US ERA ARCHIVE DOCUMENT

NOTE

Subject: EPA Comments on NRG - Huntley Generating Station, Tonawanda, NY

Round 10 Draft Assessment Report

To: File

Date: March 28, 2012

1. On p. 6, Section 1.4, please correct the double "from the" in the second paragraph, line 7.

- 2. On p. 26, Section 3.3.1, the following statement made in the report "Based on our observations and evaluation of the settling pond embankment, it is our opinion that the embankment would have a hazard rating classification of low to remote." appears to contradict the hazard potential rating for the Sout Ash Pond. AMEC provided a hazard potential rating of significant for the South Ash Pond.
- 3. On p. 7, section 1.4.3 and p. 8, section 1.4.6, please provide clarity on the year of construction for both the South Settling Pond and Pond 3.
- 4. On p. 17, Section 2.7, first paragraph replace "bothe" with "both."
- 5. On p. 22, second bullet, "Principal Storm:" replace "sever" with "severe."
- 6. On p. 31, Section 4.2.2, separate the paragraph beginning with "Drawing C-34738 shows" from the title of the next section: "South Ash Settling Pond."
- 7. Is there an emergency action plan for the impoundments? If not, this should be stated and there should be a recommendation for the development of one.
- 8. Appendix A checklist sheet for Pond 1 indicates no liner, however in section 1.4.1 the report states that it has a 2-feet thick clay liner. Please clarify/correct.

September 13, 2012

Mr. Stephen Hoffman US Environmental Protection Agency Two Potomac Yard 2733 South Crystal Drive 5th Floor, N-5237 Arlington, VA 22202-2733

Delivered via e-mail to: hoffman.stephen@epa.gov,

<u>kohler.james@epa.gov</u>, and <u>englander.jana@epa.gov</u>.

RE: Comment Request on Coal Ash Site Assessment Round 10 Draft Report –

NRG Huntley Power, LLC's Huntley Electric Generating Station

Dear Mr. Hoffman:

In accordance with the extension granted by Jana Englander, US EPA on August 10, 2012, NRG is providing comments on the Coal Ash Site Assessment Round 10 Draft Report – NRG Huntley Power, LLC's Huntley Electric Generating Station on the extended deadline of September 14, 2012.

Please find enclosed the following comments as appendices of this letter:

Appendix A: NRG Comments on Draft Report of Dam Safety Assessment of Coal Combustion Surface Impoundments NRG Energy Huntley Generating Station Tonawanda, NY;

Appendix B: Current Inspection Report for all Huntley Ponds and Basins by GZA;

Appendix C: GZA Letter Response to AMEC Dam Safety Assessment Report of Coal Combustion Surface Impoundments NRG Energy Huntley Generating Station Tonawanda, NY including Hydrological and Stability Studies for all Huntley Ponds and Basins; and

Appendix D: Boring Information from a Geotechnical Report for the Huntley North and South EQ Basins;

NRG requests the opportunity to either discuss or review these changes with the EPA prior to finalization of the report.

Please direct any questions related to this submittal to my attention at (716) 879-3954.

NRG Huntley Power, LLC 3500 River Road Tonawanda, NY 14150

Sincerely,

Joseph J. Pietro

Environmental Coordinator

Enclosures (4)

cc: Thomas Coates, Joseph Schwab (NRG Energy, Inc.)

Paul Leuthauser, Carson Leikam (NRG Huntley Power, LLC)

Appendix A
NRG Comments on
Draft Report of Dam Safety Assessment of Coal
Combustion Surface Impoundments
NRG Energy
Huntley Generating Station
Tonawanda, NY

NRG Comments on Draft Report of Dam Safety Assessment of Coal Combustion Surface Impoundments NRG Energy Huntley Generating Station Tonawanda, NY

Section	Proposed Changes to Section
1.1, paragraph 5	Proposed to rewrite sentence as follows: "The ponds no longer receive CCW, still contain CCW and actively receive other waste streams from the plant, including treated effluent from Deminieralizer Neutralization Plant, compressor cooling water, floor and roof drains."
1.2, paragraph 1	Proposed to rewrite sentence as follows: "Ponds 1, 2 and 3 currently have drastically reduced flow from designed flow since they primarily served the retired 60 cycle units and are located to the north of the plant."
1.2, paragraph 2	Proposed to rewrite sentence as follows: "The ash settling ponds at Huntley are not included in the NID, as they do not meet the size, high hazard classification, or significant hazard classification requirements."
1.2.1	NRG takes exception to the hazard classification definitions used for this assessment as they are not consistent with the Army Corps of Engineers definitions of hazard classifications for national dam inspections. Furthermore, the Army Corps of Engineers definition for a significant hazard classification states possible loss of human life and likely significant property or environmental destruction. NRG disagrees with the classification by AMEC of the Huntley impoundments (i.e. Pond 2, Pond 3, North Equalization Pond, South Equalization Pond, and South Settling Pond) as significant hazards. Also, based on the NYS DEC Draft Guidance for Dam Hazard Classification, NRG further believes that a NYS DEC Hazard Class "A", i.e. "Low Hazard", would apply to all Ponds and Basins on the NRG Huntley Property.
1.2.2	Proposed to rewrite sentence as follows: "The required date to file for renewal of the permit was July 4, 2008."
1.4, paragraph 1 1.4, paragraph 1	Proposed to rewrite word from "Staley" to "Stanley." Proposed to eliminate sentence or rewrite sentence as follows: "Prior to 2010, the North and South EQ Basins and the South Settling Pond were not being inspected or monitored by a professional engineer. Presently, these ponds are inspected annually by a professional engineer."

1.4.6

1.4.1	Proposed to rewrite sentence as follows: "Pond 1 is located on the
	north side of the plant and is essentially below grade."
1.4.1	Proposed to remove the following incorrect assumption: Delete the
	following: "It is assumed the former use of the pond system for ash
	involved directing the flow of sluiced ash to one of the downstream
	ponds while the other was allowed to dewater, then after ash was
	removed the flow was switched to repeat the process."
1.4.2	Proposed to rewrite sentence as follows: "The pond is partially below
	grade and the downstream slopes of the berms are shown to be on
	2H:1V slopes with a maximum berm height of 4 feet, except at the
	outlet."
1:4:3	Proposed to add the following sentence between the sentence that
	ends in "not available." and the sentence that starts with "A provided
	plan sheet": "The pond is below grade on the south and east side and
	the berm height on the west side is a maximum of four feet."
1.4.6	Proposed to add the following sentence, which would follow directly
	after the first sentence of the section: "The pond is below grade on
	three sides and has a 40' dike at the outlet."

Table 2. Pond Size and Storage Data (All values

	_			pproimate)
Area	Surface Area (acre)	Maximum Height of Management Unit (feet)	Pond Volume at normal water el. (acre-ft) =	Stored Material Volume (cubic yards)
North Ponds ¹ (Inactive)				
Pond 1	0.40	5	4.0	Unknown
Pond 2	1.15	7	6.5	Unknown
Pond 3	1.20	7	12.60	Unknown
South Ponds ² (Active)				
North Equalization	1.58	3,3	7.76	None
South Equalization	1.58	5,3	8.16	Unknown
South Ash Settling	7.3	6.75⁴	47.5	7,500 ⁵

Propose to change Table 2 as follows:

2, Gerenal	All vegetation protruding through EQ Basins as been removed.
	Cracks and damage to EQ Basins have been repaired and basins have
	been sealed. Vegetation covering embankments have been cut for
	inspection. See Attached Inspection Report from GZA in Appendix
	B.
2.2.2	Proposed to rewrite sentence as follows: "Both inlet elevations are
	576.1 feet with outlet elevations of 575.7 feet to Pond 3 and 575.4
	feet to Pond 2, which controls the water depth in the pond to 10.1
	fact ''

2.7, paragraph 2 Proposed to rewrite sentence as follows: "The South Pond is used to settle and remove bottom ash on a regular basis."

2.7 paragraph 2	Proposed to rewrite sentence as follows: "The only construction plans and construction drawings available for the South Pond are P.E. Stamped Malcolm Pirnie drawings for the Outlet Structure Modifications."
2.7.1, paragraph 1	Proposed to rewrite sentence as follows: "The north and west sections are incised and the west and south sections are diked. The only outlet is on the diked west side."
3.2.2, General	NRG has provided in Appendix C a hydrological study from GZA for Pond 1, Pond 2, Pond 3, North and South EQ Basins, and South Settling Pond. According to the recommendation of GZA's Report, Page 14, in Appendix C, NRG is considering lowering the elevation of the existing overflow pipe for the North and South EQ Basins from EL. 579.3' to 578.3'. This one foot reduction in the operating level of the Basins will prevent overtopping of the EQ Basins for the ½ PMF event.
3.3.1, General	In regards to the <u>Seismic Analysis – South Ash Pond</u> , NRG has provided in Appendix C a Stability Analysis from GZA to address this deficiency.
3.3.2, General	NRG has provided in Appendix C a Stability Analysis from GZA to address this deficiency.
3.4, last sentence	NRG has provided boring information from a Geotechnical Report for the North and South EQ Basins in Appendix D to address this issue.
4.2, General	NRG has provided in Appendix C hydrological study and stability analyses from GZA, respectively, for Pond 1, Pond 2, Pond3, North and South EQ Basins, and South Settling Pond.
4.2.1	NRG requests documentation showing that the "minimum freeboard of 3 feet" is applicable to all the North and South Ponds.
4.2.2, paragraph 2	Vegetation covering embankments have been cut for inspection. See Attached Inspection Report from GZA in Appendix B.
4.2.2, General	In regards to the <u>South Ash Settling Pond</u> , NRG has provided in Appendix C a Stability Analysis from GZA to address this deficiency.
4.3.2, General	Vegetation covering embankments have been cut for inspection. See Attached Inspection Report from GZA in Appendix B.
Appendix D	Included in Appendix C is a GZA letter in response to the complete AMEC Dam Safety Assessment Report of Coal Combustion Surface Impoundments NRG Energy Huntley Generating Station Tonawanda, NY including Hydrological and Stability Studies for all Huntley Ponds and Basins.
Note:	These comments shall also apply where appropriate throughout the AMEC Report.

Appendix B Current Inspection Report for all Huntley Ponds and Basins by GZA

GZA GeoEnvironmental of New York

Engineers and Scientists

September 13, 2012 File: 21.0056662.00

Mr. Joseph P. Schwab NRG Energy Joseph.Schwab@nrgenergy.com

GZN

Re: GZA Evaluation of Impoundment Embankments Coal Combustion Surface Impoundments

NRG Energy Huntley Generating Station

Tonawanda, NY

Dear Mr. Schwab:

GZA GeoEnvironmental of New York (GZA) presents this letter report summarizing our evaluation of the coal combustion surface impoundment embankments at NRG's Huntley Generating Station in Tonawanda, New York (Site). We conducted a visual inspection of the embankments on Wednesday September 12, 2012 in general accordance with the New York State Department of Environmental Conservation (NYSDEC) "An Owners Guidance Manual for the Inspection and Maintenance of Dams in New York State".

GZA conducted this inspection in follow-up to a site reconnaissance conducted on July 6, 2012. The inspections were done on the following impoundments:

- North Basin Nos. 1, 2 and 3(vegetated embankments)
- South Equalization Basin (asphalt-lined bottom and embankments)
- North Equalization Basin (asphalt-lined bottom and embankments)
- South Ash Settling Basin (vegetated embankments)

NRG mowed down the heavy vegetation subsequent to July 6, to allow better inspection on September 16. NRG also patched distressed asphalt areas and applied asphalt sealant on the bottom liners and embankments of the South and North Equalization Basins.

Bart A. Klettke, P.E., of GZA, was accompanied by Joe Schwab, Regional Engineering and Construction Manager for NRG, and Joe Pietro, Environmental Coordinator at the Huntley Plant. Mr. Klettke observed and took photographs of the impoundments and their respective inlet and outlet flow structures. Photographs of the embankments are attached.

Our observance of the embankments showed the physical conditions to be in good to excellent condition, and in general conformance with their original design. The embankments generally had vegetative cover or hardscape protective cover (e.g. concrete matting, riprap, asphalt). We did not observe evidence of:

- o Sinkholes caused by internal erosion of embankment via piping.
- o Slide, Slump or Slip of the embankment slopes
- o Broken Down or Missing Slope Protection

Buffalo, New York 14203 716-685-2300 Fax: 716-685-3629 www.gza.com

- Erosion
- o Rodent Activity and Animal Impact which could create holes, tunnels and caverns.

In our opinion the existing vegetative and/or hardscape cover is sufficient to maintain stability for the impoundment embankments at the Huntley facility. We recommend that the vertical-walled incised embankments located at the north end of the south ash settling basin be sloped back or reinforced with large-size riprap/concrete slabs to provide better stabilization. This recommendation is made mainly for safety purposes for the dredging operations performed there – we do not feel that these embankments pose an environmental concern.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

Bart A. Klettke, P.E. Associate Principal (716) 844-7035

Bat a Kleik

bart.klettke@gza.com

Attachments:

North Ponds

Attachment 1 – North Pond No. 1 Photographs

Attachment 2 – North Pond No. 2 Photographs

Attachment 3 – North Pond No. 3 Photographs

South Ponds

Attachment 4 – South Ash Settling Basin Photographs

Attachment 5 – North and South Equalization Basin Photographs

Appendix C
GZA Letter Response to
AMEC Dam Safety Assessment Report of Coal
Combustion Surface Impoundments
NRG Energy
Huntley Generating Station
Tonawanda, NY
including Hydrological and Stability Studies
for all Huntley Ponds and Basins

September 13, 2012 File: 21.0056662.00

Mr. Joseph P. Schwab NRG Energy Joseph.Schwab@nrgenergy.com

Re: GZA Letter Response to AMEC

Dam Safety Assessment Report of

Coal Combustion Surface Impoundments NRG Energy Huntley Generating Station

Tonawanda, NY

Dear Mr. Schwab:

GZA GeoEnvironmental of New York (GZA) presents this letter response to the comments and recommendations presented in a recent Draft Report of Dam Safety Assessment of the coal combustion surface impoundments at NRGs Huntley Generating Station in Tonawanda, New York (Site). The report was issued by the United States Environmental Protection Agency (EPA) from a study conducted by AMEC Earth & Environmental, Inc. (AMEC).

BACKGROUND

The EPA has conducted nation-wide assessments of Coal Combustion Waste (CCW) impoundments at coal combustion energy producers. AMEC was hired by EPA to perform assessments of six (6) ponds at NRG's Huntley Site. AMEC's June 2011 assessment included a site visit to perform visual observations, inventory the CCW surface impoundments, assess the containment dikes, and to collect relevant historical impoundment documentation. Condition assessments, as accepted by the National Dam Safety Review Board (NDSRB), were ascribed by AMEC to each of the 6 impoundments, ranging from: "Satisfactory" – "Fair" – "Poor" – "Unsatisfactory" – "Not Rated" (ratings are defined below). AMEC completed EPA's Coal Combustion Dam Assessment Checklists and CCW Impoundment Assessment Forms. The Impoundment Inspection Forms include a section that assigned a "Hazard Potential" rating ranging from "Less than Low" – "Low" – "Significant" – "High". A summary of AMEC's assessments are presented below in our review of their report.

PURPOSE AND SCOPE OF WORK

NRG requested that GZA review the EPA/AMEC draft report¹ and assist NRG in preparing a response letter to their findings and recommendations, as NRG does not agree with some of EPA/AMEC's statements and conclusions in the report.

535 Washington Street 11th Floor Buffalo, New York 14203 716-685-2300 Fax: 716-685-3629 www.gza.com

¹ "Report of Dam Safety Assessment of Coal Combustion Surface Impoundments, NRG Energy Huntley Generating Station, Tonawanda, NY (AMEC Project No. 3-2106-0194)", prepared by AMEC for U.S. EPA, dated September 2011.

To accomplish NRG's objectives, we performed the following.

- Reviewed the draft EPA/AMEC report;
- Performed reconnaissance of the Site, on July 6, 2012, to check the physical conditions of the impoundments and contributing process inflows and approximate watershed areas to each. GZA also took photographs of the impoundments;
- Reviewed existing available design and/or as-built drawings of the 6 ponds and reports describing inflows and outflows;
- Conducted hydrologic/hydraulic analyses of the 6 ponds for the given inflows of process waters and contributing watersheds, and the possible impact from the flood tailwater on the adjacent Niagara River;
- Reviewed our July 2009 geotechnical evaluation² of the South Ash Settling Pond to address specific comments made by EPA/AMEC;
- Conducted slope stability analyses of the north ponds incorporating results of the hydrologic/hydraulic analyses; and
- Prepared this draft response letter summarizing our general engineering judgments given the current site conditions. We provide our opinion as to what the appropriate classification should be for the 6 impoundments, based on accepted EPA qualifiers or rankings.

² "(South Ash) Settling Pond Outlet Embankment Evaluation", Huntley Generation Plant, Tonawanda, NY, by GZA GeoEnvironmental of New York, July 1, 2009.

<u>1116. 21.0030002.00</u>

REVIEW OF AMEC/EPA DRAFT REPORT

The following table summarizes AMEC's Condition Assessment and Hazard Potential for each pond/basin, and their rationale for the assigned Assessment and Hazard Rating. The Condition Assessment and Hazard Potential rating systems are defined in the sections presented below the table.

POND	NDSRB Condition Assessment	AMEC Rationale in Assigning Condition Assessment	EPA Hazard Potential Rating	AMEC Rationale in Assigning Hazard Potential
Pond 1	Poor	Lack of Hydrologic and Static and Stability Analysis Documentation	Low	Small pond where unlikely failure would have discharge with little impact to adjacent Ponds 2 and 3.
Pond 2	Poor	Lack of Hydrologic and Static and Stability Analysis Documentation	Significant	Release from Pond 2 outlet to ditch discharging to Niagara River would cause economic and/or environmental damage.
Pond 3	Poor	Lack of Hydrologic and Static and Stability Analysis Documentation	Significant	Release from Pond 3 outlet to ditch discharging to Niagara River would cause economic and/or environmental damage.
North Equalization Basin	Poor	Lack of Hydrologic and Static and Stability Analysis Documentation	Significant	Release from Basin would discharge to Niagara River causing economic and/or environmental damage.
South Equalization Basin	Poor	Lack of Hydrologic and Static and Stability Analysis Documentation	Significant	Release from Basin would discharge to Niagara River causing economic and/or environmental damage.
South Ash Settling Basin	Poor	Lack of Hydrologic and More Complete Stability Analysis Documentation*	Significant	Release from Basin would discharge directly to Niagara River causing economic and/or environmental damage.

*Specific to the South Ash Settling Pond, AMEC's review included a review of GZA's "Settling Pond Outlet Embankment Evaluation" report of July 2009, where our general opinion was that the embankment would have a hazard rating classification of low to remote. EPA/AMEC stated that the South Ash Settling Pond was rated "Poor" due to lack of a hydrologic/hydraulic study and a more complete stability analysis (seismic evaluation and re-consideration of friction angle parameters used in our study).

GZA reviewed the draft report prepared by AMEC. AMEC assigned a Condition Assessment of each pond using the following rating system acceptable by the NDSRB.

SATISFACTORY

No existing or potential dam safety deficiencies are recognized. Acceptable performance is expected under all loading conditions (static, hydrologic, seismic) in accordance with the applicable regulatory criteria or tolerable risk guidelines.

FAIR

No existing dam safety deficiencies are recognized for normal loading conditions. Rare or extreme hydrologic and/or seismic events may result in a dam safety deficiency. Risk may be in the range to take further action.

POOR

A dam safety deficiency is recognized for loading conditions which may realistically occur. Remedial action is necessary. POOR may also be used when uncertainties exist as to critical analysis parameters which identify a potential dam safety deficiency. Further investigations and studies are necessary.

UNSATISFACTORY

A dam safety deficiency is recognized that requires immediate or emergency remedial action for problem resolution.

NOT RATED

The dam has not been inspected, is not under state jurisdiction, or has been inspected but, for whatever reason, has not been rated.

AMEC completed EPA's Coal Combustion Dam Assessment Checklists and CCW Impoundment Assessment Forms. The Impoundment Assessment Forms include a section that assigns a "Hazard Potential" that is used to indicate what would likely occur following failure of an impoundment. "Hazard Potential" definitions are as follows.

LESS THAN LOW HAZARD POTENTIAL

Failure or mis-operation of the dam results in no probable loss of human life or economic or environmental losses.

LOW HAZARD POTENTIAL

Dams assigned the low hazard potential classification are those where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

SIGNIFICANT HAZARD POTENTIAL

Dams assigned the significant hazard potential classification are those dams where failure or mis-operation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of

lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

LOW HAZARD POTENTIAL

Dams assigned the high hazard potential classification are those where failure or mis-operation will probably cause loss of human life.

GZA SITE RECONNAISSANCE AND REVIEW OF EXISTING DRAWINGS AND REPORTS

GZA conducted a site reconnaissance on July 6, 2012. Bart A. Klettke, P.E., of GZA, was accompanied by Joe Schwab, Regional Engineering and Construction Manager for NRG. Mr. Klettke observed and took photographs of the impoundments, their respective inlet and outlet flow structures, and contributory watershed areas.

Available existing drawings and reports were provided by Mr. Schwab. The drawing and report information was used to develop the figures presented herein and to perform the hydrologic/hydraulic analyses described below.

General descriptions of the waste flows into the North and South Basins are as follows.

North Basins

The North Basins (Ponds 1, 2 and 3) no longer receive Coal Combustion Waste (CCW), but may contain residual ash from their former use. The ponds currently receive flows from drainage from the north wastewater collection system, which includes sub-basement sump pumps, roof and floor drains, auxiliary cooling system drains and de-mineralized water production wastes.

A plan view of the North Basins is presented on attached Figure 1. Basin and drainage pipe information is provided on the figure. Figure 2 shows cross-sections of the outlet drainage pipes from Ponds 2 and 3 draining into the adjacent drainage ditch.

South Basins

The North and South Equalization Basins receive flows from wastewater associated with the air pre-heater washes and coal pile runoff sump pumps. The North and South Equalization basins are treated by an on-site Wastewater Treatment Facility which discharges into the plant's Low Level Waste Water Pit through internal SPDES Outfall 007A and ultimately to the Niagara River through the South Ash Settling Basin and SPDES Outfall 008. The South Ash Settling Pond receives flow from sluice waters and suspended solids from Unit 67 and Unit 68 bottom ash and economizer ash systems and discharge from the Low Level Waste Water Pit. The Low Level Pit discharge includes rain

water from roadway drains, sub basement sump drains, boiler water releases, Huntley 1 roof and floor drains, auxiliary cooling systems drains and discharge from the Wastewater Treatment facility from treating the North and South Equalization basin water.

A plan view of the South Basins is presented on attached Figure 3. Basin and drainage pipe information is provided on the figure. Figure 4 presents a cross-sectional photograph of the southwest corner of the South Equalization Basin, showing dimensions for discussion purposes presented in our Conclusions section below.

GZN

HYDROLOGIC/HYDRAULIC ANALYSES

Pond 1, Pond 2, Pond 3, the North Equalization Basin, the South Equalization Basin and the South Ash Settling Pond have been rated to be in <u>Poor</u> condition primarily due to the lack of hydrologic and hydrologic documentation for the ponds. This condition rating was recommended by AMEC. AMEC, therefore, recommended that the design flood for these ponds be the ½ Probable Maximum Flood (½ PMF). The objective of our analysis was to calculate and document maximum water surface elevations under ½ PMF conditions.

The inputs for this analysis were based on the information gathered by GZA, upon reviewing historical drawings and other design documents made available to GZA by NRG Energy. The computer software of BOSS HMR52 (v.1.10) developed by BOSS International and HEC-HMS (v.3.5) developed by US Army Corps of Engineers Hydrologic Engineering Center were utilized for the analysis.

All elevations refer to the vertical datum of IGLD 1955 to be consistent with previous design drawings and documents, unless otherwise noted.

1/2 Probable Maximum Flood Analysis

The Probable Maximum Precipitation (PMP) for the project site was estimated using the BOSS HMR52 computer software, developed by BOSS International, based on National Oceanic and Atmospheric Administration (NOAA) Hydrometeorological Report Nos. 51 and 52 (Probable Maximum Precipitation Estimates, United States East of the 105th Meridian, 1978 and 1982). We adjusted storm orientation, centroid, and temporal distribution of rainfall to optimize/maximize the total volume of the 72-hour PMP. The ten-square-mile PMP for the project site was calculated to be 33.0 inches over a 72-hour duration, 22.4 inches of which occurs within a 6-hour period. The temporal distribution of the PMP calculated by BOSS HMR52 was then applied to the stormwater contributory areas of North and South Ponds in the HEC-HMS models. The 10-minute incremental output data file is attached.

The ½ PMF was selected to be the design flood for North Ponds and South Ponds, based on the hazard potential of the ponds being significant/moderate, per Mine Safety and Health Administration (MSHA) Minimum Long Term Hydrologic Design Criteria. In HMS a ratio of 50 percent was applied to the calculated discharge from application of the full PMP to each watershed.

500-year Flood in Niagara River

The North and South Ponds ultimately discharge to the Niagara River. The analysis assumes a 500-year flood elevation in the river. The 500-year flood elevation between "Interstate Route 190" and "Limit of Detailed Study" was estimated to be approximately El.571.5 in NGVD 1929 Datum, based on "Flood Profiles / Niagara River – Tonawanda Channel" included in the FEMA Flood Insurance Study for Town of Tonawanda, New York, dated February 1981. The conversion between NGVD 1929 and IGLD 1955 for the site location was estimated to be:

$$IGLD 1955 (ft) = NGVD 1929 (ft) - 0.85 ft$$

Therefore, the 500-year flood elevation in Niagara River was calculated to be El.570.65 in the IGLD 1955 Datum, and represents the tailwater level from subsequent hydraulic routing computations from the basins.

HMS Analysis

The North Ponds and South Ponds were analyzed as two independent hydrologic systems in HEC-HMS. Setup schematics for the two basin models are attached. A summary of the hydrologic elements used for the analysis is given below.

Inputs for North Ponds

The North Ponds consist of three inter-connected ponds, Pond 1 through Pond 3. Pond 1 receives a maximum process inflow of about 1,950 gpm (4.34 cfs) at its southwest corner and discharges to Ponds 2 and 3 through two, 43-in by 27-in galvanized arched pipes to the north, while Ponds 2 and 3 each discharge to a drainage channel through a 24-in and 18-in diameter Corrugated Metal Pipe (CMP), respectively. The drainage channel conveys flow to the Niagara River through a 36-in diameter CMP.

Key elevations and dimensions are as follows:

Dimension or Elevation (ft	t, IGLD 1955)
----------------------------	---------------

<u>Pond 1</u>	
Crest	579.0
In Invert of 43"x27" Outflow Pipe to Pond 2	576.1
Out Invert of 43"x27" Outflow Pipe to Pond 2	575.4
Length of 43"x27" Outflow Pipe to Pond 2	70
In Invert of 43"x27" Outflow Pipe to Pond 3	576.1
Out Invert of 43"x27" Outflow Pipe to Pond 3	575.7
Length of 43"x27" Outflow Pipe to Pond 3	40
Pond 2	
Crest	579.0
In Invert of 24"Ø Outflow Pipe to Drainage Channel	575.3
Out Invert of 24"Ø Outflow Pipe to Drainage Channel	575.0±
Length of 24"Ø Outflow Pipe to Drainage channel	50±

Pond 3	
Crest	579.0
In Invert of 18"Ø Outflow Pipe to Drainage Channel	574.35
Out Invert of 18"Ø Outflow Pipe to Drainage Channel	573.4±
Length of 18"Ø Outflow Pipe to Drainage Channel	65±

The SCS (Soil Conservation Service, now known as Natural Resources Conservation Service, i.e. NRCS) Dimensionless Unit Hydrograph method was used in this analysis. Input parameters estimated by GZA for the watershed areas for North Ponds used in the HEC-HMS Model are summarized in **Table 1** below.

Table 1: HEC-HMS Watershed Input – North Ponds

		Drainage Area		Runoff Potential	
HEC-HMS Model	Subbasin	(sq mi)	(sq ft)	(SCS Curve Number)	Watershed Lag Time (min)
	Pond 1	0.001159	32,300	94	6
North Ponds	Pond 2	0.001865	52,000	99	6
	Pond 3	0.001998	55,700	95	6

*Note: Composite curve numbers with CN of 99 for water and 89 for land.

Tables 2 through **4** present the elevation-area and elevation-storage relationships that GZA developed for the subbasins for the North Ponds.

Table 2: Reservoir Elevation-Area Function for Pond 1

Elevation	Aı	Storage	
(ft, IGLD 1955)	(sq ft)	(ac)	(acre-ft)
575	8,000	0.184	0
576.1	17,500	0.402	0.3
579	32,300	0.742	1.9

Table 3: Reservoir Elevation-Area Function for Pond 2

Elevation	Aı	Storage	
(ft, IGLD 1955)	(sq ft)	(ac)	(acre-ft)
575	35,000	0.803	0
576.1	51,500	1.182	0.3
579	52,000	1.194	4.7

Table 4: Reservoir Elevation-Area Function for Pond 3

Elevation	Aı	Storage	
(ft, IGLD 1955)	(sq ft)	(ac)	(acre-ft)
574	16,300	0.374	0
574.35	35,300	0.810	0.2
579	55,700	1.279	5.0

Initial Water Surface Elevation

For North Ponds, the initial water surface elevations in the ponds were assumed to coincide with the invert elevations of the outflow structures, i.e. El.576.1, El.575.3 and El.574.35 for Ponds 1, 2 and 3, respectively.

Tailwater Conditions

Under the ½ PMF to the ponds, the water surface elevations are going to rise in all these ponds. Based on the invert elevations and pool elevations, the two 43" by 27" outflow pipes that convey flows from Pond 1 to Ponds 2 and 3 will be under the influence of the downstream water levels in Ponds 2 and 3. GZA adopted a simplified approach to the "pond in series" configuration and thus analyzed two separate cases. In Case A, the tailwater elevations were assumed not to affect discharge through the two pipe arches. Case A therefore assumes the highest capacity through the pipes between Pond 1 and Ponds 2 and 3 with no restrictions from tailwater. In Case B, the calculated peak water elevations in Ponds 2 and 3 from Case A were used as the tailwaters for the same outflow pipe arches above. Case B represents a lower pipe capacity per unit head.

The tailwater elevation at the drainage channel is assumed to be at El.570.65, representing the 500-year peak flood level in Niagara River. Tailwater for Ponds 2 and 3 was assumed to be constant at El.570.65, the 500-year flood elevation in the Niagara River and the elevation in the discharge channel.

Inputs for South Ponds

The South Ponds consist of three basins- the North and South EQ Basins and the South Ash Settling Basin. The North and South EQ Basins receive a maximum process inflow of 500 gpm (1.11 cfs) from the plant and share a 12-in diameter outflow pipe to the South Ash Settling Basin. Because the EQ basins share a single outflow pipe they were modeled as a single reservoir element in HEC-HMS. The water levels in the EQ basins are also controlled by an outflow pump. Pump specifics and operational rules were not available therefore the outflow pump was not included in the analysis. The South Ash Settling Basin receives a maximum inflow of about +-6,800 gpm (15.15 cfs) at the north end and discharges to the Niagara River through a 92-in by 65-in steel pipe arch at the southwest corner. The modeling effort included a sensitivity analysis to evaluate the impact of varying the process inflows.

Key elevations and dimensions are as follows:

Dimension or Elevation (ft, IGLD 1955)

North & South EQ Basins	
Crest	580.3
In Invert of 12"Ø Outflow Pipe to South Settling Basin	579.3
Out Invert of 12" Ø Outflow Pipe to South Settling Basin	570±
Length of 12"Ø Outflow Pipe to South Settling Basin	120±
South Ash Settling Basin	
Crest	580.3
In Invert of 92"x65" Outflow Pipe to Niagara River	568.94
Out Invert of 92"x65" Outflow Pipe to Niagara River	568.04
Length of 92"x65" Outflow Pipe to Niagara River	55±

Key input parameters for the watershed areas in the HEC-HMS model are summarized in **Table 5** below:

Table 5: HEC-HMS Watershed Input – South Ponds

		Drainag	ge Area	Runoff Potential	Watershed Lag Time (min)	
HEC-HMS Model	Subbasin	(sq mi)	(sq ft)	(SCS Curve Number)		
South Ponds	North and South EQ Basin	0.00475	132,400	99	6	
	South Ash Settling Basin	0.012329	343,700	95	6	

*Note: Composite curve numbers with CN of 99 for water and 89 for land.

Tables 6 and **7** present the elevation-area and elevation-storage relationships that GZA developed for the subbasins for the South Ponds.

Table 6: Reservoir Elevation-Area Function for North & South EQ Basins (Combined)

Elevation	A	Storage	
(ft, IGLD 1955)	(sq ft)	(ac)	(acre-ft)
572	66,320	1.522	0
580.3	132,400	3.039	18.6

Table 7: Reservoir Elevation-Area Function for South Ash Settling Basin

Elevation	Aı	Storage	
(ft, IGLD 1955)	(sq ft)	(ac)	(acre-ft)
563	114,000	2.617	0
575	200,000	4.951	42.7

Initial Water Surface

The initial water surface elevation for the North and South EQ Basins are assumed to be at the elevation of the overflow structure, El.579.3. The EQ Basins are typically maintained at lower elevations by utilizing the outflow pump. A sensitivity study was performed to evaluate the influence of varying the initial water surface elevation.

The initial water surface elevation in the South Ash Settling Pond is assumed to be coincident with the Niagara River, El.570.65, because the invert of the outflow pipe is at El.568.94.

Tailwater Conditions

Tailwater for the pipe from the EQ Basins to the South Ash Settling Pond was set at El.571.5 for the runs for South Ponds. The tailwater for South Ash Settling Basin was constantly set at El.570.65, the 500-year flood in Niagara River.

RESULTS

North Ponds

The results for North Ponds are summarized in **Table 8** below. Case A assumes a low tailwater condition (i.e. outlet capacity is not impacted by the tailwater elevation). Case B assumes a high tailwater condition (i.e. outlet capacity is impacted by the tailwater elevation).

Table 8: HEC-HMS Results for North Ponds (1/2 PMF)

		Watershed	Peak	Peak	Max	Min	Tailwater
Case	Pond	Runoff	Inflow	Outflow	WSEL	Freeboard ¹	Elev.
		(in)	(cfs)	(cfs)	(ft)	(ft)	(ft)
	1	16.1	11	5	576.8	2.2	None /
A^2	1	10.1	11	3	570.6	2.2	None ²
A	2	16.4	14	7	576.8	2.2	570.65
	3	16.2	15	7	576.1	2.9	570.65
	1	16.1	11	5	576.9	2.1	576.8 /
\mathbf{B}^3	1	10.1	11	3	370.9	2.1	576.1 ³
D	2	16.4	14	4	576.4	2.6	570.65
	3	16.2	17	8	576.5	2.5	570.65

Notes:

- 1. Assumed top of berm at El.579.0 for Ponds 1 through 3.
- 2. Tailwater elevations for Pond 1 assumed not to affect the discharges from the outflow pipes.
- 3. Tailwater elevations for Pond 1 assumed to be fixed at the peak water levels of Ponds 2 and 3 that was estimated for Case A.

The results indicate that the North Ponds have the ability to safely pass the ½ PMF. The calculated minimum freeboard ranges from 2.1 to 2.9 feet.

South Ponds

The results for South Ponds are summarized in **Table 9** below. The sensitivity analysis included evaluating the impact of varying the initial water surface elevations for the EQ Basins. The analysis also included evaluating the impact of both including the 500 gpm inflow to the EQ Basins and assuming no pumped inflows to the EQ Basins.

Table 9: HEC-HMS Results for South Ponds (1/2 PMF)

Case	Pond	Initial WSEL (ft)	Proces s Inflow (gpm)	Watershed Runoff (in)	Peak Inflow (cfs)	Peak Outflow (cfs)	Max WSEL (ft)	Freeboard ¹ (ft)
	N. EQ	579.3	500	16.4	27	27	580.3	\mathbf{OT}^2
С	S. EQ			16.4				
	S. Set.	570.65	6,800	16.2	106	72	571.5	3.5
		7	1			1		
	N. EQ	578	500	16.4	27	27	580.3	\mathbf{OT}^2
D	S. EQ	3,0	200	16.4				01
	S. Set.	570.65	6,800	16.2	81	58	571.3	3.7
	N. EQ	576	500	16.4	27	2	580	0.3
Е	S. EQ	370	300	16.4	21	2	360	0.3
	S. Set.	570.65	6,800	16.2	81	58	571.3	3.7
	N. EQ	579.3	0	16.4	26	21	580.3	\mathbf{OT}^2
F	S. EQ	379.3		16.4	20	21	380.3	01
	S. Set.	570.65	6,800	16.2	87	63	571.4	3.6
	N. EQ	570	0	16.4	26	1	579.7	0.6
G	S. EQ	578	0	16.4	26	1		
	S. Set.	570.65	6,800	16.2	81	58	571.3	3.7
	N. EQ	577	0	16.4	26 0.0	0.0	0.0	2.4
Н	S. EQ	576	0	16.4		0.0	0.0 5//.9	0 577.9 2.4
	S. Set.	570.65	6,800	16.2	81	58	571.2	3.8

Notes:

- 1. Assumed top of berm at El.580.3 for North and South EQ Basins; assumed top of berm at El. 575.0 for South Ash Settling Basin.
- 2. "OT" denotes overtopping.
- 3. To alleviate the overtopping of the equalization basins, GZA analyzed an alternate condition for the north and south equalization basins to determine a revised elevation for the top of the overflow pipe in the basin's outflow structure. The analysis was run with the top of overflow pipe elevation established at 578.3' (1.0' below the existing 579.3'), tabulated as follows.

Case	Pond	Initial WSEL (ft)	Proces s Inflow (gpm)	Watershed Runoff (in)	Peak Inflow (cfs)	Peak Outflow (cfs)	Max WSEL (ft)	Freeboard ¹ (ft)
4.1.	N. EQ	578.3	500	16.4	26	4	580.1	0.2
Alter -nate	S. EQ	378.3	300	16.4	20	4	360.1	0.2
-nate	S. Set.	570.65	6.800	16.2	84	60	571.5	3.7

Based on the above alternate case, NRG can lower the top of the existing overflow pipe, and associated maximum operating level, from Elevation 579.3' to 578.3', to prevent overtopping of the equalization basins for the ½-PMF event.

The results of the analysis are as follows:

- If NRG lowers the top of the existing overflow pipe, and associated maximum operating level, from Elevation 579.3' to 578.3', that will prevent over-topping of the equalization basins for the ½-PMF event.
- The water level in the South Ash Settling Basin is fairly stable under various scenarios. The water level rises between 0.6 and 0.8 feet from its initial water level, El.570.65. The minimum freeboard for the settling basin is greater than 3 feet under the ½ PMF event.

Based on the results presented above, GZA presents the following conclusions concerning our hydrological study:

- 1. For North Ponds 1, 2 and 3, the ½ PMF does not cause overtopping in any of the ponds. The calculated freeboard of 2.1 to 2.9 feet is adequate, in our opinion, to protect the berms from wave run-up given the overall small area of the impoundments.
- 2. For the North and South EQ Basins, the dominant factor impacting the potential for overtopping is the initial water surface elevations (and thus available surcharge storage).
- 3. The North and South EQ Basins will be overtopped during the ½ PMF when the initial water surface is below El.578.7 with no process inflow or below El.577.7 with a maximum process inflow of 500 gpm) regardless of whether process inflows are discharged to the basins. However, the North and South EQ Basins will not be overtopped during the ½ PMF, under either condition, if NRG lowers the top of the existing overflow pipe, and associated maximum operating level, from Elevation 579.3' to 578.3'.
- 4. The outflow pipe for South Ash Settling Basin can pass the ½ PMF with a freeboard greater than 3 feet, regardless of the conditions in the EQ Basins.

REVIEW OF GZA 2009 GEOTECHNICAL REPORT FOR SOUTH ASH SETTLING BASIN

In reviewing GZA's July 2009 geotechnical report, AMEC noted the following.

- 1. The friction angle used for the fill (30 degrees) may be high due to the presence of soft zones and debris noted in the boring.
- 2. Although the GZA report provided comments on liquefaction due to seismic activity, a seismic stability is not presented. AMEC recommends that the analysis be revised to include a seismic analysis. The analysis should be reviewed after completion of the recommended hydraulic study to evaluate elevated phreatic conditions and the need for a rapid drawdown analysis based on flood and receding waters of the Niagara River.

GZA assigned a friction of 30 degrees to the fill based upon the following.

- Typical range of internal friction angle values published for silty-sand fill by Joseph E. Bowles, "Physical and Geotechnical Properties of Soils", 1979: Loose Silty Sand: 25-35 degrees; Dense Silty Sand: 30 36 degrees.
- Due to the presence of gravel, slag, concrete, brick, cobbles and wood debris in the fill soils, plus the presence of the 65" x 92" steel arch pipe providing reinforcement, it is GZA's opinion that the debris and pipe gives greater interlocking and a higher shear strength that warranted assigning a mid-range friction angle of 30 degrees to the fill layer.
- We note that the critical failure surface, shown on the attached stability analyses, occurs at a shallow depth where denser soils exist. Less critical failure surfaces, having higher factors of safety, occur at greater depth through the loose fill soils.

To address AMEC's comments, GZA did additional evaluation of the South Ash Settling Basin embankment stability to:

- Conduct a seismic analysis; and
- Conduct a rapid drawdown analysis to evaluate the elevated phreatic conditions based on the hydrologic study completed.

The following factors of safety were calculated.

Loading Condition	Calculated F. S.	EPA Minimum Required F. S.
Long-Term Steady Seepage (Static)	1.8	1.5
Rapid Drawdown	1.8	1.3
Seismic Loading*	1.1	1.0

^{*}For the seismic analysis, GZA applied a maximum horizontal acceleration (MHA) of 0.2g (90 percent probability of not being exceeded in 250 years), based on "Probabilistic

Earthquake Acceleration and Velocity Maps for the United States and Puerto Rico", U.S. Geologic Survey, Map MF-2120. This is a conservative value based on published information. More recent published data, which has catalogued earthquake activity, indicates lower MHA values.

The calculated factors of safety exceed the EPA minimum required safety factors for the 3 loading conditions. GZA considers the South Ash Settling Basin embankment along the Niagara River to be stable for all conditions.

SLOPE STABILITY ANALYSES OF NORTH BASINS

GZA conducted slope stability analyses of the following North Basin impoundment embankments.

- Embankment between Pond 3 and the existing drainage channel to the north.
- Embankment between Pond 2 and the existing drainage channel to the north.
- Embankment between Pond 2 and the low lying area located between Ponds 2 and 3.

Analyses were done for static and seismic conditions assigning a conservative internal friction angle of 30 degrees for the general berm fill and a friction angle of 35 degrees for the surficial layer where concrete matting exists along the embankment slopes. The static analyses were done with a phreatic surface representing the ½-PMF rain event, and the seismic analyses were done with a phreatic surface representing normal pool elevations. Rapid drawdown analyses were not done since we consider the change in water level negligible for the given conditions.

The following factors of safety were calculated.

Loading Condition	Calculated F. S.	EPA Minimum Required F. S.					
20-FT.+/- WIDE POND 3/DRAINAGE CHANNEL EMBANKMENT*							
Long-Term Steady Seepage (Static)	1.8	1.5					
Seismic Loading	1.1	1.0					
40-FT.+/- WIDE POND 2/DRAINAGE CHANNEL EMBANKMENT							
Long-Term Steady Seepage (Static)	2.1	1.5					
Seismic Loading	1.2	1.0					
POND 2/INTERNAL LOW-LYING AREA							
Long-Term Steady Seepage (Static)	2.7	1.5					
Seismic Loading	1.4	1.0					

*Stability analyses for the 20-ft. wide embankment between Pond 3 and the drainage channel embankment, did not incorporate the reinforcement effects of the 5 drainage pipes spanning the embankment, in addition to the 16-feet wide x 12-feet deep concrete retaining headwall.

CONCLUSIONS

The shallow embankments that partially surround the basins should not be considered "dams". NDSRB defines a dam as having an embankment height ≥ 25 feet in height, providing impoundment capacity ≥ 50 acre-feet. The highest embankment height of NRG Huntley's six basins is 6 feet at an isolated location at the southwest corner of the South Equalization Basin, and 10 feet at the outfall point of the South Ash Settling Basin. Otherwise, embankment heights are generally 2 to 3 feet above existing grade, or incised. The largest impoundment, the South Ash Settling Basin, has a capacity of about 43 acrefeet.

North Basins

Pond 1 – This pond is small, covering an area less than ½-acre, with partial embankments (Top El. 579.0' ±) between itself and Ponds 2 and 3. The hydrologic analysis indicates that the ½ PMF event would result in a peak storm water elevation of 577.0' providing about 2.0 feet of freeboard height. The surrounding soils are coarse-grained coal ash. In the unlikely event of embankment failure, decant water would percolate into the site soils or drain into Ponds 2 or 3. Pond 1 does not require a stability analysis. Therefore, Pond 1 should have a NDSRB condition assessment of "Satisfactory" in that no existing or potential embankment safety deficiencies are recognized, and acceptable performance is expected under all loading conditions (static, hydrologic, seismic). We also believe that Pond 1 should have a "Less than Low Hazard Potential" since failure or mis-operation of the impoundment results in no probable loss of human life or economic or environmental losses; NRG would not experience economic or environmental loss on their property.

Pond 2 – This pond has a full surrounding embankment (Top El. 579.0' \pm). The hydrologic analysis indicates that the ½ PMF event would result in a peak storm water elevation of 577.2' providing about 1.8 feet of freeboard height. The surrounding soils are coarse-grained coal ash. In the unlikely event of embankment failure along the south, east and west embankments, decant water would percolate into the site soils or drain into Pond 1. The stability analyses done for the Pond 2 north embankment, adjacent to the drainage ditch, shows stable conditions for static and seismic conditions, given the following:

- The analyses ascribed a conservative internal friction angle of 30 degrees for the berm fill.
- The analyses did not incorporate: the reinforcing elements of the 16-feet wide concrete retaining headwall with a depth of 12 feet (see cross-section on Figure 2); the 5 drainage pipes spanning the narrowest section (about 20 feet across the top)

US EPA ARCHIVE DOCUMENT

of the embankment, from the pond to the drainage ditch, providing additional reinforcement of the embankment.

A stability analyses, also done for the internal berm between Pond 2 and the low-lying area between Ponds 2 and 3, shows stable conditions for static and seismic conditions.

We believe Pond 2 should have a NDSRB condition assessment of "Fair" in that no existing embankment safety deficiencies are recognized for normal loading conditions, evidenced by 35 years of safe and stable operation. In the unlikely event of a rare or extreme hydrologic and/or seismic event resulting in an embankment deficiency, the resultant risk of uncontrolled flow to the adjacent drainage ditch could be quickly mitigated by the following procedure.

- 1. Shutting off the process water influent to upstream Pond 1.
- 2. Temporarily damming off the narrow ditch downstream of Pond 1 via a few tandem truck loads of clay readily available in the area.
- 3. Establishing a temporary process water bypass system (either diverting flow to Pond 3 or setting up a series of portable holding tanks) to decant the water to the drainage ditch downstream of temporary dam.
- 4. Repairing the embankment and restoring normal pond operations.

We also believe that Pond 2 should have a "Low Hazard Potential" since failure or misoperation of the impoundment results in no probable loss of human life and low economic and/or environmental losses. NRG would experience only the economic loss of repairing the embankment deficiency; low environmental loss may be experienced for the short duration in shutting off the process water feeding upstream Pond 1 and establishing a temporary dam and bypass system described above.

Pond 3 - This pond has partial embankments (Top El. 579.0' \pm) along the west and north edges, with the east and south sides incised. The hydrologic analysis indicates that the ½ PMF would result in a peak storm water elevation of 577.4' providing about 1.6 feet of freeboard height. The surrounding soils are coarse-grained coal ash. In the unlikely event of embankment failure along the west embankment, decant water would percolate into the site soils or drain into Pond 1 or Pond 2.

The stability analyses done for the Pond 3 north embankment, adjacent to the drainage ditch, shows stable conditions for static and seismic conditions.

In our opinion, Pond 3 should have a NDSRB condition assessment of "Fair" in that no existing embankment safety deficiencies are recognized for normal loading conditions, evidenced by 35 years of safe and stable operation. In the unlikely event of a rare or extreme hydrologic and/or seismic event resulting in an embankment deficiency, the resultant risk of uncontrolled flow to the adjacent drainage ditch could be quickly mitigated similar to the procedure described for Pond 2 above.

We also believe that Pond 3 should have a "Low Hazard Potential" since failure or misoperation of the impoundment results in no probable loss of human life and low economic and/or environmental losses. NRG would experience only the economic loss of repairing the embankment deficiency; low environmental loss may be experienced for the short duration in shutting off the process water feeding upstream Pond 1 and establishing a temporary dam and bypass system described above.

South Basins

North and South Equalization Basins – Both basins are lined on the interior, as well as the exterior slopes of the embankments, with asphalt having 2 inches of binder course overlaid with 2 inches of surface course. The asphalt surface was observed by GZA to be in good to excellent condition, with some vegetation located mainly on the exterior slopes of the embankments, with isolated protrusions of vegetation on the interior slopes. The embankment interior slopes are at 5H:1V and the exterior slopes are at 3H:1V.

We do not believe that a stability analysis is required for these basins for the following reasons.

- The majority of the basins embankments are shallow ranging from about 0 to less than 5 feet high on the outside slopes, with the interior slopes having shallow 5H:1V slopes. The highest embankment, about 5 feet high, is located in the southwest corner of the South Eq. Basin, where the embankment is curved providing radial reinforcement. Attached Figure 4 shows a photograph of this corner with dimensions shown.
- NRG typically alternates filling these basins so that one of the basins is empty or
 near empty while the other basin is filled or partially filled. Given that water in
 each basin has a low occupancy period, and that the pond interior is constructed
 with highly impermeable asphalt, it is our opinion that an elevated phreatic
 condition is highly unlikely to occur through the embankment section.

In our opinion, the North and South Equalization Basins should have a NDSRB condition assessment of "Fair" in that no existing embankment safety deficiencies are recognized for normal loading conditions, evidenced by over 25 years of safe and stable operation. In the highly unlikely event of a rare or extreme hydrologic and/or seismic event resulting in an embankment deficiency, the resultant risk of uncontrolled flow to the adjacent Niagara River could be quickly mitigated by emptying out both ponds via pumps inside the outlet control structure and diverting pumped flow, from the plant, to the South Ash Settling Basin.

It is our opinion that the North and South Equalization Basins should have a "Low Hazard Potential" since unlikely failure or mis-operation of the impoundment results in no probable loss of human life and low economic and/or environmental losses. Low environmental loss may be experienced for the short duration in temporarily diverting the

process water from the plant to the South Ash Settling Basin until the embankment is repaired.

South Ash Settling Basin –The static, hydrologic and seismic stability analyses discussed above, shows the south embankment, at the outfall to the Niagara River, to be stable for all 3 conditions. Therefore, we believe this basin should have a NDSRB condition assessment of "Fair" in that no existing embankment safety deficiencies are recognized for normal loading conditions, evidenced by 25+ years of safe and stable operation.

- 1. Shutting off the process water influent to the Basin.
- 2. Temporarily damming off the narrow section (about 60 feet wide) of the Basin immediately upstream of the outlet pipe using clay readily available in the area.
- 3. Establishing a temporary process water bypass system to decant the water to the Niagara River downstream of the temporary dam.
- 4. Repairing the embankment and restoring normal Basin operations.

We also believe that the South Ash Settling Basin should have a "Low Hazard Potential" since an improbable failure or mis-operation of the impoundment results in no probable loss of human life and low economic and/or environmental losses. NRG would experience the economic loss of repairing the embankment deficiency; low environmental loss may be experienced for the short duration in shutting off the process water feeding the Basin and establishing a temporary dam and bypass system described above. Low environmental loss would also be attributed to the fact that NRG dredges the majority of CCW sediment at the north-side inlet end of the South Ash Settling Basin about 1,200 feet upstream of the Basin outlet to the Niagara River. Transport of significant amounts of CCW sediment over that distance is unlikely to take place when NRG would immediately implement process inflow shut-off, temporary damming and bypass operations described above.

We trust this information satisfies your needs for this project.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

Bart A. Klettke, P.E. Associate Principal (716) 844-7035

bart.klettke@gza.com

Bat a Klith

Daniel J. Troy, P.E. Consultant Reviewer (716) 844-7034 daniel.troy@gza.com

Attachments:

Figure 1 – North Ponds 1-3 Site Plan

Figure 2 – North Ponds 2 & 3 Cross Sections @ Pond Outlets

Figure 3 – South Ponds Plan

Figure 4 – South Equalization Basin Photographic Cross-Section

Slope Stability Analyses of South Ash Settling Basin

Slope Stability Analyses of North Basins

10-Minute Incremental Output Data File for ½ Probable Maximum Flood Analysis

Setup Schematics for Two Basin Models

NO.	ISSUE/DESCRIPTION	BY	DATE

NRG RESPONSE TO EPA REPORT NRG HUNTLEY PLANT TONAWANDA, NEW YORK

SOUTH EQUALIZATION BASIN PHOTOGRAPH CROSS-SECTION @ SW CORNER

REVISION NO.

PREPARED BY:				PREPARED	FOR:		
	Engineers 535 WASHIN	Environment s and Scientis GTON STREET 11th EW YORK 14203 0		Ν	RG EN	IERGY	
PROJ MGR:	BAK	REVIEWED BY:	BAK	CHECKED	BY:	DJT	FIGURE

NRG Embankment Evaluation, Static Condition @ South Ash Settling Basin Ten Most Critical. C:NRG1.PLT By: djt 07-19-12 1:16pm

NRG POND 2 EVALUATION AT OUTFALL Ten Most Critical C:NRG20FT.PLT

NRG POND 2 EVALUATION AT OUTFALL (with Seismic) Ten Most Critical, C:20FTSEIS.PLT

NRG IMPOUNDMENT EMBANKMENT EVALUATION POND 3 AT 1/2 PMF RAIN EVENT Ten Most Critical C:NRG40FT.PLT

NRG IMPOUNDMENT EMBANKMENT EVALUATION POND 3 SEISMIC AT NORMAL POOL LEVEL Ten Most Critical, C:40FTSEIS.PLT

NRG IMPOUNDMENT EMBANKMENT EVALUATION POND 3 INTERNAL BERM Ten Most Critical C:NRGINT.PLT

NRG IMPOUNDMENT EMBANKMENT EVALUATION POND 3 INTERNAL BERM SEISMIC Ten Most Critical C:INTSEIS.PLT

N	ATURA		INTERVAL	= 10 M	ΙΝ					
ΡI	.007	.007	.007	.007	.007	.007	.007	.007	.007	.007
ΡI	.007	.007	.007	.007	.007	.007	.007	.007	.007	.007
ΡI	.007	.007	.007	.007	.007	.007	.007	.007	.007	.007
ΡI	.007	.007	.007	.007	.007	.007	.009	.009	.009	.009
ΡI	.009	.009	.009	.009	.009	.009	.009	.009	.009	.009
PΙ	.009	.009	.009	.009	.009	.009	.009	.009	.009	.009
ΡI	.009	.009	.009	.009	.009	.009	.009	.009	.009	.009
PΙ	.009	.009	.012	.012	.012	.012	.012	.012	.012	.012
PΙ	.012	.012	.012	.012	.012	.012	.012	.012	.012	.012
PΙ	.012	.012	.012	.012	.012	.012	.012	.012	.012	.012
PΙ	.012	.012	.012	.012	.012	.012	.012	.012	.016	.016
PΙ	.016	.016	.016	.016	.016	.016	.016	.016	.016	.016
PΙ	.016	.016	.016	.016	.016	.016	.016	.016	.016	.016
PΙ	.016	.016	.016	.016	.016	.016	.016	.016	.016	.016
PΙ	.016	.016	.016	.016	.024	.024	.024	.025	.025	.025
PΙ	.025	.025	.026	.026	.026	.026	.026	.027	.027	.027
PΙ	.028	.028	.028	.028	.029	.029	.029	.030	.030	.031
PΙ	.031	.031	.032	.032	.033	.033	.033	.034	.034	.035
PΙ	.068	.072	.076	.080	.084	.088	.091	.095	.098	.102
PΙ	.105	.108	.112	.115	.118	.120	.123	.126	.129	.131
PΙ	.134	.136	.138	.141	.143	.145	.147	.149	.150	.152
PΙ	.154	.155	.157	.158	.160	.161	.167	.186	.205	.222
PΙ	.237	.251	.263	.274	.284	.310	.374	.412	.407	.415
PΙ	.555	1.132	1.960	2.813	2.837	2.535	1.700	.674	.469	.395
PΙ	.422	.396	.345	.288	.279	.269	.257	.244	.230	.213
PΙ	.196	.177	.066	.064	.062	.061	.059	.058	.056	.055
PΙ	.053	.052	.051	.050	.048	.047	.046	.045	.044	.043
ΡI	.042	.042	.041	.040	.039	.039	.038	.038	.037	.037
PΙ	.036	.036	.036	.036	.035	.035	.035	.035	.021	.021
ΡI	.021	.021	.021	.021	.021	.021	.021	.021	.021	.021
ΡI	.021	.021	.021	.021	.021	.021	.021	.021	.021	.021
PΙ	.021	.021	.021	.021	.021	.021	.021	.021	.021	.021
PΙ	.021	.021	.021	.021	.014	.014	.014	.014	.014	.014
PΙ	.014	.014	.014	.014	.014	.014	.014	.014	.014	.014
PΙ	.014	.014	.014	.014	.014	.014	.014	.014	.014	.014
PΙ	.014	.014	.014	.014	.014	.014	.014	.014	.014	.014
PΙ	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010
PΙ	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010
ΡI	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010
ΡI	.010	.010	.010	.010	.010	.010	.008	.008	.008	.008
ΡI	.008	.008	.008	.008	.008	.008	.008	.008	.008	.008
ΡI	.008	.008	.008	.008	.008	.008	.008	.008	.008	.008
ΡI	.008	.008	.008	.008	.008	.008	.008	.008	.008	.008
ΡI	.008	.008								

Appendix D Boring Information from a Geotechnical Report for the Huntley North and South EQ Basins

MEPERENCE D.U. DEERE, in <u>House Machanics in</u> Engineering Procless, Sloop B Zianhipuncz, ed., Wiley, 1964

NOTES:

- Descriptions and classifications are based on visual inspection of samples and boring operations, unless otherwise noted in the text.
- The stratum lines are based upon interpolation between borings and may not represent actual subsurface conditions.
- 3) Water level readings have been made in the drill holes at times and under conditions stated on the boring logs. Fluctuations in the level of the ground water may occur due to other factors than those present at the time measurements were made.
- 4) For a more detailed description of soil and rock types see the boring logs in Appendix B.
- 5) For boring locations see figure 2, Boring Location Plan.

KEY TO DENSITY & CONSISTENCY DESCRIPTION OF GRANULAR & COHESIVE SOILS

Number of Stees per ft, #	Relative Denoity	Marker of Bloos per ft, #	Consistency
		Daine 2	Very seft
0-4	Very locus	2-4	Soft
. 4-10	Luces	4-8	Medium
10-30	Medium	8-15 ·	Stiff
30-5 0	Dense	15-30	Very stiff
Over 50	Very dense	Over 30	Hord

MA	JOR DIVISIONS	•	GRAPH SYMBOL	LETTER SYMBOL	TYPICAL DESCRIPTIONS
		Clean Grovels	0.000	GW	Well-graded grovels, gravel-sand mixtures, little or no finds
	GRAVELS	(httle or no fines)		GP	Poorly-graded gravels, gravel-send mixtures, httle or no times
	Mare than 50% of coorse fraction larger than NO 4 BISVE	Gravels with appreciable amounts		GM	Silty gravels, gravel-send-silt mixtures
COARSE - GRAINED		of fines		GC	Clayey gravals, gravel-send-clay mustures
tore than 50% of material organ than NO 200 sizve	-	Clean Sands		SW	Well-graded sends, gravelly sends, little or no fines
	SANDS	(little or no fines)		SP	Poorly-graded sends, gravelly sends, little or no fines
	Less than 50% of coorse fraction larger than NO 4 sieve	Sands with		SM	Silty eande, sand-bill mintures
	:	of fines		sc	Clayay sands, sand-slay mixtures
	SELTS AM		ML	Inorganic silts and very fine sends, rock flour, silty or eleyey fine sends or cloyey silts with slight planticity	
	- Low Plas Liquid Lii		CF	inergenic cleys of low to medium planticity gravelly cleys, candy clays, sitty cleys, teen cleys	
FINE - GRAINED SOILS			OL	Organic sits and organic sitty clays of low plasticity	
<u>i, see</u> Wan 50% of material larger than NO 200 sieve	SHLTS A		MH	Inorganic sitts, misecome or distomecome fine send or oity solls	
	High Plac Liquid Lic		СН	Inorganic clays of high planticity, fat clays	
		777777 777777 777777 777777	ОН	Organic clays of medium to high plasticity, arganic sitts	
	Highly C	irganic Sails		Pt	Peat, homes, swemp soils with high organic contents
	Miracelloni	rous Fill		FILL	Miscelleneous fill may belong it any divisor but is identified as FILL

re: Dunt symbols indicate borderline soils classifications

ROCK CLASSIFICATION CHART

	Со	CAMILLUS SHALE FORMATION	
--	----	--------------------------	--

LEGEND FOR BORINGS

NIAGARA MOHAWK POWER CORPORATION C.R. HUNTLEY STEAM STATION WASTEWATER MANAGEMENT SYSTEMS TONAWANDA, NEW YORK

LEGEND FOR GEOLOGIC PROFILE SHEETS

FIGURE No. 5

	7	7	•	T	
	_7			_1	A
•		/		•	

GOLDBERG-ZOING ASSOCIATES OF N.Y., P.C. GEOTECHNICAL - GEOHYDROLOGICAL CONSULTANTS

-BORING	LOG-
---------	------

PROJECT	Niagara Mohawk Powe	r Corporation
	Equalization Basins	

FILE NO. 5610.2 BORING NO. SB-E81

BORING NO. SB-EB1 SHEET 1 OF 3

SURFACE ELEV. 576.87

DATUM U.S.C. & G.S.

TYPE OF DRILL RIG Acke	r AD-11	LOCATION Equalization Basin Area						
SAMPLING METHOD Standard Penetration Tests								
CASING 4" I.D. Flush Joint Casing DATE STARTED 5/4/83 COMPLETED 5/5/83								
SIZE AND TYPE OF BIT_	<u> </u>			ENGINEERS.	Putney			
SIZE AND TYPE OF BIT ENGINEERS. Putney DIRECTION OF HOLE: VERTICAL INCLINED DEGREES FROM VERTICAL OVERBURDEN SAMPLES: DISTURBED10 UNDISTURBED2 THICKNESS OF OVERBURDEN55.0' TOP OF ROCK ELEVATION DEPTH DRILLED INTO ROCK BOTTOM OF HOLE ELEVATION521.87								
TOTAL DEPTH OF HOLE	35.0		-					
DEPTH (FT.) BLOWS PER O.5 FT. SAMPLE TYPE, NO. B. LOCATION N-VALUE OR % REC. RQD	REMARKS	LEGEND DEPTH (FT)	CORE	SOIL AND 9	ROCK DESCRIPTION			
0 1	S-1 (0.0'-2.0')	₩₩ •		Soft red-brown silty	Clay, trace sand, organics			
3 S-1 5	(010 210)	XXXX 1-	- I	slightly plastic, mo Soft, gray-black, fl	y ash, fine sandy silt. —			
$\frac{3}{2}$		*****	∮	trace organics, nonp	lastic, moist (Fill)			
		‱ ²−	1					
3		‱ ₃_]					
+		‱ ·	-		1			
4	-	‱ 4-	-		-			
		 	1 1		-			
weight	S-2 (5.0'-7.0')	‱ ⁵⁻		Grading - very soft	trace clav. wet.			
6 OF S-2 WOH		‱ ₅-	1 1	• • • • • • • • • • • • • • • • • • • •]			
HAM-		*****	- 1		4			
7 MER		‱ 7−	1 . 1		=			
8		‱]		4			
		******************************]					
9		₩₩ 9-	4					
_ +		******	1		4			
10-1-1	S-3 (10.0'-12.0')	XXXX 10-	1					
11 0 S-3 1	(10.0 -12.0)	XXXXI]	Grading - black-gray	1			
1		XXXX '`-] [a dering a Diackagray				
120		XXXXI 12—	-					
<u>,, - </u>		****	-		4			
13		13-	-		4			
1314		****						
14		13-						
	Disc	****	CLASSIFI	CATION	-			
14 15 ORIENTATION	DEGREE OF O	14-	CLASSIFI	CATION WEATHERING	SPECIAL FEATURES			
14 15		14- 20N TINUIT Y PENING	F FRE	WEATHERING SH	SPECIAL FEATURES HD HAMMER BREAK			

H HORIZONTAL LA LOW ANGLE (S HA HIGH ANGLE (*	45*)		C CLOSED SO SLIGHTLY OPE O OPEN			8	WEATHERING FRESH SLIGHT SLIGHT TO MODERATE	HB HAMMER BREAK
35 36 U-1 37	Figure		3-inch undisturbed sample (35.0'- 37.0')	SCONTI		CLASS	Medium, brown-red,s moderately plastic, BIFICATION WEATHERING	lity CLAY slightly- wet (CL)
30 5 31 4 3 S-8 32 3	6		S-8 (30.0'-32.0')		29— 30— 31— 32— 33—		Loose, gray-brown, s nonplastic, wet (SM)	ilty fine-medium <u>SAND</u> ,
25 1 26 0 0 S-7 27 0	WOH		S-7 (25.0'-27.0')		25— 26— 27— 28—		Grading - petroleum	odor
20 1 S-6 21 0 0 22 0	WOH		S-6 (20.0'-22.0')		20			
17 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WOH		S-5 (17.0'-19.0')		17			
0 1 0 0 5 FT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S N-VALUE OR % REC.	RQD %	S-4 (15.0'-17.0')	LEGEND	15 16-	CORE	SOIL AND	ROCK DESCRIPTION
GOLDBERG - ZOIL GEOTECHNICAL		SOCIA	TES OF N.Y., P.C LOGICAL CONSU	C. LTANTS		FILE	Equalization Bas	BORING NO. SB-EE
						PRO	JECT <u>Niagara Mohawk P</u>	

BORING NO. SB-EB1 SHEET 2 OF 3

TA.	
47/	
- //	

GOLDBERG-ZOINO ASSOCIATES OF N.Y., P.C. GEOTECHNICAL-GEOHYDROLOGICAL CONSULTANTS

	-BORING LOG-
ROJECT	Niagara Mohawk Power Corporation
···	Equalization Basins

____ BORING NO. SB-EB1_

FILE NO. _____5610.2_

⊢									
DEPTH (FT.)	BLOWS PER 0.5 FT.	SAMPLE TYPE, NO.	N -VALUE OR % REC.	70°	REMARKS	LEGEND	0 Е РТН (FT.)	CORE BREAKS	SOIL AND ROCK DESCRIPTION
37	1				S-9 (37.0'-39.0')		37	ı "	
38	2				(37.0"-39.0")		38		
-	2	S-9	5				_		
39	3	ļ	 				39		·
-		-			3-inch		-		
40	 	U-2	ŀ		undisturbed sample (40.0'-		40		
41_		1	ļ		42.0')		41_		•
71-]					41-		•••
42_		<u> </u>					42_		_
- ا	<u> </u>						_		
43_	-	1					43		. <u>-</u>
-	├	1					-		· •
44_	13	 	 -		S-10 (44.0'-46.0')	<i>!!!!!</i>	44	}	
45_	15.	S-10	33				45_		Dense, gray, fine-medium SAND,trace silt, —
13_	15]	"				73~		nonplastic wet, (SW)
46_	18	<u> </u>					46		_
.	<u> </u>	4							
47_	├	-		1			47		~-
-	 	1							
48_	 	1					48_	1	-
49_		1			S-11		49_		
"-	18			1	(49.0'-51.0')		"-		
50_	21	1.	ŀ	1			50	1	Hard, grav, sandy <u>SILT</u> , little medium- fine
.	24	S-11	51	l				1	gravel, trace clay, nonplastic, wet (ML) (Glacial Till)
51_	27		 	1	 		51_		-
52_	<u> </u>	1					52_	1	
32_		1		İ			32	1	
53_]					53]	
Ι.	<u> </u>	1			i		.	1	
54_	<u> </u>	4					54 -	┥	
	100/0			_[S-12 (55.0'-55.0')		-	1	Refusal w/ casing 55.0 ft.
55-	100/0	15-12	100/10	1	 	11111	55_	1	Bottom of Hole 55.0 ft.
1		1					-	1	The stratification lines represent the
Ι.						1	Ι.		approximate boundary between soil and rock types. The actual transition may be gradual.
-	 	4			Groundwater		_	-	cypes. The account transferror may be gradual.
.	┼	4			level 0 9.0 ft.		-	1	
-	 	1					-	1	-
Ι .	+	-1	1	1	I	1		1	<u> </u>

MISCELLANEOUS NOTES:

ORIENTATION

H HOMIZONTAL
LA LOW ANGLE (\$450)
HA HIGH ANGLE (*450)
T VERTICAL

DISCONTINUITY CLASSIFICATION
DEGREE OF OPENING WEATH

C CLOSED SO SLIGHTLY OPEN O OPEN

WEATHERING

F FRESH S SLIGHT SM SLIGHT TO MODERATE M MODERATE

MV MODERATE TO SEVERE

V SEVERE

BORING NO. SR-FB1 SHEET 3 OF 3

SPECIAL FEATURES

HB HAMMER BREAK

^{*} Casing refusal w/ 300 lbs. hammer

	7		
1	7	7	
-/			. 1

GOLDBERG-ZOINO ASSOCIATES OF N.Y., P.C. GEOTECHNICAL-GEOHYDROLOGICAL CONSULTANTS

PROJECT	Niagara Mohawk Power Corporation
	Equalization Basins

BORING NO. SB-EB2 SHEET I OF 3

SURFACE ELEV. 578.67 DRILLER JIMBAYS. TOPE OF DRILL RIG Trafter Hounted Acker TH SAMPLING METHOD Standard Penetration Tests CASING 2**Lis. Flush Judit Casing SIZE AND TYPE OF BIT DIRECTION OF HOLE: VERTICAL EU INCLINED DEGREES FROM VERTICAL OVERROUNDEN SAMPLES: DISTURBED 11 THICKNESS OF OVERBURDEN 51.5' TOP OF ROCK ELEVATION DEPTH DRILLED INTO ROCK TOTAL DEPTH OF HOLE S1.5' TOTAL DEPTH OF HOLE S1.5' S0IL AND ROCK DESCRIPTION MEDITAND OF HOLE ELEVATION S27.17 Medium grayish-bleck fly ash, fire sandy silt, trace organics, trace clay, moist, friil) S3. 3 - 1 6 (0.0'-1.5') S1.5' S0IL AND ROCK DESCRIPTION Medium sand size) ORIGINATION DEGREE OF OPENNO ORIGINATION DEGREE OF OPENNO DISCONTINUITY CLASSIFICATION ORIGINATION DEGREE OF OPENNO ORIGINATION DEGREE OF OPENNO DISCONTINUITY CLASSIFICATION ORIGINATION DEGREE OF OPENNO ORIGINATION DEGREE OF OPENNO DEGREE OF OPENNO ORIGINATION DEGREE OF OPENNO DEGREE OF OPENNO ORIGINATION DEGREE OF OPENNO DEGREE OF OPENNO DEGREE OF OPENNO ORIGINATION DEGREE OF OPENNO DEGREE OF OPENNO S27.17 DISCONTINUITY CLASSIFICATION ORIGINATION DEGREE OF OPENNO DEG							
DRILLER JIE Narks TYPE OF DRILL RIG Trailer Hounted Actor TH SAMPLING METHOD Standard Penetration Tests CASING 2* 1.5. Flush Joint Casing DIRECTION OF HOLE: VERTICAL & INCLINED DEGREES FROM VERTICAL OVERBURDEN SAMPLES: DISTURBED 11 UNDISTURBED OF PROCE ELEVATION DEPTH DRILLED INTO ROCK BOTTOM OF HOLE ELEVATION DEPTH OF HOLE S1.5' TOP OF ROCK ELEVATION DEPTH OF HOLE S1.5' TOP OF ROCK ELEVATION S27.17 TOTAL DEPTH OF HOLE S1.5' TOP OF ROCK DESCRIPTION S27.17 TOTAL DEPTH OF HOLE S1.5' SOIL AND ROCK DESCRIPTION PREdium grayish-black flv ash, fire sandy sill trace organics, trace clay, noist, ffill	CONTRACTOR GZA Drillin	g, Inc.	SURFACE ELEV 578.67				
TYPE OF DRILL RIG							
SAMPLING METHOD Standard Penetration Tests CASINGPuTi.sPlush_bolat Casing SIZE AND TYPE OF BIT	TYPE OF DRILL RIGTr	ailer Hounted Acker TH					
CASING 24" 1.5. Flush Joint Casing SIZE AND TYPE OF BIT - DEGREES FROM VERTICAL DEGREES S. Putney DIRECTION OF HOLE: VERTICAL & INCLINED DEGREES FROM VERTICAL DEGREES FROM VERTICAL DEGREES OF OVERBURDEN SAMPLES: DISTURBED 11 UNDISTURBED DEGREES FROM VERTICAL DEG							
DIRECTION OF HOLE: VERTICAL © INCLINED UNDISTURBED UND							
DIRECTION OF HOLE: VERTICAL ED INCLINED DEGREES FROM VERTICAL OVERBURDEN SAMPLES: DISTURBED 11 UNDISTURBED THICKNESS OF OVERBURDEN 51.5' TOP OF ROCK ELEVATION 527.17 TOTAL DEPTH OF HOLE S1.5' TOTAL DEPH OF HOLE S1.5' TOTAL DEPTH OF HO							
OVERBURDEN SAMPLES: DISTURBED 11 UNDISTURBED - THICKNESS OF OVERBURDEN 51.5' TO F ROCK ELEVATION - BOTTOM OF HOLE ELEVATION 527.17 TOTAL DEPTH OF HOLE S1.5' TOTAL DEPTH OF HOLE S1.5	, , , , , , , , , , , , , , , , ,		ENGINEER 3. Putney				
OVERBURDEN SAMPLES: DISTURBED 11 UNDISTURBED - THICKNESS OF OVERBURDEN 51.5' TO F ROCK ELEVATION - BOTTOM OF HOLE ELEVATION 527.17 TOTAL DEPTH OF HOLE S1.5' TOTAL DEPTH OF HOLE S1.5	DIRECTION OF HOLE: VE	RTICAL & INCLINE	D DEGREES FROM VERTICAL				
THICKNESS OF OVERBURDEN 51.5' DEPTH DRILLED INTO ROCK TOTAL DEPTH OF HOLE S1.5: REMARKS S1.5: S1.5							
DEPTH DRILLED INTO ROCK							
TOTAL DEPTH OF HOLE Solid							
Companies Comp			T				
Solidade	1 7 7						
S-1	FETTH LIOWS FETTH AMPLE PETTH AMPLE WALUE WALUE ROD	REMARKS W	SOIL AND ROCK DESCRIPTION				
S-1 6 (0.0'-1.5') 1		ן בן די ויי	5 5 %				
1	 	S-1 XXX	0_				
S-2 S S C C C C C C C C	- 	(0.0'-1.5')	1- Medium grayish-black fly ash, fine sandy				
3	1		silt, trace organics, trace clay, moist, (Fill)				
Comparison Com	2-		2-				
Comparison Com	<u></u>	J	<u>,</u> †				
Comparison Com			-				
Comparison Com							
Comparison Com	 		·				
Comparison Com	5		5—				
4 7		(5.06.2.)	+				
10	□ 		Grading - fine-medium fly ash (fine- medium sand size)				
11 4 5-3 11 (10.0'-11.5')	,		J				
11 4 5-3 11 (10.0'-11.5')			<u>`</u>]				
11 4 5-3 11 (10.0'-11.5')	8] 	8-				
11 4 5-3 11 (10.0'-11.5')	+		- I				
11 4 5-3 11 (10.0'-11.5')	9		9				
11 4 5-3 11 (10.0'-11.5')	,, †		1				
11 4 5-3 11 12 12 13 13 14 14 15 15 ORIENTATION DEGREE OF OPENING WEATHERING SPECIAL FEATURES H HORIZONTAL LA LOW ANGLE (\$\(45^\text{o}\) 30 \$\(\) \$\(\	1		1 1 .				
DISCONTINUITY CLASSIFICATION ORIENTATION DEGREE OF OPENING H HORIZONTAL LA LOW ANGLE (\$\leq 45^\text{o}\) HA HIGH ANGLE (\$\leq 45^\text{o}\) HA HIGH ANGLE (\$\leq 45^\text{o}\) HO OPEN DISCONTINUITY CLASSIFICATION WEATHERING WEATHERING F FRESH 'S SLIGHT 'S SLIGHT SIM SLIGHT TO MODERATE MY MODERATE MY MODERATE MY MODERATE MY MODERATE MY MODERATE TO SEVERE	11 4 5-3 11	I 💢					
DISCONTINUITY CLASSIFICATION ORIENTATION DEGREE OF OPENING H HORIZONTAL LA LOW ANGLE (< 45°) T VERTIGAL DISCONTINUITY CLASSIFICATION WEATHERING WEATHERING F FRESH SO SLIGHTLY OPEN SN SLIGHT SM SLIGHT TO MODERATE MV MODERATE		 	··				
DISCONTINUITY CLASSIFICATION ORIENTATION DEGREE OF OPENING H HORIZONTAL LA HORIZONTAL LA HORIZONTAL LA HORIZONTAL LA HORIZONTAL LA HORIZONTAL C CLOSED SO SLIGHTLY OPEN G OPEN SO SLIGHTLY OPEN SM SLIGHT SM SLIGHT TO MODERATE M MODERATE MV MODERATE MV MODERATE MV MODERATE TO SEVERE	12		12—{				
DISCONTINUITY CLASSIFICATION ORIENTATION DEGREE OF OPENING H HORIZONTAL LA HORIZONTAL LA HORIZONTAL LA HORIZONTAL LA HORIZONTAL LA HORIZONTAL C CLOSED SO SLIGHTLY OPEN G OPEN SO SLIGHTLY OPEN SM SLIGHT SM SLIGHT TO MODERATE M MODERATE MV MODERATE MV MODERATE MV MODERATE TO SEVERE	_	************************************	- 1				
DISCONTINUITY CLASSIFICATION ORIENTATION DEGREE OF OPENING WEATHERING SPECIAL FEATURES H HORIZONTAL LA LOW ANGLE (\$45°) Y VERTICAL DISCONTINUITY CLASSIFICATION WEATHERING SPECIAL FEATURES F FRESH S SLIGHT SM SLIGHT TO MODERATE M MODERATE MV MODERATE MV MODERATE MV MODERATE MV MODERATE MV MODERATE MV MODERATE	13-1	 	-				
DISCONTINUITY CLASSIFICATION ORIENTATION DEGREE OF OPENING WEATHERING SPECIAL FEATURES H HORIZONTAL LA LOW ANGLE (\$45°) Y VERTICAL DISCONTINUITY CLASSIFICATION WEATHERING SPECIAL FEATURES F FRESH S SLIGHT SM SLIGHT TO MODERATE M MODERATE MV MODERATE MV MODERATE MV MODERATE MV MODERATE MV MODERATE MV MODERATE	,		. 1				
DISCONTINUITY CLASSIFICATION ORIENTATION DEGREE OF OPENING WEATHERING SPECIAL FEATURES H HORIZONTAL C CLOSED SO SLIGHTLY OPEN S SLIGHT S SLIGHT S SLIGHT S SLIGHT S SLIGHT M MODERATE MV MODERATE MV MODERATE MV MODERATE MV MODERATE	·		"]				
ORIENTATION DEGREE OF OPENING WEATHERING SPECIAL FEATURES H HORIZONTAL LA LOW ANGLE (≤ 45°) HA HIGH ANGLE (> 45°) Y VERTICAL DEGREE OF OPENING C CLOSED F FRESH S SLIGHT S SN SLIGHT S SN SLIGHT S SN SLIGHT TO MODERATE MY MODERATE MY MODERATE MY MODERATE TO SEVERE	15	L	5				
H HORIZONTAL LA LOW ANGLE (< 45°) HA HIGH ANGLE (> 45°) T VERTICAL C CLOSED SO SLIGHTLY OPEN SO SLIGHT SM SLIGHT TO MODERATE M MODERATE MV MCDERATE TO SEVERE	ORIENTATION						
HA HIGH ANGLE (> 45°) O OPEN SM SLIGHT TO MODERATE T VERTICAL M MODERATE MV MODERATE TO SEVERE		C CLOSED	F FRESH HB HAMMER BREAK				
MV MODERATE TO SEVERE	A HIGH ANGLE (> 45°)						
ł i	T VERTICAL						
V SEVERE		<u> </u>	V SEVERE				

GOLDBERG - ZOINO ASSOCIATES OF N.Y., P.C. GEOTECHNICAL - GEOHYDROLOGICAL CONSULTANTS								PROJECT Niagara Mohawk Power Corporation Equalization Basins					
								FILE	FILE NO BORING NO. SB-EB2				
(FT,	BLOWS PER 0.5 FT	SAMPLE TYPE, NO.	N -VALUE OR % REC.	8°8	REMARKS	LEGEND	DEPTH (FT.)	CORE BREAKS	SOIL AN	D ROCK DESCRIPTION			
_	2				S-4 (15.0'-16.5')		15 _		- · · · · · · · · · · · · · · · · · · ·	······································	_		
	3	S-4	6				16						
_						XXX	17						
_		}				XXX	18						
_]					19-						
_					S-5		20						
-	2	S-5	5		(20.0'-21.5')	\bowtie	-						
_	3						21						
		1					22-						
_		1					23-			-			
_	-	-			•		24						
_		ļ			S-6 (25.0'-26.6')		25		:				
-	2	S-6	4		(25.0'-26.5')		26						
-	2	 	<u> </u>	1			27	}					
]	1			\bowtie	. [-					
-		1					28-	1					
-		1					29-	1					
-	15	┼┈	-	1	S-7 (30.0'-31.5')	XXX	30-	1	Medium dense, gray	, fine-medium SAND, trace	_		
_	14 14	S-7	28		(6075 6215)		31	}	silt, nonplastic,	wet (SW)			
- 	1.7	ļ — ·					32_		Stiff, reddish-bro	own, silty <u>CLAY</u> , moderately			
, -		1					33-		plastic, wet, (CL)				
•	-	-						-					
		1	ŀ				34-]					
,	4			1	S-8 (35.0'-36.5')		35	1	1				
8	4	S-8	8				36-	1					
7_	<u> </u>	<u></u>	<u> </u>	<u> </u>				CLAS	SIFICATION		_		
	HORIZO	RIENTA			DEGREE OF	OPENIN	iG .		WEATHERING FRESH	SPECIAL FEATURES HB HAMMER BREAK	_		
	LOW A	NGLE (: NGLE (:			SO SLIGHTLY OPE	: M		S SM M MV	SLIGHT SLIGHT TO MODERATE Moderate Moderate to Severe Severe				

BORING NO. Sb-EB2 SHEET 2 OF 3

### REMARKS \$\frac{9}{45} \frac{1}{45} \fr	SOIL AND ROCK DESCRIPTION		G - ZOI	NO AS		ATES OF N.Y., P.C. Dlogical consult		-BORING UJECT Niagara Mohawk Po Equalization Bass E NO. 5610.2	ower <u>Corporation</u>		
38	38	DEPTH (FT) BLOWS PER 0.5 FT.	SAMPLE TYPE, NO.	% ^A	Roo %	REMARKS	LEGEND	DEPTH (FT.)	CORE BREAKS	SOIL AND	ROCK DESCRIPTION
Coundwater Several Place	According to the state of the	38 39 40 3 41 3 3 42 43 44	S-9	6		(40.0'-41.5')		38— 39— 40— 41— 42— 43— 44—			
Groundwater Bottom of Hole 51.5 ft. Groundwater The stratification lines represent the approximate boundary between soil and rock	Groundwater level @ 14.0' upon completion. Discontinuity Classification Bottom of Hole 51.5 ft. The stratification lines represent the approximate boundary between soil and rock types. The actual transition may be gradual.	46 3 3 47 48 49 50 21 51 65				(45.0'-46.5') S-11		47— 48— 49— 50—		medium-fine gravel, wet, (ML) (Glacial T	trace clay, nonplastic, iil)
		7				level @ 14.0'				Bottom o The stratification l approximate boundary	of Hole 51.5 ft. Ines represent the between soil and rock

<u></u>	DISCONTINUITY	CLASSIFICATION	
ORIENTATION	DEGREE OF OPENING	WEATHERING	SPECIAL FEATURES
HORIZONTÁL LOW ANGLE (± 45°) HIGH ANGLE (* 45°) VERTICAL	C CLOSED SO SLIGHTLY OPEN O OPEN	F FRESH S SLIGHT SM SLIGHT TO MODERATE M MODERATE MV MODERATE TO SEVERE V SEVERE	HB HAMMER BREAK

MISCELLANEOUS NOTES: * Casing refusal w/ 300 lbs. hammer.

BORING NO. Sb-EB2 SHEET 3 OF 3

C

7/6	
47	

GOLDBERG-ZOINO ASSOCIATES OF N.Y., P.C. GEOTECHNICAL - GEOHYDROLOGICAL CONSULTANTS

-BORING LOG-										
PROJECT Niagara Mohawk Power Corporation Equalization Basin										
FILE NO. 5610.2 BORING NO. SB-EB-3										

CONTRACTOR GZA	Drilling, Inc.			SURFACE ELEV.	580.85
DRILLER <u>Frank Per</u>	rry			DATUM_U.S.C.	G.S.
TYPE OF DRILL RIG				LOCATION Equal	zation Basin Area
SAMPLING METHOD					
CASING 4" I.D. Flu	ush Joint Casing			DATE STARTED	5/2/83 COMPLETED 5/3/83
SIZE AND TYPE OF	BIT			ENGINEER\$. P	utney
DIRECTION OF HOLE	VERTICAL E	(4)6) (4)50 (
					ERTICAL
	LES: DISTURBED 1				-
					TION 528.65
	OLE5			OF HOLE ELEVA	11ON 528.65
TOTAL DEFIN OF N	JULE5	2.2	· ·		
PER O.S. FT. SAMPLE TY NO. S. FT. SAMPLE TY O.S. FT. O.S.	중 REMARKS	LEGEND DEPTH (FT.)	CORE	SOIL AND	ROCK DESCRIPTION
0 1	S-1 (0.0'-2.0')	₩ ∘ -	-	Soft, red-brown, sil	ty clay, slight-moderately,
1 2 5-1 5	(0.0 -2.0)	1—	1 1 -	Loose, black, fly as	h, trace clay, organics.
2 3		- XXXX		nonplastic moist, (F	''' <i>)</i>
		2]		4
3		₩₩ 3			1
+		********** -			4
4——————————————————————————————————————		4—	1 1		_
]		1
1	S-2 (5.0'-7.0')	~ · ·			
6-10-50	1	6			4
1 S-2 1		- ****	'	Grading - wet	4
13	S-3	⁷ -] [Hard, black, bottom a	sh, trace clay, nonplastic,
8 18	(7.0'-9.0')	₩₩ ₈ —]]	moist (F111)	
19 S-3 39	Note: 7ppm total organic	- *****			4
9 20	vapors	9-			-
10		****		· 	·
4	S-4	10 -		Grading - medium sti	ff, wet
11 2 5-4 6	(10.0'-12.0')	XXX 11-			4
$\frac{2}{4}$					· -
12		12]		寸
13	,	13-			_]
+		- XXX			4
14		14-			\dashv
15		XXXX 15			<u> </u>
ORIENTATION	DIS DEGREE OF	CONTINUITY	CLASSIFIC	ATION WEATHERING	SDECIAL FEATURES
H HORIZONTAL	C CLOSED	OFERING	F FRESH		SPECIAL FEATURES HB HAMMER BREAK
LA LOW ANGLE (≤ 45°) HA HIGH ANGLE (> 45°)	SO SLIGHTLY OPE O OPEN	N	S SLIGHT		
T VERTICAL			M MODER	NATE NATE TO SEVERE	
			V SEVER		

MISCELLANEOUS NOTES:

BORING NO. SB-EB-3 SHEET 1 OF 3

										-BORING	LOG-	
	L	S						İ	PRO	JECT <u>Niagara Mohawk Pow</u> Equalization Basis	ver Corporation	
	BEO	DBER TECH	G-ZOI NICAL	NO AS	SOCI	ATES OF N.Y., P.C LOGICAL CONSUL	TANTS		FILE NO. 5610.2 BORING NO. SB-EB-3			
ОЕРТН	(FT.)	BLOWS PER 0.5 FT	SAMPLE TYPE, NO.	N -VALUE OR % REC.	RQD	REMARKS	LEGEND	DEPTH (FT.)	CORE	SOIL AND RO	OCK DESCRIPTION	
	5	3	S-5	3		S-5 (15.0'-17.0')	****	15 16		Grading - soft		
	17	2	2-2	,				17-				
	- 18—		1		ļ 1			18-	· · · · · · · · · · · · · · · · · · ·			
	- 19		1	<u> </u>				19-				
	20 <u>-</u> -	2		-		\$-6 (20.0'-22.0')		20-				
	2 }- -	2 2	S-6	4				21				
	22-	2	-			S-7 (22.0'-24.0')		22	1	Grading - trace shiny	filaments, petroleum	
	23-	2	S-7	4				24-	1	odor		
	25-		_	<u> </u>	-	S-8 (25.0'-27.0')		25-	1			
	2 6 -	1	S-8	3		(25.0*-27.0*)		26-	1	Grading - wood		
.	27-	2		1-	-			27-				
	28-	1	_					28-	 -			
	29-	 						29-	1			
	30-	$\frac{1}{1}$				(30.0'-32.0')		30- 31-	-			
	31 - 32-	+-	⊢, ,	2				32	4			
	33	+-						33	-			
	34	+	7					₩ 34	-			
	35	4	<u>B</u>	_	-	S-10 (35.0'-37.0')	35	-	Loose, gray-brown, fin	e-medium <u>SAND</u> , nonplastic,	
	36	+	3 6 4	10 10)			36 37	<u>.</u>			
						DEGREE OF	DISCON	TINUIT	Y CLA	SSIFICATION WEATHERING	SPECIAL FEATURES	
	┞	шлен	ZONTAL	TATION		C CLOSED			1	FRESH	HB HAMMER SREAK	
	L	LOW	ANGLE	(s 45°) (* 45°)	1	SO SLIGHTLY O	PEN		S SM			
	# <i>'</i>		TIGAL	, 7 9':	•					MODERATE TO SEVERE	[
	1					l l			Ιv	SEVERE	l	

BORING NO. SB-EB-3 SHEET 2 OF 3

MISCELLANEOUS NOTES:

	, ,
4/4	 \

GOLDBERG-ZOINO ASSOCIATES OF N.Y., P.C. GEOTECHNICAL-GEOHYDROLOGICAL CONSULTANTS

-BORING LOG-
gara Mohawk Power Corporation
alization Basin

FILE N	О.	5610	BORING	NO.	SB-EB-3
,			~		20-60-3

37 38 39 40 1 41 1 5-11 41 2 3-1 42 42 43 43 44 45 19 46 31 31 35 50 52 51 50 51 51 52 52 63 64 65 67 67 67 67 67 67 67 67 67 67 67 67 67		BLOWS PER O.5 FT	SAMPLE TYPE, NO.	N -VALUE OR % REC.	RQD %	REMARKS	LEGEND	DEPTH (FT.)	CORE BREAKS	SOIL AND ROCK DESCRIPTION
39	37					****		37		
39	32									•
40	,,							38-		-
40	30					•		٦. ٦		•
1	٠,-							39—		
1	40		L					٠. ٦		Coff and house of the group
41	-	1				(40.0'-42.0')		40		plastic, wet (CL)
42	41_	1	S-11	4				٦. آ		-
42 43 44 45 49 48 49 49 50 51 50 52 51 50 51 69 52 88 500/.2 6roundwater level @ 13.9 upon completion 42 43 44 44 45 45 46 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	``_	2	J	'				41-		-
43	42	2								·
44								42		·
44	42			İ				1		·
45	,,							4.5		
45	44							٦, ٦		-
19								44		-
19	45							Ac		-
31 3512 60 (45.0'-47.0') 46 Hard, gray-brown, sandy SLIT. liftle clay, trace gravel, very slightly plastic, wet (ML) (Glacial Till) 50 52 51 50 50 513 (50.0'-52.0') 51 59 88 (52.0'-52.2') 52 86 (52.0'-52.2') 52 86 (52.0'-52.2') 52 86 (52.0'-52.2') 52 86 (52.0'-52.2') 52 87 86 (52.0'-52.2') 60 7 86 8		19						45		
31 35 47 48 48 49 49 50 51 50 52 50 51 52 50 52 51 52 52 52 52 52 52	46	31	S-12	66		S-12		٨		Hand aray_brown candy SILT little clay
48		31				(45.0'-47.0')		40		trace gravel, very slightly plastic, wet
48	47	35						47		(ML) (Glacial Till)
49	"_							. 4/		
49	48							40		•
50	~ _							40		-
50	49							40		-
S								4,5		
S	50					S-13				·
51 69 88 S-13 157 S-14 (52.0'-52.2') S-14 (52.0'-52	_					(50.0'-52.0')		30		-
52 S-14 (52.0'-52.2')	51	50	5-13	157				E1-		
Solution of Hole 52.2 ft. Groundwater level @ 13.9' upon completion Groundwater level . The stratification lines represent the approximate boundary between soil and rock types. The actual transition may be gradual.	_					S-14] 3, _		
Groundwater level @ 13.9' upon completion The stratification lines represent the approximate boundary between soil and rock types. The actual transition may be gradual.	52	88				(52.0'-52.2')		52		*Refusal w/ casing
Groundwater level @ 13.9' upon completion The stratification lines represent the approximate boundary between soil and rock types. The actual transition may be gradual.	_	100/.2					11111	<u> </u>		
level @ 13.9' upon completion approximate boundary between soil and rock types. The actual transition may be gradual.	_							_		BOCCON OF ROTE 32.2 Ft.
level @ 13.9' upon completion approximate boundary between soil and rock types. The actual transition may be gradual.	_	ļ						_		•
level @ 13.9' upon completion approximate boundary between soil and rock types. The actual transition may be gradual.	_	ļ				Groundwater		_		The stratification lines represent the
	-					level @ 13.9'		_		approximate boundary between soil and rock
OISCONTINUITY CLASSIFICATION	_	ļ				upon completion		_		types. The actual transition may be gradual.
OISCONTINUITY CLASSIFICATION	-							-		· .
OISCONTINUITY CLASSIFICATION	_	—	}				İ	_		
DISCONTINUITY CLASSIFICATION	-	-						-		
OISCONTINUITY CLASSIFICATION								_		
OISCONTINUITY CLASSIFICATION	-	ļ						-		_
OISCONTINUITY CLASSIFICATION	_									· · · · · · · · · · · · · · · · · · ·
DISCONTINUITY CLASSIFICATION	-							-		_
			L	L				11175		IFIOATION.

ORIENTATION	DEGREE OF OPENING	CLASSIFICATION WEATHERING	SPECIAL FEATURES
H HORIZONTAL LA LOW ANGLE (5 45°) HA HIGH ANGLE (* 45°) T VERTICAL	C CLOSED SO SLIGHTLY OPEN O OPEN	F FRESH 3 SLIGHT SM SLIGHT TO MODERATE M MODERATE MY MODERATE TO SEVERE V SEVERE	HB HAMMER BREAK

MISCELLANEOUS NOTES: *Casing refusal w/ 300 lbs. hammer.

BORING NO. SB-EB-3 SHEET 3 OF 3

47	
JA	

GOLDBERG-ZOINO ASSOCIATES OF N.Y., P.C. GEOTECHNICAL-GEOHYDROLOGICAL CONSULTANTS

-BORING LOG-						
PROJECT	Niagara Mohawk Power Corporation					
	Equalization Basins	_				
FILE NO.	5610.2 BORING NO. SB-EB4					

BORING NO. SB-EB-4 SHEET I OF 3

			<u></u>	ı		
CONTRACTORGZA Dr	illing, Inc.			SURFACE ELEV.	574.43	_
DRILLER Frank Perry				DATUM U.S.C.	G.S.	_
TYPE OF DRILL RIG	Acker AD-11			LOCATION _ Equal	ization Basin Area	_]
SAMPLING METHOD _	Standard Penetration	Tests				_]
CASING 4" I.D. Flu	sh Joint Casing		/3/83 COMPLETED <u>5/4/</u> 8	3		
SIZE AND TYPE OF B	BIT			ENGINEER <u>s. Pi</u>	tnev	
DIRECTION OF HOLE:	VERTICAL EL					
					RTICAL	-
OVERBURDEN SAMPLE						ļ
					-	-
			вотто	W OF HOLE ELEVA	TION527.43	-
TOTAL DEPTH OF HO	LE47.0'	····				
(FT.) BLOWS BECOWS O.5 FR. O.5 FR. SAMPLE TYPE, NO. N-VALUE OR % REC.	REMARKS	LEGEND DEPTH (FT.)	CORE	SOIL AND R	OCK DESCRIPTION	
0 3		****		*.*		
12 S-1 38	S-1	 		Hard, gray-black, fly	v ach coal /F2131	4
18 3-1 38	(0.0,-5.0,)	₩ ¹¬		mard, gray-black, 115	y dsn, codi (Fili)	コ
2 20		₩ 2—				_
 						4
3-		₩ 3-				\dashv
						コ
1		· ·				7
5	S-2 (5.0'-7.0')	‱ 5—		Stiff gravablack fl	y ash, little sand &	_
2 4 0 0 15	(3.0 -7.0)	********* -	f I	silt, trace ogranics, (Fill)		4
6 S-2 15		**** •		(1117)		
7 9		XXX 7—				4
+		- 1				4
8		*************************************				\dashv
, +		****				4
		, , , , , , , , , , , , , , , , , , ,				亅
10	S-3	10				4
16	(10.0'-12.0')	***** -		Grading - medium stif	f, trace clay	4
11 3 S-3 8		11-				
12 5						
"		12 -				
13		13				\dashv
+		XXXX -				4
14		14-				\dashv
15		15				二
ORIENTATION	DEGREE OF C	CONTINUITY PENING	CLASSIFIC	ATION WEATHERING	SPECIAL FEATURES	\dashv
H HORIZONTAL	C CLOSED		F FRES	H	HB HAMMER BREAK	
A LOW ANGLE (< 45°) A HIGH ANGLE (> 45°) VERTICAL SO SLIGHTLY OPEN SM SI M MC			SM SLIGH M MODE	IT TO MODERATE		
V SEVERE AISCELLANEOUS NOTES:						

GZ\			PR	PROJECT Niagara Hohawk Power Corporation Equalization Basins		
GOLDBERG - ZOINO ASSOCIA GEOTECHNICAL - GEOHYDRO			FIL	E NO5610.2	BORING NO. SB-EB4	
FFTH (FT) BLOWS BLOWS PER O.5 FT SAMPLE TYPE, NO. BLOCATION N -VALUE OR % REC.	REMARKS	LEGEND	(FT.) CORE BREAKS	SOIL AND I	ROCK DESCRIPTION	
15 1 16 1 S-4 5	S-4 (15.0'-17.0')		5 - - 7—			1.1.1.
18		1	8 9			_
20 1 21 5-5 2	S-5 (20.0'-22.0')	XXXI	0-	Grading - very soft,	gray	-
22 1			2-			-
25 5 26 4 5-6 8	\$-6 25.0'-27.0')	***	25-			-
27 5			27	Grading - medium sti	ff 	- - -
30 14	S-7 (30.0'-32.0')		30-			-
31 18 S-7 37 19 32 33			32 - 33 - 33 - 3	Dense, gray, fine-med trace fine gravel, n	ium <u>SAND</u> , trace silt onplastic, wet (SW)	-
35	S-8		34			- -
36 16 S-8 40 37 21	(35.0'-37.0')		36	Grading - little fin	ne gravel, trace cobble	<u>-</u>
ORIENTATION	DEGREE OF			WEATHERING	SPECIAL FEATURES	
H HORIZONTAL LA LOW ANGLE (3 45°) HA HIGH ANGLE (> 45°) T VERTICAL	C CLOSED SO SLIGHTLY OPE O OPEN	N	M	FRESH SLIGHT SLIGHT TO MODERATE MODERATE MODERATE TO SEVERE SEVERE	HB HAMMER BREAK	
MISCELLANEOUS NOTES:				BORING	NO. <u>SB-EB4</u> SHEET <u>2</u> 0	F_3_

							<u> </u>
						-BORIN	IG LOG-
GZ \				PRO	JECT Niaga	era Mohawk F ization Bas	Power Corporation
GOLDBERG-ZOINO ASSOC	IATES OF N.Y., P.C.						
GEOTECHNICAL - GEOHYDR	OLOGICAL CONSULT	ANTS		FiLi	NO56	10.2	BORING NO. SB-EB4
DEPTH (FT) BLOWS PER 0.5 FT SAME, NO. A LOCATION N - VALUE OR % REC. ROD	REMARKS	LEGEND	DEPTH (FT.)	CORE BREAKS		SOIL AND	ROCK DESCRIPTION
37			37		· · · · · · · · · · · · · · · · · · ·		
38	200		38—				-
39			39—				-
40	S-9		40—				·
14 41 26 S-9 53	(40.0'-42.0')		41 <u>-</u>		Grading -	· very dense	•
23 42 30			-			•	
-			42				_
43			43				
44-			44—		******		
45	S-10		45-		Hard, gra gravel, v	y, s andy <u>SI</u> ery slight) Till)	LT, little clay, trace - y pTastic, wet (ML)
24 46 31 S-10 63	(45.0'-47.0')		46		(6.2	11117	· _
30 33 33			47				-
			4		····		f Hole 47.0 ft.
48		'	48-		approxima	te boundary	ines represent thebetween soil and rock
49	Constant		49—		types. II	hê actual t	ransition may be gradual.
50	Groundwater level @ 12.0' upon completion.	ĺ	50-				- -
51		,	51—				-
52		İ	4				-
+		'	52—				-
53			53				
54			54				
55			55—				- -
56		_ ,	56—				-
57			4				-
		1	57				
58			58				_
59		UNITAC	59 ITY	CLASSI	FICATION		
ORIENTATION H HORIZONTAL	DEGREE OF OPE	ENING	\dashv	F FR	WEATHERIN ESH	NG	SPECIAL FEATURES HB HAMMER BREAK
LA LOW ANGLE (± 45°) HA HIGH ANGLE (> 45°) T VERTICAL	SO SLIGHTLY OPEN O OPEN			SM SL M MC	.IGHT .IGHT TO MODE DOERATE DOERATE TO SE .VERE		
MISCELLANEOUS NOTES:			_				
						BORING N	O. SE-E84 SHEET 3 OF 3

GOLDBERG-ZOINO ASSOCIATES OF N.Y., P.C. GEOTECHNICAL-GEOHYDROLOGICAL CONSULTANTS -BORING LOG-

BORING NO. SB-FR-5 SHEET 1 OF 3

l	
PROJECT	Niagara Mohawk Power Corporation
	Fave 12 42 0 1
	Equalization Basins

FILE NO. 5610.2 BORING NO. SB-ER-5

CONTRACTORGZA Dri	· · · · · · · · · · · · · · · · · · ·		SURFACE ELEV. 577.70						
DRILLERJim_Marks		DATUM U.S.C. & G.S.							
TYPE OF DRILL RIG _	Trailer Mounted Acker-	TH							
SAMPLING METHOD	Standard Penetration To	ests							
			DATE STARTED 5/2/83 COMPLETED 5/3/83						
			ENGINEER S. Putney						

	DIRECTION OF HOLE: VERTICAL INCLINED I DEGREES FROM VERTICAL -								
			UNDISTURBED						
			TOP OF ROCK ELEVATION						
DEPTH DRILLED INTO	ROCK	(BOTTOM OF HOLE ELEVATION 522.70						
TOTAL DEPTH OF HOL	E55.0'								
, F.m o o m o o									
(FT) 3LOWS PER 3.5 FT AMPLE PE, NO. COCATION ROD	REMARKS	DEPTH (FT.)	SOIL AND ROCK DESCRIPTION						
BLOWS PER O.5 FT. SAMPLE SAMPLE N-VALUE OR % RE			B B B B B B B B B B B B B B B B B B B						
0 3	S-1	 	Stiff, brown-red, silty clay, trace						
1 5 S-1 14	(0.0'-1.5')		organics, very slightly plastic, moist, (Fill)						
 9 		XXXI 1 -							
2	1 18	‱ 2	_						
, 	1 8	₩ ∃	-						
	l &	₩ 7	-						
4——————————————————————————————————————	1 🛚 🖔	XXXI 4—]							
+		XXXI -							
5 8	S-2 (5.0'-6.5')	⋙ 5─	Medium dense, black fly ash, little silty						
6 7 S-2 12	Note: 5 ppm X	XXX . 1	sand, organics, trace coal, nonplastic, wet (Fill)						
5	total organic X vapors.	₩ 7							
7		₩ 7-]						
_ +	X	XXXI -1							
8———	l &	XXX 8-1							
9	1 8	‱	L						
 		XXX 1]						
10-1-1	S-3	XXX 10	-						
1 S-3 2	(10.0'-11.5')	₩ 1	Grading - soft						
1 1 2 2	1 🐰	11							
2		XXX 12—							
+] 🛚 🛚 🖔	XXX -							
3	1 8	13	-						
]	₩.	1						
	1 8	XXX 14]						
5	Disco	XXX 15	LASSIFICATION						
ORIENTATION	DEGREE OF OPE		WEATHERING SPECIAL FEATURES						
HORIZONTAL A LOW ANGLE (\$45°)	C CLOSED SO SLIGHTLY OPEN	F	F FRESH HB HAMMER BREAK						
A HIGH ANGLE (> 45°) VERTICAL	O OPEN	1 -	SM SLIGHT TO MODERATE						
		W	MV MODERATE TO SEVERE						
AISCELLANEOUS NOTES:		<u>L v</u>	V SEVERE						

GZ

GOLDBERG - ZOING ASSOCIATES OF N.Y., P.C. GEOTECHNICAL - GEOHYDROLOGICAL CONSULTANTS

-BORING	LOG-
---------	------

PROJECT	Niagara Mohawk Power Corporation	
	Foustination Racing	

FILE NO. 5610.2 BORING NO. SB-EB-5

DEPTH (FT.)	BLOWS PER 0.5 FT	SAMPLE TYPE, NO.	N -VALUE OR % REC.	RQD %	REMARKS	LEGEND	О ЕРТН (FT.)	CORE BREAKS	SOIL AND ROCK DESCRIPTION
15 16—	0 0	S-4	МОН		S-4 (15.0'-17.0')		15 16—		Grading - very soft
17	0		· 				17— -		
18—	-						18]
19 - -20					\$-5 (20.0'-21.5')		19— - 20—		1
21-	1	S-5	2		(20.0'-21.5')		21-	1	1
22-	1	-					22-		
23-							23-	-	
24-	-	-					24-		Grading - brown, fine sandy silt, trace clay, organics, nonplastic wet, Fill
25-	1 0	S-6	WOI		S-6 (25.0'-26.0')	₩	26-	-	clay, organics, nonplastic wet, Fill
27-	1-0	-	 	-			27-	<u> </u>	
28							28-	-	
29	\perp	_				₩	29	4	
30	24		24		(30.0'-31.5')		¥4 30 31	4	Medium dense, gray, fine-coarse <u>SAND</u> , little fine gravel, trace silt, trace wood, nonplastic
31	+ 13			-			32	4	fine gravel, trace silt, trace wood, nomplastic wet (SW)
3	+	\exists					33	-	-
3	+						34	4	
3	-	98s_	+		(35.0'-36.5')		3	5 6	Grading - no gravel, no wood
-	17		2	0		DISCO	3	, -	ASSIFICATION SPECIAL FEATURES

DISCONTINUITY CLASSIFICATION

ORIENTATION

DEGREE OF OPENING

WEATHERING

WEATHERING

F FRESH

SO SLIGHTLY OPEN

SO SLIGHTLY OPEN

HA HIGH ANGLE (> 45°)

T VERTICAL

DISCONTINUITY CLASSIFICATION

WEATHERING

F FRESH

S SLIGHT

SM SLIGHT TO MODERATE

M MODERATE

MV MODERATE

V SEVERE

MISCELLANEOUS NOTES:

BORING NO. SB-EB-5 SHEET 2 OF 3

4	
-5/4	_ 1

GOLDBERG-ZOINO ASSOCIATES OF N.Y., P.C. GEOTECHNICAL-GEOHYDROLOGICAL CONSULTANTS

-BORING LOG-				
OJECT	Niagara Hohawk Power Corporation			
	Equalization Basins			

FILE NO. 5610.2 BORING NO.SB-EB-5

				— —	
DEPTH (FT) BLOWS PER 0.5 FT SAMPLE TYPE, T	REMARKS	LEGEND	ОЕРТН (FT.)	CORE	SOIL AND ROCK DESCRIPTION
37			37 _	'-	
38			38		
l 	1		·		
39			39		
 	į l		-	,	
40	S-9 (40.0'-41.5')		40		
15 7 6 0 16	(40.0 -41.5)		-		
41			41—		
]		-		Grading - little fine-medium gravel
42			42		-
43					
49			43		-
44			٦. ا		
			44		Soft, reddish-brown, silty CLAY, moderately
45	S-10		45		plastic, wet (CL)
~	(45.0'-46.5')		43		·
46 2 S-10 3			46		
			40		·
47			47—		
1 1 1			" <u> </u>		<u> </u>
48			48		
 			``		
49			49		
1 +			~		Very dense, gray, sandy SILT, trace clay
50	\$-11		50		trace fine gravel, nonplastic, wet (ML) (Glacial Till)
37	(50.0'-51.5')		-		(blacia: iiii)
51 58 S-11 122			51		_
64			-		
52			52-		-
 			-		
53			53		
+			-		•
54 48 S_12 1257	\$-12 (54.0'-55.0')		54		<u>-</u>
125/ 5 0 51	(34.0 -33.0)		-	1	Refusal w/ casing
55 557.0	Groundwater	4	55		
	level @ 13.8 ft.		-		Bottom of Hole @ 55.0'
	upon completion				The structification lines recovered the
			_		The stratification lines represent the approximate boundary between soil and rock
]	types. The actual transition may be gradual.
					"
 					
ORIENTATION	DEGREE OF O	ONTIN	YTIU	CLASS	HEICATION CONTRACTOR OF THE STATE OF THE STA
I WILKINIUM	ו הבמענים הו הו	FENING			WEATHERING SPECIAL FEATURES

	DISCONTINUIT	CLASSIFICATION				
ORIENTATION	DEGREE OF OPENING	WEATHERING	SPECIAL FEATURES			
H HORIZONTAL LA LOW ANGLE (±45°) HA HIGH ANGLE (*45°) T VERTICAL	C CLOSED SO SLIGHTLY OPEN O OPEN	F FRESH S SLIGHT SM SLIGHT TO MODERATE M MODERATE MY MODERATE TO SEVERE V SEVERE	HB HAMMER BREAK			

MISCELLANEOUS NOTES: * Casing refusal w/ 300 lbs. hammer.

BORING NO. SB-EB-5 SHEET 3 OF 3

VA,	
47/	/ 1

GOLDBERG-ZOINO ASSOCIATES OF N.Y., P.C. GEOTECHNICAL-GEOHYDROLOGICAL CONSULTANTS

-BORING LOG-			
PROJECT Niagara Mohawk Power Corporation			
Equalization Basins			
FILE NO 5610.2 BORING NO. SB-EB-6			

BORING NO. SB-EB-6 SHEET 1 OF 3

CONTRACTORGZA Dril	ling, Inc.	SURFACE ELEV.	577.50		
DRILLER Jim Marks			& G.S.		
TYPE OF DRILL RIG Tra	iler Mounted Acker TH	Į.	zation Rasin Area		
SAMPLING METHOD Standard Penetration Tests					
CASING 24" I.D. Flush Jo	Int Casing			DATE STARTED 5/	3/83 COMPLETED 5/4/83
					Putney
*****	···-			· L	
DIRECTION OF HOLE: VE					
OVERBURDEN SAMPLES:					
THICKNESS OF OVERBUR					
DEPTH DRILLED INTO RO			вотто	M OF HOLE ELEVAT	10N532.5
TOTAL DEPTH OF HOLE	45.0				
W S W S FT. PLE. ATION ATION		T		····	
DEPTH (FT.) BLOWS BLOWS O.5 FT SAMPLE TYPE, W N-VALUE RQD RQD	REMARKS	DEPTH (FT.)	CORE	SOIL AND R	OCK DESCRIPTION
SAN TAN	Ĕ	8 ~	ŏ 🖁		
0 3	S-1 XXX	X 0			
1 6 S-1 15	(0.0'-1.5')	X 1—		Medium dense, brown,	silty sand little clay,
19 1	l 💥	綴 -		organics, trace slag,	moist, (Fill)
2——	l 💥	X 2—	1		·
1	l XXX	▓	1		
	l 1888	X	1		
4	l ‱	X 4—			
+	l 💥	₩ -			4
5 6	S-2 (5.0'-6.5')	X 5—	<u> </u> -		
6 11 5-2 28	l	X]]	very stiff, reddish-b slag & fly ash, moder	rown, silty clay, little - ately plastic, wet,(Fill)
17	l 💥	₩"-			
7-4	l ‱	XX 7	 		
- 	l ‱	፠ -	1 1		4
	l 💹	₩ 8]		
9———	l ‱	X 9			· _]
+	l 💥	⊗ -		Dense, gray, fly ash,	little fine-medium
10 25	S-3 (10.0'-11.5')	⊗ 10—		gravel, trace nonplas	tic, wet, (Fill) sand
11 14 S-3 28	```	Ⅺ			· -
14	l 💥	X) 11—			Ţ
12-	l 💥	X 12			_
+	 	፠ -			4
13		13-			-
14	İ 💥	X 14—			Ţ
	[X ' -			-
15 XXXXX 15 DISCONTINUITY CLASSIFICATION					
ORIENTATION	DEGREE OF OPENIN		*ECOSIF II	WEATHERING	SPECIAL FEATURES
H HORIZONTAL LA LOW ANGLE (≤ 45°)	C CLOSED SO SLIGHTLY OPEN		F FRES	•	HB HAMMER BREAK
HA HIGH ANGLE (> 45°) T VERTICAL	O OPEN		SM SLIG	HT TO MODERATE	
,			MV MODE	RATE TO SEVERE	
MISCELLANEOUS NOTES:	MISCELLANEOUS NOTES:				

GOLDBERG-ZOING ASSOCIATES OF N.Y., P.C.
GEOTECHNICAL-GEOHYDROLOGICAL CONSULTANTS

-BORING LOG-				
PROJECT	Niagara Mohawk Power Corporation			
	Equalization Basins			

GEOTECH	EOTECHNICAL - GEOHYDROLOGICAL CONSULTANTS							FILE NO. 3010-2 BORNAG NO. 35-E0-0			
BLOWS PER O S FT	SAMPLE TYPE, NO.	N -VALUE OR % REC.	RQD %	REMARKS	LEGEND	DEPTH (FT.)	CORE BREAKS	SOIL AND ROCK DESCRIPTION			
5 1 6 3 5 7 2 7 3 8 4	S-4	7		S-4 (16.5'-18.0')		15 - 16 - 17 - 18 -		Grading - gray, fine sandy silt trace clay, trace organics, fly ash, wet, (Fill)			
20 1	S-5	2	4	S-5 (20.0'-21.5')		19— 20—		Grading - soft, trace wood			
23-24-25	- - - - - -			S-6 (25.0'-26.5')		23-					
5 7 26 10 27 7 8 9	S-6 S-7	17	 - - -	S-7 (26.5'-28.0')		26- 27-					
29 30 16 40	S-8	100		S-8 (30.0'-31.5')		29 ⁻ 30 ⁻	4 1 1	Medium dense, grayish-brown, fine-coarse SAND, trace fine gravel, nonplastic, wet (SW) Grading - very dense fine-medium sand			
32 33 34						32- 33- 34-	T	Very dense, gray-brown fine-medium <u>SAND</u> nonplastic, wet			
35 9 36 11 37 15	s-9	26		S-9 (35.0'-36.5')	ISCON	35- 36- 37	Y CLAS	Grading - medium dense, trace clay, trace shells			

	DISCONTINUITY	CLASSIFICATION	
ORIENTATION	DEGREE OF OPENING	WEATHERING	SPECIAL FEATURES
H HORIZONTAL LA LOW ANGLE (#45°) HA HIGH ANGLE (*45°) T VERTICAL	C CLOSED SO SLIGHTLY OPEN O OPEN	F FRESH S SLIGHT SM SLIGHT TO MODERATE M MODERATE MV MODERATE TO SEVERE V SEVERE	HB HAMMER BREAK

MISCELLANEOUS NOTES:

BORING NO. SB-EB-6 SHEET 2 OF 3

GZ\		PROJECT Niagara Mohawk Power Corporation Equalization Basins				
GOLDBERG-ZOINO ASSOC GEOTECHNICAL-GEOHYDI	CIATES OF N.Y., P.C.	TANTS		FIL	E NO. <u>5610-2</u>	BORING NO. SB-FB-
FT.) BLOWS PER O.5 FT. SAMPLE. TYPE, NO. B. LOCATION N - VALUE OR % REC.	REMARKS	LEGEND	DEPTH (FT.)	CORE	SOIL AND	ROCK DESCRIPTION
8			37			
+			38			
° 			39			
3			40		Medium stiff. brown	
1 2 S-10 5	S-10 (40.0'-41.5')		41-	i	Medium stiff, brown moderately plastic	wet (CL)
2			42			
, 📘 📗			43			
			-		Warry dance have	Standard CAND Assess
50 50 S-11 120/.5	S-11 (44.0'-45.0')		44-		silt, nonplastic, w	fine-medium <u>SAND</u> , trace wet (SM) Glacial Till
7 311 1207.3		HEERI	45		Bottom o	of Hole @ 45.0'
			-	:	The stratification	lines represent the
+	Groundwater level @ 13.8'		-		approximate boundar types. The actual	y between soil and rock transition may be gradua
	upon completion			·		
			_			
			-			
1			4			
			_			-
			_			·
+			-			
			_			
			-			
	!		-			
			7			
			7			
			4			
				CLASS	IFICATION	
ORIENTATION HORIZONTAL	C CLOSED				WEATHERING RESH	SPECIAL FEATURES HB HAMMER BREAK
A LOW ANGLE (= 45°) A HIGH ANGLE (* 45°) VERTICAL	SO SLIGHTLY OPEN O OPEN			S SLIGHT SM SLIGHT TO MODERATE M MODERATE MV MODERATE TO SEVERE V SEVERE		

ATTACHMENT 1 NORTH POND NO. 1 PHOTOGRAPHS

North Ponds - Pond 1 Evaluation Date: 9/12/2012

Photo 1: Caption-Sluice Outfall into Pond 1

Photo 2: Caption- Pond 1 foreground, Pond 2 in background

Photo 3: Caption- North embankment Pond 1

Photo 4: Caption- Incised south side of Pond 1

Photo 5: Caption- Pond 1Pipe Outlet to Pond 2

Photo 6: Caption- Pond 1Pipe Outlet to Pond 3

ATTACHMENT 2 NORTH POND NO. 2 PHOTOGRAPHS

Photo 1: Caption-Pipe Outfall from Pond 2 into North side drainage ditch

Photo 2: Caption- Pipe Outfall Retaining Wall and Embankment north side Pond 2

Photo 3: Caption-Pipe Outfall Retaining Wall and Embankment north side Pond 2

Photo 4: Caption- East Embankment Pond 2

Photo 5: Caption- South Embankment Pond 2

Photo 6: Caption- West Embankment Pond 2

Photo 8: Caption- South Embankment Pond 2

ATTACHMENT 3 NORTH POND NO. 3 PHOTOGRAPHS

North Ponds – Pond 3 E

Photo 1: Caption- Incised Embankment South Side Pond 3

Photo 2: Caption-Pipe Outfall from Pond 1 foreground, West-side embankment left-center

Photo 4: Caption- Incised East side of Pond 3

Photo 5: Caption- Incised East side of Pond 3

Photo 6: Caption- Incised East side of Pond 3foreground, North embankment and outlet pipe background

North Ponds – Pond 3

Photo 7: Caption- North embankment and outlet pipe of Pond 3

Photo 8: Caption- Pond 3outlet pipe draining into north drainage ditch

ATTACHMENT 4 SOUTH ASH SETTLING BASIN PHOTOGRAPHS

Photo 1: Caption- Process Water Inflow at North End of South Ash Settling Basin

Photo 2: Caption- East Incised Embankment of South Ash Settling Basin

Photo 3: Caption- East Incised Embankment of South Ash Settling Basin

Photo 4: Caption- East Incised Embankment of South Ash Settling Basin

Photo 5: Caption- East Incised Embankment of South Ash Settling Basin

Photo 6: Caption- Incised Embankments West Outfall End of South Ash Settling Basin

Photo 7: Caption- Outfall Pipe from South Ash Settling Basin to Niagara River

Photo 8: Caption- South Side Incised Embankment South Ash Settling Basin

ATTACHMENT 5 NORTH AND SOUTH EQUALIZATION BASIN PHOTOGRAPHS

South Ponds – North and South Equalization Basins

Photo 1: Caption- East Embankment North Equalization Basin. Note asphalt repair outer slope of embankment; sealant applied on basin interior and later applied on berm top and outside slope (see picture below).

Photo 2: Caption- North Equalization Basin. Newly applied sealant in basin bottom, berm tops and outside slopes.

Photo 3: Caption- East Outside Embankment of South Equalization Basin. Note asphalt repair outer slope of embankment; application of sealant on basin interior in progress at time of photo and later applied on berm top and outside slope (see picture below).

Photo 4: Caption- South Equalization Basin, newly applied asphalt sealant in basin bottom, berm tops and outside slopes.