercept 1.372 Sour	Estima × 0.358 Stdv of E × 0.0696 ce of Varia Re	ates of Registimated Ristimated Ristimated Ristimated Risting	Final Re ression Para egression Pa ss 346 173.3	eweighted I meters arameters b D 0 F 1 13.25	MS 346 13.08	F-Value 26.45	P-Value 0.0002
Intercept 11.64 Intercept 1.372 Sour	Estima × 0.358 Stdv of E × 0.0696 ce of Varia Re	ates of Regi stimated R Ation gression Error Total	Final Re ression Para egression Para NOVA Table SS 346 173.3 519.3	e e DOF 1 13.25 14.25	MS 346 13.08	F-Value 26.45	P-Value 0.0002
Intercept 11.64 Intercept 1.372 Sour	Estima × 0.358 Stdv of E × 0.0696	ates of Regi stimated R Ation gression Error Total B Smi	Final Re ression Para egression Para NOVA Table 346 173.3 519.3 are Estimate	e e DOF 1 13.25 14.25 0.666	MS 346 13.08	F-Value 26.45	P-Value 0.0002
Intercept 11.64 Intercept 1.372 Sour	Estima × 0.358 Stdv of E × 0.0696 ce of Varia Re	ation Error Total A A A A A A A A A A A A A	Final Re ression Para egression Para sNOVA Table SS 346 173.3 519.3 are Estimate ale Estimate	eveighted I meters arameters b DOF 1 13.25 14.25 0.666 7.695	MS 346 13.08	F-Value 26.45	P-Value 0.0002
Intercept 11.64 Intercept 1.372	Estima × 0.358 Stdv of E × 0.0696 ce of Varia Re	ates of Regi stimated Ro stimated Ro A ation gression Error Total R Squ AD Based Sc Weighted Sc	Final Re ression Para egression Para egression Para sate 346 173.3 519.3 are Estimate cale Estimate	eveighted I meters arameters b DOF 1 13.25 14.25 0.666 7.695 3.617	MS 346 13.08	F-Value 26.45	P-Value 0.0002
Intercept 11.64 Intercept 1.372 Sour	Estima × 0.358 Stdv of E × 0.0696 rce of Varia Re	ates of Regi stimated R stimated R gression Error Total R Squ AD Based Sc Weighted Sc DB Estimate	Final Re ression Para egression Para solution Para egression Para solution Para soluti	eveighted I meters arameters b DOF 1 13.25 14.25 0.666 7.695 3.617 25.53	MS 346 13.08	F-Value 26.45	P-Value 0.0002

			Reg	gression Ta	able			
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.
1	6	11.99	-5.993	0.0827	-1.657	-1.73	0.678	1.657
2	8.5	11.99	-3.493	0.0827	-0.966	-1.008	0.883	0.966
3	8.5	12.35	-3.852	0.0758	-1.065	-1.108	0.859	1.065
4	10	12.35	-2.352	0.0758	-0.65	-0.676	0.946	0.65
5	12	13.07	-1.068	0.0638	-0.295	-0.305	0.989	0.295
6	40	13.07	26.93	0.0638	7.446	7.696	0	7.446
7	42.5	13.07	29.43	0.0638	8.138	8.41	0	8.138
8	45	13.43	31.57	0.0587	8.73	8.998	0	8.73
9	50	13.43	36.57	0.0587	10.11	10.42	0	10.11
10	13	13.07	-0.0681	0.0638	-0.0188	-0.0195	1	0.0188
11	14	13.07	0.932	0.0638	0.258	0.266	0.992	0.258
12	17	13.43	3.574	0.0587	0.988	1.018	0.879	0.988
13	17.4	13.43	3.974	0.0587	1.099	1.132	0.851	1.099
14	22	15.22	6.783	0.0417	1.875	1.916	0.599	1.875
15	24	15.22	8.783	0.0417	2.428	2.481	0.386	2.428
16	25	15.22	9.783	0.0417	2.705	2.763	0.281	2.705
17	42.5	18.8	23.7	0.0514	6.553	6.728	0	6.553
18	43	18.8	24.2	0.0514	6.691	6.87	0	6.691
19	44.1	19.52	24.58	0.0603	6.797	7.012	0	6.797
20	45.3	19.7	25.6	0.0629	7.079	7.313	0	7.079
21	20	22.38	-2.382	0.119	-0.659	-0.702	0.945	0.659
22	22	22.38	-0.382	0.119	-0.106	-0.113	0.999	0.106
23	21	22.74	-1.74	0.129	-0.481	-0.516	0.97	0.481
24	23	23.1	-0.0984	0.14	-0.0272	-0.0293	1	0.0272
25	22.5	22.81	-0.312	0.131	-0.0862	-0.0925	0.999	0.0862
26	24	23.1	0.902	0.14	0.249	0.269	0.992	0.249
	Final	Weighted	Correlation	ul shin				
		X	Conciación					
Y	1	0.867						
×	0.867	1						
F	idenvalues	of Final We	eiahted Corr	elation Ma	hix			
Eval 1	Eval 2							
0 1 2 2	1.867							

1.60

Interpretation of Graphs: Observations which are outside of the horizontal lines in the graph are considered to be regression outliers. The Leverage Distances vs. Standardized residuals plot is not produced even if checked on. The regression lines are produced since there is only one predictor variable.

18

х

28

8

9.6 Huber Regression Method

1. Click **Regression** ► **Huber.**

🔜 Scout 4.0 - [D:\Narain\Scout_For_Windows\ScoutSource\WorkDatInExcel\STARCLS.xls]									
🖳 File Edit Configure Data	Graphs	Stats/GOF	Outliers/Est	timates	Regression	Multivariate EDA	GeoSta		
Navigation Panel		0	1	2	OLS LMS Iterative OLS Biweight Huber MVT PROP Method Comparison		5		
Name		×	у						
D:\Narain\Scout_Fo	1	4.37	5.23						
	2	4.56	5.74						
	3	4.26	4.93						
	4	4.56	5.74						
	5	4.3	5.19						

- 2. The "Select Variables" screen (Section 3.3) will appear.
 - Select the dependent variable and one or more independent variables from the "Select Variables" screen.
 - If the results have to be produced by using a Group variable, then select a group variable by clicking the arrow below the "**Group by Variable**" button. This will result in a drop-down list of available variables. The user should select and click on an appropriate variable representing a group variable.
 - Click on the "**Options**" button to get the options window.

🔜 Huber Options			
Regression Value 0.05 Residual Influence Function Alpha Number of Regression Iterations 10 [Max = 50] Residuals MDs Distribution	Identify Leverage Points Cleverage Classical Classical Huber PROP MVT (Trimming)	Initial Leverage Distances Classical Sequential Classical Robust (Median, 1.48MAD) CKG (Maronna Zamar) KG (Not Orthogonalized) MCD	 Display Intervals Confidence Coefficient 0.95 Display Diagnostics
Beta Chisquare Intermediate Iterations Do Not Display Display Every 5th Display Every 4th Display Every 2nd Display All	Number of Leverage Iterations 10 [Max = 50] Leverage MDs Distribution G Beta C Chisquare	Leverage Value(s) 0.05 Leverage Influence Function Alpha	OK Cancel

• Specify the "Regression Value." The default is "0.05."
- Specify the "Number of Regression Iterations." The default is "10."
- Specify the "**Regression MDs Distribution**." The default is "**Beta**."
- Specify the "Identify Leverage Points." The default is "On."
- Specify the "Select Leverage Distance Method." The default is "PROP."
- Specify the "Number of Leverage Iterations." The default is "10."
- Specify the "Leverage Initial Distances." The default is "OKG (Maronna Zamar)."
- Specify the "Leverage Value." The default is "0.05."
- Click "OK" to continue or "Cancel" to cancel the options.

🔜 OptionsRegressionGra	phics	×
VY Plots	XY Plot Title Huber Regression - Y vs X Plot	Regression Line - Fixing Other Regressors at
🔽 Y vs Y-Hat	Y vs Y-HatTitle Huber Regression - Y vs Y-Hat PI	Minimum Values Predection Interval Mean Values Confidence Coefficient
🔽 Y vs Residuals	Y vs Residuals Title Huber Regression - Y vs Residual	C Maximum Values C Zero Values 0.95
✓ Y-Hat vs Residuals	Y-Hat vs Residuals Title Huber Regression - Y-Hat vs Resi	Graphics Distribution
🔽 Residuals vs Leverage	Residuals vs Leverage Title Huber Regression - Residuals vs	Residual/Lev. Alpha
🗖 QQ Residuals		0.05 OK Cancel

• Click on the "Graphics" button to get the options window.

- Specify the preferred plots and the input parameters.
- Click "OK" to continue or "Cancel" to cancel the options.
- Click "OK" to continue or "Cancel" to cancel the computations.

Output example: The data set "**BRADU.xls**" was used for Huber regression. It has 3 predictor variables (p) and 75 observations. When the "Leverage" option is on, the leverage distances are calculated and outlying observations are obtained iteratively using initial estimates as median and OKG matrix and the leverage option as PROP (i.e., using PROP influence function). Then the weights are assigned to observations and those weights are used in the finding the regression outliers iteratively. When the leverage option is off, all observations are assigned one (1) as weights and then the regression outliers are found using the Huber function iteratively. Finally, the estimated regression parameters are calculated.

Output for Huber (Leverage ON). Data Set Used: Bradu (predictor variables p = 3).

Dal	te/Time of Co	omputation	3/5/2008 7	51:39 AM									
	User Select	ed Options											
		From File	D:\Narain\S	:\Narain\Scout_For_Windows\ScoutSource\WorkDatInExcel\BRADU									
	Fu	II Precision	OFF	FF									
Selec	ted Regressi	on Method	Huber										
Residual In	fluence Fund	ction Alpha	0.05 (Used	05 (Used to Identify Vertical Regression Outliers)									
Number o	of Regression	n Iterations	10 (Maximu	m Number if	doesn't Con	verge)							
		Leverage	Identify Lev	erage Points	(Outliers in)	X-Space)							
Sele	cted Levera	ge Method	PROP										
Initial Leve	erage Distan	ce Method	OKG (Maror	nna Zamar) M	latrix								
	Squ	uared MDs	Beta Distrib	ution used fo	or Leverage	Distances I	based upon (Selected Re	gression (Lev	verage) Varia	ables		
Le	verage Dista	ance Alpha	0.05 (Used	to Identify Le	verage Poin	ts)							
Numbe	r of Leverage	e Iterations	10 (Maximu	m Number if	doesn't Con	verge)							
	Y vs	s Y-hat Plot	Not Selecte	d									
	Y vs Re	esidual Plot	Not Selecte	d									
	Y-hat vs Re	esidual Plot	Not Selecte	d									
	Title For Y	vs X Plots	Huber Regr	ession - Y vs.	X Plot								
Tì	tle for Residu	ual Q.Q. Plot	Huber Regr	Huber Regression - Residuals QQ Plot									
	Residual B	and Alpha	0.05 (Used	0.05 (Used in Graphics Residual Bands)									
Title Re	esidual vs Dis	stance Plot	Huber Regr	Huber Regression - Residuals vs Unsquared Leverage Distance Plot									
Sho	ow Intermedia	ate Results	Do Not Disp	olay Intermedi	iate Results								
			Intermediate	Results Sho	own on Anot	her Output S	Sheet						
		Le	verage Poir	nts are Outli	iers in X-Sp	ace of Sel	ected Regre	ession Varia	bles.				
Num	iber of Selec	ted Regress:	ion Variables	3									
		Number of	Observations	75									
		Depen	dent Variable	У									
	Residual \	/alues used	d with Grapl	nics Display									
	Upper Res	idual Indvidu	ual (0.05) MD	1.94									
	Lower Res	idual Indvidu	ual (0.05) MD	-1.94									
		Correlat	ion Matrix										
	У	×1	x2	х3									
У	1	0.946	0.962	0.743									
×1	0.946	1	0.979	0.708									
×2	0.962	0.979	1	0.757									
x3	0.743	0.708	0.757	1									

	Eiger	nvalues of (Correlation	Matrix			
Eval 1	Eval 2	Eval 3	Eval 4				
0.0172	0.0556	0.368	3.559				
		01	dinary Leas	st Sovares í	OLS)Bear	ession Res	ults
				, oqualos (ocojnogi		
	Estima	tes of Regi	ession Para	ameters			
Intercept	x1	х2	xЗ				
-0.388	0.239	-0.335	0.383				
	Stdy of E	stimated Br	earession P	arameters			
ntercept	×1	×2	x3				
0.416	0.262	0.155	0.129				
		-				1	
	<i></i>		NUVA Tabl	e		F U •	
Sou	rce of Yaria	ition .	55	DUF	MS	F-Value	P-Value
	Ke	gression	543.3	3	181.1	35.77	0.0000
		Error	359.5	7	5.063		
		Total	902.8	74			
		R Squ	iare Estimate	0.602			
	M4	AD Based Sc	ale Estimate:	1.067			
	1	Weighted Sc	ale Estimate:	2.25			
	l	QR Estimate	of Residuals	1.468			
Det. of	COV[Regre	ssion Coeffic	cients] Matrix	5.5107E-8			
		Initial Wei	ahted Regra	ession Itera	tion with lo	dentified Lev	erage Poin
							_
	Estima	tes of Regi	ession Para	ameters			
ntercept	×1	×2	x3				
-0.0105	0.0624	0.0119	-0.107				
	Stdv of E	stimated R	egression P	arameters			
ntercept	x1	x2	x3				

		A	NOVA Tabl	е						
So	urce of Varia	ation	SS	DOF	MS	F-Value	P-Value			
	Re	gression	0.898	3	0.299	0.94	0.4272			
		Error	18.14	57	0.318					
		Total	19.04	60						
		R Squ	iare Estimate	0.0472						
	MA	AD Based Sc	ale Estimate:	0.902						
		Weighted Sc	ale Estimate:	0.564						
Unsqua	red Leverage	Distance Ind	div-MD(0.05)	2.743						
	l	QR Estimate	of Residuals	1.236						
	Determin	nant of Lever	age S Matrix	1.357						
			Re	gression T	able with L	everage Op	tion			
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.	Lev Dist.	OLS R~ist.
1	9.7	-2.174	11.87	0.063	21.05	21.74	2.364E-13	21.05	29.44	1.502
2	10.1	-2.265	12.36	0.0599	21.92	22.61	1.074E-13	21.92	30.21	1.775
3	10.3	-2.418	12.72	0.0857	22.54	23.58	1.886E-14	22.54	31.89	1.334
4	9.5	-2.528	12.03	0.0805	21.32	22.23	6.931E-15	21.32	32.86	1.138
5	10	-2.443	12.44	0.0729	22.06	22.91	1.266E-14	22.06	32.28	1.36
6	10	-2.217	12.22	0.0756	21.66	22.52	7.228E-14	21.66	30.59	1.527
7	10.8	-2.219	13.02	0.068	23.08	23.9	6.576E-14	23.08	30.68	2.006
8	10.3	-2.24	12.54	0.0631	22.23	22.97	1.634E-13	22.23	29.8	1.705
9	9.6	-2.475	12.07	0.08	21.4	22.32	1.768E-14	21.4	31.95	1.204
10	9.9	-2.437	12.34	0.0869	21.87	22.89	5.017E-14	21.87	30.94	1.35
11	-0.2	-2.782	2.582	0.0942	4.577	4.809	1.424E-16	4.577	36.64	3.48
12	-0.4	-2.946	2.546	0.144	4.513	4.877	3.684E-17	4.513	37.96	4.165
13	0.7	-2.589	3.289	0.109	5.83	6.177	1.069E-16	5.83	36.92	2.719
14	0.1	-2.556	2.656	0.564	4.708	7.127	1.478E-18	4.708	41.09	1.69
15	-0.4	0.0115	-0.412	0.0579	-0.73	-0.752	1	0.73	2.002	0.294
16	0.6	0.177	0.423	0.0759	0.75	0.78	1	0.75	2.165	0.385
17	-0.2	-0.0128	-0.187	0.0393	-0.332	-0.339	1	0.332	1.938	0.287
18	0	-0.0619	0.0619	0.0231	0.11	0.111	1	0.11	0.786	0.175
19	0.1	-0.0971	0.197	0.0312	0.349	0.355	1	0.349	1.287	0.29
20	0.4	-0.0119	0.412	0.0476	0.73	0.748	1	0.73	2.067	0.151
21	0.9	-0.0253	0.925	0.0294	1.64	1.665	1	1.64	1.059	0.299
22	0.3	-0.151	0.451	0.0457	0.799	0.818	1	0.799	1.746	0.415
23	-0.8	0.0561	-0.856	0.0293	-1.518	-1.54	1	1.518	1.163	0.19

			Final Re	weighted	Regressio	n Results	
	Estima	tes of Regi	ession Para	meters			
Intercept	×1	x2	xЗ				
-0.413	0.237	-0.382	0.44				
	Stdy of E	stimated R	egression P	arameters			
Intercept	×1	х2	xЗ				
0.378	0.238	0.142	0.118				
		A	NOVA Tabl	e			
Sou	ce of Varia	ation	SS	DOF	MS	F-Value	P-Value
	Re	gression	610	3	203.3	48.96	0.0000
		Error	290.9	70.05	4.153		
		Total	900.9	73.05			
		B Sau	are Estimate	0.677			
MAD Based Scale Estimate			1.158				
	١	Weighted Sc	ale Estimate:	2.038			
		QR Estimate	of Residuals	1.579			

Det. of COV[Regression Coefficients] Matrix 2.8216E-8

Yhat

6.944

6.722

8.045

7.667

7.651

7.201

Residuals

2.756

3.378

2.255

1.833

2.349

2.799

Obs

1

2

3

4

5

6

Y Vector

9.7

10.1

10.3

9.5

10

10

(The complete regression table is not shown.)

Regression Table

Hat[i,i]

0.063

0.0599

0.0857

0.0805

0.0729

0.0756

Res/Scale Stude~ Res

1.397

1.709

1.157

0.938

1.197

1.429

1.352

1.657

1.106

1.153

1.374

0.9

Wts[i,i]

1

1

1

1

1

1

Res Dist.

1.352

1.657

1.106

1.153

1.374

0.9

	Cin a	Nutaiahtad	Correlation	المتعادية		1
	rina	i weightea	correlation	Mauk		
	У	x1	x2	х3		
у	1	0.94	0.957	0.813		
×1	0.94	1	0.977	0.774		
x2	0.957	0.977	1	0.833		
xЗ	0.813	0.774	0.833	1		
E	Eigenvalues	s of Final ₩	eighted Co	rrelation Matrix		
Eval 1	Eval 2	Eval 3	Eval 4			
0.0165	0.0618	0.27	3.652			

Interpretation of Graphs: Observations which are outside of the horizontal lines in the graphs are considered to be regression outliers. The observations to the right of the vertical lines are considered to be leverage outliers. Regression lines are not produced since there are three predictor variables. Select other "X" variables by using the drop-down bar in the graphics panel and click on "**Redraw**."

Output for Huber (Leverage OFF).

			Regressio	n Analysis () utput				
Dat	e/Time of C	omputation	3/5/2008 8:	15:51 AM					
	User Select	ed Options							
		From File	D:\Narain\S	icout_For_W	indows\Sco	utSource/V	VorkDatInEx	cel\BRADU	
	Fu	II Precision	OFF						
Select	ted Regressi	ion Method	Huber						
Residual Influence Function Alpha			0.05 (Used	to Identify V	ertical Regre	ession Outli	ers)		
Number of	of Regressio	n Iterations	10 (Maximur	m Number if	doesn't Con	verge)			
		Leverage	Off						
	Y v:	s Y-hat Plot	Not Selecte	d					
	Y vs Re	esidual Plot	Not Selecte	d					
	Y-hat vs Re	esidual Plot	Not Selecte	d					
	Title For Y	′ vs X Plots	Huber Regre	ession - Y vs	X Plot				
Ti	tle for Residu	ual Q.Q. Plot	Huber Regr	ession - Resi	duals QQ PI	ot			
	Residual B	and Alpha	0.05 (Used i	in Graphics F	Residual Bar	ids)			
Title Re	sidual vs Di	stance Plot	Huber Regr	ession - Res	iduals vs Ur	isquared Lo	everage Dist	ance Plot	
Sho	w Intermedi	ate Results	Do Not Disp	lay Intermed	ate Results				
			Intermediate	Results Sho	wn on Anot	her Output	Sheet		
Num	ber of Selec	ted Rearess	ion Variables	3					
		- Number of	Observations	75					
		Depen	dent Variable	nt Variable y					
	Besidual	Values use	d with Grank	vice Dieplau					
		sidual Indvidi	al (0.05) MD	1 94					
	Lower Ber	sidual Indvidi	al (0.05) MD	-1.94					
	Lowernes		ar (0.00) mb	1.04					
		Correlat	ion Matrix						
	у	x1	x2	xЗ					
у	1	0.946	0.962	0.743					
×1	0.946	1	0.979	0.708					
x2	0.962	0.979	1	0.757					
x3	0.743	0.708	0.757	1					
	Eige	nvalues of	Correlation	Matrix					
Eval 1	Eval 2	Eval 3	Eval 4						
0.0172	0.0556	0.368	3.559						
		0	rdinary Leas	:t Squares (OLS)Regr	ession Re	suits		

	Estima	tes of Regi	ession Para	ameters			
Intercept	×1	×2	x3				
-0.388	0.239	-0.335	0.383				
	Stdy of E	stimated R	egression P	arameters			
Intercept	×1	x2	x3				
0.416	0.262	0.155	0.129				
		A	NOVA Tab	le			
Sou	rce of Varia	ation	SS	DOF	MS	F-Value	P-Value
	Re	gression	543.3	3	181.1	35.77	0.0000
		Error	359.5	71	5.063		
		Total	902.8	74			

R Square Estimate	0.602		
MAD Based Scale Estimate	1.067		
Weighted Scale Estimate	2.25		
IQR Estimate of Residuals	1.468		
Det. of COV[Regression Coefficients] Matrix	5.5107E-8		

Final Reweighted Regression Results

	Estima	tes of Regr				
Intercept	×1	x2	xЗ			
-0.413	0.237	-0.382	0.44			
	Stdy of E	stimated Re	egression F	arameters		
Intercept	×1	x2	xЗ			
0.378	0.238	0.142	0.118			

Α	NOVA Tab	le								
Source of Variation	Source of Variation SS				P-Value					
Regression	Regression 610			48.96	0.0000					
Error	290.9	70.05	4.153							
Total	900.9	73.05								
R Squ	iare Estimate	0.677								
MAD Based Sc	ale Estimate:	1.158								
Weighted Sc	Weighted Scale Estimate									
IQR Estimate	IQR Estimate of Residuals									
Det. of COV[Regression Coeffic	ients] Matrix	2.8216E-8								

Regression Table											
Obs Y Vector Yhat Residuals Hat[i,i] Res/Scale Stude~ Res Wts[i,i]	Res Dist.										
1 9.7 6.944 2.756 0.063 1.352 1.397 1	1.352										
2 10.1 6.722 3.378 0.0599 1.657 1.709 1	1.657										
3 10.3 8.045 2.255 0.0857 1.106 1.157 1	1.106										
4 9.5 7.667 1.833 0.0805 0.9 0.938 1	0.9										
5 10 7.651 2.349 0.0729 1.153 1.197 1	1.153										
6 10 7.201 2.799 0.0756 1.374 1.429 1	1.374										
7 10.8 6.895 3.905 0.068 1.916 1.985 1	1.916										

	Final	Weighted	Correlation	Matrix		
	У	x1	x2	x3		
У	1	0.94	0.957	0.813		
×1	0.94	1	0.977	0.774		
x2	0.957	0.977	1	0.833		
xЗ	0.813	0.774	0.833	1		
E	igenvalues	of Final ₩	eighted Co	rrelation Matrix		
Eval 1	Eval 2	Eval 3	Eval 4			
0.0165	0.0618	0.27	3.652			

Interpretation of Graphs: Observations which are outside of the horizontal lines in the graph are considered to be regression outliers. The Leverage Distances vs. Standardized residuals plot is not produced even if checked on. Regression lines are not produced since there are three predictor variables. Select other "X" variables by using the drop-down bar in the graphics panel and click on "**Redraw**."

9.7 MVT Regression Method

1. Click **Regression** ► **MVT.**

🖶 Scout 4.0 - [D: Warain\S	cout_Fo	or_Windov	vs\ScoutSo	ource\V	VorkDatInE	xcel\STACKLO	SS]			
📲 File Edit Configure Data	Graphs	Stats/GOF	Outliers/Est	timates	Regression	Multivariate EDA	GeoStats	Programs	Window	Help
Navigation Panel		0	1	2	OLS		5	6	7	8
Name		Stack-	Air-Flow	Temp.	LMS	a.c.		l.		
D:\Narain\Scout Fo	1	42	80		Riweight					
	2	37	80		Huber					
	3	37	75		MVT					
	4	28	62		PROP				l.	
	5	18	62		Method C	omparison				

- 2. The "Select Variables" screen (Section 3.3) will appear.
 - Select the dependent variable and one or more independent variables from the "Select Variables" screen.
 - If the results have to be produced by using a Group variable, then select a group variable by clicking the arrow below the "**Group by Variable**" button. This will result in a drop-down list of available variables. The user should select and click on an appropriate variable representing a group variable.
 - Click on the "**Options**" button to get the options window.

🖶 MVT Options			×
Regression Values 0.1 Residual Trim Percent Alpha for Residual Outliers 0.05 Number of Regression Iterations 10 [Max = 50] Residuals MDs Distribution	Identify Leverage Points ✓ Leverage Select Leverage Distance Method ○ Classical ○ Sequential Classical ○ Huber ○ PROP ○ MVT (Trimming)	Initial Leverage Distances Classical Sequential Classical Robust (Median, 1.48MAD) CKG (Maronna Zamar) KG (Not Orthogonalized) MCD	Display Intervals Confidence Coefficient 0.95 Display Diagnostics
Beta Chisquare Intermediate Iterations Do Not Display Display Every 5th Display Every 4th Display Every 2nd Display All	Number of Leverage Iterations	Leverage Value(s) 0.05 Leverage Influence Function Alpha	OK Cancel

• Specify the "Regression Value." The default is "0.05."

- Specify the "Number of Regression Iterations." The default is "10."
- Specify the "**Regression MDs Distribution**." The default is "**Beta**."
- Specify the "Identify Leverage Points." The default is "On."
- Specify the "Select Leverage Distance Method." The default is "PROP."
- Specify the "Number of Leverage Iterations." The default is "10."
- Specify the "Leverage Initial Distances" The default is "OKG (Maronna Zamar)."
- Specify the "Leverage Value." The default is "0.05."
- Click "OK" to continue or "Cancel" to cancel the options.

💀 OptionsRegressionGra	phics		×
VY Plots	XY Plot Title MVT Regression - Y vs X Plot	Regression Line - Fixing (Dther Regressors at I⊄ Confidence Interval
🔽 Y vs Y-Hat	Y vs Y-HatTitle MVT Regression - Y vs Y-Hat Plot	 Minimum Values Mean Values 	Predection Interval Confidence Coefficient
🔽 Y vs Residuals	Y vs Residuals Title MVT Regression - Y vs Residuals	C Maximum Values C Zero Values	0.95
✓ Y-Hat vs Residuals	Y-Hat vs Residuals Title MVT Regression - Y-Hat vs Resid	Graphics Distribution	C CI
🔽 Residuals vs Leverage	Residuals vs Leverage Title MVT Regression - Residuals vs U	Residual/Lev. Alpha	
🔽 QQ Residuals	QQ Residuals Title MVT Regression - Residuals QQ	0.05	OK Cancel

• Click on the "Graphics" button to get the options window.

- Specify the preferred plots and the input parameters.
- Click "OK" to continue or "Cancel" to cancel the options.
- Click "OK" to continue or "Cancel" to cancel the computations.

Output example: The data set "**STACKLOSS.xls**" was used for MVT regression. It has 3 predictor variables (p) and 21 observations. When the "Leverage" option is on, the leverage distances are calculated and outlying observations are obtained iteratively using initial estimates as median and OKG matrix and the leverage option as PROP (i.e., using PROP influence function). Then the weights are assigned to observations and those weights are used in the finding the regression outliers iteratively. When the leverage option is off, all observations are assigned one (1) as weights and then the regression outliers are found using the trimming percentage and a critical alpha iteratively. Finally, the estimated regression parameters are calculated.

Output for MVT (Leverage ON). Data Set Used: Stackloss (predictor variables p = 3).

	Regressio	on Analysis	Dutput							
Date/Time of Computation	3/5/2008 8	:22:37 AM								
User Selected Options										
From File	D:\Narain\	Scout_For_W	/indows\Sco	utSource\V	/orkDatInExc	el\STACKLO	ISS			
Full Precision	OFF									
Selected Regression Method	Multivariate	Triming (MV	T)							
Residual MVT Trimming Percentage	0.1 (Used)	o Identify Ve	rtical Regres	sion Outlier	s)					
Alpha for Residual Outliers	0.05 (Plann	ied Future M	odification: L	Jsed to Cor	npare Residu	ial MVT MDs	;)			
Number of Regression Iterations	10 (Maximu	ım Number if	doesn't Con	verge)						
Leverage	Identify Lev	ientify Leverage Points (Outliers in X-Space)								
Selected Leverage Method	PROP	ROP								
Initial Leverage Distance Method	hod OKG (Maronna Zamar) Matrix									
Squared MDs	Beta Distribution used for Leverage Distances based upon Selected Regression (Leverage) Variables									
Leverage Distance Alpha	Leverage Distance Alpha 0.05 (Used to Identify Leverage Points)									
Number of Leverage Iterations	Number of Leverage Iterations 10 (Maximum Number if doesn't Converge)									
Y vs Y-hat Plot	Not Selecte	ed								
Y vs Residual Plot	Not Selecte	ed								
Y-hat vs Residual Plot	Not Selecte	ed								
Title For Y vs X Plots	MVT Regre	ession - Y vs >	< Plot							
Title for Residual QQ Plot	MVT Regre	ssion - Resid	luals QQ Plot							
Residual Band Alpha	0.05 (Used	in Graphics	Residual Bar	nds)						
Title Residual vs Distance Plot	MVT Regre	ession - Resid	duals vs Uns	quared Lev	erage Distan	ce Plot				
Show Intermediate Results	Do Not Dis	play Intermed	liate Results							
	Intermediat	e Results Sh	own on Anot	her Output	Sheet					
L	everage Poi	nts are Out	iers in X-Sp	ace of Sel	ected Regr	ession Varia	bles.			
Number of Selected Regre	ssion Variable:	3								
Number o	f Observation:	\$ 21								
Depe	ndent Variable	Stack-Los	s							
Residual Values us	ed with Grap	hics Display								
Upper Residual Indvi	dual (0.05) MD	1.889								
Lower Residual Indvi	dual (0.05) MD	-1.889								
Correla	tion Matrix									
Stack-Loss Air-Flow	Temp.	Acid-Conc								
Stack-Loss 1 0.782	0.5	0.5 0.92								
Air-Flow 0.782 1	0.391	0.876								
Temp. 0.5 0.391	1	0.4								
Acid-Conc 0.92 0.876	0.4	1								
Eigenvalues of	Correlation	Matrix								
Eval 1 Eval 2 Eval 3	Eval 4									
0.0532 0.215 0.734	2.997									

	Estima	tes of Regre	ession Para	ameters			
ntercept	Air-Flow	Temp.	Acid-Conc				
-39.92	0.716	1.295	-0.152				
	Stdy of E	stimated Re	gression P	arameters			
ntercept	Air-Flow	Temp.	Acid-Conc				
11.9	0.135	0.368	0.156				
		A	NOVA Tabl	le			
Sou	rce of Varia	ation	SS	DOF	MS	F-Value	P-Value
	Re	gression	1890	3	630.1	59.9	0.0000
		Error	178.8	17	10.52		
		Total	2069	20			
		R Squa	are Estimate	0.914			
	MA	AD Based Sca	ale Estimate	2.768			
	,	Weighted Sca	ale Estimate	3.243			
			(D. 11)				
	l l	QR Estimate o	of Hesiduals	4.313			
Det. of	I COV[Regre	UR Estimate o ssion Coefficio InitialWeig	of Hesiduals ents] Matrix hted Regr o	4.313 1.0370E-5 ession Itera	ition with le	dentiñed Lev	erage Points
Det. of	COV[Regre	uH Estimate o ssion Coefficio Initial Weig ites of Begre	or Hesiduals ents] Matrix hted Regro	4.313 1.0370E-5 ession Itera	ition with l	dentified Lev	erage Points
Det. of	Estima	UR Estimate o ssion Coeffici Initial₩eig ites of Regre	or Hesiduals ents] Matrix hted Regro ession Para Acid-Conc	4.313 1.0370E-5 ession Itera ameters	ition with l	dentilied Lev	erage Points
Det. of ntercept -39.54	Estima Air-Flow 0,709	UR Estimate of ssion Coeffici Initial Weig tes of Regre Temp. 1.291	of Hesiduals ents] Matrix hted Regra ession Para Acid-Conc -0.151	4.313 1.0370E-5 ession Itera ameters	ition with l	dentified Lev	erage Points
Det. of ntercept -39.54	Estima Air-Flow 0.709	UR Estimate of ssion Coeffici Initial Weig tes of Regree Temp. 1.291	of Hesiduals ents] Matrix hted Regro ession Para Acid-Conc -0.151	4.313 1.0370E-5 ession Itera ameters	ition with l	dentiñed Lev	erage Points
Det. of Intercept -39.54	Estima Air-Flow 0.709	UR Estimate of ssion Coeffici Initial Weig ites of Regree Temp. 1.291 stimated Re	of Hesiduals ents] Matrix hted Regre ession Para Acid-Conc -0.151 gression P	4.313 1.0370E-5 ession Itera ameters arameters	ition with l	dentified Lev	erage Points
Det. of ntercept -39.54 ntercept	Estima Air-Flow Stdv of E	UR Estimate of ssion Coeffici Initial Weig tes of Regre Temp. 1.291 stimated Re Temp.	hted Regro hted Regro conception conception content co	4.313 1.0370E-5 ession Itera ameters arameters	ition with l	dentified Lev	erage Points
Det. of ntercept -39.54 ntercept 12.1	Estima Air-Flow 0.709 Stdv of E Air-Flow 0.143	UR Estimate of ssion Coeffici Initial Weig tes of Regre Temp. 1.291 stimated Re Temp. 0.373	hted Regro hted Regro Acid-Conc -0.151 gression P Acid-Conc 0.162	4.313 1.0370E-5 ession Itera ameters arameters	ition with l	dentified Lev	erage Points
Det. of ntercept -39.54 ntercept 12.1	Estima Air-Flow 0.709 Stdv of E Air-Flow 0.143	UR Estimate of ssion Coeffici Initial Weig Ites of Regree Temp. 1.291 stimated Re Temp. 0.373	hted Regra hted Regra Acid-Conc -0.151 gression P Acid-Conc 0.162	4.313 1.0370E-5 ession Itera ameters arameters	ition with l	dentified Lev	erage Points
Det. of ntercept -39.54 ntercept 12.1	Estima Air-Flow 0.709 Stdv of E Air-Flow 0.143	UH Estimate of ssion Coeffici Initial Weig tes of Regree Temp. 1.291 stimated Re Temp. 0.373	hted Regro hted Regro Acid-Conc -0.151 gression P Acid-Conc 0.162 NOVA Tabl	4.313 1.0370E-5 ession Itera ameters arameters	ition with l		erage Points
Det. of ntercept -39.54 ntercept 12.1 Sou	Estima Air-Flow 0.709 Stdv of E Air-Flow 0.143	UR Estimate of ssion Coeffici Initial Weig tes of Regre Temp. 1.291 stimated Re Temp. 0.373 Ation	hted Regro hted Regro Acid-Conc -0.151 gression P Acid-Conc 0.162 NOVA Tabl SS 1421	4.313 1.0370E-5 ession Itera ameters arameters le DOF	MS	F-Value	P-Value
Det. of ntercept -39.54 ntercept 12.1 Sou	Estima Air-Flow 0.709 Stdv of E Air-Flow 0.143 rce of Varia Re	UR Estimate of ssion Coeffici Initial Weig Ites of Regree Temp. 1.291 stimated Re Temp. 0.373 All stion gression	hted Regre hted Regre hted Regre constant	4.313 1.0370E-5 ession Itera ameters arameters le DOF 3 16.02	MS 473.5	F-Value 44.06	erage Points
Det. of Intercept -39.54 Intercept 12.1	Estima Air-Flow 0.709 Stdv of E Air-Flow 0.143 rce of Varia Re	UH Estimate of ssion Coefficion Initial Weig Ites of Regree Temp. 1.291 stimated Re Temp. 0.373 Ation gression Error Total	hted Regra hted Regra Acid-Conc -0.151 gression P Acid-Conc 0.162 NOVA Tabl SS 1421 172.2 1593	4.313 1.0370E-5 ession Itera ameters arameters le DOF 3 16.03 19.03	MS 473.5 10.75	F-Value 44.06	erage Points
Det. of ntercept -39.54 ntercept 12.1 Sou	Estima Air-Flow 0.709 Stdv of E Air-Flow 0.143 rce of Varia Re	UR Estimate of ssion Coeffici Initial Weig tes of Regre Temp. 1.291 stimated Re Temp. 0.373 At ation gression Error Total R Square Estima	hted Regro hted Regro ession Para Acid-Conc -0.151 gression P Acid-Conc 0.162 NOVA Tabl SS 1421 172.2 1593 atel 0.892	4.313 1.0370E-5 ession Itera ameters arameters le DOF 3 16.03 19.03	MS 473.5 10.75	F-Value 44.06	erage Points
Det. of ntercept -39.54 ntercept 12.1 Sou	Estima Air-Flow 0.709 Stdv of E Air-Flow 0.143 rce of Varia Re	UH Estimate of ssion Coeffici Initial Weig Ites of Regree Temp. 1.291 stimated Re Temp. 0.373 Stimated Re Temp. 0.373 All stion gression Error Total R Square Estima ased Scale Estima	hted Regro hted Regro assion Para Acid-Conc -0.151 gression P Acid-Conc 0.162 NOVA Tabl SS 1421 172.2 1593 ate 0.892 ate 0.892 ate 2.738	4.313 1.0370E-5 ession Itera ameters arameters le DOF 3 16.03 19.03	MS 473.5 10.75	F-Value 44.06	P-Value 0.0000
Det. of ntercept -39.54 ntercept 12.1 Sou	Estima Air-Flow 0.709 Stdv of E Air-Flow 0.143 rce of Varia Re MAD Ba Weig	UH Estimate of ssion Coeffici Initial Weig Ites of Regree Temp. 1.291 stimated Re Temp. 0.373 Ation gression Error Total R Square Estimo ased Scale Estimo hted Scale Estimo	of Hesiduals ents] Matrix hted Regra ession Para Acid-Conc -0.151 gression P Acid-Conc 0.162 NOVA Table SS 1421 172.2 1593 ate 0.892 ate 2.738 ate 3.278	4.313 1.0370E-5 ession Itera ameters arameters le DOF 3 16.03 19.03	MS 473.5 10.75	F-Value 44.06	erage Points
Det. of ntercept -39.54 ntercept 12.1 Sou	Estima Air-Flow 0.709 Stdv of E Air-Flow 0.143 rce of Varia Re MAD Ba Weig Leverage Dista	UR Estimate of ssion Coeffici Initial Weig ites of Regree Temp. 1.291 stimated Re Temp. 0.373 Ation gression Error Total R square Estima ased Scale Estima ince Indiv-MD(0.0	of Hesiduals ents] Matrix Inted Regra Inted Regra Acid-Conc -0.151 gression Para Acid-Conc 0.151 gression Para Acid-Conc 0.151 gression Para Acid-Conc 0.162 NOVA Table SS 1421 172.2 1593 ate 0.892 ate 2.738 ate 3.278 05) 2.619	4.313 1.0370E-5 ession Itera ameters arameters le DOF 3 16.03 19.03	MS 473.5 10.75	F-Value 44.06	erage Points

	regression rable with Leverage option													
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.	Lev Dist.	OLS R~ist.				
1	42	38.58	3.417	0.302	1.042	1.247	0.562	1.042	2.931	0.997				
2	37	38.73	-1.734	0.318	-0.529	-0.641	0.497	0.529	3.02	0.591				
3	37	32.31	4.694	0.175	1.432	1.576	1	1.432	2.073	1.405				

			Final R	eweighted	Regressior	n Results		
	Estima	ites of Reg	ression Para	ameters				
Intercept	Air-Flow	Temp.	Acid-Conc					
-42.45	0.957	0.556	-0.109					
	Stdv of E	stimated R	egression P	arameters				
Intercept	Air-Flow	Temp.	Acid-Conc					
7.385	0.0945	0.264	0.0968					
		-	NOVA Tab	le				
Sou	irce of Varia	ation	SS	DOF	MS	F-Value	P-Value	
	Re	gression	1890	3	630	158.1	0.0000	
		Error	59.78	15	3.986			
		Total	1950	18				
		R Squ	uare Estimate	0.969				
	MA	AD Based So	cale Estimate	2.069				
	1	Weighted So	cale Estimate	1.996				
	ļ	QR Estimate	of Residuals	2.995				
Det. o	f COV[Regre	ssion Coeffi	cients] Matrix	3.4468E-7				
			Re	gression Ta	able			
Obs	Y Vector	Yhat	Residuals	– Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.
1	42	39.4	2.604	0.302	1.305	1.561	1	1.305
2	37	39.5	-2.504	0.318	-1.254	-1.519	1	1.254
3	37	33.39	3.607	0.175	1.807	1.989	1	1.807
4	28	20.73	7.273	0.129	3.643	3.902	0	3.643
5	18	19.62	-1.616	0.0522	-0.81	-0.832	1	0.81
6	18	20.17	-2.172	0.0775	-1.088	-1.133	1	1.088

(The complete regression table is not shown.)

	Fina	Weighted	Correlatior	Matrix			
	Stack-Loss	Air-Flow	Temp.	Acid-Conc			
Stack-Loss	1	0.836	0.474	0.979			
Air-Flow	0.836	1	0.418	0.869			
Temp.	0.474	0.418	1	0.423			
Acid-Conc	0.979	0.869	0.423	1			
E	igenvalues	of Final W	eighted Co	rrelation Matrix	6		
Eval 1	Eval 2	Eval 3	Eval 4				
0.0169	0.19	0.724	3.069				

Interpretation of Graphs: Observations which are outside of the horizontal lines in the graphs are considered to be regression outliers. The observations to the right of the vertical lines are considered to be leverage outliers. The regression lines are not produced since there are three predictor variables. Select other "**X**" variables by using the drop-down bar in the graphics panel and click on "**Redraw**."

Output for MVT (Leverage OFF).

			Regression	Analysis	Output	1.1.					
Dal	e/Time of Co	mputation	1/10/2008 8	:47:07 AM							
	User Selecte	ed Options									
		From File	D:\Narain\S	cout_For_\	//indows\Sco	outSource\We	orkDatInExcel	\STACKLOSS			
	Full	Precision	OFF								
Selec	ted Regressio	on Method	Multivariate 1	Triming (MV	/T)						
	MVT Trim P	ercentage	0.05 (Used)	.05 (Used to Identify Regression Outliers)							
Number of	of Regression	Iterations	10 (Maximur	0 (Maximum Number if doesn't Converge)							
		Leverage	Off								
Re	s-Lev Rectar	ngle Alpha	0.05 (Used v	Used with Graphics Confidence Bands)							
Ti	tle for Residu	al QQ Plot	MVT Regres	sion - Resi	duals QQ Plo	t					
Title Re	esidual vs Disl	tance Plot	MVT Regres	sion - Res	iduals vs Uns	quared Dista	nce Plot				
	Title For Y v	vs X Plots)	MVT Regres	sion - Y vs	X Plot						
	Residu	al QQ Plot	Not Selected	ł							
	Y vs Re:	sidual Plot	Not Selected	ł							
	Y-hat vs Re:	sidual Plot	Not Selected	ł							
Sho	w Intermedia	te Results	Do Not Disp	lay Interme	diate Results						
			Intermediate	liate Results Shown on Another Output Sheet							
Num	ber of Select	ted Regres:	sion Variables	3							
		Number of	Observations	21							
		Deper	ndant Variable	Stack-Lo:	SS						
		0	rdinary Leas	t Squares	(OLS)Reg	ression Res	ults				
	Bearessi	on Parami	eters Vector	Estimates		1					
Intercept	Air-Flow	Temp	Acid-Conc								
-39.92	0.716	1.295	-0.152								
1000000	665666	्रा अंतरहर्ष े	38 77 638565								
	Stdy of	Regressi	on Estimates	Vector			-				
Intercept	Air-Flow	Temp.	Acid-Conc	0.000000							
11.9	0.135	0.368	0.156				-				
	8455568		8903539293 11		j.l.						
			ANOVA Tabl	e							
Sou	rce of Varia	tion	SS	DOF	MS	F-Value	P-Value				
	Reg	gression	1890	3	630.1	59.9	0.0000				
	Error 178.8				10.52						
	Total 2069										

R Square Estimates	0.914		
MAD Based Scale Estimates	2.768		
Weighted Scale Estimates	3.243		
IQR Estimates	4.313		
Det. of COV[Regression Coefficients] Matrix	1.0370E-5		

Results From the Regression Operation

	Regressi	on Parame	eters Vector	Estimates					
Intercept	Air-Flow	Temp.	Acid-Conc		1				
-43.7	0.889	0.817	-0.107						
	Stdy of	Regressi	on Estimate	s Vector					
Intercept	Air-Flow	Temp.	Acid-Conc	1000-000000	1				
9.492	0.119	0.325	0.125						
			ANOVA Tab	le					
Sou	irce of Varia	tion	SS	DOF	MS	F-Value	P-Value		
	Re	gression	1957	3	652.3	98.82	0.0000		
	33.33	Error	105.6	16	6.601	405328639			
		Total	2063	19					
		R Squ	are Estimates	0.949					
	MAI	D Based Sc	ale Estimates:	3.046					
	W	/eighted Sc	ale Estimates	2.569					
		ļ	QR Estimates	3.365					
Det. o	f COV[Regre:	ssion Coeffi	cients] Matrix	2.2471E-6					
			Be	aression T	able				
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.	
1	42	39.94	2.062	0.302	0.803	0.96	1	0.803	
2	37	40.04	-3.045	0.318	-1.185	-1.435	1	1.185	
3	37	33.75	3.248	0.175	1.264	1.392	1	1.264	
4	28	21.7	6.302	0.129	2.453	2.627	1	2.453	
5	18	20.07	-2.065	0.0522	-0.804	-0.826	1	0.804	
6	18	20.88	-2.882	0.0775	-1.122	-1.168	1	1.122	
7	19	21.06	-2.055	0.219	-0.8	-0.905	1	0.8	
8	20	21.06	-1.055	0.219	-0.411	-0.465	1	0.411	
9	15	17.33	-2.325	0.14	-0.905	-0.976	1	0.905	

Interpretation of Graphs: Observations which are outside of the horizontal lines in the graph are considered to be regression outliers. The Leverage Distances vs. Standardized residuals plot is not produced even if checked on. Regression lines are not produced since there are three predictor variables. Select other "X" variables by using the drop-down bar in the graphics panel and click on "**Redraw**."

Note: There are at least four regression outliers (1, 3, 4, and 21) in the data set of size 21on the previous page. However, the trimming percentage selected is only 5%, which is equivalent to one outlier in the data set of size 21. The user may want to use the MVT method with a higher trimming percentage to identify all of the outliers.

9.8 PROP Regression Method

🖳 File Edit Configure Data	Graphs	Stats/GOF	Outliers/Est	imates	Regression	Multivariate EDA	GeoStats	Programs	Window	Help
Navigation Panel		0	1	2	OLS		5	6	7	ş
Name		у	×		LMS					
D:\Narain\Scout_Fo	1	5.23	4.37		Dimaiable					
	2	5.74	4.56		Huber					
	3	4.93	4.26		MVT					
	4	5.74	4.56		PROP					
	5	5.19	4.3		Method C	Comparison				

1. Click **Regression** ► **PROP.**

2. The "Select Variables" screen (Section 3.3) will appear.

- Select the dependent variable and one or more independent variables from the "Select Variables" screen.
- If the results have to be produced by using a Group variable, then select a group variable by clicking the arrow below the "**Group by Variable**" button. This will result in a drop-down list of available variables. The user should select and click on an appropriate variable representing a group variable.

🔜 PROP Options			\mathbf{X}
Regression Value 0.05 Residual Influence Function Alpha Number of Regression Iterations 10 [Max = 50] Residuals MDs Distribution	Identify Leverage Points ✓ Leverage Select Leverage Distance Method ○ Classical ○ Sequential Classical ○ Huber ○ PROP ○ MVT (Trimming)	Initial Leverage Distances Classical Sequential Classical Robust (Median, 1.48MAD) OKG (Maronna Zamar) KG (Not Orthogonalized) MCD	Display Intervals Confidence Coefficient 0.95 Display Diagnostics
Beta C Chisquare Intermediate Iterations Do Not Display Display Every 5th Display Every 4th Display Every 2nd	Number of Leverage Iterations	Leverage Value(s) 0.05 Leverage Influence Function Alpha	OK Cancel

• Click on the "**Options**" button to get the options window.

- Specify the "Regression Value." The default is "0.05."
- Specify the "Number of Regression Iterations." The default is "10."
- Specify the "**Regression MDs Distribution**." The default is "**Beta**."
- Specify the "Identify Leverage Points." The default is "On."
- Specify the "Select Leverage Distance Method." The default is "PROP."
- Specify the "Number of Leverage Iterations." The default is "10."
- Specify the "Leverage Initial Distances." The default is "OKG (Maronna Zamar)."

- Specify the "Leverage Value." The default is "0.05."
- Click "OK" to continue or "Cancel" to cancel the options.
- Click on the "Graphics" button to get the options window.

😸 OptionsRegressionGra	phics	
V Plots	XY Plot Title PROP Regression - Y vs X Plot	Regression Line - Fixing Other Regressors at • No Line • Confidence Interval
🔽 Y vs Y-Hat	Y vs Y-HatTitle PROP Regression - Y vs Y-Hat PI	Minimum Values Predection Interval Mean Values Confidence Coefficient
🔽 Y vs Residuals	Y vs Residuals Title PROP Regression - Y vs Residual	C Maximum Values C Zero Values 0.95
🔽 Y-Hat vs Residuals	Y-Hat vs Residuals Title PROP Regression - Y-Hat vs Resi	Graphics Distribution
🔽 Residuals vs Leverage	Residuals vs Leverage Title PROP Regression - Residuals vs	Residual/Lev. Alpha
🔽 QQ Residuals	QQ Residuals Title PROP Regression - Residuals QQ	0.05 OK Cancel

- Specify the preferred plots and the input parameters.
- Click "OK" to continue or "Cancel" to cancel the options.
- Click "OK" to continue or "Cancel" to cancel the computations.

Output example: The data set "**STARCLS.xls**" was used for PROP regression. It has 1 predictor variables (p) and 47 observations. When the "Leverage" option is on, the leverage distances are calculated and outlying observations are obtained iteratively using initial estimates as median and OKG matrix and the leverage option as PROP (i.e., using PROP influence function). Then the weights are assigned to observations and those weights are used in the finding the regression outliers iteratively. When the leverage option is off, all observations are assigned one (1) as weights and then the regression outliers are found using the PROP function iteratively. Finally the estimated regression parameters are calculated.

Output for PROP (Leverage ON). Data Set Used: Star Cluster (predictor variables p = 1).

	Regression	n Analysis Output										
Date/Time of Computation	3/12/2008 8	3:09:44 AM										
User Selected Options	:											
From File	D:\Narain\S	cout_For_Windows\!	ScoutSource\	WorkDatInExc	el\STARCLS	6						
Full Precision	OFF	FF										
Selected Regression Method	I PROP	ROP										
Residual Influence Function Alpha	0.05 (Used)5 (Used to Identify Vertical Regression Outliers)										
Number of Regression Iterations	: 10 (Maximur) (Maximum Number if doesn't Converge)										
Leverage	e Identify Leve	entify Leverage Points (Outliers in X-Space)										
Selected Leverage Method	I PROP											
Initial Leverage Distance Method	I OKG (Maron	na Zamar) Matrix										
Squared MDs	: Beta Distribu	ta Distribution used for Leverage Distances based upon Selected Regression (Leverage) Variables										
Leverage Distance Alpha	0.05 (Used t)5 (Used to Identify Leverage Points)										
Number of Leverage Iterations	: 10 (Maximur	(Maximum Number if doesn't Converge)										
Y vs Y-hat Plo	t Not Selected	1										
Y vs Residual Plot	t Not Selected	1										
Y-hat vs Residual Plot	t Not Selected	1										
Title For Y vs X Plots	PROP Regre	PROP Regression - Y vs X Plot										
Title for Residual QQ Plot	t PROP Regr	PROP Regression - Residuals QQ Plot										
Residual Band Alpha	n 0.05 (Used i	n Graphics Residual	Bands)									
Title Residual vs Distance Plot	t PROP Regr	ession - Residuals vs	s Unsquared I	Leverage Dista	nce Plot							
Show Intermediate Results	Do Not Disp	lay Intermediate Rest	ults									
	Intermediate	Results Shown on A	Another Outpu	t Sheet								
L	.everage Poin	ts are Outliers in X	-Space of S	elected Regr	ession Varia	bles.						
Number of Selected Regre	ssion Variables	1										
Number o	of Observations	47										
Depe	endent Variable	у										
Residual Values us	ed with Graph	ics Display										
Upper Residual Indvi	dual (0.05) MD	1.929										
Lower Residual Indvi	dual (0.05) MD	-1.929										
Correla	ation Matrix											
y x												
y 1 -0.21												
x -0.21 1												

	Eige	nvalues of C	Correlation	Matrix			
Eval 1	Eval 2						
0.79	1.21						
							-
		Or	dinary Leas	st Squares (l	DLS)Regr	ession Res	ults
	Estima	ates of Regr	ession Para	ameters			
Intercept	×						
6.793	-0.413						
	Std v of E	stimated Re	egression P	arameters			
Intercept	×						
1.237	0.286						
		A	NOVA Tab	e			
Sou	rce of Vari	ation	SS	DOF	MS	F-Value	P-Value
	Re	egression	0.665	1	0.665	2.085	0.1557
		Error	14.35	45	0.319		
		Total	15.01	46			
		D.C.~	ne Dalimata	0.0442			
	L.I	n oqu AD Recod Se	ale Estimate	0.0443			
	IVI.	AD Dased Sc Weighted Sc	ale Estimate	0.601			
		IOB Estimate	of Besiduals	1.025			
Det. of	COVIRear	ession Coeffic	ients] Matrix	5.5584E-4			
_ = •.							
		Initial Weig	phted Regro	ession Itera	tion with lo	lentified Lev	erage Points
	F	. (5	· P				
Intercent	Estima	ates of Hegr	ession Para	ameters			
-7 97	293						
1.Jf	2.00						
	Stdy of E	stimated Re	gression P	arameters			
Intercent	×			_			
n koroopt j							

Output for PROP	(Leverage	ON)	(continued).
-----------------	-----------	-----	--------------

		A	NOVA Tabl							
Sou	urce of Varia	tion	SS	DOF	MS	F-Value	P-Value			
	Re	gression	4.205	1	4.205	29.09	0.0000			
		Error	5.647	39.06	0.145					
		Total	9.852	40.06						
		R Squ	iare Estimate	0.427						
	M4	AD Based So	ale Estimate:	0.45						
	١	Weighted So	ale Estimate:	0.38						
Unsquar	red Leverage	Distance In	div-MD(0.05)	1.929						
	l	QR Estimate	of Residuals	0.606						
	Determin	ant of Lever	age S Matrix	0.0118						
			Re	gression T	able with L	everage Op	tion			
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.	Lev Dist.	OLS R∼ist.
1	5.23	4.836	0.394	0.0222	1.037	1.049	1	1.037	0.348	0.43
2	5.74	5.393	0.347	0.0373	0.914	0.931	1	0.914	1.405	1.472
3	4.93	4.513	0.417	0.0219	1.096	1.108	1	1.096	1.362	0.182
4	5.74	5.393	0.347	0.0373	0.914	0.931	1	0.914	1.405	1.472
5	5.19	4.631	0.559	0.0213	1.471	1.487	1	1.471	0.993	0.308
6	5.46	5.1	0.36	0.0271	0.948	0.961	1	0.948	0.483	0.903
7	4.65	3.283	1.367	0.0781	3.596	3.745	0.0135	3.596	5.237	0.985
8	5.27	5.422	-0.152	0.0387	-0.399	-0.407	1	0.399	1.497	0.647
9	5.57	4.513	1.057	0.0219	2.779	2.81	1	2.779	1.362	0.951
10	5.12	4.836	0.284	0.0222	0.748	0.756	1	0.748	0.348	0.235
11	5.73	2.257	3.473	0.194	9.134	10.17	3.3033E-4	9.134	8.465	0.671
12	5.45	5.012	0.438	0.025	1.153	1.168	1	1.153	0.206	0.863
13	5.42	5.158	0.262	0.0287	0.689	0.699	1	0.689	0.667	0.847
14	4.05	3.781	0.269	0.0444	0.708	0.724	0.0923	0.708	3.668	1.924
15	4.26	4.601	-0.341	0.0214	-0.898	-0.908	1	0.898	1.086	1.347
16	4.58	4.982	-0.402	0.0244	-1.058	-1.071	1	1.058	0.114	0.685
17	3.94	4.426	-0.486	0.0229	-1.277	-1.292	1	1.277	1.639	1.957
18	4.18	4.982	-0.802	0.0244	-2.11	-2.136	1	2.11	0.114	1.393
19	4.18	4.426	-0.246	0.0229	-0.646	-0.653	1	0.646	1.639	1.532
20	5.89	2.257	3.633	0.194	9.555	10.64	3.3033E-4	9.555	8.465	0.955
21	4.38	4.601	-0.221	0.0214	-0.582	-0.589	1	0.582	1.086	1.134
22	4.22	4.601	-0.381	0.0214	-1.003	-1.014	1	1.003	1.086	1.418
23	4.42	4.982	-0.562	0.0244	-1.479	-1.497	1	1.479	0.114	0.968

			Final R	eweighted R	egression	n Results	
	Estimate	es of Regi	ession Para	ameters			
Intercept	x						
-7.955	2.926						
	Stdv of Es	timated Re	egression P	arameters			
Intercept	×						
1.911	0.434						
		A	NOVA Tab	le			
Sou	rce of Variat	ion	SS	DOF	MS	F-Value	P-Value
	Reg	ression	5.401	1	5.401	45.44	0.0000
		Error	4.614	38.83	0.119		
		Total	10.01	39.83			
		R Squ	iare Estimate	0.539			
	MAE) D Based Sc	ale Estimate:	0.45			
	W	/eighted Sc	ale Estimate:	0.345			
	IQ	R Estimate	of Residuals	0.607			

	Regression Table												
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.					
1	5.23	4.831	0.399	0.0222	1.157	1.17	1	1.157					
2	5.74	5.387	0.353	0.0373	1.023	1.043	1	1.023					
3	4.93	4.509	0.421	0.0219	1.22	1.234	1	1.22					
4	5.74	5.387	0.353	0.0373	1.023	1.043	1	1.023					
5	5.19	4.626	0.564	0.0213	1.635	1.652	1	1.635					
6	5.46	5.095	0.365	0.0271	1.06	1.075	1	1.06					
7	4.65	3.281	1.369	0.0781	3.972	4.137	0.0628	3.972					
8	5.27	5.416	-0.146	0.0387	-0.425	-0.433	1	0.425					

	Fina	lWeighted	Correlati	on Matrix			
	У	x					
У	1	0.759					
×	0.759	1					
l	Eigenvalue	s of Final ₩	eighted (Correlation I	Matrix		
Eval 1	Eval 2						
0.241	1.759						

Interpretation of Graphs: Observations which are outside of the horizontal lines on the residual Q-Q plot or on the residual versus unsquared leverage distances represent regression outliers. Observations lying to the right of the vertical lines represent leverage outliers, leverage points lying between the two horizontal lines represent good leverage points, and the rest of the leverage points represent bad leverage points. Both the classical and robust regression lines are also shown on the y vs. x scatter plot.

Output for PROP (Leverage OFF).

In order to demonstrate the usefulness of the leverage options (when several leverage points may be present), the Star cluster data is considered again with the leverage option off. The output thus obtained is given as follows.

			Regressio	n Analysis (Julput					
Da	te/Time of C	Computation	3/12/2008 8	8:15:48 AM						
	User Selec	ted Options								
		From File	D:\Narain\S	icout_For_W	indows\Sco	outSource\V	/orkDatInExc	el\STARCLS		
	Fu	ull Precision	OFF							
Selec	ted Regress:	ion Method	PROP							
Residual Ir	nfluence Fun	ction Alpha	0.05 (Used	to Identify V	ertical Regr	ession Outlie	ers)			
Number	of Regressic	n Iterations	10 (Maximur	m Number if	doesn't Cor	nverge)				
		Leverage	Off							
	Υv	s Y-hat Plot	Not Selecte	d						
	Y vs R	esidual Plot	Not Selecte	d						
	Y-hat vs R	esidual Plot	Not Selecte	d						
	Title For 1	′ vs X Plots	PROP Regr	ession - Y vs	X Plot					
Ti	itle for Resid	ual QQ Plot	PROP Regr	ession - Res	iduals QQ P	lot				
	Residual I	Band Alpha	0.05 (Used i	in Graphics F	Residual Ba	nds)				
Title Re	esidual vs Di	stance Plot	PROP Regr	Pregression - Residuals vs Unsquared Leverage Distance Plot						
She	ow Intermedi	ate Results	Do Not Disp	olay Intermed	iate Results					
			Intermediate	Results Sho	own on Ano	ther Output	Sheet			
Nun	nber of Sele	cted Regress	ion Variables	1						
		Number of	Observations	47						
		Depen	dent Variable	У						
	Residual	Values used	d with Graph	nics Display						
	Upper Re	sidual Indvidu	ial (0.05) MD	1.929						
	Lower Re	sidual Indvidu	ial (0.05) MD	-1.929						
		Correlat	ion Matrix							
	У	×								
У	1	-0.21								
×	-0.21	1								
	Eige	nvalues of	Correlation	Matrix						
Eval 1	Eval 2									
0.79	1.21									

		Or	dinary Leas	t Squares (I	DLS)Regr	ession Res	ults -
	Estima	ites of Regr	ession Para	ameters			
Intercept	×	_					
6.793	-0.413						
	Stdv of E	stimated Re	egression P	arameters			
Intercept	×						
1.237	0.286						
		Α	NOVA Tabl	e			
Sou	rce of Varia	ation	SS	DOF	MS	F-Value	P-Value
	Re	gression	0.665	1	0.665	2.085	0.1557
		Error	14.35	45	0.319		
		Total	15.01	46			
		R Squ	are Estimate	0.0443			
	MA	AD Based Sc	ale Estimate	0.651			
		Weighted Sc	ale Estimate	0.565			
		_ QR Estimate	of Residuals	1.025			
Det. of	COV[Regre	ssion Coeffic	ients] Matrix	5.5584E-4			
			Final Re	eweighted F	Regressio	n Results	
	F etim =	tes of Bear	ession Para	motore			
Intercent	v	ites of fregi	Casioni die	metas			
6 799	-0 414						
0.100	0.111						
	Stdy of E	stimated Re	egression P	arameters			
Intercept	×						
1.235	0.286						
		۵	NOVA Tabl	e			
Sou	rce of Varia	ation	SS	DOF	MS	F-Value	P-Value
	Be	aression	0,668	1	0.668	2,102	0.1540
		Error	14.29	44.95	0.318		
		Total	14.95	45.95			

R Square Estimate				0.0447				
	MAD Based Scale Estimate							
	1	Weighted Sc	ale Estimate:	0.564				
	I	QR Estimate	of Residuals	1.025				
Det. o	of COV[Regre	ssion Coeffic	ients] Matrix	5.5303E-4				
			Re	gression Ta	able			
Obs	Y Vector	Yhat	Residuals	Hat[i,i]	Res/Scale	Stude~ Res	Wts[i,i]	Res Dist.
1	5.23	4.988	0.242	0.0222	0.429	0.433	1	0.429
2	5.74	4.91	0.83	0.0373	1.473	1.501	1	1.473
3	4.93	5.034	-0.104	0.0219	-0.184	-0.187	1	0.184
4	5.74	4.91	0.83	0.0373	1.473	1.501	1	1.473
5	5.19	5.017	0.173	0.0213	0.306	0.309	1	0.306
6	5.46	4.951	0.509	0.0271	0.903	0.915	1	0.903
7	4.65	5.208	-0.558	0.0781	-0.99	-1.031	1	0.99
8	5.27	4.906	0.364	0.0387	0.646	0.659	1	0.646
9	5.57	5.034	0.536	0.0219	0.951	0.961	1	0.951
10	5.12	4.988	0.132	0.0222	0.233	0.236	1	0.233
11	5.73	5.353	0.377	0.194	0.669	0.745	1	0.669
12	5.45	4.964	0.486	0.025	0.863	0.874	1	0.863
13	5.42	4.943	0.477	0.0287	0.846	0.859	1	0.846
14	4.05	5.138	-1.088	0.0444	-1.929	-1.974	1	1.929
15	4.26	5.022	-0.762	0.0214	-1.351	-1.366	1	1.351
16	4.58	4.968	-0.388	0.0244	-0.688	-0.696	1	0.688
17	3.94	5.046	-1.106	0.0229	-1.963	-1.985	0.951	1.963
18	4.18	4.968	-0.788	0.0244	-1.397	-1.415	1	1.397
19	4.18	5.046	-0.866	0.0229	-1.537	-1.555	1	1.537
20	5.89	5.353	0.537	0.194	0.952	1.061	1	0.952
21	4.38	5.022	-0.642	0.0214	-1.138	-1.15	1	1.138

	Fina	Weighted	Correlation	Matrix			
	У	×					
у	1	-0.212					
×	-0.212	1					
E	igenvalue	s of Final ₩	eighted Co	rrelation Ma	лж.		
Eval 1	Eval 2						
0.788	1.212						

Q-Q plot of Standardized Output for PROP (Leverage OFF).

Interpretation of Graphs: Observations (if any) lying outside of the horizontal lines in the Q-Q plot are considered to be regression outliers. The Leverage Distances vs. standardized residuals plot is not produced as the leverage option was not activated. Regression lines are produced since there is only one predictor variable. It is easy to see from the above graph (where both the classical and robust regression lines are overlapping and attracted toward the outliers) that one should use the leverage option to properly identify all of the leverage points. Once the leverage points are identified, the robust regression method should be used to distinguish between the good and bad leverage points.

9.9 Method Comparison in Regression Module

The "Method Comparison" option in the "Regression" drop-down menu can be used to compare the regression estimates of bivariate data obtained using various classical and robust regression methods. Regression lines for the selected regression methods are drawn on two-dimensional scatter plots. These comparisons are done in the "Bivariate Regression Fits" drop-down menu. The method comparison module also compares the residuals obtained by a single regression method against residuals obtained from one or more methods. A comparison of fits (Y-hat) from one method against fits from the other methods is done in a similar way. These comparisons of the residuals and fits from the various regression methods are done in "R-R Plots" and "Y-Y-hat Plots," respectively.

9.9.1 Bivariate Fits

🚽 File Edit Configure Data	a Graphs	Stats/GOF	Outliers/Esti	mates Q	A/QC	Regression	Multivariate EDA	GeoStats	Programs	Window	Help
Navigation Panel		0	1	2	3	OLS	•	6	7	8	
Name		у	x			LMS/LPS	a.c.				
D:\Narain\Scout_Fo D:\Narain\Scout_Fo	1	5.23	4.37			Biweight Huber					
	2	5.74	4.56								
Index_Plot.gst	3	4.93	4.26			MVT					
Index_Plot_a.gst	4	5.74	4.56			PROP	I.				_
InterQC.gst	5	5.19	4.3			Method Comparison 🔸		Bivariate Regression Fits			
D:\\Narain\Scout_Fo	6	5.46	4.46					Multivariate	R-R Plot		Help
	7	4.65	3.84				Multivariate Y-Y-Hat		Y-Y-Hat Plo		

1. Click Regression ► Method Comparison ► Bivariate Regression Fits.

2. The "**Select Variables**" screen (Section 3.3) will appear.

Select Varial	les to Grap	h				
v	ariables			Select '	Y Axis Var	riable
Name	ID	Count	>>	Name		Count
y.	0	47			10	Count
×	1	47	<<			
				Select	X Axis Var	iahle
			>>		~70/3 10	
			-	Name	ID	Count
			<<			
				Select (Group Var	iable
				Select	Group vai	Idnie
			Options			•
				01/	a —	I
				UK		Lance

- Select the Y axis variable and the X axis variable from the "Select Variables to Graph" screen.
- If the results have to be produced by using a Group variable, then select a group variable by clicking the arrow below the "**Group by Variable**" button. This will result in a drop-down list of available variables. The user should select and click on an appropriate variable representing a group variable.
- Click on "**Options**" for method comparison options.
| 🖶 Select Regression Method Comparison Options | | |
|--|---|--------|
| Select Regression Method (s) CLS LMS Iterative OLS w/o Leverage Biweight w/o Leverage Biweight w/o Leverage Huber w/o Leverage Huber w/o Leverage MVT w/o Leverage MVT w/o Leverage PROP w/o Leverage PROP w/o Leverage PROP with Leverage | | |
| Title for Graph: Regression Line Plot | 0 | Cancel |

• The options in the window shown above represent the different options.

Select Regression Method (s)	Reg. Iterative OLS and/or MVT		
□ OLS	0.05		
☐ LMS	, Critical Alpha		
✓ Iterative OLS w/o Leverage			
T Iterative OLS with Leverage	Reg. Biweight Tuning Constant		
🔽 Biweight w/o Leverage	4		
Biweight with Leverage	Tuning Constant		
✓ Huber w/o Leverage			
Huber with Leverage	Reg. Huber and/or PROP		
MVT w/o Leverage	0.05		
MVT with Leverage	Influence Function Alpha		
✓ PROP w/o Leverage	Begression MDs Distribution		
PROP with Leverage	Beta C Chisquare		
Number of Regression Iterations	Reg. Multivariate Trimming		
10	0.1	ок	Cance
[Max = 50]	Trimming Percentage		

• The options selected in the window shown above are the options for the regression methods without the leverage option.

- The "Iterative OLS w/o Leverage" requires the input of a "Critical Alpha."
- The "Biweight w/o Leverage" requires the input of a "Tuning Constant."
- The "Huber w/o Leverage" requires the input of an "Influence Function Alpha."
- The "MVT w/o Leverage" requires the input of a "Critical Alpha" and a "Trimming Percentage."
- The "**PROP** w/o Leverage" requires the input of an "Influence Function Alpha."

Select Regression Method (s) CLS LMS Iterative OLS w/o Leverage Iterative OLS with Leverage Biweight w/o Leverage Huber w/o Leverage Huber w/o Leverage Huber with Leverage MVT w/o Leverage MVT w/o Leverage	Reg. Iterative OLS and/or MVT -	Leverage Distance Method Classical Sequential Classical Huber PROP MVT (Trimming) Initial Leverage Estimates Classical Sequential Classical Casout (Median, MAD)	Lev. Huber and/or PROP 0.05 Influence Function Alpha Leverage MDs Distribution © Beta © Chisquare
PROP w/o Leverage PROP with Leverage	Regression MDs Distribution	 OKG (Maronna Zamar) KG (Not Orthogonalized) MCD 	
Number of Regression Iterations	Reg. Multivariate Trimming 0.1 Trimming Percentage	Number of Leverage Iterations	OK Cance

- Options in the window selected above represent options for the regression methods with leverage.
 - The "Leverage Distance Method" remains the same for any of the regression methods.
 - The "Classical" and "Sequential Classical" requires the input of a "Critical Alpha"
 - The "Huber" and "PROP" requires the input of an "Influence Function Alpha" and the "Leverage MDs Distribution."
 - The "MVT" requires the input of a "Critical Alpha" and a "Trimming Percentage."
 - The Leverage Distance Method requires an "Initial Leverage Estimates" selection to start the computations.

Graphical Display for Method Comparisons Option.

Data Set: Bradu (X1 vs. Y).

Methods: OLS, LMS, PROP w/o Leverage (PROP influence function alpha for regression outliers = 0.2).

Data Set: Bradu (X3 vs. Y). **Methods**: OLS, LMS, PROP w/o Leverage (PROP influence function alpha = 0.2).

It is noted that the LMS (green line) method finds different sets of outliers when compared to the PROP (violet line) method. As shown earlier, in multiple linear LMS regression of y on x1, x2, and x3, observations 1 through 10 were identified as regression outliers (and bad leverage points). Here the LMS regression of y on x1 (and also of y on x2) also identified the first 10 points as regression outliers; whereas the LMS regression of y on x3 identified observations 11, 12, 13, and 14 as bad leverages and regression outliers. However, the PROP method, without the leverage option, identified observations 11, 12, 13, and 14 as regression outliers and bad leverage points for all of the regression models: y vs. x1, x2, and x3; y vs. x1; y vs. x2; and y vs. x3. In practice, it is desirable to supplement statistical results with graphical displays. In the present context, graphical displays also help the user to determine points that may represent good (or bad) leverage points. *Without the first 10 points, this data set should be used to obtain any regression model*.

Output for Method Comparisons.

Data Set: Bradu (X1 vs. Y).

Methods: PROP w/o Leverage (influence function alpha = 0.2), PROP with Leverage (initial estimate as OKG, influence function as 0.05), and OLS.

Output for Method Comparisons.

Data Set: Bradu (X1 vs. Y). **Methods**: All (12 methods).

As mentioned before, the user should select the various options carefully. It is suggested not to select all of the available options to generate a single graph. Such a graph will be cluttered with many regression lines. This is illustrated in the above figure.

Note: Sometimes a line will be outside the frame of the graph. In such cases, a warning message (in orange) will be printed in the Log Panel.

9.9.2 Multivariate R-R Plots

1. Click Regression ► Method Comparison ► Multivariate R-R Plot.

🔜 Scout 2008 - [D:\Narain\Scout_For_Windows\ScoutSource\WorkDatInExcel\STARCLS]											
🖳 File Edit Configure Data	a Graphs	Stats/GOF	Outliers/E	stimates	QA/QC	Regression	Multivariate EDv	A GeoStats	Programs	Window	Help
Navigation Panel		0	1	2	:	OLS	•	6	7	8	
Name		у	×			LMS/LPS					
D:\Narain\Scout Fo	1	5.23	4.37			Biweight	013				
D:\Narain\Scout_Fo	2	5.74	4.56			Huber					
Index_Plot.gst	3	4.93	4.26			MVT					
Index_Plot_a.gst	4	5.74	4.56			PROP	1				
InterQC.gst D:\Narain\Scout_Eo	5	5.19	4.3			Method C	.omparison 🔸	Bivariate Re	gression Fit	5	
D. Waran (Scout_1 0	6	5.46	4.46					Multivariate	R-R Plot		
	7	4.65	3.84					muiuvariate	r-r-nat Plu		

- 2. The "Select Variables" screen (Section 3.3) will appear.
 - Select the dependent variable and one or more independent variables from the "Select Variables" screen.
 - Click on the "**Options**" button to get the options window.
 - The options in the window shown below are the options when all the check-boxes in the "**Method(s) for Residuals on Y-Axis**" are checked. The default option is of plotting the "**Observed Y**" against "**OLS**" residuals.

🔡 Regression Method Compari	ison Residual-Residual Compariso	on Options	
Regression Method Compari Method for Residuals on X-Axis Observed Y OLS LMS LPS Iterative OLS w/o Leverage Iterative OLS with Leverage Biweight w/o Leverage Biweight with Leverage Huber w/o Leverage Huber with Leverage MVT with Leverage	son Residual-Residual Compariso Method(s) for Residuals on Y-Axis IV 0LS IV LMS IV LPS IV Iterative 0LS w/o Leverage IV Iterative 0LS with Leverage IV Biweight with Leverage IV Huber w/o Leverage IV Huber with Leverage IV Huber with Leverage IV MVT w/o Leverage IV PROP wid Leverage IV PROP with Leverage IV PROP IV 0.05 Critical Alpha Reg. Huber and/or PROP	n Options Leverage Distance Method Classical Huber PROP MVT (Trimming) Initial Leverage Estimates Classical Sequential Classical Sequential Classical Class	Num. of Leverage Iterations 10 [Max = 50] Leverace MDs Distribution Image: The second strate of the second strate o
Residuals MDs Distribution Beta C Chisquare	0.05 Influence Function Alpha	6 Tuning Constant	0.5 Minimization Criterion
 Store Residuals to Worksheet Use Default Title 	☑ Display User Selections		OK Cancel

- The options required for the various regression methods are discussed in the previous sections of this chapter.
- Select a method for X-axis and one or more methods for the Y-axis.
- Specify the required parameters of the selected methods in the various options boxes.
- **"Display User Selections**" option stores the user selected options for the various methods into a new worksheet for reference.
- "Store Residuals to Worksheet" options stores the residuals of each of the selected y-axis methods and the x-axis method in a new worksheet.
- Click on "**OK**" to continue or "**Cancel**" to cancel the options window.
- Click on "**OK**" to continue or "**Cancel**" to cancel the generation of R-R Plots.

Data Set: Bradu.

Methods: 5 (OLS, LMS, Biweight, Huber and PROP with leverages) methods on Y-axis vs. OLS on X-axis.

9.9.3 Multivariate Y-Y-hat Plots

1. Click Regression ► Method Comparison ► Multivariate Y-Y-hat Plot.

🖶 Scout 2008 - [D: Warai	n\Scout_	_For_Wind	ows\Scout	Source\W	orkD	atInExcel	BRADU.xls]				
File Edit Configure Data	a Graphs	Stats/GOF	Outliers/Est	imates QA	/QC	Regression	Multivariate EDA	GeoStats	Programs	Window	Help
Navigation Panel		0	1	2	3	OLS	•	6	7	8	
Name		Count	у	×1	×	LMS/LPS			í		Î
D:\Narain\Scout Fo	1	1	9.7	10.1		Biweight	OLS				
D:\Narain\Scout_Fo	2	2	10.1	9.5		Huber					
Index_Plot.gst	3	3	10.3	10.7		MVT					
Index_Plot_a.gst	4	4	9.5	9.9		PROP	1				
InterQC.gst	5	5	10	10.3		Method	Comparison 🔸	Bivariate Re	egression Fit	s	
D:\Narain\Scout_Fo	6	6	10	10.8		20.4	29.2	Multivariate	R-R Plot	_	
RegRR.gst	7	7	10.8	10.5		20.9	29.1	Multivariate	Y-Y-Hat Plo		

- 2. The "Select Variables" screen (Section 3.3) will appear.
 - Select the dependent variable and one or more independent variables from the "Select Variables" screen.
 - Click on the "**Options**" button to get the options window.
 - The options in the window shown below are the options when all the check-boxes in the "**Method(s) for Fits on Y-Axis**" are checked. The default option is of plotting the "**Observed Y**" against "**OLS**" fits.

🔜 Regression Method Compari	son Y-Y-hat Comparison Options		
Method for Fits on X-Axis C Observed Y C OLS C LMS C LPS C Iterative OLS w/o Leverage C Iterative OLS with Leverage	Method(s) for Fits on Y-Axis ✓ OLS ✓ ULS ✓ LMS ✓ LPS ✓ Iterative OLS w/o Leverage ✓ Iterative OLS with Leverage ✓ Biweight w/o Leverage	Leverage Distance Method Classical Sequential Classical Huber PROP MVT (Trimming)	Num. of Leverage Iterations 10 [Max = 50] Leverage MDs Distribution © Beta O Chisquare
Biweight w/o Leverage Biweight with Leverage Huber w/o Leverage Huber with Leverage MVT w/o Leverage MVT with Leverage PROP w/o Leverage	 Biweight with Leverage Huber w/o Leverage Huber with Leverage MVT w/o Leverage MVT with Leverage PROP w/o Leverage PROP with Leverage 	Initial Leverage Estimates Classical Sequential Classical Robust (Median, 1.48MAD) Classical KG (Maronna Zamar) KG (Not Orthogonalized) MCD	Lev. Huber and/or PROP
PHUP with Leverage Number of Regression Iterations [10 [Max = 100] Residuals MDs Distribution	Reg. Iterative OLS and/or MVT	Reg. Multivariate Trimming 0.1 Trimming Percentage Reg. Biweight Tuning Constant 6 Tuning Constant	LMS/LPS Search Strategy All Combinations Extensive LPS Percentile 0.5 Minimization Criterion
✓ Store Y-hats to Worksheet ✓ Use Default Title	C Display User Selections		OK Cancel

- The options required for the various regression methods are discussed in the previous sections of this chapter.
- Select a method for X-axis and one or more methods for the Y-axis.
- Specify the required parameters of the selected methods in the various options boxes.
- **"Display User Selections**" option stores the user selected options for the various methods into a new worksheet for reference.
- "Store Residuals to Worksheet" options stores the residuals of each of the selected y-axis methods and the x-axis method in a new worksheet.
- Click on "**OK**" to continue or "**Cancel**" to cancel the options window.
- Click on "**OK**" to continue or "**Cancel**" to cancel the generation of Y-Y-hat Plots.

Data Set: Bradu.

Methods: 5 (OLS, LMS, Biweight, and PROP with leverages) methods on Y-axis vs. OLS on X-axis.

Data Set: Bradu.

Methods: 3 (OLS, PROP with and without leverage) methods on Y-axis vs. PROP with leverage on X-axis.

References

- Agullo, J. (1997). "Exact Algorithms to Compute the Least Median of Squares Estimate in Multiple Linear Regression," in Statistical Procedures and Related Topics, ed. Dodge, Y., Institute of Mathematical Statistics, Hayward, CA, 133-146.
- Belsley, D.A., Kuh, E., and Welsch, R.E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, John Wiley and Sons, NY.
- Chatterjee, S. and Machler, M. (1997). "Robust regression: A weighted least squares approach," Communications in Statistics Theory and Methods, 26, 1381–1394.
- Cook, R.D., and Weisberg, S. (1982). Residuals and Influence in Regression, Chapman & Hall, London.
- Dollinger, M.B., and Staudte, R.G. (1991). "Influence Functions of Iteratively Reweighted Least Squares Estimators," Journal of the American Statistical Association, 86, 709-716.
- Draper, N.R., and Smith, H. (1984). Applied Regression Analysis, 2nd ed., John Wiley and Sons, NY.
- Gnanadesikan, R., and Kettenring, J.R. (1972). "Robust Estimates, Residuals, and Outlier Detection with Multi-response Data," Biometrics, 28, 81-124.
- Hadi, A.S., and Simonoff, J.S. (1993). "Procedures for the Identification of Multiple Outliers in Linear Models," Journal of the American Statistical Association, 88, 1264-1272.
- Hawkins, D.M., Bradu, D., and Kass, G.V. (1984). "Location of Several Outliers in Multiple Regression Data Using Elemental Sets," Technometrics, 26, 197-208.
- Hawkins, D.M., and Simonoff, J.S. (1993). "High Break Down Regression and Multivariate Estimation," Applied Statistics, 42, 423-432.
- Hettmansperger, T.P., and Sheather, S.J. (1992). "A Cautionary Note on the Method of Least Median Squares," The American Statistician, 46, 79-83.
- Neter, J., Kutner, M.H., Nachtsheim, C.J., and Wasserman W. (1996). Applied Linear Statistical Models, 4th ed., McGraw-Hill, Boston.
- Olive, D.J. (2002). "Applications of Robust Distances for Regression," Technometrics, 44, 64-71.
- Rousseeuw, P.J. (1984). "Least Median of Squares Regression," Journal of the American Statistical Association, 79, 871-880.

- Rousseeuw, P.J., and Leroy, A.M. (1987). Robust Regression and Outlier Detection, John Wiley and Sons, NY.
- Ruppert, D. (1992). "Computing S-Estimators for Regression and Multivariate Location/Dispersion," Journal of Computational and Graphical Statistics, 1, 253-270.
- Ruppert, D., and Carroll, R.J. (1980). "Trimmed Least Squares Estimation in the Linear Model," Journal of the American Statistical Association, 75, 828-838.
- Simpson, D.G., Ruppert, D., and Carroll, R.J. (1992). "On One-Step GM Estimates and Stability of Inferences in Linear Regression," Journal of the American Statistical Association, 87, 439-450.
- Simpson, J.R., and Montgomery, D.C. (1998a). "The development and evaluation of alternative generalized M estimation techniques," Communications in Statistics Simulation and Computation, 27, 999–1018.
- Singh, A. and Nocerino, J.M. (1995). Robust Procedures for the Identification of Multiple Outliers, Handbook of Environmental Chemistry, Statistical Methods, Vol. 2. G, pp. 229-277, Springer Verlag, Germany.
- Stromberg, A.J. (1993). "Computing the Exact Least Median of Squares Estimate and Stability Diagnostics in Multiple Linear Regression," SIAM Journal of Scientific and Statistical Computing, 14, 12891299.
- Welsh, A.H. (1986). "Bahadur Representations for Robust Scale Estimators Based on Regression Residuals," The Annals of Statistics, 14, 1246-1251.
- Yohai, V.J., and Zamar, R.H. (1988). "High break down point estimates of regression by means of the minimization of an efficient scale," Journal of the American Statistical Association, 83, 406–413.