

IV. SUMMARY OF FINDINGS

After careful review, EPA has determined that 48 mineral commodity sectors generated a total of 553 waste streams that could be classified as either extraction/beneficiation or mineral processing wastes (Exhibit 4-1). Based on further analysis, the Agency identified 358 waste streams out of the total that could be designated as mineral processing wastes from 40 mineral commodity sectors.

Exhibit 4-2 presents the 358 mineral processing wastes by commodity sector. Of these 358 waste streams, EPA has sufficient information (based on either analytical test data or engineering judgment) to determine that 133 waste streams are potential RCRA hazardous wastes because they may exhibit one or more of the RCRA hazardous characteristics (toxicity, ignitability, corrosivity, or reactivity) and, thus, would be subject to the Land Disposal Restrictions. The hazardous waste streams and their characteristics are listed in Exhibit 4-3. The mineral processing commodity sectors that generate these wastes are shown in Exhibit 4-4. This exhibit also summarizes the total number of hazardous waste streams by sector and the estimated total volume of hazardous wastes generated annually.

At this time, EPA does not have sufficient information to determine if the following eight sectors also generate wastes that could be classified as mineral processing wastes: Bromine, Gemstones, Iodine, Lithium, Lithium Carbonate, Soda Ash, Sodium Sulfate, and Strontium.

EXHIBIT 4-1

SUMMARY OF EXTRACTION/BENEFICIATION AND MINERAL PROCESSING WASTE STREAMS BY COMMODITY

Commodity	Waste Stream	Nature of Operation
Alumina and Aluminum	Water softener sludge	Extraction/Beneficiation
	Anode prep waste	Mineral Processing
	APC dust/sludge	Mineral Processing
	Baghouse bags and spent plant filters	Mineral Processing
	Bauxite residue	Mineral Processing
	Cast house dust	Mineral Processing
	Cryolite recovery residue	Mineral Processing
	Wastewater	Mineral Processing
	Discarded Dross	Mineral Processing
	Flue Dust	Mineral Processing
	Electrolysis waste	Mineral Processing
	Evaporator salt wastes	Mineral Processing
	Miscellaneous wastewater	Mineral Processing
	Pisolites	Mineral Processing
	Scrap furnace brick	Mineral Processing
	Skims	Mineral Processing
	Sludge	Mineral Processing
	Spent cleaning residue	Mineral Processing
	Spent potliners	Mineral Processing
	Sweepings	Mineral Processing
	Treatment Plant Effluent	Mineral Processing
	Waste alumina	Mineral Processing
Antimony	Gangue	Mineral Processing
	Wastewater	Mineral Processing
	APC Dust/Sludge	Mineral Processing
	Autoclave Filtrate	Mineral Processing
	Spent Barren Solution	Mineral Processing
	Gangue (Filter Cake)	Mineral Processing
	Leach Residue	Mineral Processing
	Refining Dross	Mineral Processing
	Slag and Furnace Residue	Mineral Processing
	Sludge from Treating Process Waste Water	Mineral Processing
	Stripped Anolyte Solids	Mineral Processing
	Waste Solids	Mineral Processing
Beryllium	Gangue	Extraction/Beneficiation
	Tailings	Extraction/Beneficiation
	Wastewater	Extraction/Beneficiation

Commodity	Waste Stream	Nature of Operation
Beryllium (continued)	Acid Conversion Stream	Extraction/Beneficiation
	Bertrandite thickener slurry	Extraction/Beneficiation
	Beryl thickener slurry	Extraction/Beneficiation
	Spent Raffinate	Extraction/Beneficiation
	Sump Water	Extraction/Beneficiation
	Spent Barren filtrate streams	Mineral Processing
	Beryllium hydroxide supernatant	Mineral Processing
	Chip Treatment Wastewater	Mineral Processing
	Dross discard	Mineral Processing
	Filtration discard	Mineral Processing
	Leaching discard	Mineral Processing
	Neutralization discard	Mineral Processing
	Pebble Plant Area Vent Scrubber Water	Mineral Processing
	Precipitation discard	Mineral Processing
	Process wastewater	Mineral Processing
	Melting Emissions	Mineral Processing
	Scrubber Liquor	Mineral Processing
	Separation slurry	Mineral Processing
	Waste Solids	Mineral Processing
Bismuth	Alloy residues	Mineral Processing
	Spent Caustic Soda	Mineral Processing
	Electrolytic Slimes	Mineral Processing
	Excess chlorine	Mineral Processing
	Lead and Zinc chlorides	Mineral Processing
	Metal Chloride Residues	Mineral Processing
	Slag	Mineral Processing
	Spent Electrolyte	Mineral Processing
	Spent Material	Mineral Processing
	Spent soda solution	Mineral Processing
	Waste acid solutions	Mineral Processing
	Waste Acids	Mineral Processing
	Wastewater	Mineral Processing
Boron	Crud	Extraction/Beneficiation
	Gangue	Extraction/Beneficiation
	Spent Solvents	Extraction/Beneficiation
	Particulate Emissions	Extraction/Beneficiation
	Waste Brine	Extraction/Beneficiation
	Wastewater	Extraction/Beneficiation
	Spent Sodium Sulfate	Extraction/Beneficiation
	Waste liquor	Extraction/Beneficiation
	Underflow Mud	Extraction/Beneficiation

Commodity	Waste Stream	Nature of Operation
Bromine	Slimes	Extraction/Beneficiation
	Waste Brine	Extraction/Beneficiation
	Water Vapor	Extraction/Beneficiation
Cadmium	Waste Tailings	Extraction/Beneficiation
	Caustic washwater	Mineral Processing
	Copper and Lead Sulfate Filter Cakes	Mineral Processing
	Copper Removal Filter Cake	Mineral Processing
	Iron containing impurities	Mineral Processing
	Spent Leach solution	Mineral Processing
	Lead Sulfate waste	Mineral Processing
	Post-leach Filter Cakes	Mineral Processing
	Spent Purification solution	Mineral Processing
	Scrubber wastewater	Mineral Processing
	Spent electrolyte	Mineral Processing
	Zinc Precipitates	Mineral Processing
Calcium Metal	Off-gases	Extraction/Beneficiation
	Overburden	Extraction/Beneficiation
	Calcium Aluminate wastes	Mineral Processing
	Dust with Quicklime	Mineral Processing
Cesium/Rubidium	Alkali Alums	Extraction/Beneficiation
	Calciner Residues	Extraction/Beneficiation
	Cesium Chlorosonnate	Extraction/Beneficiation
	Non-Pollucite Mineral Waste	Extraction/Beneficiation
	Precipitated Aluminum	Extraction/Beneficiation
	Precipitated Barium Sulfate	Extraction/Beneficiation
	Spent Chlorine solution	Extraction/Beneficiation
	Spent Ion-exchange solution	Extraction/Beneficiation
	Spent Metal	Extraction/Beneficiation
	Spent Ore	Extraction/Beneficiation
	Spent Solvent	Extraction/Beneficiation
	Waste Gangue	Extraction/Beneficiation
	Chemical Residues	Mineral Processing
	Digester waste	Mineral Processing
	Electrolytic Slimes	Mineral Processing
	Pyrolytic Residue	Mineral Processing
	Slag	Mineral Processing
Chromium, Ferrochrome, and	Gangue and tailings	Extraction/Beneficiation
Ferrochromium-Silicon	Dust or Sludge from ferrochromium production	Mineral Processing
	Dust or Sludge from ferrochromium-silicon production	Mineral Processing
	Treated Roast/Leach Residues	Mineral Processing
	Slag and Residues	Mineral Processing
Coal Gas	Baghouse Coal Dust	Extraction/Beneficiation

Commodity	Waste Stream	Nature of Operation
	Coal Pile Runoff	Extraction/Beneficiation
	Fines	Extraction/Beneficiation
	Gangue	Extraction/Beneficiation
	API Oil/Water Separator Sludge	Mineral Processing
	API Water	Mineral Processing
	Cooling Tower Blowdown	Mineral Processing
	Dissolved Air Flotation (DAF) Sludge	Mineral Processing
	Flue Dust Residues	Mineral Processing
	Liquid Waste Incinerator Blowdown	Mineral Processing
	Liquid Waste Incinerator Pond Sludge	Mineral Processing
	Multiple Effects Evaporator Concentrate	Mineral Processing
	Multiple Effects Evaporator Pond Sludge	Mineral Processing
	Sludge and Filter Cake	Mineral Processing
	Spent Methanol Catalyst	Mineral Processing
	Stretford Solution Purge Stream	Mineral Processing
	Surface Impoundment Solids	Mineral Processing
	Vacuum Filter Sludge	Mineral Processing
	Zeolite Softening PWW	Mineral Processing
Copper	Crud	Extraction/Beneficiation
	Spent Kerosene	Extraction/Beneficiation
	Raffinate	Extraction/Beneficiation
	Process Wastewaters from Cooling and Refining	Extraction/Beneficiation
	Slime	Extraction/Beneficiation
	Slimes or "Muds"	Extraction/Beneficiation
	Tailings	Extraction/Beneficiation
	Spent Ore	Extraction/Beneficiation
	Acid plant blowdown	Mineral Processing
	Acid plant thickener sludge	Mineral Processing
	APC dusts/sludges	Mineral Processing
	Spent bleed electrolyte	Mineral Processing
	Chamber solids/scrubber sludge	Mineral Processing
	Waste contact cooling water	Mineral Processing
	Discarded furnace brick	Mineral Processing
	Process wastewaters	Mineral Processing
	Scrubber blowdown	Mineral Processing
	Spent black sulfuric acid sludge	Mineral Processing
	Surface impoundment waste liquids	Mineral Processing
	Tankhouse slimes	Mineral Processing
	WWTP liquid effluent	Mineral Processing
	WWTP sludge	Mineral Processing
lemental Phosphorous	Calcining offgas solids	Extraction/Beneficiation

Commodity	Waste Stream	Nature of Operation
	Fugitive Dust	Extraction/Beneficiation
	Condenser phossy water discard	Mineral Processing
	Cooling water	Mineral Processing
	Furnace building washdown	Mineral Processing
	Dust	Mineral Processing
	Waste ferrophosphorus	Mineral Processing
	Furnace offgas solids	Mineral Processing
	Furnace scrubber blowdown	Mineral Processing
	Precipitator slurry scrubber water	Mineral Processing
	Precipitator slurry	Mineral Processing
	NOSAP slurry	Mineral Processing
	Sludge	Mineral Processing
	Spent furnace brick	Mineral Processing
	Surface impoundment waste liquids	Mineral Processing
	Surface impoundment waste solids	Mineral Processing
	Waste Andersen Filter Media	Mineral Processing
	WWTP liquid effluent	Mineral Processing
	WWTP Sludge/Solids	Mineral Processing
Fluorspar and Hydrofluoric Acid	Gangue	Extraction/Beneficiation
	Lead and Zinc sulfides	Extraction/Beneficiation
	Spent flotation reagents	Extraction/Beneficiation
	Tailings	Extraction/Beneficiation
	APC Dusts	Mineral Processing
	Off-spec fluosilicic acid	Mineral Processing
	Sludges	Mineral Processing
Gem Stones	Overburden	Extraction/Beneficiation
	Spent chemical agents	Extraction/Beneficiation
	Spent polishing media	Extraction/Beneficiation
	Waste minerals	Extraction/Beneficiation
Germanium	Waste Acid Wash and Rinse Water	Mineral Processing
	Chlorinator Wet Air Pollution Control Sludge	Mineral Processing
	Germanium oxides fumes	Mineral Processing
	Hydrolysis Filtrate	Mineral Processing
	Leach Residues	Mineral Processing
	Roaster off-gases	Mineral Processing
	Spent Acid/Leachate	Mineral Processing
	Waste Still Liquor	Mineral Processing
	Wastewater	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Gold and Silver	Black sand	Extraction/Beneficiation
	Filter cake	Extraction/Beneficiation
	Mercury bearing solution	Extraction/Beneficiation
	Mine water	Extraction/Beneficiation
	Carbon, carbon fines, and acid wash solution	Extraction/Beneficiation
	Spent leaching solution	Extraction/Beneficiation
	Spent ore	Extraction/Beneficiation
	Spent stripping solution	Extraction/Beneficiation
	Sulfur dioxide	Extraction/Beneficiation
	Tailings	Extraction/Beneficiation
	Waste rock, clay and sand from amalgamation	Extraction/Beneficiation
	Waste rock	Extraction/Beneficiation
	Waste sulfuric acid	Extraction/Beneficiation
	Waste steel wool	Extraction/Beneficiation
	Zinc cyanide solution	Extraction/Beneficiation
	Spent Furnace Dust	Mineral Processing
	Refining wastes	Mineral Processing
	Retort cooling water	Mineral Processing
	Slag	Mineral Processing
	Wastewater treatment sludge	Mineral Processing
	Wastewater	Mineral Processing
Iodine	Filtrate waste	Extraction/Beneficiation
	Sludge	Extraction/Beneficiation
	Sulfur compounds	Extraction/Beneficiation
	Waste acid	Extraction/Beneficiation
	Waste bleed liquor	Extraction/Beneficiation
	Waste brine	Extraction/Beneficiation
Iron and Steel	Tailings	Extraction/Beneficiation
	Wastewater and Waste Solids	Extraction/Beneficiation
	Wastewater	Mineral Processing
Lead	Concentration Wastes	Extraction/Beneficiation
	Mine water	Extraction/Beneficiation
	Waste Rock	Extraction/Beneficiation
	Acid Plant Blowdown	Mineral Processing
	Acid Plant Sludge	Mineral Processing
	Baghouse Dust	Mineral Processing
	Baghouse Incinerator Ash	Mineral Processing
	Cooling Tower Blowdown	Mineral Processing
	Waste Nickel Matte	Mineral Processing
	Process Wastewater	Mineral Processing
	Slurried APC Dust	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Lead (continued)	Solid Residues	Mineral Processing
	Solids in Plant Washdown	Mineral Processing
	Spent Furnace Brick	Mineral Processing
	Stockpiled Miscellaneous Plant Waste	Mineral Processing
	Surface Impoundment Waste Liquids	Mineral Processing
	Surface Impoundment Waste Solids	Mineral Processing
	SVG Backwash	Mineral Processing
	WWTP Liquid Effluent	Mineral Processing
	WWTP Sludges/Solids	Mineral Processing
Lightweight	Overburden	Extraction/Beneficiation
Aggregate	Waste Rock	Extraction/Beneficiation
	Raw fines form primary crushing operations	Extraction/Beneficiation
	Sludge from rock washing	Extraction/Beneficiation
	APC control scrubber water and solids	Mineral Processing
	APC Dust/Sludge	Mineral Processing
	Surface impoundment waste liquids	Mineral Processing
	WWTP liquid effluent	Mineral Processing
Lithium and	Acid roaster gases	Extraction/Beneficiation
Lithium Carbonate	Flotation Tailings	Extraction/Beneficiation
	Gangue	Extraction/Beneficiation
	Magnesium/Calcium Sludge	Extraction/Beneficiation
	Roaster Off-gases	Extraction/Beneficiation
	Salt solutions	Extraction/Beneficiation
	Wastewater from Wet Scrubber	Extraction/Beneficiation
Magnesium and Magnesia	Calcium sludge	Extraction/Beneficiation
from Brines	Offgases	Extraction/Beneficiation
	Spent seawater	Extraction/Beneficiation
	Tailings	Extraction/Beneficiation
	APC Dust/Sludge	Mineral Processing
	Calciner offgases	Mineral Processing
	Calcium sludge	Mineral Processing
	Casthouse Dust	Mineral Processing
	Casting plant slag	Mineral Processing
	Cathode Scrubber Liquor	Mineral Processing
	Slag	Mineral Processing
	Smut	Mineral Processing
	Spent Brines	Mineral Processing
Manganese, Manganese	Flotation tailings	Extraction/Beneficiation
Dioxide, Ferromanganese and Silicomanganese	Gangue	Extraction/Beneficiation
and Sincomanganese	Spent Flotation Reagents	Extraction/Beneficiation
	Wastewater	Extraction/Beneficiation

Commodity	Waste Stream	Nature of Operation
	APC Dust/Sludge	Mineral Processing
Manganese, Manganese Dioxide, Ferromanganese	APC Water	Mineral Processing
and Silicomanganese (continued)	Iron Sulfide Sludge	Mineral Processing
	Ore Residues	Mineral Processing
	Slag	Mineral Processing
	Spent Graphite Anode	Mineral Processing
	Spent Process Liquor	Mineral Processing
	Waste Electrolyte	Mineral Processing
	Wastewater (CMD)	Mineral Processing
	Wastewater (EMD)	Mineral Processing
	Wastewater Treatment Solids	Mineral Processing
Mercury	Gangue	Extraction/Beneficiation
	Flotation tailings	Extraction/Beneficiation
	Spent flotation reagents	Extraction/Beneficiation
	Wastewater	Extraction/Beneficiation
	Dust	Mineral Processing
	Mercury Quench Water	Mineral Processing
	Furnace Residues	Mineral Processing
Molybdenum,	Flotation tailings	Extraction/Beneficiation
Ferromolybdenum, and Ammonium Molybdate	Gangue	Extraction/Beneficiation
	Spent Flotation Reagents	Extraction/Beneficiation
	Wastewater	Extraction/Beneficiation
	APC Dust/Sludge	Mineral Processing
	Flue Dust/Gases	Mineral Processing
	Liquid Residues	Mineral Processing
	H2 Reduction Furnace Scrubber Water	Mineral Processing
	Molybdic Oxide Refining Wastes	Mineral Processing
	Refining Wastes	Mineral Processing
	Roaster Gas Blowdown Solids	Mineral Processing
	Slag	Mineral Processing
	Solid Residues	Mineral Processing
	Treatment Solids	Mineral Processing
Phosphoric Acid	Waste Scale	Mineral Processing
Platinum Group	Filtrate	Extraction/Beneficiation
Metals	Tailings	Extraction/Beneficiation
	Wastewater	Extraction/Beneficiation
	Slag	Mineral Processing
	Scrubber offgases	Mineral Processing
	SO2 waste	Mineral Processing
	Spent Acids	Mineral Processing
	Spent Solvents	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Pyrobitumens,	Spent coal	Extraction/Beneficiation
Mineral Waxes, and Natural Asphalts	Spent solvents	Extraction/Beneficiation
	Still bottoms	Mineral Processing
	Waste catalysts	Mineral Processing
Rare Earths	Magnetic fractions	Extraction/Beneficiation
	Tailings	Extraction/Beneficiation
	Spent ammonium nitrate processing solution	Mineral Processing
	Electrolytic cell caustic wet APC waste	Mineral Processing
	Spent Electrolytic cell quench water and scrubber water	Mineral Processing
	Spent iron hydroxide cake	Mineral Processing
	Spent lead filter cake	Mineral Processing
	Lead backwash sludge	Mineral Processing
	Monazite solids	Mineral Processing
	Process wastewater	Mineral Processing
	Spent scrubber liquor	Mineral Processing
	Off-gases from dehydration	Mineral Processing
	Spent off-gases from electrolytic reduction	Mineral Processing
	Spent sodium hypochlorite filter backwash	Mineral Processing
	Solvent extraction crud	Mineral Processing
	Spent surface impoundment solids	Mineral Processing
	Spent surface impoundment liquids	Mineral Processing
	Waste filtrate	Mineral Processing
	Waste solvent	Mineral Processing
	Wastewater from caustic wet APC	Mineral Processing
	Waste zinc contaminated with mercury	Mineral Processing
Rhenium	APC Dust/Sludge	Mineral Processing
	Spent Barren Scrubber Liquor	Mineral Processing
	Spent Rhenium Raffinate	Mineral Processing
	Roaster Dust	Mineral Processing
	Spent Ion Exchange/SX Solutions	Mineral Processing
	Spent Salt Solutions	Mineral Processing
	Slag	Mineral Processing
Scandium	Crud from the bottom of the solvent extraction unit	Mineral Processing
	Dusts and spent filters from decomposition	Mineral Processing
	Spent acids	Mineral Processing
	Spent ion exchange resins and backwash	Mineral Processing
	Spent solvents from solvent extraction	Mineral Processing
	Spent wash water	Mineral Processing
	Waste chlorine solution	Mineral Processing
	Waste solutions/solids from leaching and precipitation	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Selenium	Spent filter cake	Mineral Processing
	Plant process wastewater	Mineral Processing
	Slag	Mineral Processing
	Tellurium slime wastes	Mineral Processing
	Waste Solids	Mineral Processing
Silicon and	Gangue	Extraction/Beneficiation
Ferrosilicon	Spent Wash Water	Extraction/Beneficiation
	Tailings	Extraction/Beneficiation
	APC Dust Sludge	Mineral Processing
	Dross discard	Mineral Processing
	Slag	Mineral Processing
Soda Ash	Airborne emissions	Extraction/Beneficiation
	Calciner offgases	Extraction/Beneficiation
	Filter aid and carbon absorbent	Extraction/Beneficiation
	Mother liquor	Extraction/Beneficiation
	Ore insolubles	Extraction/Beneficiation
	Ore residues	Extraction/Beneficiation
	Overburden	Extraction/Beneficiation
	Particulate emissions from driers	Extraction/Beneficiation
	Particulates	Extraction/Beneficiation
	Purge liquor	Extraction/Beneficiation
	Scrubber water	Extraction/Beneficiation
	Spent brine	Extraction/Beneficiation
	Spent carbon and filter wastes	Extraction/Beneficiation
	Spent dissolution wastes	Extraction/Beneficiation
	Suspended particulate matter	Extraction/Beneficiation
	Tailings	Extraction/Beneficiation
	Trona ore particulates	Extraction/Beneficiation
	Trona ore processing waste	Extraction/Beneficiation
	Waste mother liquor	Extraction/Beneficiation
Sodium Sulfate	Waste Brine	Extraction/Beneficiation
	Clarifier overflow filtrate	Extraction/Beneficiation
	Wastewater	Extraction/Beneficiation
Strontium	Calciner offgas	Extraction/Beneficiation
	Dilute sodium sulfide solution	Extraction/Beneficiation
	Filter muds	Extraction/Beneficiation
	Spent Ore	Extraction/Beneficiation
	Vacuum drum filtrate	Extraction/Beneficiation
	Waste sodium sulfate solution	Extraction/Beneficiation
	Waste solution	Extraction/Beneficiation

Commodity	Waste Stream	Nature of Operation
Sulfur	Air emissions	Extraction/Beneficiation
	Filter cake	Extraction/Beneficiation
	Frasch process residues	Extraction/Beneficiation
	Sludge	Extraction/Beneficiation
	Spilled sulfur	Extraction/Beneficiation
	Wastewater	Extraction/Beneficiation
	Airborne emissions from sulfuric acid production	Mineral Processing
	Spent catalysts (Claus process)	Mineral Processing
	Spent vanadium pentoxide catalysts from sulfuric acid production	Mineral Processing
	Tail gases	Mineral Processing
	Wastewater from wet-scrubbing, spilled product and condensates	Mineral Processing
Synthetic Rutile	APC Dust/Sludges	Mineral Processing
	Spent Iron Oxide Slurry	Mineral Processing
	Spent Acid Solution	Mineral Processing
Tantalum, Columbium	APC Dust Sludge	Mineral Processing
and Ferrocolumbium	Digester Sludge	Mineral Processing
	Spent Potassium Titanium Chloride	Mineral Processing
	Process Wastewater	Mineral Processing
	Spent Raffinate Solids	Mineral Processing
	Scrubber Overflow	Mineral Processing
	Slag	Mineral Processing
	WWTP Liquid Effluent	Mineral Processing
	WWTP Sludge	Mineral Processing
Tellurium	Slag	Mineral Processing
	Fumes of telluride dioxide	Mineral Processing
	Solid waste residues	Mineral Processing
	Waste Electrolyte	Mineral Processing
	Wastewater	Mineral Processing
Tin	Process Wastewater	Extraction/Beneficiation
	Tailings Slurry	Extraction/Beneficiation
	Brick Lining and Fabric Filters	Mineral Processing
	Dross	Mineral Processing
	Process Wastewater and Treatment Sludge	Mineral Processing
	Slag	Mineral Processing
	Slimes	Mineral Processing
	Waste Acid and Alkaline baths	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Titanium and	Flotation Cells	Extraction/Beneficiation
Titanium Dioxide	Tailings	Extraction/Beneficiation
	Spent Brine Treatment Filter Cake	Mineral Processing
	FeCl Treatment Sludge	Mineral Processing
	Waste Ferric Chloride	Mineral Processing
	Finishing Scrap	Mineral Processing
	Leach Liquor and Sponge Wash Water	Mineral Processing
	Waste Non-Contact Cooling Water	Mineral Processing
	Pickling Liquor and Wash Water	Mineral Processing
	Scrap Detergent Wash Water	Mineral Processing
	Scrap Milling Scrubber Water	Mineral Processing
	Reduction Area Scrubber Water	Mineral Processing
	Chlorination Off gas Scrubber Water	Mineral Processing
	Chlorination Area - Vent Scrubber Water	Mineral Processing
	Melt Cell Scrubber Water	Mineral Processing
	Chlorine Liquefaction Scrubber Water	Mineral Processing
	Chip Crushing Scrubber Water	Mineral Processing
	Casting Crucible Contact Cooling Water	Mineral Processing
	Smut from Mg Recovery	Mineral Processing
	Spent Surface Impoundment Liquids	Mineral Processing
	Spent Surface Impoundment Solids	Mineral Processing
	TiCl4 Purification Effluent	Mineral Processing
	Spent Vanadium Oxychloride	Mineral Processing
	Sodium Reduction Container Reconditioning Wash Water	Mineral Processing
	Casting Crucible Wash Water	Mineral Processing
	Waste Acids (Chloride process)	Mineral Processing
	Waste Solids (Chloride process)	Mineral Processing
	Waste Acids (Sulfate process)	Mineral Processing
	Waste Solids (Sulfate process)	Mineral Processing
	WWTP Liquid Effluent	Mineral Processing
	WWTP Sludge/Solids	Mineral Processing
ungsten	Alkali leach wash	Extraction/Beneficiation
0	Calcium tungstate precipitate wash	Extraction/Beneficiation
	Ion exchange raffinate	Extraction/Beneficiation
	Ion exchange resins	Extraction/Beneficiation
	Leach filter cake residues and impurities	Extraction/Beneficiation
	Molybdenum sulfide precipitation wet air pollution control waste	Extraction/Beneficiation
	Scrubber wastewater	Extraction/Beneficiation
	Spent mother liquor	Extraction/Beneficiation
	Tungstic acid rinse water	Extraction/Beneficiation
	Waste fines	Extraction/Beneficiation
Fungsten (continued)	Waste rock and tailings	Extraction/Beneficiation

Commodity	Waste Stream	Nature of Operation
	Wastewater	Extraction/Beneficiation
	Wet scrubber wastewater	Extraction/Beneficiation
	Spent Acid and Rinse water	Mineral Processing
	Scrubber wastewater	Mineral Processing
	Process wastewater treatment plant effluent	Mineral Processing
	Water of formation	Mineral Processing
Uranium	Waste Rock	Extraction/Beneficiation
	Tailings	Extraction/Beneficiation
	Organic vapors	Extraction/Beneficiation
	Refuse	Extraction/Beneficiation
	Spent Extraction/Leaching Solutions	Extraction/Beneficiation
	Particulate Emissions	Extraction/Beneficiation
	Miscellaneous Sludges	Extraction/Beneficiation
	Spent Ion Exchange Resins	Extraction/Beneficiation
	Tailing Pond Seepage	Extraction/Beneficiation
	Waste Acids from Solvent Extraction	Extraction/Beneficiation
	Barren Lixiviant	Extraction/Beneficiation
	Slimes from Solvent Extraction	Extraction/Beneficiation
	Waste Solvents	Extraction/Beneficiation
	Waste Nitric Acid from Production of UO ₂	Mineral Processing
	Vaporizer Condensate	Mineral Processing
	Superheater Condensate	Mineral Processing
	Slag	Mineral Processing
	Uranium Chips from Ingot Production	Mineral Processing
	Waste Calcium Fluoride	Mineral Processing
Vanadium	Roaster Off-gases	Extraction/Beneficiation
	Solid residues	Extraction/Beneficiation
	Spent Filtrate	Extraction/Beneficiation
	Spent Solvent	Extraction/Beneficiation
	Filtrate and Process Wastewaters	Mineral Processing
	Solid Waste	Mineral Processing
	Spent Precipitate	Mineral Processing
	Slag	Mineral Processing
	Wet scrubber wastewater	Mineral Processing
Zinc	Refuse	Extraction/Beneficiation
	Tailings	Extraction/Beneficiation
	Waste rock	Extraction/Beneficiation
	Acid Plant Blowdown	Mineral Processing
	Spent Cloths, Bags, and Filters	Mineral Processing
	Waste Ferrosilicon	Mineral Processing
Zinc (continued)	Spent Goethite and Leach Cake Residues	Mineral Processing

Commodity	Waste Stream	Nature of Operation
	Saleable residues	Mineral Processing
	Process Wastewater	Mineral Processing
	Discarded Refractory Brick	Mineral Processing
	Spent Surface Impoundment Liquid	Mineral Processing
	Spent Surface Impoundment Solids	Mineral Processing
	Spent Synthetic Gypsum	Mineral Processing
	TCA Tower Blowdown (ZCA Bartlesville, OK - Electrolytic Plant)	Mineral Processing
	Wastewater Treatment Plant Liquid Effluent	Mineral Processing
	Wastewater Treatment Plant Sludge	Mineral Processing
	Zinc-lean Slag	Mineral Processing
Zirconium and	Monazite	Extraction/Beneficiation
Hafnium	Wastewater	Extraction/Beneficiation
	Spent Acid leachate from zirconium alloy production	Mineral Processing
	Spent Acid leachate from zirconium metal production	Mineral Processing
	Ammonium Thiocyanate Bleed Stream	Mineral Processing
	Reduction area-vent wet APC wastewater	Mineral Processing
	Caustic wet APC wastewater	Mineral Processing
	Feed makeup wet APC wastewater	Mineral Processing
	Filter cake/sludge	Mineral Processing
	Furnace residue	Mineral Processing
	Hafnium filtrate wastewater	Mineral Processing
	Iron extraction stream stripper bottoms	Mineral Processing
	Leaching rinse water from zirconium alloy production	Mineral Processing
	Leaching rinse water from zirconium metal production	Mineral Processing
	Magnesium recovery area vent wet APC wastewater	Mineral Processing
	Magnesium recovery off-gas wet APC wastewater	Mineral Processing
	Sand Chlorination Off-Gas Wet APC wastewater	Mineral Processing
	Sand Chlorination Area Vent Wet APC wastewater	Mineral Processing
	Silicon Tetrachloride Purification Wet APC wastewater	Mineral Processing
	Wet APC wastewater	Mineral Processing
	Zirconium chip crushing wet APC wastewater	Mineral Processing
	Zirconium filtrate wastewater	Mineral Processing

EXHIBIT 4-2

Commodity	Waste Stream	Nature of Operation
Alumina and Aluminum	Anode prep waste	Mineral Processing
	APC dust/sludge	Mineral Processing
	Baghouse bags and spent plant filters	Mineral Processing
	Bauxite residue	Mineral Processing
	Cast house dust	Mineral Processing
	Cryolite recovery residue	Mineral Processing
	Wastewater	Mineral Processing
	Discarded Dross	Mineral Processing
	Flue Dust	Mineral Processing
	Electrolysis waste	Mineral Processing
	Evaporator salt wastes	Mineral Processing
	Miscellaneous wastewater	Mineral Processing
	Pisolites	Mineral Processing
	Scrap furnace brick	Mineral Processing
	Skims	Mineral Processing
	Sludge	Mineral Processing
	Spent cleaning residue	Mineral Processing
	Spent potliners	Mineral Processing
	Sweepings	Mineral Processing
	Treatment Plant Effluent	Mineral Processing
	Waste alumina	Mineral Processing
Antimony	Gangue	Mineral Processing
	Wastewater	Mineral Processing
	APC Dust/Sludge	Mineral Processing
	Autoclave Filtrate	Mineral Processing
	Spent Barren Solution	Mineral Processing
	Gangue (Filter Cake)	Mineral Processing
	Leach Residue	Mineral Processing
	Refining Dross	Mineral Processing
	Slag and Furnace Residue	Mineral Processing
	Sludge from Treating Process Waste Water	Mineral Processing
	Stripped Anolyte Solids	Mineral Processing
	Waste Solids	Mineral Processing
Beryllium	Spent Barren filtrate streams	Mineral Processing
	Beryllium hydroxide supernatant	Mineral Processing
	Chip Treatment Wastewater	Mineral Processing

SUMMARY OF MINERAL PROCESSING WASTE STREAMS BY COMMODITY

Commodity	Waste Stream	Nature of Operation
Beryllium (continued)	Dross discard	Mineral Processing
	Filtration discard	Mineral Processing
	Leaching discard	Mineral Processing
	Neutralization discard	Mineral Processing
	Pebble Plant Area Vent Scrubber Water	Mineral Processing
	Precipitation discard	Mineral Processing
	Process wastewater	Mineral Processing
	Melting Emissions	Mineral Processing
	Scrubber Liquor	Mineral Processing
	Separation slurry	Mineral Processing
	Waste Solids	Mineral Processing
Bismuth	Alloy residues	Mineral Processing
	Spent Caustic Soda	Mineral Processing
	Electrolytic Slimes	Mineral Processing
	Excess chlorine	Mineral Processing
	Lead and Zinc chlorides	Mineral Processing
	Metal Chloride Residues	Mineral Processing
	Slag	Mineral Processing
	Spent Electrolyte	Mineral Processing
	Spent Material	Mineral Processing
	Spent soda solution	Mineral Processing
	Waste acid solutions	Mineral Processing
	Waste Acids	Mineral Processing
	Wastewater	Mineral Processing
Cadmium	Caustic washwater	Mineral Processing
	Copper and Lead Sulfate Filter Cakes	Mineral Processing
	Copper Removal Filter Cake	Mineral Processing
	Iron containing impurities	Mineral Processing
	Spent Leach solution	Mineral Processing
	Lead Sulfate waste	Mineral Processing
	Post-leach Filter Cakes	Mineral Processing
	Spent Purification solution	Mineral Processing
	Scrubber wastewater	Mineral Processing
	Spent electrolyte	Mineral Processing
	Zinc Precipitates	Mineral Processing
Calcium Metal	Calcium Aluminate wastes	Mineral Processing
	Dust with Quicklime	Mineral Processing
Cesium/Rubidium	Chemical Residues	Mineral Processing
	Digester waste	Mineral Processing
	Electrolytic Slimes	Mineral Processing
	Pyrolytic Residue	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Cerium/Rubidium (continued)	Slag	Mineral Processing
Chromium, Ferrochrome, and Ferrochromium-Silicon	Gangue and tailings	Extraction/Beneficiation
	Dust or Sludge from ferrochromium production	Mineral Processing
	Dust or Sludge from ferrochromium-silicon production	Mineral Processing
	Treated Roast/Leach Residues	Mineral Processing
	Slag and Residues	Mineral Processing
Coal Gas	API Oil/Water Separator Sludge	Mineral Processing
	API Water	Mineral Processing
	Cooling Tower Blowdown	Mineral Processing
	Dissolved Air Flotation (DAF) Sludge	Mineral Processing
	Flue Dust Residues	Mineral Processing
	Liquid Waste Incinerator Blowdown	Mineral Processing
	Liquid Waste Incinerator Pond Sludge	Mineral Processing
	Multiple Effects Evaporator Concentrate	Mineral Processing
	Multiple Effects Evaporator Pond Sludge	Mineral Processing
	Sludge and Filter Cake	Mineral Processing
	Spent Methanol Catalyst	Mineral Processing
	Stretford Solution Purge Stream	Mineral Processing
	Surface Impoundment Solids	Mineral Processing
	Vacuum Filter Sludge	Mineral Processing
	Zeolite Softening PWW	Mineral Processing
Copper	Acid plant blowdown	Mineral Processing
	Acid plant thickener sludge	Mineral Processing
	APC dusts/sludges	Mineral Processing
	Spent bleed electrolyte	Mineral Processing
	Chamber solids/scrubber sludge	Mineral Processing
	Waste contact cooling water	Mineral Processing
	Discarded furnace brick	Mineral Processing
	Process wastewaters	Mineral Processing
	Scrubber blowdown	Mineral Processing
	Spent black sulfuric acid sludge	Mineral Processing
	Surface impoundment waste liquids	Mineral Processing
	Tankhouse slimes	Mineral Processing
	WWTP liquid effluent	Mineral Processing
	WWTP sludge	Mineral Processing
Elemental Phosphorous	Condenser phossy water discard	Mineral Processing
	Cooling water	Mineral Processing
	Furnace building washdown	Mineral Processing
	Dust	Mineral Processing
	Waste ferrophosphorus	Mineral Processing
	Furnace offgas solids	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Elemental Phosphorous (continued)	Furnace scrubber blowdown	Mineral Processing
	Precipitator slurry scrubber water	Mineral Processing
	Precipitator slurry	Mineral Processing
	NOSAP slurry	Mineral Processing
	Sludge	Mineral Processing
	Spent furnace brick	Mineral Processing
	Surface impoundment waste liquids	Mineral Processing
	Surface impoundment waste solids	Mineral Processing
	Waste Andersen Filter Media	Mineral Processing
	WWTP liquid effluent	Mineral Processing
	WWTP Sludge/Solids	Mineral Processing
Fluorspar and Hydrofluoric Acid	APC Dusts	Mineral Processing
	Off-spec fluosilicic acid	Mineral Processing
	Sludges	Mineral Processing
Germanium	Waste Acid Wash and Rinse Water	Mineral Processing
	Chlorinator Wet Air Pollution Control Sludge	Mineral Processing
	Germanium oxides fumes	Mineral Processing
	Hydrolysis Filtrate	Mineral Processing
	Leach Residues	Mineral Processing
	Roaster off-gases	Mineral Processing
	Spent Acid/Leachate	Mineral Processing
	Waste Still Liquor	Mineral Processing
	Wastewater	Mineral Processing
Gold and Silver	Spent Furnace Dust	Mineral Processing
	Refining wastes	Mineral Processing
	Retort cooling water	Mineral Processing
	Slag	Mineral Processing
	Wastewater treatment sludge	Mineral Processing
	Wastewater	Mineral Processing
Iron and Steel	Wastewater	Mineral Processing
Lead	Acid Plant Blowdown	Mineral Processing
	Acid Plant Sludge	Mineral Processing
	Baghouse Dust	Mineral Processing
	Baghouse Incinerator Ash	Mineral Processing
	Cooling Tower Blowdown	Mineral Processing
	Waste Nickel Matte	Mineral Processing
	Process Wastewater	Mineral Processing
	Slurried APC Dust	Mineral Processing
	Solid Residues	Mineral Processing
	Solids in Plant Washdown	Mineral Processing
	Spent Furnace Brick	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Lead (continued)	Stockpiled Miscellaneous Plant Waste	Mineral Processing
	Surface Impoundment Waste Liquids	Mineral Processing
	Surface Impoundment Waste Solids	Mineral Processing
	SVG Backwash	Mineral Processing
	WWTP Liquid Effluent	Mineral Processing
	WWTP Sludges/Solids	Mineral Processing
Lightweight	APC control scrubber water and solids	Mineral Processing
Aggregate	APC Dust/Sludge	Mineral Processing
	Surface impoundment waste liquids	Mineral Processing
	WWTP liquid effluent	Mineral Processing
Magnesium and Magnesia	APC Dust/Sludge	Mineral Processing
from Brines	Calciner offgases	Mineral Processing
	Calcium sludge	Mineral Processing
	Casthouse Dust	Mineral Processing
	Casting plant slag	Mineral Processing
	Cathode Scrubber Liquor	Mineral Processing
	Slag	Mineral Processing
	Smut	Mineral Processing
	Spent Brines	Mineral Processing
Manganese, Manganese	APC Dust/Sludge	Mineral Processing
Dioxide, Ferromanganese and Silicomanganese	APC Water	Mineral Processing
and Sincomanganese	Iron Sulfide Sludge	Mineral Processing
	Ore Residues	Mineral Processing
	Slag	Mineral Processing
Manganese, Manganese Dioxide, Ferromanganese	Spent Graphite Anode	Mineral Processing
and Silicomanganese (continued)	Spent Process Liquor	Mineral Processing
	Waste Electrolyte	Mineral Processing
	Wastewater (CMD)	Mineral Processing
	Wastewater (EMD)	Mineral Processing
	Wastewater Treatment Solids	Mineral Processing
Mercury	Dust	Mineral Processing
	Mercury Quench Water	Mineral Processing
	Furnace Residues	Mineral Processing
Molybdenum,	APC Dust/Sludge	Mineral Processing
Ferromolybdenum, and Ammonium Molybdate	Flue Dust/Gases	Mineral Processing
	Liquid Residues	Mineral Processing
	H2 Reduction Furnace Scrubber Water	Mineral Processing
	Molybdic Oxide Refining Wastes	Mineral Processing
	Refining Wastes	Mineral Processing
	Roaster Gas Blowdown Solids	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Molybdenum,	Slag	Mineral Processing
Ferromolybdenum, and Ammonium Molybdate	Solid Residues	Mineral Processing
	Treatment Solids	Mineral Processing
Phosphoric Acid	Waste Scale	Mineral Processing
Platinum Group	Slag	Mineral Processing
Metals	Scrubber offgases	Mineral Processing
	SO2 waste	Mineral Processing
	Spent Acids	Mineral Processing
	Spent Solvents	Mineral Processing
Pyrobitumens, Mineral Waxes,	Still bottoms	Mineral Processing
and Natural Asphalts	Waste catalysts	Mineral Processing
Rare Earths	Spent ammonium nitrate processing solution	Mineral Processing
	Electrolytic cell caustic wet APC waste	Mineral Processing
	Spent Electrolytic cell quench water and scrubber water	Mineral Processing
	Spent iron hydroxide cake	Mineral Processing
	Spent lead filter cake	Mineral Processing
	Lead backwash sludge	Mineral Processing
	Monazite solids	Mineral Processing
	Process wastewater	Mineral Processing
	Spent scrubber liquor	Mineral Processing
	Off-gases from dehydration	Mineral Processing
	Spent off-gases from electrolytic reduction	Mineral Processing
	Spent sodium hypochlorite filter backwash	Mineral Processing
	Solvent extraction crud	Mineral Processing
	Spent surface impoundment solids	Mineral Processing
	Spent surface impoundment liquids	Mineral Processing
	Waste filtrate	Mineral Processing
	Waste solvent	Mineral Processing
	Wastewater from caustic wet APC	Mineral Processing
	Waste zinc contaminated with mercury	Mineral Processing
Rhenium	APC Dust/Sludge	Mineral Processing
	Spent Barren Scrubber Liquor	Mineral Processing
	Spent Rhenium Raffinate	Mineral Processing
	Roaster Dust	Mineral Processing
	Spent Ion Exchange/SX Solutions	Mineral Processing
	Spent Salt Solutions	Mineral Processing
	Slag	Mineral Processing
Scandium	Crud from the bottom of the solvent extraction unit	Mineral Processing
	Dusts and spent filters from decomposition	Mineral Processing
	Spent acids	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Scandium (continued)	Spent ion exchange resins and backwash	Mineral Processing
	Spent solvents from solvent extraction	Mineral Processing
	Spent wash water	Mineral Processing
	Waste chlorine solution	Mineral Processing
	Waste solutions/solids from leaching and precipitation	Mineral Processing
Selenium	Spent filter cake	Mineral Processing
	Plant process wastewater	Mineral Processing
	Slag	Mineral Processing
	Tellurium slime wastes	Mineral Processing
	Waste Solids	Mineral Processing
Silicon and	APC Dust Sludge	Mineral Processing
Ferrosilicon	Dross discard	Mineral Processing
	Slag	Mineral Processing
Sulfur	Airborne emissions from sulfuric acid production	Mineral Processing
	Spent catalysts (Claus process)	Mineral Processing
	Spent vanadium pentoxide catalysts from sulfuric acid production	Mineral Processing
	Tail gases	Mineral Processing
	Wastewater from wet-scrubbing, spilled product and condensates	Mineral Processing
Synthetic Rutile	APC Dust/Sludges	Mineral Processing
	Spent Iron Oxide Slurry	Mineral Processing
	Spent Acid Solution	Mineral Processing
Tantalum, Columbium	APC Dust Sludge	Mineral Processing
and Ferrocolumbium	Digester Sludge	Mineral Processing
	Spent Potassium Titanium Chloride	Mineral Processing
	Process Wastewater	Mineral Processing
	Spent Raffinate Solids	Mineral Processing
	Scrubber Overflow	Mineral Processing
	Slag	Mineral Processing
	WWTP Liquid Effluent	Mineral Processing
	WWTP Sludge	Mineral Processing
Tellurium	Slag	Mineral Processing
	Fumes of telluride dioxide	Mineral Processing
	Solid waste residues	Mineral Processing
	Waste Electrolyte	Mineral Processing
	Wastewater	Mineral Processing
Tin	Brick Lining and Fabric Filters	Mineral Processing
	Dross	Mineral Processing
	Process Wastewater and Treatment Sludge	Mineral Processing
	Slag	Mineral Processing
	Slimes	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Tin (continued)	Waste Acid and Alkaline baths	Mineral Processing
Titanium and	Spent Brine Treatment Filter Cake	Mineral Processing
Titanium Dioxide	FeCl Treatment Sludge	Mineral Processing
	Waste Ferric Chloride	Mineral Processing
	Finishing Scrap	Mineral Processing
	Leach Liquor and Sponge Wash Water	Mineral Processing
	Waste Non-Contact Cooling Water	Mineral Processing
	Pickling Liquor and Wash Water	Mineral Processing
	Scrap Detergent Wash Water	Mineral Processing
	Scrap Milling Scrubber Water	Mineral Processing
	Reduction Area Scrubber Water	Mineral Processing
	Chlorination Off gas Scrubber Water	Mineral Processing
	Chlorination Area - Vent Scrubber Water	Mineral Processing
	Melt Cell Scrubber Water	Mineral Processing
	Chlorine Liquefaction Scrubber Water	Mineral Processing
	Chip Crushing Scrubber Water	Mineral Processing
	Casting Crucible Contact Cooling Water	Mineral Processing
	Smut from Mg Recovery	Mineral Processing
	Spent Surface Impoundment Liquids	Mineral Processing
	Spent Surface Impoundment Solids	Mineral Processing
	TiCl4 Purification Effluent	Mineral Processing
	Spent Vanadium Oxychloride	Mineral Processing
	Sodium Reduction Container Reconditioning Wash Water	Mineral Processing
	Casting Crucible Wash Water	Mineral Processing
	Waste Acids (Chloride process)	Mineral Processing
	Waste Solids (Chloride process)	Mineral Processing
	Waste Acids (Sulfate process)	Mineral Processing
	Waste Solids (Sulfate process)	Mineral Processing
	WWTP Liquid Effluent	Mineral Processing
	WWTP Sludge/Solids	Mineral Processing
Tungsten	Spent Acid and Rinse water	Mineral Processing
	Scrubber wastewater	Mineral Processing
	Process wastewater treatment plant effluent	Mineral Processing
	Water of formation	Mineral Processing
Uranium	Waste Nitric Acid from Production of UO ₂	Mineral Processing
	Vaporizer Condensate	Mineral Processing
	Superheater Condensate	Mineral Processing
	Slag	Mineral Processing
	Uranium Chips from Ingot Production	Mineral Processing
	Waste Calcium Fluoride	Mineral Processing

Commodity	Waste Stream	Nature of Operation
Vanadium	Filtrate and Process Wastewaters	Mineral Processing
	Solid Waste	Mineral Processing
	Spent Precipitate	Mineral Processing
	Slag	Mineral Processing
	Wet scrubber wastewater	Mineral Processing
Zinc	Acid Plant Blowdown	Mineral Processing
	Spent Cloths, Bags, and Filters	Mineral Processing
	Waste Ferrosilicon	Mineral Processing
	Spent Goethite and Leach Cake Residues	Mineral Processing
	Saleable residues	Mineral Processing
	Process Wastewater	Mineral Processing
	Discarded Refractory Brick	Mineral Processing
	Spent Surface Impoundment Liquid	Mineral Processing
	Spent Surface Impoundment Solids	Mineral Processing
	Spent Synthetic Gypsum	Mineral Processing
	TCA Tower Blowdown (ZCA Bartlesville, OK - Electrolytic Plant)	Mineral Processing
	Wastewater Treatment Plant Liquid Effluent	Mineral Processing
	Wastewater Treatment Plant Sludge	Mineral Processing
	Zinc-lean Slag	Mineral Processing
Zirconium and	Spent Acid leachate from zirconium alloy production	Mineral Processing
Hafnium	Spent Acid leachate from zirconium metal production	Mineral Processing
	Ammonium Thiocyanate Bleed Stream	Mineral Processing
	Reduction area-vent wet APC wastewater	Mineral Processing
	Caustic wet APC wastewater	Mineral Processing
	Feed makeup wet APC wastewater	Mineral Processing
	Filter cake/sludge	Mineral Processing
	Furnace residue	Mineral Processing
	Hafnium filtrate wastewater	Mineral Processing
	Iron extraction stream stripper bottoms	Mineral Processing
	Leaching rinse water from zirconium alloy production	Mineral Processing
	Leaching rinse water from zirconium metal production	Mineral Processing
	Magnesium recovery area vent wet APC wastewater	Mineral Processing
	Magnesium recovery off-gas wet APC wastewater	Mineral Processing
	Sand Chlorination Off-Gas Wet APC wastewater	Mineral Processing
	Sand Chlorination Area Vent Wet APC wastewater	Mineral Processing
	Silicon Tetrachloride Purification Wet APC wastewater	Mineral Processing
	Wet APC wastewater	Mineral Processing
	Zirconium chip crushing wet APC wastewater	Mineral Processing
	Zirconium filtrate wastewater	Mineral Processing

EXHIBIT 4-3

LISTING OF HAZARDOUS MINERAL PROCESSING WASTES BY COMMODITY SECTOR

		Reported	Gei	Reporteneration 00mt/yr	า	Number of Facilities			тс	Met	als					r Hazar racteris	
Commodity	Waste Stream	Generation (1000mt/yr)	Min	Avg.	Max	with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	lgnit	Rctv
Alumina and Aluminum Metallurgical grade alumina is extracted from bauxite by the Bayer process and aluminum is obtained from this purified ore by electrolysis via the Hall-Heroult process. The Bayer process consists of the following five steps: (1) ore preparation, (2) bauxite digestion, (3) clarification, (4) aluminum	Cast house dust	19	19	19	19	23			Y			Y			N?	N?	N?
hydroxide precipitation, and (5) calcination to anhydrous alumina. In the Hall-Heroult process, aluminum is produced through the electrolysis of alumina dissolved in a molten cryolite-based bath, with molten aluminum being deposited on a carbon cathode.	Electrolysis waste	58	58	58	58	23					Y?				N?	N?	N?
Antimony Primary antimony is usually produced as a by- product or co-product of mining, smelting, and refining of other antimony-containing ores such as	Autoclave filtrate	NA	0.32	27	54	6	Y?		Y?		Y?	Y?			Y?	N?	N?
tetrahedrite or lead ore. Antimony can be produced using either pyrometallurgical processes or a hydrometallurgical process. For the pyrometallurgical processes, the method of recovery depends on the antimony content of the sulfide ore,	Stripped anolyte solids	0.19	0.19	0.19	0.19	2	Y?								N?	N?	N?
and will consist of either volatilization, smelting in a blast furnace, liquation, or iron precipitation. Antimony also can be recovered hydrometallurgically by leaching and electrowinning.	Slag and furnace residue	21	21	21	21	6					Y?				N?	N?	N?
Beryllium Bertrandite and beryl ores are treated using two separate processes to produce beryllium sulfate, BeSO ₄ : a counter-current extraction process and	Chip treatment wastewater	NA	0.2	100	2000	2				Y?					N?	N?	N?
the Kjellgren-Sawyer process. The intermediates from the two ore extraction processes are combined and fed to another extraction process. This extraction process removes impurities solubilized during the processing of the bertrandite and beryl	Spent barren filtrate	55	55	55	55	1							Y		N?	N?	N?
ores and converts the beryllium sulphate to beryllium hydroxide, $Be(OH)_2$. The beryllium hydroxide is further converted to beryllium fluoride, BeF_2 , which is then catalytically reduced to form metallic beryllium.	Filtration discard	NA	0.2	45	90	2					Y?				N?	N?	N?

		Reported	Ge	Report neratio 00mt/yr	n	Number of Facilities			тс	Met	als					r Hazar racteris	
Commodity	Waste Stream	Generation (1000mt/yr)	Min	Avg.	Max	with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	lgnit	Rctv
Bismuth	Alloy residues	NA	0.1	3	6	1					Y?				N?	N?	N?
Bismuth is recovered mainly during the smelting of copper and lead ores. Bismuth-containing dust from	Spent caustic soda	NA	0.1	6.1	12	1					Y?				N?	N?	N?
copper smelting operations is transferred to lead	Electrolytic slimes	NA	0	0.02	0.2	1					Y?				N?	N?	N?
smelting operations for recovery. At lead smelting operations bismuth is recovered either by the	Lead and zinc chlorides	NA	0.1	3	6	1					Y?				N?	N?	N?
Betterton-Kroll process or the Betts Electrolytic	Metal chloride residues	3	3	3	3	1					Y?				N?	N?	N?
process. In the Betterton-Kroll process, magnesium and calcium are mixed with molten lead to form a	Slag	NA	0.1	1	10	1					Y?				N?	N?	N?
dross that contains bismuth. The dross is treated with chlorine or lead chloride and oxidized by using	Spent electrolyte	NA	0.1	6.1	12	1					Y?				N?	N?	N?
air or caustic soda to remove impurities. In the Betts	Spent soda solution	NA	0.1	6.1	12	1					Y?				Y?	N?	N?
Electrolytic process, lead bullion is electrolyzed. The resulting impurities, including bismuth, are	Waste acid solutions	NA	0.1	6.1	12	1									Y?	N?	N?
smelted, reduced and refined.	Waste acids	NA	0	0.1	0.2	1									Y?	N?	N?
Cadmium	Caustic washwater	NA	0.19	1.9	19	2			Y?						Y?	N?	N?
Cadmium is obtained as a byproduct of zinc metal production. Cadmium metal is obtained from zinc fumes or precipitates via a hydrometallurgical or a	Copper and lead sulfate filter cakes	NA	0.19	1.9	19	2			Y?		Y?				N?	N?	N?
pyrometallurgical process. The hydrometallurgical process consists of the following steps: (1)	Copper removal filter cake	NA	0.19	1.9	19	2			Y?						N?	N?	N?
precipitates leached with sulfuric acid, (2) cadmium precipitated with a zinc dust addition, (3) precipitate	Iron containing impurities	NA	0.19	1.9	19	2			Y?						N?	N?	N?
filtered and pressed into filter cake, (4) impurities	Spent leach solution	NA	0.19	1.9	19	2	Y?		Y?		Y?				Y?	N?	N?
removed from filter cake to produce sponge, (5) sponge dissolved with sulfuric acid, (6) electrolysis	Lead sulfate waste	NA	0.19	1.9	19	2			Y?		Y?				N?	N?	N?
of solution, and (7) cadmium metal melted and cast. The pyrometallurgical process consists of the	Post-leach filter cake	NA	0.19	1.9	19	2			Y?						N?	N?	N?
following steps: (1) cadmium fumes converted to	Spent purification solution	NA	0.19	1.9	19	2			Y?						Y?	N?	N?
water- or acid-soluble form, (2) leached solution purified, (3) galvanic precipitation or electrolysis, and	Scrubber wastewater	NA	0.19	1.9	19	2			Y?						Y?	N?	N?
(4) metal briquetted or cast.	Spent electrolyte	NA	0.19	1.9	19	2			Y?						Y?	N?	N?
	Zinc precipitates	NA	0.19	1.9	19	2			Y?						N?	N?	N?
Calcium Calcium metal is produced by the Aluminothermic method. In the Aluminothermic method, calcium oxide, obtained by quarrying and calcining calcium limestone, is blended with finely divided aluminum and reduced under a high temperature vacuum. The process produces 99% pure calcium metal which can be further purified through distillation.	Dust with quicklime	0.04	0.04	0.04	0.04	1									Y?	N?	N?

DOCUMENT

US EPA ARCHIVE

		Reported	Ge	Report neratio 00mt/yr	n	Number of Facilities			тс	Met	als					r Hazar racteris	
Commodity	Waste Stream	Generation (1000mt/yr)	Min	Avg.	Мах	with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	Ignit	Rctv
Chromium and Ferrochromium Chromite ore is prepared for processing using several methods, depending on the ore source and the end use requirements, although many of these beneficiation operations may not be conducted in the United States. Either ferrochromium or sodium	ESP dust	3	3	3	3	1				Y			Y		N?	N?	N?
chromate is initially produced, and may be sold or further processed to manufacture other chromium compounds, as well as chromium metal. Ferrochromium is made by smelting chromite ore in an electric arc furnace with flux materials and carbonaceous redcutant.	GCT sludge	NA	0.03	0.3	3	1				Y?					N?	N?	N?
Coal Gas Coal is crushed and gasified in the presence of steam and oxygen, producing carbon dioxide and carbon monoxide, which further react to produce carbon oxides, methane and hydrogen. The product gas is separated from the flue gas, and is processed and purified to saleable methane.	Multiple effects evaporator concentrate	NA	0	0	65	1	Y						Y		N?	N?	N?
Copper	Acid plant blowdown	5300	5300	5300	5300	10	Y		Υ	Υ	Y	Υ	Y	Υ	Y	N?	N?
Copper is recovered from ores using either pyrometallurgical or hydrometallurgical processes.	APC dusts/sludges	NA	1	220	450	10	Y?								N?	N?	N?
In both cases, the copper-bearing ore is crushed, ground, and concentrated (except in dump leaching).	Waste contact cooling water	13	13	13	13	10	Y?								N?	N?	N?
Pyrometallurgical processing can take as many as five steps: roasting, smelting, converting, fire	Tankhouse slimes	4	4	4	4	10	Y?				Y?		Y?	Y?	N?	N?	N?
refining, and electrorefining. Hydrometallurgical	Spent bleed electrolyte	310	310	310	310	10	Y		Υ	Υ	Υ		Υ	Υ	Y	N?	N?
processing involves leaching, followed by either precipitation or solvent extraction and	Spent furnace brick	3	3	3	3	10				Y?					N?	N?	N?
electrowinning.	Process wastewaters	4900	4900	4900	4900	10	Y		Y		Y	Y	Y?		Y	N?	N?
	WWTP sludge	6	6	6	6	10			Y?		Y?				N?	N?	N?

		Reported	Ge	Reportention Neration 00mt/yr	n	Number of Facilities			тс	Image: second							
Commodity	Waste Stream	Generation (1000mt/yr)	Min	Avg.	Мах	with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	Ignit	Rctv
Elemental Phosphorus	Andersen Filter Media	0.46	0.46	0.46	0.46	2			Υ						N?	N?	N?
Phosphate rock or sintered/agglomerated fines are charged into an electric arc furnace with coke and	Precipitator slurry	160	160	160	160	2			Y?						N?	Y	Y
silica. This yields calcium silicate slag and	NOSAP slurry	160	160	160	160	2									N?	N?	Y
ferrophosphorus, which are tapped. Dusts are removed from the furnace offgases and phosphorus	Phossy Water	670	670	670	670	2			Y?						N?	Y	Y
is removed from the dusts by condensation.	Furnace scrubber blowdown	410	410	410	410	2			Y						Y	N?	N?
	Furnace Building Washdown	700	700	700	700	2			Y						N?	N?	N?
Fluorspar and Hydrofluoric Acid Raw fluorspar ore is crushed, ground, and concentrated. Acid grade fluorspar (a pure form of concentrate) is mixed with sulfuric acid in a heated retort kiln, reacting to produce hydrogen fluoride gas and fluorogypsum. The gas is cooled, scrubbed, and condensed, and sold as either hydrofluoric acid solution or anhydrous hydrogen fluoride.	Off-spec fluosilicic acid	NA	0	15	44	3									Y?	N?	N?
Germanium Germanium is recovered as a by-product of other	Waste acid wash and rinse water	NA	0.4	2.2	4	4	Y?		Y?	Y?	Y?		Y?	Y?	Y?	N?	N?
metals, mostly copper, zinc, and lead. Germanium- bearing residues from zinc-ore processing facilities, a main source of germanium metal, are roasted and	Chlorinator wet air pollution control sludge	NA	0.01	0.21	0.4	4	Y?		Y?	Y?	Y?		Y?	Y?	N?	N?	N?
sintered. The sintering fumes, containing oxidized germanium, are leached with sulfuric acid to form a	Hydrolysis filtrate	NA	0.01	0.21	0.4	4	Y?		Y?	Y?	Y?		Y?	Y?	N?	N?	N?
solution. Germanium is precipitated from the solution by adding zinc dust. Following precipitation, the germanium concentrates are refined by adding	Leach residues	0.01	0.01	0.01	0.01	3			Y?		Y?				N?	N?	N?
hydrochloric acid or chlorine gas to produce germanium tetrachloride, which is hydrolyzed to produce solid germanium dioxide. The final step	Spent acid/leachate	NA	0.4	2.2	4	4	Y?				Y?				Y?	N?	N?
involves reducing germanium dioxide. The final step to produce germanium metal.	Waste still liquor	NA	0.01	0.21	0.4	4	Y?		Y?	Y?	Y?		Y?	Y?	N?	Y?	N?

		Reported Generation (1000mt/yr)NANANA141470.41	Ge	/Report neratio 00mt/yr	n	Number of Facilities			тс	Meta	als					r Hazar racteris	
Commodity	Waste Stream	Generation	Min	Avg.	Мах	with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	Ignit	Rctv
Gold and Silver Gold and Silver may be recovered from either ore or the refining of base metals. Extracted ore is crushed or ground and then subjected to oxidation by roasting, autoclaving, bio-oxidation, or chlorination, and then cyanide leaching (heap, vat, or agitation). The metals are recovered by activated carbon loading or the Merrill Crowe process. Activated carbon loading involves bringing precious metal leach solutions into contact with activated carbon by the carbon-in-column, carbon-in-pulp, or carbon-in-	Slag	NA	0.1	360	720	16								Y?	N?	N?	N?
leach process. Gold and silver are then separated by acid leaching or electrolysis. The Merrill Crowe process consistes of filtering and deaerating the leach solution and then precipitating the precious metals with zinc powder. The solids are filtered out, melted and cast into bars. The recovery of precious metals from lead refinery slimes is a normal part of the operation called "desilverizing." Lead from previous stages of refining is brought into contact with a zinc bath which absorbs the precious metals. Base metals are removed and the dore is sent to refining.	Spent furnace dust	NA	0.1	360	720	16								Y?	Y?	N?	N?
Lead Lead ores are crushed, ground, and concentrated.	Acid plant sludge	14	14	14	14	3									Y?	N?	N?
Pelletized concentrates are then fed to a sinter unit with other materials (e.g., smelter byproducts, coke).	Baghouse incinerator ash	NA	0.3	3	30	3			Y		Y				N?	N?	N?
The sintered material is then introduced into a blast furnace along with coke and fluxes. The resulting	Slurried APC Dust	7	7	7	7	3			Y		Y				N?	N?	N?
bullion is drossed to remove lead and other metal	Solid residues	0.4	0.4	0.4	0.4	3					Y?				N?	N?	N?
oxides. The lead bullion may also be decopperized before being sent to the refining stages. Refining	Spent furnace brick	1	1	1	1	3					Y				N?	N?	N?
operations generally consist of several steps, including (in sequence) softening, desilverizing, dezincing, bismuth removal and final refining.	Stockpiled miscellaneous plant waste	NA	0.3	67	130	3			Y		Y				N?	N?	N?
During final refining, lead bullion is mixed with various fluxes and reagents to remove remaining	WWTP solids/sludges	380	380	380	380	3			Y?		Y?				Y	N?	N?
impurities.	WWTP liquid effluent	2600	2600	2600	2600	3					Y?				Y?	N?	N?

		Papartad	Ge	Reportenten neration 00mt/yr	n	Number of Facilities			тс	Met	als					r Hazar racteris	
Commodity	Waste Stream	Reported Generation (1000mt/yr)	Min	Avg.	Max	with	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	lgnit	Rctv
Magnesium and Magnesia from Brines Magnesium is recovered through two processes: (1) electrolytic and (2) thermal. In electrolytic production with hydrous feed, magnesium hydroxide is precipitated from seawater and settled out. The underflow is dewatered, washed, reslurried with wash water, and neutralized with HCL and H_2SO_4 . The brine is filtered, purified, dried, and fed into the electrolytic cells. Alternatively, surface brine is pumped to solar evaporation ponds, where it is dried, concentrated, and purified. The resulting powder is melted, fed into the electrolytic cells, and then evaporation processors	Cast house dust	NA	0.076	0.76	7.6	1		Y?							N?	N?	N?
then casted. The two thermal production processes for magnesium are the carbothermic process and the silicothermic process. In the carbothermic process, magnesium oxide is reduced with carbon to produce magnesium in the vapor phase, which is recovered by shock cooling. In the silicothermic process, silica is reacted with carbon to give silicon metal which is subsequently used to produce magnesium. Magnesia is produced by calcining magnesite or magnesium hydroxide or by the thermal decomposition of magnesium chloride, magnesium sulfate, magnesium sulfite, nesquehonite, or the basic carbonate.	Smut	26	26	26	26	2		Y							N?	N?	N?
Mercury Mercury currently is recovered only from gold ores. Sulfide-bearing gold ore is roasted, and the mercury is recovered from the exhaust gas. Oxide-based gold ore is crushed and mixed with water, and sent	Dust	0.007	0.007	0.007	0.007	7						Y?			N?	N?	N?
to a classifier, followed by a concentrator. The concentrate is sent to an agitator, where it is leached with cyanide. The slurry is filtered and the filtrate is sent to electrowinning, where the gold and mercury	Quench water	NA	63	77	420	7					Y?	Y?			N?	N?	N?
are deposited onto stainless steel wool cathodes. The cathodes are sent to a retort, where the mercury vaporizes with other impurities. The vapor is condensed to recover the mercury which is then purified.	Furnaceresidue	0.077	0.077	0.077	0.077	7						Y?			N?	N?	N?

		Demontori	Ge	/Report neratio 00mt/yr	n	Number of			тс	: Met	als					r Hazar racteris	
Commodity	Waste Stream	Reported Generation (1000mt/yr)	Min	Avg.	Max	Facilities with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	lgnit	Rctv
Molybdenum, Ferromolybdenum, and Ammonium Molybdate Production of molybdenum and molybdenum products, including ammonium molybdate, begins with roasting. Technical grade molybdic oxide is made by roasting concentrated ore. Pure molybdic oxide is produced from technical grade molybdic oxide either by sublimation and condensing, or by	Flue dust/gases	NA	1.1	250	500	11					Y?				N?	N?	N?
leaching. Ammonium molybdate is formed by reacting technical grade oxide with ammonium hydroxide and crystallizing out the pure molybdate. Molybdenum powder is formed using hydrogen to reduce ammonium molybdate or pure molybdic oxide. Ferromolybdenum is typically produced by reaction of technical grade molybdic oxide and iron oxide with a conventional metallothermic process using silicon and/or aluminum as the reductant.	Liquid residues	1	1	1	1	2	Y?		Y?		Y?		Y?		N?	N?	N?
Platinum Group Metals Platinum-group metals can be recovered from a variety of different sources, including electrolytic slimes from copper refineries and metal ores. The	Slag	NA	0.0046	0.046	0.46	3					Y?		Y?		N?	N?	N?
riety of different sources, including electrolytic mes from copper refineries and metal ores. The oduction of platinum-group metals from ore volves mining, concentrating, smelting, and fining. In the concentrating step, platinum ore is ushed and treated by froth flotation. The uncentrates are dried, roasted, and fused in a	Spent acids	NA	0.3	1.7	3	3					Y?			Y?	Y?	N?	N?
smelter furnace, which results in the formation of platinum-containing sulfide matte. Solvent extraction is used to separate and purify the six platinum-group metals in the sulfide matte.	Spent solvents	NA	0.3	1.7	3	3					Y?			Y?	N?	Y?	N?

		Deperted	Ge	Reportenten Reration 00mt/yr	n	Number of Facilities			тс	C Met	als					r Hazar racteris	
Commodity	Waste Stream	Reported Generation (1000mt/yr)	Min	Avg.	Max	with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	lgnit	Rctv
Rare Earths Rare earth elements are produced from monazite	Spent ammonium nitrate processing solution	14	14	14	14	1									Y	N?	N?
and bastnasite ores by sulfuric and hydrochloric acid digestion. Processing of rare earths involves fractional crystallization and precipitation followed by	Electrolytic cell caustic wet APC sludge	NA	0.07	0.7	7	1									Y?	N?	N?
solvent extraction to separate individual rare earth	Process wastewater	7	7	7	7	1					Υ				Y?	N?	N?
elements from one another. Ion exchange or calcium reduction produces highly pure rare earths	Spent scrubber liquor	NA	0.1	500	1000	1									Y?	N?	N?
in small quantities. Electrolytic reduction of rare	Solvent extraction crud	NA	0.1	2.3	4.5	1									N?	Y?	N?
earth chlorides followed by crushing produces a complex alloy of rare earth metals commonly known	Spent lead filter cake	NA	0.17	0.21	0.25	1					Y?				N?	N?	N?
as mischmetal.	Waste solvent	NA	0.1	50	100	1									N?	Y?	N?
	Wastewater from caustic wet APC	NA	0.1	500	1000	1				Y?	Y?				Y?	N?	N?
Rhenium In general, rhenium is recovered from the off-gases produced when molybdenite, a byproduct of the processing of porphyry copper ores for molybdenum, is roasted. During the roasting process, molybdenite concentrates are converted to molybdic oxide and	Spent barren scrubber liquor	NA	0	0.1	0.2	2							Y?		N?	N	N
rhenium is converted to rhenium heptoxide. The rhenium oxides are sublimed and carried off with the roaster flue gas. Rhenium is then recovered from the off-gases by the following five steps: (1) scrubbing; (2) solvent extraction or ion exchange; (3) precipitation (addition of H_2S and HCI) and filtration; (4) oxidation and evaporation; and (5) reduction.	Spent rhenium raffinate	88	88	88	88	2					Y?				N?	N?	N?
Scandium Scandium is generally produced by small bench- scale batch processes. The principal domestic scandium resource is fluorite tailings containing thortveitite and associated scandium-enriched minerals. Scandium can be recovered from	Spent acids	NA	0.7	3.9	7	7									Y?	N?	N?
thortveitite using several methods. Each method involves a distinct initial step (i.e., acid digestion, grinding, or chlorination) followed by a set of common recovery steps, including leaching, precipitation, filtration, washing, and ignition at 900°C to form scandium oxide.	Spent solvents from solvent extraction	NA	0.7	3.9	7	7									N?	Y?	N?

		Deported.	Ge	Reportention Reration 00mt/yr	ı	Number of Facilities			тс	C Met	als					r Hazar racteris	
Commodity	Waste Stream	Reported Generation (1000mt/yr)	Min	Avg.	Max	with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	Ignit	Rctv
Selenium The two principle processes for selenium recovery are smelting with soda ash and roasting with soda	Spent filter cake	NA	0.05	0.5	5	3							Y?		N?	N?	N?
ash. Other methods include roasting with fluxes, during which the selenium is either volatilized as an oxide and recovered from the flue gas, or is	Plant process wastewater	66	66	66	66	2					Y				Y	N?	N?
incorporated in a soluble calcine that is subsequently leached for selenium. In some processes, the selenium is recovered both from the	Slag	NA	0.05	0.5	5	3							Y?		N?	N?	N?
flue gas and from the calcine. To purify the crude selenium, it is dissolved in sodium sulfite and filtered to remove unwanted solids. The resulting filtrate is	Tellurium slime wastes	NA	0.05	0.5	5	3							Y?		Ν	N?	N?
acidified with sulfuric acid to precipitate selenium. The selenium precipitate is distilled to drive off impurities.	Waste solids	NA	0.05	0.5	5	3							Y?		N?	N?	N?
Synthetic Rutile Synthetic rutile is manufactured through the upgrading of ilmenite ore to remove impurities (mostly iron) and yield a feedstock for production of titanium tetrachloride through the chloride process.	Spent iron oxide slurry	45	45	45	45	1			Y?	Y?					N?	N?	N
The various processes developed can be organized in three categories: (1) processes in which the iron in the ilmenite ore is completely reduced to metal and separated either chemically or physically; (2) processes in which iron is reduced to the ferrous	APC dust/sludges	30	30	30	30	1			Y?	Y?					N?	N?	N
state and chemically leached from the ore; and (3) processes in which selective chlorination is used to remove the iron. In addition, a process called the Benelite Cyclic process uses hydrochloric acid to leach iron from reduced ilmenite.	Spent acid solution	30	30	30	30	1			Y?	Y?					Y?	N?	N
Tantalum, Columbium, and Ferrocolumbium Tantalum and columbium ores are processed by ohysically and chemically breaking down the ore to form columbium and tantalum salts or oxides, and	Digester sludge	1	1	1	1	2									Y?	N?	N
separating the columbium and tantalum salts or oxides from one another. These salts or oxides may be sold, or further processed to reduce the salts to	Process wastewater	150	150	150	150	2	Y?		Y?	Y?	Y?		Y?		Y	N?	N
the respective metals. Ferrocolumbium is made by smelting the ore with iron, and can be sold as a product or further processed to produce tantalum and columbium products.	Spent raffinate solids	2	2	2	2	2									Y?	N?	N

US EPA ARCHIVE DOCUMENT

		Reported	Gei	Reportention Reration 00mt/yr	า	Number of Facilities			тс	C Met	als					r Hazar racteris	
Commodity	Waste Stream	Generation (1000mt/yr)	Min	Avg.	Max	with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	Ignit	Rctv
Tellurium The process flow for the production of tellurium can be separated into two stages. The first stage involves the removal of copper from the copper	Slag	NA	0.2	2	9	2							Y?		N?	N?	N?
slimes. The second stage involves the recovery of tellurium metal and purification of the recovered tellurium. Copper is generally removed from slimes by aeration in dilute sulfuric acid, oxidative pressure-	Solid waste residues	NA	0.2	2	9	2							Y?		N?	N?	N?
leaching with sulfuric acid, or digestion with strong acid. Tellurous acid (in the form of precipitates) is then recovered by cementing, leaching the cement	Waste electrolyte	NA	0.2	2	20	2					Y?		Y?		N?	N?	N?
mud, and neutralizing with sulfuric acid. Tellurium is recovered from the precipitated tellurous acid by the following three methods: (1) direct reduction; (2) acid precipitation; and (3) electrolytic purification.	Wastewater	NA	0.2	20	40	2							Y?		Y?	N?	N?
Titanium and Titanium Dioxide Titanium ores are utilized in the production of four	Pickle liquor and wash water	NA	2.2	2.7	3.2	3			Y?	Y?	Y?				Y?	N?	N?
major titanium-based products: titanium dioxide (TiO ₂) pigment, titanium tetrachloride (TiCl ₄), titanium sponge, and titanium ingot/metal. The primary	Scrap milling scrubber water	NA	4	5	6	1			Y?	Y?	Y?		Y?		N?	N?	N?
titanium ores for manufacture of these products are ilmenite and rutile. TiO ₂ pigment is manufactured	Smut from Mg recovery	NA	0.1	22	45	2									N?	N?	Y
through either the sulfate, chloride, or chloride- ilmenite process. The sulfate process employs digestion of ilmenite ore or TiO ₂ -rich slag with	Leach liquor and sponge wash water	NA	380	480	580	2				Y?	Y?				Y	N?	N?
sulfuric acid to produce a cake, which is purified and calcined to produce TiO_2 pigment. In the chloride	Spent surface impoundment liquids	NA	0.63	3.4	6.7	7				Y?	Y?				N?	N?	N?
process, rutile, synthetic rutile, or high-purity ilmenite is chlorinated to form $TiCl_4$, which is purified to form	Spent surface impoundments solids	36	36	36	36	7				Y?	Y?				N?	N?	N?
TiO ₂ pigment. In the chloride-ilmenite process, a low-purity ilmenite is converted to TiCl₄ in a two-stage chlorination process. Titanium sponge is	Waste acids (Sulfate process)	NA	0.2	39	77	2	Y			Y			Y	Y	Y	N	N
produced by purifying TiCl ₄ generated by the chloride or chloride-ilmenite process. Titanium sponge is cast into ingots for further processing into	Waste acids (Chloride process)	49	49	49	49	7				Y?	Y?		Y?		Y	Ν	Ν
titanium metal.	WWTP sludge/solids	420	420	420	420	7				Y?					Ν	Ν	Ν

		Reported	Ge	Reportentententen Reportententen Nortentententententententen Reportententententententententententententent	า	Number of Facilities			тс	Met	als		-			r Hazar racteris	
Commodity	Waste Stream	Generation (1000mt/yr)	Min	Avg.	Мах	with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	lgnit	Rctv
Tungsten Tungsten production consists of four distinct stages: (1) ore preparation, (2) leaching, (3) purification to APT, and (4) reducing APT to metal. Ore preparation involves gravity and flotation methods. Concentration is usually accomplished by froth flotation, supplemented by leaching, roasting, or magnetic or high tension separation. The concentrate is then processed to APT via either	Spent acid and rinse water	NA	0	0	21	6									Y?	N?	N?
sodium tungstate or tungstic acid (which was digested with aqueous ammonia) to solubilize the tungsten as ammonia tungstate. Further purification and processing yields APT. APT is converted to tungsten oxide by calcining in a rotary furnace. Tungsten oxides are reduced to metal powder in high temperature furnaces. Tungsten carbide is formed by reducing APT or tungsten oxides in the presence of carbon.	Process wastewater	NA	2.2	4.4	g	6									Y?	N?	N?
Uranium Uranium ore is recovered using either conventional milling or solution mining (<i>in situ leaching</i>).	Waste nitric acid from UO2 production	NA	1.7	2.5	3.4	17									Y?	N?	N?
Beneficiation of conventionally mined ores involves crushing and grinding the extracted ores followed by a leaching circuit. <i>In situ</i> operations use a leach	Vaporizer condensate	NA	1.7	9.3	17	17									Y?	N?	N?
solution to dissolve desirable uraniferous minerals from deposits in-place. Uranium in either case is removed from pregnant leach liquor and	Superheater condensate	NA	1.7	9.3	17	17									Y?	N?	N?
concentrated using solvent extraction or ion	Slag	NA	0	8.5	17	17									N?	Y?	N?
fluoride (UF ₆), which is then enriched and further refined to produce the fuel rods used in nuclear reactors.	Uranium chips from ingot production	NA	1.7	2.5	3.4	17									N?	Y?	N?

		Reported	Ge	Reporten neration 00mt/yr	n	Number of Facilities			тс	Met	als					r Hazar racteris	
Commodity	Waste Stream	Generation (1000mt/yr)	Min	Avg.	Мах	with Process	As	Ва	Cd	Cr	Pb	Hg	Se	Ag	Corr	Ignit	Rctv
Zinc	Acid plant blowdown	130	130	130	130	1	Y		Υ	Υ	Y?	Y?	Y	Υ	Y	Ν	Ν
Zinc-bearing ores are crushed and undergo flotation to produce concentrates of 50 to 60% zinc. Zinc is	Waste ferrosilicon	17	17	17	17	1					Y?				N?	N?	N?
then processed through either of two primary	Process wastewater	5000	5000	5000	5000	3	Y		Υ	Υ	Υ		Υ	Υ	Y	N?	N?
processing methods: electrolytic or pyrometallurgical. Electrolytic processing involves	Discarded refractory brick	1	1	1	1	1	Y?		Y?	Y?	Y?				N?	N?	N?
digestion with sulfuric acid and electrolytic refining. In pyrometallurgical processing, calcine is sintered	Spent cloths, bags, and filters	0.15	0.15	0.15	0.15	3			Y?		Y?	Y?	Y?	Y?	N?	N?	N?
and smelted in batch horizontal retorts, externally- heated continuous vertical retorts, or electrothermic furnaces. In addition, zinc is smelted in blast	Spent goethite and leach cake residues	15	15	15	15	3	Y		Y	Y	Y?	Y?	Y	Y	N?	N?	N?
furnaces through the Imperial Smelting Furnace process, which is capable of recovering both zinc	Spent surface impoundment liquids	1900	1900	1900	1900	3			Y?						Y	N?	N?
and lead from mixed zinc-lead concentrates.	WWTP Solids	0.75	0.75	0.75	0.75	3	Y?		Y?		Y?	Y?	Y?	Y?	N?	N?	N?
	Spent synthetic gypsum	16	16	16	16	3	Y?		Y		Y?				N?	N?	N?
	TCA tower blowdown	0.25	0.25	0.25	0.25	1			Y?		Y?	Y?	Y?		Y?	N?	N?
	Wastewater treatment plant liquid effluent	2600	2600	2600	2600	3			Y?						N?	N?	N?
Zirconium and Hafnium The production processes used at primary zirconium and hafnium manufacturing plants depend largely on	Spent acid leachate from Zr alloy prod.	NA	0	0	850	2									Y?	N?	N?
the raw material used. Six basic operations may be performed: (1) sand chlorination, (2) separation, (3)	Spent acid leachate from Zr metal prod.	NA	0	0	1600	2									Y?	N?	N?
calcining, (4) pure chlorination, (5) reduction, and (6) purification. Plants that produce zirconium and hafnium from zircon sand use all six of these	Leaching rinse water from Zr alloy prod.	NA	34	42	51	2									Y?	N?	N?
process steps. Plants which produce zirconium from zirconium dioxide employ reduction and purification steps only.	Leaching rinse water from Zr metal prod.	NA	0.2	1000	2000	2									Y?	N?	N?

Corr., Ignit., and Rctv. refer to the RCRA hazardous characteristics of corrosivity, ignitability, and reactivity.

EXHIBIT 4-4

IDENTIFICATION OF HAZARDOUS MINERAL PROCESSING WASTE STREAMS LIKELY SUBJECT TO THE LDRS

	Number of	Estimated Annual Generation Rate (1,000 mt/yr) (Rounded to the Nearest 2 Significant Figures)		
Mineral Processing Commodity Sectors	Waste Streams <u>1</u> /	Low Estimate	Medium Estimate	High Estimate
Alumina and Aluminum	2	77	77	77
Antimony	3	22	48	75
Beryllium	3	55	200	2,100
Bismuth	10	3.7	35	73
Cadmium	11	2.1	21	210
Calcium Metal	1	0.040	0.040	0.040
Chromium and Ferrochromium	2	3.0	3.3	6.0
Coal Gas	1	0	0	65
Copper	8	10,500	10,800	11,000
Elemental Phosphorus	6	2,100	2,100	2,100
Fluorspar and Hydrofluoric Acid	1	0	15	45
Germanium	6	0.84	5.0	9.2
Gold and Silver	2	0.2	720	1400
Lead	8	3,000	3,080	3,200
Magnesium and Magnesia from Brines	2	26	27	34
Mercury	3	63	77	420
Molybdenum, Ferromolybdenum, and Ammonium Molybdate	2	2.1	250	500
Platinum Group Metals	3	0.45	3.5	6.5
Rare Earths	8	21	1,050	2,100
Rhenium	2	88	88	88
Scandium	2	1.4	7.8	14
Selenium	5	66	68	86
Synthetic Rutile	3	100	100	100
Tantalum, Columbium, and Ferrocolumbium	3	150	150	150
Tellurium	4	0.80	26	78
Titanium and Titanium Dioxide	9	890	1,050	1,250
Tungsten	2	2.2	4.4	30
Uranium	5	6.8	32	58

EXHIBIT 4-4 (Contin	ued)
---------------------	------

Mineral Processing Commodity Sectors	Number of Waste Streams <u>1</u> /	Estimated Annual Generation Rate (1,000 mt/yr) (Rounded to the Nearest 2 Significant Figures) Low Estimate Medium Estimate High Estimate		
Zinc	11	9,800	9,800	9,800
Zirconium and Hafnium	4	34	1,000	4,500
TOTAL:	133	27,016	30,838	39,575

1/ In calculating the total number of waste streams per mineral sector, EPA included both non-wastewaters and wastewater mineral processing wastes and assumed that each of the hazardous mineral processing waste streams were generated in all three waste generation scenarios (low, medium, and high).