

Defining the End of the Post-Closure Monitoring Period: Long-Term Management of Landfills

> Morton A. Barlaz* Dept. of Civil Engineering North Carolina State University

Introduction

- How to define the end of the post-closure monitoring period?
 - traditional landfills
 - bioreactors

Introduction

- In the US, the post-closure monitoring period is 30 years unless it is extended by the governing regulatory agency
 - technical criteria are lacking and needed:
 - to reduce, extend or modify the monitoring period

Career Objective

 Develop and implement a protocol that will make it possible to determine when postclosure monitoring can be reduced or stopped Factors to Consider in Long-Term Management Leachate composition

- Leachate production
- Potential for leachate release to surface and ground water
- Gas production
- Geotechnical characteristics

Leachate Composition

- Numerous publications on long-term leachate quality _____ BOD:COD ratio < 0.1
- Organic strength

necessary but not sufficient

Nutrient concentration
high ammonia is typical

Metals: Drinking Water Quality

Leachate Composition: Trace Organics

- Simple model (MOCLA) suggests volatiles are released in gas within a decade
- Data on long-term trends for trace organics are needed
- Slow desorption will not lead to concentration increases -- so trends should be lower

Leachate Composition

- Bulk organics (BOD &COD)
- Ammonia
- Metals
- Trace Organics

Leachate Quantity

- How much leachate can be expected and how will it be managed?
 - Flux = concentration * quantity
- Quantity
 - field studies/data from double-lined landfills
 - calculation based on efficiency
 - calculation based on defect density

Leachate Quantity: Calculation

- 100-acre (40.5 ha) site receiving 40 in (100 cm) ppt/yr
 @ 99% collection efficiency for cover and LCRS
 BOD:
 - 20 mg/L = 9 mg/acre/day (22.2 mg/ha/day)
- COD
 - 500 mg/L = 225 mg/acre/day (555 mg/ha/day)
- NH₃-N
 - 750 mg/L = 341 mg/acre/day (843 mg/ha/day)

Leachate Quantity

- Field data: 0.5–22 gal/acre/day (4.7–206 L/ha/day)
- 7–3 mm holes/acre = 0.14 gal/acre/day (1.3 L/ha/day)
- 99% collection efficiency: 0.12 gal/acre/day (1.12 L/ha/day)
 - Cover only: 4.1 mm/yr (calculated)
 - 1-7 mm/yr reported for humid areas
- 99% efficiency can be achieved

Environmental Impacts of a Leachate Release

- Water quality modeling
 - release of leachate to the environment is worst case
 - study environmental impact for assumed leachate and receiving stream characteristics using a dissolved oxygen depletion model

focus on BOD, NH₃-N and dissolved oxygen

Effect of Hypothetical Leachate Release on Dissolved Oxygen

Groundwater Quality

- The leachate O₂ demand when released at 10.7 gal/ac-day [100L/(ha-day)] with 250 mg-N/L cannot be met by an aquifer, even with a high saturated thickness (65.6') and a high transport velocity (0.33 ft/d)
 - lack of perfect mixing will further limit plume degradation
 - this suggests that a 10.7 gal/ac-day release to the subsurface will likely be unacceptable

Groundwater Quality

- Monitoring Strategy and Trace Organics
 - BTEX and CAHs are compounds of greatest concern
 - CAHs degrade anaerobically in landfill
 - BTEX degrade readily under aerobic conditions
 - A leachate release will likely drive an aquifer anaerobic
 - Monitor DO!

Gas Production

- Quantity of gas produced at end of postclosure monitoring period
- When can a landfill go from active collection to passive venting?

Methane Production in Traditional and Bioreactor Landfills

Criteria

- Explosion hazards and VOC migration
 - monitor vadose zone for ??? years after turn off an active gas collection system
- Odor problems
 - are there complaints after deactivation of a landfill gas collection system?
- Mass emissions
 - Regulatory guidance and constraints

Geotechnical Stability

- Trends in settlement data could be used to evaluate whether additional settlement is expected.
 - should a post-closure termination request include settlement data?
 - data could be used to evaluate cover inspection schedule

Proposed Approach

- Evaluate site-specific impacts using a modular/flexible approach
 - leachate mass release rates
 - is leachate present in the collection system?
 - Are there seeps?
 - what is its composition and quantity?
 - identify receiving body to evaluate impact

Proposed Approach

- Gaseous emissions
 - are odors a problem?
 - is their evidence for gas migration?
- Cover stability
 - evidence that settlement is complete

Summary Is monitoring ever really finished??

- perhaps what changes is the monitoring frequency or the components of the landfill to be monitored
 - cover
 - Ieachate production
 - gas migration

Ongoing Work: Performance-Based System for Post-Closure Care at MSW Landfills

- Project supported by EREF to develop a detailed protocol and case studies
- The focus is potential <u>environmental</u> <u>impact</u>

Modular Approach to Post-Closure Landfill Management

- Separate evaluation for:
 - leachate
 - gas
 - groundwater
 - cover

Modular Approach

- Confirmation Monitoring
 - are concentrations below a standard?
 - are changes to current control mechanism(s) justified?
- Surveillance Monitoring
 - Geometrically reducing sampling/inspection program
- Implement End Use

Leachate Evaluation

- Is the mass load increasing or decreasing?
 - If decreasing, are concentrations suitable for direct release (i.e. drinking water standards)?
 - yes: confirmation monitoring, followed by geometrically reducing surveillance monitoring
 - no: is mass release to receiving body acceptable (i.e. dissolved oxygen depletion model)?
 - yes: confirmation monitoring, followed by geometrically reducing surveillance monitoring
 - no: risk assessment or continue postclosure monitoring

Case Studies

- Similar logic for gas, groundwater, and cover
- If all impacts are acceptable, what must be done to maintain this situation?
 - cover inspection -- which is cheaper than groundwater monitoring
 - implement an end use that necessitates maintenance

Additional Reading

- Kjeldsen, P.K. et al., "Present and Long Term Composition of MSW Landfill Leachate – A Review, " accepted for publication, Critical Reviews in Environmental Science and Technology.
- Barlaz et al., 2002, A Critical Evaluation of Factors Required To Terminate the Post-Closure Monitoring Period at Solid Waste Landfills," Environ. Sci. & Technol., 36, 16, p. 3457 – 64
- Morris et al., 2003, Performance-Based System for Post-Closure Care at MSW Landfills – A New Approach to the Current 30-Year Time-Based System of Subtitle D, Proceedings of Waste Tech.

