

Bioreactors & Landfill Gas Emissions

Susan A. Thorneloe

Office of Research and Development National Risk Management Research Laboratory Research Triangle Park, North Carolina

US EPA Workshop on Bioreactor Landfills– Landfill Technology Conference Feb 27-28, 2003

Presentation Outline

 Potential Issues & Environmental Concerns

Ongoing Field Test EvaluationsUpdates & Next Steps

Background – What is the Interest in Landfill Gas Emissions?

- Landfills are identified for evaluating residual risk under CAA Section 112 (f)
 - » EPA has identified ~30 hazardous air pollutants (HAPs) in landfill gas (LFG)
 - » Persistent bioaccumulative toxics (PBTs) include Hg and dioxins/furans and are linked to LFG
- Existing emission factors are for conventional landfilling operation and do not reflect bioreactor operations
- Data being collected through ongoing field test programs will help in
 - » Updating existing AP42 LFG emission factors
 - » Developing LFG emission factors for bioreactors (to include in AP42) and
 - » Evaluating residual risk.
- 😴 EP/

- Bioreactor operation can result in increased environmental impact if –
 - » There is no LFG collection & control
 - » There is a delay in installation & operation of LFG collection & control from onset of liquid additions
 - » No cover material in place to help contain the gas
 - » Presence of cracks & fissures in existing LFG cover and/or cap
- Bioreactor operation can result in decreased environmental impact if LFG collection and control is designed to minimize fugitive emissions

- Existing requirements are for sites that contain at least 2.5 millions tons of waste
 - » No Clean Air Act LFG collection/control requirements for smaller sites
- ♦ Potential increase in air toxic emissions?
 - » Sewage sludge is often part of liquid additions; transport
 & fate of mercury in sludge and potential formation of
 organo-mercury is not understood
 - » If a landfill fire were to occur, cause for concern for dioxin/furan emissions and other impacts to local air and water sheds

- Must closely monitor to ensure that landfill fires do not occur
 - » Aerobic Operations
 - May be more of an issue because of the high temperatures that are experienced within the site (will also need adequate supply of liquid/water for length of time that site is operated as aerobic bioreactor)

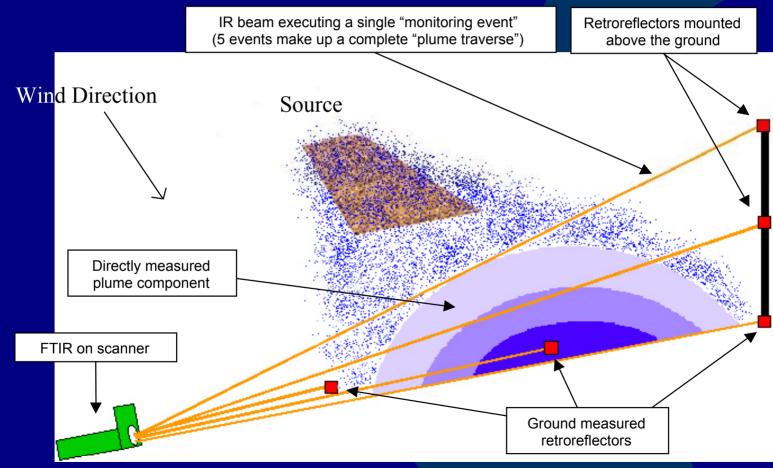
» Anaerobic/Hybrid Operations

 Air intrusion can lead to landfill fires; operators must balance maximizing LFG control while avoiding air intrusion

- Tradeoff in maximizing liquid infiltration and minimizing fugitive emissions
 - » Operators typically want to delay installation of cap or cover material to allow for more infiltration
 - » Often substitute materials for cover are chosen because of their permeability and ability to maximize airspace
- Leaky caps typically result in higher level of fugitive gas emissions
 - » Is compost effective in minimizing LFG emissions for any fugitive LFG?
 - » Are there geo-textiles that could be used that would allow for infiltration while minimizing LFG emissions?
 - » Are there data available to compare effectiveness of alternative cover material (over short term and long term)?

 Lack of long-term data to help characterize LFG emissions

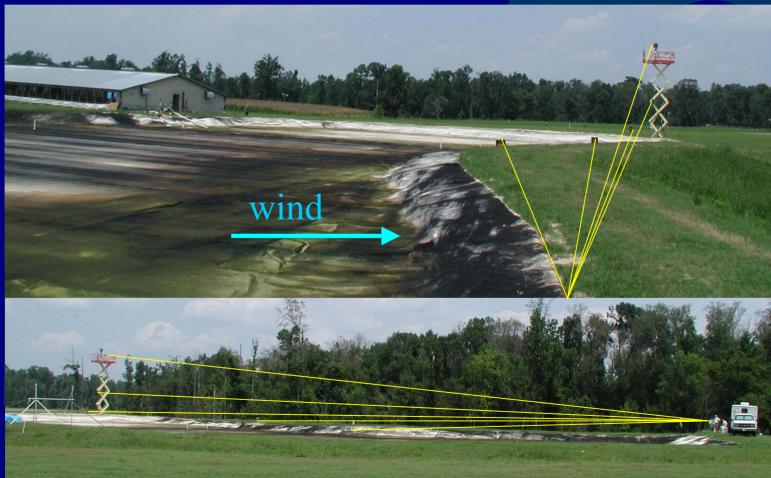
- »Very limited data exist for anaerobic operations
- » Even less data available for aerobic/hybrid operations



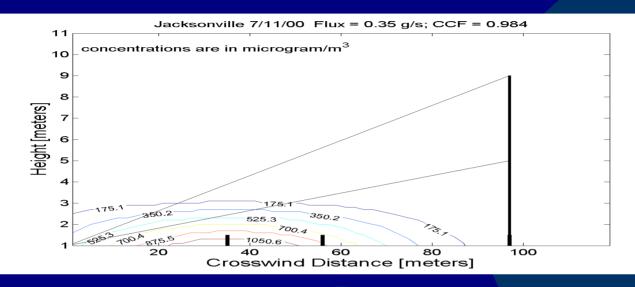
Technology for Measuring Area Source Emissions

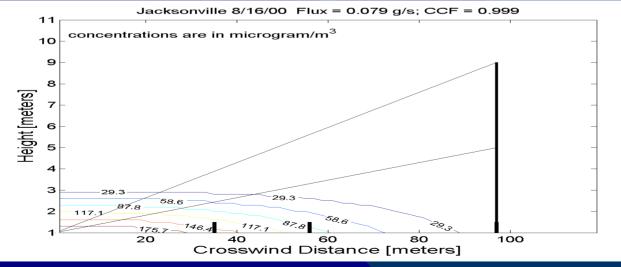
- Beam Configuration: Open-path Fourier Transform Infrared Spectroscopy (OP-FTIR) multiple beams to determine vertical and horizontal gradients
 - » Uses radial scanning technique to locate potential hot spots
 - » Vertical gradient measurements used for determining mass flux rates
- Smooth basis function minimization (SBFM) algorithm to directly reconstruct the mass equivalent plume downwind from the source
- No need for tracer release or inverse dispersion modeling approach for plume characterization (although we have included this as part of QA/QC)
- (Plane-integrated concentration) times (wind speed) yields emission flux

Schematic of OP-FTIR Technology



Scanning OP-FTIR




OP-FTIR Measurement Paths at Swine Waste Lagoon

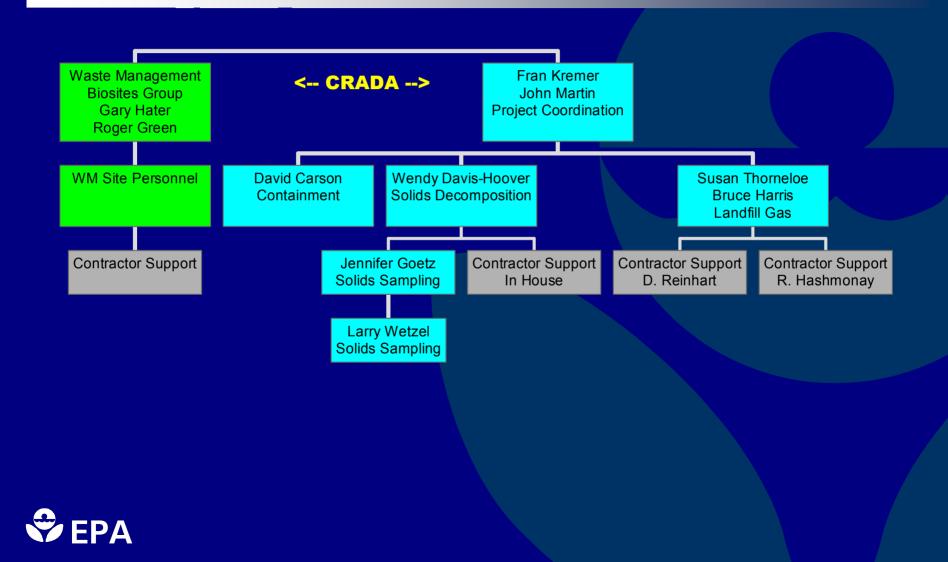
OP-FTIR Determined Ammonia Fluxes from Hog Waste Lagoon

Conclusions for OP-FTIR Application

- Major advantage of this technology is that emissions are being measured rather than modeled
- Successful demonstration of open-path optical technique to conduct radial scans and measure emission fluxes for multiple pollutants
- Successful application of this technology at different large-area sources including coal mines, landfills, poultry, swine farms, and wastewater treatment facilities

Overview of Research to Evaluate LFG Emissions from Bioreactors

- Characterizing emissions from 2 different types of landfill "bioreactors" as part of partnership with Waste Management for large-scale operation in Kentucky [CRADA w/ Waste Management, Inc. (WMI)]
 - » Evaluating fugitive emissions & mercury
 - One round of sampling was completed in 2002;
 - Two rounds planned for 2003
 - Sampling header pipes (raw LFG) for total, elemental, and organomercury
 - Using open-path Fourier Transform Infrared (OP-FTIR) Spectroscopy for measuring fugitive emissions including speciated VOC, methane, HAPs, NH₃
 - » WMI is sampling header pipes for methane, carbon dioxide, NMOC, and speciated organics including list of "AP42" LFG constituents



Overview of LFG Field Tests -Bioreactors

- Considering sampling other types of bioreactors using OP-FTIR including aerobic
- Results from field tests will be documented in EPA reports and summarized in peer-reviewed journal publications
- Gathering all available LFG data for bioreactors (D. Reinhart) to develop appropriate defaults/models for bioreactors

Organization Chart for CRADA Bioreactor Research

