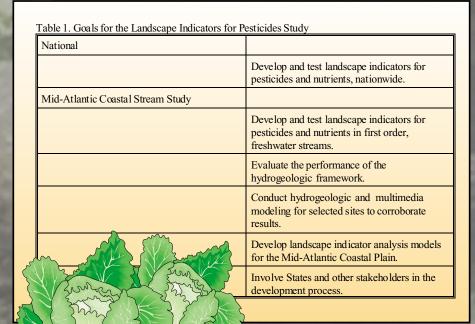
US ERA ARCHIVE DOCUMENT

Figure 1. Location of Mid-**Atlantic Coastal Plain**

(1998 - 2002) will evaluate landscape


indicators for estimating stream and

watershed vulnerability to pesticides.

It is a joint EPA-USGS project. Table

1 lists program goals; Figure 1 shows

Landscape Indicators for Pesticides in Mid-Atlantic Coastal Streams

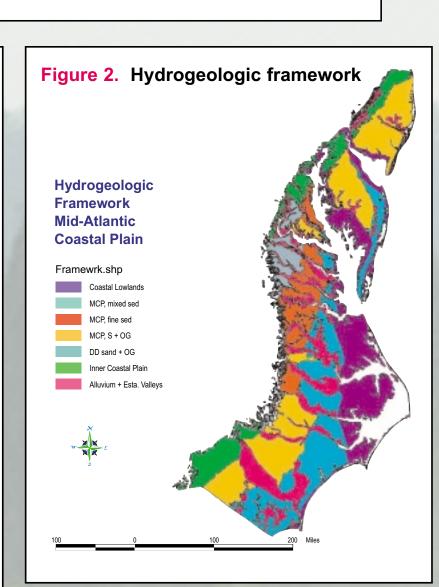
A. M. Pitchford, U.S. EPA, National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, NV

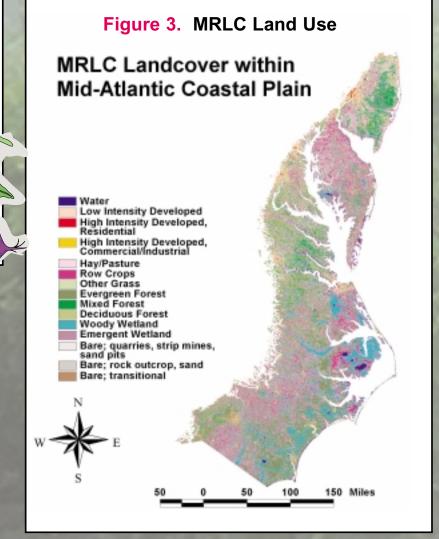
LIPS Design Considerations

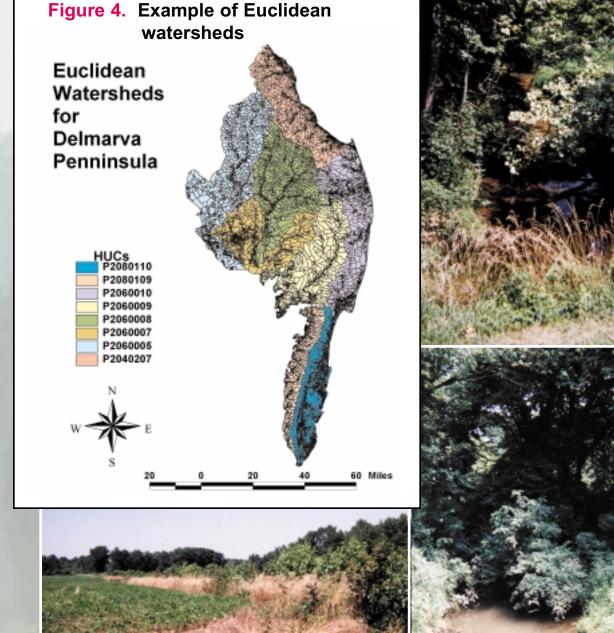
The main focus of the Landscape Indicator Pesticides Study-Mid-Atlantic Coastal StreamS (MACSS) is identifying and testing landscape indicators.

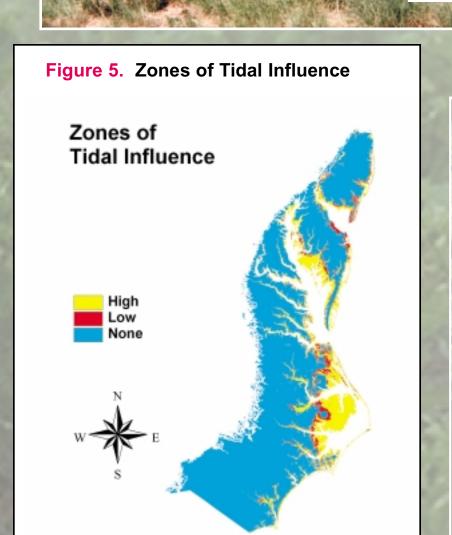
Controlling for conditions such as soil type, physiography, surficial geology, and ecoregions is key to isolating the landscape influence. These physical factors mentioned above were used by USGS to identify areas with relatively consistent natural processes which affect the occurrence and movement of chemicals. The result is the hydrogeologic framework for the Mid-Atlantic Coastal Plain (Figure 2).

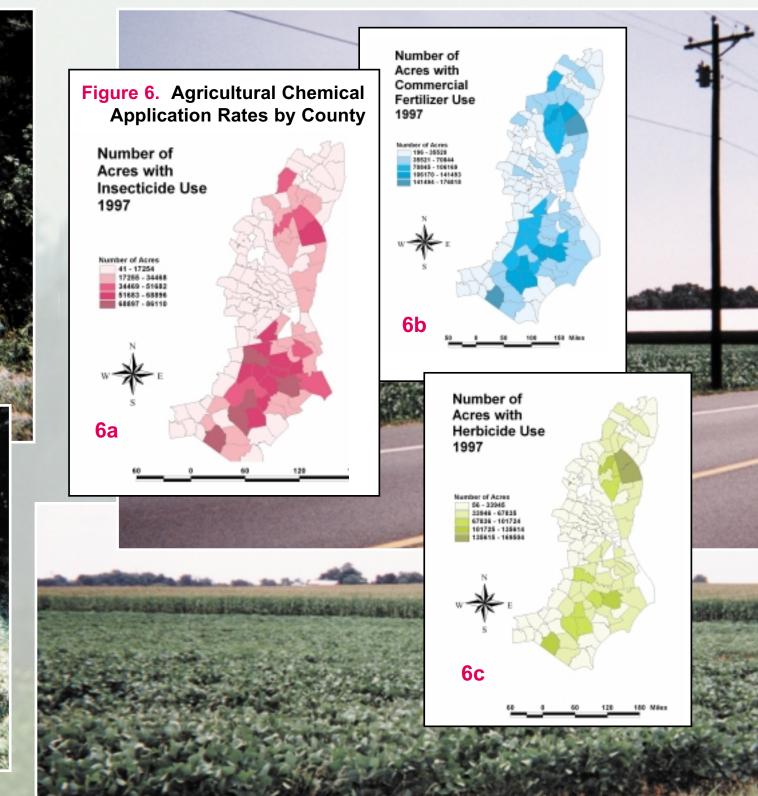
This one-time study in March and April 2000 is timed to measure baseflow conditions in streams, and optimized for in-stream macroinvertebrate population. Baseflow provides an integrated, long-term average of watershed conditions, and is not subject to as much variability as overland stormflow.


Testing landscape indicators for pesticides and nutrients relies on having data for a gradient of land cover types, based on proportions of agriculture versus forest, and agriculture versus urban as determined for first order watersheds, from MRLC data (Figure 3).


Photos of first order stream segments from the Delmarva Penninsula RF3 hydrography at 1:100,000 scale, and the corresponding Euclidean watersheds are shown in Figure 4.


Since the emphasis is on fresh water streams, the portion of streams with tidal influence must be removed from the study population (Figure 5).


Figure 6 (a, b, c) depicts agricultural chemical use for the counties in the Coastal Plain.


Approximately two hundred sites will be selected from freshwater start reaches to provide balanced data sets which consider agriculture and urban gradients, hydrogeology, and agrochemical inputs. Table 2 summarizes the measurements to be made at each site.

ater sampling and on site chemistry

ter sample analysis (laboratory)

enthic sample analysis (laboratory

nysical habitat assessment

oratory water chemistry

DO temperature pH

nitrogen, phosphorus, major ions, pesticide

pool, riffle settings; community composition and

300 count organism identification to genus an

Thalweg profile, woody debris tally, channel an riparian characterization, discharge

chedule 2001, pesticide metabolites

Next Steps

Landscape Indicator Analysis

Once the data are collected, the next steps are as fol-

Test landscape indicators singly and in combination for both agricultural and urban land cover gradients, using water quality data for the entire study area.

Compare the indicator performance using data for the entire study area and within hydrogeologic units to estimate the importance of the physical setting.

Evaluate the behavior of the indicators for different types of pesticides with differing physical characteristics, such as water solubility and partioning coefficients. Repeat these analyses using macroinvertebrate

Model selected watersheds to further evaluate the above results using both a multimedia compartmental model and a combined surface water-ground water

Assess the condition of the baseflow in first order streams for nutrients and pesticides, by applying the indicators selected above over the entire area.

Provide guidance on the application of these indicators to potential users.

A timetable for the study is provided in Table 3.

Year	Event	Responsibility
1998	Analyzed existing pesticide data for Mid-Atlantic	EPA, USGS
	Reviewed literature	EPA
	Initiated USGS IAG	EPA
1999	Complete hydrogeologic framework	USGS
	Acquire GIS coverages; characterize Euclidean watersheds	EPA
	Develop statistical sampling design and select sites	USGS, EPA
	Select ground water-surface water and multimedia models	EPA, USGS
2000	Complete site selection	USGS, EPA
	Collect and analyze water and macroinvertebrate samples	USGS
	Prepare database for water sample, macroinvertebrate, and physical habitat data; derive interpretive measures and include in database; prepare meta data	EPA, USGS
	Evaluate landscape indicators with new data	EPA
	GPRA Deliverable: Theory and Application of Landscape Indicators of Pesticide and Toxic Risk, due 9/00	EPA
2001	Complete landscape indicator analysis	USGS
	Evaluate hydrogeologic framework with new data	EPA
	Complete modeling	EPA, USGS
	Develop Mid-Atlantic Coastal Stream assessment using indicators	EPA
	GPRA Deliverable: Estimating Vulnerability of Streams and Ground Water to Nutrients and Pesticides, due 9/01	EPA
2002	Make data available on Internet	EPA
	Deliverable: Integration of a Hydrogeologic Framework, Landscape and Water Quality Parameters, and Landscape Indicators for a Regional-Scale Water Quality Assessment, 6/02	EPA

Landscape Ecology Branch, Environmental Sciences Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, P.O. Box 93478, Las Vegas, NV 89193-3478, pitchford.ann@epa.gov