

FINAL ROUND 10 DAM ASSESSMENT REPORT NIPSCO MICHIGAN CITY GENERATING STATION COAL ASH IMPOUNDMENTS

OCTOBER 19, 2012

PREPARED FOR:

U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Washington, DC 20460

PREPARED BY:

GZA GeoEnvironmental, Inc. 19500 Victor Parkway, Suite 300 Livonia, MI 48152 GZA File No. 01.0170142.30 GZA GeoEnvironmental, Inc. Engineers and Scientists

October 19, 2012 File No. 01.0170142.30

One Edgewater Drive Norwood, MA 02062

781-278-3760 UAX 781-278-5701

www.gra.com

Mr. Stephen Hoffman U. S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Washington, DC 20460

 Re: Round 10 Dam Assessment - Final Report EPA Contract No. EP10W001313
 NIPSCO – Michigan City Generating Station Coal Ash Impoundments Michigan City, Indiana

Dear Mr. Hoffman:

In accordance with our proposal 01,P000177.11, dated March 28, 2011, and U.S. Environmental Protection Agency (EPA) Contract No. EP10W001313, Order No. EP-B11S-00049, GZA GeoEnvironmental, Inc. (GZA) has completed our inspection of the Northern Indiana Public Service Company (NIPSCO) Michigan City Generating Station Coal Ash Impoundments located in Michigan City, Indiana (Site). The Site visit was conducted on May 23, 2011 and a Draft Report submitted to EPA, dated March 29, 2012. The purpose of our efforts was to provide the EPA with a Site-specific evaluation of the impoundments to assist EPA in assessing the structural stability of the impoundments under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act Section 104(c). We are submitting one Final Report in portable document format (PDF) directly to the EPA.

Following submittal of the March 2012 Draft Report, NIPSCO completed a geotechnical investigation and embankment stability analyses for the Site impoundments, as well as a hydrologic and hydraulic evaluation. These analyses were completed by Golder Associates, Inc. (Golder) with reports provided to EPA dated August 27, 2012. Based on the results of these analyses, our visual inspection and in accordance with EPA's criteria, it is GZA's opinion the Site's Coal Ash Impoundments are currently in <u>SATISFACTORY</u> condition. Further discussion of our evaluation and recommended actions are presented in the Round 10 Dam Assessment Report. The report includes: (a) completed Field Assessment Checklists; (b) figures of the impoundments; (c) selected photographs with captions; and (d) copies of the August 2012 Golder reports. Our services and report are subject to the Limitations found in **Appendix A** and the Terms and Conditions of our contract agreement.

We are happy to have been able to assist you with this assessment and appreciate the opportunity to continue to provide you with dam engineering consulting services. Please contact the undersigned if you have any questions or comments regarding the content of this Round 10 Dam Assessment Report.

Sincerely,

GZA GEOENVIRONMENTAL, INC.

Walter Kosinski, P.E. (IN)

walter.kosinski@gza.com

Pames P. Guarente, P.E. (MA)

Consultant/Reviewer james.guarente@gza.com

Peter H. Baril, P.E. (MA) Project Director peter.baril@gza.com

EXECUTIVE SUMMARY

This Dam Assessment Report presents the results of a visual inspection of the Northern Indiana Public Service Company (NIPSCO, Owner), Michigan City Generating Station (MCGS) located in Michigan City, Indiana (Site). The inspection was performed on May 23, 2011, by representatives of GZA GeoEnvironmental, Inc (GZA), accompanied by representatives of NIPSCO.

MCGS IMPOUNDMENTS

There are six separate impoundments located at the MCGS, consisting of: Primary Settling Pond No. 1 (Primary No. 1), Secondary Settling Pond No. 1 (Secondary No. 1), Primary Settling Pond No. 2 (Primary No. 2), Secondary Settling Pond No. 2 (Secondary No. 2), the Bottom Ash Area (BAA), and the Final Settling Pond (FSP).

In general, wastewater flows through the impoundments by gravity from southwest to northeast to the FSP where it is either pumped (recycled) back to the MCGS or discharged to Outfall 001 by gravity.

Primary No. 1, Primary No. 2, and Secondary No. 1 consist of an earthfill embankment with a crest length of approximately 3,050 feet and a maximum height (from the lowest elevation of Secondary No. 1 to the top of embankment) of approximately 29 feet. A gravel road along the top of the crest has a width of approximately 20 feet and an elevation of approximately 608.72 feet, National Geodetic Vertical Datum of 1929 (NGVD 29)¹. The outer and inner slopes of the embankments are approximately 2.5 horizontal to 1 vertical (2.5H:1V). The perimeter of Secondary No. 1 is a sheet pile wall. Crushed stone up to 8-inch diameter was placed on the upper portion of the inner slope from the top of the sheet pile wall up to the crest.

Secondary No. 2 consists of an earthfill embankment with a crest length of approximately 450 feet. Secondary No. 2 shares its southwestern slope with Primary No. 2. The southwestern upstream slope of Secondary No. 2 is the northeastern downstream slope of Primary No. 2. As such, the maximum embankment height of Secondary No. 2 (from the top of the embankment between Secondary No. 2 and Primary No. 2 to the bottom of Primary No. 2) is approximately 29 feet.

The BAA consists of an area of compacted sand that was placed on top of the natural ground surface for the purpose of directing bottom ash sluice water and stormwater runoff to the FSP. It has one embankment that is shared with the FSP. This embankment has a maximum height of 2 feet. Since the BAA does not retain/impound water, it is GZA's opinion the BAA does not satisfy the criteria set forth by the EPA for units requiring further evaluation.

The FSP consists of an earthfill embankment with a crest length of approximately 2,500 feet and a maximum height (from the top of the embankment to the estimated elevation of Lake Michigan) of approximately 18 feet. A gravel road along the top of the crest has a width of approximately 20 feet and at its lowest elevation is approximately 587.72 feet. The inner slopes of the embankments are approximately 2.5 horizontal to 1 vertical (2.5H:1V). The northern perimeter of the FSP is a sheet pile wall.

Coal Ash Impoundments

NIPSCO - Michigan City Generating Station

i FINAL REPORT

¹ Unless otherwise stated, elevations in this report are given in NGVD 29.

The impoundments do not meet the definition of a dam in the State of Indiana and are therefore not regulated by the IDNR, nor assigned a hazard potential rating. Under the EPA classification system, it is GZA's opinion that the Secondary No. 1, Secondary No. 2 and FSP would be considered as having a **Low** hazard potential. This hazard potential rating was assigned because failure or misoperation of these impoundments would result in no probable loss of human life and low economic or environmental losses. Any economic or environmental losses would be primarily limited to the MCGS property.

It is GZA's opinion that the Primary No. 1 and Primary No. 2 would be considered as having a <u>Significant</u> hazard potential. This hazard potential rating was assigned because, in the event of dike failure, the coal ash stored in these primary impoundments may discharge into Lake Michigan and could potentially cause environmental damage. Additionally, a dike failure would cause disruption of lifeline facilities as the MCGS depends upon the water within the impoundments. Note that MCGS alternates use of Primary No. 1 and Primary No. 2 such that only one primary impoundment is utilized at a time. Primary No. 1 is currently operational.

Following submittal of the March 2012 Draft Report, NIPSCO completed a geotechnical investigation and embankment stability analyses of the Site impoundments, as well as a hydrologic and hydraulic evaluation. These analyses were completed by Golder Associates, Inc. (Golder) with reports provided to EPA dated August 27, 2012. Based on the results of these analyses, our visual inspection and in accordance with EPA's criteria, it is GZA's opinion the Site's Coal Ash Impoundments are currently in **SATISFACTORY** condition.

The impoundments were found to have the following deficiencies:

- 1. Piezometers of unknown depth or construction were located throughout the impoundments (*NIPSCO provided comments to EPA regarding the Draft Report in a letter dated July 31, 2012. The letter indicates the unused and undocumented piezometers were abandoned as recommended*);
- 2. No formal operation and maintenance plan or inspection checklist in place to observe and document the structural condition of the impoundments (*NIPSCO provided comments to EPA regarding the Draft Report in a letter dated July 31, 2012. The letter indicates NIPSCO is developing an O&M plan for the Site*);
- 3. The discharge pipes within the impoundments have not been inspected internally since they were installed (*NIPSCO provided comments to EPA regarding the Draft Report in a letter dated July 31, 2012. The letter indicates NIPSCO has completed a survey of the impoundment structures and video survey of the pipes was 90% complete);*
- 4. There was an obstruction at the decant inlet and lack of a trash rack in Secondary No. 2;
- 5. The trash rack in Primary No. 2 was bent;
- 6. There was a pipe of unknown use observed near the overflow pipes at the FSP; and,
- 7. No design information available for the steel sheet piling used to support the northwestern sides/ends of the impoundments (*NIPSCO provided EPA with a geotechnical investigation and embankment stability analyses of the Site impoundments that was completed by Golder. The embankment stability analyses included evaluation of the steel sheet piling).*

The following recommendations and remedial measures generally describe the recommended approach to address current deficiencies at the impoundments. Prior to undertaking recommended maintenance, repairs, or remedial measures, the applicability of environmental permits needs to be

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

ii FINAL REPORT

determined for activities that may occur within resource areas under the jurisdiction of the appropriate regulatory agencies.

Studies and Analyses

GZA recommends the following studies and analyses:

- 1. If an analysis of the structural capacity of the steel sheet piling has not been performed previously or is not available, this type of analysis should be performed to verify that the installed sheet piling has sufficient strength to support the loading applied by the impoundments (*NIPSCO provided EPA with a geotechnical investigation and embankment stability analyses of the Site impoundments that was completed by Golder. The embankment stability analyses included evaluation of the steel sheet piling);*
- 2. Perform a seepage and stability analysis to evaluate the embankment slopes (As indicated above, NIPSCO provided EPA with a geotechnical investigation and embankment stability analyses of the Site impoundments that was completed by Golder. The embankment stability analyses results indicated "acceptable factors of safety for all cases considered when evaluated with respect to U.S. Army Corps of Engineers criteria for the types of analyses and loading conditions evaluated"); and,
- 3. Perform a hydrologic and hydraulic analyses of the individual impoundments to determine the adequacy of intake/discharge features and adequacy of current operating water levels (NIPSCO provided EPA with a hydrologic and hydraulic evaluation of the impoundments that was completed by Golder. The evaluation results indicated that... "All impounds are shown to safely pass up to the 100-year return period event which is the minimum for a low hazard dam as specified by the State of Indiana DNR Division of Water. The Primary and Secondary Impoundments, the southwest Bottom Ash Area, and the Final Settling Pond safely pass up to 50% of the 6-hour, PMP rainfall depth without overtopping.")

Operation & Maintenance Recommendations

GZA recommends the following operation and maintenance level activities:

- 1. If they are not necessary for the operation of the impoundments, abandon the piezometers that are located near the impoundments since their purpose, depth and construction are unknown;
- 2. Clear the obstruction from the decant inlet in Secondary No. 2 and install a trash rack;
- 3. Exercise stops logs and related water level control mechanisms at exiting decant structures;
- 4. Increase/adjust the frequency of vegetative maintenance activity such that overgrowth is minimized;
- 5. Perform a video camera survey of the intake and discharge pipe network within the Impoundments to verify that they are operating correctly and are in suitable condition; and,
- 6. Create a formal checklist for visual inspections of the impoundments and associated appurtenances and maintain the inspection records on file.

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

iii FINAL REPORT

NIPSCO provided comments to EPA regarding the Draft Report in a letter dated July 31, 2012. The letter indicates the unused and undocumented piezometers were abandoned as recommended, a video survey of pipes within the impoundments was being completed, and an operation and maintenance (O&M) plan was being developed to address these O&M issues.

Minor Repair Recommendations

GZA recommends the following repairs which may improve the overall condition of the impoundments and water storage system, but do not alter the current design of the embankment. The recommendations may require design by a professional engineer and construction contractor experienced in embankment construction.

- 1. Repair the bent trash rack in Primary No. 2 before this impoundment is put back in service;
- 2. Repair sloughs and scarps on the embankments and provide future erosion protection as necessary and,
- 3. Evaluate the function and necessity of the unknown pipe found on the northeast side of the FSP and remove the pipe if it is not needed.

Remedial Measures Recommendations

- 1. In conjunction with the results of the seepage and stability analyses make provisions to address inadequate factors of safety as applicable; and,
- 2. In conjunction with the results of the hydrologic and hydraulic analyses, make provisions for an emergency overflow spillway, if necessary.

NIPSCO completed a geotechnical investigation and embankment stability analyses of the Site impoundments, as well as a hydrologic and hydraulic evaluation. These analyses were completed by Golder Associates, Inc. with reports provided to EPA dated August 27, 2012. Based on the results of these analyses, it is GZA's opinion that the remedial measure recommendations summarized above and provided in the Draft Report have been satisfied and no longer apply.

J:\01.XX NORWOOD\01.0170142.30 CCW DAMS ROUND 10\NIPSCO_MICHIGAN CITY\FINAL REPORT\MI CITY EXECUTIVE SUMMARY_REV2 10_19_12.DOCX

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

iv FINAL REPORT

PREFACE

The assessment of the general condition of the embankment at the Northern Indiana Public Service Company, Michigan City Generating Station located in Michigan City, Indiana is based upon available data and visual inspections. Detailed investigations and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of this report.

In reviewing this report, it should be realized that the reported condition of the embankment is based on observations of field conditions at the time of inspection, along with data available to the inspection team. In cases where an impoundment is lowered or drained prior to inspection, such action, while improving the stability and safety of the embankment, removes the normal load on the structure and may obscure certain conditions, which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is critical to note that the condition of the embankment depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the embankment will continue to represent the condition of the embankment at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Prepared by:

GZA GeoEnvironmental, Inc.

Walter Kosinski, P.E. Principal Indiana License No.: PE10201153

1.01.xx Norwood/01.0170142.30 CCW Dams Round 10/NIPSCO, Michigan City/Final Report/MichiganCity Preface.doex

Coal Ash Impoundments NIPSCO - Michigan City Generating Station

I

COAL ASH IMPOUNDMENTS NIPSCO – MICHIGAN CITY GENERATING STATION MICHIGAN CITY, INDIANA

TABLE OF CONTENTS

1.0	DESCRIPTION OF PROJECT1						
1.1	Genera1	Genera1					
	1.1.1	Authority	1				
	1.1.2	Purpose of Work	1				
		Definitions					
1.2	Descript	tion of Project	2				
	1.2.1	Location	2				
	1.2.2	Owner/Caretaker	2				
	1.2.3	Purpose of the Impoundments	2				
		Description of the Impoundments and Appurtenances					
		Operations and Maintenance of the Impoundments					
		Size Classification					
		Hazard Potential Classification					
1.3		t Engineering Data					
		Drainage Area					
		Discharges at the Site					
		General Elevations					
	1.3.4	Design and Construction Records and History of the Impoundments	8				
		Operating Records					
		Previous Inspection Reports					
2.0	INSPE	CTION	8				
2.1	Visual I	nspection	8				
2.1		General Findings					
		Primary No. 1 (Photo Nos. 1 – 8, 50, and 51)					
		Secondary No. 1 (Photo Nos. 9-14)					
		Primary No. 2 (Photo Nos. 15 - 23, 47, 48, and 49)1					
		Secondary No. 2 (Photo Nos. 24, 25, and 26)					
		Bottom Ash Area (Photo Nos. 27 through 30)					
		Final Settling Pond (Photo Nos. 31 through 46)					
		Steel Sheet Piling					
2.2		er Interview					
2.2		on and Maintenance Procedures					
2.3		ncy Action Plan					
2.5		pgic/Hydraulic Data					
2.5		al and Seepage Stability					
2.0	Structural and Seepage Stability						

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

Date of Inspection: 5/23/11

COAL ASH IMPOUNDMENTS NIPSCO – MICHIGAN CITY GENERATING STATION MICHIGAN CITY, INDIANA

TABLE OF CONTENTS (Cont'd)

3.0	ASSESSMENTS AND RECOMMENDATIONS	
3.1	Assessments	
3.2	Studies and Analyses	
3.3	Recurrent Operation & Maintenance Recommendations	
3.4	Minor Repair Recommendations	
3.5	Remedial Measures Recommendations	
3.6	Alternatives	16
4.0	ENGINEER'S CERTIFICATION	

FIGURES

Figure 1	Locus Plan (U.S.G.S. Topographic Quad)
Figure 2	Locus Plan (Digital Orthophoto / Aerial Imagery)
Figure 3	Photolog

APPENDICES

Appendix A	Limitations
Appendix B	Definitions
Appendix C	Inspection Checklists
Appendix D	Photographs
Appendix E	Summary of Hydraulic Evaluation of Impoundments
Appendix F	2012 Geotechnical Investigation and Embankment Stability Analyses
Appendix G	References

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

Date of Inspection: 5/23/11

1.0 DESCRIPTION OF PROJECT

1.1 General

1.1.1 Authority

The United States Environmental Protection Agency (EPA) has retained GZA GeoEnvironmental, Inc. (GZA) to perform a visual assessment and develop a report of conditions for the Northern Indiana Public Service Company (NIPSCO, Owner), a division of NiSource, Michigan City Generating Station (MCGS, Site) coal ash impoundments located in Michigan City, Indiana. This evaluation was authorized by the EPA under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 104(e). This assessment and final report were performed in accordance with Round 10 of the Assessment of Dam Safety of Coal Combustion Surface Impoundments, RFQ-DC-16, dated March 16, 2011, and EPA Contract No. EP10W001313, Order No. EP-B11S-00049. The assessment generally conformed to the requirements of the Federal Guidelines for Dam Safety¹, and this report is subject to the limitations contained in **Appendix A** and the Terms and Conditions of our Contract Agreement.

1.1.2 Purpose of Work

The purpose of this assessment was to visually assess and evaluate the present condition of the impoundments and appurtenant structures to attempt to identify conditions that may adversely affect their structural stability and functionality, to note the extent of any deterioration that may be observed, review the status of maintenance and needed repairs, and to evaluate the conformity with current design and construction standards of care.

The assessment was divided into five parts: 1) obtain and review available reports, investigations, and data from the Owner pertaining to the impoundments and appurtenant structures; 2) perform an on-Site review with the Owner of available design, inspection, and maintenance data and procedures for the Impoundments; 3) perform a visual assessment of the Site; 4) prepare and submit a field assessment checklist; and, 5) prepare and submit a draft and a final report presenting the evaluation of the impoundments, including recommendations and proposed remedial actions.

1.1.3 Definitions

To provide the reader with a better understanding of the report, definitions of commonly used terms associated with dams are provided in **Appendix B**. Some of these terms may be included within this report. The terms are presented under common categories associated with dams which include: 1) orientation; 2) dam components; 3) size classification; 4) hazard classification; 5) general; and, 6) condition rating.

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

1

Date of Inspection: 5/23/11

¹ FEMA/ICODS, April 2004: http://www.ferc.gov/industries/hydropower/safety/guidelines/fema-93.pdf

- 1.2 Description of Project
 - 1.2.1 Location

The MCGS is located on the shores of Lake Michigan about one mile northwest of Michigan City, Indiana, at the address 101 Wabash Street, Michigan City, Indiana 46360. The impoundments are located less than a mile southwest of the MCGS at latitude 41° 43' 07" North and longitude 86° 54' 48" West. A Site locus map of the MCGS, impoundments, and surrounding area is shown on **Figure 1**. An aerial photograph of the MCGS, impoundments, and surrounding area is provided as **Figure 2**.

1.2.2 Owner/Caretaker

The Impoundments are owned and operated by NIPSCO, a wholly owned division of NiSource.

	Dam Owner/Caretaker			
Name	NIPSCO, Michigan City Generating Station			
Mailing Address	101 Wabash Street			
City, State, Zip	Michigan City, Indiana 46360			
Contact	Greg Costakis			
Title	Manager - Environmental Services			
E-Mail	gcostakis@nisource.com			
Phone Number	(219) 956-5125			

1.2.3 Purpose of the Impoundments

The MCGS was originally constructed in 1929 and commercial operation began in 1931. Currently, the MCGS is a single-unit coal-fired power plant with a maximum generating capacity of approximately 515 megawatts. The impoundments were constructed in the early 1970's for the purpose of storing and disposing coal combustion byproducts and began operation in 1973. Prior to 1973, fly ash was used as structural fill to fill in the shoreline of Lake Michigan. In 1999, the MCGS switched to a dry fly ash handling system. The impoundments have been utilized from 1973 to date.

Wastewater discharged from the Site is regulated under one National Pollution Discharge Elimination System (NPDES) permit². NIPSCO personnel indicated that the majority of the wastewater discharged to the impoundments is recycled back to the MCGS. Any wastewater discharged from the impoundments under the NPDES permit is discharged to Lake Michigan through Outfall 001 as shown on **Figure 2**.

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

2

Date of Inspection: 5/23/11

² National Pollutant Discharge Elimination System (NPDES) Permit No. IN0000116, NIPSCO – Michigan City Generating Station, Indiana Department of Environmental Management, March 15, 2011.

1.2.4 Description of the Impoundments and Appurtenances

The following description of the impoundments is based on the Owner interviews, design reports, as-built drawings, and field observations by GZA.

As shown on **Figures 2 and 3**, there are six separate impoundments: Primary Settling Pond No. 1 (Primary No. 1), Secondary Settling Pond No. 1 (Secondary No. 1), Primary Settling Pond No. 2 (Primary No. 2), Secondary Settling Pond No. 2 (Secondary No. 2), the Bottom Ash Area (BAA), and the Final Settling Pond (FSP).

In general, wastewater flows through the impoundments by gravity from southwest to northeast to the FSP where it is either pumped (recycled back) to the MCGS or discharged to Outfall 001 by gravity through two 24-inch-diameter overflow pipes. Each impoundment receives the following types of wastewater:

- 1. Primary No. 1 receives economizer ash sluice, precipitator ash sluice, air heater washwater, boiler blowdown water, boiler fireside wash water, filter backwash, reverse osmosis reject water, and miscellaneous low volume wastes;
- 2. Secondary No. 1 is the polishing pond for Primary No. 1 and as such only receives flow from Primary No. 1;
- 3. Primary No. 2 can receive the same wastewaters as Primary No. 1. Currently, no wastewater is discharged into Primary No. 2. No wastewater will be discharged into Primary No. 2 until Primary No. 1 is filled with ash;
- 4. Secondary No. 2 is the polishing pond for Primary No. 2 and as such, only receives wastewater from Primary No. 2;
- 5. The BAA receives boiler slag sluice, coal pile stormwater runoff, and coal handling area floor drain water; and,
- 6. The Final Settling Pond receives flow from Secondary No. 1, Secondary No. 2, and the BAA.

The impoundments were primarily constructed with compacted sands or silty sands on the natural ground surface. Several soil borings completed by Golder in 2012 indicated the presence bottom ash mixed within the sand fill at a low percentage. Additionally, a thin layer of bottom ash was observed in soil borings BH-5 and BH-6 between Primary No. 2 and Secondary No. 2 and Primary No. 2 and Lake Michigan. This condition was simulated in Golder's stability analyses and found to be satisfactory.

There is no lining beneath the impoundments. There are two rows of sheet piling that separate the impoundments from Lake Michigan. The northernmost row was reportedly installed between 1935 and 1950 and was primarily installed to protect the MCGS from wave erosion. The second row of sheet piling was installed in 1973 in conjunction with the Impoundments for the primary purpose of supporting the structural integrity of the Impoundments and further protection from Lake Michigan. Heavy rip rap was placed in between the two rows of sheet piling.

Primary No. 1, Primary No. 2, and Secondary No. 1 consist of an earthfill embankment with a crest length of approximately 3,050 feet and a maximum height (from the lowest elevation of Secondary No. 1 to the top of embankment) of approximately 29 feet. A gravel road along the top of the crest has a width of approximately 20 feet and an elevation of

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

3

Date of Inspection: 5/23/11

approximately 608.72 feet, National Geodetic Vertical Datum of 1929 (NGVD 29)³. The outer and inner slopes of the embankments are approximately 2.5 horizontal to 1 vertical (2.5H:1V). The interior perimeter of Secondary No. 1 is a sheet pile wall. Crushed stone up to 8-inch diameter was placed on the upper portion of the inner slope from the top of the sheet pile wall up to the crest of the embankment. Secondary No. 1 shares its southwest slope with the northeast embankment of Primary No. 1.

Secondary No. 2 consists of a sheet pile wall impounded area and is surrounded by an earthfill embankment with a crest length of approximately 450 feet similar to Secondary No. 1. Secondary No. 2 shares its southwestern slope with Primary No. 2. The southwestern upstream slope of Secondary No. 2 is the northeastern downstream slope of Primary No. 2 as shown in **Figure 2**. As such, the maximum embankment height of Secondary No. 2 (from the top of the embankment between Secondary No. 2 and Primary No. 2 to the bottom of Primary No. 2) is approximately 29 feet.

The BAA consists of an area of compacted sand that was placed on top of the natural ground surface or compacted sand fill for the purpose of directing bottom ash runoff to the FSP. It has one embankment that is shared with the FSP. This embankment has a maximum height of 2 feet and is solely used for controlling stormwater runoff from the BAA to the FSP.

The FSP consists of an earthfill embankment with a crest length of approximately 2,500 feet and a maximum height (from the top of the embankment to the estimated elevation of Lake Michigan) of approximately 18 feet. A gravel road along the top of the crest has a width of approximately 20 feet and at its lowest elevation is approximately 587.72 feet. The inner slopes of the embankments are approximately 2.5 horizontal to 1 vertical (2.5H:1V). The northern perimeter of the FSP is a sheet pile wall.

The impoundments have not been expanded since they were constructed in the 1970's.

Impoundment Name	Number of Decant Structures	Decant Structure Pipe Diameter and Type	Inlet Elevation of Decant Structures (Feet)	Purpose
Primary No. 1	1	24-inch Corrugated Metal	602.92	Transfer liquids to Secondary No. 1
Secondary No. 1	1	24-inch Corrugated Metal	588.82	Transfer liquids to FSP
Primary No. 2	1	24-inch Corrugated Metal	587.72	Transfer liquids to Secondary No. 2
Secondary No. 2	1	24-inch Corrugated Metal	2	
BAA	5	12-inch PVC	587.72	Transfer liquids to FSP
FSP	None	N/A	N/A	Pump liquids to the MCGS

The discharge structures in each impoundment are summarized in the following table.

Coal Ash Impoundments

NIPSCO – Michigan City Generating Station

4

Date of Inspection: 5/23/11

³ Unless otherwise stated, elevations in this report are given in NGVD 29.

Two of the impoundments have emergency overflow pipes. Primary No. 1 has a 24inch diameter corrugated metal pipe set at a decant inlet elevation of approximately 606.72 feet that discharges to Secondary No. 1. The FSP has two 24-inch diameter welded steel pipes set at a decant inlet elevation of approximately 585.72 feet that discharge to Outfall 001.

Instrumentation at the impoundments includes several monitoring wells to conduct groundwater sampling and approximately eight piezometers. According to NIPSCO, since the time our GZA's Site visit, piezometers that were unused and undocumented have been abandoned.

Further discussion of the hydrology and hydraulics of the impoundments is provided in Section 2.5.

1.2.5 Operations and Maintenance of the Impoundments

NIPSCO personnel visually inspect the impoundments on an infrequent basis but generally not for structural purposes. There are limited formal operation and maintenance procedures. Vegetation is sprayed once or twice per year to prohibit growth. The impoundments do not meet the definition of a dam in the State of Indiana and are therefore not regulated by the Indiana Department of Natural Resources (IDNR). Note that MCGS alternates use of Primary No. 1 and Primary No. 2 such that only one primary impoundment is utilized at a time. Primary No. 1 is currently operational. Primary No. 2 was last utilized in 2003 and the settled fly ash has since been removed.

1.2.6 Size Classification

For the purposes of this EPA-mandated inspection, the size classifications will be based on United States Army Corps of Engineers (COE) criteria. According to guidelines established by the COE, dams with a storage volume less than 1,000 acre-feet and/or a height less than 40 feet are classified as Small sized structures. Based on their respective maximum heights and storage volumes (refer to Section 1.3), each of the impoundments is classified as a <u>Small</u> sized structure. As noted by NIPSCO in their July 31, 2012 letter to EPA following review of the Draft Report, none of the impoundments at MCGS meet the minimum criteria as regulated structures by the IDNR.

1.2.7 Hazard Potential Classification

Given that the impoundments do not meet the minimum criteria for a dam in the State of Indiana and are therefore not regulated by the IDNR, the IDNR has not assigned them a hazard potential rating. Under the EPA classification system, as presented in the Definitions section (**Appendix B**) and on page 2 of each EPA checklist (**Appendix C**), it is GZA's opinion that the Secondary No. 1, Secondary No. 2, BAA, and FSP would be considered as having a <u>Low</u> hazard potential. This hazard potential rating was assigned because failure or misoperation of these impoundments would result in no probable loss of human life and low economic or environmental losses. Any economic or environmental losses would be primarily limited to the MCGS property.

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

5

Date of Inspection: 5/23/11

It is GZA's opinion that the Primary No. 1 and Primary No. 2 would be considered as having a <u>Significant</u> hazard potential. This hazard potential rating was assigned because, in the event of dike failure, the coal ash stored in these primary impoundments may discharge into Lake Michigan and could potentially cause environmental damage. Additionally, a dike failure would cause disruption of lifeline facilities served by MCGS as the MCGS depends upon the water within the impoundments in the production of electricity. Note that MCGS alternates use of Primary No. 1 and Primary No. 2 such that only one primary impoundment is utilized at a time. Primary No. 1 is currently operational.

1.3 Pertinent Engineering Data

The impoundments are located near Lake Michigan and are approximately bordered by the Indiana National Dunes Lakeshore to the southwest, by Lake Michigan to the north and west, Trail Creek to the east, and Michigan City to the south and east. The impoundments were reportedly constructed on the natural ground surface and primarily consist of medium dense to dense sand and silty sand. Small quantities of ash fill appears to be mixed with the compacted sand and silty sand based on soil boring data recently completed by Golder. Historical soil boring logs indicate that the impoundments were constructed on top of a layer of natural fine sand underlain by silty sand⁴ and / or stiff clay. The construction specifications indicate that the sand fill used for construction was obtained from on-Site sources. The fill was specified to be placed in loose lifts of 6 to 8 inches and compacted to a minimum dry density of 98 pounds per cubic foot. According to the specification, prior to placing the fill, the area to be filled was to be cleared of all vegetation, topsoil, and organic material. The remaining soil underlying the filled area was specified to be turned to a depth of 6-inches prior to placing the fill⁵.

The size, capacity, and current storage volume of each impoundment based on information provided by $NIPSCO^{6}$ are included in the following table.

Impoundment	Size (Acres)	Total Storage Capacity (Cubic Yards)	Current Material Storage Volume (Cubic Yards)
Primary No. 1	2.2	57,250	42,938
Secondary No. 1	0.2	4,440	120
Primary No. 2	2.6	70,260	3,513
Secondary No. 2	0.2	5,344	267
BAA	0.7	2,296	459
FSP	5.7	137,361	6,868

As mentioned previously, there are two rows of continuous sheet piling at the MCGS. The northernmost row was primarily installed to protect the MCGS from wave erosion and abuts Lake Michigan. The second row of sheet piling was installed primarily along/adjacent to the northwestern side/end of the impoundments for the primary purpose of supporting the structural integrity of the impoundments and further shoreline protection. Heavy rip rap was placed in between the two rows of sheet piling. The sheet pile walls are thick (3/8-inch) sheet steel and

Coal Ash Impoundments

NIPSCO – Michigan City Generating Station

6

Date of Inspection: 5/23/11

⁴ Log of Soil Borings, Drawing No. B-252, Sargent & Lundy Engineers, February 4, 1970.

⁵ Specification W-2539 for Ash Settling Basins Work, Michigan City Generating Station - Unit 12, Sargent & Lundy Engineers, August 11, 1972.

⁶ NIPSCO Response to EPA Information Request for Information for the Michigan City Generating Station, October 4, 2010.

are constructed with interlocked Z-sections. The Z-shape of the sheet pile cross section is designed to help the wall resist bending and the interlock serves to make the wall act like one continuous wall.

NIPSCO did not have design information for the northern row of sheet piling. The second row was installed at the same time the Impoundments were constructed. According to the design drawings⁷, the horizontal lengths, vertical lengths, sheet piling type, and construction method consisted of the following:

Location of Sheet Piling	Horizontal Length (feet)	Vertical Length (feet)	Type of Piling	Construction Method
Adjacent to Primary No. 1	420	42	280-PZ38	ASTM A-572-50
Adjacent to Primary No. 1 and Primary No. 2	1,084.5	42	724-PZ38	ASTM A-572-50
Adjacent to FSP	934.5	42	623-PZ27	ASTM A-328
Adjacent to northern embankment of FSP	54	42	36-PZ27	None specified

1.3.1 Drainage Area

The impoundments are enclosed embankments built up from the natural ground surface. As such, the contributory drainage area is the surface area of the impoundments, approximately 12 acres, plus the surface stormwater runoff from the on-Site coal pile, which is approximately 10 acres in size. As such, the total drainage area for the impoundments is approximately 22 acres. The coal pile was not evaluated by GZA during the impoundment assessment.

1.3.2 Discharges at the Site

Discharges at the Site are regulated under the previously noted NPDES Permit. During normal operating conditions, all of the wastewater discharged to the impoundments is recycled back to the MCGS by a pump house located on the east side of the FSP. If the water level in the FSP reached the emergency overflow discharge pipes, water would be discharged to Outfall 001 which empties into Lake Michigan and is permissible under the NPDES Permit.

Coal Ash Impoundments NIPSCO – Michigan City Generating Station 7

Date of Inspection: 5/23/11

⁷ Ash Settling Basins Tower Piling & Pond, Drawing No. B-473, Sargent & Lundy Engineers, December 19, 1972.

1.3.3 General Elevations

Impoundment elevations presented in this report are taken from design drawings and reports provided by NIPSCO personnel. Elevations are based upon the NGVD 29 vertical datum.

Impoundment Name	Lowest Dam Crest Elevation (feet)	Normal Operating Pool Elevation (feet)	Current Operating Pool Elevation (feet)	Emergency Overflow Elevation (feet)
Primary No. 1	608.72	602.92	602.92	606.72
Secondary No. 1	599.72	589.02	589.02	None
Primary No. 2	608.72	602.92	587.72	None
Secondary No. 2	594.72	588.12	586.12	None
BAA	589.92	N/A^1	587.72 ¹	None
FSP	587.72	584.22	584.22	585.72

Note:

1. The BAA does not have a normal operating pool elevation because it is typically empty. The current operating pool elevation provided is the decant inlet elevation.

1.3.4 Design and Construction Records and History of the Impoundments

According to the information provided by NIPSCO, the impoundments were designed by Sargent & Lundy Engineers. Construction of the impoundments and sheet piling associated therewith was completed in 1973. The structure of the impoundments has not been modified since they were constructed. In 1999, the MCGS switched to a dry fly ash handling system instead of the wet fly ash handling system that had been in use previously. The dry fly ash handling system decreased the volume of sluice water discharged to the impoundments.

1.3.5 Operating Records

Minimal operating records are recorded by MCGS personnel and were not available to GZA at the time of the assessment.

1.3.6 Previous Inspection Reports

According to NIPSCO personnel, previous inspection reports regarding the structural stability of the impoundments have not been completed.

2.0 INSPECTION

2.1 Visual Inspection

The Impoundments were evaluated on May 23, 2011 by Walter Kosinski, P.E., and Thomas Boom, P.E., of GZA. The weather was mostly cloudy with temperatures in the 60° s to 70° s Fahrenheit. Underwater areas were not inspected as this level of investigation was beyond GZA's scope of services. A copy of the EPA Checklist for each impoundment is included in **Appendix C**. Photographs to document the current conditions of the impoundments were taken

Coal Ash Impoundments NIPSCO – Michigan City Generating Station 8

Date of Inspection: 5/23/11

during the inspection and are included in **Appendix D**. With respect to our visual evaluation, there was no evidence of prior releases, failures, or patchwork observed by GZA.

2.1.1 General Findings

Following submittal of the March 2012 Draft Report, NIPSCO completed a geotechnical investigation and embankment stability analyses of the Site impoundments, as well as a hydrologic and hydraulic evaluation. These analyses were completed by Golder Associates, Inc. (Golder) with reports provided to EPA dated August 27, 2012. Based on the results of these analyses, our visual inspection and in accordance with EPA's criteria, it is GZA's opinion the Site's Coal Ash Impoundments are currently in **SATISFACTORY** condition.

Specific concerns are identified in more detail in the sections below.

An overall plan showing the pertinent features, including the location and orientation of photographs provided in **Appendix D**, is detailed on **Figure 3**.

2.1.2 Primary No. 1 (Photo Nos. 1 – 8, 50 and 51)

Primary No. 1 generally appeared to be in good condition. Wastewater was being discharged into it during GZA's assessment. The outer embankment slope generally appeared to be in good condition. A layer of rip rap was evident on the outer embankment slope. There was a minimal amount of vegetation on the outer slope. No unusual movement or sloughing was observed on the outer slope. The alignment of the sheet piling appeared straight with no lateral displacement (Photo Nos. 50 and 51).

The crest of Primary No. 1 also functions as a gravel road. The alignment of the top of the embankment appeared generally level, with no depressions or irregularities observed.

Most of the interior slope could not be observed due to the water elevation within Primary No. 1. The parts of the interior slope that could be observed appeared to be in good condition. Some minor erosion channels were observed (Photo 8) and some minor sloughing was noted near the emergency overflow pipe (Photo 7).

There are two discharge structures in Primary No. 1, the discharge structure and the emergency overflow pipe. The concrete discharge structure utilizes stop logs to control the elevation of the water within Primary No. 1. The concrete above the water level appeared intact. The interior of the discharge structure could not be observed. The transfer and discharge pipes could not be visually inspected during the assessment. MCGS reportedly has never had an issue with any of the discharge pipes since the Impoundment was originally constructed.

The exterior of the corrugated metal emergency overflow pipe (Photo No. 7) appeared to be in poor condition with significant corrosion observed in the exposed portion. GZA was not able to observe its interior portion beneath the embankment.

A piezometer of unknown depth or construction was observed on the northwest side of Primary No. 1 (Photo 3). Additionally, leakage from the wastewater pipes entering Primary No. 1 (Photo 4) was observed; NIPSCO personnel indicated that when this type of leakage was discovered, it is routinely repaired immediately upon discovery.

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

9

Date of Inspection: 5/23/11

2.1.3 Secondary No. 1 (Photo Nos. 9-14)

Secondary No. 1 generally appeared to be in good condition. A continuous row of sheet piling encloses the pool area of Secondary No. 1 (Photo 9). The inner embankment slope appeared to be in good condition. A continuous layer of rip rap was evident on the inner embankment slope. There was a minimal amount of vegetation on the inner slope. No unusual movement was observed on the inner slope and some minor erosion channeling and sloughing was observed (Photos 12 and 14).

The alignment of the sheet piling appeared straight with no lateral displacement. It appeared that one section of the sheet piling in the southeastern corner was at a lower elevation than the rest of the sheet piling (Photos 10 and 14). The condition of the sheet piling could not be observed because it was underwater.

The crest of Secondary No. 1 also functions as a gravel road. The alignment of the top of the embankment appeared generally level, with no depressions or irregularities observed.

There is one discharge structure in Secondary No. 1. The inlet of the discharge structure was obstructed with debris and there did not appear to be a trashrack in place (Photo No. 11). The interior of the discharge structure and discharge pipe could not be observed during the assessment. MCGS reportedly has never had an issue with the discharge pipe since the impoundment was originally constructed.

Several piezometers of unknown depth or construction were observed on the southeast side of Secondary No. 1.

2.1.4 Primary No. 2 (Photo Nos. 15 - 23, 47, 48 and 49)

Primary No. 2 generally appeared to be in good condition. This impoundment was not in use during GZA's assessment and, according to NIPSCO personnel, it has not been used since 2003. The outer embankment slope generally appeared to be in good condition. A layer of rip rap was evident on the outer embankment slope (i.e. the slope along the Lake Michigan side). There was a minimal amount of vegetation on the outer slope. No unusual movement or sloughing was observed on the outer slope. The alignment of the sheet piling appeared straight with no lateral displacement (Photo Nos. 47, 48 and 49).

The crest of Primary No. 2 also functions as a gravel road. The alignment of the top of the embankment appeared generally level, with no depressions or irregularities observed.

The interior slope appeared to be in good condition. Some minor erosion channels were observed and some minor sloughing was noted near the emergency overflow pipe (Photos 16 and 22).

There is one discharge structure in Primary No. 2. The concrete discharge structure utilizes stop logs to control the elevation of the water within Primary No. 2. The concrete appeared intact but the trash rack appeared bent (Photo 17). The discharge pipe could not be visually inspected during the assessment. MCGS reportedly has never had an issue with the discharge pipe since the impoundment was originally constructed.

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

10

Date of Inspection: 5/23/11

2.1.5 Secondary No. 2 (Photo Nos. 24, 25, and 26)

GZN

Secondary No. 2 generally appeared to be in good condition but was not in use at the time of GZA's assessment. A continuous row of sheet piling encloses the pool area of Secondary No. 2. The alignment of the sheet piling generally appeared straight but its condition could not generally be observed because it was underwater. There is no inner embankment slope.

There is one discharge structure in Secondary No. 2 that could not be observed because of vegetation within the impoundment. MCGS reportedly has never had an issue with the discharge pipe since the impoundment was originally constructed.

2.1.6 Bottom Ash Area (Photo Nos. 27 through 30)

Bottom ash sluice water is discharged to the BAA which acts as a temporary holding area for bottom ash before it is sold for commercial use. The discharged water immediately drains to the FSP through one of five discharge pipes. The BAA ground surface slopes toward the FSP with a small embankment/road along the northwest side, located between the BAA and FSP. The embankment is relatively small, approximately two feet in height, and appeared to be in good condition. The discharge pipes were in fair condition. The BAA controls the sluice water and stormwater from this area prior to discharging to the FSP. Since the BAA does not retain / impound water, it is GZA's opinion the BAA does not satisfy the criteria set forth by the U.S. EPA for units requiring further evaluation, therefore the photos provided herein are for reference only and the previously submitted Checklist has been removed from the Final Report.

2.1.7 Final Settling Pond (Photo Nos. 31 through 46)

The FSP generally appeared to be in good condition. The alignment of the sheet piling on the northwest side of the FSP generally appeared straight (Photo Nos. 45 and 46). The crest of the FSP also functions as a gravel road. The alignment of the top of the embankment appeared generally level, with no depressions or irregularities observed. Most of the interior slope could not be observed due to the water elevation within the FSP. The parts of the interior slope that could be observed appeared to be in good condition.

The primary method to remove water from the FSP is by pumping. The pumphouse contains pumps that transfer water from the FSP to the MCGS and controls the level of water within the FSP. Additionally, there are two overflow pipes (Photo No. 31) that discharge to Outfall 001. If water is discharged to Outfall 001, totalizers located on the overflow pipes (Photo No. 33) will measure the volume of wastewater discharged. According to NIPSCO personnel, the totalizers were operational. The concrete manholes housing the totalizers (Photo Nos. 32 and 33) appeared to be in good condition. The interior of the overflow pipes could not be visually inspected during the assessment. MCGS reportedly has never had an issue with the discharge pipes since the Impoundment was originally constructed.

The pumphouse was not assessed during GZA's site visit as this was outside of our scope of work (Photo 44). An unknown pipe was observed penetrating through the embankment with an outfall end above the current waterline on the northeast side of the FSP (Photo 31).

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

11

Date of Inspection: 5/23/11

FINAL REPORT

US EPA ARCHIVE DOCUMENT

2.1.8 Steel Sheet Piling

The steel sheet piling generally appeared to be in good condition with no indications of lateral wall movement and little corrosion. GZA did not evaluate the sheet piling as part of the inspection but has provided some general comments. As mentioned previously, there are two rows of continuous sheet piling at the MCGS. Heavy rip rap was placed in between the two rows of sheet piling. The sheet pile walls are thick (3/8-inch) sheet steel and are constructed with interlocked Z-sections. The Z-shape of the sheet pile cross section is designed to help the wall resist bending and the interlock serves to make the wall act like one continuous wall. Design information regarding the sheet pile wall structural integrity was not available at the time of the inspection.

2.2 Caretaker Interview

Maintenance of the dam is the responsibility of MCGS personnel. GZA met with MCGS personnel and discussed the current operations and maintenance procedures, regulatory requirements, and the history of the impoundments since they were constructed. The observations, descriptions and findings presented in this Final Report reference these discussions.

2.3 Operation and Maintenance Procedures

As discussed in Section 1.2.5, MCGS personnel are responsible for the regular operation and maintenance of the impoundments but there are no formal operation and maintenance procedures in place. The impoundments are typically observed at least once per day for anything unusual. NIPSCO indicated in their July 31, 2012 letter to EPA following review of the Draft Report that an operation and maintenance (O&M) plan was in the process of being completed.

2.4 Emergency Action Plan

There is no Emergency Action Plan (EAP) developed for the impoundments. An EAP is not required under Indiana regulations. However, NIPSCO indicated in their July 31, 2012 letter to EPA that an O&M plan was being prepared that would include operating procedures, inspections and vegetative maintenance.

2.5 Hydrologic/Hydraulic Data

GZA did not perform an independent assessment of the hydraulics and hydrology for the impoundments as this was beyond our scope of services. During normal operating conditions, there is approximately six feet of freeboard in Primary No.1 and Primary No. 2, approximately 10.5 feet in Secondary No. 1, approximately 6.5 feet in Secondary No. 2, and approximately 3.5 feet in the FSP. The BAA is generally empty. NIPSCO provided EPA with an August 27, 2012 final report prepared by Golder regarding the hydrologic and hydraulic performance of the impoundments. The evaluation results indicated that "...All impounds are shown to safely pass up to the 100-year return period event which is the minimum for a low hazard dam as specified by the State of Indiana DNR Division of Water. The Primary and Secondary Impoundments, the southwest Bottom Ash Area, and the Final Settling Pond safely pass up to 50% of the

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

12

Date of Inspection: 5/23/11

6-hour, PMP rainfall depth without overtopping." A copy of the August 27, 2012 final report is included in Appendix E.

2.6 Structural and Seepage Stability

The original structural and seepage stability analyses, if any, were not available to GZA at the time of inspection. Slope stability analyses, seepage analyses, foundation liquefaction analyses, and settlement analyses reports were not available. NIPSCO provided EPA with an August 27, 2012 geotechnical investigation and embankment stability analyses of the Site impoundments that was completed by Golder. The embankment stability analyses results indicated "…acceptable factors of safety for all cases considered when evaluated with respect to U.S. Army Corps of Engineers criteria for the types of analyses and loading conditions evaluated." A copy of the August 27, 2012 geotechnical investigation and embankment stability analyses is included in Appendix F.

3.0 ASSESSMENTS AND RECOMMENDATIONS

3.1 Assessments

Following submittal of the March 2012 Draft Report, NIPSCO completed a geotechnical investigation and embankment stability analyses of the Site impoundments, as well as a hydrologic and hydraulic evaluation. These analyses were completed by Golder Associates, Inc. (Golder) with reports provided to EPA dated August 27, 2012. Based on the results of these analyses, our visual inspection and in accordance with EPA's criteria, it is GZA's opinion the Site's Coal Ash Impoundments are currently in **SATISFACTORY** condition.

The impoundments were found to have the following deficiencies:

- 1. Piezometers of unknown depth or construction were located throughout the impoundments (*NIPSCO provided comments to EPA regarding the Draft Report in a letter dated July 31, 2012. The letter indicates the unused and undocumented piezometers were abandoned as recommended*);
- 2. No formal operation and maintenance plan or inspection checklist in place to observe and document the structural condition of the impoundments (*NIPSCO provided comments to EPA regarding the Draft Report in a letter dated July 31, 2012. The letter indicates NIPSCO is developing an O&M plan for the Site as discussed in Section 2.3*);
- 3. The discharge pipes within the impoundments have not been inspected internally since they were installed (*NIPSCO provided comments to EPA regarding the Draft Report in a letter dated July 31, 2012. The letter indicates NIPSCO has completed a survey of the impoundment structures and video survey of the pipes was 90% complete);*
- 4. There was an obstruction at the decant inlet and lack of a trash rack in Secondary No. 2;
- 5. The trash rack in Primary No. 2 was bent;
- 6. There was a pipe of unknown use observed near the overflow pipes at the FSP; and,

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

13

Date of Inspection: 5/23/11

- GZN
- 7. No design information available for the steel sheet piling used to support the northwestern sides/ends of the impoundments (*NIPSCO provided EPA with a geotechnical investigation and embankment stability analyses of the Site impoundments that was completed by Golder. The embankment stability analyses included evaluation of the steel sheet piling and found to be satisfactory*).

The following recommendations and remedial measures generally describe the recommended approach to address current deficiencies at the impoundments. Prior to undertaking recommended maintenance, repairs, or remedial measures, the applicability of environmental permits needs to be determined for activities that may occur within resource areas under the jurisdiction of the appropriate regulatory agencies.

3.2 Studies and Analyses

GZA recommends the following studies and analyses:

- 1. If an analysis of the structural capacity of the steel sheet piling has not been performed previously or is not available, this type of analysis should be performed to verify that the installed sheet piling has sufficient strength to support the loading applied by the impoundments (*NIPSCO provided EPA with a geotechnical investigation and embankment stability analyses of the Site impoundments that was completed by Golder. The embankment stability analyses included evaluation of the steel sheet piling);*
- 2. Perform a seepage and stability analysis to evaluate the embankment slopes (As indicated above, NIPSCO provided EPA with a geotechnical investigation and embankment stability analyses of the Site impoundments that was completed by Golder. The embankment stability analyses results indicated "acceptable factors of safety for all cases considered when evaluated with respect to U.S. Army Corps of Engineers criteria for the types of analyses and loading conditions evaluated"); and,
- 3. Perform a hydrologic and hydraulic analyses of the individual impoundments to determine the adequacy of intake/discharge features and adequacy of current operating water levels (*NIPSCO provided EPA with a hydrologic and hydraulic evaluation of the impoundments that was completed by Golder. The evaluation results indicated that "All impounds are shown to safely pass up to the 100-year return period event which is the minimum for a low hazard dam as specified by the State of Indiana DNR Division of Water. The Primary and Secondary Impoundments, the southwest Bottom Ash Area, and the Final Settling Pond safely pass up to 50% of the 6-hour, PMP rainfall depth without overtopping.")*

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

14

Date of Inspection: 5/23/11

3.3 Recurrent Operation & Maintenance Recommendations

GZA recommends the following operation and maintenance level activities:

- 1. If they are not necessary for the operation of the impoundments, abandon the piezometers that are located near the impoundments since their purpose, depth and construction are unknown;
- 2. Clear the obstruction from the decant inlet in Secondary No. 2 and install a trash rack;
- 3. Exercise stops logs and related water level control mechanisms at exiting decant structures;
- 4. Increase/adjust the frequency of vegetative maintenance activity such that overgrowth is minimized;
- 5. Perform a video camera survey of the intake and discharge pipe network within the Impoundments to verify that they are operating correctly and are in suitable condition; and,
- 6. Create a formal checklist for visual inspections of the impoundments and associated appurtenances and maintain the inspection records on file.

NIPSCO provided comments to EPA regarding the Draft Report in a letter dated July 31, 2012. The letter indicates the unused and undocumented piezometers were abandoned as recommended, a video survey of pipes within the impoundments was being completed, and an operation and maintenance (O&M) plan was being developed to address these O&M issues.

3.4 Minor Repair Recommendations

GZA recommends the following repairs which may improve the overall condition of the impoundments and water storage system, but do not alter the current design of the embankment. The recommendations may require design by a professional engineer and construction contractor experienced in embankment construction.

- 1. Repair the bent trash rack in Primary No. 2 before this impoundment is put back in service;
- 2. Repair sloughs and scarps on the embankments and provide future erosion protection as necessary and,
- 3. Evaluate the function and necessity of the unknown pipe found on the northeast side of the FSP and remove the pipe if it is not needed.

Coal Ash Impoundments NIPSCO – Michigan City Generating Station

15

Date of Inspection: 5/23/11

- 3.5 Remedial Measures Recommendations
 - 1. In conjunction with the results of the scopage and stability analyses make provisions to address inadequate factors of safety as applicable; and,
 - 2. In conjunction with the results of the hydrologic and hydraulic analyses, make provisions for an emergency overflow spillway, if necessary.

NIPSCO completed a geotechnical investigation and embankment stability analyses of the Site impoundments, as well as a hydrologic and hydraulic evaluation. These analyses were completed by Golder Associates, Inc. with reports provided to EPA dated August 27, 2012. Based on the results of these analyses, it is GZA's opinion that the remedial measure recommendations summarized above and provided in the Draft Report have been satisfied and no longer apply.

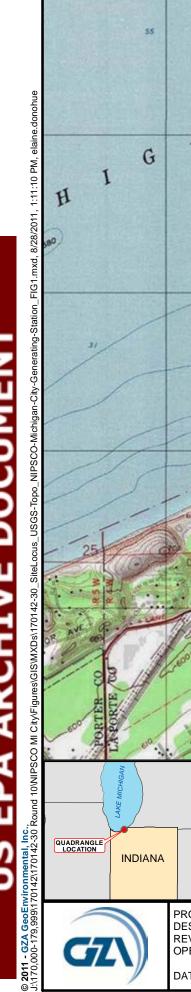
3.6 Alternatives

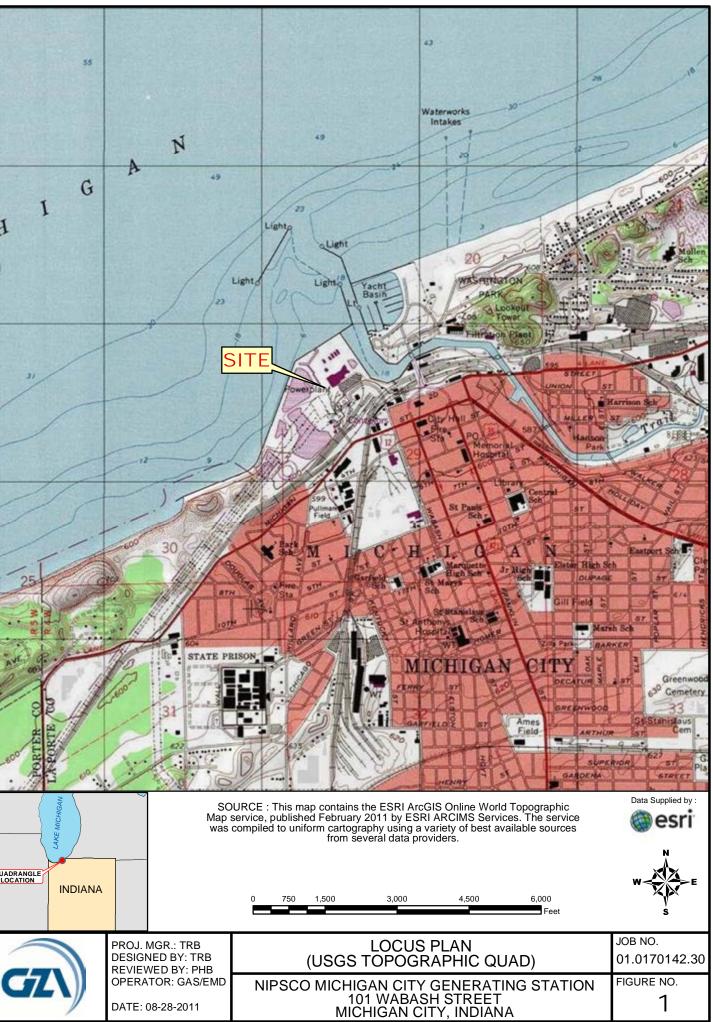
There are no practical alternatives to the repairs itemized above.

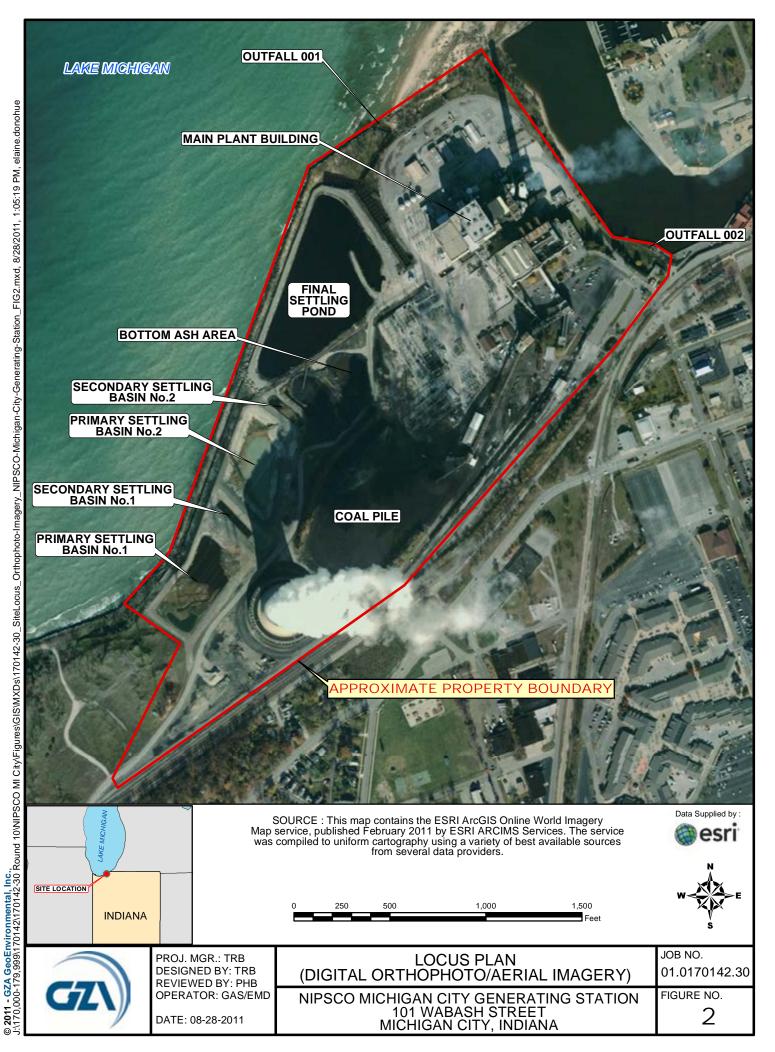
4.0 ENGINEER'S CERTIFICATION

1 acknowledge that the management units referenced herein, the Michigan City Generating Station Impoundments, have been assessed to be in <u>SATISFACTORY</u> condition based on our May 23, 2011 Site inspection and the results of recent geotechnical investigations and stability analyses, as well as the hydrologic and hydraulic evaluation completed by Golder for NIPSCO.

Walter Kosinski, P.E. Principal


130135 Norwood/01/01/0142/30 CCW Dams Round 10/N0/SCO_Michigan City/Timal Report/MI City - Report Final_REV2.10_19_12/doc.c





Figures

LEGEND

PHOTO LOCATION / DIRECTION

SOURCE: This map contains the ESRI ArcGIS Online Data Supplied by : World Imagery Map service, published February 2011 by ESRI ARCIMS Services. The service was compiled to **esri** uniform cartography using a variety of best available sources from several data providers.

150 300

600

SCALE IN FEET

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA), THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR THE USE BY GZA'S CLIENT OR THE CLIENTS DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION DENTIFIED ON THE DRAWING THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE ANY OTHER LOCATION ON FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA, ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN PROFENS TO GZA. WILL BE AT THE USER'S SOLE RISK AND WITHOUT TANY RISK OR LIABILITY TO GZA.

NIPSCO MICHIGAN CITY GENERATING STATION 101 WABASH STREET MICHIGAN CITY, INDIANA

PHOTOLOG

71	PREPARED BY: GZA GeoEnvironmental, Inc. Engineers and Scientists www.gza.com				PREPARED FOR:		
1	PROJ MGR:	TRB	REVIEWED BY:	PHB	CHECKED BY: 1	RB	FIGURE
100	DESIGNED BY:	TRB	DRAWN BY:	GAS	SCALE: 1 in =	300 ft	0
	DATE: 09/06/2011		PROJECT NO. 01.0170142.30		REVISION NO.		3

Appendix A

Limitations

DAM ENGINEERING & VISUAL INSPECTION LIMITATIONS

- 1. The observations described in this report were made under the conditions stated herein. The conclusions presented in the report were based solely on the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the United States Environmental Protection Agency (EPA).
- 2. In preparing this report, GZA GeoEnvironmental, Inc. (GZA) has relied on certain information provided by the Northern Indiana Public Service Company (NIPSCO) as well as Federal, state, and local officials and other parties referenced therein. GZA has also relied on certain information contained on the State of Indiana's website as well as Federal, state, and local officials and other parties which were available to GZA at the time of the inspection. Although there may have been some degree of overlap in the information provided by these various sources, GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this work.
- 3. In reviewing this Report, it should be noted that the reported condition of the Ash Pond is based on observations of field conditions during the course of this study along with data made available to GZA. The observations of conditions at the Ash Pond reflect only the situation present at the specific moment in time the observations were made, under the specific conditions present. It may be necessary to reevaluate the recommendations of this report when subsequent phases of evaluation or repair and improvement provide more data.
- 4. It is important to note that the condition of a dam or embankment depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam or embankment will continue to represent the condition of the dam or embankment at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions may be detected.
- 5. Water level readings have been reviewed and interpretations have been made in the text of this report. Fluctuations in the level of the groundwater and surface water may occur due to variations in rainfall, temperature, and other factors different than at the time measurements were made.
- 6. GZA's comments on the history, hydrology, hydraulics, and embankment stability for the Impoundments are based on a limited review of available design documentation for the NIPSCO facility. Calculations and computer modeling used in these analyses were not available and were not independently reviewed by GZA.
- 7. This report has been prepared for the exclusive use of EPA for specific application to the existing dam facilities, in accordance with generally accepted dam engineering practices. No other warranty, express or implied, is made.
- 8. This dam inspection verification report has been prepared for this project by GZA. This report is for broad evaluation and management purposes only and is not sufficient, in and of itself, to prepare construction documents or an accurate bid.

J:\01.xx Norwood\01.0170142.30 CCW Dams Round 10\NIPSCO_Michigan City\Final Report\Appendices\Appendix A_Limitations.doc

Appendix B

Definitions

COMMON DAM SAFETY DEFINITIONS

For a comprehensive list of dam engineering terminology and definitions refer to references published by the U.S. Army Corps of Engineers, the Federal Energy Regulatory Commission, the Department of the Interior Bureau of Reclamation, or the Federal Emergency Management Agency.

Orientation

Upstream - Shall mean the side of the dam that borders the impoundment.

Downstream - Shall mean the high side of the dam, the side opposite the upstream side.

<u>Right</u> – Shall mean the area to the right when looking in the downstream direction.

Left – Shall mean the area to the left when looking in the downstream direction.

Dam Components

Dam – Shall mean any artificial barrier, including appurtenant works, which impounds or diverts water.

<u>Embankment</u> – Shall mean the fill material, usually earth or rock, placed with sloping sides, such that it forms a permanent barrier that impounds water.

Crest - Shall mean the top of the dam, usually provides a road or path across the dam.

<u>Abutment</u> – Shall mean that part of a valley side against which a dam is constructed. An artificial abutment is sometimes constructed as a concrete gravity section, to take the thrust of an arch dam where there is no suitable natural abutment.

<u>Appurtenant Works</u> – Shall mean structures, either in dams or separate there from, including but not be limited to, spillways; reservoirs and their rims; low level outlet works; and water conduits including tunnels, pipelines, or penstocks, either through the dams or their abutments.

<u>Spillway</u> – Shall mean a structure over or through which water flows are discharged. If the flow is controlled by gates or boards, it is a controlled spillway; if the fixed elevation of the spillway crest controls the level of the impoundment, it is an uncontrolled spillway.

General

<u>EAP – Emergency Action Plan</u> - Shall mean a predetermined plan of action to be taken to reduce the potential for property damage and/or loss of life in an area affected by an impending dam break.

<u>O&M Manual</u> – Operations and Maintenance Manual; Document identifying routine maintenance and operational procedures under normal and storm conditions.

<u>Normal Pool</u> – Shall mean the elevation of the impoundment during normal operating conditions.

<u>Acre-foot</u> – Shall mean a unit of volumetric measure that would cover one acre to a depth of one foot. It is equal to 43,560 cubic feet. One million U.S. gallons = 3.068 acre feet.

<u>Height of Dam</u> – Shall mean the vertical distance from the lowest portion of the natural ground, including any stream channel, along the downstream toe of the dam to the crest of the dam.

<u>Spillway Design Flood (SDF)</u> – Shall mean the flood used in the design of a dam and its appurtenant works particularly for sizing the spillway and outlet works, and for determining maximum temporary storage and height of dam requirements.

Condition Rating

SATISFACTORY - No existing or potential management unit safety deficiencies are recognized. Acceptable performance is expected under all applicable loading conditions (static, hydrologic, seismic) in accordance with the applicable criteria. Minor maintenance items may be required.

FAIR - Acceptable performance is expected under all required loading conditions (static, hydrologic, seismic) in accordance with the applicable safety regulatory criteria. Minor deficiencies may exist that require remedial action and/or secondary studies or investigations.

POOR - A management unit safety deficiency is recognized for any required loading condition (static, hydrologic, seismic) in accordance with the applicable dam safety regulatory criteria. Remedial action is necessary. POOR also applies when further critical studies or investigations are needed to identify any potential dam safety deficiencies.

UNSATISFACTORY - Considered unsafe. A dam safety deficiency is recognized that requires immediate or emergency remedial action for problem resolution. Reservoir restrictions may be necessary.

Hazard Potential

(In the event the impoundment should fail, the following would occur):

LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.

LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

 $J:\label{eq:link} J:\label{eq:link} J:\label{e$

Appendix C

Inspection Checklists

Site Name: Michigan City Generating Station			Date: May 24, 20)11		
Unit Name: Primary Settling Basin No. 1			Operator's Name:	NIPSCO		
Unit I.D.:	N/A			Hazard Potential Classification:	High Significant	Low
Inspector's Nam	ne: Walter Kosinski, P.E.	& Tho	mas Bo	oom, P.E.		
Check the appropriate bo	x below. Provide comments whe	n approp	riate. If r	not applicable or not available, record "N/A". Any urge diked embankments, separate checklists may	unusual conditions	or
				at the form applies to in comments.		<u>n </u>
		Yes	No		Yes	No
1. Frequency of Compa	ny's Dam Inspections?	Da	aily	18. Sloughing or bulging on slopes?		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2. Pool elevation (opera	tor records)?	602.	92 ft	19. Major erosion or slope deterioration?		V
3. Decant inlet elevation	n (operator records)?	602.	.92 ft	20. Decant Pipes:		
4. Open channel spillwa	y elevation (operator records)?	N	/A	Is water entering inlet, but not exiting outlet?		v
5. Lowest dam crest ele	vation (operator records)?	608.	72 ft	Is water exiting outlet, but not entering inlet?		V
6. If instrumentation is p recorded (operator re			~	Is water exiting outlet flowing clear?	~	
7. Is the embankment c	urrently under construction?		~	21. Seepage (specify location, if seepage carries and approximate seepage rate below):	s fines,	
	on (remove vegetation,stumps, nbankment fill will be placed)?	~		From underdrain?	N//	٩
9. Trees growing on em largest diameter belo	bankment? (If so, indicate ow)		>	At isolated points on embankment slopes?		v
10. Cracks or scarps on	crest?		~	At natural hillside in the embankment area?		V
11. Is there significant s	ettlement along the crest?		>	Over widespread areas?		V
12. Are decant trashrac	ks clear and in place?	~		From downstream foundation area?		V
13. Depressions or sink whirlpool in the pool	holes in tailings surface or area?		>	"Boils" beneath stream or ponded water?		~
14. Clogged spillways, g	groin or diversion ditches?		7	Around the outside of the decant pipe?		~
15. Are spillway or ditch	linings deteriorated?	N/	Ά	22. Surface movements in valley bottom or on h	illside? N/	A
16. Are outlets of decan	t or underdrains blocked?		~	23. Water against downstream toe?	r	
17. Cracks or scarps on	slopes?		~	24. Were Photos taken during the dam inspection	in? 🖌	

Inspection Issue #

Comments

1) Impoundment is not regulated by Indiana Department of Natural Resources (DNR) but daily routine maintenance is conducted for security and operations although not specifically for the impoundment structure.

3) Stoplogs and a concrete structure control the pool elevation. The invert evaluation of the outlet pipe within the concrete structure is 588.72 feet. Water discharges to the Secondary Settling Basin No. 1.

6) Monitoring wells are present but not monitored.

8) According to plans and specifications, the foundation was prepared.

12) Decant pipe uses stoplogs which were clear of any materials.

20) Appeared to be clear based on our observations.

21) Unable to observe the outside of the decant pipe.

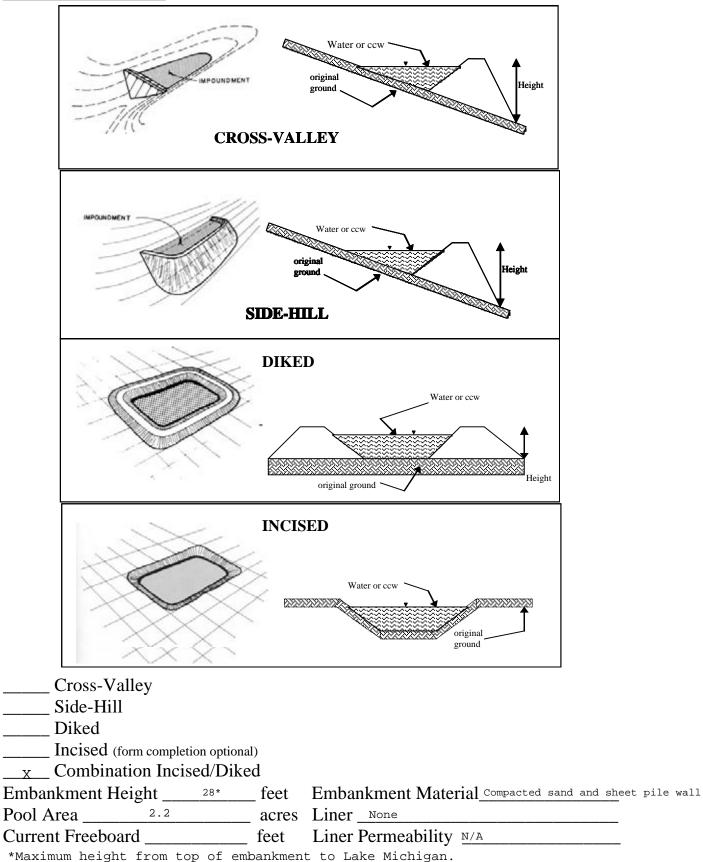
23) Water was against the northeast side toe adjacent to Secondary Settling Basin No. 1. Water (Lake Michigan) was also against the northern most sheet pile wall. There is also a second sheet pile wall at the northern edge of Primary Settling Basin No. 1.

		Walter Kosinski, P.
Impoundment NPDI	ES Permit #	INSPECTOR & Thomas Boom, P.E.
	2011	
·····		
Impoundment Na	me Michigan City Generat	ing Station
EPA Region	5	
State Agency (Fie	eld Office) Addresss Not re	egulated by Indiana DNR
200001-80000 (110		
Name of Impound	iment Drimary Settling	g Basin No. 1
(Report each impo	oundment on a separate form u	Inder the same Impoundment NPDES
Permit number)	· · · · · · · · · · · · · · · · · · ·	
,		
New <u>x</u> U	pdate	
	•	
		Yes No
Is impoundment c	currently under construction?	X
Is water or ccw cu	arrently being pumped into	
the impoundment	?	X
IMPOUNDMEN	TFUNCTION: Settling c	of coal combustion ash.
Nearest Downstre	am Town: Name <u>N/A – La</u>	ake Michigan
	impoundment <u>100 feet</u>	
Impoundment		
Location:		54 Minutes 56 Seconds
	0	42 Minutes <u>59</u> Seconds
	State County	LaPorte County
_		
Does a state agend	cy regulate this impoundment?	YES NO

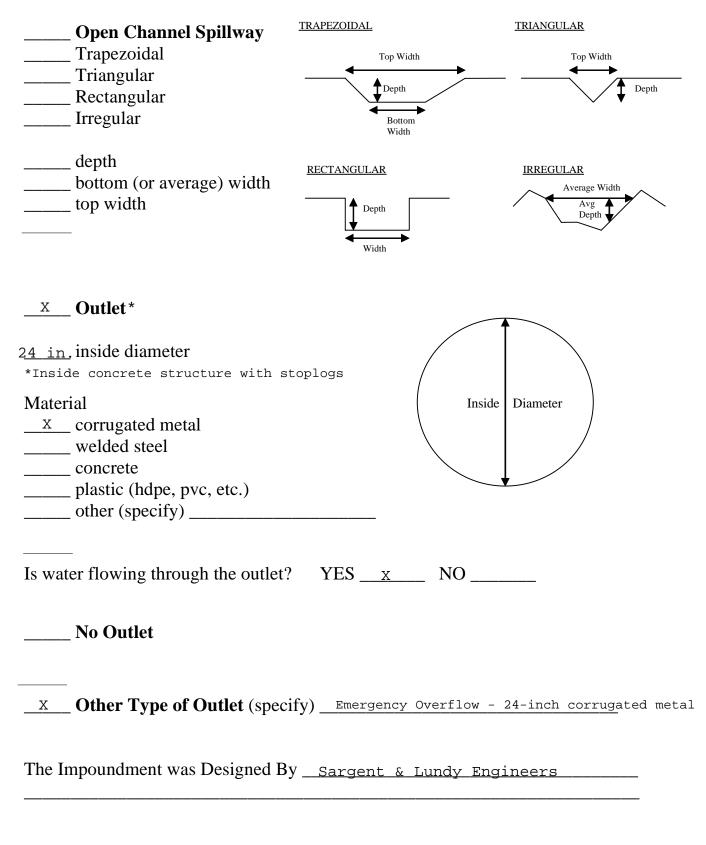
If So Which State Agency?__N/A___

<u>HAZARD POTENTIAL</u> (In the event the impoundment should fail, the following would occur):

_____ LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.


_____ LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

 \underline{x} SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.


_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

DESCRIBE REASONING FOR HAZARD RATING CHOSEN:

A significant hazard rating was selected because in the unlikely event of dike failure, the coal ash stored in the impoundment may discharge into Lake Michigan and cause environmental damage. Although this condition is unlikely due to the presence of two protective sheet pile walls separating Lake Michigan from the impoundment, by definition, the potential for environmental impact is possible. Additionally, a dike failure would cause disruption of lifeline facilities as the generating station depends upon the water within the impoundments. Failure of the dike would not likely result in loss of human life. Note that the generating station alternates use of Primary Settling Basin No. 1 with Primary Settling Basin No. 2 such that only one primary basin is utilized at a time.

<u>TYPE OF OUTLET</u> (Mark all that apply)

Has there ever been a failure at this site? YES	NO	X
If So When?		
If So Please Describe :		

Has there ever been significant seepages at this site?	? YES	NO
f So When?		
F So Please Describe:		

Has there ever been any measures undertaken to monitor/lower							
Phreatic water table levels based on past seepag at this site?	YES	NO	X				
If so, which method (e.g., piezometers, gw pum	ping,)?						
If so Please Describe :							

Site Name: Michigan City Generating Station			Date:	May 24, 2011			
Unit Name:	Jnit Name: Secondary Settling Basin No. 1		Operator's Name:	NIPSCO	כ		
Unit I.D.:	N/A			Hazard Potential Class	sification ^{: High s}	Significant	Low
Inspector's Name	: Walter Kosinski, P.E.	. & Tho	mas B	oom, P.E.			
				not applicable or not available, recor			
embankment areas. If separ	rate forms are used, identify ar	oproximat	<u>n. ⊢or ia</u> e area th	rge diked embankments, separate c at the form applies to in comments.	-	tor altteren	<u>t</u>
		Yes	No			Yes	No
1. Frequency of Company	s Dam Inspections?	Da	aily	18. Sloughing or bulging on slope	s?		~
2. Pool elevation (operator	records)?	589.0	2 ft +/-	19. Major erosion or slope deterio	ration?		~
3. Decant inlet elevation (c	operator records)?	588	.82 ft	20. Decant Pipes:			
4. Open channel spillway	elevation (operator records)?	N	/A	Is water entering inlet, but not	exiting outlet?		~
5. Lowest dam crest eleva	tion (operator records)?	599	72 ft	Is water exiting outlet, but not	entering inlet?		~
6. If instrumentation is pre- recorded (operator reco	sent, are readings rds)?		~	Is water exiting outlet flowing	clear?	~	
7. Is the embankment curr	ently under construction?		~	21. Seepage (specify location, if s and approximate seepage rate be			
	(remove vegetation,stumps, ankment fill will be placed)?	~		From underdrain?		N//	4
9. Trees growing on emba largest diameter below)			~	At isolated points on embankm	nent slopes?		~
10. Cracks or scarps on cr	est?		~	At natural hillside in the embar	nkment area?		~
11. Is there significant sett	lement along the crest?		~	Over widespread areas?			~
12. Are decant trashracks	clear and in place?		~	From downstream foundation a	area?		~
13. Depressions or sinkho whirlpool in the pool ar			~	"Boils" beneath stream or pond	ded water?		~
14. Clogged spillways, gro	in or diversion ditches?		~	Around the outside of the deca	ant pipe?		~
15. Are spillway or ditch lir	nings deteriorated?	N/	Ά	22. Surface movements in valley	bottom or on hillside?	N//	4
16. Are outlets of decant o	r underdrains blocked?		~	23. Water against downstream to	e?	~	
17. Cracks or scarps on sl	opes?		~	24. Were Photos taken during the	dam inspection?	~	

Inspection Issue #

Comments

1) Impoundment is not regulated by Indiana Department of Natural Resources (DNR) but daily routine maintenance is conducted for security and operations although not specifically for the impoundment structure.

6) Monitoring wells are present but not monitored.

8) According to plans and specifications, the foundation was prepared.

12) No trashrack but there was debris in the pipe inlet.

19) Some minor erosion noted on the interior slope.

20) Appeared to be clear based on our observations.

23) Water against the downstream toe to the west is from the Primary Settling Basin No. 1 and against the downstream toe to the north is Lake Michigan however the northern portion of the impoundment is bound by two protective sheet pile walls separating Lake Michigan from the impoundment.

		Walter Kosinski, P.E.
Impoundment NPDES Permit #IN0000116	INSPECTOR_	& Thomas Boom, P.E.
DateMay 24, 2011		
·····		
Impoundment Name Michigan City Generating	ng Station	
Impoundment CompanyNIPSCO		
EPA Region5		
State Agency (Field Office) Addresss <u>Not</u> regi	ilated by Indi	and DND
State Argeney (Field Office) Addresss		
Name of ImpoundmentSecondary Settling		
(Report each impoundment on a separate form und	ler the same Impo	undment NPDES
Permit number)	ter the same mipt	
NewX Update		
	Yes	No
Is impoundment currently under construction?		X
Is water or ccw currently being pumped into		
the impoundment?	Х	
the impoundment.		
IMPOUNDMENT FUNCTION: <u>Settling of</u>	coal combusti	on ash.
Nearest Downstream Town : Name <u>N/A - Lak</u>	e Michigan	
Distance from the impoundment <u>100 feet</u>	e_Michigan	
Impoundment		
Location: Longitude <u>86</u> Degrees <u>5</u>	54 Minutes 5	4 Seconds
Latitude <u>41</u> Degrees <u>4</u>		
State County		
State County	lar or ce councy	

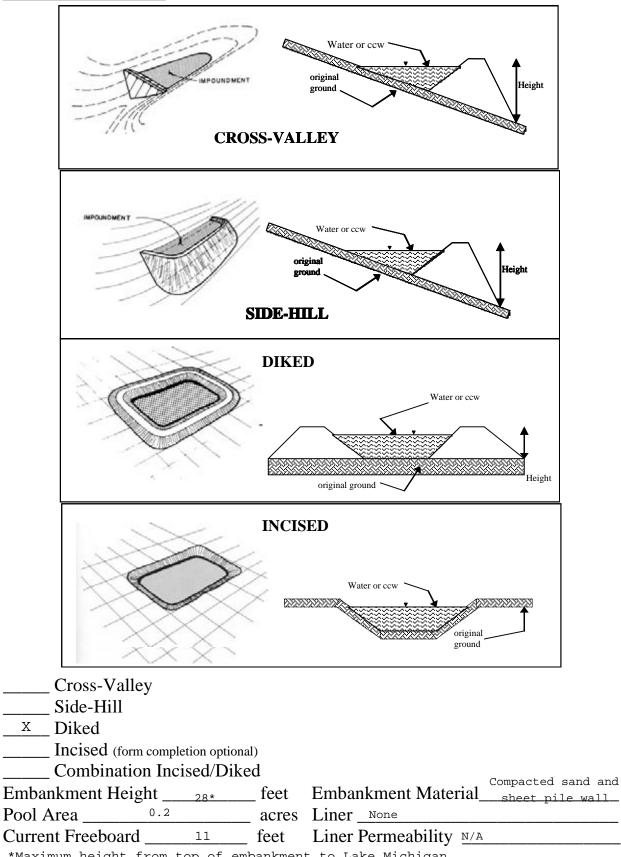
Does a state agency regulate this impoundment? YES _____ NO ____

If So Which State Agency? N/A

EPA ARCHIVE DOCUMENT

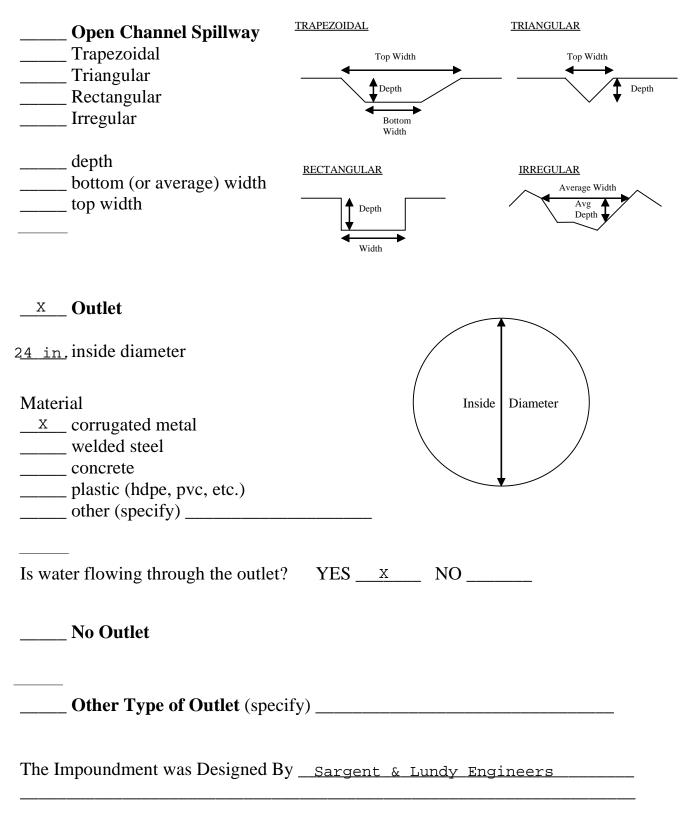
<u>HAZARD POTENTIAL</u> (In the event the impoundment should fail, the following would occur):

_____ LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.


<u>X</u> LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

_____SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.


DESCRIBE REASONING FOR HAZARD RATING CHOSEN:

Low hazard potential was selected because in the event of dike failure the losses would be minimal due to the relatively small volume of water and potential ash in the impoundment, the losses would be principally limited to the owner's property, and there are two rows of protective sheet piling between the dike and Lake Michigan.

US EPA ARCHIVE DOCUMENT

<u>TYPE OF OUTLET</u> (Mark all that apply)

US EPA ARCHIVE DOCUMENT

Has there ever been a failure at this site? YES	NO	X
If So When?		
If So Please Describe :		

Has there ever been significant seepages at this site?	? YES	NO
f So When?		
F So Please Describe:		

Has there ever been any measures undertaken to monitor/lower							
Phreatic water table levels based on past seepag at this site?	YES	NO	X				
If so, which method (e.g., piezometers, gw pum	ping,)?						
If so Please Describe :							

Site Name: Michigan City Generating Station			Date: May 24, 2011			
Unit Name: P	Name: Primary Settling Basin No. 2			Operator's Name: NIPS	со	
Unit I.D.:	N/A			Hazard Potential Classification: High	Significant	Low
Inspector's Name:	Walter Kosinski, P.E.	& Tho	mas Bo	oom, P.E.		
Check the appropriate box belo	ow. Provide comments whe	n approp	riate. If r	not applicable or not available, record "N/A". Any unusu ge diked embankments, separate checklists may be us	al conditions	or •
embankment areas. If separate	e forms are used, identify ap	proximat	e area th	at the form applies to in comments.		<u></u>
		Yes	No		Yes	No
1. Frequency of Company's [Dam Inspections?	Da	aily	18. Sloughing or bulging on slopes?		~
2. Pool elevation (operator re	cords)?	See	Note	19. Major erosion or slope deterioration?		~
3. Decant inlet elevation (ope	rator records)?	587.	72 ft	20. Decant Pipes:		
4. Open channel spillway elev	vation (operator records)?	N	/A	Is water entering inlet, but not exiting outlet?	N//	A
5. Lowest dam crest elevation	n (operator records)?	608.	72 ft	Is water exiting outlet, but not entering inlet?	N/A	A Contraction of the second se
6. If instrumentation is preser recorded (operator records			~	Is water exiting outlet flowing clear?	N//	Ą
7. Is the embankment current	tly under construction?		~	21. Seepage (specify location, if seepage carries fines and approximate seepage rate below):	i,	
8. Foundation preparation (re topsoil in area where emband		~		From underdrain?	N//	Ą
9. Trees growing on embanki largest diameter below)	nent? (If so, indicate		~	At isolated points on embankment slopes?	N//	٩
10. Cracks or scarps on crest	1?		~	At natural hillside in the embankment area?	N//	4
11. Is there significant settlen	nent along the crest?		>	Over widespread areas?	N/A	4
12. Are decant trashracks cle	ar and in place?	<		From downstream foundation area?	N//	A
13. Depressions or sinkholes whirlpool in the pool area			~	"Boils" beneath stream or ponded water?	N//	A
14. Clogged spillways, groin	or diversion ditches?		~	Around the outside of the decant pipe?	N/A	λ
15. Are spillway or ditch lining	gs deteriorated?	N/	A	22. Surface movements in valley bottom or on hillside	? N//	۹
16. Are outlets of decant or u	nderdrains blocked?		~	23. Water against downstream toe?	V	
17. Cracks or scarps on slope	es?		~	24. Were Photos taken during the dam inspection?	~	

Inspection Issue #

Comments

1) Impoundment is not regulated by Indiana Department of Natural Resources (DNR) but daily routine maintenance is conducted for security and operations although not specifically for the impoundment structure.

2) The impoundment is not currently in use but there was standing rain water in it during the assessment that is allowed to evaporate.

6) Monitoring wells are present but not monitored.

8) According to plans and specifications, the foundation was prepared.

12) In place and clear but not in use. Appeared to be bent.

13, 14, 16, 20, 21) The impoundment is not currently in use.

19) Some erosion channels on interior slope.

23) Water (Lake Michigan) was against the north toe against the northern most sheet pile wall, against the west toe in the Secondary Settling Basin No. 1, and against the northeast toe in the Secondary Settling Basin No. 2.

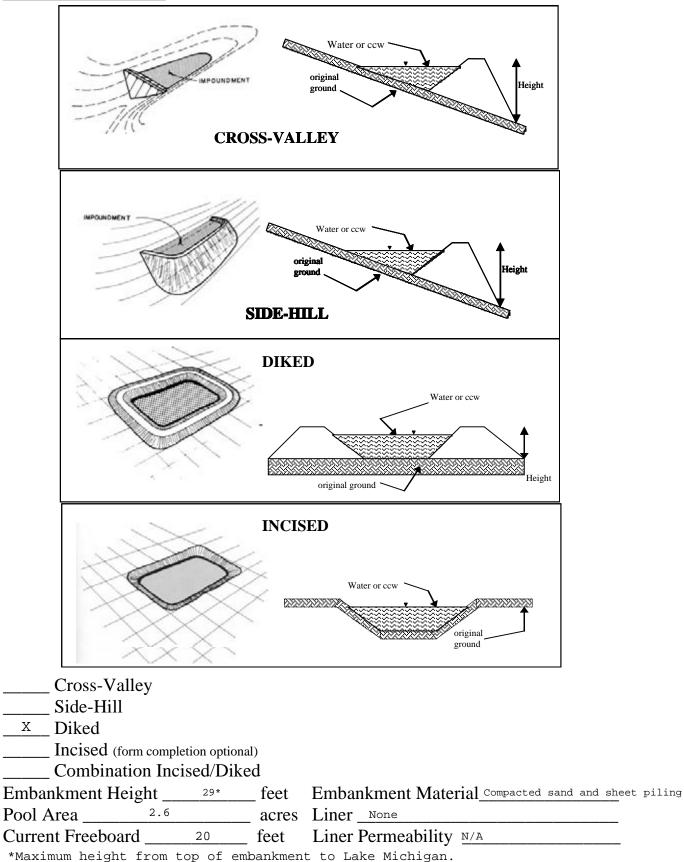
DateMay 24, 2011 mpoundment Name Michigan City Generating Station mpoundment CompanyNIPSCO EPA Region5		Walter Kosinski, P.H
mpoundment Name Michigan City Generating Station mpoundment CompanyNIPSCO IPA Region5 itate Agency (Field Office) Addresss	Impoundment NPDES Permit # _IN0000116	INSPECTOR & Thomas Boom, P.E.
mpoundment Company	Date May 24, 2011	
mpoundment Company		
mpoundment Company	Impoundment Name Michigan City Generat	ting Station
EPA Region5		
Jame of ImpoundmentPrimary_Settling_Basin_No2 Report each impoundment on a separate form under the same Impoundment NPDES Permit number) NewXUpdate S impoundment currently under construction? X s water or ccw currently being pumped into ne impoundment? X MPOUNDMENT FUNCTION: Settling of coal combustion ash. Vearest Downstream Town : Name N/A - Lake Michigan Distance from the impoundment100 feet mpoundment Longitude <u>86</u> Degrees54 Minutes52 Seconds Latitude <u>41</u> Degrees43 Minutes05 Seconds	EPA Region5	
Name of Impoundment Primary Settling Basin No. 2 Report each impoundment on a separate form under the same Impoundment NPDES Permit number) New X Update Yes No s impoundment currently under construction? X s water or ccw currently being pumped into ne impoundment? X MPOUNDMENT FUNCTION: Settling of coal combustion ash. Nearest Downstream Town : Name N/A Lake Michigan Distance from the impoundment 100 feet mpoundment Longitude <u>86</u> Degrees Latitude 41 Degrees 43	State Agency (Field Office) Addresss	egulated by Indiana DNR
Report each impoundment on a separate form under the same Impoundment NPDES Permit number) NewXUpdate Yes No s impoundment currently under construction?		
Permit number) Vermit number) VewXUpdate Yes No s impoundment currently under construction?	Name of Impoundment	g Basin No. 2
NewX Update Yes No s impoundment currently under construction? X s water or ccw currently being pumped into X me impoundment? X MPOUNDMENT FUNCTION: Settling of coal combustion ash. Nearest Downstream Town : Name _N/A - Lake Michigan Distance from the impoundment		inder the same Impoundment NPDES
Yes No s impoundment currently under construction? x s water or ccw currently being pumped into x me impoundment? x MPOUNDMENT FUNCTION: Settling of coal combustion ash. Vearest Downstream Town : Name N/A - Lake Michigan Distance from the impoundment 100 feet mpoundment Longitude 86 Degrees 54 Minutes 52 Seconds Latitude 41 Degrees 43 Minutes 05 Seconds	Permit number)	
Yes No s impoundment currently under construction? x s water or ccw currently being pumped into x me impoundment? x MPOUNDMENT FUNCTION: Settling of coal combustion ash. Vearest Downstream Town : Name N/A - Lake Michigan Distance from the impoundment 100 feet mpoundment Longitude 86 Degrees 54 Minutes 52 Seconds Latitude 41 Degrees 43 Minutes 05 Seconds	Now V Undete	
s impoundment currently under construction? X	New Opdate	
s impoundment currently under construction? X		Yes No
swater or ccw currently being pumped into ne impoundment? X	Is impoundment currently under construction?	
me impoundment? X		
Nearest Downstream Town : Name N/A - Lake Michigan Distance from the impoundment Impoundment Location: Longitude 86 Degrees 54 Latitude 41 Degrees	the impoundment?	X
Nearest Downstream Town : Name N/A - Lake Michigan Distance from the impoundment Impoundment Location: Longitude 86 Degrees 54 Latitude 41 Degrees	-	
Nearest Downstream Town : Name N/A - Lake Michigan Distance from the impoundment Impoundment Location: Longitude 86 Degrees 54 Latitude 41 Degrees		
Distance from the impoundment <u>100 feet</u> mpoundment Location: Longitude <u>86</u> Degrees <u>54</u> Minutes <u>52</u> Seconds Latitude <u>41</u> Degrees <u>43</u> Minutes <u>05</u> Seconds	IMPOUNDMENT FUNCTION: <u>Settling</u>	of coal combustion ash.
Distance from the impoundment <u>100 feet</u> mpoundment Location: Longitude <u>86</u> Degrees <u>54</u> Minutes <u>52</u> Seconds Latitude <u>41</u> Degrees <u>43</u> Minutes <u>05</u> Seconds		
Distance from the impoundment <u>100 feet</u> mpoundment Location: Longitude <u>86</u> Degrees <u>54</u> Minutes <u>52</u> Seconds Latitude <u>41</u> Degrees <u>43</u> Minutes <u>05</u> Seconds	No see at Doorse at the second Toorse at No. 100	
mpoundment Location: Longitude <u>86</u> Degrees <u>54</u> Minutes <u>52</u> Seconds Latitude <u>41</u> Degrees <u>43</u> Minutes <u>05</u> Seconds	Nearest Downstream Town : Name $N/A - Li$	ake_Michigan
Location: Longitude <u>86</u> Degrees <u>54</u> Minutes <u>52</u> Seconds Latitude <u>41</u> Degrees <u>43</u> Minutes <u>05</u> Seconds	Impoundment <u>100 feet</u>	
Latitude <u>41</u> Degrees <u>43</u> Minutes <u>05</u> Seconds	1	54 Minutes 52 Seconda
	\mathcal{C} ————————————————————————————————————	
State County Laror ce county	State $____IN$ County $_$	LaPorte County
Does a state agency regulate this impoundment? YES NO	Does a state agency regulate this impoundment?	VES NO v

If So Which State Agency? N/A

<u>HAZARD POTENTIAL</u> (In the event the impoundment should fail, the following would occur):

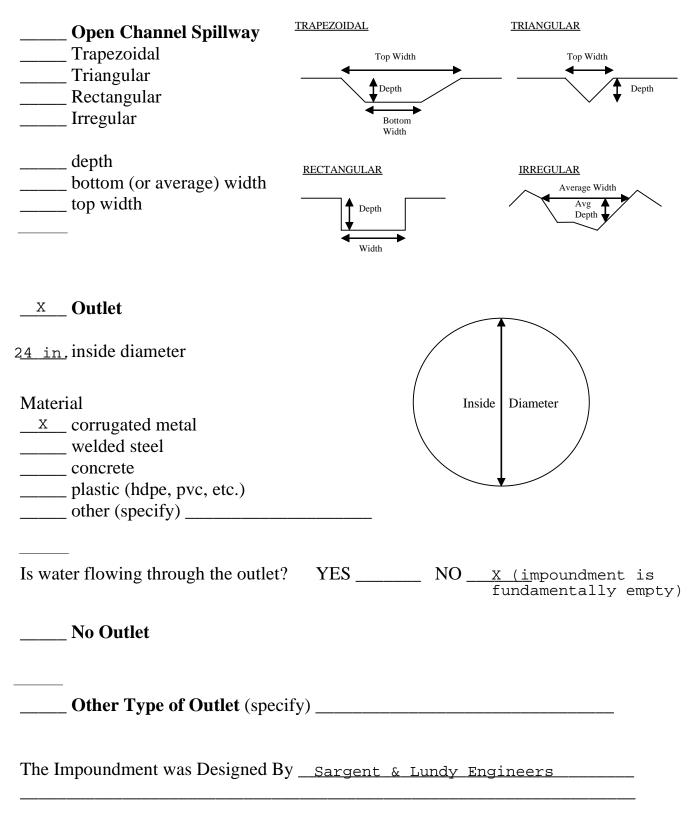
_____ LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.

_____ LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.


 \underline{x} SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

DESCRIBE REASONING FOR HAZARD RATING CHOSEN:


Although this impoundment was not in use at the time of the inspection, a significant hazard rating was selected based on the maximum volume of coal ash storage capacity. In the unlikely event of dike failure, the coal ash stored in the impoundment may discharge into Lake Michigan and cause environmental damage. Although this condition is unlikely due to the presence of two protective sheet pile walls separating Lake Michigan from the impoundment, by definition, the potential for environmental impact is possible. Additionally, a dike failure would cause disruption of lifeline facilities as the generating station depends upon the water within the impoundments. Failure of the dike would not likely result in loss of human life. Currently the impoundment has little to no coal ash stored in it and is not being used for impounding coal ash slurry. The generating station alternates use of Primary Settling Basin No. 2 with Primary Settling Basin No. 1 such that only one primary basin is utilized at

a time.

US EPA ARCHIVE DOCUMENT

<u>TYPE OF OUTLET</u> (Mark all that apply)

Has there ever been a failure at this site? YES	NO	X
If So When?		
If So Please Describe :		

Has there ever been significant seepages at this site?	? YES	NO
f So When?		
F So Please Describe:		

Has there ever been any measures undertaken to			
Phreatic water table levels based on past seepag at this site?	YES	NO	X
If so, which method (e.g., piezometers, gw pum	ping,)?		
If so Please Describe :			

Site Name: Michigan City Gene	rating Sta	tion	Date: May 24, 2011	
Unit Name: Secondary Settling Basin No. 2		Operator's Name: NIPSCO)	
Unit I.D.: N/A			Hazard Potential Classification: High s	ignificant Low
Inspector's Name: Walter Kosinski,	P.E. & Tho	mas B	oom, P.E.	
Check the appropriate box below. Provide comments	s when approp	oriate. If i	not applicable or not available, record "N/A". Any unusual or de diked embankments, separate checklists may be used	conditions or
embankment areas. If separate forms are used, ident				
	Yes	No		Yes No
1. Frequency of Company's Dam Inspections?	Di	aily	18. Sloughing or bulging on slopes?	
2. Pool elevation (operator records)?	See	Note	19. Major erosion or slope deterioration?	
3. Decant inlet elevation (operator records)?	588	.12 ft	20. Decant Pipes:	
4. Open channel spillway elevation (operator record	ls)? N	I/A	Is water entering inlet, but not exiting outlet?	N/A
5. Lowest dam crest elevation (operator records)?	594	.72 ft	Is water exiting outlet, but not entering inlet?	N/A
6. If instrumentation is present, are readings recorded (operator records)?		~	Is water exiting outlet flowing clear?	N/A
7. Is the embankment currently under construction?	,	~	21. Seepage (specify location, if seepage carries fines, and approximate seepage rate below):	
8. Foundation preparation (remove vegetation,stum topsoil in area where embankment fill will be placed			From underdrain?	N/A
9. Trees growing on embankment? (If so, indicate largest diameter below)		~	At isolated points on embankment slopes?	N/A
10. Cracks or scarps on crest?		~	At natural hillside in the embankment area?	N/A
11. Is there significant settlement along the crest?		~	Over widespread areas?	N/A
12. Are decant trashracks clear and in place?	~		From downstream foundation area?	N/A
13. Depressions or sinkholes in tailings surface or whirlpool in the pool area?		~	"Boils" beneath stream or ponded water?	N/A
14. Clogged spillways, groin or diversion ditches?	N	/A	Around the outside of the decant pipe?	N/A
15. Are spillway or ditch linings deteriorated?	N	/A	22. Surface movements in valley bottom or on hillside?	N/A
16. Are outlets of decant or underdrains blocked?	N	 /A	23. Water against downstream toe?	~
17. Cracks or scarps on slopes?		~	24. Were Photos taken during the dam inspection?	 ✓

Inspection Issue #

Comments

1) Impoundment is not regulated by Indiana Department of Natural Resources (DNR) but daily routine maintenance is conducted for security and operations although not specifically for the impoundment structure.

2) The impoundment is not currently in use but there was standing rain water in it during the assessment.6) Monitoring wells are present but not monitored.

12) Not able to observe during the assessment.

13, 14, 16, 20, 21) The impoundment is not currently active and was virtually empty during the assessment.

23) Currently none, but there would be if Primary Settling Basin No. 2 was active.

		Walter Kosinski, P.E
Impoundment NPDES Permit # _IN0000116	INSPECTOR	& Thomas Boom, P.E.
DateMay 24, 2011		
Impoundment Name Michigan City Generatin	a Station	
Impoundment Company	9_00000000	
EPA Region5		
State Agency (Field Office) Addresss <u>Not regu</u>		
State Agency (Field Office) Addresss <u>Not regu</u>	lated by Ind	Lana DNR
Name of Impoundment		
Name of Impoundment <u>Secondary Settling</u>		
(Report each impoundment on a separate form unde	er the same impo	bundment NPDES
Permit number)		
New <u>x</u> Update		
	Yes	No
Is impoundment currently under construction?		X
Is water or ccw currently being pumped into		
the impoundment?		X

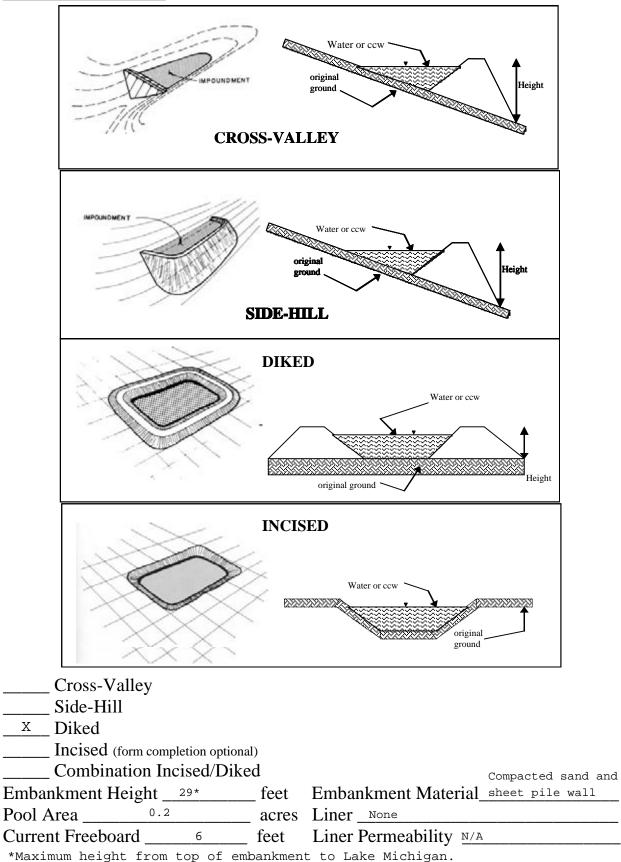
IMPOUNDMENT FUNCTION: <u>Secondary settling of coal combustion ash.</u>

Nearest Downstrea	am Town :	Name	N/A - La	ke M	ichigan	
Distance from the	impoundmen	nt <u>10</u>	0 feet			
Impoundment						
Location:	Longitude _8	86	Degrees	54	Minutes <u>50</u> Seconds	
	Latitude _4	41	Degrees	43	Minutes <u>08</u> Seconds	
	State	IN	County	LaPo	orte County	
Does a state agency regulate this impoundment? YES NO						
If So Which State	Agency?_N/	/A				

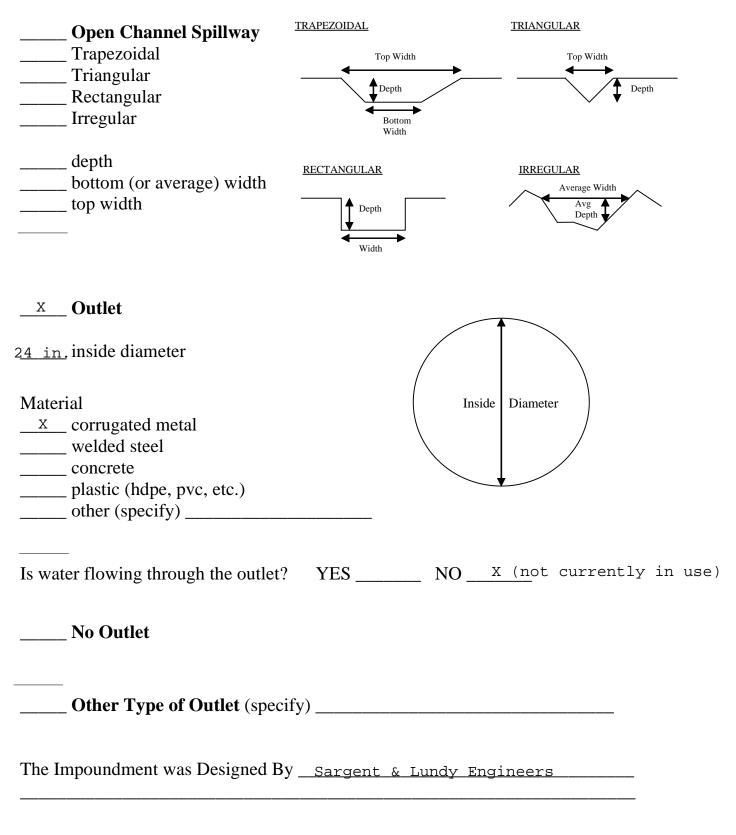
EPA ARCHIVE DOCUMENT

<u>HAZARD POTENTIAL</u> (In the event the impoundment should fail, the following would occur):

LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.


<u>X</u> LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

_____SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.


_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

DESCRIBE REASONING FOR HAZARD RATING CHOSEN:

Low hazard potential was selected because in the event of dike failure the losses would be minimal, the losses would be principally limited to the owner's property, and there are two rows of protective sheet piling between the dike and Lake Michigan.

<u>TYPE OF OUTLET</u> (Mark all that apply)

Has there ever been a failure at this site? YES	NO	X
If So When?		
If So Please Describe :		

Has there ever been significant seepages at this site?	? YES	NO
f So When?		
F So Please Describe:		

Has there ever been any measures undertaken to			
Phreatic water table levels based on past seepag at this site?	YES	NO	X
If so, which method (e.g., piezometers, gw pum	ping,)?		
If so Please Describe :			

Site Name:	Michigan City Generatir	ng Stat	ion	Date: May 24, 2011		
Unit Name:	nit Name: Final Settling Pond		Operator's Name: NIPSCO)		
Unit I.D.:	N/A			Hazard Potential Classification: High s	ignificant	Low
Inspector's Nan	ne: Walter Kosinski, P.E.	& Tho	mas Bo	oom, P.E.		
				not applicable or not available, record "N/A". Any unusual or rge diked embankments, separate checklists may be used		
				at the form applies to in comments.		<u>-</u>
		Yes	No		Yes	No
1. Frequency of Compa	ny's Dam Inspections?	Da	aily	18. Sloughing or bulging on slopes?		~
2. Pool elevation (operation	ator records)?	584.	22 ft	19. Major erosion or slope deterioration?		v
3. Decant inlet elevation	n (operator records)?	N	/A	20. Decant Pipes:		
4. Open channel spillwa	ay elevation (operator records)?	N	/A	Is water entering inlet, but not exiting outlet?	N/A	L.
5. Lowest dam crest ele	evation (operator records)?	587.	72 ft	Is water exiting outlet, but not entering inlet?	N/A	L .
6. If instrumentation is precorded (operator re			~	Is water exiting outlet flowing clear?	N/A	L
7. Is the embankment of	surrently under construction?		~	21. Seepage (specify location, if seepage carries fines, and approximate seepage rate below):		
	on (remove vegetation,stumps, nbankment fill will be placed)?	~		From underdrain?	N/A	١
9. Trees growing on em largest diameter bel	nbankment? (If so, indicate ow)		~	At isolated points on embankment slopes?		V
10. Cracks or scarps or	n crest?		>	At natural hillside in the embankment area?		V
11. Is there significant s	settlement along the crest?		~	Over widespread areas?		v
12. Are decant trashrac	ks clear and in place?	N	Ά	From downstream foundation area?		v
13. Depressions or sink whirlpool in the poo	holes in tailings surface or I area?		~	"Boils" beneath stream or ponded water?		~
14. Clogged spillways,	groin or diversion ditches?		~	Around the outside of the decant pipe?	N/A	N .
15. Are spillway or ditch	n linings deteriorated?	N/	A	22. Surface movements in valley bottom or on hillside?	N/A	
16. Are outlets of decar	nt or underdrains blocked?	N	Ά	23. Water against downstream toe?	~	
17. Cracks or scarps or	n slopes?		~	24. Were Photos taken during the dam inspection?	~	

Inspection Issue #

Comments

1) Impoundment is not regulated by Indiana Department of Natural Resources (DNR) but daily routine maintenance is conducted for security and operations although not specifically for the impoundment structure.

3, 16, 20) There are no decant pipes because the water in the Final Settling Pond is pumped back to the Michigan City Generating Station for recycling. There are two emergency overflow pipes at elevation 585.72 feet.

6) Monitoring wells are present but not monitored.

8) According to plans and specifications the foundation was prepared.

23) Lake Michigan was against the toe to the north behind two walls of sheet piles.

	Walter Kosinski, P.
Impoundment NPDES Permit #IN0000116	INSPECTOR & Thomas Boom, P.E.
DateMay 24, 2011	
Impoundment Name Michigan City Generatin	g Station
Impoundment CompanyNIPSCO	
EPA Region5	
State Agency (Field Office) Addresss <u>Not regu</u>	lated by Indiana DNR
Name of Impoundment Final_Settling_Pon	
(Report each impoundment on a separate form under	
Permit number)	
,	
New <u>X</u> Update	
	Yes No
Is impoundment currently under construction?	X
Is water or ccw currently being pumped into	
the impoundment?	Х
*	

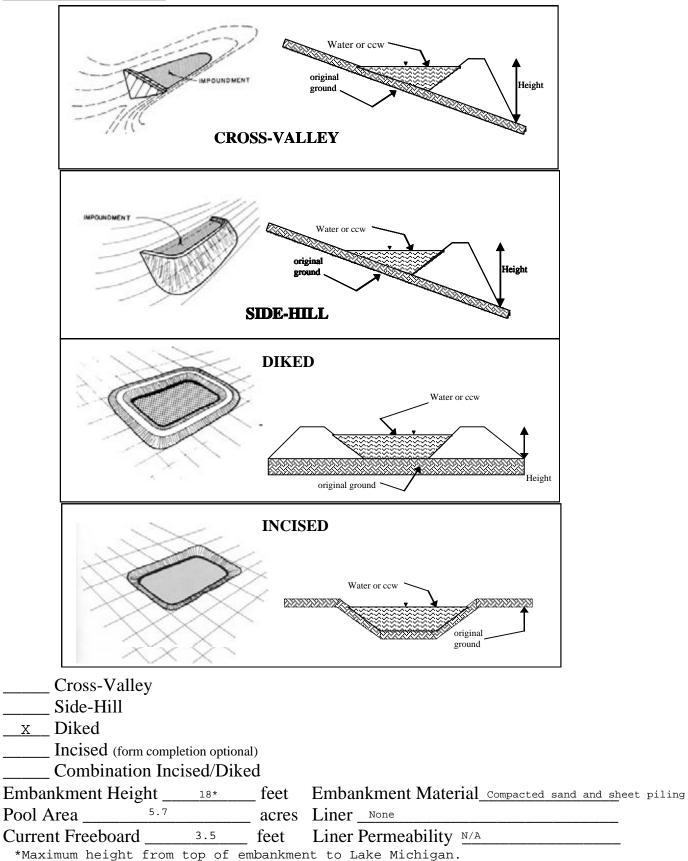
IMPOUNDMENT FUNCTION: Final settling basin prior to recycling water

Nearest Downstrea	am Town : Nam	е <u> N/A – La</u>	ke Michigan			
Distance from the	impoundment <u>1</u>	.00 feet				
Impoundment						
Location:	Longitude <u>86</u>	_ Degrees	54 Minutes	48 Seconds		
	Latitude <u>41</u>	_ Degrees	43 Minutes	15 Seconds		
	StateIN	County	LaPorte Count	су		
Does a state agency regulate this impoundment? YES NO						
If So Which State Agency?N/A						

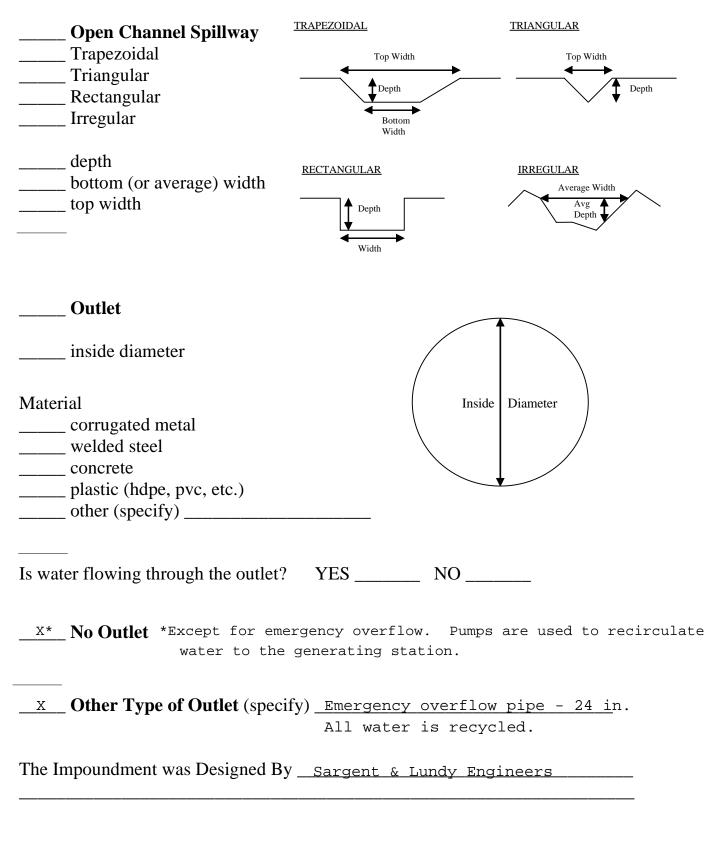
S EPA ARCHIVE DOCUMENT

<u>HAZARD POTENTIAL</u> (In the event the impoundment should fail, the following would occur):

_____ LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.


<u>X</u> LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

_____SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

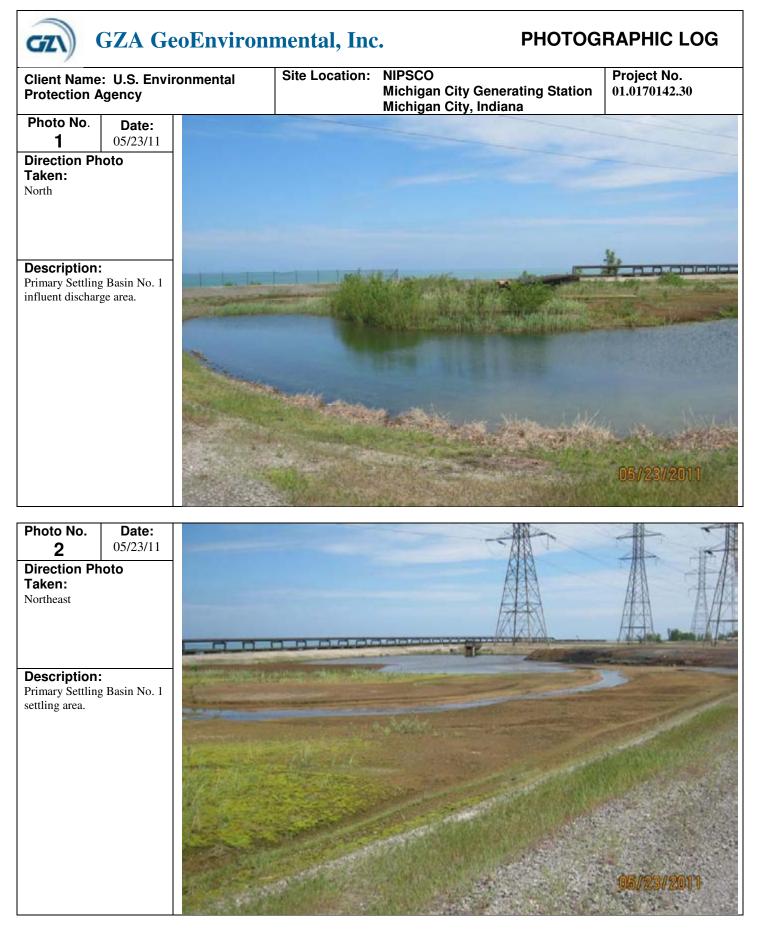

_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

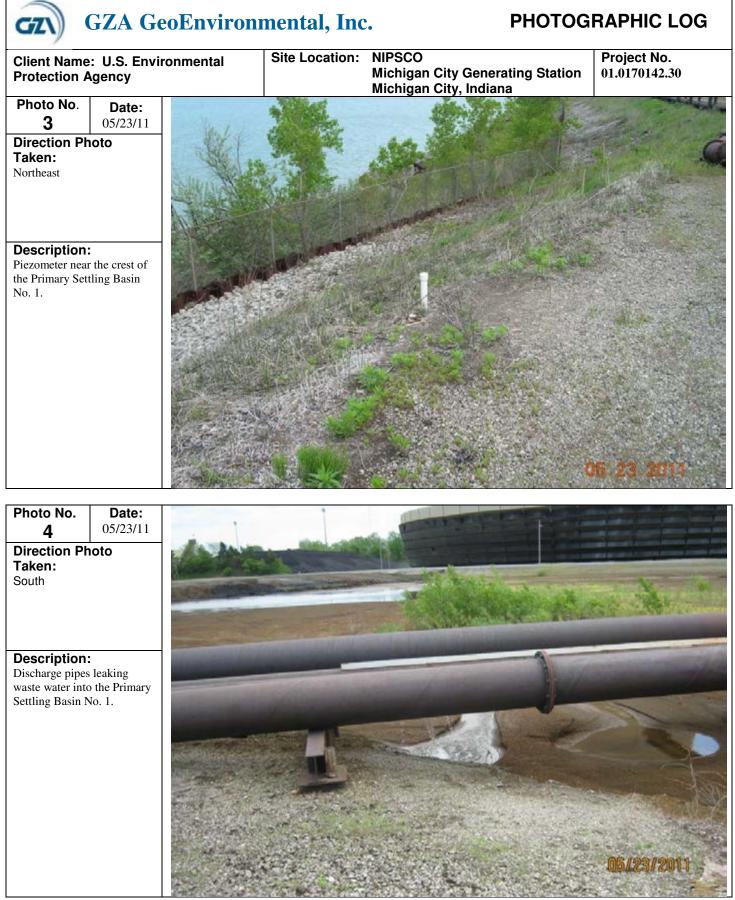
DESCRIBE REASONING FOR HAZARD RATING CHOSEN:

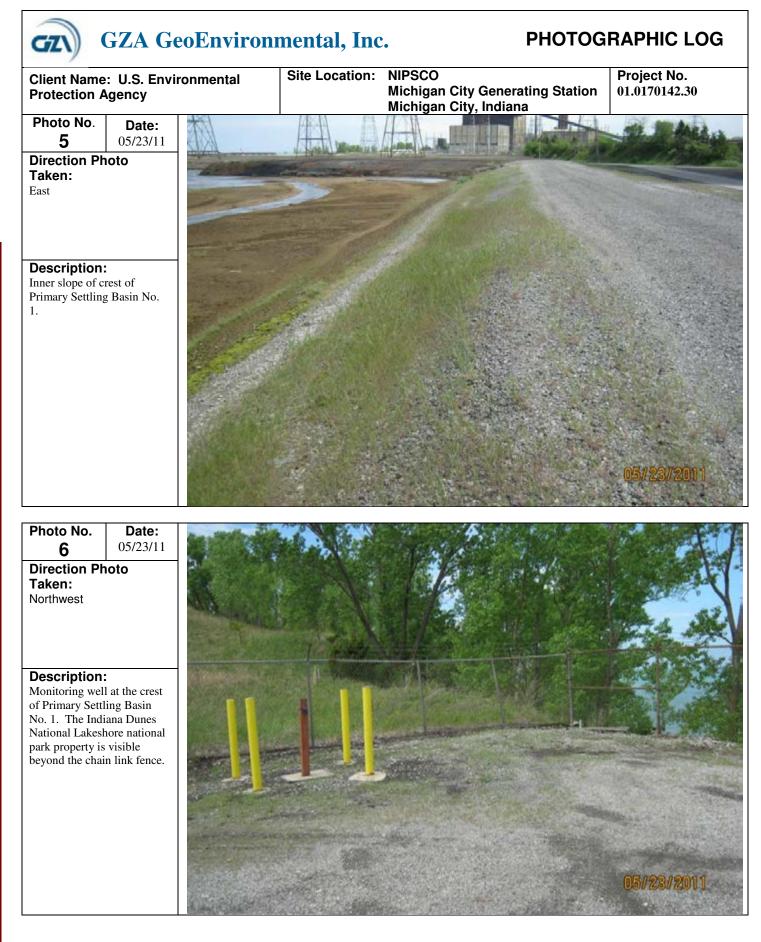
Low hazard potential was selected because in the event of dike failure the losses would be minimal, the environmental impact would be minimal since the impoundment contains little (if any) ash, the losses would be principally limited to the owner's property, and there are two rows of protective sheet piling between the dike and Lake Michigan.

<u>TYPE OF OUTLET</u> (Mark all that apply)

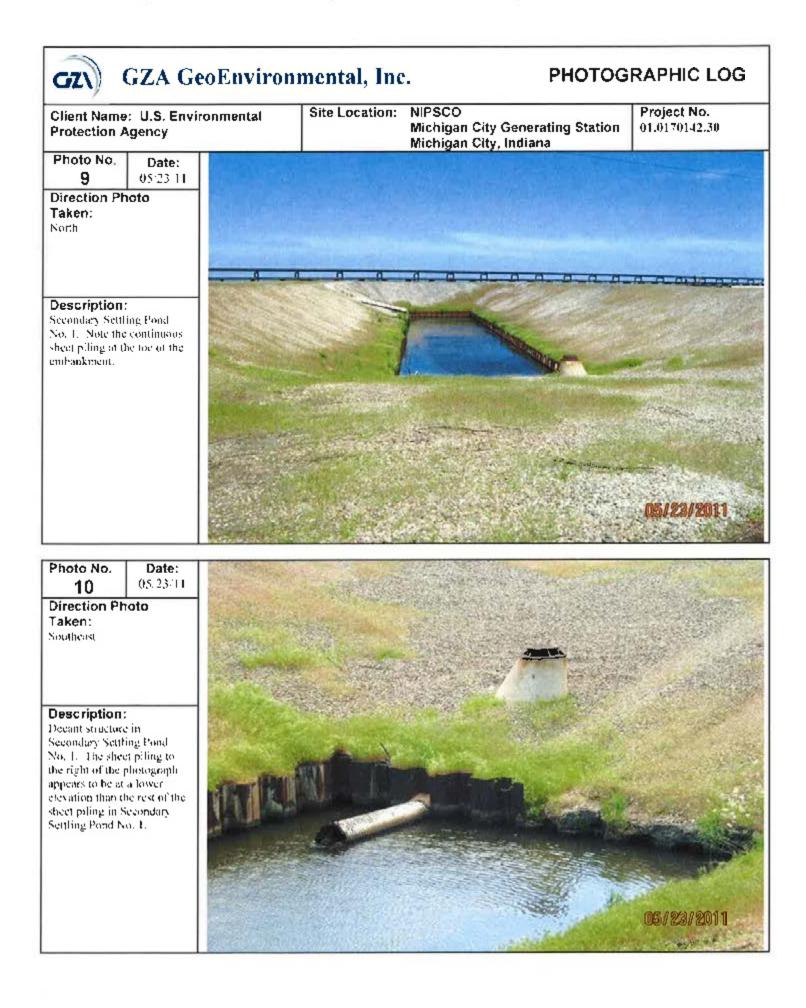
If So When? If So Please Describe :	
If So Please Describe :	

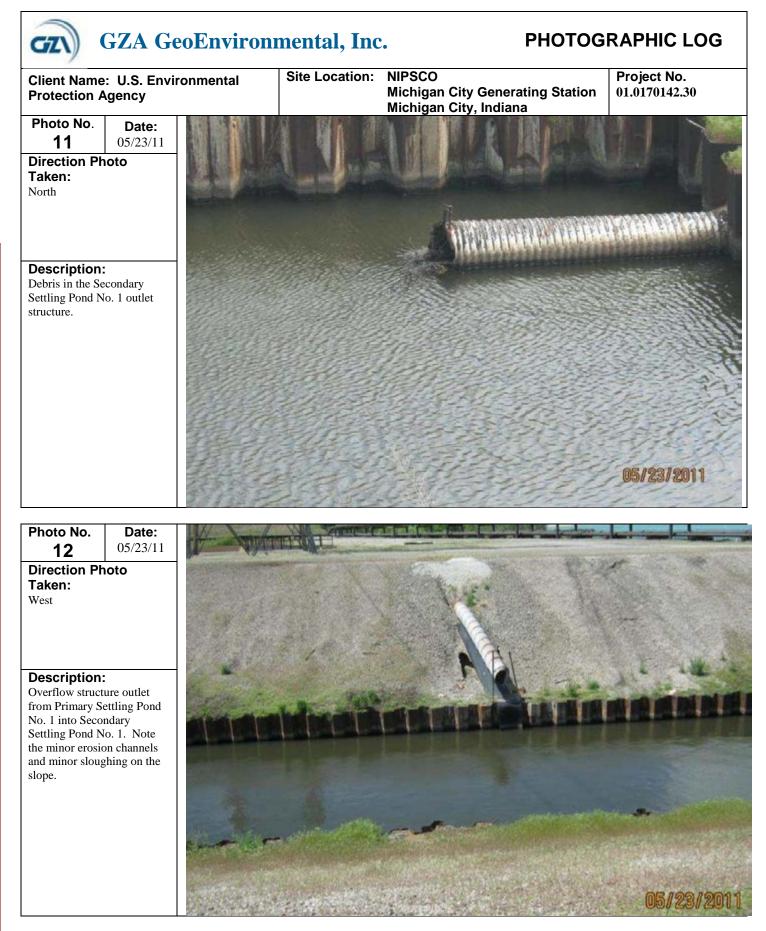

Has there ever been significant seepages at this site?	? YES	NO
f So When?		
F So Please Describe:		
		·····

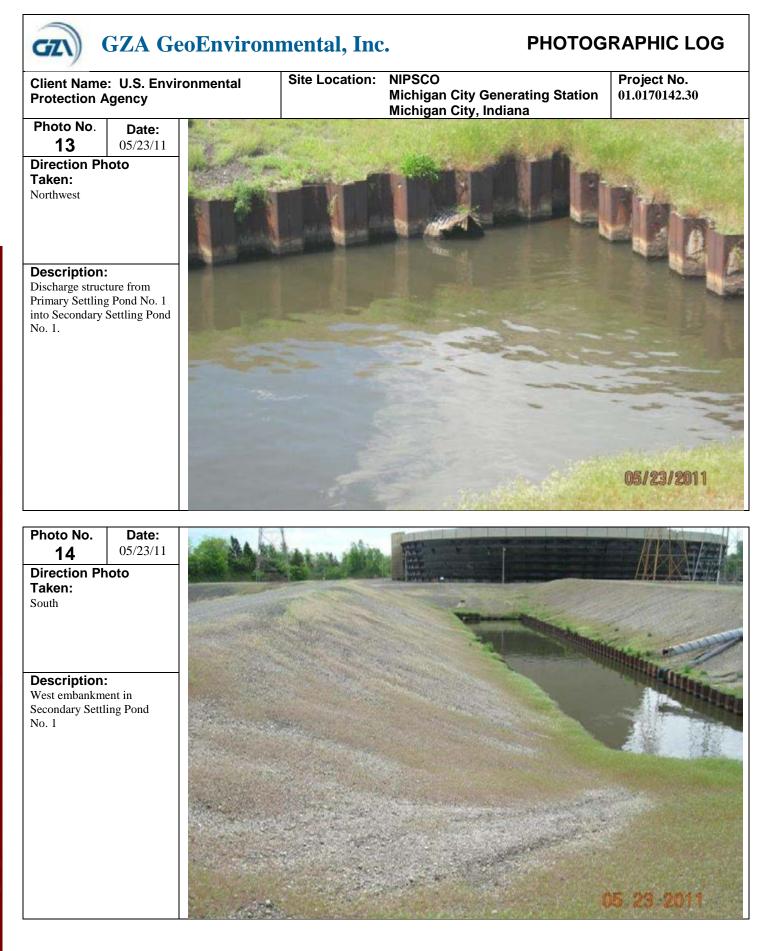

Has there ever been any measures undertaken to monitor/lower					
Phreatic water table levels based on past seepag at this site?	YES	NO	X		
If so, which method (e.g., piezometers, gw pum	ping,)?				
If so Please Describe :					
		· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·			

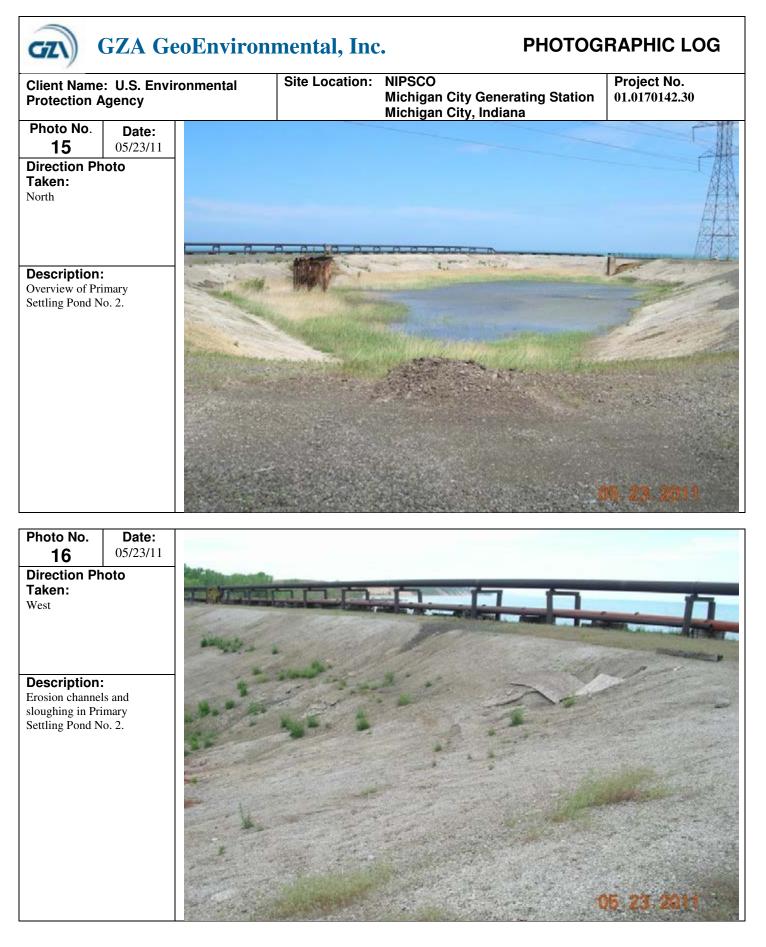


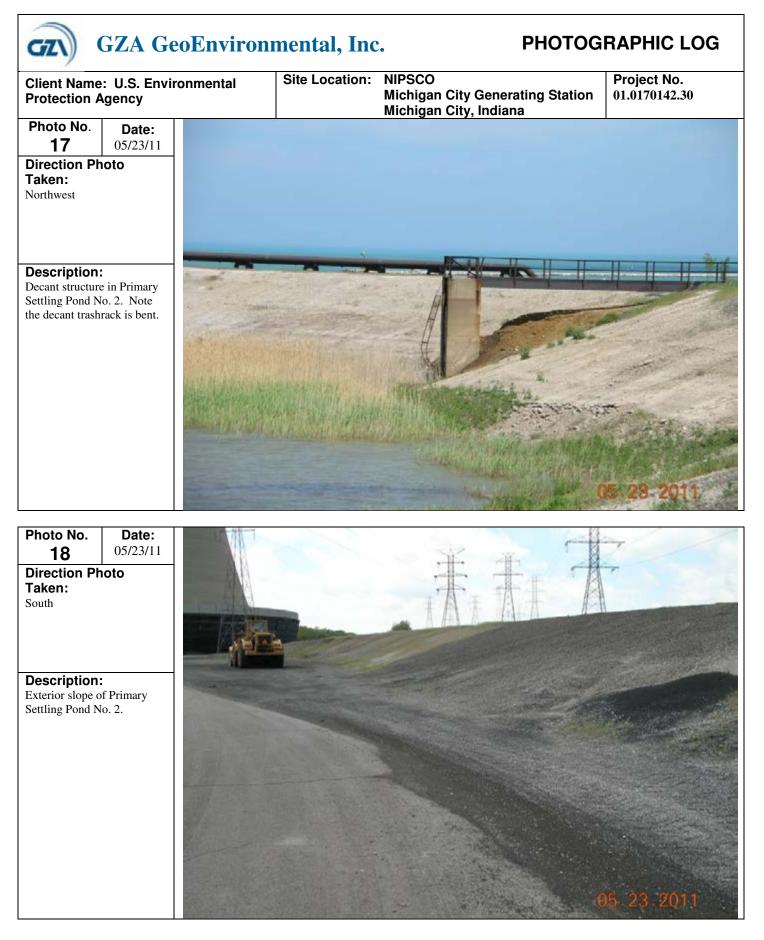
Appendix D

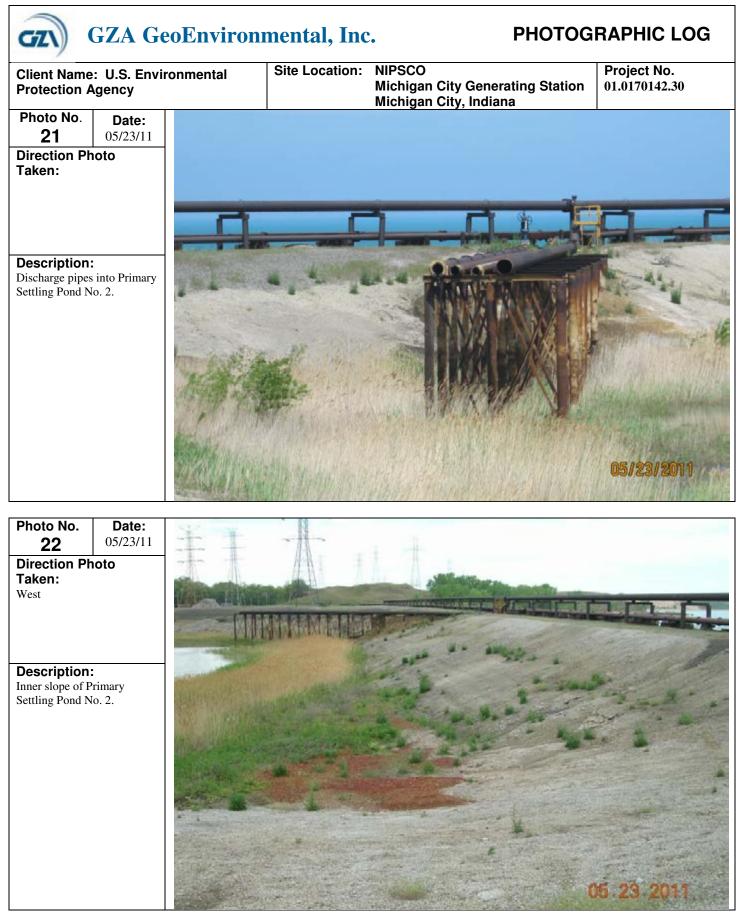

Photographs

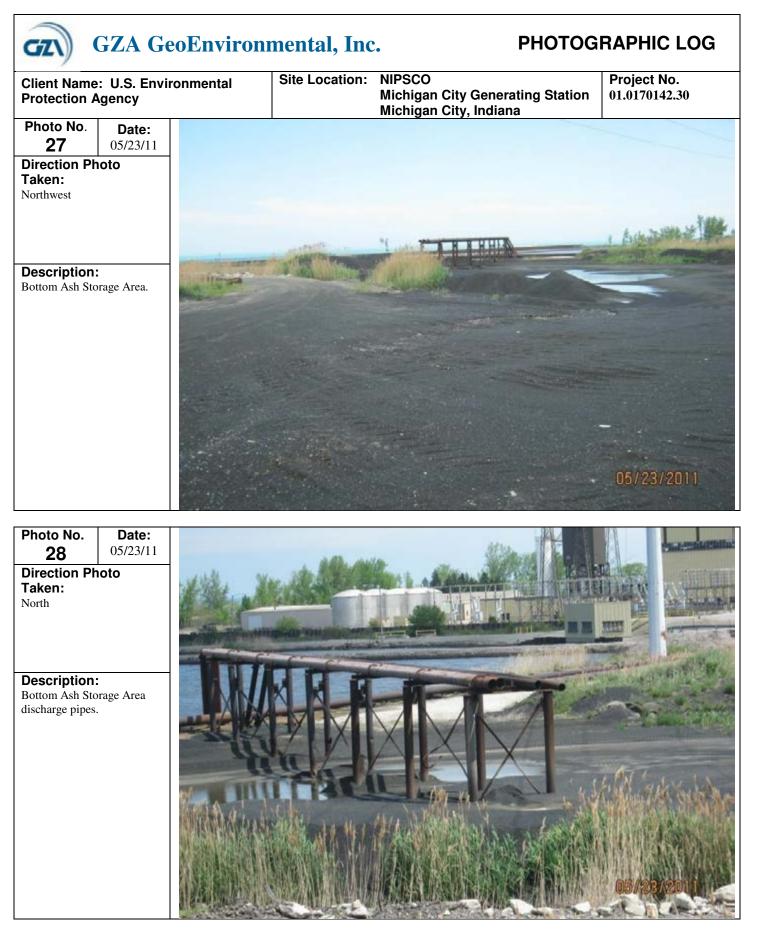


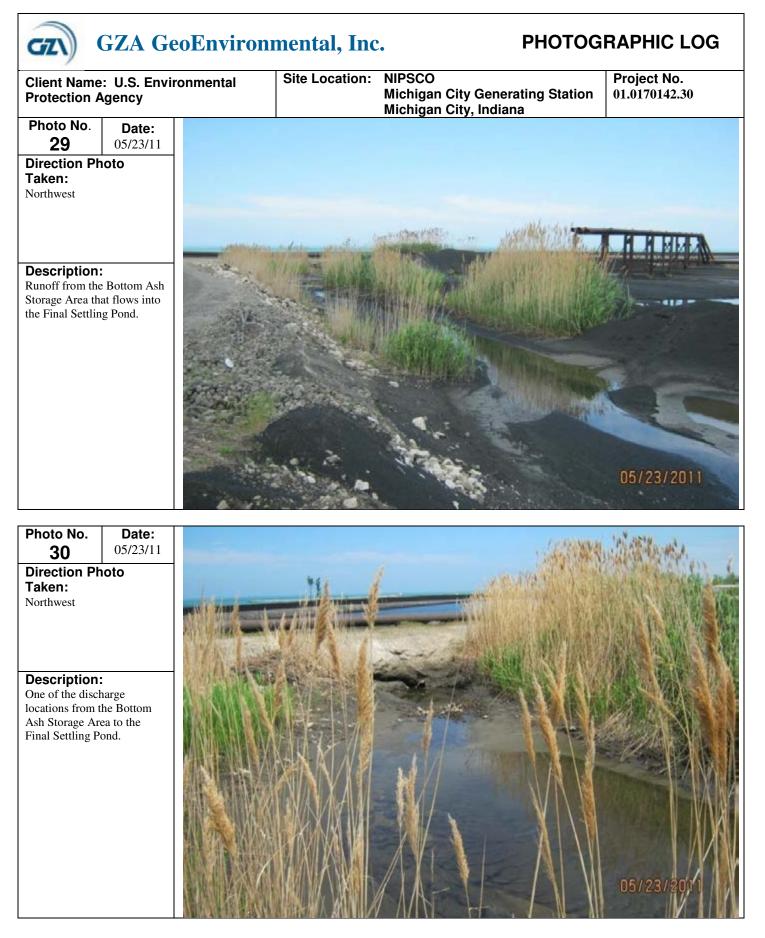




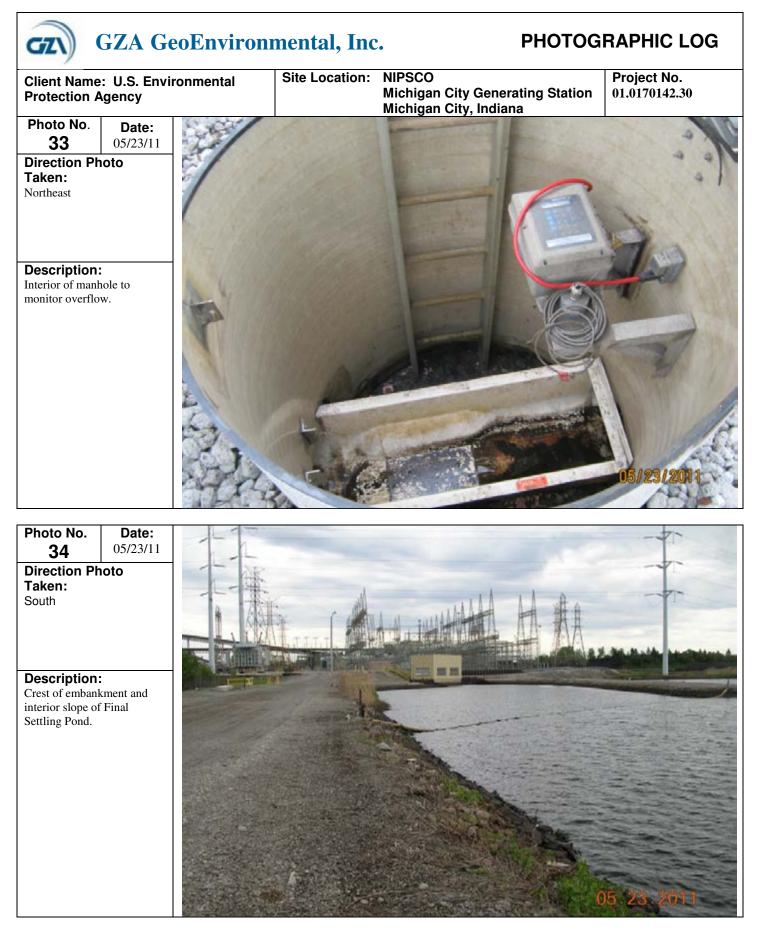




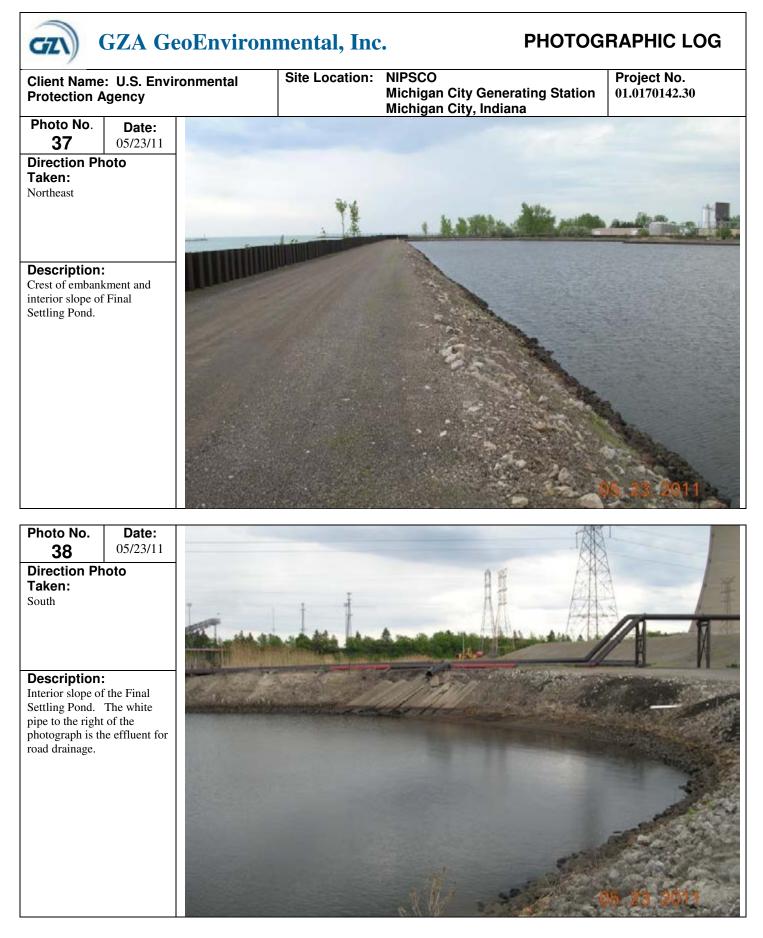


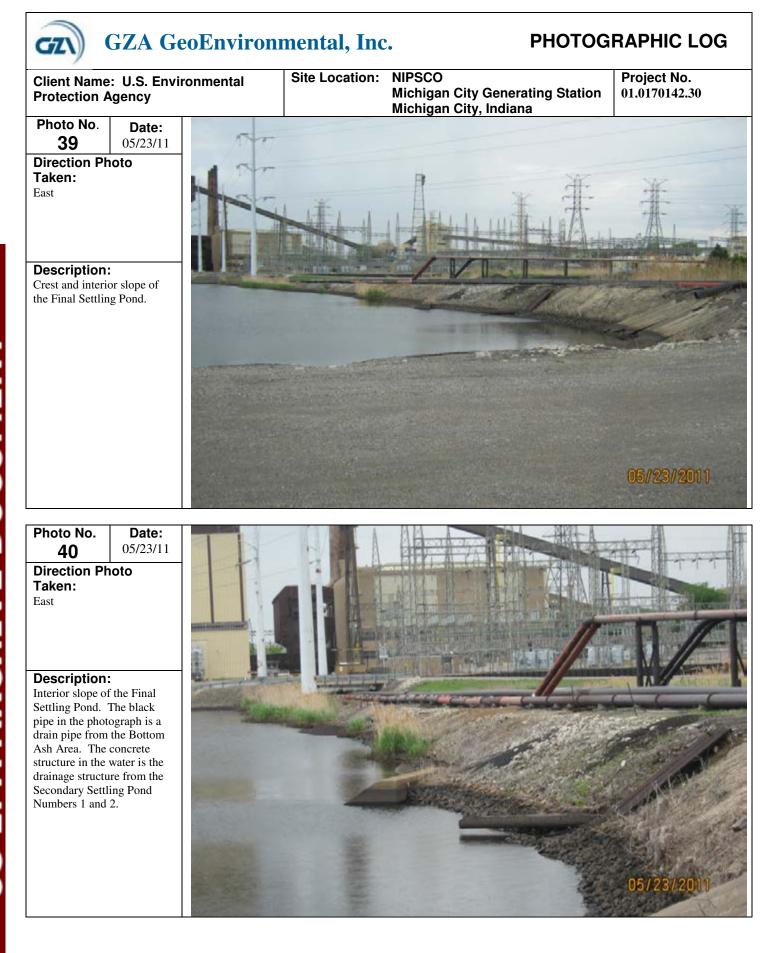


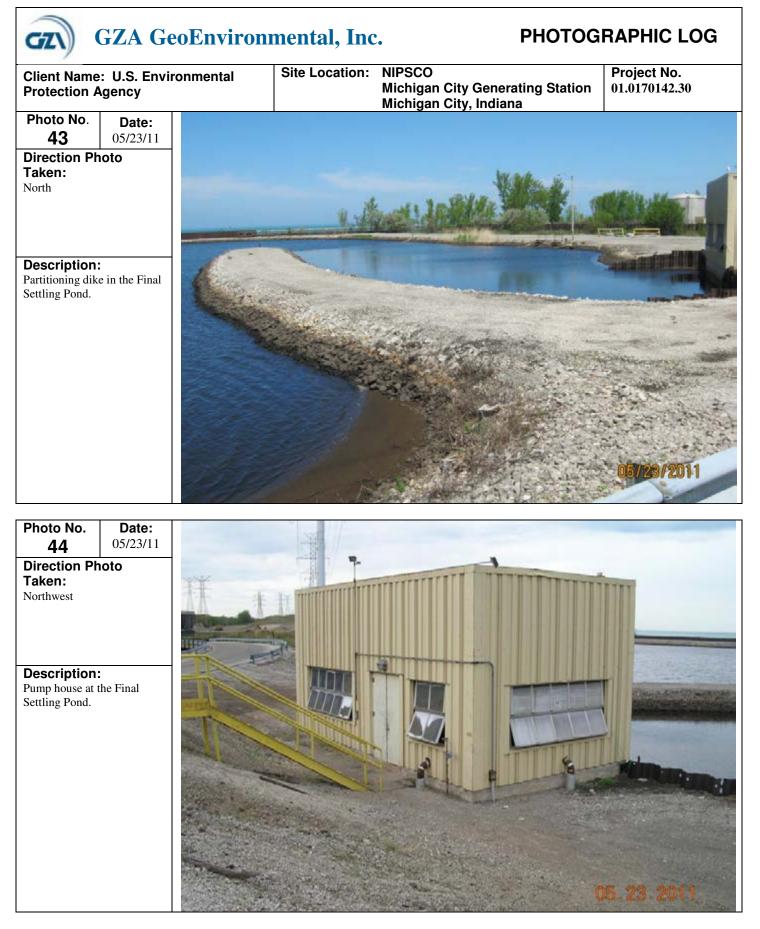
GZA GeoEnvironmental, Inc.

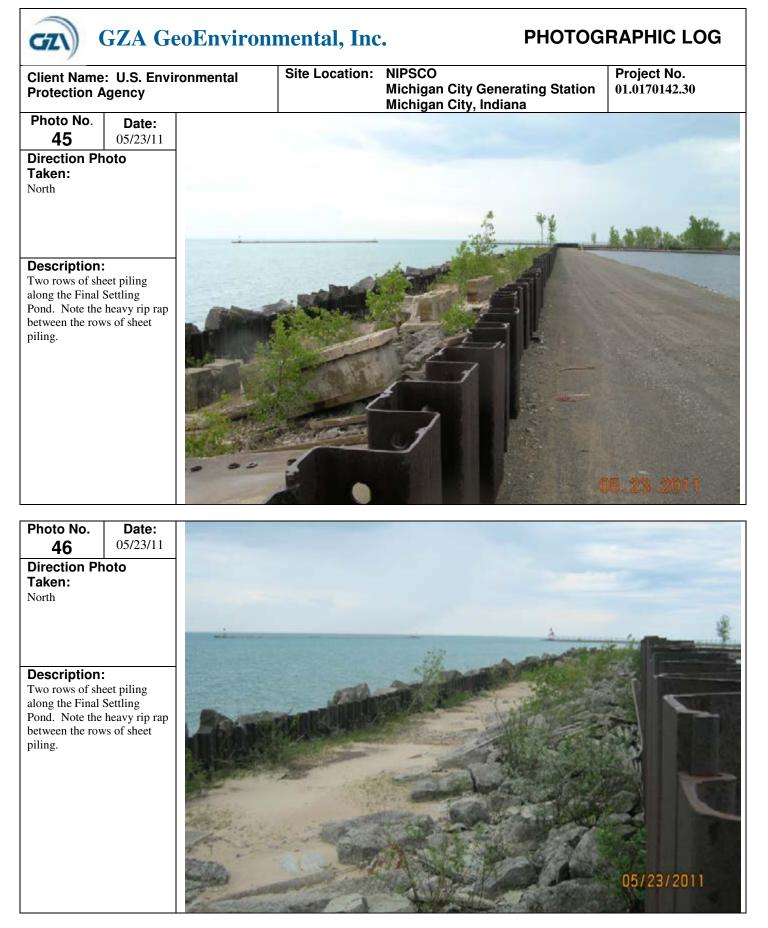

PHOTOGRAPHIC LOG

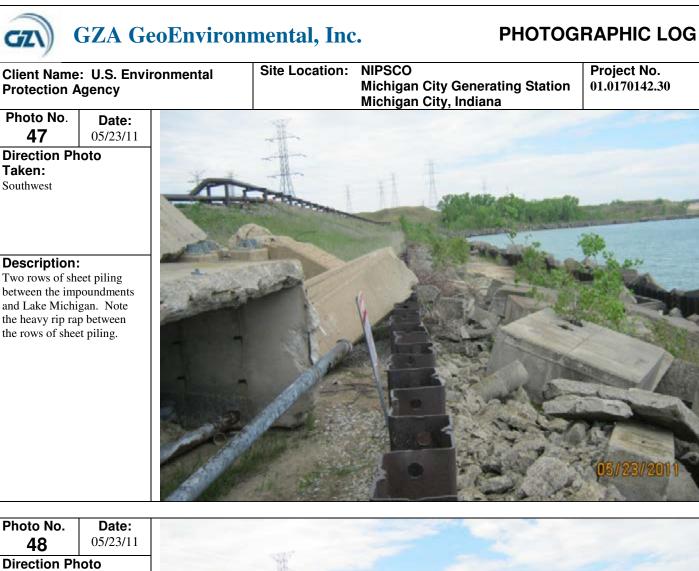
Client Name Protection A		onmental	Site Location:	NIPSCO Michigan City Generating Station Michigan City, Indiana	Project No. 01.0170142.30
Photo No. 25 Direction Ph Taken: Northeast	Date: 05/23/11 oto		·		There was
Description: Secondary Settli 2 with the Botton Storage Area in background.	ng Pond No. m Ash				
Photo No. 26 Direction Ph	Date: 05/23/11 oto				05/23/2011
Taken: North Description: Secondary Settli 2 with the Final	ng Pond No.				- hinter Ma
2 with the Final Pond and Lake N the background.	Aichigan in				05 23 2011

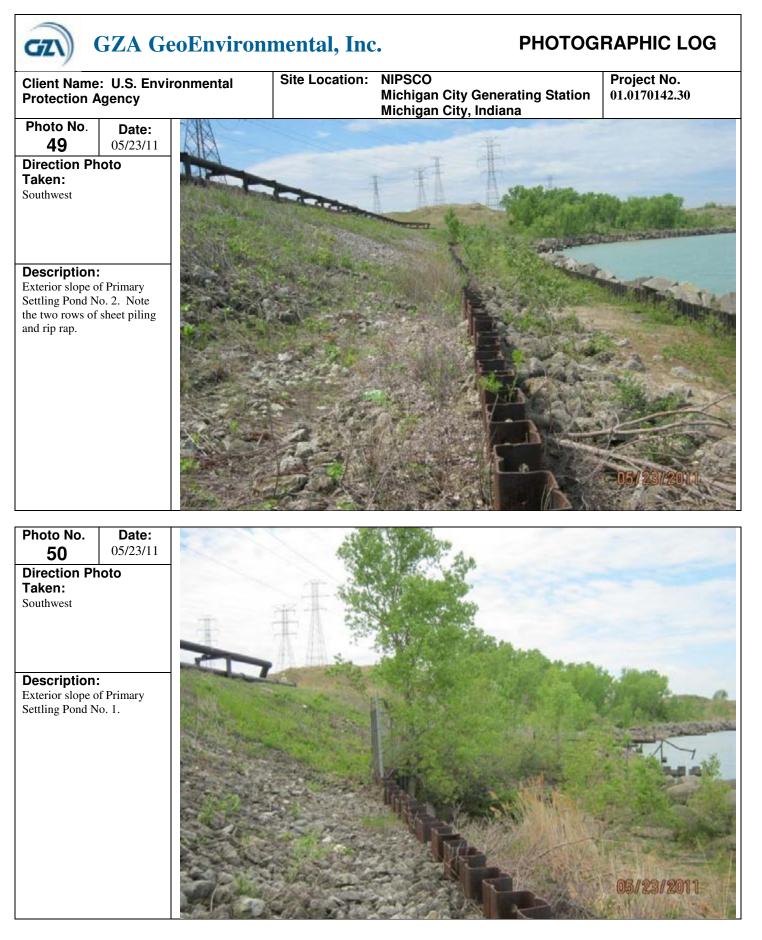


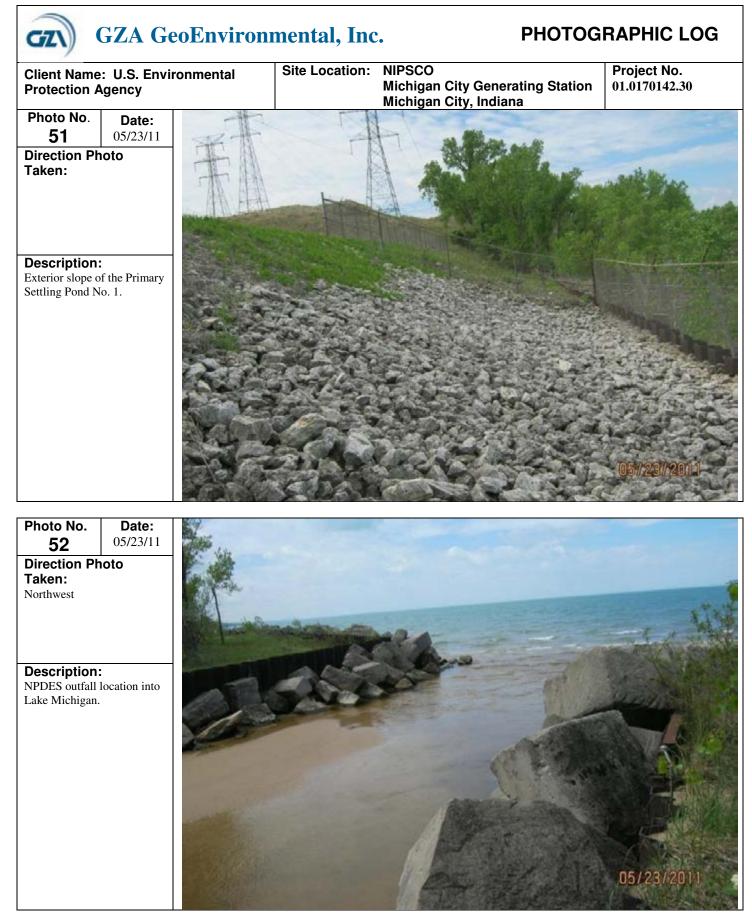









Direction Photo Taken: Southwest


> **Description:** Exterior slope of Primary Settling Pond No. 2. Note the two rows of sheet piling and rip rap.

Project No.

01.0170142.30

GeoEnviro	Environmental, Inc.			PHOTOGRAPHIC LOG		
Client Name: U.S. Environmental Protection Agency		Michigan City Genera	ating Station a	Project No. 01.0170142.30		
		<u> </u>				
	nvironmental	Nvironmental Site Location:	Nironmental Site Location: NIPSCO Michigan City Genera Michigan City, Indian 1	Important Site Location: NIPSCO Michigan City Generating Station Michigan City, Indiana 1 - - - - - - - - - - -		

Appendix E

Summary of Hydraulic Evaluation of Impoundments (Golder Associates)

TECHNICAL MEMORANDUM

Date: August 27, 2012 To: Mr. Greg Costakis Project No.: 12388898 Company: NIPSCO

From: J. Bobby Reese, P.E., Mark Funkhouser, P.E.

cc:

Email: gcostakis@nisource.com

RE: FINAL REPORT – SUMMARY OF HYDRAULIC EVALUATION OF IMPOUNDMENTS

Introduction

Golder evaluated the hydrologic and hydraulic performance of the on-site impoundments at Northern Indiana Public Service Company (NIPSCO) Michigan City Generating Station (MCGS), located in Figure 1. While these structures are not regulated by the State of Indiana, this evaluation was done in conformance to the Indiana Department of Natural Resources (DNR), Division of Water's *General Guidelines for New Dams and Improvements to Existing Dams in Indiana* (2001 Edition) for low hazard dams. Generally speaking, the DNR guidelines dictate that "a spillway system must be capable of safely passing the runoff from the design storm event, without the embankment overtopping and failing." This memorandum summarizes the structures evaluated and routing results. Refer to the attached calculation for greater detail regarding the methods used. The following impoundments were evaluated:

- Primary 1 (P1)
- Secondary 1 (S1)
- Primary 2 (P2)
- Secondary 2 (S2)

- Bottom Ash Area
 - Northeast section (BAA-NE)
 - Southwest section (BAA-SW)
- Final Settling Pond (FSP)

A median berm, higher in elevation than the berm separating the Bottom Ash Area from the Final Settling Pond, effectively divides the Bottom Ash Area into two unconnected impoundments, the Northeast Section and the Southwest Section.

References

Golder used the impoundment configuration and spillway details shown in the following sources:.

- GZA GeoEnvironmental, Inc., Draft Round 10 Dam Assessment Report, NIPSCO Michigan City Generating Station Coal Ash Impoundments, March 29, 2012.
- Site survey completed by Golder in June 2012.
- Indiana State, 2005 Digital Surface Model of Indiana. Downloaded from <u>http://www.Indianamap.org</u> on July 10, 2012.
- Sargent & Lundy, Design Drawings of the Site Impoundments, dated 1972.

 NIPSCO, NPDES Renewal Application Package for NIPSCO Michigan City Generating Station, NPDES IN0000116.

2

Design Storm Event

Per the DNR Guidelines, low hazard dams are to safely pass a storm event between the 100-year return period (1% annual probability of occurrence) and 50% of the Probable Maximum Precipitation (50%-PMP). Golder evaluated a range of storm depths between the 1-year and 50%-PMP storm events. All storm events evaluated were temporally distributed according to the Natural Resource Conservation Service's (NRCS) TR-60 distribution (identical to the Type B distribution referred to in the DNR Guidelines).

Waste Inflows and Pump Outflows

The regulated operational waste inflows and pump outflows are shown in the NPDES permit application to be on average about 9 million gallons per day (about 0.5 cfs) into and out of the Final Settling Pond. This flow rate is insignificant to the expected peak storm inflow rate to the Final Settling Pond from the 100-year return period event at 120 cfs, and was therefore not included in the model. Golder assumed that regulated waste inflow rate will equal outflow pump rate during the duration of the modeled storm events for a zero net inflow.

Watershed Areas

Figure 2 depicts the watershed delineation used in the analysis. The watershed areas for the Primary and Secondary impoundments (1 and 2) are assumed to be only the reservoir surface (storm inflow is from direct rainfall only). A portion of the plant area is assumed to discharge to the Final Settling Basin by way of the discharge pipe trench. The northeast Bottom Ash Area was modeled with contributing storm runoff from the coal storage area. The NPDES permit application specifies a 15,000-square-foot (about 0.34 acres) watershed discharging into Outfall 002 located at the adjacent river east of the plant site. The remaining 35 acres of plant site appear generally flat with many low-lying surface storage areas that limit discharge to infiltration and evaporation during typical rainfall events without discharge offsite.

Impoundment Connectivity

Figure 2 depicts the location of the impoundments evaluated and the connecting culverts. The Primary impoundments (which receive waste inflows) discharge to the Secondary impoundments by way of flashboard risers. Golder assumed sediment would have accumulated against the risers in the Primary impoundments up to the overflow elevation. The Secondary impoundments discharge by way of a horizontal culvert spillway into the Final Settling Pond. The Bottom Ash Area receives waste inflow and rainfall runoff from the operational areas of the site, and discharges to the Final Settling Pond by way of two horizontal culverts (one in each the northeast and southwest sections). The Final Settling Pond receives inflows from all impoundments via the Secondary Ponds and the Bottom Ash Area, and is the

sole point of discharge off site by way of two horizontal culverts discharging into the flume and ultimately to Lake Michigan through the NDPES permitted outfall 001.

3

Several culverts between the Bottom Ash Area and the Final Settling Pond identified in the Sargent & Lundy design package from 1972 are believed to be either removed or non-functional. The culverts assumed non-functional (i.e., inactive) are identified in Figure 2.

Hydrologic/Hydraulic Model

Golder performed watershed and reservoir routing using the US Environmental Protection Agency's (EPA) Stormwater Management Model (SWMM) Version 5.0. Because some of the impoundments are expected to be hydraulically connected (the peak stage elevation of both the upstream and downstream reservoirs are above the inlet and outlet, respectively, of a connecting culvert) a dynamic routing model (one that allows for both upstream and downstream flow directions) such as the EPA SWMM model is needed.

Results of Routing

Table 1 below illustrates the resultant freeboard remaining at the peak stage in each reservoir. Freeboard is the height of the top of the dam above the peak stage, where a negative value denotes overtopping. All impounds are shown to safely pass up to the 100-year return period event which is the minimum for a low hazard dam as specified by the State of Indiana DNR Division of Water. The Primary and Secondary Impoundments, the southwest Bottom Ash Area, and the Final Settling Pond safely pass up to 50% of the 6-hour, PMP rainfall depth without overtopping.

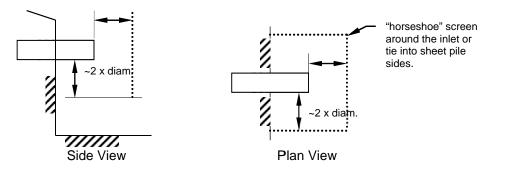
None of these impoundments are considered to be regulated by the State of Indiana, DNR, Division of Water.

Table 1: Resultant Freeboard at the Peak Stage

	6-Hour Rainfall Event					
Impoundment	1-year	10-year	100-year	1,000-year	50%-PMP	
	1.66 inches	3.10 inches	5.07 inches	7.69 inches	12.9 inches	
	Freeboard At Peak Stage (feet)*					
Primary 1	6.1	5.9	5.7	5.4	4.9	
Secondary 1	15.0	14.7	14.3	12.3	6.5	
Primary 2	6.3	6.2	6.0	5.9	5.6	
Secondary 2	6.7	6.6	6.4	6.2	4.7	
Bottom Ash Area SW	4.8	4.1	3.1	2.0	0.5	
Bottom Ash Area NE	2.1	1.8	0.4	-1.1	**	
Final Settling Pond	4.6	4.2	3.3	2.5	0.9	

* Freeboard is the height between the top of the dam and the peak stage during the storm event; Negative denotes overtopping.

** Peak stage is above the modeled stage-area rating curve established for the impoundment.


While the Bottom Ash Area is shown to have only a small freeboard remaining at the peak 100-year stage, the risk of an overtopping failure is low. Risk is a consideration of both the probability of failure, which is low because the expected head difference between the Bottom Ash Area and the Final Settling Basin is small, and the consequence of failure, which is also low because a breach of the Bottom Ash Area would be fully contained within the Final Settling Pond.

Wave height/ Wave run-up

The effective wave height and wave run-up was not considered in this evaluation because the risk of wave-action overtopping to the stability of the dams is considered low. The resultant freeboards for all ponds, except the northeast Bottom Ash Area, are sufficient to contain the expected wave run-up (about 1 foot). The low point at the crest of the Final Settling Pond is at the sheet pile wall separating it from the adjacent flume. Assuming the sheet pile wall is founded on stable ground, wave-action overtopping would occur over a non-erodible surface.

Inlet Trash Racks

If debris blockage at the spillway inlets is a concern, NIPSCO may consider installing trash racks at the inlets. NIPSCO should avoid a flush-mounted screen and consider a screen structure similar to one detailed below. Flow is allowed to pass uninhibited under the screen, while floatables will be captured in the screen. Install the screen a minimum distance of two times the diameter (2 x diameter) away from the inlet.

Attachments: Figure 1 – Site Location Figure 2 – Site Layout and Watershed Delineation Calculation Details

MTC/

X:\Clients\NIPSCO\12388898 Geo Invest Michigan City\200_Reports\Final\MCGS Tech Memo Final.docx

Date:	07/23/2012	Made By:	MTC
Project No.:	12388898	Checked By:	JCD
Subject	Introduction and Rainfall	Reviewed By:	MF
Project Short Title:	NIPSCO/Geo Invest/Michigan City/IN		

1.0 INTRODUCTION

Golder evaluated the hydraulic performance of six structures at the NIPSCO Michigan City Generating Station. The dams evaluated are listed below. While these structures do not meet the definition of a dam per the Indiana State DNR, they were evaluated for compliance to the Indiana State DNR (2010) *General Guidelines for New Dams and Improvements to Existing Dams in Indiana,* referred to throughout this report as the DNR Guidelines, for a low hazard structure. The DNR Guidelines specify a range of the 100-year to the 50% PMP rainfall for a low hazard dam.

- Primary 1 (P1)
- Secondary 1 (S1)
- Primary 2 (P2)
- Secondary 2 (S2)

- Bottom Ash Area Northeast (BAA-NE) Southwest (BAA-SW)
 Final Settling Pond (ESP)
- Final Settling Pond (FSP)

The Bottom Ash Area is subdivided by a median berm higher in elevation than the dividing berm between it and the Final Settling Pond. The southwest section receives plant waste inflows, and the northeast section receives stormwater inflows from a portion of the plant and coal pile areas. No exchange of water occurs between the two sections of the Bottom Ash Area. Both sections discharge separately to the Final Settling Pond, and were treated as separate reservoirs.

List of Attachments:

- Figure 1 Site Location
- Figure 2 Site Layout and Watersheds
- All Season 6-Hour PMP for 10 Square Miles (as presented in the DNR Guidelines)
- Soil Conservation Service Type B Storm Distribution (as presented in the DNR Guidelines)

2.0 METEOROLOGICAL MODELS

2.1 Rainfall Depths

Probable Maximum Precipitation (PMP) rainfall depths are from Appendix D of the DNR Guidelines (attached), reproduced from NOAA (1978) Hydrometerological Report No. 51 (HMR-51). The frequency rainfall depths are taken from the NOAA (2004) Atlas 14, Volume 2.

6-Hour Frequency Storm Events

Return Precipitation Period Depth (years) (inches) 1 1.66 10 3.10 100 5.07 1,000 7.69

6-Hour PMP Storm Events

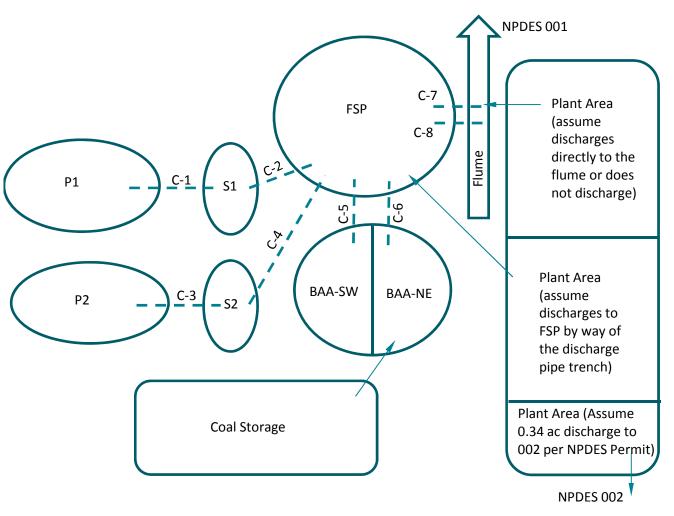
PMP	Est.	Precipitation	
Fraction	Frequency	Depth	
(%)	(years)	(inches)	
25	400	6.45	
50	20,000	12.9	
100	1,100,000	25.8	

Date:	07/23/2012	Made By:	MTC
Project No.:	12388898	Checked By:	JCD
Subject	Introduction and Rainfall	Reviewed By:	MF
Project Short Title:	NIPSCO/Geo Invest/Michigan City/IN		

2.2 Temporal Distribution

The NRCS storm distribution, as shown in NRCS (2005) Technical Report No. 60 (TR-60) *Earth Dams and Reservoirs,* (reproduced in the DNR Guidelines as a Type B Rainfall distribution) was used for evaluation. The 7.2 minute time step used for the Type B Hyetograph shown in the DNR Guidelines was resampled for 10 minutes. The distribution applied to the hydrologic model is as follows:

		Time (T)		Precipit	ation (P) (i	nches)		
T/T _t	P/P _t	(min)	1-Yr	10-Yr	100-Yr	1000-Yr	25%-PMP	50%-PMP
0.00	0.000	0	0.00	0.00	0.00	0.00	0.00	0.00
0.03	0.011	10	0.02	0.03	0.05	0.08	0.07	0.14
0.06	0.022	20	0.04	0.07	0.11	0.17	0.14	0.28
0.08	0.036	30	0.06	0.11	0.18	0.28	0.23	0.46
0.11	0.047	40	0.08	0.15	0.24	0.36	0.30	0.60
0.14	0.064	50	0.11	0.20	0.32	0.49	0.41	0.83
0.17	0.081	60	0.13	0.25	0.41	0.62	0.52	1.04
0.19	0.097	70	0.16	0.30	0.49	0.74	0.62	1.25
0.22	0.114	80	0.19	0.35	0.58	0.88	0.73	1.47
0.25	0.138	90	0.23	0.43	0.70	1.06	0.89	1.78
0.28	0.168	100	0.28	0.52	0.85	1.29	1.08	2.17
0.31	0.198	110	0.33	0.61	1.00	1.52	1.28	2.55
0.33	0.237	120	0.39	0.74	1.20	1.83	1.53	3.06
0.36	0.359	130	0.60	1.11	1.82	2.76	2.31	4.63
0.39	0.476	140	0.79	1.47	2.41	3.66	3.07	6.13
0.42	0.593	150	0.98	1.84	3.01	4.56	3.83	7.65
0.44	0.638	160	1.06	1.98	3.24	4.91	4.12	8.23
0.47	0.672	170	1.12	2.08	3.41	5.17	4.34	8.67
0.50	0.704	180	1.17	2.18	3.57	5.41	4.54	9.08
0.53	0.727	190	1.21	2.25	3.69	5.59	4.69	9.38
0.56	0.754	200	1.25	2.34	3.82	5.80	4.86	9.72
0.58	0.775	210	1.29	2.40	3.93	5.96	5.00	9.99
0.61	0.795	220	1.32	2.46	4.03	6.11	5.13	10.25
0.64	0.816	230	1.35	2.53	4.14	6.28	5.26	10.53
0.67	0.831	240	1.38	2.58	4.21	6.39	5.36	10.72
0.69	0.849	250	1.41	2.63	4.30	6.53	5.47	10.95
0.72	0.867	260	1.44	2.69	4.40	6.67	5.59	11.19
0.75	0.883	270	1.46	2.74	4.47	6.79	5.69	11.38
0.78	0.899	280	1.49	2.79	4.56	6.91	5.80	11.59
0.81	0.911	290	1.51	2.82	4.62	7.00	5.87	11.75
0.83	0.925	300	1.53	2.87	4.69	7.11	5.96	11.93
0.86	0.937	310	1.55	2.90	4.75	7.20	6.04	12.08
0.89	0.948	320	1.57	2.94	4.81	7.29	6.12	12.23
0.92	0.962	330	1.60	2.98	4.88	7.40	6.20	12.41
0.94	0.974	340	1.62	3.02	4.94	7.49	6.28	12.57
0.97	0.988	350	1.64	3.06	5.01	7.60	6.37	12.75
1.00	1.000	360	1.66	3.10	5.07	7.69	6.45	12.90


Date:	07/23/2012	Made By:	MTC
Project No.:	12388898	Checked By:	JCD
Subject	US EPA SWMM Model and Results	Reviewed By:	MF
Project Short Title:	NIPSCO/Geo Invest/Michigan City/IN		

3.0 US EPA SWMM MODEL

The impoundments are all expected to be hydraulically connected during periods of increased reservoir stage (2way flow is possible through the connecting culverts); therefore, a dynamic routing technique is required for adequate modeling. Dynamic routing allows for the flow through the connecting culvert to be dependent on changing tailwater conditions. The typical kinematic routing technique (used in most hydrologic models such as HEC-HMS) is independent of tailwater and does not allow for this possibility. Therefore, the US EPA Stormwater Management Model (SWMM) was used for watershed runoff and reservoir routing computations.

The schematic below illustrates the connectivity of the impoundment system. Plant waste inflows occur at Primary 1 (P1), Primary 2 (P2), and the Bottom Ash Area (BAA-SW). Stormwater runoff inflows from the plant site (other than direct rainfall) are assumed to be distributed between NPDES permit outfall 002, directly to the flume an then to NPDES permit outfall 001, or into the Final Settling Pond (FSP) impoundment.

No information is available regarding the distribution of the plant watershed other than the NPDES permit identifies a 15,000-square-foot (0.34-acre) watershed contributing runoff to NPDES outfall 002. Therefore, Golder assumes the remaining area ultimately discharges at the only other identified external NPDES outfall, 001.

CALCULATIONS

Date:	07/23/2012	Made By:	MTC
Project No.:	12388898	Checked By:	JCD
Subject	US EPA SWMM Model and Results	Reviewed By:	MF
Project Short Title:	NIPSCO/Geo Invest/Michigan City/IN		

Impoundment and culvert dimensions and elevations were collected from the following sources:

- GZA GeoEnvironmental, Inc., Draft Round 10 Dam Assessment Report NIPSCO Michigan City Generating Station Coal Ash Impoundments, March 29, 2012.
- Site survey completed by Golder in June 2012.
- State of Indiana, 2005 Digital Surface Model of Indiana. Downloaded from http://www.lndianamap.org
- Sargent & Lundy, design drawings of the site impoundments, dated 1972.
- NIPSCO, NPDES Renewal Application Package for NIPSCO Michigan City Generating Station, NPDES IN0000116.

Based on the available information, the following assumptions were made regarding the pond connectivity:

- The GZA report identifies a 24-inch CMP emergency overflow pipe" from Primary 1 to Secondary 1. This spillway is shown to be above the peak water surface elevation and not used in the evaluation.
- Available aerial photographs suggest runoff from the coal storage area, and plant site discharge into the NE Bottom Ash Area. The NPDES permit identifies the NPDES discharge point 002 as receiving runoff from 15,000 square feet (about 0.34 acres) of the plant site. Golder assumes the remaining plant area (about 35 acres not including the coal storage area) discharge through the only other designated external NPDES point 001. Discharge from the remaining watershed area is divided, based on physical location, between the Final Settling Pond and the flume.
- The NPDES application specifies a typical waste flow through the system of about 9 million gallons per day (about 0.5 cfs). This value is insignificant to the expected peak storm inflow rate to the Final Settling Pond of about 120 cfs. Golder assumes waste inflows will equal pump discharge throughout the duration of any storm event and thus has ignored both waste inflow and pump discharge.

3.1 Watershed Areas and Curve Numbers (CN)

An area-weighted curve number was estimated for watersheds containing multiple land uses. Water surface was assumed to have a curve number of 100 indicating no initial abstraction, depression storage, or infiltration losses.

The EPA SWMM model uses a kinematic wave approach for watershed routing and runoff computations that is based on the watershed width. For watersheds containing only reservoir surface, a width (W) = (area x 43560) was used to simulate a travel length of about 1 foot resulting in near instantaneous runoff as is expected for direct rainfall.

The coal pile is assumed to be equivilant to a newly graded surface and hydrologic soil group (HSG) A with high infiltration potential as defined in the NRCS TR-55 report.

The impervious areas of the plant site are assume to be equivilant to a gravel surface and HSG A.

Two inches of surface storage is assumed for both the coal pile and plant area that collects in low-lying areas with out discharge.

CALCULATIONS

Date:	07/23/2012	Made By:	MTC
Project No.:	12388898	Checked By:	JCD
Subject	US EPA SWMM Model and Results	Reviewed By:	MF
Project Short Title:	NIPSCO/Geo Invest/Michigan City/IN		

WATERSHED PARAMETERS

Watersheds	Pervious	Area	Water/Imp.	Area	То	tal	Width
	CN	(acres)	CN	(acres)	Area	CN	(feet)
Primary 1 (P1)			100	5.85	5.85	100	254,800
Secondary 1 (S1)	80	1.33	100	0.2	1.53	83	700
Primary 2 (P2)			100	3.45	3.45	100	150,200
Secondary 2 (S2)	80	0.55	100	0.2	0.75	85	500
BAA-SW	90	3.46	100	1.41	4.87	93	300
BAA-NE			100	1.79	1.79	100	77,900
Coal Pile	77	22.7			22.7	77	600
Plant	76	7	98	8	15.0	88	700
Final Settling (FSP)			100	10.32	10.32	100	449,500

3.2 Reservoir Stage-Areas

Reservoir stage-areas were approximated from the available information. Areas below existing solids/water surfaces were extrapolated based on the design surface slopes identified in the 1972 design drawings.

Primary 1 Pond (P1)

Secondary 1 Pond (S1)

Elevation	Stage	Area	
(feet-msl)	(feet)	(acres)	(sq.feet)
590	0	1.11	48,400
595	5	1.44	62,700
600	10	1.80	78,400
605	15	2.18	95,000
608	18	2.42	105,400
609	19	2.77	120,700

Elevation	Stage	Area		
(feet-msl)	(feet)	(acres)	(sq.feet)	
587	0	0.20	8,710	
593.6	6.6	0.20	8,710	Piles
597	10	0.34	14,800	
600	13	0.49	21,300	
605	18	0.80	34,800	
609	22	1.11	48,400	

Primary 2 Pond (P2)

Elevation	Stage	Area		
(feet-msl)	(feet)	(acres)	(sq.feet)	
590	0	1.51	65,800	
595	5	1.84	80,200	
600	10	2.20	95,800	
604	14	2.50	109,000	
606	16	2.71	118,000	
608	18	2.92	127,000	
609	19	3.07	134,000	

Secondary 2 Pond (S2)

Elevation	Stage	Area		
(feet-msl)	(feet)	(acres)	(sq.feet)	
586	0	0.2	8710	
596.7	10.7	0.2	8710	Piles

CALCULATIONS

Area

0

0.39

0.66

0.91

0.94

2.10

2.50

(sq.feet)

0

17000

28700

39600

40900

91500

108900

(acres)

Date:	07/23/2012	Made By:	MTC
Project No.:	12388898	Checked By:	JCD
Subject	US EPA SWMM Model and Results	Reviewed By:	MF
Project Short Title:	NIPSCO/Geo Invest/Michigan City/IN		

Bottom Ash Area (BAA-SW)

Bottom Ash Area (BAA-NE)

Stage

(feet)

0

1

2

3

4

5

7

Elevation

(feet-msl)

588

589

590

591

592

593 595

Elevation	Stage	Area		
(feet-msl)	(feet)	(acres)	(sq.feet)	
587	0	0	0	
589	2	0.22	9580	
590	3	0.41	17900	
591	4	0.68	29600	
592	5	0.94	40900	
593	6	1.24	54000	
594	7	1.41	61400	

Final Settling Pond (FSP)

Elevation	Stage	Ar		
(feet-msl)	(feet)	(acres)	(sq.feet)	
580	0	6.65	289,700	
585	5	7.48	325,800	
588	8	7.99	348,000	
590	10	9.54	415,600	
590.7	10.7	9.97	434,300	Piles

3.3 Reservoir Elevation Data

	POND ELEVATION (feet-msl)						
	P1	S1	P2	S2	BAA-SW	BAA-NE	FSP
Bottom of Pond (feet-msl) =	590.0	587.0	590.0	586.0	587.0	588.0	580.0
Decant Elevation (feet-msl) =	602.9	588.8	602.9	588.1	587.7	588.5	585.7
Top of Dam (feet-msl) =	609.2	604.3	609.3	595.00	593.3	591.0	590.7

			PON	ID STAGE (feet)		
Initial Depth (feet) =	12.9	1.8	12.9	2.1	0.7	0.5	5.7
Maximum Depth (feet) =	19.2	17.3	19.3	9.0	6.3	3.0	10.7

3.4 Spillway Weirs

	P1	P2	_	BAA-NE
Type =	Riser	Riser		Overtopping
Weir Elevation =	602.9	602.9		591.0
Weir Height (feet) =	6.3	6.4		0.0
Inlet Offset (feet) =	12.9	12.9		3.0
Weir Length (feet) =	3.33	3.33		70
Side Slope (h:1v) =	0	0		45
Discharge Coefficient =	3.1	3.1		3.1

Because the northeast Bottom Ash Area was found to have significant overtopping potential, overtopping flow was considered to gage the full impact on the receiving reservoir, the Final Settling Pond.

Date:	07/23/2012	Made By:	MTC
Project No.:	12388898	Checked By:	JCD
Subject	US EPA SWMM Model and Results	Reviewed By:	MF
Project Short Title:	NIPSCO/Geo Invest/Michigan City/IN		

3.5 Culvert Data

		CULVERT/SPILLWAY DATA						
	C-1*	C-2	C-3	C-4	C-5	C-6	C-7	C-8
Inlet Pond =	P1	S1	P2	S2	BAA-SW	BAA-NE	FSP	FSP
Inlet Inv. (feet-msl) =	591.0	588.8	590.0	588.1	587.7	588.5	586.9	586.9
Inlet Depth (feet) =	1.0	1.8	0.0	2.1	0.7	0.5	6.9	6.9
Outlet Pond =	S1	FSP	S2	FSP	FSP	FSP	Discharge	Discharge
Outlet Inv. (feet-msl) =	590.0	582.0	589.0	582.0	587.0	588.4	586.1	586.1
Outlet Depth (feet) =	3.0	2.0	3.0	2.0	7.0	8.4	NA	NA
Length (feet) =	180	1010	120	200	70	40	90	90
Diameter (feet) =	2	2	2	2	1	1	2	2
Manning's (n) =	0.024	0.024	0.024	0.024	0.012	0.012	0.012	0.012
Additional Loss Coef =	0.2	0.8					0.2	0.2
	1-bend	4-bends					1-bend	1-bend

* The inlet of the second spillway from P1 is located above the expected peak stage and not included here.

4.0 RESULTS OF ROUTING

				POND EL	EVATION ((feet-msl)		
		P1	S1	P2	S2	BAA-SW	BAA-NE	FSP*
Top of Dam	า	609.20	604.30	609.30	595.00	593.00	591.00	590.70
Initial Stage	;	602.90	588.80	602.90	588.10	587.70	588.50	585.70
	Rainfall							
	(inches)		PE	AK FLOOD) ELEVATIO	ON (feet-m	sl)	
1-Year	1.66	603.13	589.28	603.03	588.32	588.20	588.93	586.09
10-Year	3.10	603.31	589.58	603.13	588.44	588.88	589.18	586.51
100-Year	5.07	603.54	589.98	603.25	588.61	589.93	590.57	587.37
1,000-Yr	7.69	603.82	592.05	603.42	588.81	590.95	592.11	588.19
50%-PMP	12.90	604.35	597.84	603.72	590.27	592.54	592.36	589.84

				FRE	EBOARD (feet)		
1-Year	1.66	6.07	15.02	6.27	6.68	4.80	2.07	4.61
10-Year	3.10	5.89	14.72	6.17	6.56	4.12	1.82	4.19
100-Year	5.07	5.66	14.32	6.05	6.39	3.07	0.43	3.33
1,000-Yr	7.69	5.38	12.25	5.88	6.19	2.05	-1.11	2.51
50%-PMP	12.90	4.85	6.46	5.58	4.73	0.46	**	0.86

* Containment from the FSP would be lost after overtopping the sheet pile wall located on the northeast side between the pond and the flume located at a crest elevation of 590.7 feet-msl. However, overtopping of the perimeter road (thereby limiting access around the pond) would occur at about elevation 588.6 feet-msl). ** Not evaluated because peak stage is above the specified stage-area rating curve.

Appendix F

2012 Geotechnical Investigation and Embankment Stability Analyses (Golder Associates)

2012 GEOTECHNICAL INVESTIGATION AND EMBANKMENT STABILITY ANALYSES

NIPSCO Michigan City Generating Station

Michigan City, Indiana

- Submitted To: Greg Costakis NIPSCO Manager, EH&S Generation 801 East 86th Avenue Merrillville, IN 46410
- Submitted By: Golder Associates Inc. 15851 South US 27, Suite 50 Lansing, MI 48906 USA
- **Distribution:** 1 Copy Michigan City Generating Station 1 Copy Golder Associates Inc.

August 27, 2012

US EPA ARCHIVE DOCUMENT

A world of capabilities delivered locally

EXECUTIVE SUMMARY

This report provides a summary of the recent geotechnical engineering assessments at the Northern Indiana Public Service Company (NIPSCO) Michigan City Generating Station (MCGS) located in Michigan City, Indiana. The engineering analyses were completed in part due to questions contained in a recent draft Environmental Protection Agency (EPA) funded site inspection report dated 29 March 2012. Specifically, this report describes the analyses that were performed to assess slope stability of several embankments and steel sheet piling around multiple hydraulic structures.

A geotechnical investigation was performed prior to completing the analyses to provide current geologic information for the various structures in question. A conventional hollow stem auger (HSA) drilling program was completed in late June and early July, 2012, at six of the hydraulic structures. A total of 12 HSA borings were advanced in and around several of the embankments at the MCGS, (the site).

The subsurface conditions encountered during this investigation are generally consistent with information available from previous historic geotechnical information at the site. Subsurface conditions consist of dense Sand and Silty Sand underlain by a medium stiff to stiff Silty Clay with alternating layers of Sand and Silty Clay to the depth of the exploration. Embankment fill is consistently loose to medium dense Sand overlying medium dense Ash fill. Several borings indicate less dense zones, and some of the borings encountered fine grained material in localized zones typically at depths below the base of the constructed embankments.

Geotechnical models of the embankments and embankment foundations were developed based on the conditions inferred from the geotechnical investigation. Slope stability analyses were performed on the modeled slopes using Slide software. The analyses were performed in general accordance with Indiana Department of Natural Resources, Division of Water guidelines. The analyses results indicate acceptable factors of safety for all cases considered when evaluated with respect to US Army Corps of Engineers criteria for the types of analyses and loading conditions evaluated.

The geotechnical models of the embankments were also used to analyze the existing sheet pile walls along the western boundary of the hydraulic structures and the sheet pile walls of the secondary settling basins. Specifically the structural capacity of the walls was assessed and compared to the anticipated existing applied forces to determine if adequate wall sections/depths exist. Based on the exposed sheeting heights and sheet pile section properties obtained from the construction drawings available, the existing walls have adequate capacity to resist the anticipated loads. Additionally, as analyzed, the walls are stable from a global rotational perspective. Both the wall structural capacity and overall stability are based on the assumption that no additional forces are applied to the walls and that the site conditions don't vary from what was provided on the construction drawings and assumptions outlined within this report.

	August 2012	ES-2	123-88898
--	-------------	------	-----------

The embankments and walls should be routinely inspected as a part of an overall operation and maintenance plan.

i

Table of Contents

EXECL	JTIVE SUMMARYES-1
1.0	INTRODUCTION1
2.0	SOURCES OF INFORMATION
2.1	Historical Geotechnical Borings2
2.2	Historical Drawings2
3.0	SITE GEOLOGY
4.0	FIELD EXPLORATION
4.1	Hollow Stem Auger Borings4
4.2	Primary Settling Basin No. 1 (Primary No. 1)5
4.3	Primary Settling Basin No. 2 (Primary No. 2)6
4.4	Secondary Settling Basin No. 1 (Secondary No. 1)7
4.5	Secondary Settling Basin No. 2 (Secondary No. 2)7
4.6	Final Settling Pond (FSP)8
4.7	Bottom Ash Area (BAA)9
5.0	LABORATORY TESTING
6.0	INTERPRETED CONDITIONS AND GEOTECHNCIAL MODELS12
6.1	Primary Settling Basin No. 1
6.2	Primary Settling Basin No. 2
6.3	Secondary Settling Basin No. 114
6.4	Secondary Settling Basin No. 215
6.5	Final Settling Pond15
6.6	Bottom Ash Area16
7.0	SLOPE STABILITY ANALYSES
8.0	SHEET PILE WALL ANALYSES
9.0	CONCLUSIONS AND RECOMMENDATIONS

List of Tables

US EPA ARCHIVE DOCUMENT

- Table 1Summary of HSA Borings
- Table 2Laboratory Test Data Summary
- Table 3
 Geotechnical Model Material Properties
- Table 4
 Slope Stability Analyses Results Summary
- Table 5
 Sheet Pile Analyses Results Summary

List of Figures

- Figure 1 Site Location Map
- Figure 2
 Site Plan with Borehole Locations
- Figure 3 Geotechnical Model at Primary Settling Basin No. 1
- Figure 4 Geotechnical Model at Primary Settling Basin No. 2

- Figure 5 Geotechnical Model at Secondary Settling Basin No. 1
- Figure 6 Geotechnical Model at Secondary Settling Basin No. 2
- Figure 7 Geotechnical Model at the Final Settling Pond

List of Appendices

- Appendix A Hollow Stem Auger Boring Logs and Historic Boring Information
- Appendix B Sargent & Lundy Construction Drawings
- Appendix C Elevation and Coordinate Data
- Appendix D Geotechnical Laboratory Data
- Appendix E Slope Stability Analyses
- Appendix F Sheet Pile Analyses

1

1.0 INTRODUCTION

The Michigan City Generating Station (MCGS) is located in Northern Indiana along Lake Michigan in LaPorte County as shown on Figure 1. Golder Associates Inc. (Golder) and subcontractor, Earth Exploration Inc. of Niles, Michigan (Earth Explorations) performed a geotechnical investigation at the site from June 26, 2011 through July 3, 2011. Earth Explorations performed hollow stem auger (HSA) borings at 12 locations and installed Casagrande type standpipe piezometers at 6 of these locations. The work was performed to obtain geotechnical and hydrogeologic data for assessing the stability of the embankments and steel sheet pile walls. Borehole locations were surveyed by Golder personnel.

The HSA borings were advanced around the Final Settling Pond (FSP), Primary Settling Basin No. 1 (Primary No. 1), Primary Settling Basin No. 2 (Primary No. 2), Secondary Settling Basin No. 1 (Secondary No. 1), Secondary Settling Basin No. 2 (Secondary No. 2), and the Bottom Ash Area (BAA).

Figure 2 shows the current geotechnical exploratory borehole locations on an overall plan view of the site.

The geotechnical investigation, slope stability analyses and sheet pile wall analyses described in this report have been performed to assess the stability of the hydraulic structures and the steel sheet pile walls.

older

2.0 SOURCES OF INFORMATION

2.1 Historical Geotechnical Borings

NIPSCO provided Golder geotechnical data from historic hydrogeologic and geotechnical investigation reports completed at the site by others. Numerous boring logs were available from the reports including results from the initial 1970s facility design/construction efforts in areas that are near the current investigation. The available boring logs are included in Appendix A. Not all information on the boring logs, or boring log locations are clearly legible on these historic logs. Note also that the borings from the 1970s were all advanced from the original ground surface elevations at some locations where there are now embankments or where other earthwork has been performed. The collar elevations indicated on the historic logs may not correspond to the existing ground elevation at those historic boring locations.

2.2 Historical Drawings

NIPSCO provided Golder with various applicable Sargent & Lundy construction drawings from the initial facility design/construction in the 1970s. These drawings were utilized in the planning of the geotechnical investigation, slope stability analyses and sheet pile wall analyses. Applicable, available drawings are included for reference in Appendix B.

3.0 SITE GEOLOGY

The Michigan City Generating Station is underlain by more than 200 feet of unconsolidated glacial and lacustrine sediments. Borings have been drilled on the site by Sargent and Lundy prior to 1970 and by Golder in June and July 2012. The twelve borings drilled by Golder have a median depth of 50 feet below grade, with three borings drilled to a maximum of 75 feet below grade. The Sargent and Lundy borings were generally deeper, with a median depth of around 150 feet below grade, and one boring to 256 feet below grade (13 feet into limestone bedrock). Boring logs from these investigations are provided in Appendix A.

The MCGS site is located near the eastern end of the physiographic region of Indiana known as the Calumet Lacustrine Plain. The plain is topographically-low region bordering Lake Michigan, and is a remnant of the Lake Chicago stage of the Wisconsinan glaciations. The geology of the plain is characterized by complex clay, sand, and silt deposits, ranging from ground moraines to aeolian sand and silt, as the shoreline of glacial Lake Chicago moved with its rising and falling stage.

The set of borings drilled at the MCGS property are consistent with regional geology. The soil sequence is dominated by massive, very stiff silt and clay, but contains numerous lenses of fine and/or silty sand particularly in the uppermost 50 feet. Additionally, the presence of thin lenses of ash, and trace amounts of ash mixed with sand in the uppermost 20 to 40 feet suggests some excavation and re-grading of shallow soils has occurred. The groundwater table is between 5 and 25 feet below grade.

The United States Department of Agriculture (USDA) soil survey of the site and surrounding areas identified the major surficial soil components as the Oakville fine sand (elevation 570-950 feet) and Morocco loamy sand (elevation 600-800 feet). The Oakville unit is described as having a fine sand layer from the surface to 60 inches in depth. The Morocco unit is described as having a loamy sand layer from the surface to a depth of 9 inches, with a bottom layer of sand. For each of the soil units, the confining layer is listed at a depth greater than 80 inches. The most limiting saturated hydraulic conductivity for the soils ranges from high to very high. (USDA Web Soil Survey and National Cooperative Soil Survey, Version 11, September 22, 2010).

The area around the site is suburban and industrial, and the near surface is known to have been reworked. Significant areas of the site have fill indicated in the borings.

4.0 FIELD EXPLORATION

Golder completed a field investigation program including drilling and surveying at the site. Drilling operations were completed by Earth Exploration using a track mounted CME 55 and a truck mounted CME 75 drill rigs equipped with automatic drop hammers. Golder provided onsite geotechnical engineering oversight during drilling. Soil samples were obtained using Standard Penetration Test (SPT) split spoon samplers as well as thin walled Shelby Tubes. Soil samples collected were taken to Golder's Lansing Laboratory for testing. Samples will be retained for 90 days after issuance of the final report at which time they will be discarded unless NIPSCO directs otherwise.

A site survey was also completed by Golder in late June early July of 2012. The purpose of the survey was to obtain actual site elevations at the locations in question for use in the analyses. A Nikon Total Station DTM-322 was used for these elevation checks. Existing monitoring well locations and elevations were used as benchmarks for this work. Elevation and coordinate data is included in Appendix C.

4.1 Hollow Stem Auger Borings

The HSA borings were advanced at twelve locations around the hydraulic structures as shown on Figure 2. Borings were drilled vertically with standard penetration testing (SPT) within the HSA's at regular intervals. The hollow stem auger borings were used for retrieval of soil samples for visual and manual assessment. Select samples were also tested in Golder's Lansing, MI laboratory for more thorough classification. The HSA holes were ultimately used to install shallow standpipe piezometers for measuring groundwater levels.

The elevation of the collar of each probe was surveyed for location and elevation by Golder personnel. Elevations of strata and relative depths of changes in interpreted strata as described herein are approximate. The boring logs generated from the borings are included in Appendix A. A summary of the HSA borings performed at the site is included in Table 1 below.

Table 1:	Summary	of	HSA	Borings
----------	---------	----	-----	---------

Boring Number	Date Performed	Boring Depth (feet)	Boring Collar Elevation (feet above msl)	Angle	Comments/ Locations
BH-1	6.26.2012	50	609.40	Vertical	Secondary No. 1 Embankment Crest
BH-2	6.26.2012	50	601.38	Vertical	Secondary No. 1 Embankment
BH-3	6.27.2012	75	609.73	Vertical	Primary No. 1 Embankment Crest
BH-4	6.26.2012	40	609.35	Vertical	Primary No. 1 Embankment Crest, Screen Tip 22' bgs
BH-5	6.27.2012	50	609.40	Vertical	Embankment between Primary No. 2 and Secondary No. 2, Screen Tip 25' bgs
BH-6	6.28.2012	50	609.61	Vertical	Primary No. 2 Embankment Crest, Screen Tip 25' bgs
BH-7	6.27.2012	40	609.39	Vertical	Primary No. 2 Embankment Crest
BH-8	7.2-3.2012	75	588.66	Vertical	FSP Embankment, Screen Tip 15' bgs
BH-9	7.2.2012	50	589.62	Vertical	FSP Embankment
BH-10	6.29/7.2.2012	75	592.71	Vertical	FSP Embankment, Screen Tip 15' bgs
BH-11	6.28.2012	30	594.86	Vertical	Embankment between FSP and BAA
BH-12	6.28.2012	40	595.41	Vertical	Adjacent to Secondary No. 2, Screen Tip 12' bgs

For discussion purposes in this report, the subsurface conditions indicated by the HSA borings are grouped by hydraulic facility, and interpreted subsurface conditions at each of these facilities are described in the following sections. The interpreted conditions are based on the combined results of the current investigation and the historic geotechnical borings in descending order of precedence.

4.2 Primary Settling Basin No. 1 (Primary No. 1)

Primary No. 1 is formed by an above grade embankment that is approximately 14 feet high on the outside (Lake Michigan side, from top of existing sheet pile) and approximately 19 feet high on the inside. Both upstream and downstream slopes are approximately 2.5 horizontal to 1 vertical (2.5H:1V). The crest is at approximately elevation 609.5 ft mean sea level (msl). Normal water level is not shown on the historic construction drawings. Along the south/southwest perimeter, the impoundment is incised and the surrounding ground is the impoundment crest. The embankment increases in height towards the north along the east perimeter. The surrounding ground varies from approximately elevation 605.9 ft msl to

6

123-88898

603.8 ft msl. The northwest embankment slopes toward Lake Michigan and the northeast embankment is shared with Secondary No. 1. A typical embankment cross section of Primary No. 1 is shown on Sargent & Lundy Construction Drawing B-478 in Appendix B.

HSA boreholes, BH-3 and BH-4 were advanced from the center of the crest of the south and west embankments of Primary No. 1. Boreholes BH-1 and BH-2 were located just downstream of the north embankment that is shared with Secondary No.1. The collar elevation of these holes range from approximately 601.4 ft msl to 609.8 ft msl based on recent survey data, which is included in Appendix C.

These boreholes indicate the subsurface material consists of dense to very dense Slag and Sand from ground surface to approximately 1 foot below ground surface (bgs). Beneath the Slag is a loose to medium dense Sand to approximately 22 feet bgs. In BH-4 along the south perimeter, a 5 ft to 6ft thick layer of soft fine Sandy Silt to Silty Clay (possible fill material) is indicated. A dense to very dense layer of fine to medium Sand was encountered in BH-1 and BH-2 to 40 ft bgs (approximate elevation of 570 ft msl) where a 5 to 10 ft thick layer of stiff Silty Clay was encountered. Immediately below the Silty Clay a dense layer of medium Sand as indicated by BH-3 to a depth of 73 ft bgs where another layer of stiff Silty Clay was encountered.

During drilling groundwater levels along the east and south embankment crests are approximately 18 feet bgs in both BH-1 and 4. In BH-3, located on the west embankment, groundwater was noted at 28 feet bgs.

4.3 Primary Settling Basin No. 2 (Primary No. 2)

Primary No. 2 is formed by an above grade embankment that is approximately 14 feet high on the outside and approximately 20 feet high on the inside. Both upstream and downstream slopes are approximately 2.5H:1V.The crest is at approximate elevation 609 ft msl, normal high water level is not evident on the construction drawings. The surrounding ground varies from approximately 596 ft to 602 ft msl. A typical embankment cross section of Primary No. 2 is shown on Sargent & Lundy Construction Drawing B-478 in Appendix B. The typical section for Primary No. 2 is similar to the typical section for Primary No. 1.

HSA boreholes BH-5, BH-6 and BH-7 were advanced 50 feet, 50 feet, and 40 feet, respectively from near the center of the crest of the west, north and east embankments of Primary No. 2. The collar elevations of these probes are 609.4 ft above msl at BH-5, 609.6 ft above msl at BH-6 and 609.4 ft above msl at BH-7 based on recent survey data. BH-10, BH-11 and BH-12 were also advanced downstream of the north embankment. The collar elevations of these borings are 592.7, 594.9 and 595.4 ft above msl, respectively.

August 2012

7

123-88898

These boreholes indicate the subsurface material consists of dense to very dense Slag and Sand from ground surface to approximately 1 ft bgs. Immediately below this upper layer there is an approximate 35 ft thick layer of loose to medium dense Sand. Borings BH-5, BH-6, BH-7 indicate that below the upper sand layer is a 2.5 ft to 5 ft thick layer of dense to very dense black Ash. Below this ash layer, is a layer of dense to very dense Sand as indicated in BH-5, BH-7 and BH-11. BH-6 indicates a medium stiff Clay layer to the end of the boring at 50 ft bgs or approximately elevation 560 ft above msl. BH-10 indicates that the Clay later extends to approximately elevation 535 ft above msl 75 feet below the embankment crest.

During drilling groundwater levels along the north embankment were 8.5 ft bgs in BH-5. Along the west embankment, groundwater levels were 18 ft bgs in BH-6 and along the east embankment, groundwater levels were 11.5 ft bgs.

4.4 Secondary Settling Basin No. 1 (Secondary No. 1)

Secondary No. 1 is formed by a 4-sided, steel sheet pile wall that reportedly is 30 feet in depth. A soil embankment extends upward from 1 foot below the top of the sheet pile to approximately 16 feet above the sheet pile at a 2.5H:1V slope. The top of the sheet pile is at approximately elevation 594 ft msl. The embankment crest is at elevation 609 ft msl. Normal high water level is not evident on historic construction drawings. The surrounding ground is at approximately elevation 604 ft msl around the south and west sides. Primary No 1 exists adjacent to the south and Primary No. 2 is adjacent to the north. A typical embankment cross section of the north and south sides of Secondary No. 2 is shown on Sargent & Lundy Construction Drawing B-478 in Appendix B.

Boreholes BH-1 and BH-2 were advanced 50 feet from the centers of the west and east embankments of Secondary No. 1. The collar elevations of these probes are 609.4 and 601.4 ft msl respectively based on recent survey data. These probes indicate the subsurface material consists of dense to very dense Slag and Sand from ground surface to 1 ft bgs which is underlain by a loose to medium dense Sand to approximately 33 ft bgs. Below the Sand is a thin layer of fine Sandy Silt. A medium dense Sand continues below the thin Sandy Silt to approximately 40 ft bgs. Beneath the medium dense Sand is medium stiff to stiff Silty Clay to the end of the advancements.

From the embankment crest, the groundwater level was observed at 18 feet bgs in borehole BH-1 and at 19 feet bgs at BH-2.

4.5 Secondary Settling Basin No. 2 (Secondary No. 2)

Secondary No. 2 is formed by a 4-sided, steel sheet pile wall that reportedly is 36 feet in depth. Along the southwest side of the basin, a soil embankment extends upward from approximately 1 foot below the top of the sheet pile to approximately 13 feet above the sheet pile at a 2.5H:1V slope. On the remaining

August 2012

8

123-88898

sides, the sheet pile wall extends approximately 1.5 ft to 2 ft above the surrounding grade. The normal high water level is not evident on historic construction drawings. The top of the sheet pile wall is at approximately elevation 596.7 ft. above msl. The surrounding ground is at approximately elevation 595 ft msl around the north, west and east sides. Primary No. 2 exists adjacent to the southwest and the BAA is adjacent to the northeast. A typical embankment cross section of Secondary No. 2 is shown on Sargent & Lundy Construction Drawing B-479 in Appendix B.

Borehole BH-12 was advanced to 40 feet and located adjacent to the sheet pile wall on the east side of the basin. BH-5 was advanced 50 feet from the top of the embankment crest along the southwest side of the basin and BH-11 was advanced 30 feet from the adjacent crest of the FSP. The collar elevations of these borings are 595.4 ft, 609.4 ft and 594.9 ft msl respectively based on recent survey data. These boreholes indicate the subsurface material consists of dense to very dense Slag and Sand to from ground surface to approximately 1 ft bgs. Immediately below this upper layer there is an approximate 18 ft thick layer of loose to medium dense Sand. Borings BH-5 and BH-11 indicate that below the upper sand layer is a 1.5 ft to 5 ft thick layer of dense to very dense black Ash. Below this ash layer, is a layer of dense to very dense Sand as indicated in BH-5 and BH-11. A medium stiff to stiff Silty Clay is encountered at approximately 30 ft bgs as indicated in BH-11.

During drilling groundwater was encountered at approximately 5.5 feet bgs and 3.5 feet bgs at boreholes BH-11 and BH-12 respectively.

4.6 Final Settling Pond (FSP)

The FSP is formed by an embankment that extends below grade and is approximately 25 ft in depth. The top of the embankment is the access roadway at approximate elevation 591 ft above msl. Along the northwest side of the crest is a steel sheet pile wall that is reportedly 42 feet in depth, based on historical drawings. Along the southeast side of the basin is a common embankment with the Bottom Ash Area. The normal high water level is not evident on historic record drawings. The top of the sheet pile wall is at approximately elevation 596 ft. above msl. A typical embankment cross section of the FSP is shown on Sargent & Lundy Construction Drawing B-479 in Appendix B.

Boreholes BH-8, BH-9 and BH-10 were advanced 75 feet, 50 feet and 75 feet, respectively, in the center of the west embankment crest. BH-11 was advanced 30 feet from the FSP/BAA common embankment crest. The collar elevations of these borings are 588.7 ft, 589.6 ft and 592.7 ft msl respectively based on recent survey data. These boreholes indicate the subsurface material consists of dense to very dense Slag and Sand to from ground surface to approximately 1 ft bgs. Immediately below this upper layer there is an approximate 28 ft to 33 ft thick layer of loose to medium dense Sand. Below the sand layer, is a layer of stiff Clay with alternating layers of silt and sand to the bottom of the advancements.

9

During drilling groundwater levels were observed at 3 ft bgs at BH-8 and BH-9 and 5 ft bgs at BH-10.

4.7 Bottom Ash Area (BAA)

The BAA slopes toward the FSP from ground surface to a common embankment that is shared with the FSP along the northwest side. This embankment has a maximum height of 2 feet. Secondary No. 2 is adjacent to the south. A typical embankment cross section of the BAA is shown on Sargent & Lundy Construction Drawing B-479 in Appendix B.

BH-11 was advanced 30 feet bgs from the center of the embankment and BH-12 was advanced 40 feet bgs in the roadway to the south of the BAA. These boreholes indicate the subsurface material consists of dense to very dense Slag and Sand from ground surface to approximately 1 ft bgs. Immediately below this upper layer there is an approximate 18 ft thick layer of loose to medium dense Sand. Boring BH-11 indicates that below the upper sand layer is a 1.5 ft thick layer of dense to very dense black Ash. Below this ash layer, is a layer of dense to very dense Sand. A medium stiff to stiff Silty Clay is encountered at approximately 30 ft bgs as indicated in BH-11.

During drilling, groundwater levels were observed at 5.5 ft bgs as observed in BH-11.

5.0 LABORATORY TESTING

During HSA drilling, which included standard penetration testing, samples were retrieved from the split spoon sampler for subsequent laboratory testing. The samples were stored in jars and transported to Golder's Lansing, Michigan geotechnical laboratory for testing. Samples were selected for testing based on their visual character, location along the borehole, and distribution around the facility. Additionally, undisturbed soil samples of fine grained material were collected with thin walled Shelby Tube samplers. One Shelby Tube sample was sent to Golder's Atlanta, Georgia geotechnical laboratory for triaxial testing.

Moisture content, grain size analyses, Unified Soil Classification System (USCS) classifications, Atterberg limits testing, and triaxial testing were performed in the laboratory. In total, 75 samples were tested for at least one of these parameters. A summary of the laboratory test data, laboratory test data sheets, including the plotted grain size curves are included in Appendix D. A summary of the test data, grouped by relative geologic model layer is presented in Table 2 below.

Material	Moisture Content (%)	USCS Classification	Cohesion (c'), (psf)	Internal Friction Angle (φ'), (degrees)	
Loose to Compact Poorly Graded Sand Fill	2 - 9 (above water table)# 19 - 39 (below water table)	SP, SM#	NA#	NA#	
Medium Dense Bottom Ash Fill	17#	SW#	NA#	NA#	
Dense to Very Dense, Fine to Medium Sand	16 - 23#	SP-SC, SP, SW#	NA#	NA#	
Native Clay	13 to 20#	CL#	70#	30#	

Table 2: Laboratory Test Data Summary

The test results indicate a relatively uniform deposit of poorly graded, medium Sand with typically less than 10 percent fines. The material is variously classified as a Poorly Graded Sand with little or no fines (SP); a "SP-SC" or "SP-SM" which are borderline classifications used for materials with between 5 percent and 12 percent fines. Test results also indicate a deposit of fine grained soils classified as Silty Clay (CL). The frequency of particular material types indicated on the attached laboratory data sheets is not necessarily indicative of the relative frequency or amount of material types encountered in the field. Individual samples were specifically selected for testing based on visual and manual assessment, and

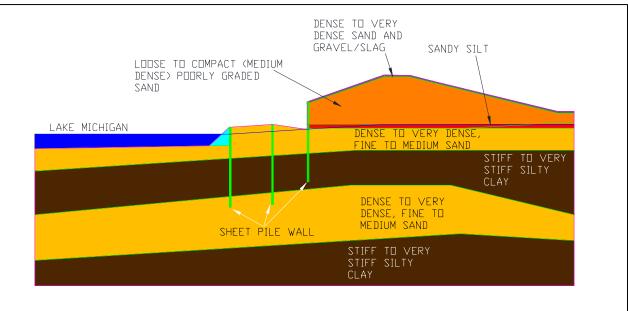
US EPA ARCHIVE DOCUMENT

11

123-88898

samples exhibiting non-typical and apparent borderline characteristics are preferentially selected for laboratory testing.

The measured water contents in the granular soil ranged from approximately 2 percent to 38 percent. In the fine grained soils, the measured water contents ranged from approximately 13 percent to 20 percent. The distribution of water content with depth indicates with reasonable certainty where the water table is in the field. Laboratory samples consistently show lower water contents in samples from the upper portions of holes, and higher water contents in samples from the lower portions.


6.0 INTERPRETED CONDITIONS AND GEOTECHNCIAL MODELS

Based on the current and historic subsurface information, generalized geologic cross sections were developed for each area planned for analysis. This information was utilized along with insitu and laboratory testing to develop geotechnical models for the slope stability and sheet pile wall analyses.

6.1 Primary Settling Basin No. 1

The HSA borings located around Primary No. 1 indicate the embankment consists of compacted fine sand fill, with a thin layer of Sandy Silt immediately below the embankment. Below the Sandy Silt is a medium dense to dense layer of Sand underlain with a 5 ft to 6 ft thick layer of stiff Silty Clay. Another Sand layer is below the Silty Clay with a second layer of Silty Clay to the bottom of the advancements.

Low blow counts in the borings suggest the presence of a looser layer of sand at or just below groundwater levels. It is possible that these lower blow counts do not represent the true density of the soil as there is some possibility that "quick" conditions developed at the bottom of the drill holes during drilling and sampling. However, lower strength values have been assessed in this area to account for any possible variability. Figure 3 below shows the interpreted geotechnical model for Primary No. 1.

Figure 3 – Geotechnical Model of Primary No. 1 Embankment

Material properties of each of the modeled layers are included in Table 3 below. These properties are based on the geotechnical investigation, associated laboratory testing and empirical correlations to published data sources.



Material	Internal Friction Angle (deg.)	Peak Cohesion (psf)	Dry Unit Weight (pcf)	Saturated Unit Weight (pcf)	Undrained Shear Strength (psf)	Layer Thick- ness (ft)	Hydraulic Conductivity (cm/s)
Loose to Medium Dense Fill (SP)	33	0	100	110	NA	Varies	1x10 ⁻³
Large Limestone Riprap	45	0	140	145	NA	Varies	100
8-inch Riprap	45	0	140	145	NA	1	100
Crushed Blast Furnace Slag	40	0	120	130	NA	Varies	1
Medium Dense Bottom Ash Fill	35	0	100	110	NA	Varies	1x10 ⁻³
Loose Silty Sand	30	0	100	120	NA	Varies	1x10 ⁻³
Medium to Very Stiff Clay	30	70	116	136	750 – 2500	Varies	1x10 ⁻⁶
Native Sand (SW)	40	0	110	120	NA	Varies	1x10 ⁻³

6.2 Primary Settling Basin No. 2

The HSA holes around Primary No. 2 indicate variable conditions from both the standpoint of material variability with depth at a given location and differences in materials from location to location. To develop the geotechnical model, in general, lower strength materials were inferred where variations were noted in the exploration. The probes at Primary No. 2 indicate loose to medium dense sand in the embankment. A layer of dense to very dense Ash is shown below the sand and below that a dense to very dense sand. A medium stiff clay layer underlies the sand. Figure 4 below shows the Primary No. 2 geotechnical model.

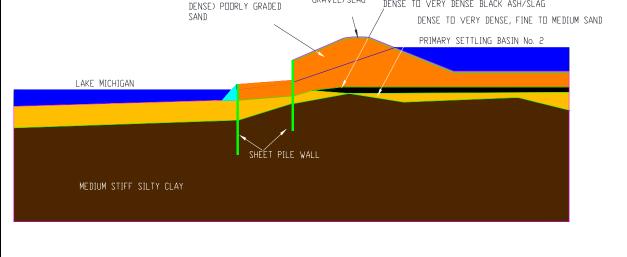


Figure 4: Geotechnical Model at Primary No. 2

Material properties for these modeled layers are included in Table 2.

6.3 Secondary Settling Basin No. 1

The boreholes in the Secondary No. 1 embankment indicate relatively uniform and loose to medium dense granular material to approximately 40 feet bgs where medium stiff to stiff silty clay is encountered.

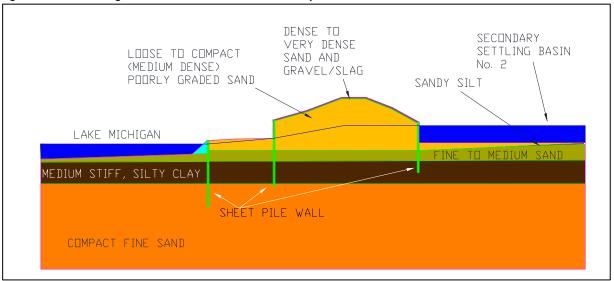


Figure 5 shows the geotechnical model for Secondary No. 1.

Figure 5: Geotechnical Model at Secondary No. 1

6.4 Secondary Settling Basin No. 2

The boreholes advanced around Secondary No. 2 suggest relatively uniform and loose to medium dense granular materials underlain by a layer of dense ash followed by a dense to very dense sand and finally stiff silty clay, in a similar manner to the conditions found at the adjacent Primary No. 2. Figure 6 below illustrates the model.

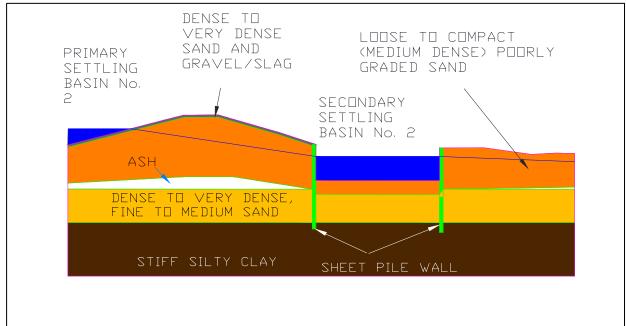


Figure 6: Geotechnical Model at Secondary No. 2

6.5 Final Settling Pond

The boreholes advanced around the FSP suggest relatively uniform and loose to medium dense granular materials underlain by a layer of stiff silty clay. Figure 7 below illustrates the model.

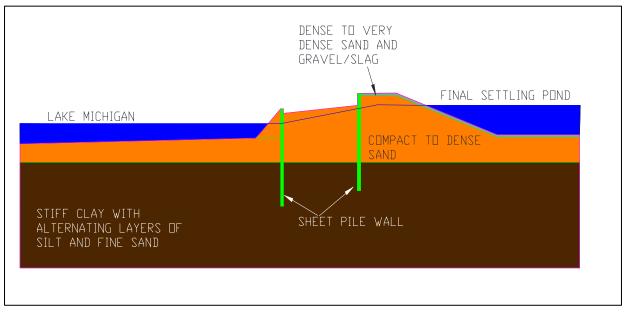


Figure 7: Geotechnical Model at the FSP

6.6 Bottom Ash Area

The BAA is generally formed with a bottom that slopes down from ground surface at its east side towards the FSP where a 2 foot high embankment is shared along its north/northwest side with the FSP. The BAA is primarily an incised structure. Depending on interpretation of survey data for surrounding ground, the BAA is less than 5 ft deep at its deepest; therefore, no stability analyses were performed at the BAA.

7.0 SLOPE STABILITY ANALYSES

Slope stability analyses were performed using 'SLIDE'Version 6.018, a <u>Rocscience</u> software program designed for analysis of slopes such as the embankment slopes at the RMSGS facility. SLIDE is a twodimensional slope stability program for evaluating the safety factor or probability of failure, of circular or non-circular failure surfaces in soil or rock slopes. SLIDE analyzes the stability of multiple slip surfaces using vertical slice limit equilibrium methods (e.g. Bishop, Janbu, Spencer, etc). Individual slip surfaces can be analyzed, or search methods can be applied to locate the critical slip surface for a given slope. The program also has the capacity to perform pseudo static seismic analyses with prescribed ground acceleration. The search method was used for the analyses described in this report, and the reported factors of safety (FoS) are the low FoS found from all individual analysis runs for each case.

Slope stability analyses were performed on the geotechnical model cross sections at five of the six hydraulic structures under evaluation. While these structures are not regulated by the State of Indiana, the specific analysis types are based on those described in the Indiana DNR, Division of Water *General Guidelines for New Dams and Improvements to Existing Dams in Indiana, 2001 Edition.* For existing dams, the specific analysis types are:

- Steady state seepage, full pool, downstream slope
- Steady state seepage, maximum pool, downstream slope
- Rapid drawdown, upstream slope; and
- Seismic (pseudo-static) with normal pool, steady state seepage, downstream slope

In addition to the specified analyses, a global analysis was performed for each structure. Full pool elevations were not evident on historic drawings; therefore, existing water levels were used for analyses. The steady state analyses were performed with the fully developed phreatic surface as indicated by the site geotechnical investigation and as extrapolated based on inferred subsurface conditions. This phreatic surface begins at the upstream water level, extends horizontally to the upstream side of the embankment, then extends downward to near the elevation where the groundwater level was encountered in exploratory holes in the downstream side of the embankment and then to the water level of Lake Michigan. The inferred piezometric levels in each model are illustrated in Appendix E. Drained shear strength parameters were used in the slope stability analyses for the material types.

In the rapid draw down analysis, the initial water level condition was assumed to be at normal pool elevation, and the final water level condition was assumed to be at the toe of the embankment, i.e., the pool is completely empty. This is a relatively severe loading condition as compared to that described in the Indiana guidelines where the final level is assumed to be the invert of a drawdown pipe.

18

123-88898

A pseudo static seismic analysis was performed on the downstream slope of each section. The analyses were performed with the same steady state, fully developed phreatic surface in the embankments as was used in the initial three cases analyzed. The ground acceleration used in the seismic analysis was 0.1319g, which is the Maximum Considered Earthquake (MCE) ground motion of 0.2 second spectral response, or the 2 percent exceedance in 50 years. The value of the acceleration was obtained from the United States Geologic Survey (USGS) online seismic hazard tool, which provides such information for any location in the United States. The zip code for the MCGS was used as the location of the site. Contour intervals of this same seismic acceleration are included in Appendix D of the US Army Corps of Engineers (USCOE) publication number: ER 1110-2-1806 titled Engineering and Design - Earthquake Design and Evaluation for Civil Works Projects. This contour map, which illustrates the seismic acceleration contours for the 0.2 sec spectral response and 2 percent probability of exceedance in 50 years is also included in Appendix D of this report. This map shows how the area of northwest Indiana is a relatively low hazard area from the view point of seismic risk. The MCGS is in Risk Zone 1 in the ASCE seismic risk categorization which is also illustrated in the USACOE publication referenced above. This is the second lowest category in a five category system. This ASCE seismic risk map is also included in Appendix E.

As previously indicated, analyses were performed for the four loading cases on representative cross sections of each of the five embankments under consideration. Analyses were performed with circular analyses. Planar analyses were also performed in the case of the FSP and Primary No. 1. The search method of analysis was used, and several thousand trial surfaces for each case and each model were run.

The results of the analyses indicate the embankments have adequate FoS given the strength parameters used and the conditions analyzed.

A summary of the lowest calculated FoS for each case analyzed at the five structures is included in Table 4 below.

US EPA ARCHIVE DOCUMENT

Table 4: Slope Stability Analysis Results Summary

Primary No. 1	
Case	Factor of Safety
Steady Sate, Global (01A)	2.4
Steady State, Existing Pool (01B)	2.2
Rapid Drawdown Upstream Slope (01C)	1.8
Seismic, Existing Pool (01D)	1.5
Primary No. 2	
Case	Factor of Safety
Steady Sate, Global (02A)	1.9
Steady State, Existing Pool (02B)	2.2
Rapid Drawdown Upstream Slope (02C)	1.6
Seismic, Existing Pool (02D)	1.5
Secondary No. 1	
Case	Factor of Safety
Steady Sate, Global (03A)	2.6
Steady State, Existing Pool (03B)	2.1
Rapid Drawdown Upstream Slope (03C)	1.6
Seismic, Existing Pool (03D)	1.5
Secondary No. 2	
Case	Factor of Safety
Steady Sate, Global (04A)	1.8
Steady State, Existing Pool (04B)	2.1
Rapid Drawdown Upstream Slope (04C)	2.1
Seismic, Existing Pool (04D)	1.4
Final Settling Pond	1
Case	Factor of Safety
Steady Sate, Global (05A)	3.1
Steady State, Existing Pool Upstream (05B)	1.8
Rapid Drawdown Upstream Slope (05C)	1.4
Seismic, Existing Pool Upstream (05D)	1.0

Models, input and output from the slope stability analyses are included in Appendix E. In the front of the appendix, a summary of the analyses performed is presented. In the following subsections of the appendix, analysis results are presented for each of the five structures analyzed.

8.0 SHEET PILE WALL ANALYSES

The existing steel sheet pile walls were modeled with Shoring Suite V 8.12 using the subsurface conditions and material properties previously described. Specifically, three different wall sections and geometric configurations were analyzed including: Secondary No. 1 and 2 as well as Primary No. 2. The secondary pond walls are rectangular structures that provide storage for some ash and process water. The Primary No. 2 wall consists of two independent linear steel sheet pile structures spaced about 45 feet apart. The intent of the walls is to provide shoreline protection from Lake Michigan (lower wall) and stabilize the entire hydraulic structure area (upper wall). Where applicable a 375 lb/ft² vehicular live load was applied at the top of wall. The maximum exposed wall heights, obtained from the Sargent & Lundy construction drawings, ranged from 8 to 16 feet for Primary No. 2 and Secondary No. 2 respectively. Steel sheeting sections consisted of PZ 27 and 38 depending on location and varied in length from 30 to 42 feet. Sheeting sections were also gleaned from the Sargent & Lundy construction drawings. Sheeting lengths were not field verified as part of our investigation. The lengths provided on the Sargent and Lundy drawings were assumed to be as constructed. The following assumptions were made for the calculations:

- 1. No impact loads were analyzed on the wall only live load from vehicle traffic
- 2. Adequate drainage is provided behind the existing wall
 - a. Differential hydrostatic pressures were not applied above the groundwater depth noted during drilling. The exception being the lower/upper walls along Lake Michigan.
- 3. All sheeting is cantilevered with no tie backs or whalers present
- 4. Steel sheeting has a yield stress of 50 ksi.
- 5. Sargent and Lundy drawing information accurately reflects existing conditions.

Table 5 provides a summary of the calculations.

Wall location	Steel Sheet Pile Type	Maximum Exposed Wall Height (ft)	Length of Sheeting (ft)	Maximum Applied Moment (kip-ft) and Depth (ft)	Estimated Minimum Required Section Modulus (in ³ /ft)(1)	Actual Section Modulus (in ³ /ft)
Secondary Pond No. 1	PZ 27	13	30	32.8 at 19.2	11.9	30.2
Secondary Pond No. 2	PZ 27	16	36	67.7 at 24	24.6	30.2
Primary Pond No. 2 – Iower wall	PZ 38	8	42	24.2 at 17.6	8.8	46.8
Primary Pond No. 2 – upper wall	PZ 38	12	42	35.7 at 20.5	13	46.8

Table 5: Summary of Sheet Pile Wall Analysis

Notes: (1) Estimated minimum section modulus based on Shoring Suite Model output

As shown in the above table the installed sheeting has adequate section capacity to resist the applied moments. In addition to the internal structural analysis a stability check was also completed for the walls to assess the potential for wall rotation and subsequent top of wall deflection. The analysis indicates the walls are stable under static loading conditions. Sheet pile wall analysis results are included in Appendix F.

EPA ARCHIVE DOCUMENT

9.0 CONCLUSIONS AND RECOMMENDATIONS

The slope stability analyses indicate shallow potential failure surfaces have the lowest calculated FoS, which is consistent with the sandy conditions encountered in the field investigation and as used in the geotechnical models. However, the analyses indicate acceptable FoS for the conditions analyzed. Most of the estimated FoS are relatively high which is expected given the material types, relative density of the embankment material and the presence of several steel sheet pile walls at the MCGS site. The calculated factors of safety for the rapid drawdown and seismic loading conditions are generally high with the exception of the seismic upstream condition for the FSP which is relatively low at 1.0, but is still acceptable based on US Army Corps of Engineers criteria.

Several analyses were completed for the existing steel sheet pile walls including a verification of the structural capacity and overall stability. Our analysis indicates the walls are stable from a structural and global perspective based on the conditions documented during our investigation and wall properties outlined in this report.

In general, the results of the current subsurface investigation are consistent with subsurface conditions indicated in the boring logs available from historic geotechnical investigations performed at the site. The embankments appear to have been constructed with compacted Sand borrowed from site or nearby areas. Locally ash appears to have been incorporated in the fill. The embankment foundations typically consist of loose to dense sand. There are some areas or layers of less dense or looser material. Some areas indicate the presence of dense bottom ash fill beneath the embankments.

23

The subsurface conditions indicated in the field investigations were summarized and condensed into geotechnical models and used in slope stability analyses. Slope stability and sheet pile wall analyses were performed on select cross sections from various locations around the facility.

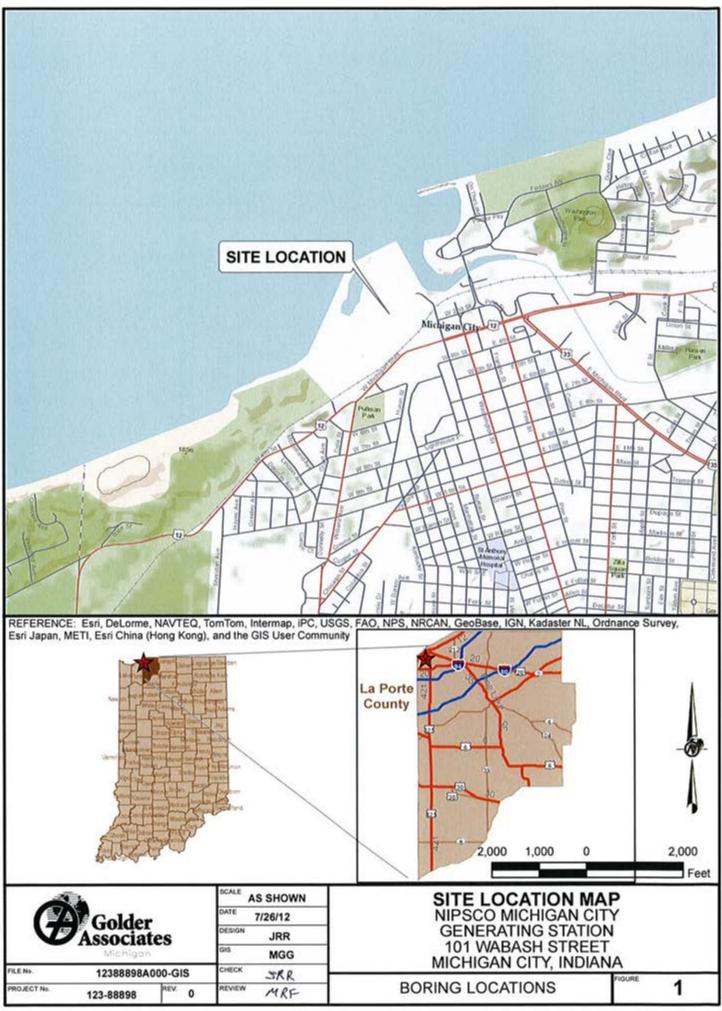
It is recommended that operations and maintenance include regular periodic observations and documentation of the embankments and sheet pile walls at the site.

GOLDER ASSOCIATES INC.

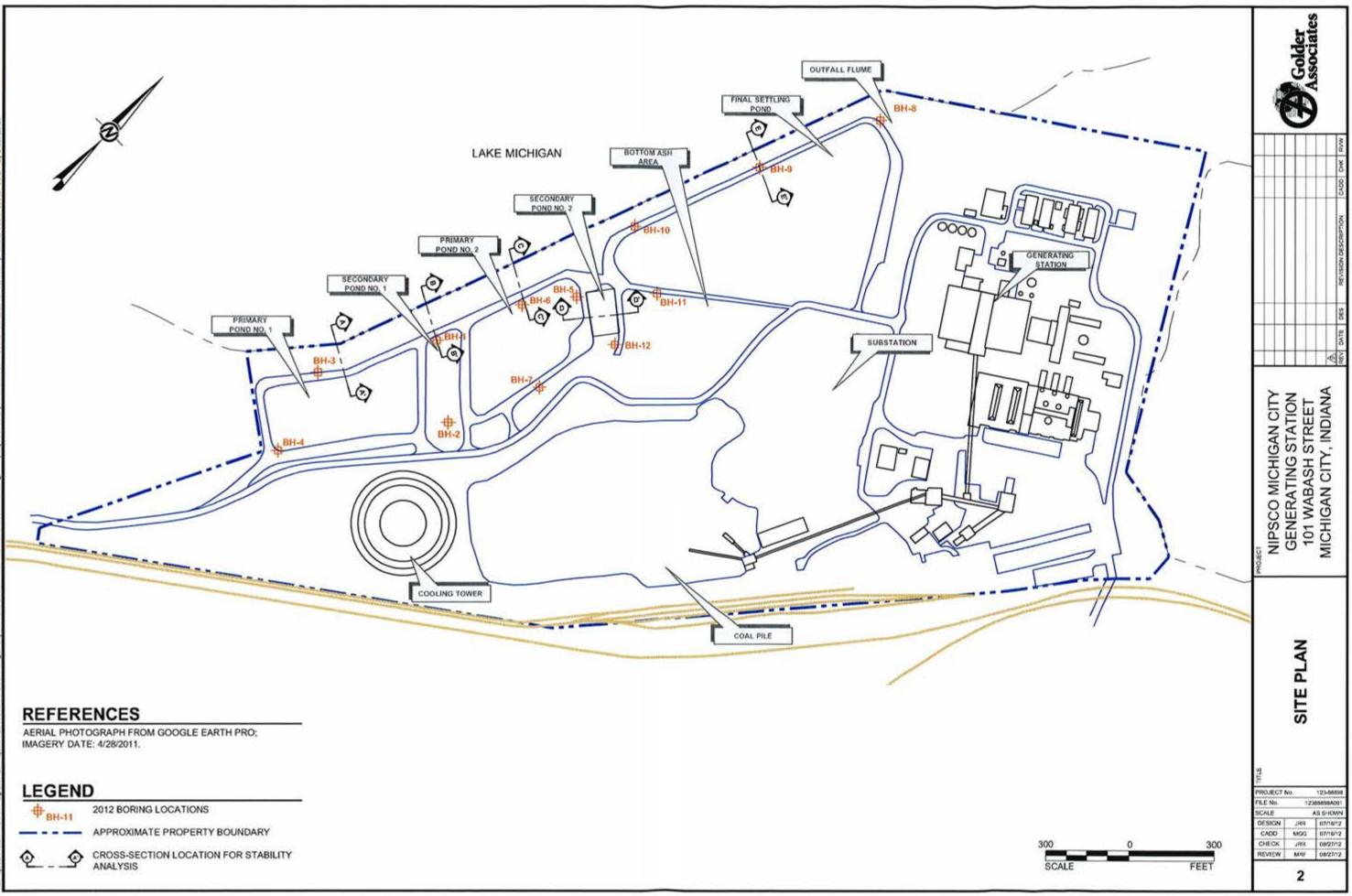
J. Bobby Reese, P.E. Project Engineer

Wallus

Matt J. Wachholz, P.E. Senior Engineer


Jah R Jukhow

Mark R. Funkhouser, P.E. Principal


JRR/MJW/MRF

EPA ARCHIVE DOCUMENT

LOCATEDA EXAMPLE.m.

APPENDIX A

Hollow Stem Auger Boring Logs and Historic Boring Information

PR	OJE	JECT No.: 123-88898		RE	C	DR	D	OF	AU	GEI	RH	IOL	.E: E	3H-1					sł	IEET 1 OF 1
PR	OJE	NT: NIPSCO JECT: MCGS Geotechnical Investigation						DR	ILLING		E: JI	UNE 2	6, 2012						DATU	JM: Geodetic
		ATION: 93,965 E: 4989.3142						DR	ILLING	CON	TRA	CTOR	EART	H EXPL	ORATIC	N				
		- 1						ATION: DYNAN		JETRA	TION		<u> </u>	HYDR		ONDUC				
DEPTH SCALE FEET	B	C SOIL PROFILE	F		SA	MPLE	_	RESIST	ANCE	BLOW	/S/ft		\mathbf{V}		k, cm/s]	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
H SC	N N N		STRATA PLOT	LEV.	BER	ᆔ	BLOWS/	24 SHEAR		40 NGTH	60	8 V. +			L	1	PERCE	0 ⁻³ —	TEST	THERMISTOR INSTALLATION
DEPT			TA DE	EPTH (ft)	NUMBER	ΒŁ	BLOV	Cu, psf		iii iii	ren	n V. ⊕	Q-● U-○				I		ADC ABC	
<u> </u>	ă.					_		40	0 8	300	1200	0 16	00	1	<u>o :</u>	<u>20 _:</u>	30 4 	40 		
- º	\square	Ground Surface Gravel, coarse SAND, dry [FILL]	544	309.40 308.40																
		Medium dense, light brown, fine-medium SAND, dry [FILL]		1.00										0						1
-																				-
5																				-
[]														l .						-
-																				-
Ē		Medium dense, light brown, fine-medium SAND, moist [FILL]		500.90 8.50																-
- 10		fine-medium SAND, moist [FILL]																		-
		Stiff, gray, CLAY, moist, medium	7777	598.10 11.50										0						
-		V plasticity, cohesive [FILL]															1			-
- 15		SAND, moist, trace ash [FILL]																		-
- 13																				-
-																				-
-		Medium dense, brown, fine-medium		590.90 18.50															1	-
		SAND, wet, trace ash [FILL]	а. Та																	_
— 20																				
- 25 	jer Dri			585.90																-
25	Del Auc	Medium dense, brown, fine-medium SAND, moist, trace ash/clay (FILL)		23.50																
-	Mount	Silows																		-
	Track	Ť		580,90				· ·												-
- 30		Loose, dark gray, fine SAND, trace clay, wet [NATIVE]		28.50												0				-
30																				
-																				-
								1												-
35		Stiff, gray, CLAY, low plasticity,		574.90 34.60																-
-		Cohesive (NATIVE) Dense, gray, coarse SAND, trace small gravel, wet (NATIVE)																		
5[]-		small gravel, wet [NATIVE]		570.90																
-		Medium stiff, gray, SILTY CLAY, low to medium plasticity (0.75 TSF - Pocket		38.50												b —	÷.			-
40 -		Pen) [NATIVE]																		
2-																				-
																				1
45															1					-
																				1
1				coo																-
- 50		Medium dense, gray, fine SAND, wet, trace clay [NATIVE]		560.40 559. <u>40</u>]					_										-
		End of Boring] [50.00																
		End of Augerhole,																		
55																				-
	1				I			 ;	Ent.					<u> </u>				<u> </u>	<u> </u>	L
DE	PT	TH SCALE							S.	fold	ler	•						GED: JR		
11	n to	o 7 ft						V	A	Gold Soc	ial	tes					CHECH	KED: MF	₹F	

PROJECT No.:	123-88898
CLIENT: NIPSO PROJECT: MC LOCATION:	O SS Geotechnical Investigation

RECORD OF AUGERHOLE: BH-10

SHEET 1 OF 2

DATUM: Geodetic

N: 6221.52 E: 5244.6484

y	QH	SOIL PROFILE	1.		SA	MPL		ATION: -90° DYNAMIC PENETRATION RESISTANCE, BLOWS/ft	٢	HYDRAULIC COND k, cm/s	<u>јстмпч,</u>	4g	PIEZOMETER, STANDPIPE
PEET	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	NUMBER	TYPE	BLOWSA	20 40 60 80 SHEAR STRENGTH nat V. + Cu, psf rem V. ⊕ 400 800 1200 160	Q-● U-O	10 [*] 10 [*] WATER CONTI Wp 	10 ⁻¹ 10 ⁻³ ENT PERCENT W 30 40	ADDITIONAL LAB. TESTING	OR THERMISTOR INSTALLATION
0	_	Ground Surface		592.71					×		 		
		Gravel, sand, hard, dry [FILL]		0.00 590.71 2.00									1" Solid PVC with bentonite chip seal
5		[FILL] Loose, brown/gray, fine to medium SAND, moist, Irace gravel and ash [FILL]		589.21 3.50						0			7/2/2012 ⊻
		Very loose, brown/black, fune to medium SAND, wet, some ash [FILL]		586.71 6.00									1" Solid PVC with filter sand
10		Loose to medium dense, gray, fine to medium SAND, wet, trace to fittle ash [FILL]		<u>581.71</u> 11.00						0			1" Slotted PVC with filter sand
20	Truck Mounted Auger Drill Hollow Stem Auger	Medium dense, brown/gray, fine to medium SAND, trace astr/wood/brick [FILL]		<u>569.21</u> 23.50						0			1" Slotted PVC with filter sand
30		Very stiff, gray, SILT, wet, cohesive, non plastic (NATIVE)		564.21 28.50								-	
35		Stiff, gray, CLAY, Tow to medium plasticity, moist [NATIVE]		559.21 33.50						t o			
40	L			1		+ -	-			┠──┝─┾─			
	TH S	SCALE	1	1	L	1		Golder			LOGGED: JR CHECKED: MR		1

RECORD OF AUGERHOLE: BH-10

/estigation

DRILLING DATE: JUNE 29-JULY 2, 2012 DRILLING CONTRACTOR: EARTH EXPLORATION

SHEET 2 OF 2

DATUM: Geodetic

┝		Т							ATION:		NETOA		~	HYDE	AULIC C					
	μ		BORING METHOD	SOIL PROFILE			SAM	PLES	DYNAN RESIST		E, BLOV	VS/ft	L		k, cm/s	5			2g	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
	DEPTH SCALE FEET		Ψ.		STRATA PLOT		ස .	. <u>,</u>	20		40	60	80		1	1	1	10-3	ADDITIONAL LAB. TESTING	THERMISTOR
	들뿐		2	DESCRIPTION		LEV. EPTH	NUMBER	BLOWSA	SHEAR Cu, psf	STRE	ENGTH	nat V. rem V	+ Q.● ⊕ U.O		ATER C				B. TO	INSTALLATION
	ä		8 8		TRA	(ft)	₹ '	5						1 44	р —			I WI	I ≰₹	
┢		╈	-		0				40	0	800	1200	1600	11		20	30	40		
┢	- 40	┝	тł	Stiff, grav, CLAY, low to medium		_		-			-	-					+			
F				Stiff, gray, CLAY, low to medium plasticity, moist [NATIVE] (continued)												ļ				
ſ																				
ł																Í				
┝																				
	- 45	;																		
ſ																				
21/2		1																		
- -																				
Å.																				
XY.GL															0 - -					
BRA	- 50	'																		
																	ļ			
CRE														1						
8:/																				
Э Б																			1	
1410 1410																				
38 2	- 55	_																		
AM		Truck Mounted Auger Dril	١.																	
影		Aug	Ĩ																	
REG		1 Per	k Stel																	
elle:		N N N	Hollow Stem Auger																	
Ē			1	Very hard, gray, fine SILTY CLAY AND SANDY SILT, some silt/clay, wet		533.51 59,20										0				
ARD)	- 60)		AND SANDY SILT, some sift/clay, wet [NATIVE]																
е ЧСГШ								1												
ORET					28.2															
E.				Stiff to hard gray. CLAY low to	111	529.21 63.50	1													
				Stiff to hard, gray, CLAY, low to medium plasticity, moist [NATIVE]																
ā	- 65	;																		
CCS.																				
CIN																				
3																				
180																				
NRIO -						523.31														
1320	- 70			Very dense, gray, fine SAND, some silt, wet [NATIVE]		69.40														
					× .															
FOR																				
80				 		519.21								1						
NOF -				Very stiff, gray, CLAY, medium plasticity, moist [NATIVE]		73.50									p-	4				
ESTIG	- 75	; -	Ц	End of Boring		517,71 75.00		_										_	<u> </u>	_ 23
N H																				
EOTEC				End of Augerhole.																
880																1				
M OS														1						· · ·
							1											ļ		· ·
11238.889	- 80	>																		-
										 Fa					<u> </u>					I
12X-PH	D	EPI	TH S	CALE							Gal	ler					LOG	GED: J	RR	
File:Pi	1	in to	⊳5ft						V	A	<u>SSOC</u>	ler iates	i			_	CHEC	KED; M	IRF	
	_	_																		

PROJECT No.: 123-88898
CLIENT: NIPSCO PROJECT: MCGS Geotechnical Investigation LOCATION:

RECORD OF AUGERHOLE: BH-11

SHEET 1 OF 1

DATUM: Geodetic

N: 6128.82 E: 5407.4322

DESCRIPTION Sround Surface Gravel, coarse sand, gray, hard, dry [FILL] Hard, gray, coarse SAND and GRAVEL, dry [FILL] Very loose, brown, fine SAND, wet, trace ash [FILL]		LEV. Department of the second		BLOWSWI	20 SHEAR STF Cu, psf 400	ENGTH	60 8/ nat V. + rem V. ⊕ 200 16/	Q-● U- O	Wp 10	TER CC		PERCEN		ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
Gravel, coarse sand, gray, hard, dry [FIL] Hard, gray, coarse SAND and GRAVEL, dry [FIL] Very loose, brown, fine SAND, wet,	5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	594.86 0.00 593.86 1.00			400	800 1	200 16	00							
Gravel, coarse sand, gray, hard, dry [FIL] Hard, gray, coarse SAND and GRAVEL, dry [FIL] Very loose, brown, fine SAND, wet,		0.00 593.86 1.00								0					
Hard, gray, coarse SAND and GRAVEL, dry [FILL] Very loose, brown, fine SAND, wet,		1.00								0					
Very loose, brown, fine SAND, wet,	1999 1999 1999 1999 1999 1999 1999 199	588.86								0					
Very loose, brown, fine SAND, wet, trace ash [FILL]	5	588.86 6.00								,					
trace ash (FILL)															
											0				
Medium dense, gray, fine SAND, wet [FILL]		581.36 13.50													
Loose, black ASH, wet [FILL] Very loose, gray, fine SAND, wet, trace ash [possible FILL]	5	575.86								0					
Loose, gray, fine to coarse SAND, wet, little small gravel [NATIVE]	5	571.36 23.50													
Medium stiff, gray, CLAY, trace small gravel, moist [NATIVE] End of Boring End of Augerhole.	6	29.00 64.86								e	4				
	FILL]	FILL]	FILL] 576.36 .cose, black ASH, wet [FILL] 575.86 /ery loose, gray, fine SAND, wet, race ash [possible FILL] 19.00 .cose, gray, fine to coarse SAND, wet, race ash [possible FILL] 571.36 .cose, gray, fine to coarse SAND, wet, race small gravel [NATIVE] 23.60 Medium stiff, gray, CLAY, trace small gravel, moist [NATIVE] 565.86 End of Boring 30.00 End of Augerhole. 30.00	FILL] 576.38 .coose, black ASH, wet [FILL] 575.88 /ery loose, gray, fine SAND, wet, race ash [possible FILL] 571.36 .coose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 571.36 .coose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 Medium stiff, gray, CLAY, trace small gravel, moist [NATIVE] 565.86 .coose, gray, fine to coarse statul gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse statul gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse statul gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse statul gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse statul gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse statul gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse statul gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse statul gravel, moist [NATIVE] 566.86 .coose, gray, fine to gray, fine	FILL] 576.36 .cose, black ASH, wet [FILL] 575.86 /ery loose, gray, fine SAND, wet, race ash [possible FILL] 19.00 .cose, gray, fine to coarse SAND, wet, ittle small gravel [NATIVE] 571.36 .cose, gray, fine to coarse SAND, wet, ittle small gravel [NATIVE] 565.86 Medium stiff, gray, CLAY, trace small gravel, moist [NATIVE] 565.86 End of Boring 30.00 End of Augerhole. 40	FILL] 576.36 .coose, black ASH, wet [FILL] 575.86 /fery loose, gray, fine SAND, wet, race ash [possible FILL] 13.00 .coose, gray, fine to coarse SAND, wet, race ash [possible FILL] 571.36 .coose, gray, fine to coarse SAND, wet, race small gravel [NATIVE] 565.86 .coose, gray, fine to coarse SAND, wet, race small gravel [NATIVE] 566.86 .coose, gray, fine to coarse SAND, wet, race small gravel [NATIVE] 566.86 .coose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse small gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse small gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse small gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse small gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse small gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse small gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse small gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse small gravel, moist [NATIVE] 566.86 .coose, gray, fine to coarse small gravel, moist [NATIVE] 566.86 <	FILL] 576.36 coose, black ASH, wet [FILL] 675.86 /ery loose, gray, fine SAND, wet, race ash [possible FILL] 13.00 coose, gray, fine to coarse SAND, wet, ittle small gravel [NATIVE] 571.36 /eryl noist [MATIVE] 566.86 /eryl, moist [MATIVE] 566.86 ind of Boring 30.00 ind of Augerhole. 30.00	FILL] 576.36 Loose, black ASH, wet [FILL] 675.86 /ery loose, gray, fine SAND, wet, race ash [possible FILL] 975.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 571.36 /eddium stiff, gray, CLAY, trace small 23.50 /eddium stiff, gray, CLAY, trace small 29.00 /eddium stiff, gray, CLAY, trace small 29.00 /eddium stiff, gray, CLAY, trace small 20.00 /eddium stiff, gray, CLAY, trace	FILL] 576.36 .oose, black ASH, wet [FILL] 576.36 fery loose, gray, fine SAND, wet, race ash [possible FILL] 15.00 .cose, gray, fine to coarse SAND, wet, race ash [possible FILL] 571.36 .cose, gray, fine to coarse SAND, wet, race small gravel [NATIVE] 571.36 .cose, gray, fine to coarse SAND, wet, race small gravel [NATIVE] 665.86 .cose, gray, fine to coarse SAND, wet, race small gravel [NATIVE] 566.86 .cose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 566.86 .cose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 665.86 .cose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 566.86 .cose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 665.86 .cose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 566.86 .cose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 665.86 .cose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 665.86 .cose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 665.86 .cose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 665.86 .cose, gray, fine to coarse SAND, wet, race small gravel, moist [NATIVE] 665.86	FILL) 576.36	FILL] 576.36	FILL] 576.36 .cose, black ASH, wet [FILL] 575.86 /rev loose, gray, fine SAND, wet, race ash (possible FILL) 571.36 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 571.36 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86 .cose, gray, fine to coarse SAND, wet, title small gravel [NATIVE] 565.86	Jose, Black ASH, wet [FILL] 576.36 Jose, Black ASH, wet [FILL] 575.86 Jery Losse, gray, fine SAND, wet, race ash (possible FILL) 19.00 Jose, gray, fine to coarse SAND, wet, race ash (possible FILL) 571.36 Jose, gray, fine to coarse SAND, wet, race and gravel [NATIVE] 552.60 Jedium stift, gray, CLAY, trace small 565.86 Jedium stift, gray, CLAY, trace small 565.86	FIL] 576.36 .cose, Black ASH, wet [FIL] 576.36 /rep (bose, gray, fine to coarse SAND, wet, race ash (possible FIL)] 19.00 .cose, gray, fine to coarse SAND, wet, race small race ash (possible FIL)] 571.36 .cose, gray, fine to coarse SAND, wet, race small race ash (possible FIL)] 571.36 .cose, gray, fine to coarse SAND, wet, race small race ash (possible FIL)] 571.36 .cose, gray, fine to coarse SAND, wet, race small race ash (possible FIL)] 571.36 .cose, gray, fine to coarse SAND, wet, race small race ash (possible FIL)] 571.36 .cose, gray, fine to coarse SAND, wet, race small race ash (possible FIL)] 565.86 .cose, gray, fine to coarse SAND, wet, race and race ash (possible FIL)] 765.86 .cose, gray, fine to coarse SAND, wet, race and race ash (possible FIL)] 765.86 .cose, gray, fine to coarse SAND, wet, race and race ash (possible FIL)] 765.86 .cose, gray, fine to coarse SAND, wet, race and race ash (possible FIL)] 765.86 .cose, gray, fine to coarse SAND, wet, race and race ash (possible FIL)] 765.86 .cose, gray, fine to coarse SAND, wet, race and race ash (possible FIL)] 765.86 .cose, gray, fine to coarse SAND, wet, race and race ash (possible FIL)] 765.86 .cose, gray, fine to coarse SAND, wet, race and race ash (possible FIL)] 765.86 .cose, gray, fine to coarse SAND, wet, race ash (possible FIL)] 7	FIL] 576.35

CLI	ENT:	T No.: 123-88898 NIPSCO TT: MCGS Geotechnical Investigation		RE	cc	R	D		DATE:	JUNE 28	3, 2012							IEET 1 OF 1 JM: Geodetic
		5143 E; 5504.8938				0.17			CONTF	RACTOR	EART	H EXPLO	ORATIO	N				
	8	SOIL PROFILE			SA	MPL		ATION: -90° DYNAMIC PENI RESISTANCE, I		DN /ft	1		ULIC CC k, cm/s	NDUCI	INITY,	Т		PIEZOMETER,
DEPTH SCALE FEET	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	NUMBER	түре	BLOWS/IT	20 4 SHEAR STREN Cu, psf 400 80	0 6 GTH r r	30 8 (Q-● U- ○	10 W/	ATER CO		0 ⁻¹ 10 J. 1 PERCEN 	IT Vi	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
		Ground Surface		595.41 0.00														
		Gravel, ash (FILL) Gravel, ash, some sand, dry (FILL)		594.41														
-		Medium dense, light brown, fine SAND, dry [FILL]		593.66 1.75 591.91								1						1* Solid PVC with bentonite chip seal
- 5		Very loose to loose, brown, fine SAND, wet, some bottom ash [FILL]		3.50								0						
-				-														1" Solid PVC
-		Loose to medium dense, dark gray/brown, fine SAND, wet [FILL]		586.91 8.50	-													7/2/2012
— 10 -											Ì			р				
-																		
- 15								-										
-	Ę																	
- 20	Track Mounted Auger Drill Hollow Stem Auger																	
-	Track Moun Hollows								1									
-		∖ Stiff, gray, SILT, low plasticity, moist ∖ [FILL] /		<u>571,91</u> 23.70										0				
- 25		Stiff, gray, SILT, non plastic, cohesive, trace fine sand, wet [possible FILL] Dense, gray, fine SAND, little sit/clay,	ľ	570.51 24.90														
-		wet [NATIVE]																
- 30																		
-													-					NUT I
-														0				
⊢ 35 -																		
-				556.4												-		N. W. W.
- 40		Very stiff, gray, SILT, wet [NATIVE] End of Boring		39.00 555.4 40.00	1									р 		<mark>ب</mark>		
-		End of Augerhole.																
- 45									1									-
												<u> </u>						
	PTH 1 to 6	SCALE ft						() As	olde soci	er ates					LOGG CHECK	ed: JF Ed: MF		

	P	ROJI	ЕСТ	No.: 123-88898		RE	C	OF	٢D	OF	AUG	GER	HO	LE: E	3H-2					SH	EET 1 OF 1
	PI LC	ROJI CA	ECT FIOI	VIPSCO : MCGS Geotechnical Investigation V: 186 E: 5263.828										26, 2012 R: EART		ORATIC	N			DATU	M: Geodetic
		6		SOIL PROFILE			SA			DYNA	: -90° MIC PEN STANCE,	ETRATI	ON)	HYDR		ONDUC	TIVITY,	т		PIEZOMETER,
	DEPTH SCALE FEET	BORING METHOD			Į01		Б		¥		20 4	0	60	80		1	0 ⁻⁵ 1	1 -	₀₋ ، 1	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
	DEPTI	ORING		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	NUMBER	TYPE	BLOWS/#	SHËA Cu, p	R STREI	igth	nat V. – rem V. é	+ Q. ● 9 U- O		ATER C				ADDI TABDI	NOTALLATION
	a	+	'		5	601.38		┢	_	4	00 8	0 <u>0</u> 1	2001	1600		0 2	20	30 4			
	 			Dark brown, Sand/slag, trace gravel and ash [FILL] Light brown, Fine SAND, dry, trace gravel/ash [FILL]		600.38 1.00									0						
	- 5 			Loose Auto Mark annual de (FD 11		594.48									0		-			:	-
21/228	- 10			Loose, Ash, black, coarse, dry [FILL] Loose, light brown, fine SAND, dry [FILL]		7.20															-
, Rees	-																0				
utanya Katulari Katul	- 15 - -			Loose, fine,gray SAND with Marl		584.08															
	- 20 			Inconsible Cill 1		582.88 18.50 581.58 19.80											-	-1	0		-
OLE (STANDARD) Tempaneric RECION TEMPLATE BETA 1.GOT	- - 25 -	B	Hollow Stern Auger	Medium dense, gray, medium to coarse SAND, wet, little small gravel [NATIVE]		579.63 21.75						:				0					
EHOLE (STANDARD) Ten	- - 30 		Ŷ	Dense, gray, fine to fedium SAND, wet, trace gravel [NATIVE]		572.38 29.00															
S.GPJ Output Form:806	- - 35			Medium, gray, SILTY CLAY, trace sand, moist, low to medium plasticity		567.38 34.00															
SOMISSOT TIMA-SS	- - -			[NATIVE]												B-					
NERO BORN	40 - - -																	-			-
ALPHIXX-PROJECTS12880888 NIPSCO MICGS GEOTECH INVESTIGATIONNOO FIELD INFORMATIONNOO BORNIGS-MELL LOCISMICGS, GPJ ONDA	- 45 - -			Medium dense, Gray, Fine SAND, wet, trace sit [NATIVE] Medium stiff, gray, SILTY CLAY, trace sand, moist [NATIVE]		556.88 44.75															
COS GEOTECH INVES	- - 50 -		-//	Medium dense, gray, fine SAND, wet [NATIVE] / stiff, gray, SILTY CLAY, medium plasticity, moist [NATIVE]		<u>552.13</u> 50.00										Đ		-			
WOOS-HIN SOMETICE	- - - 55			End of Boring End of Augerhole.																	
Terrorect		EPTI- n to 3		ALE	ı. —		4 - - -	•		Ć	As	olde	er					LOGO	ED: JR		

PROJECT No .:	123-88898
CLIENT: NIPSC PROJECT: MCC LOCATION:	O 3S Geotechnical Investigation

RECORD OF AUGERHOLE: BH-3

SHEET 1 OF 2

DATUM: Geodetic

N: 5132.6034 E: 4778.414

" Ī	₽	SOIL PROFILE			SA	MPL		ATION: -90° DYNAMIC PENETRATION RESISTANCE, BLOWS/ft	1	HYDRAULIC CC k, cm/s	NDUCTIVITY, T	ξĘ	PIEZOMETER, STANDPIPE
UEP IN SUALE	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	NUMBER	түре	BLOWS/	20 40 60 SHEAR STRENGTH nat V. Cu, psf rem V. 400 800 1200		10 ⁻⁶ 10 WATER CC Wp I 10 20		ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
0		Ground Surface Gravel and gray sand, dry [FILL]		609.73 0.00									
		Medium dense, light brown, fine SAND, dry, trace clay and small gravel [FILL]		608.73 1.00									
5										0			
		Very loose to loose, light brown, fine SAND, dry, trace clay [FiLL]		603.73 6.00									
10				598.73									
		Very loose to loose, light brown, fine SAND, dry [FILL]		11,00									
15										0			
	Ē												
20	ick Mounted Auger (Hollow Stern Auger												
	- Tac	Dense, light brown, fine SAND, dry [FILL]		586.23 23.50						0			
25						-							
		Loose, light brown, fine SAND, wet [FILL]		581.23 28.50									
30									i				
35		Dense, brown, fine to medium SAND, some small gravel, wet [possible FILL]		576.23 33.50	<u>1</u>								
		Very dense, gray, fine to medium SAND, wet [NATIVE]		571,23 38.50									
40	_L			; 	-	+-	-	<u> </u>		+	┤──│ ─ - │ ─ - │	-	_
DE	ртн	CONTINUED NEXT PAGE		I		ļ	<u> </u>	Golder			LOGGED; JI	. <u> </u> 88	

PROJECT No.: 123-88898 CLIENT: NIPSCO PROJECT: MCGS Geotechnical Investigation LOCATION:

RECORD OF AUGERHOLE: BH-3

SHEET 2 OF 2

DATUM: Geodetic

N: 5132.6034 E: 4778.414

							IN	CLIN	ATION	: -9 0°					-						
	ц	B	SOIL PROFILE			s/	AMPL	.ES	DYNA RESI	MIC P STANC	ENE E, B	TRATIC	DN /ft	1	HYDR	AULIC C k, cm/s	ONDUC	TIVITY,	Т	ە, ا	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
.	DEPTH SCALE	BORING METHOD		6		~		_		20	40			80					_ю , Т	ADDITIONAL LAB. TESTING	OR
	ΞË	2	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWSA	SHEA	RSTR			1	- Q- O		ATER C	1	1		ĮĔΫ.	INSTALLATION
	h.	NR N	DESCRIPTION	₩.	DEPTH	Ĩ,	≿	١ <u>ڳ</u>	Cu, p	sf		г	em V. ∉	9 U- O	w	'p I			wi	₽8	
Ľ	-	ă		딩	(ft)	_			4	100	800) 12	200 1	600					40		
L	40																				
Г	40		Very dense, gray, fine to medium SAND, wet [NATIVE] (continued)		:		-								T						
F			SAND, WELINATIVEJ (COMMOND]						ł										-
F																					-
L							1														
F								1													-
┢	45																				_
L													-								_
					1																
					1																-
ŀ																					-
																					_
	50																				_
																					-
<u>-</u>																					-
																					-
	55														1						_
		₹.																			
		Vuger						İ.													
		Track Mounted Auger Drill Hollow Stem Auger																			-
		10 NO		1.2]			-
		송 문																			_
		Ĕ																			
	60									1											
-																					-
					1		1														_
					1																
i-																	þ				_
-	65																				_
																					-
																					-
-																				1	-
			Maridana and fas CâNDuith	11.1	040.73																-
	70		Very dense, gray, fine SAND with SILT, trace clay, non plastic, wet [NATIVE]		05.00																
	10		[NATIVE]																		
				, , , , , , , , , , , , , , , , , , ,																	-
ŀ]																-
																			1		-
			Very stiff gray SILTY CLAY low to	11	536.23																
			Very stiff, gray, SILTY CLAY, low to medium plasticity, moist, 2.5 TSF pocket pen [NATIVE]													ю—					-
⊢	75	<u> </u>	End of Boring	-4///	534.73 75.00	-	\vdash	\vdash		+								-	-	1	
ŀ			End of Augerhole.			1		1						1					1	1	-
			Enu of Augemole.			1				[
						1				[1					-
ŀ						1								1	1	1		1	1	1	-
1						1								1		1		1	1	1	-
	80				1	1	ĺ			[1				1	
	30					1														1	_
ł			I	_	1	1	<u> </u>	l					I	1 .	1	1	1	1	l	1	<u> </u>
	DE	PTH S	SCALE							X.	~							LOGO	SEO; JRI	R	
		n to 5 1							U		60		r tes					CHECK	ED: MR	F	
											0.016										

PR	OJE	CT No.: 123-88898	-	RE	CC)F	RD	OF	AU	GEI	RHO	DLE	E: 8	3H-4					SI	HEET 1 OF 1	
PR	OJE	: NIPSCO CT: MCGS Geotechnical Investigation							RILLING										DATU	JM: Geodetic	
		ON: ,3032 E: 4833.2054								CON	TRAC	TOR: E	EARTI	H EXPL	ORATIC	IN					
u u	8	SOIL PROFILE			SAM			ATION: DYNA RESIS		ETRA	TION /S/ft	```	1	HYDR	AULIC Co k, cm/s	ONDUC1	IVITY,	Т		PIEZOMETER, STANDPIPE OR	
DEPTH SCALE FEET	BORING METHOD		Го Го	_	æ		¥	2	0	40	60 L	80	`		0 ⁻⁶ 1)* 1	i	_{0³} ⊥	ADDITIONAL LAB. TESTING	OR THERMISTOR INSTALLATION	
EPTH FTH	RING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	μ	BLOWS/ft	SHEAF Cu, psi		NGTH	nat V. rem V	. + 0 /.⊕ U	<u>}:</u>		ATER CO				ADDI AB. TI	INSTALLATION	
	ä		ST	(ft)	\square	_		4(00 8	100	1200	1600)					10 			
- 0		Ground Surface Slag, gray ash (FILL)		609.35 0.00 608.35		_						+									
-		Medium dense, light brown, fine SAND, dry, some silt/clay seams from 3.5' to 6' [FILL]		1.00										0							
-		3.5' to 6' [FILL]																			-
F																					
- 5																					
-																				1" Solid PVC	-
-																				with bentonite chip seal	-
- 10														0							
-		Medium dense, light brown, fine		598.35 11.00																	-
-		SAND, moist, trace ash [FILL]																			-
-																					
- 15														0						1" Solid PVC with bentonite chip seal	1
-																				1" Solid PVC	
	Ţ			690.85																	
-	Auger D	Medium dense, light brown, fine SAND, wet, trace ash [FILL]		18.50														1		7/2/2012 1" Slotted PVO with filter sand	-
- 20	ounted /	Medium dense, light brown, fine SAND, wet, trace ash [FILL] Soft, gray, fine SANDY SILT, wet,		588.35																with filter sand	-
	Track Mounted Auger Drill	Soft, gray, fine SANDY SILT, wet, trace clay [NATIVE]		21.00																	
-																					****
-															н			60	•		210-1V
- 25																					
-		Loose, dark gray, fine to coarse	111	582.35 27.00																	
F		SAND, wet, trace clay [NATIVE]																			
30																					
-																					
Ē																			1		
Ę		Medium dense, brown, medium SAND to small gravel, wet, trace clay		575.85 33.50												0					- 11.41
- 35		(NATIVE)																			
-																					
ŀ																					arrite
F				569.35																	
- 40	ľ	End of Boring		40.00						-	1										-
F		End of Augerhole.																			-
F																					-
- 45																					_
DE	PTH	SCALE						Â		<u>ل</u> اما	0 2						LOGG	ed: Jr	R		
11	n to i) ft						Z	As	ruių soci	er ate	6					СНЕСК	ed; Mr	F		

PROJECT No.: 123-88898 CLIENT: NIPSCO PROJECT: MCGS Geotechnical Investigation LOCATION: N: 6000.1833 E: 5296.855

RECORD OF AUGERHOLE: BH-5

SHEET 1 OF 1

DATUM: Geodetic

		r			ATION: -90°			INCOLU	00000000	6/ITY			
Ş			SAMPL	.ES	DYNAMIC PENETRA RESISTANCE, BLOW	S/R		k, ci			T ₹₿	PIEZOMETEF STANDPIPE OR THERMISTOI INSTALLATIO	₹, :
FEET SORING METHOD	SOIL PROFILE	LOTA PLOT ELEV. DEPTH (ft)	<u>در</u>	₩S	20 40	60 80	<u> </u>	10-6	10 ⁶ 10		ADDITIONAL LAB. TESTING	THERMISTO	R
1 2	DESCRIPTION		NUMBER	BLOWS/A	SHEAR STRENGTH Cu, psf	natV. + Q rem V.⊕ U	:0				ADO!		
	0	STR (#)	z	<u></u>	400 800	1200 1600		10	20 3				
₀∟	Ground Surface	609.40		ļ							-	P	ज्य
	Gravel, small, dry, some sand/slag [FILL]	607.90											Ň
	Very loose to loose, brown, fine SAND, dry [FILL]	1.50											š
													N.
5													
								0					Ň
		600.90						_					÷.
	Very loose to loose, brown, fine	. 8.50										1" Solid PVC with bentonite	÷,
10	SAND, wet [FILL]											chip seal	Å
													i.
													Ń
								0					1
15													
													12123
												7/2/2012	100
20												1" Solid PVC - with filter sand	ľ
통												1" Slotted PVC with filter sand	
55 Track Mounted Auger Drill	2 Dense, brown, fine to medium SAND,	585.90							6				
25 P	Dense, brown, fine to medium SAND, wet, trace ash [FIL1] Very dense, gray, GRAVEL/SLAG, wet, trace sand [FIL1] Strace sand [FIL1]	24.50							Ĭ				
K Mo	3 1 wet, trace sand [FIL1] / 2 2 Very dense, brown, fine to medium												
Ē	sand, wet, trace ash [FILL]	580,90											1
	Medium dense, black ASH, wet [FILL]	28.50							0				
30													1.1.1.
													1.4.1
	Very loose, brown fine SAND, wet,	575.90											in the l
35	trace ash [FILL]	574.90 34.60							0				والمرارية
	Loose, black ASH, wet [FILL] Very loose, brown fine to medium												in the
	SAND, wet, some ash [FILL]												1 and a
	Hard, fine to coarse SAND,	570,90 38.50											
40	brown/gray, wet [NATIVE]												1.1.1
													الم الل
		565.90											Col
	Medium dense, gray, fine to medium sand, wet [NATIVE]	43.50											ليقادم فتقلب الشامير فكالمسارك
45													1.1.1
													والمنشلية
													LAY A.
50	End of Boring	559.40							0	╄━┉┼─			Ę
	End of Augerhole.	22.00											
												ļ	
55													
	i	1						L	1			L	
	PTH SCALE				Gold	er				LOGGED CHECKED:			
1 in to	to 7 ft				Assoc	lates							_

			T No.: 123-88898		RE	C	OF	۶D	OF	AU	GEF	RHOL	.E: E	3H-6	;				Sł	HEET 1 OF 1	
F	PRO		NIPSCO T: MCGS Geotechnical Investigation N:									; JUNE 2 RACTOR				NI			DATU	JM: Geodetic	
			477 E: 5130.5199				INC	CI IN	ATION:		CON	NACIO		n carl	ORATIC	лч					
щ	T	độ	SOIL PROFILE			SA	MPL	_	DYNA	MIC PEN TANCE,	BLOW	ION S/ft	1	HYDR	AULIC C k, cm/s	ONDUCT	rivity,	T	ەر	PIEZOMETER	₹.
DEPTH SCALE	ī	BORING METHOD		PLOT		н.		Ψ.			40	1	30		0* 10	· ·	1	_{0³} ⊥	ADDITIONAL LAB. TESTING	PIEZOMETER STANDPIPE OR THERMISTOI INSTALLATIO	R
HL	-	RING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWSA	SHEAI Cu, ps	R STREI	NGTH	natV.+ remV.⊕	0-0 U-0		/ATER C/ p	INTENT WO			ADDIT AB. T	INSTALLATIO	11
		BO		STR	(ft)	Ĺ		•	4	<u>90 8</u>	00	1200 10	500					0			
-	0	Т	Ground Surface Sand/Gravel, gray, coarse, dry [FILL]	***	609.61 608.61		_													B	
			Dense, gray, coarse SAND and GRAVEL, dry [FILL]		1.50																
-			Very loose to loose, light brown, fine to medium SAND, dry to moist [FILL]																		
L	5													0							
-																					
-																					
<u>.</u> -																				1" Solid PVC with bentonite	
- 1	0				598.61															chip seal	- 1
-			Medium dense to dense, light brown, fine to medium SAND, moist [FILL]		11.00																-
-																					
- 1	5																			1* Solid PVC with bentonite chip seal 7/2/2012	
	1																			Letet	
-			M		591.11																-
- 2	0		Very loose, brown, fine to medium SAND, wet [FILL]		10.50											0				1" Solid PVC with filter sand	
-																					
	ļ				586.11															1" Slotted PVC with filter sand	HI.
-		Track Mounted Auger Drill Hollow Stem Auger	Very loose to medium dense, gray, fine to medium SAND, wet [FILL]		23.50															:	
2	5	Mounte Ilow Ste							-												
: -		H ISCK																			
-					1											0					
- 3 -	0																				
-																					
			Very loose, black/dark gray, bottom		576.11 33.50												0				
- 3	5		ASH and fine to medium SAND, wet [FILL]																		
_																					
-															ļ						
– 4	0		Medium stiff to stiff, gray, SILTY		569.86 39.75										1						
F			CLAY, moist, trace sand/gravel, medium plasticity, 2.5 TSF pocket pen																		
F			[NATIVE]													1					
- 4	5														He		4				
╞╶╹	5											1									
Ľ																					
╞															l e		4				
- 5	•	-	End of Boring		559.61 50.00					<u> </u>	-									<u> </u>	
F			End of Augerhole.																		-
F												ł									-
- 5	5																				_
																				<u> </u>	
	ЭEР	TH S	CALE						Â	Š.	old	er						ed; Jr			
<u>_1</u>	in f	to 7 ft							V	As	soci	er ates					CHECK	ED: MF	RF		

PROJECT No.: 123-88898 CLIENT: NIPSCO PROJECT: MCGS Geotechnical Investigation LOCATION: N: 5699.0208 E: 5395.0681

RECORD OF AUGERHOLE: BH-7

SHEET 1 OF 1

DATUM: Geodetic

ų	дон	SOIL PROFILE	1 -		SA	MPLE	≡S	DYNAMIC PENE RESISTANCE, E	TRAT	ON S/ft			AULIC CO k, cm/s			T	2 Z Z Z	PIEZOMETER, STANDPIPE
FEET	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (ft)	JMBER	ЗЧУГ	BLOWSA	20 40 SHEAR STREN Cu, psf		60 8 natV.+ remV.⊕	0. 0.0 ∪-0	w	ATER C		PERCE		ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
;	Βġ		STR	(ft)	ž		B	400 80			00	Wr 1	0 2			WI 40	Ľ	
0		Ground Surface Gravel, gray coarse sand (FILL)		609.39 0,00														
			** *	608.39 1.00														
5		Medium dense, light brown, fine to medium SAND, dry, trave gravel, possible textile at 5' (FILL)										0						
10		Very dense, gray/black, SLAG/ASH,		597,89 11.50								0						
		wet [FILL]																
		Medium dense to dense, brown, fine to medium SAND, trace black ash/slag,		595.39 14.00									0					
15		medium SAND, trace black ash/slag, wet, wood at 19,25 [FILL]																
1	5																	
	Auger Th Auge																	
20	ick Mounted Auger I Hollow Stem Auger																	
	Track Mounted Auger Drill Hollow Stern Auger																	
25																		
		Madium dance to dance and fina to		580.89 28.50														
30		Medium dense to dense, gray, fine to medium SAND, trace ash and gravel, wet [FILL]		20.00														
30																		
35																		
İ																		
40		End of Boring		569,39 40.00										0	<u> </u>	<u> </u>		
		End of Boring		40.00														
45			1															
					L							l.			1			
DEI	тнs	SCALE						B ASS	-13						LOGO	GED: JR	R	

PROJECT No.: 123-88898 CLIENT: NIPSCO PROJECT: MCGS Geotechnical Investigation LOCATION: N: 7131.9406 E: 5644.1865

RECORD OF AUGERHOLE: BH-8

SHEET 1 OF 2 DATUM: Geodetic

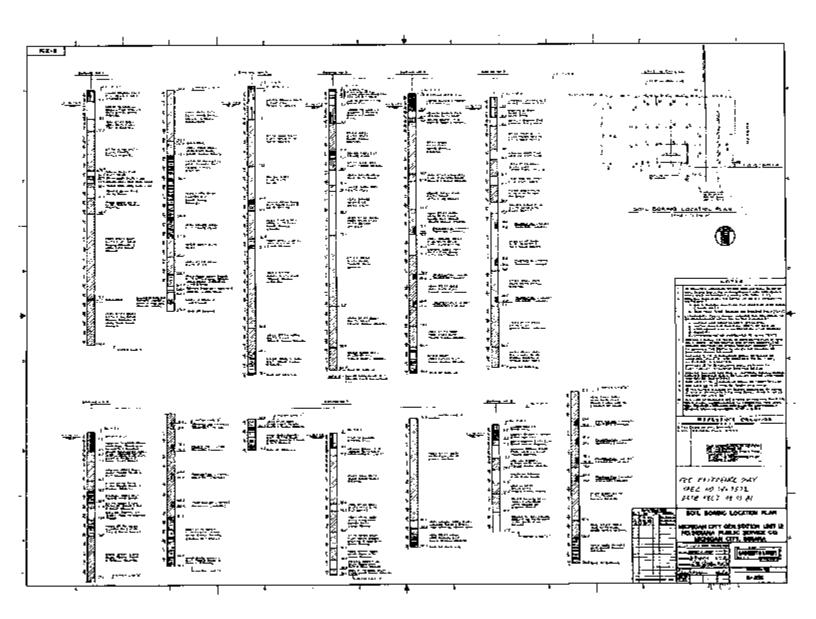
	-								ATION: -90°								Th			r —	
ALE		BORING METHOD	SOIL PROFILE		1	S/	AMPI T	LES	DYNAMIC PI RESISTANC				ι		k, criv's] ĭ₹¤	PIEZOMETER STANDPIPE OR THERMISTO INSTALLATIO	R,
DEPTH SCALE FEET		U MEI		STRATA PLOT	ELEV.	Ä	μ	1SA	20 SHEAR STR		60	80		104		D ³ 1 DNTEN		10 ⁻³		THERMISTO	R XN
		NIX N	DESCRIPTION	ATA	DEPTH	NUMBER	ЗЧ	BLOWS/	Cu, psf	ENGIH	rem \	v.⊕	0-● U-0	WP WA	1ER 00		PERG	-IWI	AB B		
		×		ST	(ft)		 		.400	800	1200	160	0	10			30	40		4	
— c	Ļ		Ground Surface Gravel/sand, dry [FILL]		588.66					_	_						<u> </u>	_			रा स्व
-					587,66						ĺ										
			Medium dense, brown, fine to medium SAND WITH GRAVEL, some ash,		1.00																88.
			moist [FILL]																		Ň.
[Loose, brown/gray, fine to medium		585.16															7/2/2012 1" Solid PVC	
-			SAND, trace ash, wet [FILL]																	with bentonite	
- 5					,															chip seaf	
-					1																5 N -
-																					
-					580.16																
-			Very loose, black/dark gray, fine SAND, trace organics, trace ash, wet		8.50	2											þ			I LOUILEVC F	
- 10			[FILL]		578,16															with filter sand	1- - -
-			Very loose, black, fine SILTY SAND, some ash, wet, cohesive, non plastic		10.50																目.
ŀ			(FILL)																	1" Slotted PVC	目.
-																				with filter sand	8.
L																					Ξ.
- 15																					
Γ																					
-																					
-	ā	5			-																
-	Truck Mounted Auger Drill	Hollow Stem Auger														H	-		50		
- 20	Patri	v Sten																			-
-	≚ ă	Hollo																			
ŀ	Ē																				
-					565,16	5													ŀ		
-			Dense, gray, fine SAND, wet trace silt/ash [FILL]		23.50)									c						
- 25	;																				-
-																					
L																					
			Stiff, gray, SILTY CLAY, moist, trace		560,16																
30			sand [possible FILL] Dense, gray, fine SAND, wet, trace	1	29.25										0						
	Ί		clay (possible FILL)																		
ſ	İ.																				
			Stiff, gray, SILTY CLAY, trace sand,	111	566.16																
			low to medium plasticity, moist		554.16 34.50	3															
- 3	5		Dense, gray, fine SILTY SAND, wet.	1	34.50																
-			trace clay [possible FILL]																		
ł																					
\mathbb{P}	1				550.16	5															
			Stiff, gray, CLAY, medium plasticity, trace small gravel, moist [NATIVE]		38.50										–a						
4	┝	L		¥#	4	-	+ -		┝	_	- + -	-		-		<u> </u>	-	. + -		·	21
			CONTINUED NEXT PAGE																		
	CD.	กมุด	CALE						á l								LOG	GED:	JRR		
		o Sfi								Gold	er	c						KED: N			

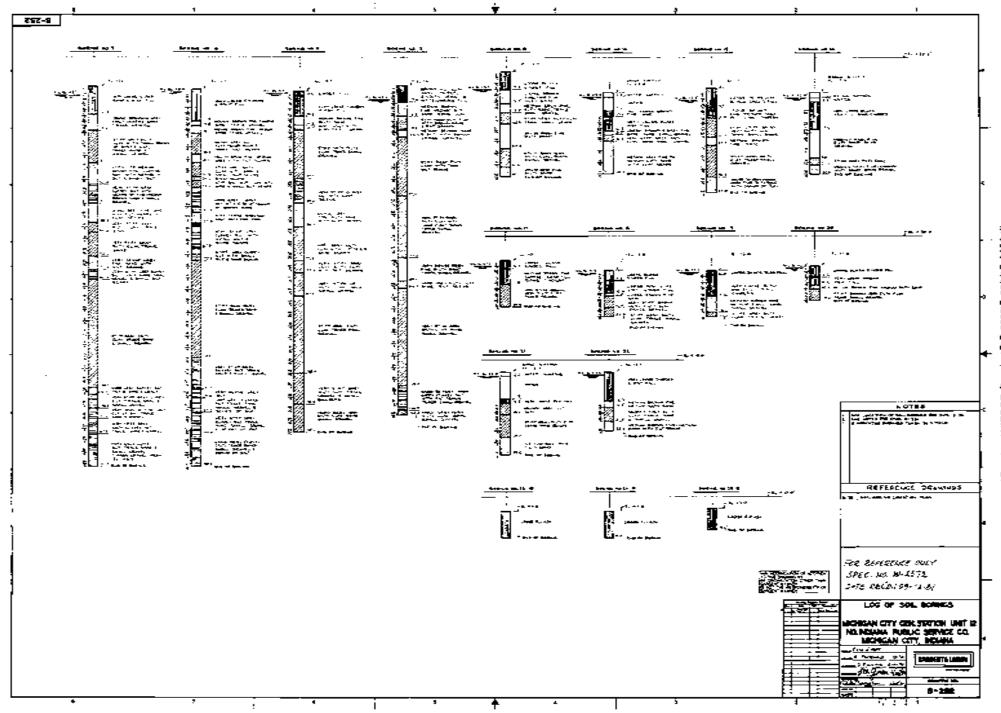
PROJECT No.: 123-88898 CLIENT: NIPSCO PROJECT: MCGS Geotechnical Investigation LOCATION: N: 7131.9406 E: 5644.1865

RECORD OF AUGERHOLE: BH-8

DRILLING DATE: JULY 2, 2012 DRILLING CONTRACTOR: EARTH EXPLORATION SHEET 2 OF 2

DATUM: Geodetic

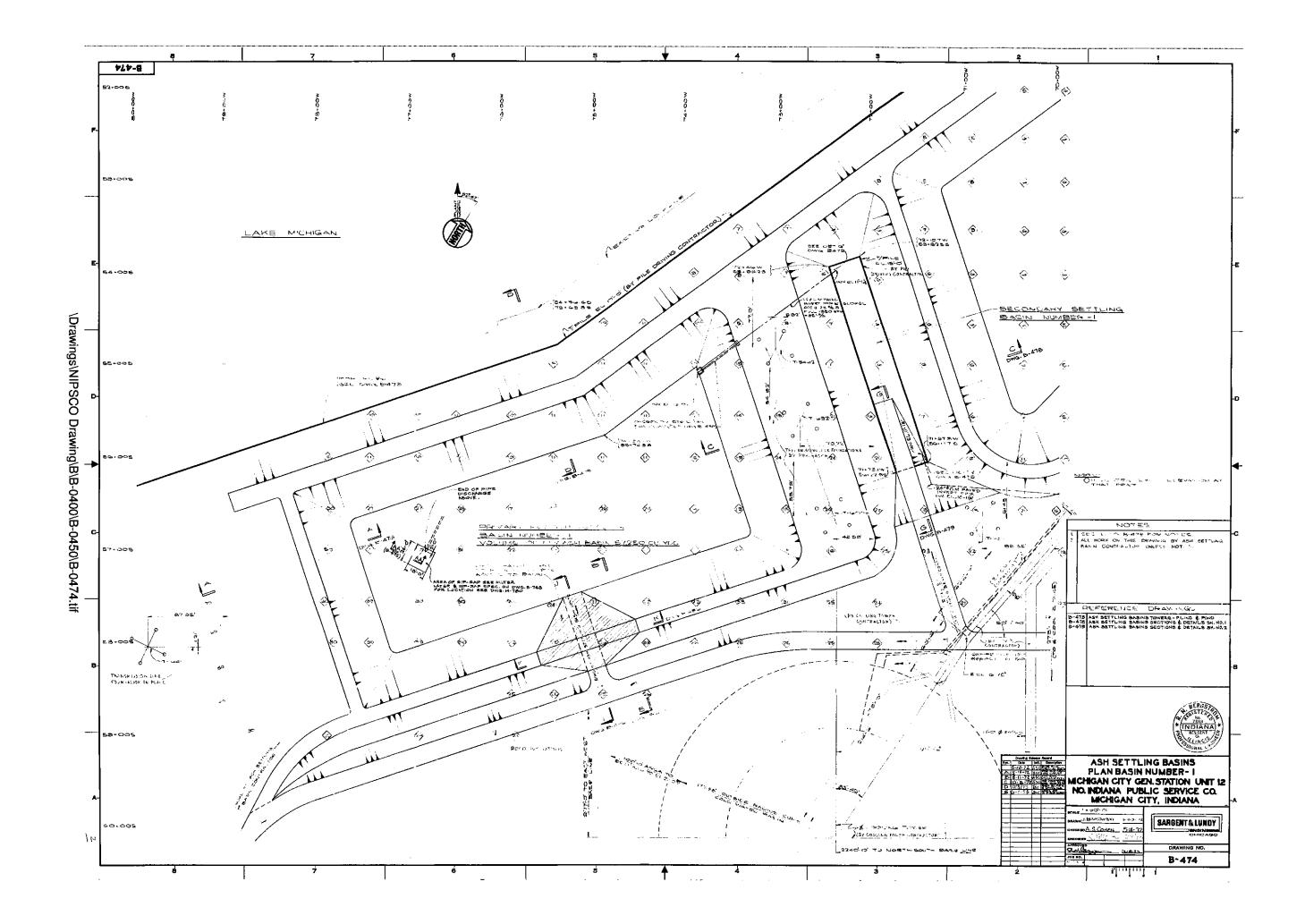

ł								ATION: -90°					
	DEPTH SCALE FEET	BORING METHOD			{	AMP	LES	DYNAMIC PENETRA RESISTANCE, 8LOV	/s/ft	k, c	CONDUCTIVITY, m/s	TIZZ	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
	Зč	Wei /	Ξ Ξ Σ	STRATA PLOT	. le	:	ŧ.	20 40	60 80	10*	10 ⁴ 10 ⁴		OR THERMISTOR
	E H	2 Z	DESCRIPTION		EV. BANK	J J J	BLOWS/	SHEAR STRENGTH Cu, psf	nat V. + Q	Q-● WATER	R CONTENT PERC		INSTALLATION
	H	18			t) 2	-	8			Wp H			
ŀ		\vdash		- " -		+-	+	400 800	1200 1600	10		40	
ŀ	- 40	H	Stiff, gray, CLAY, medium plasticity, trace small gravel, moist [NATIVE]			+	\vdash						
╞			trace small gravel, moist [NATIVE] (continued)										
╞													
h													
╞	- 45												
-													
2							ł						
• B/27													
Rees													
ŝ							-						
BRAR	- 50												
SC RE										0-			
The second					5.16								
Ig			Stiff, gray, CLAY, medium plasticity,		3.50								
ETA 1.	- 55		Stiff, gray, CLAY, medium plasticity, trace small gravel, moist, some sit/fine sand at 59' [NATIVE]	' 💋						0			
LATEB		1 1											
HMP		Ъ.	Wiger										
EGION		Truck Mounted Auger Drill	Hollow Stem Auger										
e:BC R		Mour	llow 5										
emplai		22			9.16								
(g)	- 60		Stiff to very stiff, gray, CLAY/SILT, moist, trace fine sand, cohesive, low		9.50								
TAND			plasticity [NATIVE]										
OLE (S													
OREH													
Ferri	i												The second second second second second second second second second second second second second second second se
ordino													
20.5	- 65												
NNOG													
-													
DRING									1	c			
1208	- 70		Very dense, gray, SILT, moist,		8.91 9.75						, I I		
N			Very dense, gray, SILT, moist, cohesive, non plastic [NATIVE]										
VFORM													
1000													
VEST-	- 75		End of Boring	5	3.66 5.00								
ECH -			End of Augerhole.										-
5 GEO1													-
MCG													-
196989	- 80												
TS123	~												
			- I,	L ĺ				i i i i i i i i i i i i i i i i i i i			II	<u> </u>	
112X4			HSCALE					Gok	er			GED: JRR	
B	1 ir	i to 5	5 ft					Assoc	iates		CHECI	(ED: MRF	

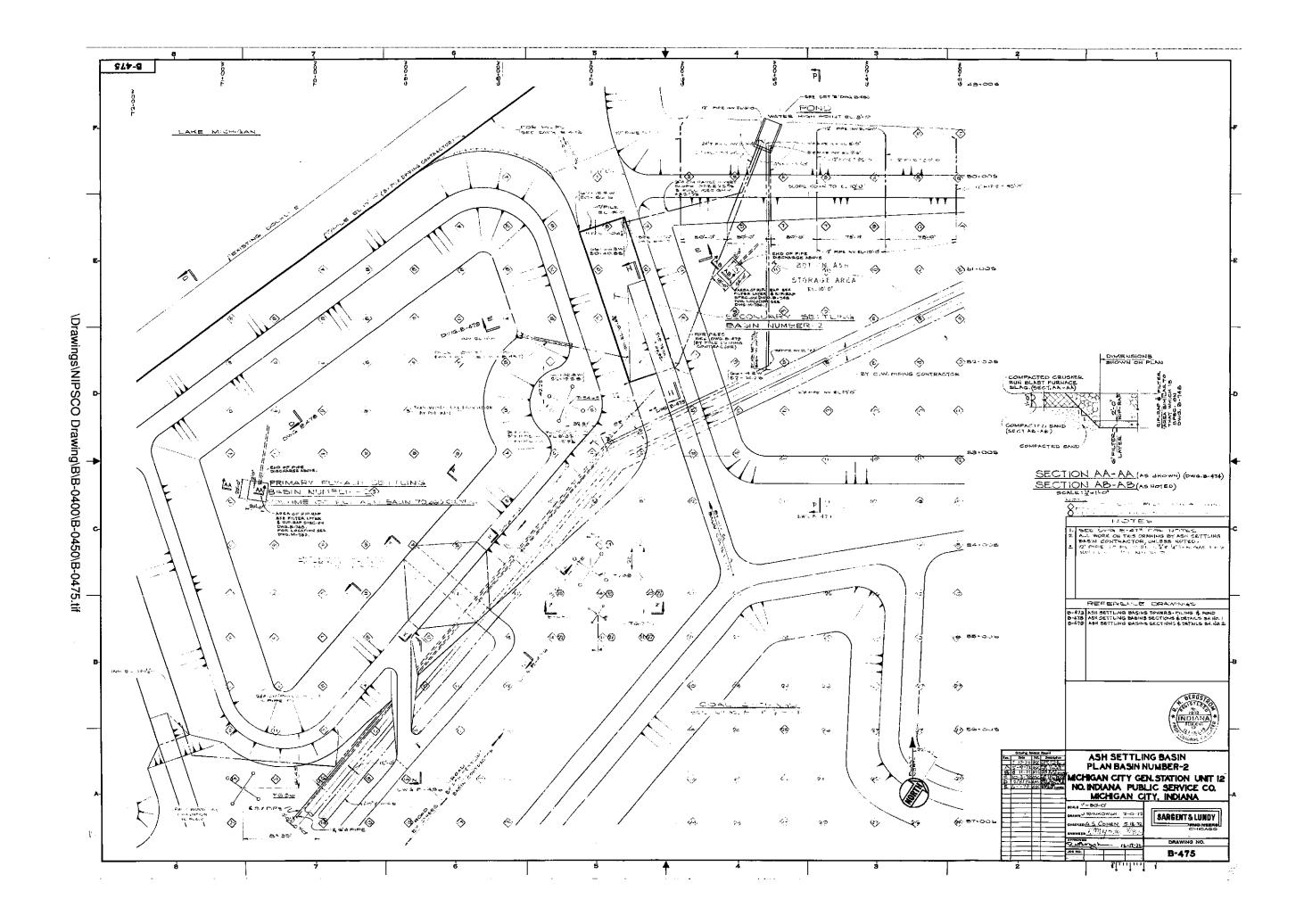

PROJECT No.: 123-88898 CLIENT: NIPSCO PROJECT: MCGS Geotechnical Investigation LOCATION:

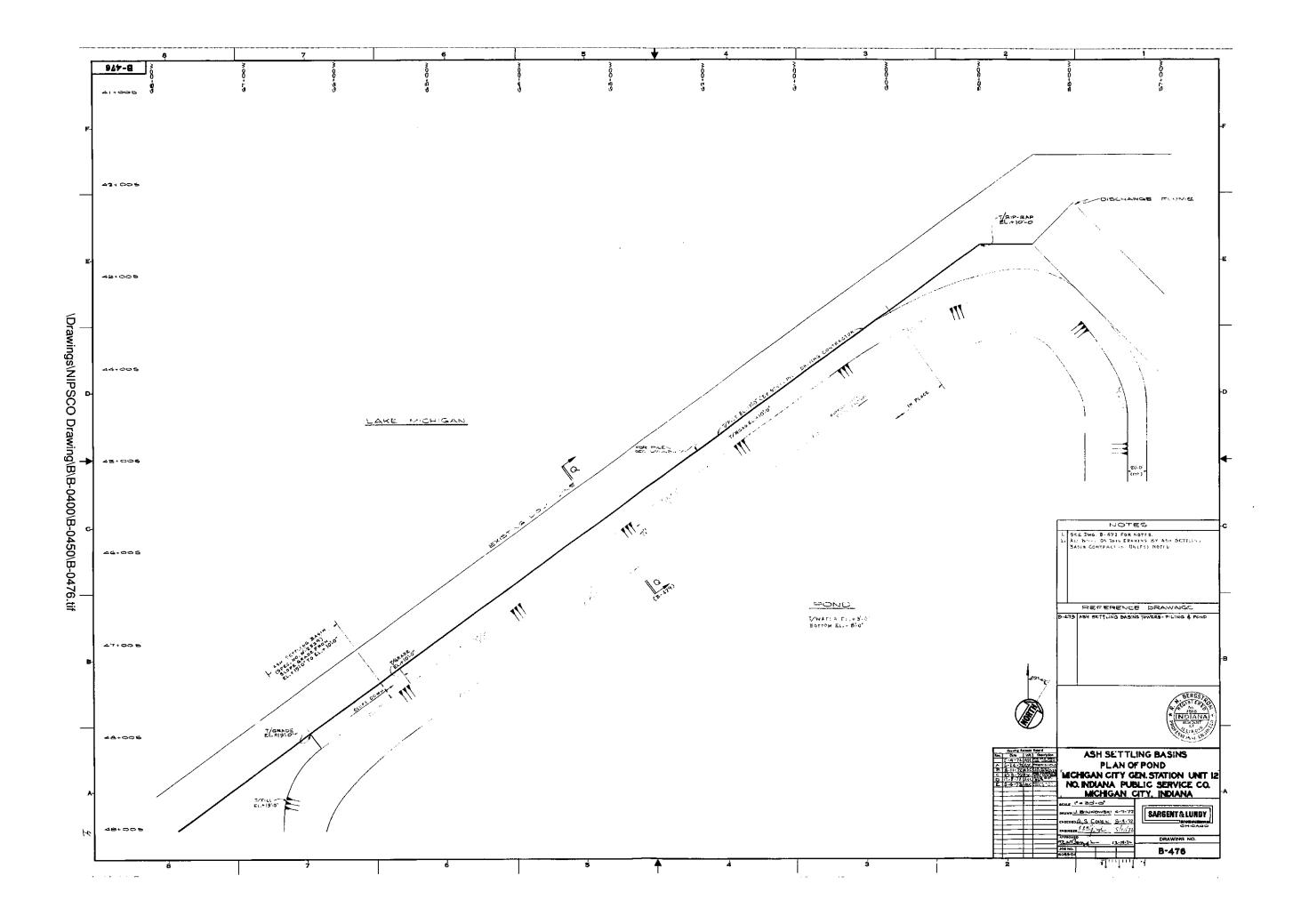
RECORD OF AUGERHOLE: BH-9

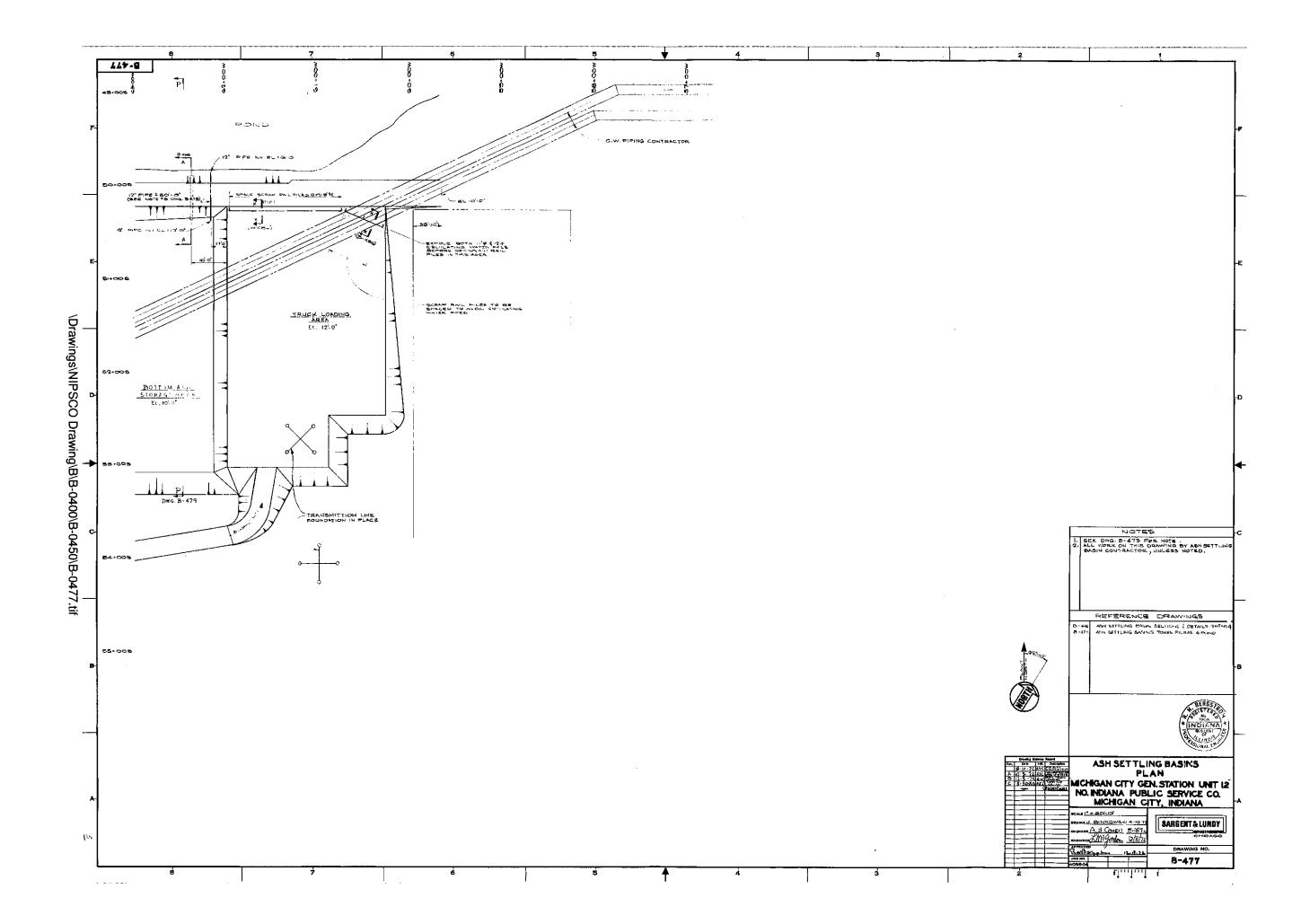
SHEET 1 OF 1 DATUM: Geodetic

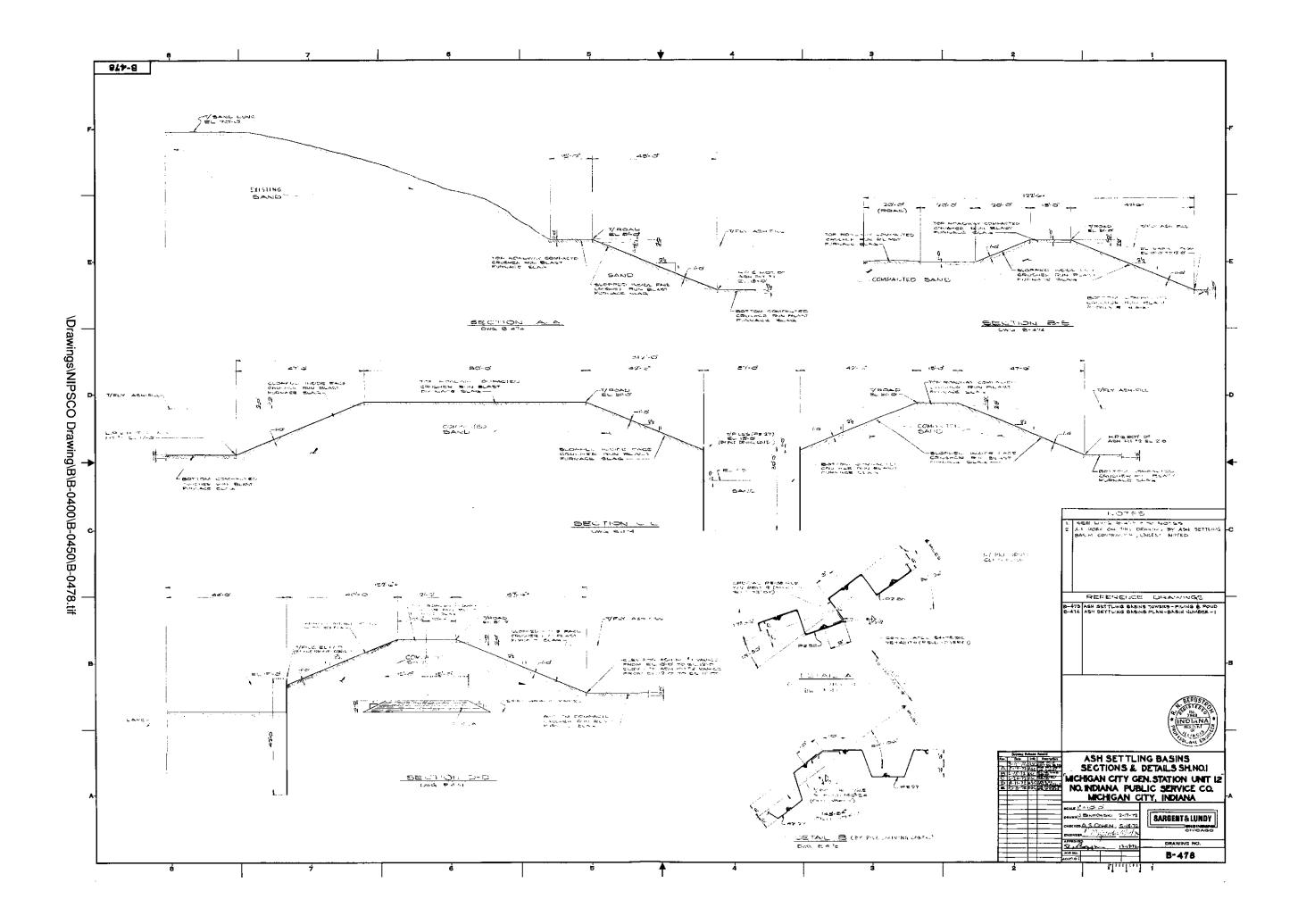
	₿│	SOIL PROFILE			SA	MPL	ES	DYNAM RESIST	IC PEI ANCE	NETRA	TION /S/ft	1	HYOF	KAULIC k, cm	CONDU /s	стип	ΓY,	T	ا و ب	PIEZOMETER, STANDPIPE
	BORING METHOD		ror		ж.		Ę	20)	40	60	80		1	10 ⁻⁶	10-	10-3		ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
۲	RING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWSA	SHEAR Cu, psf	STRE	NGTH	nat V. rem V	+ Q-● ⊕ U-C		VATER Vp 1			RCENT		AB. T	IN TALLA HUN
	ġ		STR	(ft)	z		8	40			1200		<u>۷</u>	10	20	30	40			
0		Ground Surface Gravel, sand, dry, very dense (FILL)		589.62								_	_		_	-			\vdash	
		Medium dense, gray/brown, fine to medium SAND, molst, trace gravel		588.62 1.00																
		medium SAND, molst, trace gravel [FILL]																		
		Loose, gray/brown, fine to medium SAND, wet, trace gravel [FILL]		586,12 3.50																
5				583.62																
		Medium dense, gray/brown, fine to medium SAND, wet, trace gravel		6.00																
		[FILL]																		
10															0					
																			!	
		Medium dense, gray/brown, fine to		576.12 13.50																
15		Medium dense, gray/brown, fine to medium SAND, wet, trace gravel little ash, trace wood [FiLL]											1	1						
20																				
20																				
	Ŧ																			
	Truck Mounted Auger Drill Hollow Stem Auger			565.12																
25	Stem	Medium dense, gray, fine to medium SAND, wet [FILL]		24.50	1															
	ck Mou Hollaw																			
	Ę																			
30																				
																	1			
		Stiff, gray, CLAY, moist, trace small gravel, medium plasticity [NATIVE]		556.12 33.50										⊢	~	4				
35		gravel, medium plasticity [NATIVE]												'		•				
		Medium stiff, gray, fine SAND, wet		550.62 549,87											9					
40		[NATIVE] Stiff, gray, SILTY CLAY, moist	-1	39.75	1															
		(NATIVE)									1									
																			1	
45																				
		Medium dense to dense, gray, fine	_{///	540.62 539.62	1															
50		SAND, wet [NATIVE] End of Boring	1	50.00		Ī														
		End of Augerhole.																		
55																				
					[1													
		SCALE						ã	R		ler iate						0668	ED: JR	R	

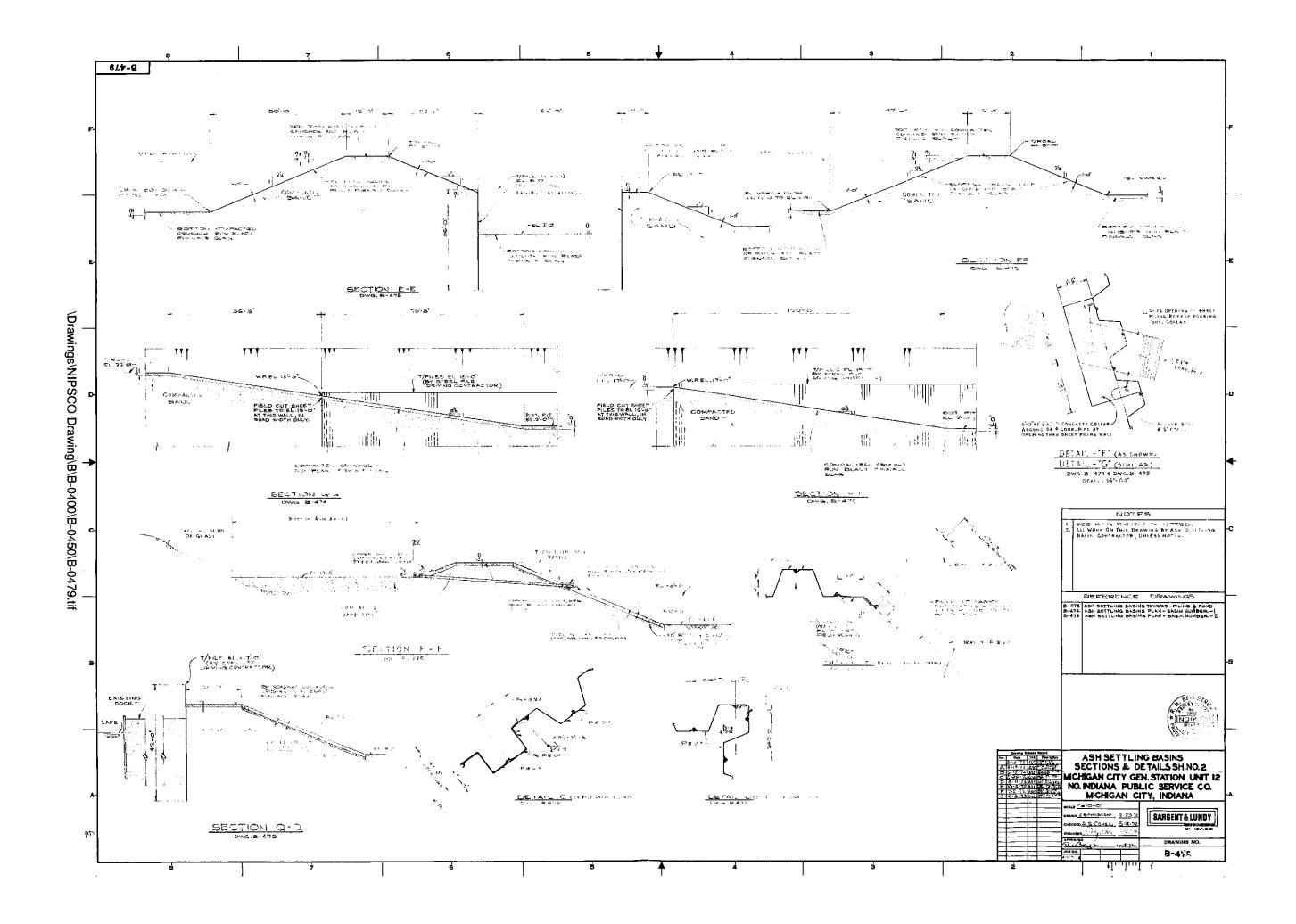

Orawing\P\R-0200\R-0250.til Drawings/NIPSCO

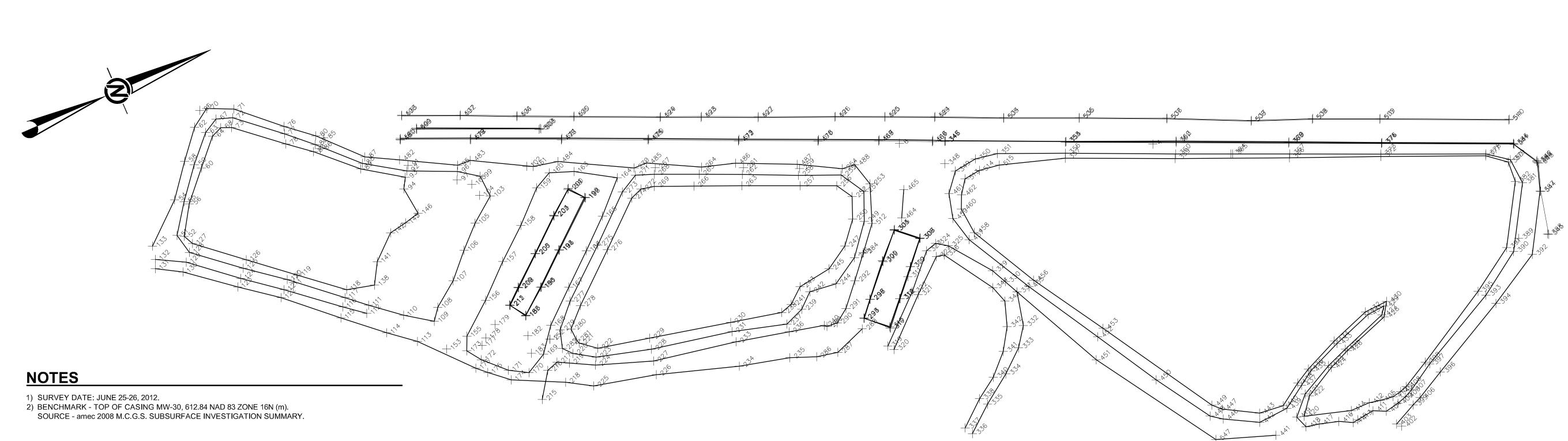

APPENDIX B


:


-


Sargent & Lundy Drawings





APPENDIX C

Data

50000	00 5000.00	609.09	DESCRIPTIO	145	-	227.83	4977.49	603.49	DESCRIPTION	245	5902.54	5347.99	603.33	DESCRIPTION	91 347	6184.25	5214.66	589.02	DESCRIPTION	447	6460.96	5853.66	587.21	N DESCRIP toe
5000.0		609.09	cp1 cp2	145		5255.52	4977.49	604.02	toe	245	5952.57	5346.72	609.55	toe	347	6168.05	5252.94	593.77	top	447	6436.26	5857.25	589.75	top
5970.9 6528.9	165	609.48 590.92	cp3	147		272.17	4984.03 5034.06	601.02 607.32	gs	247 248	5944.66 6000.18	5320.69 5296.86	603.33 609.40	toe sb5	349 350	6180.98 6222.74	5272.29 5266.12	593.39 592.75	top	449 450	6446.86 6371.29	5840.47 5759.59	587.00 589.77	toe
6107.0	CALL IN THE CONTRACT OF A DECK	594.50	cp4 cp6	140		304.39	5017.87	601.52	gs gs	240	5994.26	5292.71	609.40	top	351	6262.96	5272.50	592.75	top top	450	6285.18	5684.39	591.78	top
4828.3		609.35	sb4	150		287.49	5000.20	600.98	gs	250	5976.20	5281.43	603.36	toe	352	6221.52	5244.65	592.71	sb10	452	6303.69	5647.15	591.05	top
4838.1	A REAL PROPERTY AND A REAL PROPERTY AND A	609.27 607.06	top	151		5274.52 5387.88	5013.61 5271.60	605.92 609.77	gs cp2-chk	251 252	6014.27 5991.02	5243.03 5243.41	609.31 603.20	top	353 354	6384.11 6385.72	5300.24 5300.01	591.41 595.47	back pil	453	6318.31 6291.42	5636.93 5612.11	586.36 589.34	toe top-12-p
4882.2	29 4853.21	602.11	gs	153	3 52	5209.27	5216.34	606.72	top	253	6029.57	5234.73	609.45	top	355	6385.53	5299.65	583.94	fr	455	6223.62	5516.29	592.51	top
4858.9	Contraction of the second second	609.60 609.24	top	154		178.53 252.11	5241.02 5208.98	603.57 609.60	er top	254 255	5994.09 5987.81	5190.09 5200.02	609.77 609.35	top	356 357	6376.79 6373.21	5318.90 5327.02	591.43 587.42	top toe	456	6235.51 6156.20	5508.28 5396.27	586.61 595.56	toe
4880.4		606.93	toe	156	6 53	307.80	5162.10	609.80	top	256	5972.80	5214.77	603.17	toe	358	6554.99	5404.80	586.17	water	458	6169.71	5388.03	586.52	toe
4902.9		602.08	gs	157		363.42	5109.58	610.02	top	257	5911.83	5189.29	603.26	toe	359	6556.09	5403.89	587.31	toe	459	6143.85	5349.72	594.86	top
4902.3		609.45 609.49	top top	158		418.40 471.14	5061.83 5010.33	609.98 609.60	top top	258 259	5916.23 5922.55	5170.80 5160.17	609.40 609.75	top top	360	6560.33 6569.13	5396.73 5377.95	591.25 590.82	top back	460	6164.56 6154.78	5339.84 5305.39	586.66 595.02	toe
4925.6		606.65	toe	160	0 5	502.29	4993.75	609.30	top	260	5833.15	5130.52	609.61	sb6	362	6569.72	5375.60	595.80	back	462	6174.64	5316.36	586.77	toe
4940.4		603.69 609.31	gs top	161		479.54 493.96	4972.01 4989.31	609.64 609.40	top sb1	261 262	5829.57 5823.01	5119.81 5130.46	609.65 609.28	top top	363 364	6569.58 6652.17	5375.48 5434.73	584.68 590.88	fr mw	463	6185.04 6058.95	5295.70 5313.21	590.50 595.53	top-4inch toe
4957.1	and the second se	609.12	top	163	-	544.61	5008.79	609.57	top	263	5814.67	5148.84	603.25	toe	365	6655.09	5435.83	590.90	mw	465	6082.03	5267.67	595.38	toe
4966.0		606.69	toe	164		612.38	5049.35	609.80	top	264	5760.11	5089.82	609.87	top	366	6747.31	5481.71	587.84	toe	466	6162.95	5207.30	594.19	back
4977.3		605.65 609.84	gs mw	165		560.97 510.40	5102.79 5149.49	609.86 610.20	top top	265 266	5751.51 5734.32	5100.44	609.67 603.11	top	367	6750.60 6756.23	5475.66 5456.79	590.06 590.00	top back	467	6163.07 6073.80	5207.43 5168.90	595.68 595.34	pil back
4983.5		608.96	top	167		455.69	5197.94	610.02	top	267	5682.34	5058.90	610.09	top	369	6756.89	5455.67	595.62	pil	469	6074.23	5169.04	595.81	pil
4985.7	and a second second second second second second second second second second second second second second second	606.69	toe	168		399.33	5249.20	609.96	top	268	5676.73	5069.09	609.58	top	370	6757.38	5455.13	584.22	fr	470	5972.67	5127.10	595.85	back
4987.4		605.70 609.56	gs top	169		367.22 330.15	5292.12 5312.99	607.67 604.29	top top	269 270	5667.94 5647.19	5089.43 5044.62	603.14 610.12	toe top	371 372	6830.37 6900.85	5498.34 5543.26	589.62 587.62	sb9 toe	471	5972.78 5840.36	5126.86 5072.02	595.86 595.63	pil back
5020.5		609.66	top	171	-	297.75	5294.69	605.64	top	271	5644.55	5057.54	609.90	top	373	6902.43	5539.19	589.17	top	473	5840.03	5071.47	595.55	pil
5012.2 5004.0		609.28 606.67	top toe	172		259.73 241.61	5258.33 5233.58	605.63 606.27	top top	272	5644.12 5611.04	5084.40 5076.58	603.22 609.68	toe top	374	6910.53 6911.45	5521.57 5520.78	589.08 595.65	back pil	474	5689.52 5690.29	5006.52 5007.59	593.51 595.95	back
4998.4		605.85	gs	173		5295.65	5312.49	603.61	toe	274	5622.31	5093.22	603.33	toe	376	6912.08	5520.63	584.34	fr	475	5545.63	4947.26	594.80	back
5005.4		606.57	gs	175		261.46	5284.08	603.80	toe	275	5533.43	5147.95	609.85	top	377	7075.89	5614.57	587.62	toe	477	5545.27	4946.85	595.69	pil
5092.0 5087.5		609.73 609.52	top	176		244.66 270.98	5268.78 5234.92	603.84 603.00	toe piez	276	5546.03 5448.30	5162.50 5222.37	603.30 609.80	toe	378 379	7077.48	5611.41 5637.97	588.80 588.46	top top	478	5394.12 5393.39	4884.02 4883.82	593.29 595.27	pil
5083.2	26 4763.34	607.18	toe	178	8 52	5282.34	5225.01	602.08	toe	278	5462.47	5236.78	603.52	toe	380	7109.39	5640.77	587.65	toe	480	5276.89	4835.93	593.69	bac
5077.4		606.88	gs	179	_	306.98	5208.97 5226.98	600.12 599.30	toe	279 280	5411.80	5262.96 5269.40	609.54	top	381 382	7118.76	5684.99 5677.63	588.55	top	481	5276.43	4834.81 4868.66	595.40	pil
5138.6 5132.6		609.11 609.73	top sb3	180		326.54 343.79	5220.98	599.30 599.18	gs gs	280	5430.55 5432.08	5269.40	603.40 603.23	toe toe	382	7107.52 7131.94	5644.19	586.40 588.66	toe sb8	482	5261.48 5378.95	4868.66	609.19 609.17	top
5131.4	41 4784.58	609.57	top	182	2 53	353.83	5250.42	600.07	toe	282	5402.78	5295.60	609.71	top	384	7130.34	5613.97	588.58	back-pil-7.10ft	484	5524.66	4981.20	609.38	top
5123.8 5118.3		608.24 607.95	toe	183		347.92 329.34	5282.47 5263.83	603.57 601.38	piez sb2	284	5970.96 5820.81	5344.72 5485.69	609.48 596.80	cp3 toe	385 386	7157.11 7157.77	5659.35 5661.32	587.92 588.27	back-pil-8.10ft back-pil-2.50ft	485	5671.41 5819.38	5045.03 5107.00	609.51 608.83	top
5150.5	54 4779.44	609.19	piez	185		364.67	5215.11	587.86	fr	287	5859.50	5493.14	596.14	toe	387	7142.20	5711.04	588.55	back-pil-2.20ft	487	5921.58	5151.53	609.43	top
5136.8	territoria de la construcción de la construcción de la construcción de la construcción de la construcción de la	609.62	piez	186		364.72	5215.75	593.63	pil	288	5916.29	5470.98	596.41	toe	388	7125.32	5787.46	588.97	back-pil-1.80ft	488	6017.42	5191.88	608.39	top
5205.7 5197.0	and the second s	609.39 609.31	top	187		363.85 408.40	5216.19 5178.65	593.65 585.23	front	289	5859.16 5878.79	5442.49 5443.47	609.45 609.94	top top	389 390	7073.76 7056.29	5774.76 5793.22	588.95 588.68	top	489	6183.45 6100.31	5168.72 5133.76	580.71 580.84	bac
5190.4		607.08	toe	189	9 54	408.63	5179.16	589.95	water	291	5903.39	5425.37	609.99	top	391	7047.21	5781.92	586.61	toe	491	6017.44	5099.05	581.45	bac
5182.0	and the second sec	606.44	gs	190		409.27	5178.88	593.35	pil	292	5937.35	5385.54	609.52	top	392	7085.52	5811.18	588.84	top	492	5888.92	5046.52	581.40	bac
5272.1 5266.2		609.64 609.45	top top	191		6410.39 6464.80	5178.59 5128.92	593.32 584.12	back fr	293 294	5926.97 5926.64	5454.67 5454.23	588.91 596.76	fr pil	393 394	6979.92 6991.10	5846.79 5867.45	588.51 588.46	top top	493	5793.90 5725.82	5006.67 4978.47	582.39 581.92	bac bac
5259.2	the second second second second second second second second second second second second second second second s	606.64	toe	193		465.32	5129.54	589.84	water	295	5926.71	5454.04	596.79	back	395	6969.45	5835.01	586.31	toe	495	5582.06	4917.93	582.32	bac
5248.8 5354.9		605.32 609.46	toe	194		465.33 466.12	5129.74 5129.44	593.68 593.37	pil back	296 297	5949.49 5949.90	5426.47 5426.53	596.37 596.46	back pil	396 397	6850.88 6838.46	5943.30 5922.24	588.81 588.70	top top	496	5487.09 5393.15	4877.67	581.53 582.01	bac
5350.0		609.40	top top	195		544.14	5059.15	585.61	fr	297	5950.13	5420.55	588.46	pii fr	398	6832.38	5916.47	586.31	toe	497	5295.38	4796.64	583.35	bac
5343.6		605.74	toe	197		545.24	5060.35	593.75	pil	299	5997.64	5373.19	587.30	fr	399	6782.27	5979.23	589.24	top	499	5311.48	4829.19	584.49	bac
5333.7	Contraction of the second second second second second second second second second second second second second s	602.13 609.39	gs top	198	-	545.72 521.95	5060.77 5034.76	593.82 589.22	back fr	300	5997.54 5997.12	5371.70	596.71 596.27	pil back	400	6774.99 6770.95	5960.50 5948.39	588.95 586.36	top toe	500	5311.15 5311.76	4829.24	586.51 583.98	pil
5365.1		605.77	toe	200		522.87	5033.22	593.72	pil	302	6011.62	5356.78	589.77	water	401	6748.83	6006.47	589.89	mw	502	5515.61	4914.44	583.45	bac
5343.9		601.59	gs	201		523.28	5033.30	593.71	back	303	6037.81	5328.45	587.79	fr	403	6741.85	5999.68	589.89	top	503	5518.91	4914.89	586.91	pil
5469.4 5387.7	all and a second second second	609.64 609.55	top	202		5480.30 5480.45	5069.21 5068.38	585.77 593.58	fr pil	304	6038.07 6038.99	5328.07 5327.49	596.51 595.91	pil back	404	6733.47 6731.52	5971.18 5949.24	588.86 586.40	top	504 505	5517.65 6297.90	4913.73 5217.86	582.42 581.47	bac
5370.6		606.79	toe	204		480.36	5067.89	593.78	back	306	6075.77	5359.55	595.25	back	406	6799.14	5971.81	589.11	top	506	6423.58	5270.32	580.89	bac
5343.6	and a second second second second second second second second second second second second second second second	609.51	top	205		422.62	5118.57	593.86	back	307	6075.39	5359.64	596.64	pil fr	407	6789.97	5953.37	589.05	top	507	6569.72	5331.88	580.70	bac
5306.5 5267.0		609.74 609.68	top top	206		422.66 423.41	5118.71 5119.27	593.67 585.78	pil fr	308 309	6074.45 6039.34	5360.28 5400.48	588.14 587.40	ır fr	408	6783.61 6758.47	5943.84 5966.07	586.59 588.84	toe top	508 509	6708.73 6812.16	5394.19 5433.28	581.44 580.75	bac
5223.2	20 5140.82	609.41	top	208	8 53	371.94	5164.30	588.47	fr	310	6039.91	5400.72	596.72	pil	410	6754.75	5951.79	586.59	toe	510	6924.82	5480.27	580.32	bac
5207.6 5160.8		609.54 609.42	top top	209		370.89 371.21	5163.72 5162.77	593.51 593.59	pil back	311 312	6028.69 6000.48	5415.29 5446.79	594.89 595.35	back back	411 412	6711.70 6710.70	5961.13 5945.16	588.17 586.45	top toe	511 512	7139.27 6005.57	5570.73 5302.00	581.09 609.50	bac
5109.3		609.53	top	210	-	5345.20	5187.79	589.01	fr	313	6000.48	5446.45	595.55	pil	412	6680.15	5965.69	588.53	top	512	6191.68	5292.33	586.66	toe
5100.6		609.76	top	212		345.12	5187.10	593.62	pil	314	5999.62	5446.14	588.65	fr	414	6675.53	5945.83	586.51	toe	514	6221.35	5287.91	586.66	toe
5165.9 5120.3		603.56 604.08	toe	213		344.47 351.60	5186.88 5219.25	594.08 594.76	back mh	315 316	5963.55 5963.42	5486.29 5488.69	588.75 596.91	fr. pil	415	6670.45 6647.20	5967.02 5955.45	588.89 588.46	top top-bldg	515	6258.45 6164.74	5292.70 5205.74	586.66 587.08	toe fr
5054.2	25 5091.41	604.72	toe	215	5 53	5333.73	5366.83	603.07	top	317	5964.36	5489.03	595.15	back	417	6612.89	5946.07	588.76	top-bldg	517	6075.66	5167.53	585.11	fr
5065.1 5075.0		609.39 609.27	top	216		363.22	5322.21 5314.83	605.84 607.93	top	318	5936.51 5947.04	5504.89	595.41 595.59	sb12	418	6588.76 6579.85	5941.66 5919.12	588.45 588.88	top	518 519	5974.53 5841.95	5125.04	584.46 583.54	fr
5075.0	and the second s	609.27 605.64	top	217		5384.16 5384.66	5314.83	607.93	top toe	319	5947.04 5954.99	5517.33 5527.32	595.59 591.43	top toe	419 420	6592.84	5919.12 5922.74	588.88	top toe	519	5841.95 5691.92	5069.75 5005.98	583.54	fr
5011.4	43 4989.96	605.83	toe	219	9 54	6404.22	5324.80	609.46	top	321	6033.24	5452.56	591.38	toe	421	6609.71	5886.40	589.05	top	521	5547.22	4945.19	582.98	fr
4991.4		608.94 609.21	top top	220		5416.70 5434.38	5311.15 5298.55	609.38 603.47	top toe	322	6025.27 6077.89	5443.70 5385.32	595.01 594.98	top top	422 423	6615.55 6668.76	5892.51 5855.18	586.57 588.94	toe top	522 523	5395.23 5277.70	4881.94 4833.43	580.87 586.00	fr fr
4979.2	the set of the set of	605.85	toe	222		5454.58 5461.79	5319.98	603.99	toe	323	6097.56	5379.03	594.98 595.10	top	423	6672.05	5860.26	586.54	toe	523	6184.55	5167.52	585.51	pi
4903.6		605.70	toe	223		452.80	5333.59	609.22	top	325	6117.14	5391.89	594.99	top	425	6708.12	5839.41	588.64	top	525	6101.28	5132.81	585.44	pi
4914.7		609.13 608.88	top	224		6446.32 6428.81	5346.45 5379.73	609.62 601.60	top toe	326	6104.18 6090.34	5404.54 5401.49	592.82 592.06	toe	426	6710.44 6792.92	5843.51 5807.43	586.47 588.67	toe	526 527	6018.48 5889.98	5098.22 5045.29	585.55 585.49	pi pi
4936.6	61 4928.92	605.86	toe	226	6 5	540.91	5404.56	601.73	toe	328	6128.82	5407.43	594.86	sb11	428	6794.98	5812.29	586.49	toe	528	5795.12	5005.62	585.38	pi
4858.4	the loss of the lo	606.43 609.70	toe	227		546.05 550.68	5379.74 5358.50	609.29 609.08	top	329 330	6173.84 6187.80	5464.18 5491.13	594.30 593.98	top	429	6802.22	5793.97 5788.33	588.77 586.49	top	529 530	5726.99	4977.39 4916.60	585.52 585.42	pi
4847.0		609.46	top top	228		5555.23	5338.50	603.35	top toe	331	6200.23	5516.63	593.98	top	430	6809.82 6770.04	5788.33	589.01	toe top	530	5583.34 5488.18	4916.60	585.22	pi
4822.6	68 4905.25	605.63	toe	230	0 5	5701.34	5368.96	603.20	toe	332	6187.23	5576.74	592.82	top	432	6767.54	5791.25	586.61	toe	532	5394.36	4836.07	586.00	pi
4778.7		605.91 609.54	toe top	231		696.95 699.02	5385.18 5395.07	609.23 609.39	top sb7	333 334	6163.98 6124.68	5610.81 5645.59	597.78 598.61	top top	433	6698.12 6695.35	5824.04 5818.27	588.85 586.51	top toe	533 534	5296.44 6298.76	4795.70 5216.95	585.85 585.47	pi
4789.7		609.75	top	232		696.84	5404.98	609.40	top	335	6073.26	5683.02	598.73	top	434	6635.47	5851.66	588.99	top	535	6424.63	5269.23	585.38	pil
5027.2	the second second second second second second second second second second second second second second second se	605.68	gs	234	4 50	685.41	5447.86	598.51	toe	336	6027.66	5721.74	600.36	top	436	6632.77	5846.71	586.46	toe	536	6570.87	5330.85	585.60	pi
5075.6 5138.2		606.18 605.68	gs gs	235		5775.83 5792.30	5468.63 5424.96	597.64 609.27	toe top	337 338	6019.37 6063.58	5707.27 5668.58	590.90 590.36	toe	437 438	6610.27 6605.16	5869.24 5862.83	588.91 586.34	top toe	537 538	6709.70 6813.15	5393.14 5432.27	584.43 585.65	pi
5090.0	06 4961.14	604.96	gs	237	7 5	5794.01	5410.81	609.26	top	339	6038.20	5630.64	590.74	gs	430	6569.54	5897.33	589.18	top	539	6925.79	5479.00	585.52	pi
5133.1 5146.4		605.00	toe	238		793.54	5387.63	603.10	toe	340	6101.33	5642.31	590.17	toe	440	6565.12	5890.48	586.38	toe	540		5569.71	585.68	pil
		608.10 608.48	gs gs	239		6828.85 6855.44	5396.30 5438.58	609.38 609.61	top top	341	6135.95 6159.41	5606.12 5567.34	589.90 589.48	toe toe	441	6532.60 6514.67	5934.67 5902.14	591.23 593.18	top top	541 542	7131.57 7158.06	5615.32	595.67 596.02	pi
5153.8	88 5022.80	605.30	toe	241	1 50	6814.84	5380.73	603.27	toe	343	6173.28	5523.43	589.56	toe	442	6520.70	5886.46	586.37	toe	543	7159.28	5663.25	590.76	pil
5196.0 5206.6		604.88	toe	242		854.66	5372.61	609.58	top	344	6162.58	5492.74	589.04	toe	444	6514.29	5882.97	587.04	inv-12inch	544		5712.09	590.74	pil
	60 4995.17	607.71 607.15	gs gs	243		6841.86 6903.81	5357.47 5377.47	603.17 609.88	toe	345 346	6183.93 6184.99	5215.73 5215.26	593.44 595.65	pil	445 446	6514.37 6455.98	5880.50 5871.27	586.50 595.79	inv-8inch top	545	7126.81 7131.32	5788.87 5612.88	590.77 584.40	pil

TOPOGRAPHIC SURVEY GENERATING STATIC MICHIGAN CITY NICHIGAN CITY, INDIA

APPENDIX D

÷

-

Geotechnical Laboratory Data

NIPSCO/GEO INVEST/MICHIGAN CITY/IN SUMMARY OF SOIL DATA

Sample	Sample	Sample	Soil Classi-	Natural Moisture			rberg mits		1	Grain Size Distributio % Finer	n	Compa Maximum	optimum		Unit W	eight	Permeability	Additional Tests
Identification	Туре	Depth	fication	%					No. 4	No. 200	.005	Dry Density	Moisture	Gs	Moisture	Dry	(cm/sec)	Conducted
					LL	P.L.	P.I.	L.L.	Sieve	Sieve	mm	(lb/cuft)	%		%	(lb/cuft)		(See Notes)
BH-6	UD	40.0-42.0"	a	17.4	30	17	13	0.04	99.6	86.4	45.0	•	-	2.75	17.4	115.9		T-C/U
										-								
				-														
					-										-	1		-
																1		
													()					

ABBREVIATIONS: LIQUID LIMIT (LL) PLASTIC LIMIT (PL) PLASTICITY INDEX (PI) LIQUIDITY INDEX (LI) SPECIFIC GRAVITY (Gs) MOISTURE (Mc) NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST

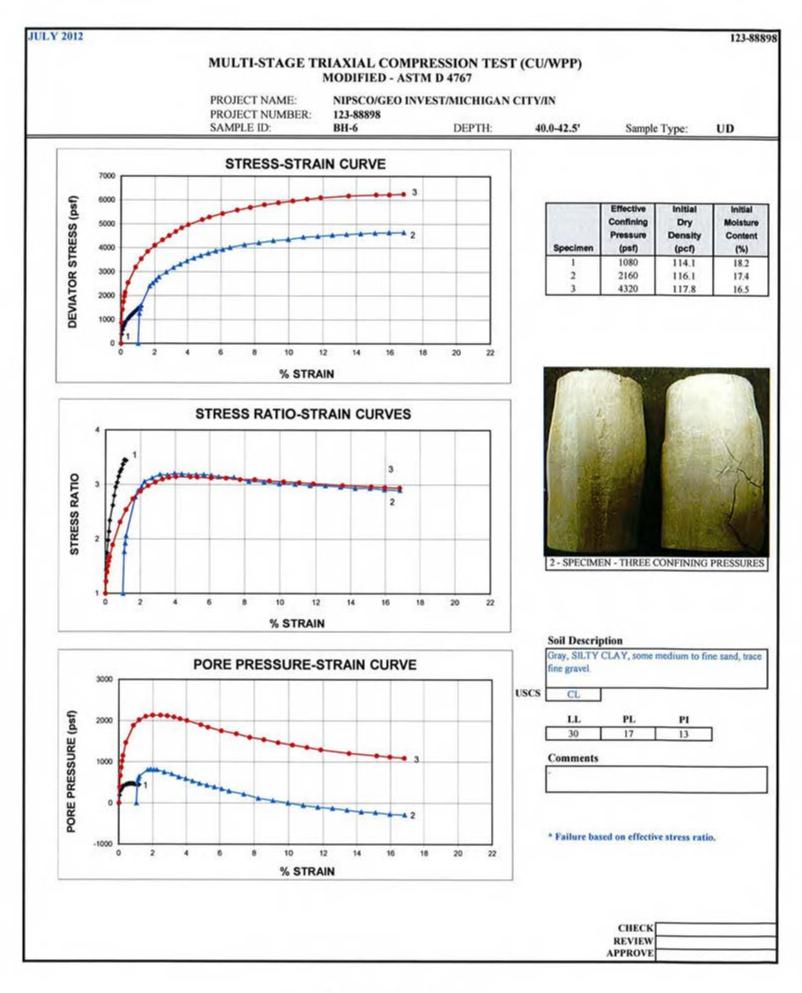
DS = DIRECT SHEAR TEST

0 = ORGANIC CONTENT

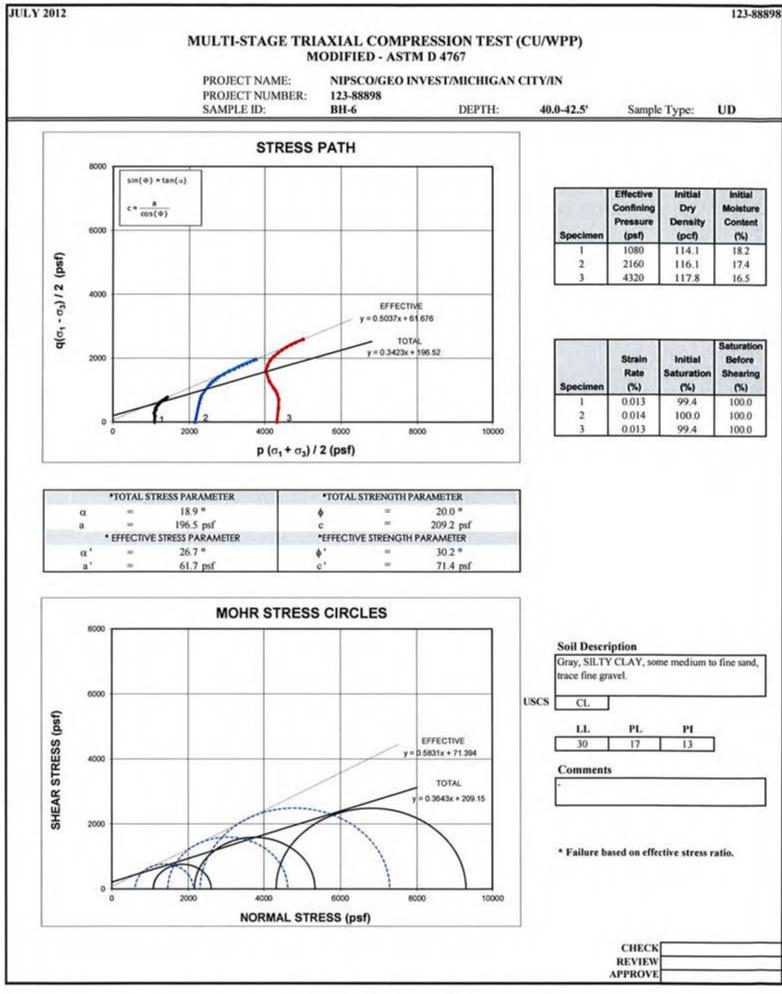
P = pH

Golder Associates Inc.

ROJECT TITLE	: 1	NIPSCOW	CEO INVES	T/MICHIGAN	CITV/N	INITIAL S	AMPLE DAT	4	cm	in	corrected		CORRECTE	D SAMPLE	DATA	
ROJECT NUM	Second and Second	Ha Score		88898	(CHI HEY	HEIGHT	and LE Ditt.		15.194	5.982	5.966		DRY DENS		and the second sec	116.1
AMPLE ID				H-6		DIAMETE	R		7.244	2.852	2.831		VOLUME O		<u> </u>	416.02
AMPLE TYPE				D		AREA			41.22	6.39	6.30		VOLUME O			199.47
EPTH INTERV	AL	_		-42.5'		VOLUME			626.23	38.22	37.56		VOID RATH			0.479
ACHINE SPEI		0.0008				WEIGHT (g)		1353.80		1344.35					0.125
TRAIN RATE		0.013	6			% MOISTI			18.2	t -	17.42					
ELL PRESSUR		77.5	2			SPECIFIC	GRAVITY		2.75	1			WATER CO	NTENT (%)	MOISTURE	Ê
AMPLE PRESS		70.0				MOIST DE	NSITY (pcf)		134.9	pcf			WT SOIL &			1344.35
FF. CONSOLID							SITY, calc (p	cf)	114.1	pcf			WT SOIL &	Contraction of the second		1144.88
RESSURE, og	psi)	7.5	8			VOLUME	OF SOLIDS		416.02	cm			WT TARE (-1-	-	0.00
RESSURE, og	psf)	1080.0				VOLUME	OF VOIDS		210.22	cm"			WT MOIST	URE (g)		199.47
INAL "B" VAL	UE	1.00	Mou	nting Method	Wet	VOID RAT	00		0.505	1			WT DRY SC)IL (g)		1144.88
o (minutes)		29.31			-	SATURAT	ION		99.4	1			% MOISTUI			17.42
and the second sec	ACCUM.	AXIAL	PORE	PWP change	3		CORR.	CORR.	DEV.	SIGMA 1	SIGMA 1	SIGMA 3	EFF.PRN	(o,'+o,')	(0)	
TIME	DEFLECT.	LOAD	PORE PRESS.	DU (psf)	% STRAIN	(1-c)	AREA	HEIGHT	STRESS	devstr+cp	EFF.	EFF.	STR RATIO	101-2011	(<u>σ1 - σ1</u>)	
(MIN)	(inches)	(lbs)	(psi)=U	(acc)	(%)	0.00	(in 2)	(in)	(psf)	(σ ₁)	(σ,-dU)	(0,-dU)	(σ, / σ,)	(P)	(Q)	(A)
0.0	0.000	13.8	70.4	0.0	0.00	1.00	6.30	5.966	0.0	1080.0	1080.0	1080,0	1.00	1080.0	0.0	0.00
3.8	0.003	30.6	71.7	187.2	0.05	1.00	6.30	5.963	384.1	1464.1	1276.9	892.8	1.43	1084.8	192.0	0.49
7.5	0.006	39.0	72.5	302.4	0.10	1.00	6.30	5.960	575.8	1655.8	1353.4	777.6	1.74	1065.5	287.9	0.53
11.3	0.009	45.1	72.8	345,6	0.15	1.00	6.31	5.957	714.9	1794.9	1449.3	734.4	1.97	1091.8	357.4	0.48
15.0	0.012	48.9	73,0	374.4	0.20	1.00	6.31	5.954	801.2	1881.2	1506.8	705.6	2,14	1106.2	400.6	0.47
18.8 31.3	0.015	52.7 58.8	73.3	417.6	0.25	1.00	6.31	5.951 5.941	887.5 1025.0	1967.5 2105.0	1549.9 1658.6	662.4 633.6	2.34 2.62	1106.2	443.8 512.5	0.47
37.5	0.025	62.6	73.6	440.4	0.42	0.99	6.33	5.936	1110.6	2105.0	1729.8	619.2	2.79	1140.1	555.3	0.44
43.8	0.035	65.7	73.7	475.2	0.59	0.99	6.33	5.931	1180.2	2260.2	1785.0	604.8	2.95	1194.9	590.1	0.40
50.0	0.040	68.0	73.7	475.2	0.67	0.99	6.34	5,926	1231.4	2311.4	1836.2	604.8	3.04	1220.5	615.7	0.39
56.3	0.045	71.0	73.7	475.2	0.75	0.99	6.34	5.921	1298.5	2378.5	1903.3	604.8	3.15	1254.0	649.2	0.37
62.5	0.050	73.3	73.7	475.2	0.84	0.99	6.35	5.916	1349.6	2429.6	1954,4	604.8	3.23	1279.6	674.8	0.35
68.8	0.055	76.1	73,6	460.8	0.92	0.99	6.35 6.36	5.911 5.906	1411.9 1467.3	2491.9 2547.3	2031.1 2086.5	619.2 619.2	3.28 3.37	1325.1	705.9 733.6	0.33
75.0 81.3	0.060	78.6	73.6 73.6	460.8	1.01	0.99	6.36	5.900	1467,5	2547.5	2137.3	619.2	3.45	1352.8	759.0	0.31
87.5	0.000	82.2	73.5	446.4	1.17	0.99	6.37	5.896	1546.2	2626.2	2179.8	633.6	3.44	1406.7	773.1	0.29
		DU @ FAILURI	E	460.8	1		DEVIATOR @ FAILUR	RIC STRESS E	1518.1]	EFFECTIVI RATIO @ F		LE STRESS 3.45		TECH DATE CHECK REVIEW	TW/A 7/9/12


Golder Associates Inc.

DIGECT NUMBER 123-28896 HEIGHT 15145 5966 5966 MPLE ID BH6/HT 15145 5966 5966 VOLLME OF SUBSTICE 111 MPLE TVPE UD AREA 40.62 63.0 6.29 VOLLME OF SUBSTICE 111 ACHINE SPEED (infinit) 0.0008 WEIGHT (g) 134.35 1337.15 16.79 VOLLME OF SUBSTICE 174 16.99 ALI PRESSURE (pit) 85.0 MOST DENSITY (sch (pf) 136.3 pcf WT SOL 1.4 TABE, DRY (g) 131 TWE CONTENTON SPECIFIC GRAVITY (sch (pf) 1161 pcf WT SOL 1.4 TABE, DRY (g) 132 ESSURE c, (pit) 150 VOLUME OF SUDDS 196.47 en" WT SOL 1.4 TABE, DRY (g) 132 TWE MERTWIL 23.31 STURATION 100.0	ROJECT TITL	E	NIPSCO/0	GEO INVES	T/MICHIGAN	N CITY/IN	INITIAL S.	AMPLE DAT	A	cm	in	corrected		CORRECTE	ED SAMPLE	DATA	
MMPLE ID BH-6 DUAMEETR 7.191 2.831 2.89 VOLUME OF SOLIDS 101 PTH NTRVAL 40.0-42.5' VOLUME 65.48 37.56 37.12 00.014 00.000 00.000 00.000 00.000 00.014 17.4 16.79 VOLUME OF SOLIDS 17.4 16.79 VOLUME OF SOLIDS VOLUME OF SOLIDS VOLUME OF SOLIDS VT SOL L TARE, MOST UP 17.4 16.79 VT SOL L TARE, MOST UP 17.4 16.79 VT SOL L TARE, MOST UP 17.4 <td< th=""><th></th><th>Shows of the second</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>117.4</th></td<>		Shows of the second															117.4
MURLE TYPE UD AREA 40.62 6.30 6.29 ACHINE SPEED (infmin) 0.0008 WEIGHT (g) 134.35 1337.15 1337.15 ACHINE SPEED (infmin) 0.0008 WEIGHT (g) 134.35 1337.15 16.79 ALI PRESSURE (pin) 0.000 85.0 WEIGHT (g) 134.35 16.79 ALI PRESSURE (pin) 0.000 SPECIFIC GRAVITY 2.75 16.69 WT SOL & TARE, DRY (g) 133 TRE ESURE, c_(pin) 10.0 PRY DENSITY, calc (pcf) 116.1 pcf WT SOL & TARE, DRY (g) 134 UBESURE, c_(pin) 10.0 PRY DENSITY, calc (pcf) 10.00 WT MORTURE: 150 TWE PRESIDE (Infmin) 2.31 SAULATION 1000 WT MORTURE: 150 TWE PRESIDE (Infmin) 0.000 10.2 0.2.32 10.2.32 10.2.32 Contract VOLUME OF SOLDS 1000 1000 WT MORTURE: 150 TWE SOLE TARE (SW (g) 12.3 12.3 12.3 12.3 12.3 12.3 <t< td=""><td>AMPLE ID</td><td>11</td><td></td><td>B</td><td>H-6</td><td></td><td>DIAMETE</td><td>R</td><td></td><td>7.191</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>416.02</td></t<>	AMPLE ID	11		B	H-6		DIAMETE	R		7.191	-						416.02
EFTH INTERVAL 40.942.5' VOLIME 61.548 37.56 37.12 RAINE SPEED (domin) 0.0014	AMPLE TYPE						AREA										192.27
ACHINE SPEED (infmin) 0006 000 000 00 00 00 0 00 0 0 0 0 0 0		/AL														3	0.462
RAIN RATE (Vsimin) 0.014 0.01 St. MOSTURE 17. 2.75 16.79 WATER CONTENT (\$60) WT SOIL & TARE. DRY (\$9) WATER CONTENT (\$60) VOLLANE OF SOLIDS - <t< td=""><td></td><td></td><td>0.0008</td><td></td><td></td><td></td><td></td><td>2)</td><td></td><td></td><td>51.50</td><td></td><td></td><td>TOID ICTI</td><td>~</td><td>4</td><td>0.402</td></t<>			0.0008					2)			51.50			TOID ICTI	~	4	0.402
LL PRESURE (pi) S.0 SPECIFIC GRAVITY 2.7 2.7 WT SOLL FARE MOST (p) 100 FC CONSULDATION DO DRV DENSITY, cale (pc) 16.3 pcf WT SOLL FARE MOST (p) 100 FC CONSULDATION 2.931 WOST DENSITY (cel) 16.01 pcf WT SOLL FARE MOST (p) 110 USSURE o, (p6) 2.1660 VOLLME OF VOIDS 0.477 0.477 0.477 WT SOLL FARE MOST (p) 110 USSURE o, (p6) 2.1660 VOLLME OF VOIDS 0.477 0.477 0.477 WT MOST URE; 1100 THE PREEST LOAD PREEST LOAD PREEST EST, ETR 1100		1									1						
MMPLE PRESSURE (pi) 70.0 MOIST DENSITY (pc) 15.0 WT SOLL & TARE, MOST (p) 13.0 ESSURE, cp (pa) 15.0 2160.0 VOLUME OF SOLIDS m" WT TARE (p) 116.1 em" WT TARE, MOST (p) 116.1 ESSURE, cp (pa) 2160.0 VOLUME OF SOLIDS 116.1 em" WT TARE (p) 117.1 MMPL PROVINCE 203.1 VOLUME OF SOLIDS 116.1 em" WT MOSTURE (p) 116.1 MMN (mmes) (mb) (ma) (ma) (ma) (mT MOSTURE (p) 116.1 (mT MOSTURE (p) 117.2 TIME DEFLECT. LOAD PRESS DU (m) %STRAN (ma) 20.0 116.1 15.0 (mol)											1	10.17		WATER CC	NTENT (%	MOISTURE	
F. CONSULDATION DRY DENSITY, -site (spf) 16.0 ord WT SOL & TABE, DRY (g) 114 ESSURE, or (sb) 21600											nef						1337.15
LESSURE, cy (ph) 15.0 VULLME OF SOLIDS 416.02 m² WT TARE (p) 00 NAL "B 'VALUE" 29.31 VULLME OF VUDS 416.02 m² WT TORY SOLICS 199.47 Iminess) 29.31 VULLME OF VUDS 0479 0.479 0.479 WT DRY SOLICS 116 MIN Codesi (0.69) (0.9) (0.9) 0.479 0.679 0.690 116 0.479 0.679 0.670 116 0.679 0.791 0.792 0.791 0.792									n								1144.88
UESSURE, cs (pf) (minutes) 2160.0 - 293.1 VUCULME OF VOIDS SATURATION 199.47 (a 27) 100.0 m* VUT MONSTURE (g) % MOISTURE UT MONSTURE (g) % MOISTURE UT MONSTURE met (minutes) ACCUM, (medes) AXMA PRE (b) PRE (minutes) 6 CORR. (minutes) CORR. (minutes) CORR. (minutes) SIGMA.1 SIGMA.1 <td< td=""><td></td><td></td><td>15.0</td><td>6</td><td></td><td></td><td></td><td></td><td>.,</td><td></td><td></td><td></td><td></td><td></td><td></td><td>(6)</td><td>0.00</td></td<>			15.0	6					.,							(6)	0.00
N.L. 'P VALUE (minutes) - 29.31 VOID RATIO 0.479 (minutes) WT DRY SOLL (g) (g) WT DRY SOLL (g) (g) 114 (g) TIME (minutes) ACCUM (meche) AXUM. (LOAD PORE. (g) PVP change (g) 6 (g) (G)								1.0.01.02			cm'					3	192.27
Verticity SATURATION DBEX SIGMA 1				5			0.2222222	C.S. A. Secondary			1					23	1144.88
ACCUM. ACUM. PORE PWP change 6 CORR. CORR. EDV. SIGMA.1 SIGMA.3 EFF.RS EFF.RS CO.2 CO.2 CO.2 CORR.	(minutes)			S							1						16.79
TIME DFLECT LOAD PRESS DU (po) 'SSTRAN (1+a) ABEA HEIGHT 'GRESS desr-gp EFF EFF EFF TSR RAND 'A 'A 'A 0.00 0.064 7.1 7.40 0.0 1.02 0.99 6.35 5.90 0.0 21600 1.00 1.00 0.97 6.35 5.90 0.0 21600 1.00 1.00 0.99 6.35 5.90 1.00 21600 1.00 2260.0 1.00 220.0 7.0 0.0 1.00		L ACCURE	AVIAL	DODE	I nest nest nest			0000	0000	000				13111882238			
(MN) (mede) (mi)	TIME		100 C 100 C				(1-c)	1.				100-0002020		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(<u>(</u> <u>(</u> <u>(</u> <u>(</u> <u>(</u> <u>(</u> <u>(</u> <u>(</u> <u>(</u> <u>(</u> <u>(</u> <u>(</u> <u>(</u>	$\frac{(\sigma_1 - \sigma_2)}{4}$	
0 0.90 18.7 70.4 0.0 1.22 0.99 6.33 5.90 0.00 2160.0		100000000000000000000000000000000000000				100000000000000000000000000000000000000	1.4		Contraction of the second second second second second second second second second second second second second s	a second second second	100000000000000000000000000000000000000	10000		1.552.552.522.52	(P)	(0)	(A)
8.8 0.070 82.5 74.5 90.4 1.13 0.99 6.56 5.890 1.452 300.42 301.48 1.990 2.292.2 772.6 0.72 12.5 0.070 853 74.9 648.0 1.19 0.99 6.56 5.896 1958.4 3116.4 1512.0 2.26 2311.2 792.6 0.72 62.5 0.110 131.3 76.1 80.84 1.66 0.98 6.42 5.856 2513.8 4691.8 3871.0 1332.6 2.77 233.0 1323.0 0.07 76.3 0.121 1566 76.0 806.4 2.22 0.98 6.43 5.855 278.0 493.8 413.6 135.6 2.05 124.5 133.0 0.05 744.6 133.0 0.07 6.49 5.783 317.70 537.0 4531.4 145.4 138.4 348.9 498.0 413.6 135.4 135.7 448.1 138.3 304.29 158.5 0.02 158.5 108.3 302.6 159.6 3.00 307.5 138.4 138.8 302.4	0.0	0.060					0.99										0.00
12.5 0.000 89.3 74.9 64.80 1.19 0.99 6.56 5.866 198.4 378.44 311.04 131.20 2.06 221.12 792.2 0.00 62.5 0.110 131.3 76.1 850.8 1.66 0.98 6.40 5.86 251.8 6401.8 387.0 1332.2 2.99 200.1 1199.4 0.00 62.5 0.110 131.3 76.1 850.4 2.05 0.98 6.42 5.86 251.8 6401.8 387.0 1335.6 2.95 205.6 1333.0 0.0 121.3 0.137 152.7 75.6 848.8 2.26 0.97 6.46 5.88 357.0 457.1 1444.4 3.18 3042.9 138.85 0.0 153.8 0.161.8 7.53 745.6 3.52 0.96 6.51 5.738 335.0 57.14 1444.4 3.18 3042.9 138.85 0.0 136.8 137.0 357.0 457.1 138.4 31.7 314.2 165.7 0.75 57.88 357.3 3453.0 <td>5.0</td> <td>0.064</td> <td>74,1</td> <td>74.0</td> <td>518.4</td> <td>1,08</td> <td>0.99</td> <td>6.35</td> <td>5.902</td> <td>1255.5</td> <td>3415.5</td> <td>2897.1</td> <td>1641.6</td> <td>1.76</td> <td>2269.4</td> <td>627.8</td> <td>0.41</td>	5.0	0.064	74,1	74.0	518.4	1,08	0.99	6.35	5.902	1255.5	3415.5	2897.1	1641.6	1.76	2269.4	627.8	0.41
9.0 0.100 123.2 76.0 806.4 1.69 0.98 6.39 5.866 298.7 453.87 375.23 135.6 2.77 253.0 1199.4 0.0 62.5 0.100 131.3 76.1 80.8 1.66 0.98 6.40 5.865 2551.8 499.5 1353.6 2.27 253.0 1199.4 0.0 88.8 0.111 142.7 76.0 806.4 2.22 0.98 6.42 5.845 2451.9 490.80 431.6 1333.6 2.26 267.6 1323.0 0.0 274.2.6 1339.0 0.0 274.2.6 1339.0 0.0 274.2.6 1339.0 0.0 274.2.6 1339.0 0.0 233.5 137.0 283.0 443.1 125.4 317.7 3142.1 135.6 3.00 302.2 1484.3 0.0 149.4 149.4 3.8 304.2 1488.5 0.0 148.3 0.0 149.4 149.4 149.4 3.13 304.2 148.4 149.4 3.13 304.2 148.4 3.13 304.2 148.3 160		5.270										1000000		2220		100 C 100 C 100 C	0.41
c2.5 0.110 131.3 76.1 820.8 1.66 0.98 6.40 5.856 231.8 490.8 3371.0 1332.2 2.89 205.1 126.5 126.5 76.3 0.121 136.6 76.0 86.4 2.25 0.98 6.42 5.845 209.8 9495.9 1333.6 2.95 2.96.6 1323.0 0.0 121.3 0.157 152.7 75.6 748.8 2.66 0.97 6.49 5.783 3157.0 5431.4 144.44 3.18 902.5 1444.3 0.0 133.8 0.168.7 74.8 6.33.6 3.52 0.96 6.51 5.738 3157.0 5457.7 4482.1 152.6 3.17 314.2 167.8 0.0 306.1 176.5 74.5 90.4 4.55 90.6 6.54 5.738 3351.0 541.3 152.6 3.17 314.2 167.8 0.0 305.1 176.5 74.8 30.9 6.63 5.687 3071.2 581.0 183.8 31.2 31.6 162.7 3.18 312.1 315.6 <td></td> <td></td> <td></td> <td>1.</td> <td>1000000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10000000</td> <td></td> <td>10000</td> <td>Excel 1 Control 1</td> <td>10.000</td> <td>0,41</td>				1.	1000000							10000000		10000	Excel 1 Control 1	10.000	0,41
75.3 0.121 136.6 76.0 89.6.4 2.05 0.98 6.42 5.845 2.945.9 490.59 399.5 135.6 2.95 267.66 1333.0 0 121.3 0.157 132.7 75.6 748.8 2.26 0.98 6.43 5.859 278.5 518.6 3.05 272.6 139.4 133.8 0.181 161.8 75.3 706.6 3.10 0.97 6.49 5.783 311.7 138.4 439.7 141.12 3.12 200.5 1494.3 0 185.0 0.208 168.7 7.48 633.6 3.52 0.96 6.51 5.783 331.5 541.5 1442.1 132.6 3.17 318.42 167.8 0 247.5 0.238 183.7 74.1 532.2 4.37 0.96 6.657 57.08 351.4 513.6 549.5 197.6 3.18 302.4 185.6 0 0.36.3 549.7 318.8 512.2 519.8 318.8 52.4 185.6 0 0.4 172.5 0.37.3 1		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1000000	12222		0.000			122 270 A.M.	0.000	0.000000000000	20.0	0.00000000		0.34
88.8 0.131 142.7 750 806.4 222 0.98 6.43 5.855 2778.0 9938.0 4131.6 133.6 105 274.6 1380.0 0.05 133.8 0.157 152.7 75.6 748.8 266 0.97 6.46 5.890 2988.5 5148.5 4391.4 1411.2 31.2 2905.5 1494.3 0 133.8 0.183 161.8 73.3 705.6 31.0 0.97 6.49 5.788 3117.0 5337.0 4451.4 141.2 31.8 2042.9 178.8 0 216.3 0.233 175.6 74.8 633.6 3.52 0.96 6.54 5.733 335.0 541.5 317.0 4482.1 152.4 31.7 3184.2 1167.8 0 216.3 0.233 175.6 74.1 532.8 4.37 0.96 6.67 5.708 371.4 518.6 160.72 31.9 341.2 1185.6 118.3 352.04 118.356 108.3 313.3 0.303 177.12 31.8 350.1 118.356		100 C 100 C	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1000	1.	122 (122)		222220		100 C 20 C 20 C 20 C 20 C 20 C 20 C 20 C	1.555555			2230		0.000000	0.32
121.3 0.157 152.7 75.6 748.8 26.6 0.97 6.46 5.89 2988.3 5188.5 4499.7 1411.2 31.2 290.5 1498.3 0 153.8 0.163 163.7 75.5 705.6 31.0 0.97 6.49 5.783 317.0 5337.0 4451.4 31.8 3042.9 1588.5 0 6.51 5.788 315.7 547.5 4482.1 1326.4 3.17 3184.2 1657.8 0 0 208.5 1697.6 3.20 3296.1 1726.5 0 0 2165.7 0 0 57.08 371.4 571.4 578.6 167.2 3.19 341.2 187.6 0 239.5 166.0 5.637 5708 3571.4 573.1 318.8 152.7 183.6 0 183.5 002.6 1586.5 158.6 168.8 3.18 350.0 188.8 318.3 350.0 183.5 318.3 350.0 183.8 318.3 350.0 183.8 318.3 318.3 318.3 318.3 318.3 318.3 318.3 <		10.000				12.02.02						1.		1000	1000000	1000000	0.30
153.8 0.183 161.8 75.3 705.5 3.10 0.97 6.49 5.783 3177.0 5337.0 4431.4 1454.4 3.18 3042.9 1588.5 0.00 185.0 0.208 188.7 74.5 633.6 3.52 0.96 6.51 5.758 3315.7 5475.7 442.1 1526.4 3.17 3184.2 1657.8 0.0 247.5 0.258 183.7 74.1 532.8 4.37 0.96 6.57 5.708 3571.4 571.4 518.6 1627.2 3.19 3412.9 1785.7 0.0 278.8 0.330 192.3 73.4 432.0 5.23 0.95 6.63 5.683 5671.2 5831.2 518.0 1684.8 3.18 506.0 188.56 0.0 1.85.6 0.0 178.0 3.18 3012.7 188.4 185.6 0.0 188.5 602.5 569.7 177.12 3.18 3705.5 1934.3 0 188.5 160.5 188.5 0.02.5 188.7 177.12 3.18 3705.5 1934.3 0 <t< td=""><td></td><td>1000</td><td></td><td>10.55</td><td></td><td></td><td>1.</td><td>100000</td><td></td><td></td><td>10.000</td><td>123232755</td><td>1000</td><td>21222</td><td>20.2238.0</td><td></td><td>0.25</td></t<>		1000		10.55			1.	100000			10.000	123232755	1000	21222	20.2238.0		0.25
216.3 0.233 175.6 74.5 990.4 3.95 0.96 6.54 5.733 3453.0 5613.0 5022.6 1569.6 3.20 3296.1 1726.5 0.0 247.5 0.238 181.7 74.1 532.8 4.37 0.96 6.57 5.708 3571.4 5731.4 5198.6 1627.2 3.19 3412.9 1785.7 0.7 311.3 0.309 192.3 73.4 432.0 5.23 0.95 6.63 5.657 3769.3 5929.3 5497.3 178.0 3.18 3612.7 1884.7 0.0 343.8 0.335 197.7 73.1 388.8 5.67 0.94 6.66 5.661 3885.5 6022.5 5639.7 1771.2 3.18 3705.5 1934.3 0.6 0.665 5064 502.9 547.3 181.44 3.17 378.9 1966.5 0.0 375.0 0.560 71.2 115.2 823.5 0.93 6.72 5581 4013.7 6173.7 3887.7 187.4 318 306.4 4102.9 2066.8		25.25	161.8	75.3	705.6	3.10	0.97	6.49	5.783	3177.0		and the second se			3042.9	1588.5	0.22
247.5 0.258 181.7 74.1 532.8 4.37 0.96 6.57 5.708 3571.4 5731.4 5198.6 1627.2 3.19 3412.9 1785.7 0.00 278.8 0.238 187.0 73.7 475.2 4.79 0.95 6.60 5.683 3671.2 5831.2 5356.0 1684.8 3.18 3302.4 1885.6 0.00 343.8 0.335 197.7 73.1 388.8 5.67 0.94 6.66 5.661 3865.5 602.5 559.7 1771.2 3.18 3705.5 1934.3 0.00 343.8 0.355 206.1 72.4 345.6 6.10 0.94 6.66 5.661 3862.5 602.5 539.7 1771.2 3.18 3705.5 1934.3 0.00 406.3 0.385 206.1 72.4 38.4 401.7 6173.7 7885.7 1872.0 3.14 317.3 3878.8 2066.8 0.00 3.14 375.0 3.14 375.0 3.14 375.0 3.14 375.9 527.9 583.0 4131.5	185.0	0.208	168.7	74.8	633.6	3.52	0.96	6.51	5.758	3315.7	5475.7	4842.1	1526.4	3.17	3184.2	1657.8	0.19
278.8 0.283 187.0 73.7 475.2 4.79 0.95 6.60 5.633 3671.2 5831.2 5356.0 1684.8 3.18 3520.4 1855.6 0 311.3 0.309 192.3 73.4 432.0 523 0.95 6.63 5.657 3769.3 3929.3 5497.3 1728.0 3.18 3612.7 1884.7 0 335.8 0.300 201.5 72.8 345.6 6.10 0.94 6.66 5.661 3932.9 6902.9 5747.3 1814.4 3.17 3780.9 1966.5 0 406.3 0.385 206.1 72.4 288.0 6.52 0.93 6.72 5.581 4013.7 6173.7 3.84 3.06 4150.6 206.8 0 532.5 0.486 219.0 71.2 115.2 8.23 0.92 6.85 5.480 4211.5 6371.5 6256.3 204.4 3.06 4150.6 2160.8 0 512.5 0.68 405.0 513.0 611.0 641.9 641.4 3.02 4453.0 6513.0 </td <td></td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td></td> <td></td> <td>10.000</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>100000</td> <td></td> <td></td> <td></td> <td>10000000</td> <td>0.17</td>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			10.000	1				1	100000				10000000	0.17
311.3 0.309 192.3 73.4 432.0 5.23 0.95 6.63 5.657 3769.3 592.9.3 5497.3 1728.0 3.18 361.7 1884.7 0.0 343.8 0.335 197.7 73.1 388.8 5.67 0.94 6.66 5.631 386.5 6028.5 5539.7 1771.2 3.18 370.5 1994.3 0.0 340.3 0.385 206.1 72.4 288.0 6.52 0.93 6.72 5.581 4013.7 6173.7 588.5 187.0 3.14 387.8.8 2006.8 0.0 406.3 0.385 206.1 72.4 288.0 6.52 0.93 6.72 5.581 4013.7 6173.7 588.5 187.0 3.14 387.8.8 2006.8 0.0 532.5 0.466 215.0 71.9 115.2 8.33 0.92 4501.3 6291.9 6081.9 194.4.0 3.13 4012.9 2068.9 0.0 532.5 0.456 219.0 7.0.4 0.0 9.96 0.91 6.91 5.429 <td< td=""><td></td><td>10.000</td><td></td><td></td><td>100000000</td><td></td><td></td><td></td><td>100000000</td><td></td><td>10423-005-0</td><td>0.000</td><td>1 200 At</td><td>10000</td><td>10000000</td><td></td><td>0.15</td></td<>		10.000			100000000				100000000		10423-005-0	0.000	1 200 At	10000	10000000		0.15
343.8 0.335 197.7 73.1 388.8 5.67 0.94 6.66 5.631 386.5 6028.5 5639.7 1771.2 3.18 370.5 1934.3 0.00000000000000000000000000000000000		10000				1			10030021	10.000	200 a 200			100.00		100000000000000000000000000000000000000	0.13
375.0 0.360 201.5 72.8 345.6 6.10 0.94 6.69 5.606 3932.9 6092.9 5747.3 1814.4 3.17 3780.9 1966.5 0.04 406.3 0.385 206.1 72.4 288.0 6.52 0.93 6.72 5.581 4013.7 6173.7 388.7 1814.4 3.17 378.8 2006.8 0.0 470.0 0.436 213.7 71.9 216.0 738 0.93 6.72 5.581 4013.7 6173.7 5885.7 1872.0 3.14 31878.8 2006.8 0.0 532.5 0.486 219.0 71.2 115.2 8.23 0.92 6.85 5.480 4211.5 6371.5 6256.3 2044.8 3.06 4150.6 2105.8 0.0 6600 0.538 229.7 70.4 0.0 9.96 0.90 658 5.377 4432.2 6613.0 2106.0 3.01 443.7 2226.1 4.0 723.8 0.639 220.6 70.0 57.6 108.2 0.87 7.19 5225					10000000000000000000000000000000000000	200121	2.00.02	10,000		292223	0.8102.521	5 (5-6) (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5			3	and the second second second second second second second second second second second second second second second	0.11 0.10
406.3 0.385 206.1 72.4 28.0 6.52 0.93 6.72 5.581 4013.7 6173.7 5885.7 1872.0 3.14 3878.8 2006.8 0 470.0 0.436 213.7 71.9 216.0 7.38 0.93 6.79 5.530 44137.9 6297.9 6081.9 1944.0 3.13 4012.9 2068.9 0 595.3 0.456 219.0 71.2 115.2 8.23 0.92 6.85 5.480 4211.5 6371.5 6256.3 2044.8 3.06 4150.6 2105.8 0 596.3 0.557 225.2 70.8 57.6 0.99 0.91 6.91 5.429 4301.0 6461.0 6403.4 2102.4 3.05 4225.9 215.0 0 0 660.9 0.588 229.7 70.4 0.0 9.96 0.90 6.98 5.378 4353.0 6513.0 2160.0 3.02 4336.5 2176.5 0.0 722.6 74485.9 6664.9 6747.7 220.8 2.98 4594.2 2234.4 4.98 45					C. 727 (R.)		1.	222.00	100000000000000000000000000000000000000		100 C 100 C 100 C	10.0000.0000		2000		100000000000000000000000000000000000000	0.09
532.5 0.486 219.0 71.2 115.2 8.23 0.92 6.85 5.480 4211.5 6371.5 6256.3 2044.8 3.06 4150.6 2105.8 0.00 596.3 0.537 225.2 70.8 57.6 9.09 0.91 6.91 5.429 4301.0 6461.0 6403.4 2102.4 3.05 4252.9 2150.5 0.0 660.0 0.5388 229.7 70.4 0.0 9.96 0.90 6.98 5.378 4353.0 6513.0 2160.0 3.02 4336.5 2176.5 0.0 723.8 0.659 226.6 70.0 -57.6 10.82 0.89 7.05 5.327 4452.2 6612.2 6669.8 2217.6 3.01 4443.7 2226.1 443.7 785.3 0.659 240.4 69.7 -100.8 11.67 0.88 7.12 5.277 4486.9 6646.9 6747.7 2260.8 2.98 4596.8 2267.2 44 913.8 0.791 248.8 69.2 -172.8 133.9 0.87 7.26		11 State 1	and the second second											332.03	5.05.5CO -		0.07
\$96.3 0.537 225.2 70.8 \$7.6 9.09 0.91 6.91 5.429 4301.0 6461.0 6403.4 2102.4 3.05 4252.9 2150.5 0.0 660.0 0.588 229.7 70.4 0.0 9.96 0.90 6.98 5.378 4353.0 6513.0 2160.0 3.02 4336.5 2176.5 0.0 723.8 0.639 256.6 70.0 -57.6 10.82 0.89 7.05 5.327 4452.2 6612.2 6669.8 2217.6 3.01 4443.7 2226.1 4.4 786.3 0.689 240.4 69.7 -100.8 11.67 0.88 7.12 5277 44852.2 6612.2 6669.8 6747.7 2260.8 2.98 4556.8 2267.2 4.4 851.3 0.791 248.8 69.2 -172.8 13.39 0.87 7.26 5.175 4565.8 6755.0 6971.0 2376.0 2.98 4451.2 228.9 4 917.5 0.842 252.6 68.9 -216.0 14.26 0.86				71.9	216.0	7.38	0.93	6.79	5.530	4137.9	6297.9	6081.9	1944.0	3.13	4012.9	2068.9	0.05
660.0 0.588 229.7 70.4 0.0 9.96 0.90 6.98 5.378 4353.0 6513.0 6513.0 2160.0 3.02 4336.5 2176.5 0.0 723.8 0.639 236.6 70.0 -57.6 10.82 0.89 7.05 5.327 4452.2 6612.2 6669.8 2217.6 3.01 4443.7 2226.1 4.4 786.3 0.689 240.4 69.7 -100.8 11.67 0.88 7.12 5.277 4486.9 6646.9 6747.7 2260.8 2.98 4504.2 2243.4 4.4 851.3 0.741 245.0 69.5 -129.6 12.55 0.87 7.19 5.225 4534.3 6694.3 6823.9 2289.6 2.98 4556.8 2267.2 4.4 913.8 0.791 248.8 69.2 -172.8 13.39 0.87 7.26 5.175 4565.8 6755.6 6971.0 2376.0 2.93 4673.5 2297.5 4.104.13 0.88 728.5 7.103 2452.6 6782.6 7013.0 296.4		1.00			100,000,000	1023			Second Condition of the	The second second second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10000			0.03
723.8 0.639 236.6 70.0 -57.6 10.82 0.89 7.05 5.327 4452.2 6612.2 6669.8 2217.6 3.01 4443.7 2226.1 4.4 786.3 0.689 240.4 69.7 -100.8 11.67 0.88 7.12 5.277 4486.9 6646.9 6747.7 2260.8 2.98 4504.2 2243.4 4.4 851.3 0.741 245.0 69.5 -129.6 12.55 0.87 7.19 5.225 4534.3 6694.3 6823.9 2289.6 2.98 4556.8 2267.2 4.4 913.8 0.791 248.8 69.2 -172.8 13.39 0.87 7.26 5.175 4565.8 6725.8 6898.6 2332.8 2.96 4615.7 2282.9 4. 917.5 0.842 252.6 68.9 -216.0 14.26 0.86 7.33 5.124 4595.0 6755.0 6971.0 2376.0 2.93 4673.5 2297.5 4. 101.3 0.893 256.4 68.8 -273.6 15.95 0.84 <td></td> <td>10000</td> <td></td> <td></td> <td></td> <td>12020</td> <td>5 25 C</td> <td>1253251</td> <td>1000 000 0000</td> <td>100000000000000000000000000000000000000</td> <td>100 C 100 C</td> <td>1.5.8.8.6.2.2</td> <td></td> <td>10000</td> <td>1000</td> <td>100000000000000000000000000000000000000</td> <td>0.01</td>		10000				12020	5 25 C	1253251	1000 000 0000	100000000000000000000000000000000000000	100 C 100 C	1.5.8.8.6.2.2		10000	1000	100000000000000000000000000000000000000	0.01
786.3 0.689 240.4 69.7 -100.8 11.67 0.88 7.12 5.277 4486.9 6646.9 6747.7 2260.8 2.98 4504.2 2243.4 -4 851.3 0.741 245.0 69.5 -129.6 12.55 0.87 7.19 5.225 4534.3 6694.3 6823.9 2289.6 2.98 4556.8 2267.2 -4 913.8 0.791 248.8 69.2 -172.8 13.39 0.87 7.26 5.175 4565.8 6755.0 6971.0 2376.0 2.93 4673.5 2297.5 -4 977.5 0.842 252.6 68.9 -216.0 14.26 0.86 7.33 5.124 4595.0 6755.0 6971.0 2376.0 2.93 4673.5 2297.5 -4 1041.3 0.893 256.4 68.8 -230.4 15.12 0.85 7.40 5.073 4622.6 6782.6 7013.0 2390.4 2.93 4701.7 2311.3 -4 1102.5 0.942 259.5 68.5 -273.6 15.95 0.84 <td></td> <td>20000</td> <td>10000</td> <td></td> <td>10000</td> <td></td> <td></td> <td>21-22</td> <td></td> <td></td> <td>2010/02</td> <td>1000000</td> <td></td> <td></td> <td>2000 C C C C C C C C C C C C C C C C C C</td> <td>1.000</td> <td>0.00</td>		20000	10000		10000			21-22			2010/02	1000000			2000 C C C C C C C C C C C C C C C C C C	1.000	0.00
851.3 0.741 245.0 69.5 -129.6 12.55 0.87 7.19 5.225 4534.3 6694.3 6823.9 2289.6 2.98 4556.8 2267.2 4 913.8 0.791 248.8 69.2 -172.8 13.39 0.87 7.26 5.175 4565.8 6725.8 6898.6 2332.8 2.96 4615.7 2282.9 4 977.5 0.842 252.6 68.9 -216.0 14.26 0.86 7.33 5.124 4595.0 6755.0 6971.0 2376.0 2.93 4673.5 2297.5 4 1041.3 0.893 256.4 68.8 -230.4 15.12 0.85 7.40 5.073 4622.6 6782.6 7013.0 2390.4 2.93 4701.7 2311.3 4 1102.5 0.942 259.5 68.5 -273.6 15.95 0.84 7.48 5.024 4637.1 6797.1 7070.7 2433.6 2.91 4752.1 2318.5 4 1167.5 0.994 262.5 68.4 -288.0 16.83 0.83		1. S. S. S. S. S. S. S. S. S. S. S. S. S.		C C C C C C C C C C C C C C C C C C C	10.525.525	0.000	and the second se	1.122.00		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C 225 10 10	10.00000000					-0.01
913.8 0.791 248.8 69.2 -172.8 13.39 0.87 7.26 5.175 4565.8 6725.8 6898.6 2332.8 2.96 4615.7 2282.9 4 977.5 0.842 252.6 68.9 -216.0 14.26 0.86 7.33 5.124 4595.0 6755.0 6971.0 2376.0 2.93 4673.5 2297.5 4 104.3 0.893 256.4 68.8 -230.4 15.12 0.85 7.40 5.073 4622.6 6782.6 7013.0 2390.4 2.93 4701.7 2311.3 4 1102.5 0.942 259.5 68.5 -273.6 15.95 0.84 7.48 5.024 4637.1 6797.1 7070.7 2433.6 2.91 4752.1 2318.5 4 1107.5 0.994 262.5 68.4 -288.0 16.83 0.83 7.56 4.972 4645.7 6805.7 7093.7 2448.0 2.90 4770.8 2322.8 4 1167.5 0.994 262.5 68.4 -288.0 16.83 0.83	Contraction of the second				1.	25585			120700-000		1000 States - 1	12332332	0.730022		100000000000000000000000000000000000000	100000000000000000000000000000000000000	-0.02
977.5 0.842 252.6 68.9 -216.0 14.26 0.86 7.33 5.124 4595.0 6755.0 6971.0 2376.0 2.93 4673.5 2297.5 4 1041.3 0.893 256.4 68.8 -230.4 15.12 0.85 7.40 5.073 4622.6 6782.6 7013.0 2390.4 2.93 4673.5 2297.5 4 1102.5 0.942 259.5 68.5 -273.6 15.95 0.84 7.48 5.024 4637.1 6797.1 7070.7 2433.6 2.91 4752.1 2318.5 4 1167.5 0.994 262.5 68.4 -288.0 16.83 0.83 7.56 4.972 4645.7 6805.7 7093.7 2448.0 2.90 4770.8 2322.8 4 1167.5 0.994 262.5 68.4 -288.0 16.83 0.83 7.56 4.972 4645.7 6805.7 7093.7 2448.0 2.90 4770.8 2322.8 4 Q FAILURE 705.6 9.05.6 9.91 16.83 0.83					and the second sec	100000		22220		1.	100000000000000000000000000000000000000	10.51.51.51.51	20122200		100 C C C C C C C C C C C C C C C C C C	100000000	-0.04
1102.5 0.942 259.5 68.5 -273.6 15.95 0.84 7.48 5.024 4637.1 6797.1 7070.7 2433.6 2.91 4752.1 2318.5 -4 1167.5 0.994 262.5 68.4 -288.0 16.83 0.83 7.56 4.972 4645.7 6805.7 7093.7 2433.6 2.91 4770.8 2318.5 -4 DU OEVIATORIC STRESS DEVIATORIC STRESS EFFECTIVE PRINCIPLE STRESS TECH TV @ FAILURE 705.6 705.6 3177.0 3177.0 RATIO @ FAILURE 3.18 DATE 70			Contraction of the second	1000	Contraction of the		0.86	1.	5.124	4595.0	6755.0	6971.0	2376.0	2.93	4673.5	2297.5	-0.05
1167.5 0.994 262.5 68.4 -288.0 16.83 0.83 7.56 4.972 4645.7 6805.7 7093.7 2448.0 2.90 4770.8 2322.8 4 DU @ FAILURE DU PAILURE 705.6 DEVIATORIC STRESS @ FAILURE EFFECTIVE PRINCIPLE STRESS RATIO @ FAILURE TECH TV DATE					Contraction of the			10000									-0.05
DU DEVIATORIC STRESS EFFECTIVE PRINCIPLE STRESS TECH TW @ FAILURE 705.6 @ FAILURE 3177.0 RATIO @ FAILURE 3.18 DATE 7/ CHECK						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A2301		10000000	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				10000	1000000000	-0.06
@ FAILURE 705.6 @ FAILURE 3177.0 RATIO @ FAILURE 3.18 DATE 7/ CHECK	1167.5	0.994	262.5	68.4	-288.0	16.83	0.83	7.56	4.972	4645.7	6805.7	7093,7	2448.0	2.90	4770.8	2322.8	-0.06
@ FAILURE 705.6 @ FAILURE 3177.0 RATIO @ FAILURE 3.18 DATE 7/ CHECK	-		DU				-	DEVIATOR	UC STRESS			EFFECTIV	E PRINCIP	LE STRESS		TECH	TW/A
CHECK				E	705.6	1					1						7/9/1
			O	° 3				Straten	A.S.		-						


Golder Associates Inc.

ROJECT TITL	E	NIPSCOM	NIPSCO/GEO INVEST/MICHIGAN CITY/IN				MPLE DAT	A	cm	in	corrected		CORRECTED SAMPLE DATA			
PROJECT NUMBER		123-88898				HEIGHT			15.347	6.042	5.982	2	DRY DENSI			122.8
SAMPLE ID SAMPLE TYPE DEPTH INTERVAL MACHINE SPEED (in/min) STRAIN RATE (%/min) CELL PRESSURE (psi) SAMPLE PRESSURE (psi) EFF. CONSOLIDATION PRESSURE, σ ₃ (psi)			BH-6				DIAMETER			2.855 6.40 38.68	2.810		VOLUME O	% _	434.75	
		UD				AREA			7.252 41.30		6.20	-	VOLUME OF VOIDS			173.29
			40.0-42.5'				VOLUME				37.11	(VOID RATH		0.399	
		0.0008				WEIGHT (g)			633.85 1394.41		1369.81		· oib icin		0.277	
		0.013				% MOISTL			16.5	1	14.49					
		100.0 70.0 30.0				SPECIFIC			2.75	1			WATER CONTENT (% MOISTUR WT SOIL & TARE, MOIST (g)			
							NSITY (pcf)			pcf						1369.81
						DRY DENSITY, cale (pcf) VOLUME OF SOLIDS VOLUME OF VOIDS			117.8 434.75 199.09	pcf			WT SOIL & TARE, MOIST (g) WT SOIL & TARE, DRY (g) WT TARE (g) WT MOISTURE (g)			1305.81 1196.44 0.00 173.37
										cm'						
		4320.0			cm'											
FINAL "B" VALUE		1.00				VOID RATIO			0.458	-						1196.44
t _{so} (minutes)			31.44			SATURATION			99.4	1				WT DRY SOIL (g) % MOISTURE		
Se (minubes)						SATORAL				1						14.49
	ACCUM.	AXIAL	PORE	PWP change	6	12.13	CORR.	CORR.	DEV.	SIGMA 1	SIGMA I	SIGMA 3	EFF.PRN	(<u>σ,'+σ,'</u>)	$\frac{(\sigma_1 - \sigma_3)}{2}$	
TIME (MIN)	DEFLECT. (inches)	LOAD	PRESS.	DU (psf)	% STRAIN	(1-c)	AREA	HEIGHT	STRESS	devstr+cp	EFF.	EFF.	STR RATIO	642		
(MIN) 0.0	(inches) 0.000	(lbs) 17.2	(psi)=U 70.8	(acc) 0.0	(%)	1.00	(in 2) 6.20	(in) 5.982	(psf) 0.0	(σ ₁) 4320.0	(σ ₁ -dU) 4320.0	(σ3-dU) 4320.0	(σ ₁ 7 σ ₃) 1.00	(P) 4320.0	(Q) 0.0	(A) 0
2.5	0.002	54.4	73.5	388.8	0.03	1.00	6.20	5.980	863.3	5183.3	4794.5	3931.2	1.22	4362.9	431.7	0.45
6.3	0.005	78.6	75.4	662.4	0.08	1.00	6.21	5.977	1424.2	5744.2	5081.8	3657.6	1.39	4369.7	712.1	0.47
10.0	0.008	92.4	76.8	864.0	0.13	1.00	6.21	5.974	1743.5	6063.5	5199.5	3456.0	1.50	4327.7	871.7	0.50
13.8	0.011	102.1	77.9	1022.4	0.18	1.00	6.21	5.971	1967.4	6287.4	5265.0	3297.6	1.60	4281.3	983.7	0.52
17.5	0.014	109.2	78.8	1152.0	0.23	1.00	6.22	5.968	2130.8	6450.8	5298.8	3168.0	1.67	4233.4	1065,4	0.54
30.0	0.024	127.1	81.0	1468.8	0.40	1.00	6.23	5.958	2541.1	6861.I	5392.3	2851.2	1.89	4121.8	1270.6	0.58
62.5 87.5	0.050	155.8	83.9	1886.4	0.84	0.99	6.26	5,932	3190.7	7510.7	5624.3	2433.6	2.31	4029.0	1595.4	0.59
87.5	0.070	171.5	84,8 85,4	2016.0 2102.4	1.17	0.99	6.28 6.30	5.912 5.889	3540.2 3851.0	7860.2 8171.0	5844.2 6068.6	2304.0 2217.6	2.54 2.74	4074.1 4143.1	1770.1 1925.5	0.57
147.5	0.118	197.6	85.6	2131.2	1.97	0.98	6.33	5.864	4105.4	8425,4	6294.2	2188.8	2.88	4241.5	2052.7	0.55
181.3	0.145	208.4	85.6	2131.2	2.42	0.98	6.36	5.837	4331.2	8651.2	6520.0	2188.8	2.98	4354.4	2165.6	0.49
211.3	0.169	217.0	85.5	2116.8	2.83	0.97	6.38	5.813	4507.4	8827.4	6710.6	2203.2	3.05	4456.9	2253,7	0.47
241.3	0.193	225.6	85.3	2088.0	3.23	0.97	6.41	5.789	4682.0	9002.0	6914.0	2232.0	3.10	4573.0	2341.0	0.45
268.8	0.215	233.4	85.0	2044.8	3.59	0.96	6.43	5,767	4838,7	9158,7	7113.9	2275.2	3.13	4694.6	2419.4	0.42
300.0	0.240	240.1	84,7	2001.6	4.01	0.96	6.46	5.742	4967.1	9287.1	7285.5	2318.4	3.14	4801.9	2483.5	0.40
363.8	0,291	251.7	\$4.0	1900.8	4.86	0.95	6.52	5.691	5179.1	9499.1	7598.3	2419.2	3.14	5008.8	2589.6	0.37
395.0 453.8	0.316	257,7 266.6	83.6 83.0	1843.2 1756.8	5.28	0.95	6.55	5.666 5.619	5288.3 5438.5	9608.3 9758.5	7765.1 8001.7	2476.8 2563.2	3.14 3.12	5121.0 5282.5	2644.2 2719.3	0.35
518.8	0.365	275.6	82.5	1684.8	6.94	0.94	6.67	5.567	5582.7	9902.7	8217.9	2635.2	3.12	5426.5	2791.3	0.32
577.5	0.462	283.0	\$1.9	1598.4	7.72	0.92	6.72	5.520	5694.0	10014.0	8415.6	2721.6	3.09	5568.6	2847.0	0.28
640.0	0.512	290.9	81.5	1540.8	8.56	0.91	6.78	5.470	5810.2	10130.2	8589.4	2779.2	3.09	5684.3	2905,1	0.27
702.5	0.562	297.2	81.0	1468.8	9.39	0.91	6.85	5.420	5889.6	10209.6	8740.8	2851.2	3.07	5796.0	2944.8	0.25
762.5	0.610	303.5	80.6	1411.2	10.20	0.90	6.91	5.372	5968.8	10288.8	8877.6	2908.8	3.05	5893.2	2984.4	0.24
825.0	0.660	309.9	80.2	1353.6	11.03	0.89	6.97	5.322	6045.4	10365.4	9011.8	2966.4	3.04	5989.1	3022.7	0.22
\$85.0 1010.0	0,708	315.5 325.2	79.8 79.2	1296.0 1209.6	11.84	0.88	7.04	5.274 5.174	6105.5 6184.5	10425.5 10504.5	9129.5 9294.9	3024.0 3110.4	3.02 2.99	6076.7 6202.6	3052,7 3092.2	0.21
1135.0	0.908	333.4	78.8	1152.0	15.18	0.85	7.31	5.074	6226.4	10504.5	9294.9 9394.4	3168.0	2.99	6281.2	3113.2	0.20
1192.5	0.954	336.4	78.6	1123.2	15.95	0.84	7.38	5.028	6228.5	10548.5	9425.3	3196.8	2.95	6311.1	3114.3	0.18
1256.3	1.005	341.2	78.4	1094.4	16.80	0.83	7,46	4.977	6258.1	10578.1	9483.7	3225.6	2.94	6354.6	3129.0	0.17
	-	DU I I			DEVIATORIC STRESS			EFFECTI			VE PRINCIPLE STRESS			TECH	TW/A	
		@ FAILURE 2001.6			@ FAILURE			4967.1	1	RATIO @ FAILURE 3.14			DATE			
						and the second s								CHEC		E 7/9/12 K
															REVIEW	

Golder Associates Inc.

Golder Associates Inc.

Golder Associates Inc.

NIPSCO-MCGS 123-88898 Geotechnical Laboratory Test Results

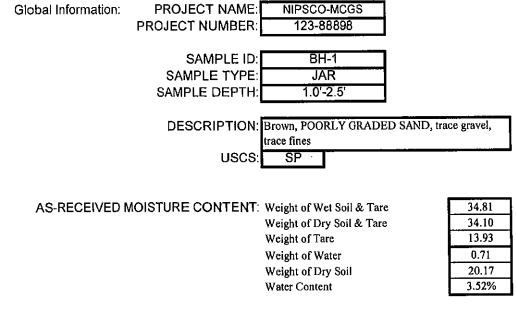
. . .

.

Sample Identification			Soil	In-situ Moisture %		Atterber	g Limits			Grain Size Distribution	0	Additional Tests Conducted (See Notes)
Sample No.	Sample Type	Sample Depth (ft)	Classi- fication		ш	PL	PI	<u>u</u>	% Finer #4 sieve	% Finer #200 sieve	% Finer 0.002 mm	
BH-1	Jar	1.0'-2.5'	SP	3.52	-	-	i .	1.	99.32	4.77	-	
BH-1	Jar	11.0'-12.5'	SP	5.93		-		-	94.10	4.43	-	
BH -1	Jar	28.5'-30.0'	SP	25.01		-		-	100.00	3.78	-	
BH-2	Jar	1.0'-2.5'	SP-SC	4.19	-	-	-	-	92.28	5,88	-	
BH-2	Jar	6.0'-7.5'	SP	1.90	-	-	-	-	97.13	2.30	-	
BH-2	Jar	13.5'-15.0'	SP	23.84	•	•	-	-	100.00	0.22	-	
BH-2	Jar	21.0'-22.5'	SP-SC	13.04	-	-	-	-	77.92	5.00	-	
BH-3	Jar	3.5'-5.0'	SC-SM	7,38	-	-	-	-	72,46	15.41	-	
ВН-3	Jar	13.5'-15.0'	SP	6.57	•	•		-	99,89	0.72	-	
BH-3	Jar	23.5'-25.0'	SP	2.75	-	-	-	-	100.00	1.51	-	
BH-3	Jar	38_5'-40.0'	SP-SC	19.15	-	-	-	-	100.00	8,50	-	
BH-3	Jar	63.5'-65.0'	SP-SC	20.72	•	-	-	-	100.00	9.78	-	
ВН→	Jar	1.0'-2.5'	SP	3.33	•		-	-	93.13	2.07	-	
BH-4	Jar	8.5'-10.0'	SP	6.15	-	-	-	-	97,40	2.17	-	
BH-4	Jar	13.5'-15.0'	SP	3.49	•	-	-	-	100,00	0.08	-	
BH-4	Jar	33_5'-35,0'	\$P	22,67	-	-	-	-	92.27	3.71	-	
BH-5	Jar	6.0'-7.5'	SP	4.21	-	-	-	-	91.41	2.71	-	
BH-S	Jar	13.5'-15.0'	SP	4.85	-	-	-	-	99.63	2.31	-	
ВН-5	Jar	23.5'-25.0'	SP-SC	20.14	-	-	-	-	84.44	5.51	•	
BH-5	Jar	28.5'-30.0'	SW	16.71		-	-	-	95.47	2.65	-	
ВН-5	Jar	33.5'-35.0'	SP	21.73	-	-	-	-	88.06	1.03		
BH-5	Jar	48_5'-50.0'	SP-SC	22.07	-	-	-	-	99.38	7.40	-	
BH-6	Jar	3.5'-5.0'	SP	3.17	-	-	-	-	100.00	0_39	•	
BH-6	Jar	18.5'-20.0'	SP	22.99	-	•		•	99.21	1.89	-	
BH-6	Jar	28.5'-30.0'	SP	22.64	-	-	-	-	100.00	1.42		
BH-6	Jar	33.5'-35.0'	SP-SC	37,85	-	-	-		99,04	11,84	-	
BH -7	Jar	1.0'-2.5'	SP-SC	7.85	-	-	-	-	79.12	10.15	•	
BH -7	Jar	8.5'-10.0'	SC-SM*	6.49	-	•	-		98.74	13.82	-	
BH -7	Jar	13.5'-15.0'	SC-SM*	11.68	-	-	-	-	93.61	13.81		
BH- 7	Jar	23.5'-25.0'	ŚM	18.36	-	-	-	-	96.40	20.60	7.86	
ВН-7	Jar	38,5'-40,0'	SP-SC	22,85	-	-	-	-	100,00	6.78	-	
BH-8	Jar	1.0'-2.5'	SP-SC*	9.73	-	-	-	-	93.78	10.52	-	
BH-8	Bag	8,5'-10,0'	SP	30,08	-	-	-	-	109,00	2.35	-	
ВН-8	Bag	13,5'-15,0'	\$M	38,91	-	-	-	-	99.00	43.00	2,04	
BH-8	Bag	23.5'-25.0'	SP	19.22	-	-	-	-	99,70	2,60	-	
BH-S	Bag	28.5'-30.0'	SC-SM	18.25	-	-	-	-	99.80	35.80	-	
	1											

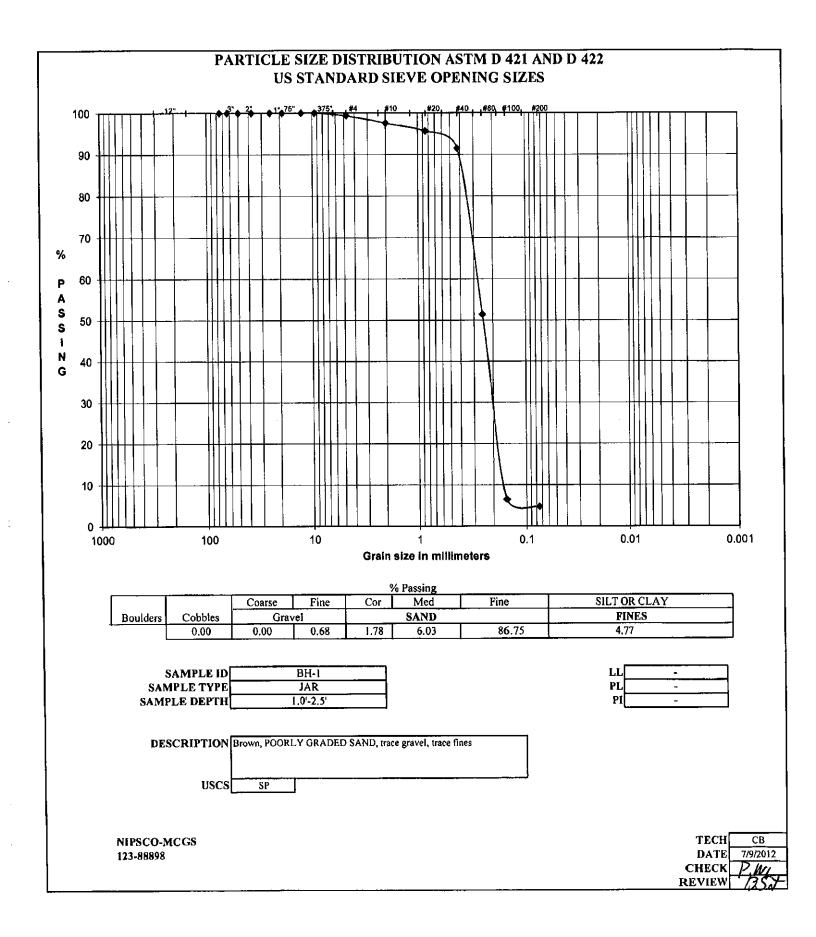
ABBREVIATIONS: LIQUID LIMIT (LL) PLASTIC LIMIT (PL) PLASTICTY INDEX (PI) LIQUIDITY INDEX (LI) SPECIFIC GRAVITY (GS) MOISTURE (Mc) NOTES: *Classified Visually

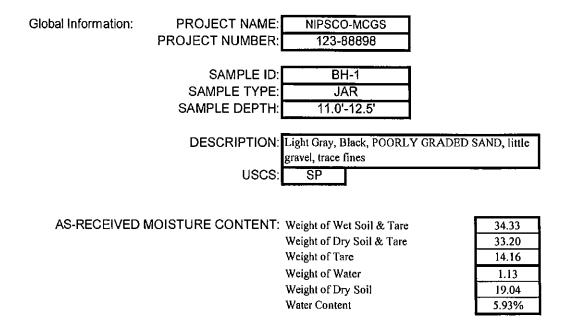
NIPSCO-MCGS 123-88898 Geotechnical Laboratory Test Results


Sample Identification			Soil	In-situ	Atterberg Limits				Grain Size Distribution	n			
Sample No.	Sample Type	Sample Depth (ft)	Classi- fication	Moisture %	u	LL PL PI LI			% Finer #4 sieve	% Finer #200 sieve	% Finer 0.002 mm	Additional Tests Conducted (See Notes)	
BH-9	Bag	1.0'-2.5'	SP-SM	9.37					99.80	9.20	-	10 0 51.	
BH-9	Bag	8.5'-10.0'	SP-SC*	22.69			-	· .	93.00	7.60	0.61		
ВН-9	Bag	28.5'-30.0'	SP-SM	19.67	-	_	-	-	98.90	10.10	2.03		
ВН-9	Bag	38.5'-40.0'	SC-SM	19.57	-	-	-	-	100.00	30.70	6,12		
BH-9	Bag	48,5'-50,0'	SM	22.54	-	-	-	-	100.00	18.10	0.02		
BH-10	Jar	3.5'-5.0'	SP	15.25	-	-	-	-	99.02	3.90	-		
BH-10	Jar	8.5'-10.0'	SP	24.47	-	-	-	•	99.28	1.34	-		
BH-10	Bag	13.5'-15.0'	SP	16.14	-	-	-	-	93.99	1.86	-		
BH-10	Bag	23.5'-25.0'	SP	19.37	-	-	-		80.84	1.52	-		
BH-10	Bag	58.5'-60.0'	SC-SM*	22.44	-	-	-	-	100.00	31.43	-		
BH-11	Bag	3.5'-5.0'	sw	13.29	-	-	-	-	55.91	1.26	-		
BH-11	Bag	11.0'-12.5'	\$P	23.26	-	-	-	-	99.74	1.88	-		
BH-11	Bag	18.5'-20.0'	SP	18.76	-	-	-	-	88.67	0.51			
BH-12	Jar	3.5'-5.0'	SP	6.70	-	-	-	-	96.70	1,17			
BH-12	Jar	11.0'-12.5'	SP	20.73	-	-	-	-	97.33	2.02	-		
BH-12	Jar	33.5'-35.0'	SP-SC	21.88	-	-	-	-	100,00	7.78	-		
						i i							

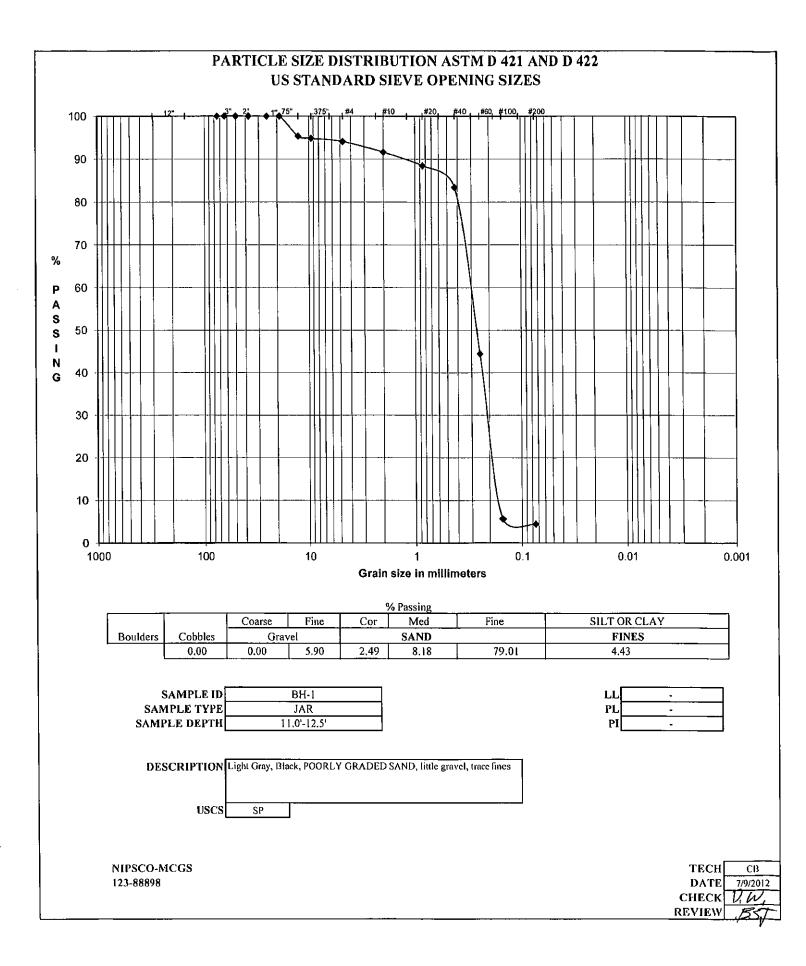
ABBREVIATIONS: LIQUID LIMIT (LL) PLASTIC LIMIT (PL) PLASTICITY INDEX (PI) LIQUIDITY INDEX (LI) SPEC1FIC GRAVITY (Gs) MOISTURE (Mc) NOTES: *Classified Visually

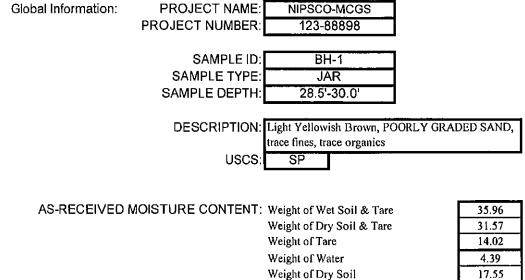
NIPSCO-MCGS 123-88898 Geotechnical Laboratory Test Results


Sample Identification		Sample Depth	Soù Classi-	In-situ Moisture %		Atterber	g Limits			Grain Size Distribution		Additional Tests Conducted (See Notes)	
Sample No.	Sample Type	(ft)	fication		ււ	PL	PI	រ	% Finer #4 sieve	% Finer #200 sieve	% Finer 0.002 mm		
BH-1	Jar	38.5'-40.0'	CL	20,56	32	16	16	0.28	100.00	90.10	39.68		
BH-2	Bag	18.5'-20.0'	CL-ML	45.76	31	25	6	3,43	100.00	48.20	11.01		
BH-2	Jar	38.5'-40.0'	CL	16.37	28	15	13	0.10	99.90	84.70	30,83		
BH-2	Jar	48.5'-50.0'	CL	17.78	30	17	13	0.05	99.90	87.70	36.68		
BH-3	Jar	73.5'-75.0'	CL	15.27	28	14	14	0.80	100.00	89.20	35.40		
BH-4	Jar	23.5'-25.0'	ML	60,31	16	15	1	45.63	100.00	66.50	12,30		
BH-2	Jar	38.5'-40.0'	CL	16.37	28	15	13	0.10	99.90	84.70	30.83		
BH-2	Jar	48.5'-50.0'	CL	17.78	30	17	13	0.05	99.90	87,70	36.68		
BH-3	Jar	73.5'-75.0'	CL	15.27	28	14	14	0.80	100.00	89,20	35.40		
BH-6	Jar	43.5'-45.0'	CL	17.88	29	15	14	0.21	81.30	69.80	28,58		
BH-6	Jar	48.5'-50.0'	CL	17.09	31	17	14	0.04	100.00	88.30	34.77		
BH-8	Bag	18.5'-20.0'	ML	50.41	30	26	4	6.19	100.0	98.1	5.95		
BH-8	Bag	38.5'-40.0'	CL	15.17	26	14	12	0.14	99.20	82,70	32.43		
BH-8	Bag	53.5'-55.0'	CL	13.33	24	14	10	-0.12	99.90	83.20	30.56		
BH-8	Bag	68,5'-70,0'	CL*	14,74	-	-	-	-	100.00	76.70	13.60		
BH-9	Bag	33.5'-35.0'	CL	17,15	27	13	14	0.26	99.8	82.3	33.47		
BH-10	Bag	33.5'-35.0'	CL	20.04	30	18	12	0.18	86.40	75,00	32,28		
BH-10	Bag	48.5'-50.0'	CL	14.47	28	16	12	0.00	98,9	86,8	33.85		
BH-10	Bag	73.5'-75.0'	CL	14.78	24	14	10	0.07	106.00	95.10	30.78		
BH-11	Bag	28.5'-30.0'	CL	16.42	28	15	13	0.12	98.9	84.9	33.16		
BH-12	Jar	23.5'-25.0'	ML	21.18	15	15	0	0,00	100,00	69,80	4.10		
BH-12	Јаг	38.5'-40.0'	мн	20.34	59	46	13	-1.99	100.00	89,90	5,56		


ABBREVIATIONS: LIQUID LIMIT (LL) PLASTIC LIMIT (PL) PLASTICITY INDEX (PI) LIQUIDITY INDEX (LI) SPECIFIC GRAVITY (Gs) MOISTURE (Mc) NOTES: *Classified Visually

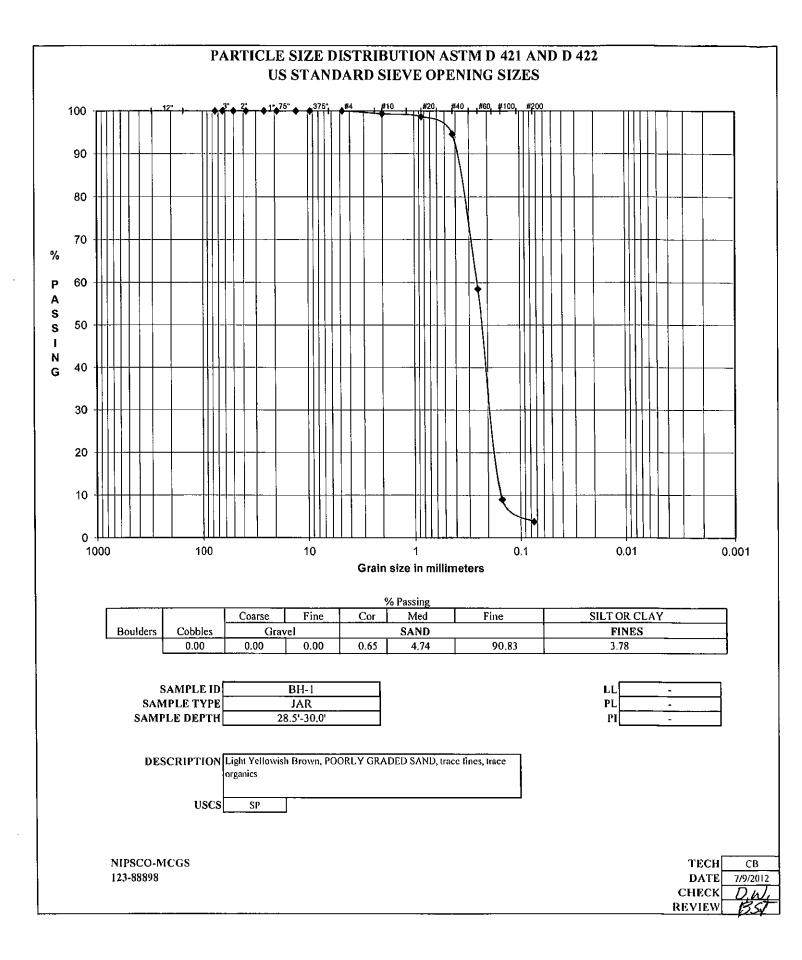
TECHCBDATE07/09/12CHECK \mathcal{D} . \mathcal{U} .REVIEW \mathcal{D} . \mathcal{L} .

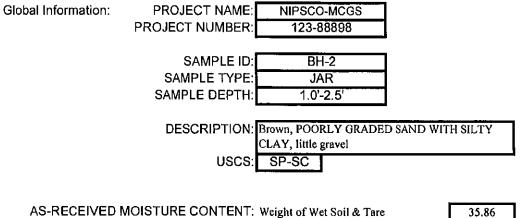

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142 PROJECT TITLE NIPSCO-MCCS SAMPLE ID BH-1 123-88898 SAMPLE TYPE PROJECT NO. JAR SAMPLE DEPTH 1.0'-2.5' REMARKS Hygroscopic Moisture For Sieve Sample 32.05 WATER CONTENT (Delivered Moisture) Wet Soil & Tare (gm) 31.84 (w1)34,81 Dry Soil & Tare (gm) Wt Wet Soil & Tare (gm) Wt Dry Soil & Tare (gm) (w2) 34.10 Tare Weight (gm) 10.98 (w3) 13.93 Moisture Content (%) 1.01 Weight of Tare (gm) Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture Weight of Water (gm) (w4=w1-w2) 0.71 339.95 (w5=w2-w3) 20.17 Weight Of Sample (gm) Weight of Dry Soil (gm) 96.53 (w4/w5)*100 3.52 Tare Weight (gm) Moisture Content (%) (W6) Total Dry Weight (gm) 240.99 Cumulative SIEVE ANALYSIS Wt Ret (Wt-Tare) (%Retained) % PASS SIEVE Tare Weight 96.58 +Tare {(wt ret/w6)*100} (100-%ret) 3.0" 96.58 0.00 0.00 100.00 3.0" coarse gravel 2.5" 96.58 0.00 0.00 100.00 2.5" coarse gravel 2.0" 96.58 0.00 0.00 100.00 2.0" coarse gravel 1.5" 96.58 0.00 0.00 100.00 1.5" coarse gravel 96.58 0.00 0.00 100.00 1.0" 1.0" coarse gravel 0.75" 96.58 0.00 0.00 100.00 0.75" fine gravel 0.00 0.00 100.00 0.50" fine gravel 0.50" 96.58 100.00 0.375" 96.58 0.00 0.00 0.375" fine gravel #4 98.22 1.64 0.68 99.32 #4 coarse sand 97.54 medium sand #10 102.51 5.93 2,46 #10 #20 107.13 10.55 4.38 95.62 #20 medium sand 117.03 20.45 8.49 91.51 fine sand #40 #40 #60 213.56 116.98 48.54 51.46 #60 fine sand #100 321.92 225.34 93.50 6.50 #100 fine sand 326.09 229.51 95.23 4.77 #200 fines #200 0.00 % C GRAVEL **Descriptive Terms** > 10% mostly coarse (c) 0.68 > 10% mostly medium (m) LL % F GRAVEL trace 0 to 5% % C SAND 1.78 little 5 to 12% < 10% fine (c-m) PL 6.03 PI % M SAND some 12 to 30% < 10% coarse (m-f) -86.75 % F SAND and 30 to 50% < 10% coarse and fine (in) Gs 4.77 < 10% coarse and medium (f) % FINES % TOTAL 100.00 > 10% equal amounts each (c-f) DESCRIPTION Brown, POORLY GRADED SAND, trace gravel, trace fines TECH USCS SP CB DATE 7/9/2012 CHECK REVIEW



TECH	СВ
DATE	07/09/12
CHECK	D.W.
REVIEW	B5₹

		1111 10 4419			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
BO IFCT TITLE		NUBSCO	MOOR		5			
PROJECT TITLE PROJECT NO.	·	NIPSCO 123-88898	-MCG8	J		AMPLE ID	BH	
		143-00090		1			JA	
REMARKS						LE DEPTH	11.0	12.5'
WATED CONTENT (Dalk	vared Maisture	`		Hygroscopic M	loisture For Sie	-		22.00
WATER CONTENT (Deliv	vereu woisture		34.33	1		Wet Soil & T		23.90
Wt Wet Soil & Tare (gm)		(w1) (w2)	33.20			Dry Soil & T		23.88
Wt Dry Soil & Tare (gm)		(w2)		-		Tare Weight		11.32
Weight of Tare (gm)		(w3)	14.16	T-4-1 W-1-1-4	260	Moisture Cor		0.16
Weight of Water (gm)		(w4=w1-w2)	1,13	l total weight C	of Sample Used		rected For Hygroso	
Weight of Dry Soil (gm)		(w5=w2-w3)	19.04	4		Weight Of Sa	• • •	376.35
Moisture Content (%)		(w4/w5)*100	5.93	-		Tare Weight		95.84
					(W6)	Total Dry We	eight (gm)	280.06
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
96.04	Ì	+Tare	(we rate)	{(vt ret/w6)*100}	(100-%ret)	315 4 5		
20.04	I	() ale		{(wr terwo), too}	(100-70101)			
	3.0"	96.04	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	96.04	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	96.04	0.00	0.00	100.00	2,0"	coarse gravel	
	1.5"	96.04	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	96.04	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	96.04	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	109.04	13.00	4.64	95.36	0.50"	fine gravel	
	0.375"	110.48	14.44	5.16	94.84	0.375"	fine gravel	
	#4	112.55	16.51	5.90	94.10	#4	coarse sand	
	#10	119.51	23.47	8.38	91.62	#10	medium sand	
	#20	128.38	32.34	11.55	88.45	#20	medium sand	
	#40	142.43	46,39	16.56	83.44	#40	fine sand	
	#60	251.65	155.61	55.56	44.44	#60	fine sand	
	#1 0 0	360.30	264.26	94.36	5.64	#100	fine sand	
	#200	363.70	267.66	95.57	4.43	#200	fines	
% C GRAVEL	0.00	Descript	ive Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	5.90	trace	0 to 5%	> 1 0% mo	stly medium (m	1)	LL	-
% C SAND	2.49	little	5 to 12%	< 10% fin	e (c-m)		PL	-
% M SAND	8.18	some	12 to 30%	< 10% coa	arse (m-f)		PI	-
% F SAND	79.01	and	30 to 50%	< 10% coa	arse and fine (m	i)	Gs	-
% FINES	4.43			< 10% coa	arse and medium	n (f)		
% TOTAL	100.00			> 10% equ	ual amounts eac	:h (c-f)		
		P	<u> </u>			_		
DE	ESCRIPTION		ack, POORLY	GRADED SANI	D, little gravel,			
		trace fines						
			1		<u>-</u>]		
	USCS	SP	J				TECH	СВ
							DATE	7/9/2012
							CHECK	D.W.
	- <u>-</u>						REVIEW	BST_

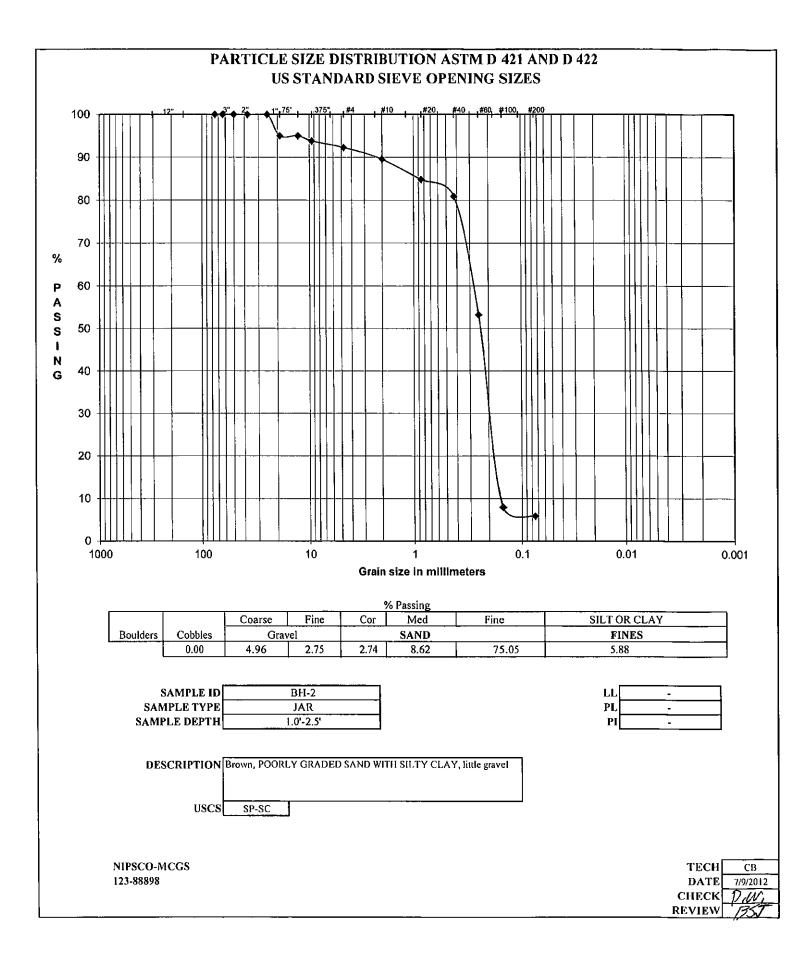



Water Content

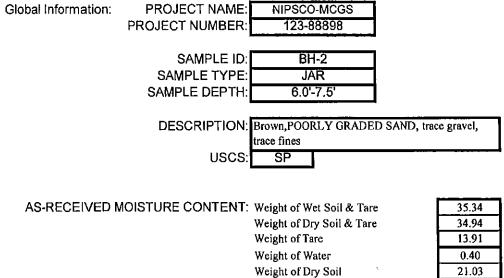
35.96
31.57
14.02
4.39
17.55
25.01%

TECH	CB
DATE	07/09/12
CHECK	D, W_{c}
REVIEW	<i>35</i> 7

							······································		_
PROJECT TITLE		NIPSCO	-MCGS			AMPLE ID		<u>I-1</u>	
PROJECT NO.		123-88898				PLE TYPE		AR	_
REMARKS						LE DEPTH	28.5'	-30.0'	
				Hygroscopic M	loisture For Sic	•			
WATER CONTENT (Deli	vered Moisture	´ r		4		Wet Soil & T	·• ·	36.14	4
Wt Wet Soil & Tare (gm)		(wi)	35.96	-		Dry Soil & T		35,72	_
Wt Dry Soil & Tare (gm)		(w2)	31.57	-		Tare Weight		13.90	_
Weight of Tare (gm)		(w3)	14.02			Moisture Con		1.92	
Weight of Water (gm)		(w4=w1-w2)	4.39	Total Weight C	of Sample Used		ected For Hygros	r	-
Weight of Dry Soil (gm)		(w5=w2-w3)	17.55	-		Weight Of Sa		340.99	_
Moisture Content (%)		(w4/w5)*100	25.01	-		Tare Weight		95.38	_
					(W6)	Total Dry We	eight (gm)	240.97	
SIEVE ANALYSIS				Cumulative					
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
95.54	1	+Tare	(WETAIC)	{(wt ret/w6)*100}	(100-%ret)	JILYE			
95.54]	+1816		{(wi revwo)*100}	(100-20160)				
	3.0"	95.54	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	95.54	0.00	0.00	100.00	2.5"	coarse gravel		
	2.0"	95.54	0.00	0.00	100.00	2.0"	coarse gravel		
	1.5"	95.54	0.00	0.00	100.00	1.5"	coarse gravel		
	1.0"	95.54	0.00	0.00	100.00	1.0"	coarse gravel		
	0.75"	95.54	0.00	0.00	100.00	0.75"	fine gravel		
	0.50"	95.54	0.00	0.00	100.00	0,50"	fine gravel		
	0.375"	95.54	0.00	0.00	100.00	0.375"	fine gravel		
	#4	95.54	0.00	0.00	100.00	#4	coarse sand		
	#10	97.10	1.56	0.65	99.35	#10	medium sand		
	#20	98.72	3.18	1.32	98.68	#20	medium sand		
	#40	108.53	12.99	5.39	94.61	#40	fine sand		
	#60	195.60	100.06	41.52	58.48	#60	fine sand		
	#100	314.92	219.38	91.04	8.96	#100	fine sand		
	#200	327.41	231.87	96.22	3.78	#200	fines		
% C GRAVEL	0.00	Descript	ive Terms	> 10% mc	ostly coarse (c)				
% F GRAVEL	0.00	trace	0 to 5%		stly medium (n	n)	LL	•	٦
% C SAND	0.65	little	5 to 12%	< 10% fin	•	·,	PL.	-	-
% M SAND	4.74	some	12 to 30%	< 10% co			P1		-1
% F SAND	90.83	and	30 to 50%		arse and fine (m)	Gs	<u> </u>	-
% FINES	3.78		5010 5070		arse and mediur	-		· · · · · ·	
% TOTAL	100.00	1			ual amounts eac				
	L					_			
DI	ESCRIPTION			ORLY GRADED	SAND, trace				
		fines, trace org	anics						
		<u>en</u>]	TROUT		
	USCS	SP	J				TECH Date		<u></u>
							CHECK	$\mathcal{D}, \mathcal{W},$	2
							REVIEW	<u> 3.57</u>	



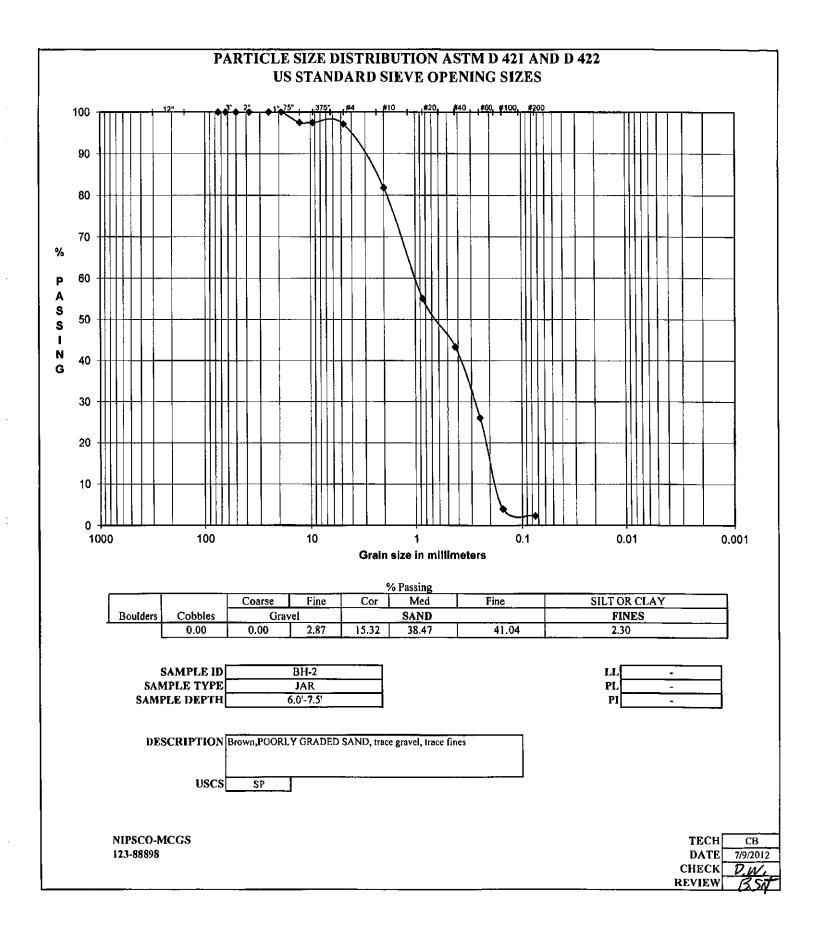
AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

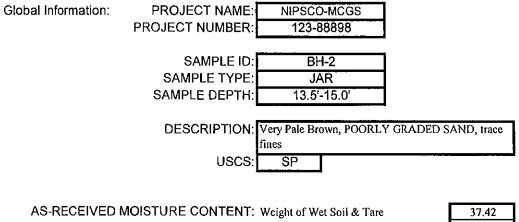

35.86	
34.99	
14.22	
0.87	
20.77	
4.19%	

ТЕСН	СВ
DATE	07/09/12
CHECK	N.W.
REVIEW	BSIT

				IN SIZE AN				<u> </u>	
l	AS	TM D 421, I	D 2217, D	1140, C 117	, D 422, C 1	136, C 142			
PROJECT TITLE		NIPSCO-	MCGS		s	AMPLE ID	BI	1-2	٦
PROJECT NO.		123-88898	in cos	I	SAMPLE TYPE			JAR	
REMARKS				1	SAMPLE TITE			1.0'-2.5'	
				Hygroscopic M					-
WATER CONTENT (De	livered Moisture	:)				Wet Soil & T	are (gm)	32.63	ר
Wt Wet Soil & Tare (gm)		(w1)	35.86	1		Dry Soil & T	`are (gm)	32.41	1
Wt Dry Soil & Tare (gm)		(w2)	34.99	1		Tare Weight	(gm)	11.69	1
Weight of Tare (gm)		(w3)	14.22	1		Moisture Co	ntent (%)	1.06	1
Weight of Water (gm)		(w4=w1-w2)	0.87	Total Weight C	f Sample Used	For Sieve Cor	rected For Hygros	copic Moisture	
Weight of Dry Soil (gm)		(w5=w2-w3)	20.77			Weight Of S	ample (gm)	358.44	7
Moisture Content (%)		(w4/w5)*100	4.19			Tare Weight	t (gm)	95.24]
]	(W6)	Total Dry W	eight (gm)	260.43]
SIEVE ANALYSIS				Cumulative					
Tare Weight	-	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
96.50]	+Tare		{(wt ret/w6)*100}	(100-%ret)				
	2.01	06.60	0.00		100.00	1	r		
	3.0" 2.5"	96.50	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	96.50	0.00	0.00	100.00	2.5" 2.0"	coarse gravel		
	2.0	96.50 96.50	0.00	0.00	100.00	1.5"	coarse gravel		
	1.5	96.50	0.00	0.00	100.00	1.0"	coarse gravel		
	0.75"	109.43	12.93	4.96	95.04	0.75"	coarse gravel fine gravel		
	0.75	109.43	12.93	4.96	95.04	0.75	fine gravel		
	0.375"	112.58	16.08	6.17	93.83	0.30	fine gravel		
	#4	112.50	20.10	7.72	92.28	#4	coarse sand		
	#10	123.74	27.24	10.46	89.54	#10	medium sand		
	#20	136.02	39.52	15.17	84.83	#20	medium sand		
	#40	146.18	49.68	19.08	80.92	#40	fine sand		
	#60	218.37	121.87	46.79	53.21	#60	fine sand		
	#100	336,19	239.69	92.03	7.97	#100	fine sand		
	#200	341.63	245.13	94.12	5.88	#200	fines		
		·			L <u></u>	4			
% C GRAVEL	4.96	Descripti	ve Terms	> 10% mo	stly coarse (c)				
% F GRAVEL	2.75	· trace	0 to 5%	> 10% mo	stly medium (n	1)	LL	-	
% C SAND	2.74	little	5 to 12%	< 10% fin	e (c-m)		PL		
% M SAND	8.62	some	12 to 30%	< 10% coa	• •		PI	<u> </u>	
% F SAND	75.05	and	30 to 50%		arse and Fine (m		Gs	-	
% FINES	5.88	4			arse and mediu				
% TOTAL	100.00			> 10% equ	al amounts eac	:h (c-f)			
		-				-			
I	DESCRIPTION	1 .	Y GRADED	SAND WITH SI	LTY CLAY,				
		little gravel				1			
	1000								<u>.</u>
	USCS	SP-SC					TECH	CB	
								7/9/2012	
1							CHECK	P.W.	<u> </u>
L		10.8					REVIEW	<u></u> 35T	

.

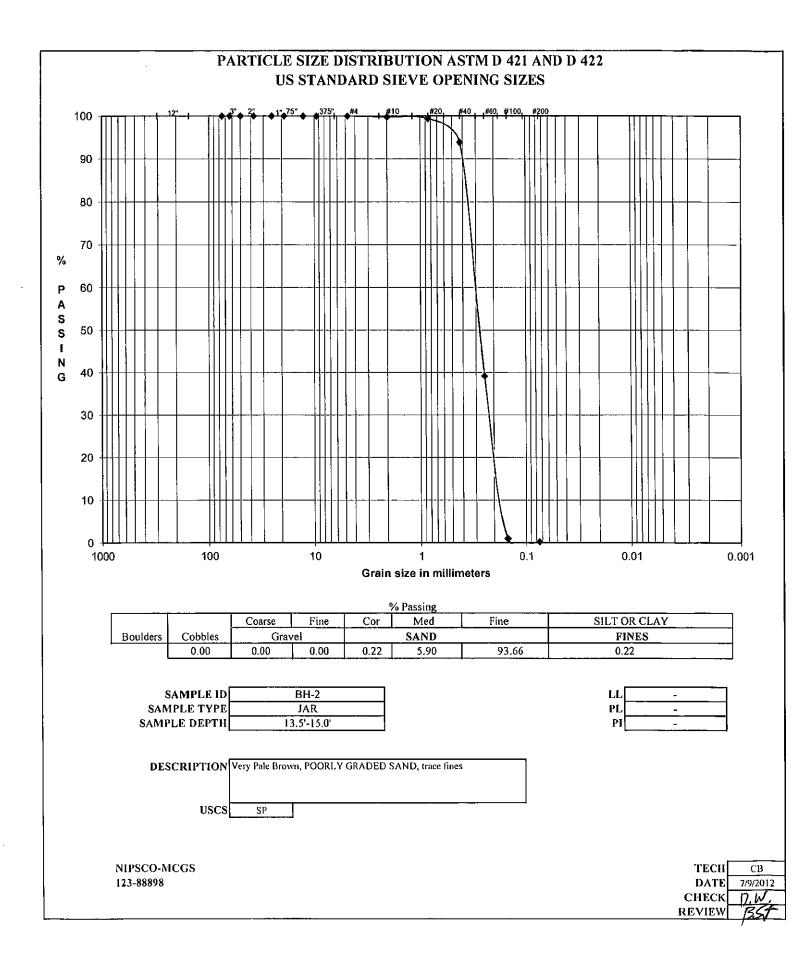

Water Content


35.34
34.94
13.91
0.40
21.03
1.90%

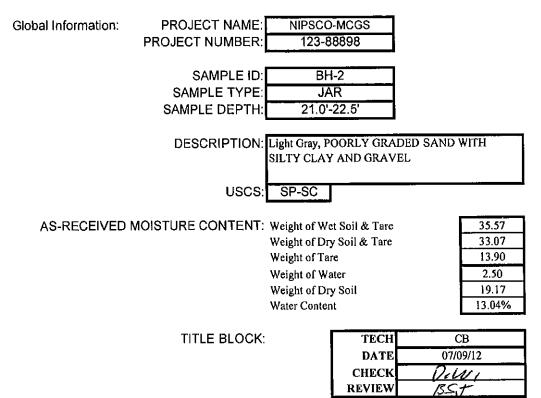
TECH	CB
DATE	07/09/12
СНЕСК	$\mathcal{P}_{i}\mathcal{W}_{i}$
REVIEW	B5J

PROJECT TITLE		NIPSCO	-MCGS			AMPLE 1D	BI	H-2
PROJECT NO.		123-88898			SAM	PLE TYPE	J/	AR
REMARKS						LE DEPTH	6.0	-7.5'
				Hygroscopic M	loisture For Sie	ve Sample		
WATER CONTENT (Deli	vered Moisture)				Wet Soil & T	are (gm)	34.28
Wt Wet Soil & Tare (gm)		(w1)	35,34]		Dry Soil & T	are (gm)	34.24
Wt Dry Soil & Tare (gm)		(w2)	34.94			Tare Weight		11.21
Weight of Tare (gm)		(w3)	13.91			Moisture Cor		0.17
Weight of Water (gm)		(w4=w1-w2)	0.40	Total Weight C	of Sample Used		rected For Hygros	
Weight of Dry Soil (gm)		(w5=w2-w3)	21.03			Weight Of St		346.38
Moisture Content (%)		(w4/w5)*100	1.90	-		Tare Weight		96.02
					(W6)	Total Dry W	eight (gm)	249.93
				a 1.1				
SIEVE ANALYSIS				Cumulative		0.010		
Tare Weight	1	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
96.08	1	+Tare		{(wt ret/w6)*100}	(100-%ret)			
	3.0"	96,08	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	96.08	0.00	0,00	100.00	2.5"	coarse gravel	
	2.0"	96.08	0.00	0,00	100.00	2.0"	coarse gravel	
	1.5"	96.08	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	96.08	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	96.08	0.00	0.00	100.00	0,75"	fine gravel	
	0.50"	102.37	6.29	2.52	97.48	0.50"	fine gravel	
	0.375"	102,37	6.29	2,52	97.48	0.375"	fine gravel	
	#4	103.26	7.18	2.87	97.13	#4	coarse sand	
	#10	141.55	45.47	18.19	81.81	#10	medium sand	
	#20	208.40	112.32	44.94	55.06	#20	medium sand	
	#40	237,69	141.61	56,66	43.34	#40	fine sand	
	#60	280.88	184.80	73,94	26.06	#60	fine sand	
	#100	336.10	240.02	96.04	3.96	#100	fine sand	
	#200	340.25	244.17	97.70	2,30	#200	fines	
			··			4		
% C GRAVEL	0.00	Descript	tive Terms		stly coarse (c)			
% F GRAVEL	2.87	trace	0 to 5%		stly medium (n	ו)	LL	
% C SAND	15,32	little	5 to 12%	< 10% fin			PL	<u> </u>
% M SAND	38.47	some	12 to 30%	< 10% coa	• •		PI	
% F SAND	41.04	and	30 to 50%		urse and fine (m		Gs	
% FINES	2.30	4			arse and mediur			
% TOTAL	100.00	l		> 10% equ	ial amounts eac	:h (c-f)		
N1	CONDICION	Brown DOODI	VCDADED	AND freese area	al trans fine-	1		
DI	ESCRIPTION	Brown,POOKI	LI GRADED S	SAND, trace grav	ei, trace fines			
	USCS	SP		,		L	ТЕСН	СВ
	0000	L	J				DATE	7/9/2012
							CHECK	
							REVIEW	the P
						·		- prov

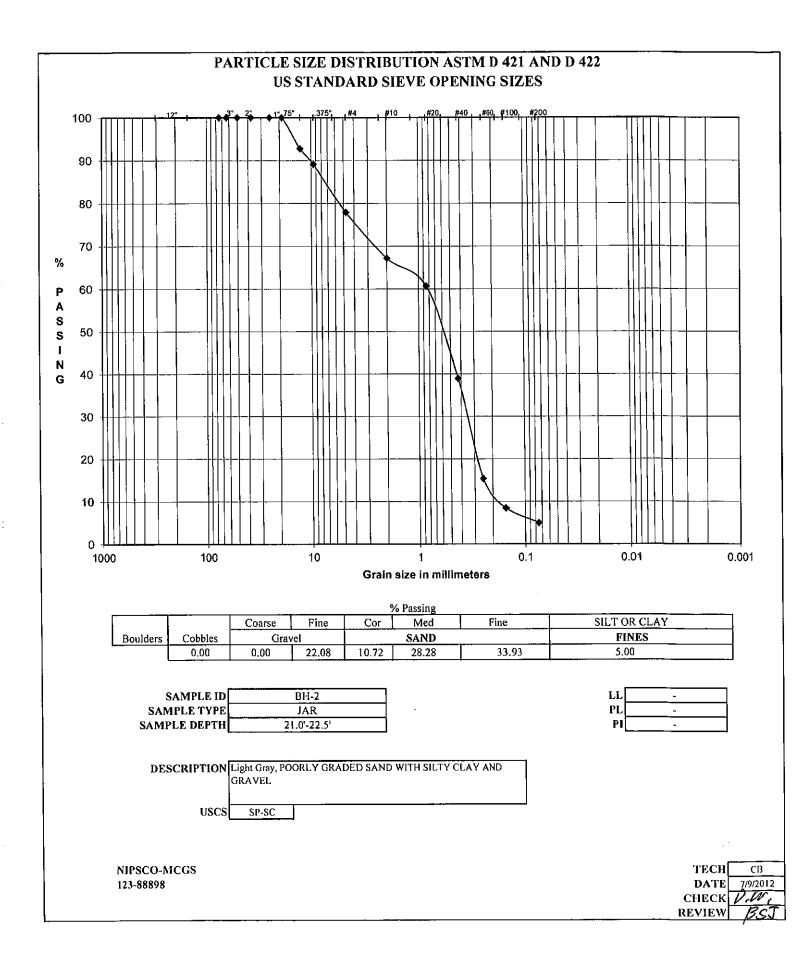
.

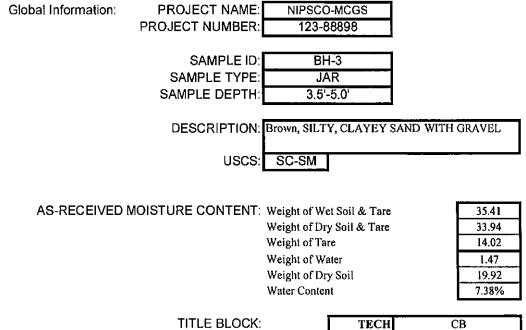


AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content


37.42
32.88
13.84
4.54
19.04
23.84%

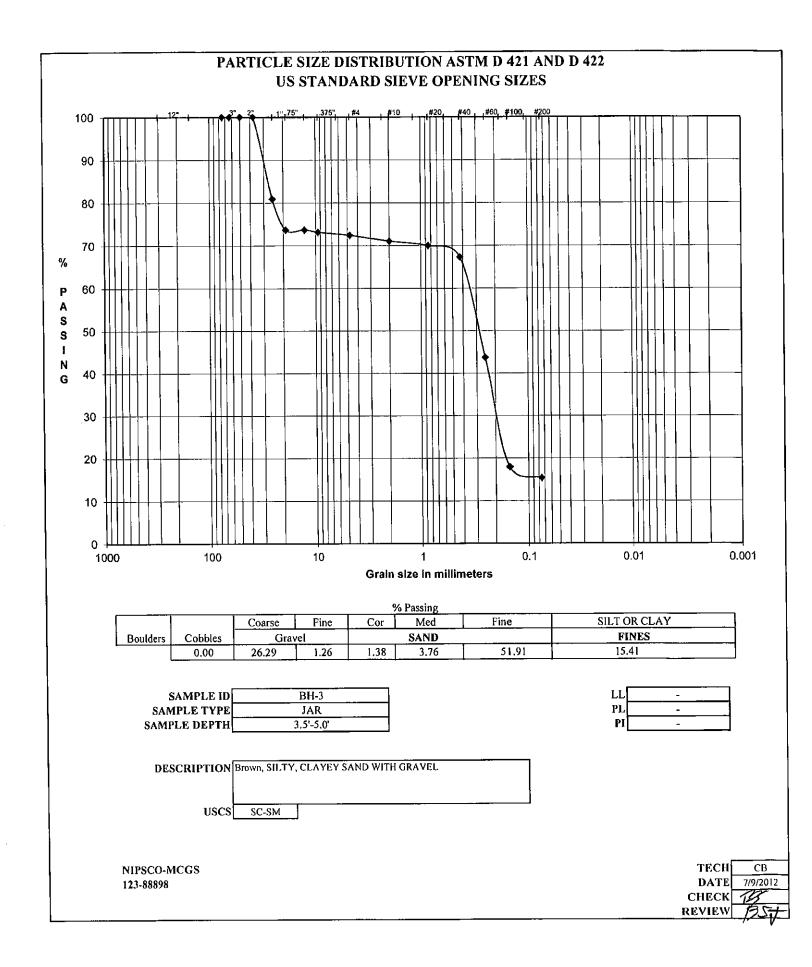
TECH	CB
DATE	07/09/12
CHECK	$\mathcal{D}, \mathcal{W},$
REVIEW	PS.t

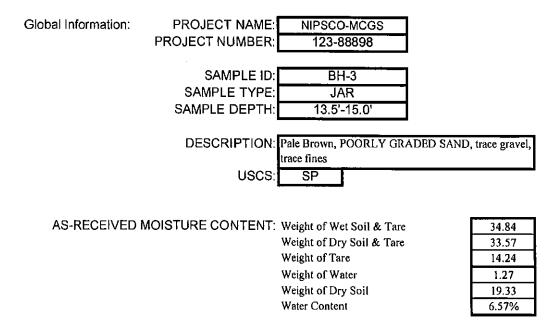

PROJECT TITLE		NIPSCO	-MCGS		s	SAMPLE ID	BI	1-2
PROJECT NO.		123-88898	·	____	SAM	IPLE TYPE	· · · ·	AR
REMARKS				1		LE DEPTH		-15.0'
-				Hygroscopic N	foisture For Sie	ve Sample	•	
WATER CONTENT (Deli	vered Moisture	*)		Wet Soil & Tare (gm)			44.20	
Wt Wet Soil & Tare (gm)		(w1)	37.42	1		Dry Soil & Ta		44.16
Wt Dry Soil & Tare (gm)		(w2)	32.88	1		Tare Weight (-	14.11
Weight of Tare (gm)		(w3)	13.84			Moisture Con	tent (%)	0.13
Weight of Water (gm)		(w4=w1-w2)	4.54	Total Weight C	Of Sample Used	For Sieve Corr	ected For Hygros	copic Moisture
Weight of Dry Soil (gm)		(w5=w2-w3)	19.04]		Weight Of Sa	mple (gm)	314.04
Moisture Content (%)		(w4/w5)*100	23.84]		Tare Weight	(gm)	95.86
					(W6)	Total Dry We	ight (gm)	217.89
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
96.03		+Tare		{(wt ret/w6)*100}	(100-%ret)			
						1		
	3.0"	96.03	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	96.03	0.00	0.00	100.00	2,5"	coarse gravel	
	2.0"	96.03	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	96.03	0.00	0.00	100,00	1.5"	coarse gravel	
	1.0"	96.03	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	96.03	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	96.03	0.00	0.00	100.00	0.50"	fine gravel	
	0.375"	96.03	0.00	0.00	100.00	0,375"	fine gravel	
	#4	96.03	0.00	0.00	100.00	#4	coarse sand	
	#10 #20	96.52	0.49	0.22	99.78	#10	medium sand	
	#20 #40	97.40	1.37	0.63	99.37	#20	medium sand	
	#40 #60	109.37 228.59	13.34	6.12	93.88	#40 #60	fine sand	
	#00 #100	311.77	215.74	60.84	39.16	-	fine sand	
	#100 #200	313.44	213.74	99.01 99.78	0.99	#100 #200	fine sand fines	
	#200	515.44	217.41	99.70	0.22] #200	mes	
	<u>.</u>			· · · · · · · · · · · · · · · · · · ·			·	
% C GRAVEL	0.00	Descript	ive Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	0.00	trace	0 to 5%	> 10% mo	stly medium (m	1)	LL	-
% C SAND	0.22	little	5 to 12%	< 10% fin	e (c-m)		PL	-
% M SAND	5.90	some	12 to 30%	< 10% coa	arse (m-f)		PI	-
% F SAND	93.66	and	30 to 50%	< 10% coa	arse and fine (m)	Gs	-
% FINES	0.22	j		< 10% coa	arse and medium	n (f)		
% TOTAL	100.00			> 10% equ	ial amounts eac	h (c-f)		
		r				-		
DE	SCRIPTION	Very Pale Brow	vn, P O ORLY (GRADED SAND	, trace fines			
]		
	USCS	SP					TECH	СВ
							DATE	7/9/2012
							CHECK	D.W.
L							REVIEW	I



.

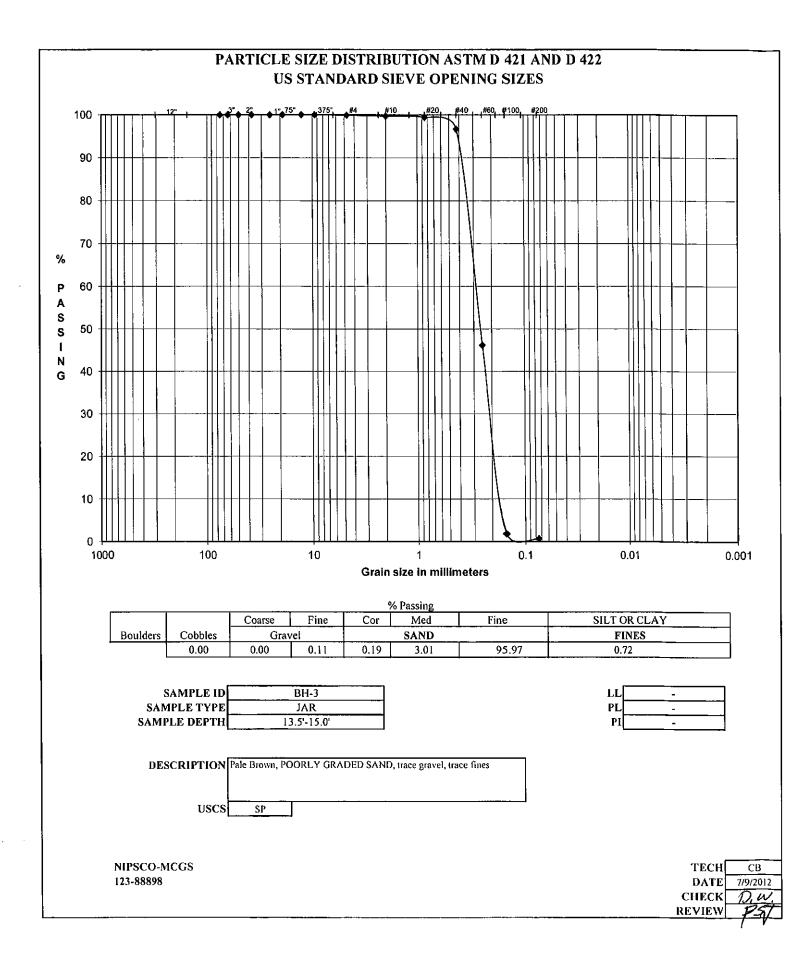
	[NIRSCO	MOOA	ı	0		······	
PROJECT TITLE		NIPSCO	-MCGS	J		AMPLE ID		1-2
PROJECT NO.		123-88898		-		PLE TYPE		R
REMARKS	L				SAINT loisture For Sie	LE DEPTH	21.0	-22.5'
WATER CONTENT (De	livered Meisture	.)		riygroscopic iv	loisture For Sie	•		26.40
Wt Wet Soil & Tare (gm)	nveren moisture	;) (w1)	35.57			Wet Soil & T Dry Soil & Ta	·• ·	35.49
Wt Dry Soil & Tare (gm)		(w1) (w2)	33.07			Tare Weight (35.42
Weight of Tare (gm)		(w2) (w3)	13.90			Moisture Con		<u>14.09</u> 0.33
Weight of Water (gm)		(w3) (w4=w[-w2)	2.50	Total Weight C)f Samula Licad		ected For Hygros	
Weight of Dry Soil (gm)		$(w_{5}=w_{2}-w_{3})$	19.17		of Sample Osed	Weight Of Sa		370,22
Moisture Content (%)		(w4/w5)*100	13.04	4		Tare Weight		
WOISING Content (76)		(www.s)*100[13.04	1	(W6)	-		96.09
					(00)		agin (gin)	273.23
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
96.20	٦	+Tare	(111 14.0)	{(wt ret/w6)*100}	(100-%ret)	01010		
		· ruio		((((100) 100)	(100 /0100)			
	3.0"	96.20	0.00	0.00	100,00	3.0"	coarse gravel	
	2,5"	96.20	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	96.20	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	96.20	0.00	0.00	100,00	1.5"	coarse gravel	
	1.0"	96.20	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	96.20	0,00	0.00	100.00	0,75"	fine gravel	
	0.50"	115.94	19.74	7.22	92.78	0.50"	fine gravel	
	0.375"	125.88	29.68	10.86	89.14	0.375"	fine gravel	
	#4	156,52	60.32	22.08	77.92	#4	coarse sand	
	#10	185.80	89.60	32.79	67,21	#10	medium sand	
	#20	203.61	107.41	39.31	60.69	#20	medium sand	
	#40	263.08	166.88	61.08	38.92	#40	fine sand	
	#60	327.41	231,21	84.62	15.38	#60	fine sand	
	#100	346.29	250.09	91.53	8,47	#100	fine sand	
	#200	355.78	259,58	95.00	5.00	#200	fines	
						-		_
	· · · · · · · · · · · · · · · · · · ·							
% C GRAVEL	0.00	Descript	ive Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	22.08	trace	0 to 5%	> 10% mo	stly medium (m	1)	LL	-
% C SAND	10.72	little	5 to 12%	< 10% fin	e (c-m)		የL	<u> </u>
% M SAND	28.28	some	12 to 30%	< 10% coa			PI	-
% F SAND	33.93	and	30 to 50%	< 10% coa	arse and fine (m)	Gs	<u> </u>
% FINES	5.00	1			arse and mediur			
% TOTAL	100.00	J		> 10% eq	ual amounts eac	:h (c-l)		
					· · · · · · · · · · · · · · · · · · ·	-		
) D	ESCRIPTION			ED SAND WIT	H SILTY			
		CLAY AND G	KAVEL					
	_ —					J	_	
	USCS	SP-SC)				ТЕСН	CB
							DATE	7/9/2012
[CHECK	D.W.
L							REVIEW	1 <u>557</u>





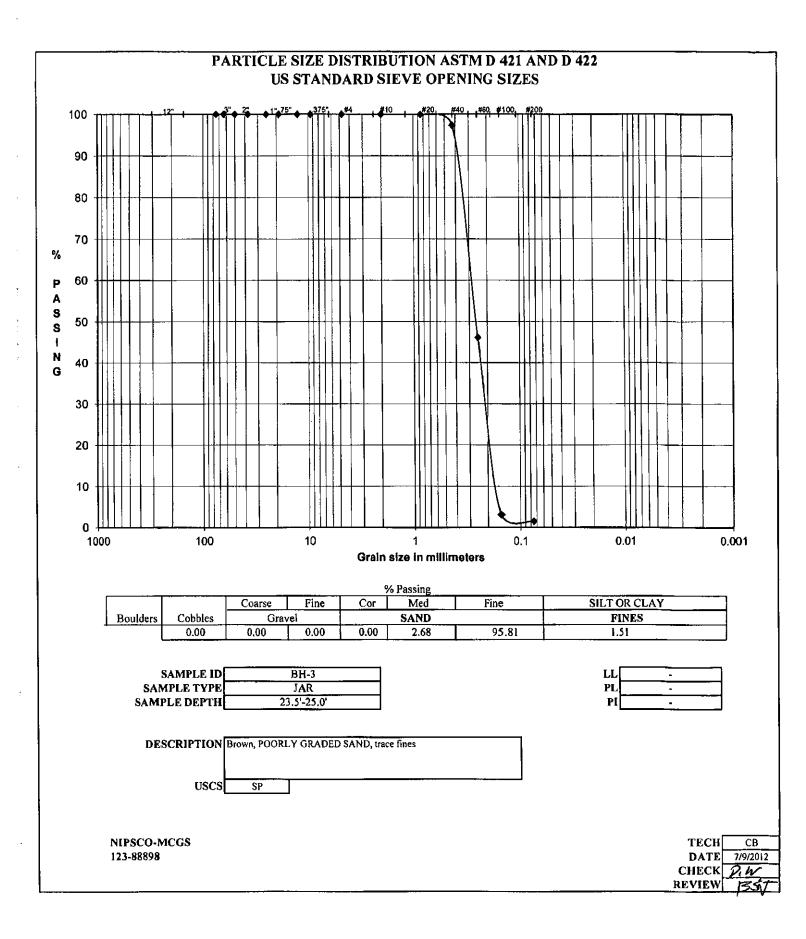
TECH CB DATE 07/09/12 CHECK PS REVIEW BS:

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142 NIPSCO-MCGS SAMPLE ID BH-3 **PROJECT TITLE** SAMPLE TYPE JAR PROJECT NO. 123-88898 REMARKS SAMPLE DEPTH 3.5'-5.0' Hygroscopic Moisture For Sieve Sample Wet Soil & Tare (gm) 32.54 WATER CONTENT (Delivered Moisture) 35.41 Dry Soil & Tare (gm) 31.76 (wl)Wt Wet Soil & Tare (gm) 11.49 Wt Dry Soil & Tare (gm) (w2) 33.94 Tare Weight (gm) 14.02 Moisture Content (%) 3.85 (w3) Weight of Tare (gm) 1.47 Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture Weight of Water (gm) (w4=w1-w2)19.92 Weight Of Sample (gm) 341.73 Weight of Dry Soil (gm) (w5=w2-w3)Tare Weight (gm) 95.12 (w4/w5)*100 7.38 Moisture Content (%) (W6) Total Dry Weight (gm) 237.47 Cumulative SIEVE ANALYSIS % PASS SIEVE Tare Weight Wt Ret (Wt-Tare) (%Retained) 95.10 +Tare {(wt ret/w6)*100} (100-%ret) 95.10 0.00 0.00 100,00 3.0" coarse gravel 3.0" 100.00 2,5" 95.10 0.00 0.00 2.5" coarse gravel 100.00 2.0" 95.10 0.00 0.00 2.0" coarse gravel 1.5" 95.10 0.00 0.00 100.00 1.5" coarse gravel 140.38 45.28 19.07 80.93 1.0" coarse gravel 1.0" 0.75" 26.29 fine gravel 157.52 62.42 73.71 0.75" 157.52 26.29 73.71 0.50" fine gravel 0.50" 62.42 0.375" 158.78 63.68 26.82 73.18 0.375" fine gravel 65.41 27.54 72.46 #4 coarse sand 160.51 #4 71.07 #10 163.79 68.69 28,93 medium sand #10 166.32 71.22 29,99 70.01 #20 medium sand #20 #40 172.71 77.61 32.68 67.32 #40 fine sand 228.78 133.68 56.29 43.71 #60 fine sand #60 289.91 194.81 82.03 17.97 #100 fine sand #100 84.59 #200 200.87 15.41 fines 295.97 #200 26.29 Descriptive Terms > 10% mostly coarse (c) % C GRAVEL EL 1.26 trace 0 to 5% > 10% mostly medium (m) % F GRAVEL PL < 10% fine (c-m) little 5 to 12% 1.38 % C SAND ΡĨ 3.76 12 to 30% < 10% coarse (m-f) % M SAND some -< 10% coarse and fine (in) Gs 51.91 30 to 50% % F SAND and 15.41 < 10% coarse and medium (f) % FINES 100.00 > 10% equal amounts each (c-f) % TOTAL Brown, SILTY, CLAYEY SAND WITH GRAVEL DESCRIPTION ТЕСН USCS SC-SM CB 7/9/2012 DATE


CHECK REVIEW

TECH	CB
DATE	07/09/12
СНЕСК	P.W.
REVIEW	BST

PROJECT TITLE		NIPSCO	-MCGS		s s	AMPLE ID	BI	1-3
PROJECT NO.		123-88898	- · · · · ·	[]		IPLE TYPE	· · · · · · · · · · · · · · · · · · ·	AR
REMARKS						LE DEPTH		-15.0'
			d	Hygroscopic N			· <u>-·</u> +	
WATER CONTENT (Deli	vered Moisture	2)				Wet Soil & Ta	are (gm)	30.79
Wt Wet Soil & Tare (gm)		(w1)	34.84	1		Dry Soil & Ta		30.77
Wt Dry Soil & Tare (gm)		(w2)	33,57	1		Tare Weight (11.69
Weight of Tare (gm)		(w3)	14.24	1		Moisture Con	-	0.10
Weight of Water (gm)		(w4=w1-w2)	1.27	Total Weight C	Of Sample Used		ected For Hygros	
Weight of Dry Soil (gm)		(w5=w2-w3)	19,33	1	•	Weight Of Sa		347.50
Moisture Content (%)		(w4/w5)*100	6.57			Tare Weight		98.34
				1	(W6)		-	248.90
		·		н _ү лээ.	<u> </u>			
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
98.38]	+Tare		{(wt ret/w6)*100}	(100-%ret)			
	3.0"	98.38	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	98.38	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	98.38	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	98.38	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	98.38	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	98.38	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	98.38	0.00	0.00	100.00	0.50"	fine gravel	
	0.375"	98.38	0.00	0.00	100.00	0.375"	fine gravel	
	#4	98.66	0.28	0.11	99.89	#4	coarse sand	
	#10	99.14	0.76	0.31	99.69	#10	medium sand	
	#20	99.77	1.39	0.56	99.44	#20	medium sand	
	#40	106.62	8.24	3.31	96.69	} #40	fine sand	
	#60	232.37	133.99	53.83	46.17	#60	fine sand	
	#100	342.71	244.33	98.16	1,84	#100	fine sand	
	#200	345.49	247.11	99.28	0.72	#200	fines	
		•						
% C GRAVEL	0.00	Descripti	ve Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	0.11	trace	0 to 5%	> 10% mo	stly medium (n	ι)	LL	-
% C SAND	0.19	little	5 to 12%	< 10% fin	• •		PL	<u> </u>
% M SAND	3.01	some	12 to 30%	< 10% eoa			PI	
% F SAND	95.97	and	30 to 50%	< 10% coa	rse and fine (m)	Gs	
% FINES	0.72			< 10% coa	arse and medium	n (f)		
% TOTAL	100.00	J		> 10% equ	ual amounts eac	h (c-f)		
		·				•		
DE	SCRIPTION		ORLY GRAE	DED SAND, trace	e gravel, trace			
		fines				ļ		
						J		
	USCS	SP					тесн	СВ
1							DATE	7/9/2012
							CHECK	Diwi
							REVIEW	BSVT_

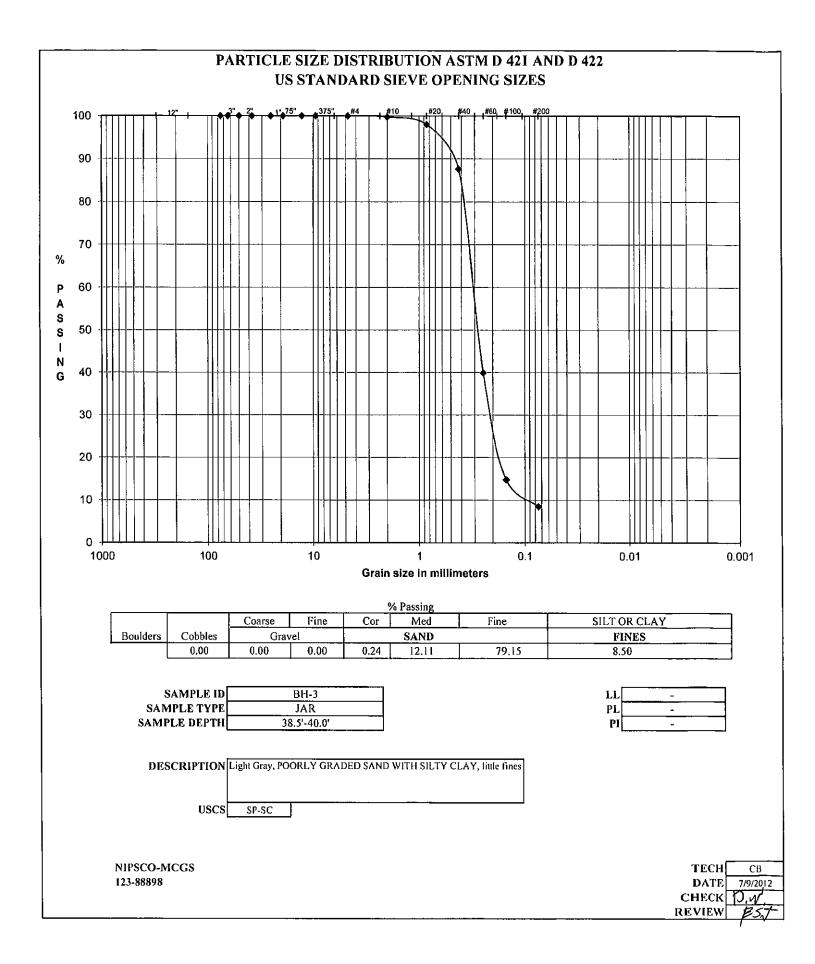

Global Information:	PROJECT NAME: PROJECT NUMBER:	NIPSCO-MCGS 123-88898	
	SAMPLE ID: SAMPLE TYPE: SAMPLE DEPTH:	BH-3 JAR 23.5'-25.0'	
	DESCRIPTION: B	Brown, POORLY GRADE	D SAND, trace fines
AS-RECEIVED N	v v v	Veight of Wet Soil & Tare Veight of Dry Soil & Tare Veight of Tare Veight of Water Veight of Dry Soil Vater Content	

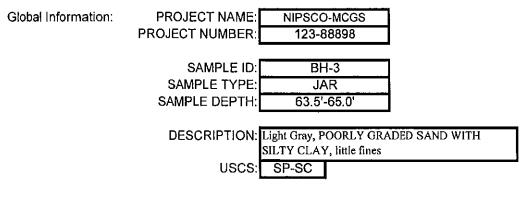
TECH	СВ
DATE	07/09/12
CHECK	Pit.
REVIEW	BST

PROJECT TITLE		NIPSCO	-MCGS		S.	AMPLE ID	BI	1-3
PROJECT NO.		123-88898 SAMPLE TYPE		JA				
REMARKS				1		LE DEPTH	23.5'	-25.0'
	•			Hygroscopic M	oisture For Siev	ve Sample		
WATER CONTENT (De	livered Moisture)				Wet Soil & 1	fare (gm)	32.34
Wt Wet Soil & Tare (gm)		(w1)	35.47			Dry Soil & T	`are (gm)	32.25
Wt Dry Soil & Tare (gm)		(w2)	34.90			Tare Weight	(gm)	10.97
Weight of Tare (gm)		(w3)	14.18			Moisture Co	ntent (%)	0.42
Weight of Water (gm)		(w4=w1-w2)	0.57	Total Weight C	of Sample Used	For Sieve Co	rected For Hygros	copic Moisture
Weight of Dry Soil (gm)		(w5=w2-w3)	20.72			Weight Of S	ample (gm)	357.31
Moisture Content (%)		(w4/w5)*100	2.75			Tare Weigh	t (gm)	94.55
			•		(W6)	Total Dry W	eight (gm)	261.65
				6 J.				
SIEVE ANALYSIS		114 D 4		Cumulative	N/ DA 00	OLEVE		
Tare Weight	-	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
94.66		+Tare		{(wt rel/w6)*100}	(100-%ret)			
	3.0"	94,66	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	94.66	0.00	0,00	100,00	2.5"	coarse gravel	
	2.0"	94.66	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	94.66	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	94.66	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	94.66	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	94.66	0,00	0.00	100.00	0.50"	fine gravel	
	0.375"	94.66	0.00	0.00	100.00	0.375"	fine gravel	
	#4	94.66	0.00	0.00	100.00	#4	coarse sand	
	#10	94.66	0.00	0.00	100.00	#10	medium sand	
	#20	94.92	0.26	0.10	99.90	#20	medium sand	
	#40	101.67	7.01	2.68	97.32	#40	fine sand	
	#60	235.71	141.05	53.91	46.09	#60	fine sand	
	#100	348.21	253.55	96.90	3.10	#100	fine sand	
	#200	352.37	257.71	98.49	1.51	#200	fines	
% C GRAVEL	0.00	Descript	ive Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	0.00	trace	0 to 5%	> 10% mo	stly medium (m	ı)	LL	-
% C SAND	0,00	little	5 to 12%	< 10% fin	•		PL	-
% M SAND	2.68	some	12 to 30%	< 10% coa	arse (m-f)		PI	-
% F SAND	95.81	and	30 to 50%	< 10% coa	arse and fine (m)	Gs	-
% FINES	1.51]			arse and mediur			
% TOTAL	100.00]		> 10% eq	ual amounts eac	h (c-f)		
I	DESCRIPTION	Brown, POORI	LY GRADED	SAND, trace find	es	1		
	USCS	SP				J	ТЕСН	СВ
	0505	- Sr	l				DATE	
							CHECK	7/9/2012
							REVIEW	
							115 4 16 14	⊥ <i> 2≂</i> 24

-

2

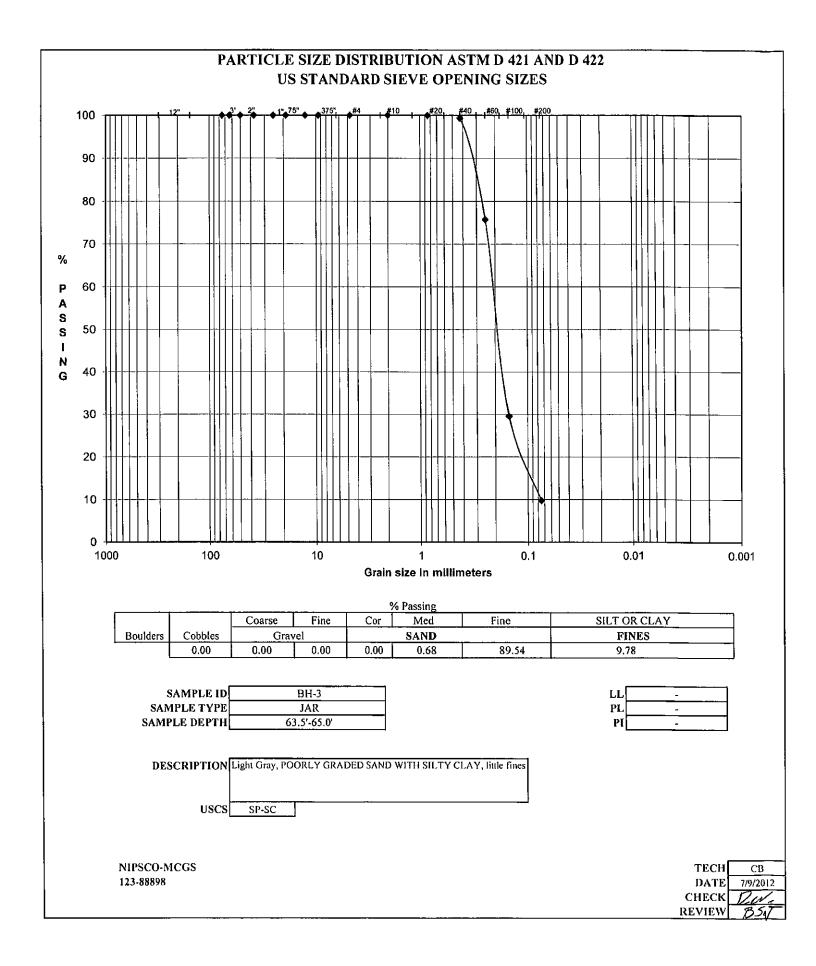



Weight of Dry Soil & ' Weight of Tare Weight of Water Weight of Dry Soil Water Content

35.27	1
31.83	
13.87	
3.44	
17.96	
19.15%	1
 	-

TECH	СВ
DATE	07/09/12
СНЕСК	$\mathcal{D}, \mathcal{W},$
REVIEW	B5V

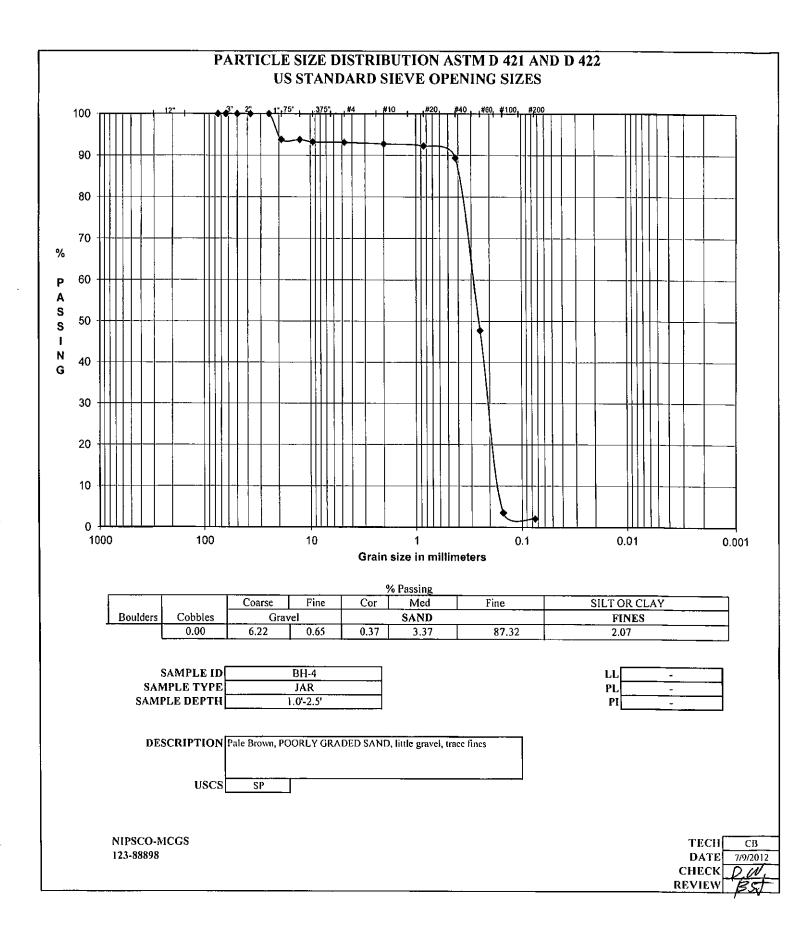
	· · ·				~		r <u></u>		-
PROJECT TITLE	NIPSCO-MCGS		ل ــــــ	SAMPLE ID		BH-3		4	
PROJECT NO.		123-88898	<u> </u>	SAMPLE TYPE JA				-	
REMARKS	1			SAMPLE DEPTH 38.5'-			-40.0'	_ <u>L</u>	
WATER CONTENT (Delivered Moisture)			Hygroscopic Moisture For Sieve Sample Wet Soil & Tare (gm) 25.94					٦	
Wt Wet Soil & Tare (gm)	vereu moisture	;) (wt)[35.27	4		Dry Soil & T		25.94	-
Wt Wet Soll & Tare (gm) Wt Dry Soil & Tare (gm)		(w1) (w2)	31.83	1		Tare Weight		11.47	-
Weight of Tare (gm)		(w3)	13.87			Moisture Cor		0.14	-
Weight of Water (gm)		(w4=w1-w2)	3.44	Total Weight ()f Sample Lised		ected For Hygros		
Weight of Dry Soil (gm)		(w5=w2-w3)	17.96		n oumpre Osea	Weight Of Sample (gm)		342.95	٦
Moisture Content (%)		(w4/w5)*100	19.15	Tare Weight (gm)				96.81	-
Molitare contest (11)			17.15		(W6)	Total Dry We		245.80	-
				J	(110)	Total Big its		215.00	
SIEVE ANALYSIS				Cumulative					
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
96.94		+Tare		{(wt ret/w6)*100}	(100-%ret)				
	•					_			
	3.0"	96.94	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	96.94	0.00	0,00	100.00	2.5"	coarse gravel		
	2.0"	96.94	0.00	0.00	100.00	2.0"	coarse gravel		
	1.5"	96.94	0.00	0.00	100.00	1.5"	coarse gravel		
	1.0"	96.94	0.00	0.00	100.00	1.0"	coarse gravel		
	0.75"	96.94	0.00	0.00	100.00	0.75"	fine gravel		
	0.50"	96.94	0.00	0.00	100.00	0,50"	fine gravel		
	0.375"	96.94	0.00	0.00	100.00	0.375"	fine gravel		
	#4	96.94	0.00	0,00	100.00	#4	coarse sand		
	#10	97.53	0.59	0.24	99.76	#10	medium sand		
	#20	101.85	4.91	2.00	98.00	#20	medium sand		
	#40	127.29	30.35	12.35	87.65	#40	fine sand		
	#60	244.62	147.68	60.08	39.92	#60	fine sand		
	#100	306.32	209.38	85.18	14.82	#100	fine sand		
	#200	321.85	224.91	91.50	8.50	#200	fines		
		1							
% C GRAVEL	0.00	· ·	ive Terms		stly coarse (c)				-
% F GRAVEL	0.00	trace	0 to 5%		stly medium (n	1)	LL		
% C SAND	0.24	little	5 to 12%	< 10% fin			PL		-1
% M SAND	12.11	some	12 to 30%	< 10% coa	. ,		PI	-	4
% F SAND	79.15	and	30 to 50%		arse and fine (m		Gs		┛
% FINES	8.50				arse and mediur				
% TOTAL	100.00	ļ		> 10% eqi	ial amounts eac	ch (c-t)			
DESCRIPTION Light Gray, POORLY GRADED SAND WITH SILTY						Т			
	SCRIPTION Light Gray, POORLY GRADI CLAY, little fines								
	USCS	SP-SC	•		<u> </u>	L	TECH	СВ	
	0000						DATE	7/9/2012	2
							CHECK	D.W	
							REVIEW	BST	
							11071031		

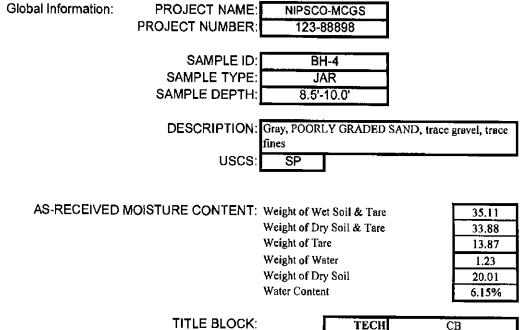


AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

36.74
32.84
14.02
3.90
18.82
20.72%

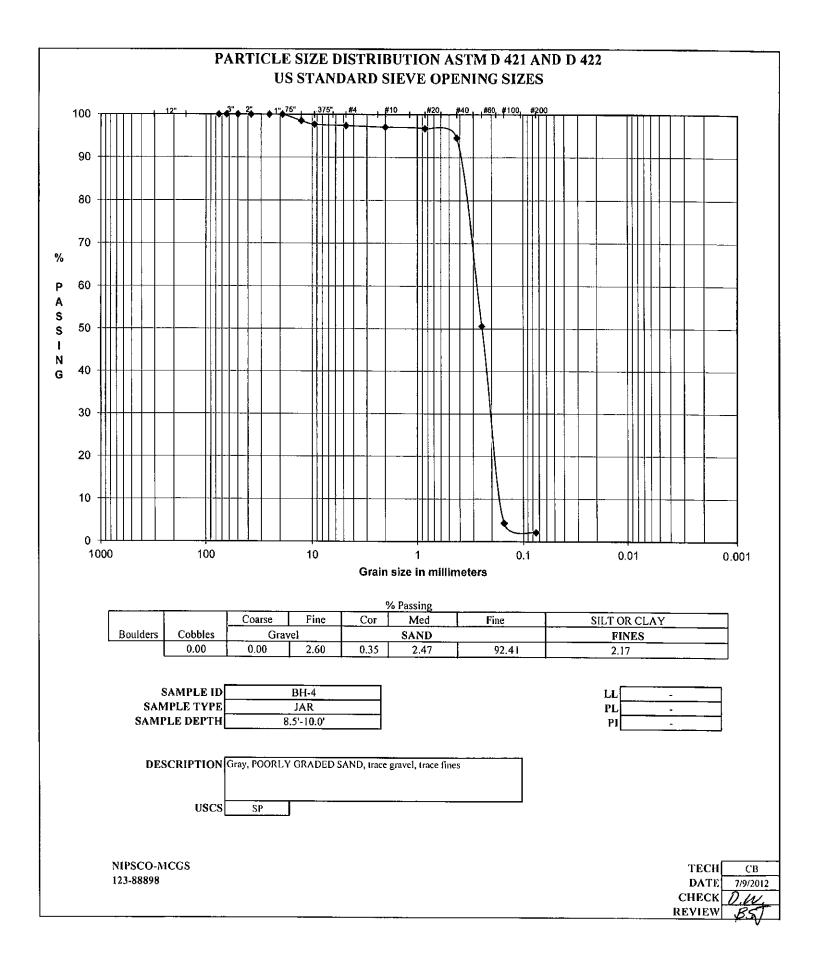
TECH	CB
DATE	07/09/12
CHECK	DiN.
REVIEW	BST

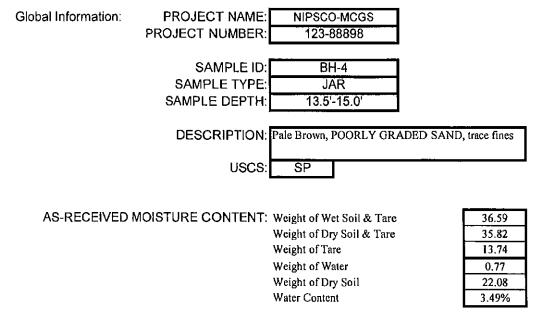

PROJECT TITLE		NIPSCO	MCGS]		AMPLE ID	· · · · · · · · · · · · · · · · · · ·	1-3
PROJECT NO.		123-88898		SAMPLE TYPE JAR SAMPLE DEPTH 63.5'-65.0'				
REMARKS							63.5'	-65.0'
	1 87 1 4	`		Hygroscopic M	loisture For Siev	-	()	
WATER CONTENT (Deli	verea wioisture	·	26.81	4		Wet Soil & Ta		36.33
Wt Wet Soil & Tare (gm)		(w1)	36.74	4		Dry Soil & Ta		36.20
Wt Dry Soil & Tare (gm)		(w2)	32.84	4		Tare Weight (•	14.03
Weight of Tare (gm)		(w3)	14,02	T + 111 / 1+ C	100 N 11 1	Moisture Con		0.59
Weight of Water (gm)		(w4=w1-w2)	3,90	Total Weight C	of Sample Used		ected For Hygros	
Weight of Dry Soil (gm)		(w5=w2-w3)	18.82	-		Weight Of Sa		357.11
Moisture Content (%)		(w4/w5)*100	20.72	-		Tare Weight		94.85
					(₩6)	Total Dry We	eight (gm)	260.73
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	%PASS	SIEVE		
95.08	l	+Tare	(111-1110)	{(wt ret/w6)*100}	(100-%ret)	SILVL		
75.00		Tate		{(*** 160 (***))* 100}	(100-70100)			
	3.0"	95.08	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	95.08	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	95.08	0.00	0.00	100,00	2.0"	coarse gravel	
	1.5"	95.08	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	95.08	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	95.08	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	95.08	0.00	0.00	100.00	0.50"	fine gravel	
	0.375"	95.08	0.00	0.00	100.00	0.375"	fine gravel	
	#4	95.08	0.00	0,00	100.00	#4	coarse sand	
	#10	95.08	0.00	0.00	100.00	#10	medium sand	
	#20	95.12	0.04	0.02	99.98	#20	medium sand	
	#40	96.84	1.76	0,68	99.32	#40	fine sand	
	#60	158.41	63.33	24.29	75.71	#60	fine sand	
	#100	278.75	183.67	70.44	29.56	#100	fine sand	
	#200	330.31	235,23	90.22	9.78	#200	fines	
		L I		•				
								<u> </u>
% C GRAVEL	0.00	Descripti	ive Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	0.00	trace	0 to 5%	> 10% mo	stly medium (m	1)	LL	-
% C SAND	0.00	little	5 to 12%	< 1 0% fi n	e (c-m)		PL	-
% M SAND	0.68	some	12 to 30%	< 10% coa	arse (m-f)		PI	
% F SAND	89.54	and	30 to 50%	< 10% cos	arse and fine (m)	Gs	-
% FINES	9.78			< 10% coa	arse and medium	n (f)		
% TOTAL	100.00			> 10% eq	ual amounts eac	:h (c-f)		
						_		
DI	ESCRIPTION			ED SAND WIT	H SILTY			
		CLAY, little fit	ies					
								····
	USCS	SP-SC					TECH	СВ
							DATE	7/9/2012
							CHECK	D.W.
		· ··· ,					REVIEW	L BST_



Global Information:	PROJECT NAME: PROJECT NUMBER:	NIPSCO-MCGS 123-88898		
	SAMPLE ID: SAMPLE TYPE: SAMPLE DEPTH:	BH-4 JAR 1.0'-2.5'		
		Pale Brown, POORLY GR gravel, trace fines SP	ADED SAND), little
AS-RECEIVED N		Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tarc Weight of Water Weight of Dry Soil Water Content		30.24 29.72 14.09 0.52 15.63 3.33%

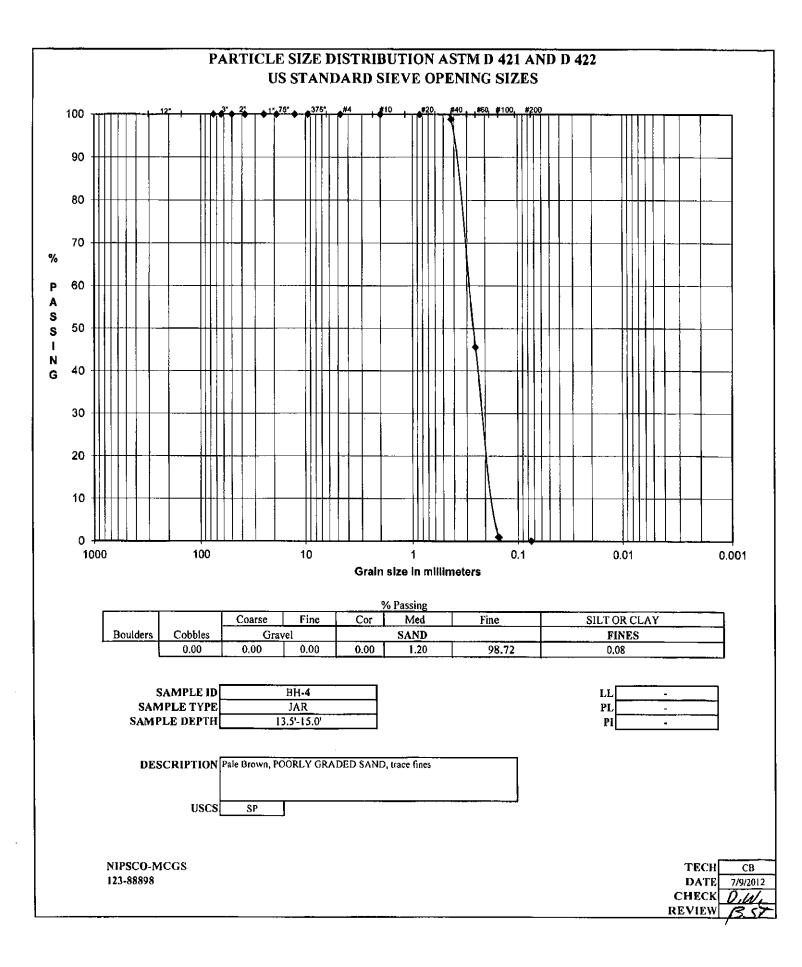
TECH	CB
DATE	07/09/12
CHECK	D.W.
REVIEW	BST
	v

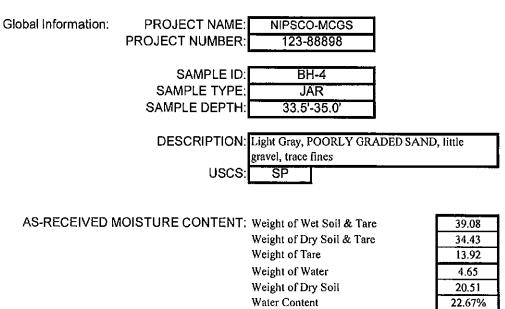

PROJECT TITLE		NIPSCO	-MCGS)		AMPLE ID		H-4
PROJECT NO.		123-88898 SAMPLE TY						
REMARKS	<u> </u>	····				LE DEPTH	1.0	-2.5'
				Hygroscopic M	loisture For Sie	-		
WATER CONTENT (Deli	ivered Moisture	́ г		-		Wet Soil & 1	,	24.46
Wt Wet Soil & Tare (gm)		(wi)	30.24	4		Dry Soil & T		24.44
Wt Dry Soil & Tare (gm)		(w2)	29.72	4		Tare Weight		11.68
Weight of Tare (gm)		(w3)	14.09			Moisture Co		0.16
Weight of Water (gm)		(w4=w1-w2)	0.52	Total Weight C	of Sample Used		rected For Hygros	
Weight of Dry Soil (gm)		(w5=w2-w3)	15.63	4		Weight Of S		379.09
Moisture Content (%)		(w4/w5)*100	3.33	4		Tare Weigh		95.30
		·····		<u> </u>	(W6)	Total Dry W	eight (gm)	283.35
SIEVE ANALYSIS				Cumulative				
Tare Weight	٦	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
95.42	J	+Tare		{(wt ret/w6)*100}	(100-%ret)			
	3.0"	05.40	0.00	0.00	100.00	2.05		
	3,0" 2.5"	95.42 95.42	0,00	0.00	100.00	3.0" 2.5"	coarse gravel	
	2.5" 2.0"	95.42 95.42	0.00	0.00	100.00		coarse gravel	
	1.5"	95.42 95.42	0.00	0.00	100.00	2.0" 1.5"	coarse gravel coarse gravel	
	1.0"	95.42 95.42	0.00	0.00	100.00		-	
	0.75"	113.03	17.61	6.22	93.78	1.0" 0.75"	coarse gravel	
	0.75	113.03	17.61	6.22	93.78	0.75	fine gravel fine gravel	
	0.375"	113.03	19.11	6.74	93.26	0.375"	fine gravel	
	0.375 #4	114.88	19.11	6.87	93.20	0.373 #4	coarse sand	
	#10	114.88	20.52	7,24	92.76	#4 #10	medium sand	
	#10	117.33	20.92	7.73	92.27	#20	medium sand	
	#40	125.48	30.06	10.61	89.39	#40	fine sand	
	#60	243.48	148.06	52,25	47.75	#40	fine sand	
	#100	368.78	273.36	96.48	3.52	#100	fine sand	
	#200	372.90	277.48	97.93	2.07	#200	fines	
	#200	572.90	477.40	91.95	2.07	#200	111162	
							······································	
% C GRAVEL	6.22	Descripti	ve Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	0.65	trace	0 to 5%	> 10% mo	stly medium (m	ι)	LL	-
% C SAND	0.37	little	5 to 12%	< 10% fine	e (c-m)		PL	•
% M SAND	3.37	some	12 to 30%	< 1 0% c oa	irse (m-f)		PI	-
% F SAND	87.32	and	30 to 50%	< 10% coa	arse and fine (m)	Gs	-
% FINES	2.07			< 10% coa	arse and medium	n (f)		
% TOTAL	100,00	J		> 10% equ	ual amounts eac	h (c-f)		
						۹		
DI	ESCRIPTION	Pale Brown, PC fines	ORLY GRAI	DED SAND, little	e gravel, trace			
						j		
	USCS	SP				_	ТЕСН	СВ
							DATE	7/9/2012
							CHECK	D.W.
							REVIEW	135t



ТЕСН	CB
DATE	07/09/12
CHECK	D.W.
REVIEW	BST

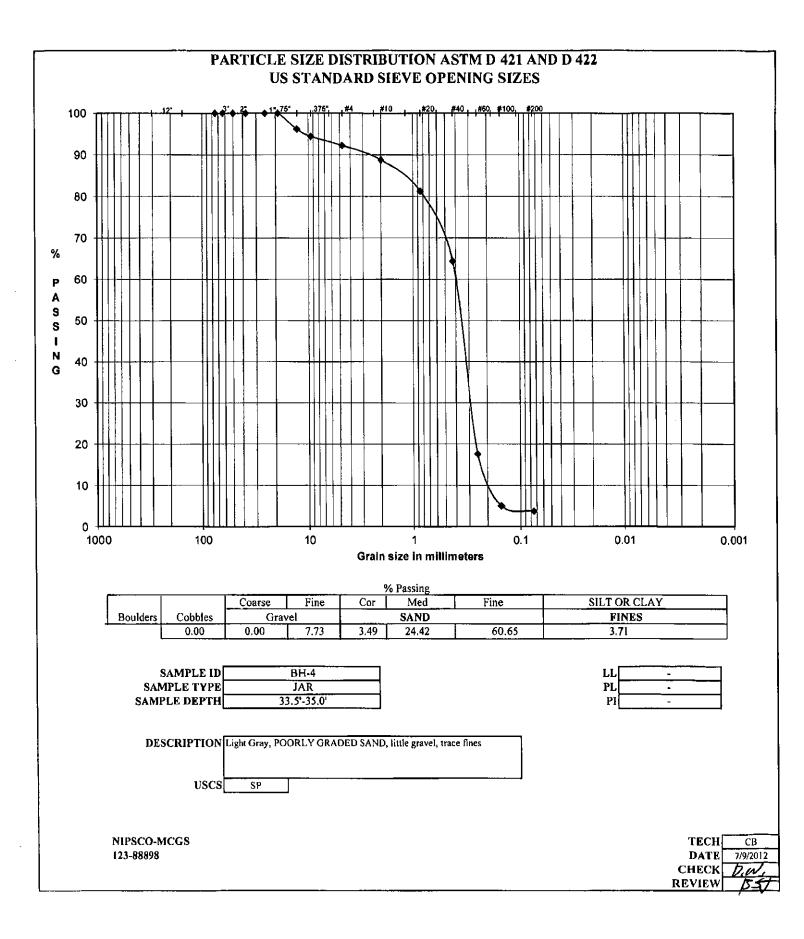
				1140, C 117	,			
PROJECT TITLE		NIPSCO	MCGS		S	AMPLE ID	BI	1-4
PROJECT NO.		123-88898			SAM	PLE TYPE	J	AR
REMARKS					SAMP	LE DEPTH	8.5'-	10.0'
				Hygroscopic M	loisture For Sie	ve Sample		
WATER CONTENT (Del	ivered Moisture) _		Wet Soil & Tare (gm)			<u>21.</u> 30	
Wt Wet Soil & Tare (gm)		(w1)	35,11	4		Dry Soil & T	are (gm)	21.26
Wt Dry Soil & Tare (gm)		(w2)	33.88			Tare Weight	(gin)	10.96
Weight of Tare (gm)		(w3)	13.87			Moisture Cor		0.39
Weight of Water (gm)		(w4=w1-w2)	1,23	Total Weight C	Of Sample Used		rected For Hygros	
Weight of Dry Soil (gm)		(w5=w2-w3)	20.01			Weight Of Sa		340.55
Moisture Content (%)		(w4/w5)*100	6.15			Tare Weight		97.18
					(W6)	Total Dry W	eight (gm)	242.43
SIEVE ANALYSIS				Cumulative				
Tare Weight	-	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
97.42		+Tare		{(wt ret/w6)*100}	(100-%ret)			
	3.0*	97.42	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5 ⁿ	97.42	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	97.42	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	97.42	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	97.42	0,00	0.00	100.00	1.0"	coarse gravel	
	0.75"	97.42	0.00	0,00	100.00	0.75"	fine gravel	
	0.50"	101.02	3.60	1.48	98.52	0,50"	fine gravel	
	0.375"	103.06	5.64	2.33	97.67	0.375"	fine gravel	
	#4	103.73	6.31	2.60	97.40	#4	coarse sand	
	#10	104.57	7.15	2.95	97.05	#10	medium sand	
	#20	105.33	7.91	3.26	96.74	#20	medium sand	
	#40	110,55	13.13	5.42	94.58	#40	fine sand	
	#60	217.16	119.74	49.39	50.61	#60	fine sand	
	#100	329.35	231.93	95.67	4.33	#100	fine sand	
	#200	334.59	237.17	97.83	2.17	#200	fines	
<u></u>					~~~~			<u></u>
% C GRAVEL	0.00		ive Terms		stly coarse (c)			·
% F GRAVEL	2.60	trace	0 to 5%		ostly medium (n	1)	LL	-
% C SAND	0.35	little	5 to 12%	< 10% fin			PL	-
% M SAND	2,47	some	12 to 30%	< 10% coa			PI	-
% F SAND	92.41	and	30 to 50%		arse and fine (m	•	Gs	
% FINES	2.17				arse and mediur	• •		
% TOTAL	100.00			> 10% equ	ual amounts eac	h (c-f)		
D	ESCRIPTION	Gray, POORLY	GRADED S	AND, trace grave	el, trace fines			
	LIECE		· · ·]	TROU	
	USCS	SP					TECH	CB
							DATE	7/9/2012
							CHECK	D.W.
					· · ·		REVIEW	175/





ТЕСН	СВ
DATE	07/09/12
СНЕСК	$\mathcal{D}_{i}\mathcal{W}_{i}$
REVIEW	BST

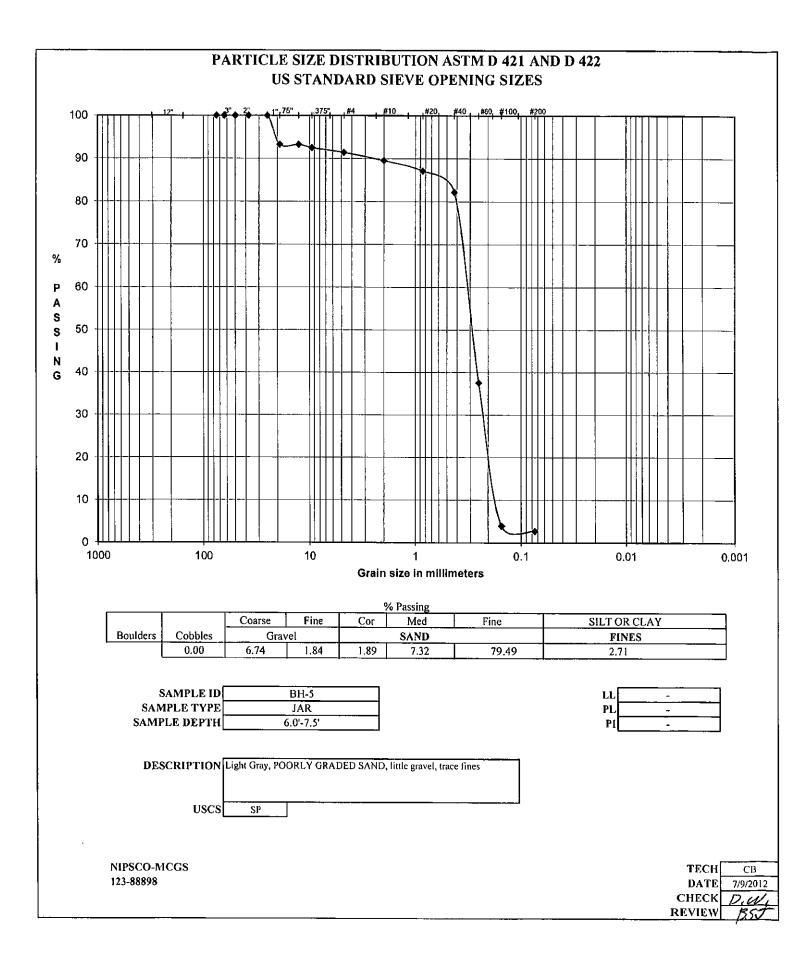
I

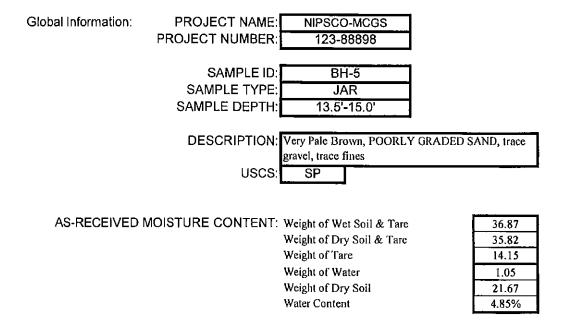

			,-		,, .	, • • ••		
PROJECT TITLE		NIPSCO	-MCGS			SAMPLE ID	BE	I-4
PROJECT NO.		123-88898		-		IPLE TYPE	JA	AR
REMARKS						LE DEPTH	13.5	-15.0'
				Hygroscopic N	loisture For Sie			r
WATER CONTENT (Deli	vered Moisture			4		Wet Soil & T		29.61
Wt Wet Soil & Tare (gm)		(wi)	36.59	-		Dry Soil & T	-	29.60
Wt Dry Soil & Tare (gm)		(w2)	35.82	-		Tare Weight		13.72
Weight of Tare (gm)		(w3)	13.74			Moisture Cor		0.06
Weight of Water (gm)		(w4=w1-w2)	0.77	Total Weight C	of Sample Used		rected For Hygros	
Weight of Dry Soil (gm)		(w5=w2-w3)	22,08	4		Weight Of Sa		361.69
Moisture Content (%)		(w4/w5)*100	3.49	-		Tare Weight		95.06
					(W6)	Total Dry W	eight (gm)	266.46
OTEVE ANALYON				.				
SIEVE ANALYSIS		NA D.	(111) T	Cumulative	A/ 04.00			
Tare Weight	1	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
95.10	J	+Tare		{(wt rel/w6)*100}	(100-%ret)			
	3.0"	0610	0.00	0.00	100.00	2.00		
	2.5"	95.10 95.10	0.00	0.00	100.00	3.0"	coarse gravel	
	2.0"	95.10 95.10	0.00		100.00	2.5"	coarse gravel	
	2.0	95.10 95.10	0.00	0.00		2.0"	coarse gravel	
	1.5	95.10	0.00	0.00	100.00	1.5"	coarse gravel	
	0.75"	95.10		0,00	100.00	1.0"	coarse gravel	
	0.50"		0.00	0.00	100.00	0.75"	fine gravel	
	0.30	95.10	0.00	0.00	100.00	0.50"	fine gravel	
	0.375 #4	95.10	0.00	0.00	100.00	0.375"	fine gravel	
		95.10	0.00	0.00	100.00	#4	coarse sand	
	#10 #20	95.10	0.00	0.00	100.00	#10	medium sand	
	#20 #40	95.20	0.10	0.04	99.96	#20	medium sand	
	#40 #60	98.29	3.19	1.20	98.80	#40	fine sand	
	#60	240.03	144.93	54.39	45.61	#60	fine sand	
	#100 #200	358.97	263.87	99.03	0.97	#100	fine sand	
	#200	361.34	266.24	99.92	0.08	#200	fines	
		•						
% C GRAVEL	0.00	l Decorinti	ve Terms	> 1004 mg	stly coarse (c)			
% F GRAVEL	0.00	1	0 to 5%		•			
% C SAND	0.00	trace little	5 to 12%		stly medium (m	1)	LL	<u> </u>
% M SAND	1.20	some	12 to 30%	< 10% fine < 10% coa			PL	
% F SAND	98.72	and	30 to 50%		use (m-r) use and fine (m	`	PI Ca	
% FINES	0.08	anu	30 10 30%		use and medium	-	Gs	
% TOTAL	100.00				ial amounts eac	.,		
MIDIAL	100.00	J		~ 10% eqt	at amounts eac	an (C-1)		
	SCRIPTION	Pale Brown, PC		ED SAND trace	- fines	ו		
	SCRI 100		ORET ORAL		e mies			
	USCS	SP				1	ТЕСН	
	0303						DATE	CB
							CHECK	7/9/2012
								D.W.
L		_					REVIEW	



TECH	СВ
DATE	07/09/12
СНЕСК	D.in.
REVIEW	BAT

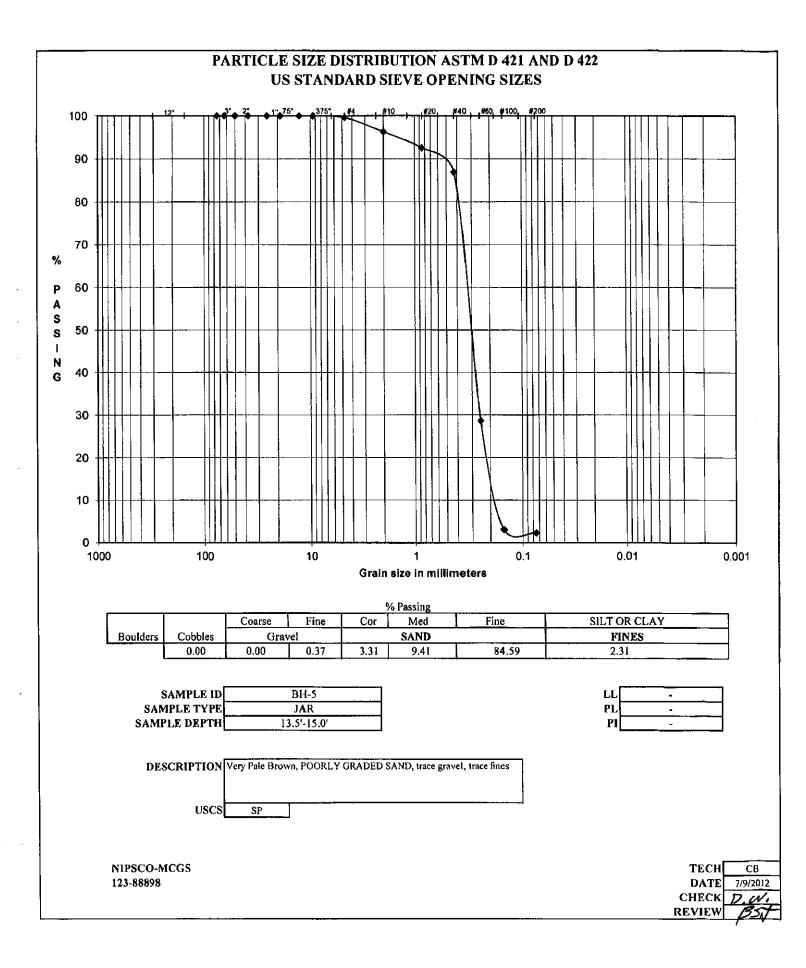
PROJECT TITLE NIP			-MCGS	SAMPLE I		SAMPLE ID	BI	1-4
PROJECT NO.		123-88898				IPLE TYPE		AR
REMARKS				1	SAMP	LE DEPTH		-35,0'
				Hygroscopic M	foisture For Sie	ve Sample	- -	<u> </u>
WATER CONTENT (Deli	ivered Moisture) _				Wet Soil & 1	Fare (gm)	35.93
Wt Wet Soil & Tare (gm)		(wI)	39.08			Dry Soil & 7	fare (gm)	35.77
Wt Dry Soil & Tare (gm)		(w2)	34.43			Tare Weight	(gm)	14.08
Weight of Tare (gm)		(w3)	13.92			Moisture Co		0.74
Weight of Water (gm)		(w4=w1-w2)	4,65	Total Weight C	of Sample Used	For Sieve Co	rrected For Hygros	copic Moisture
Weight of Dry Soil (gm)		(w5=w2-w3)	20.51			Weight Of S	ample (gm)	379.84
Moisture Content (%)		(w4/w5)*100	22.67	4		Tare Weigh	t (gm)	97.03
					(W6)	Total Dry W	eight (gm)	280.74
CIEVE ANALVOIC								
SIEVE ANALYSIS		We Det	(1)/4 Terre)	Cumulative	A/ 04 00	0101/0		
Tare Weight 97.16	ו	Wt Ret +Tare	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
27.10	1	TIME		{(w1 ret/w6)*100}	(100-%ret)			
	3.0"	97.16	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	97.16	0,00	0,00	100.00	2,5"	coarse gravel	
	2.0"	97.16	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	97.16	0.00	0,00	100.00	1.5"	coarse gravel	
	1.0"	97.16	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	97.16	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	107,79	10.63	3.79	96.21	0.50"	fine gravel	
	0.375"	112.74	15.58	5.55	94.45	0.375"	fine gravel	
	#4	118.85	21.69	7.73	92.27	#4	coarse sand	
	#10	128.64	31.48	11.21	88.79	#10	medium sand	
	#20	149.70	52.54	18.7 1	81.29	#20	medium sand	
	#40	197.19	100.03	35.63	64.37	#40	fine sand	
	#60	328.54	231.38	82.42	17.58	#60	fine sand	
	#100	363.85	266.69	95.00	5.00	#100	fine sand	
	#200	367,47	270.31	96.29	3.71	#200	fines	
		· · ·				·····		
% C GRAVEL	0.00	Descripti	ve Terms		stly coarse (c)			
% F GRAVEL	7.73	trace	0 to 5%	> 10% mos	stly medium (n	1)	LL	•
% C SAND	3.49	little	5 to 12%	< 10% fine	• •		PL	-
% M SAND	24.42	some	12 to 30%	< 10% coa			PI	-
% F SAND	60.65	and	30 to 50%		rse and fine (m		Gs	-
% FINES	3.71				rse and medium			
% TOTAL	100.00			> 10% equ	al amounts cac	h (c-f)		
DE	SCRIPTION	Light Gray, PO	ORLY GRAD	ED SAND, little	gravel, trace	1		
		fines		-,	<u> </u>			
	1000					J		
	USCS	SP					TECH	СВ
							DATE	7/9/2012
							CHECK	D.C.
				·			REVIEW	1_FST

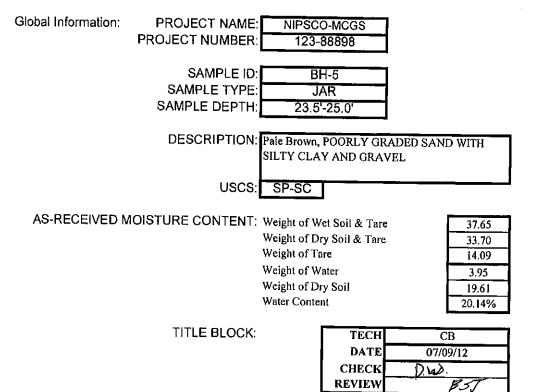



AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

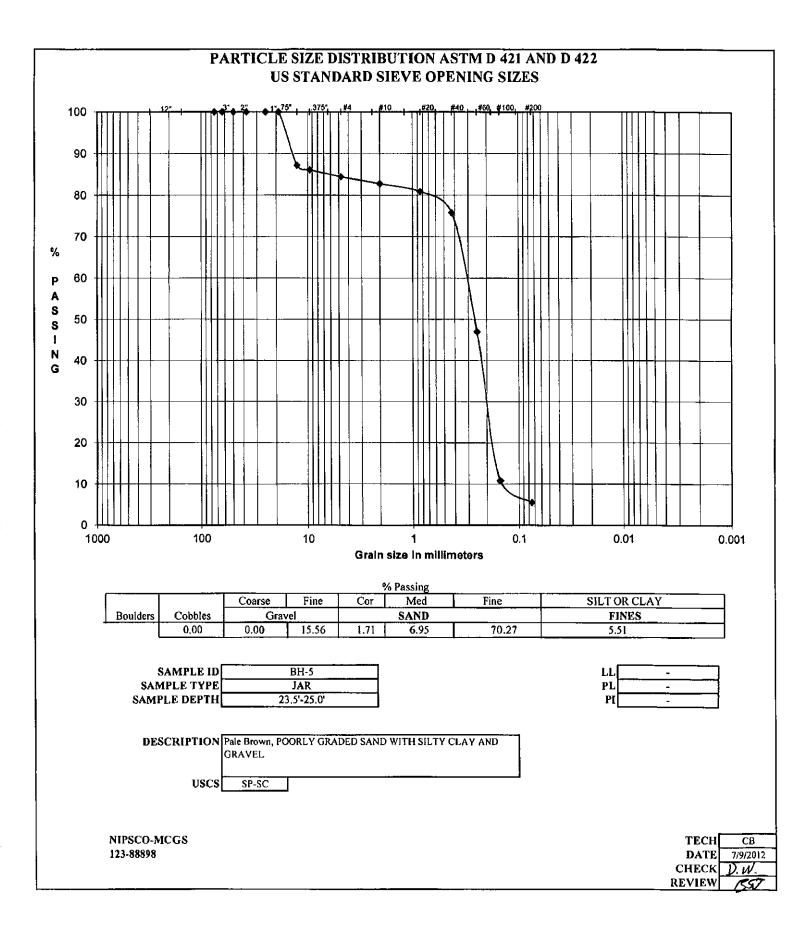
36.37
35.47
14.10
0.90
21.37
4.21%

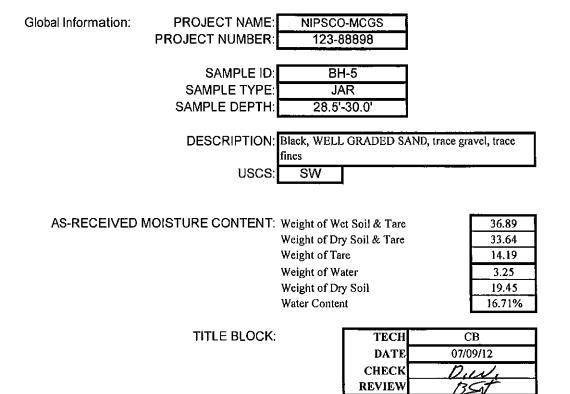
TECH	СВ
DATE	07/09/12
CHECK	DiW.
REVIEW	BSIT


ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142 PROJECT TITLE NIPSCO-MCGS SAMPLE ID BH-5 PROJECT NO. 123-88898 SAMPLE TYPE JAR REMARKS SAMPLE DEPTH 6.0'-7.5' Hygroscopic Moisture For Sieve Sample WATER CONTENT (Delivered Moisture) Wet Soil & Tare (gm) 29.47 Wt Wet Soil & Tare (gm) (w1)36,37 Dry Soil & Tare (gm) 29.45 Wt Dry Soil & Tare (gm) (w2) 35,47 Tare Weight (gm) 14.02 Weight of Tare (gm) (w3) 14.10 Moisture Content (%) 0.13 Weight of Water (gm) (w4=w1-w2) 0.90 Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture Weight of Dry Soil (gm) (w5=w2-w3)21.37 Weight Of Sample (gm) 346.33 Moisture Content (%) (w4/w5)*100 4.21 Tare Weight (gm) 95,92 250.09 (W6) Total Dry Weight (gm) SIEVE ANALYSIS Cumulative Tare Weight Wt Ret (Wt-Tare) (%Retained) % PASS SIEVE 96.04 +Tare {(wt ret/w6)*100} (100-%ret) 3.0" 96.04 0.00 0.00 100.00 3.0" coarse gravel 2.5" 96.04 0.00 0.00 100.00 2.5" coarse gravel 96.04 0.00 2.0" 0.00 100.00 2.0" coarse gravel 96.04 1.5" 0.00 0.00 100.00 1.5" coarse gravel 1.0" 96.04 0.00 0.00 100.00 1.0" coarse gravel 0.75" 112.90 16.86 6.74 93.26 0.75" fine gravel 0.50" 112.90 16.86 6.74 93.26 0.50" fine gravel 0.375" 114.73 18.69 7.47 92.53 0.375" fine gravel #4 117.51 21.47 8.59 91.41 #4 coarse sand #10 122.24 26.20 10.48 89,52 #10 medium sand 128.21 #20 32.17 12.86 87.14 #20 medium sand #40 140.54 44.50 17.79 82.21 #40 fine sand #60 252.22 156.18 62.45 37.55 #60 line sand #100 336.23 240.19 96.04 3,96 #100 fine sand #200 339.34 243.30 97.29 2.71 #200 fines % C GRAVEL 6.74 Descriptive Terms > 10% mostly coarse (c) % F GRAVEL 1.84 trace 0 to 5% > 10% mostly medium (m) LL ٠ % C SAND 1.89 little 5 to 12% < 10% fine (c-m) PL . % M SAND 7.32 some 12 to 30% < 10% coarse (m-f) ΡI . % F SAND 79.49 < 10% coarse and fine (m) and 30 to 50% Gs % FINES 2,71 < 10% coarse and medium (f) % TOTAL 100.00 > 10% equal amounts each (c-f) Light Gray, POORLY GRADED SAND, little gravel, trace DESCRIPTION fines USCS SP TECH CB DATE 7/9/2012 DW, CHECK REVIEW 1955

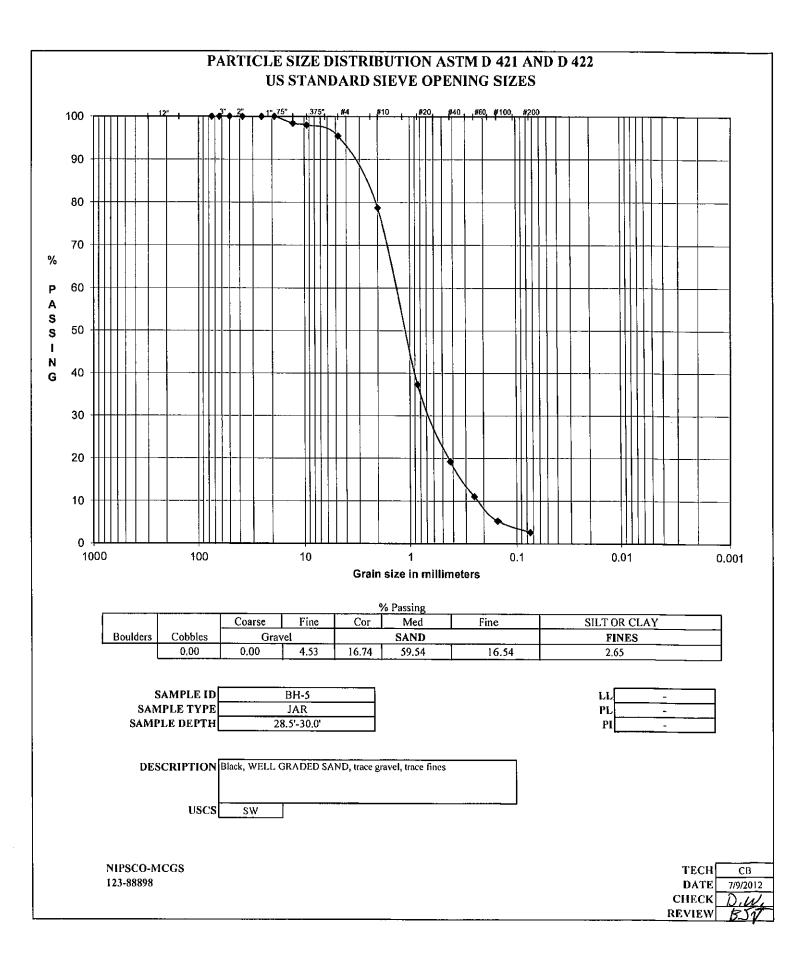


DATE 07/09/12 CHECK D , <i>W</i> , REVIEW B 5-T	TECH	СВ
	DATE	07/09/12
REVIEW BST	CHECK	D.W.
	REVIEW	BST

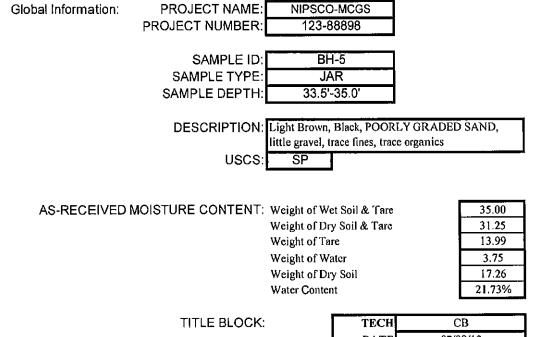

		•		····				
PROJECT TITLE	NIPSCO-MCGS 123-88898			<u></u>	SAMPLE ID SAMPLE TYPE		BH-5	
PROJECT NO.				-			· · · · · · · · · · · · · · · · · · ·	AR
REMARKS	,.,			<u> </u>	the second second second second second second second second second second second second second second second s	LE DEPTH	13.5	-15.0'
				Hygroscopic Moisture For Sieve Samp				·
WATER CONTENT (Del	livered Moisture	· ·		-		Wet Soil & '		30.41
Wt Wet Soil & Tare (gm)		(w1)	36.87	-		Dry Soil & 1		30.38
Wt Dry Soil & Tare (gm)		(w2)	35.82	4		Tare Weight		14.05
Weight of Tare (gm)		(w3)	14,15			Moisture Co		0.18
Weight of Water (gm)		(w4=w1-w2)	1.05	Total Weight C	of Sample Used		rrected For Hygros	r
Weight of Dry Soil (gm)		(w5=w2-w3)	21.67	-		Weight Of S		383.35
Moisture Content (%)		(w4/w5)*100	4.85	4		Tare Weigh	·• ·	96.39
					(W6)	Total Dry W	eight (gm)	286.43
OTEND ANAL MOLO								
SIEVE ANALYSIS		Wи П - 4	(11)A (Traine)	Cumulative	4/ D1 00	hter / e		
Tare Weight	7	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
96.45	J	+Tare		{(wt ret/w6)*100}	(100-%ret)			
	3.0"	06.45 T	0.00		100.00	2 01	1	
	2.5"	96.45 96.45	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5" 2.0"	96.45 96.45		0.00	100.00	2.5"	coarse gravel	
	2.0"		0.00	0.00	100.00	2.0"	coarse gravel	
	1.0"	96.45 96.45	0.00	0.00	100.00	1.5"	coarse gravel	
	0.75"	96.45		0.00	100.00	1.0"	coarse gravel	
	0.75" 0.50"	<u>96.45</u> 96.45	0.00	0.00	100.00	0.75"	fine gravel	
		· · · · · ·	0.00	0.00	100.00	0.50"	fine gravel	
	0.375" #4	96.45	0.00	0.00	100.00	0.375"	fine gravel	
		97.52	1.07	0.37	99.63	#4	coarse sand	
	#10	107.00	10.55	3.68	96.32	#10	medium sand	
	#20	<u>117.79</u>	21.34	7.45	92.55	#20	medium sand	
	#40 #60	133.96	37.51	13.10	86.90	#40	fine sand	
	#80 #100	300.81 374.07	204.36	71.35	28.65	#60	fine sand	
	#100 #200		277.62	96.92	3.08	#100	fine sand	
	#200	376.26	279.81	97.69	2.31	#200	fines	
		· ·		····		<u> </u>		
% C GRAVEL	0.00	Descripti	ve Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	0.37	trace	0 to 5%		stly medium (n	n)	LL	· ·
% C SAND	3.31	little	5 to 12%	< 10% fine	•	·/	PL	· · ·
% M SAND	9.41	some	12 to 30%	< 10% coa			PI	
% F SAND	84.59	and	30 to 50%		urse and fine (m	i)	Gs	
% FINES	2.31	1			irse and mediur		24	L
% TOTAL	100,00]			al amounts eac			
				· · · · · · · · · · · · · · · · · · ·				
D	ESCRIPTION		n, POORLY (GRADED SAND	, trace gravel,]		
		trace fines						
					<u></u> .	J		
	USCS	SP					TECH	СВ
							DATE	7/9/2012
							CHECK	D.w.
							REVIEW	BST



٠

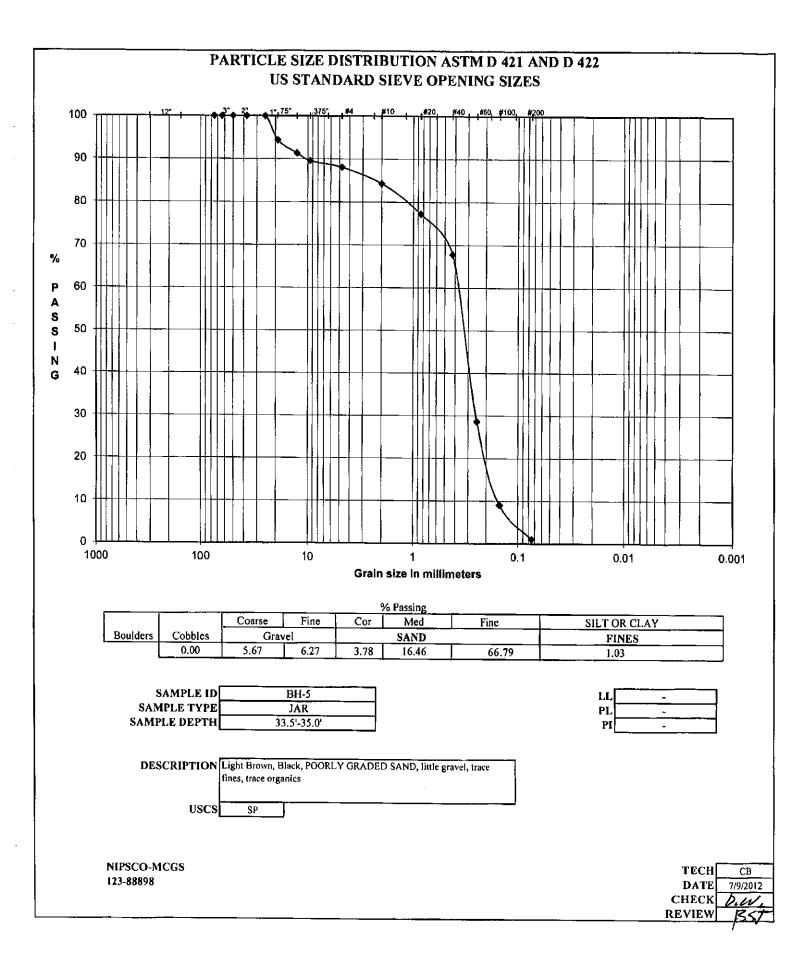


PROJECT TITLE	NIPSCO-MCGS				S	AMPLE ID	B	1-5
PROJECT NO.		123-88898		,	SAMPLE TYPE			AR
REMARKS				•		LE DEPTH		-25.0'
	·			Hygroscopic M				
WATER CONTENT (Deli	vered Moisture	:)		Wet Soil & Tare (gm)				28.61
Wt Wet Soil & Tare (gm)		(w1)	37.65	1		Dry Soil & "		28.47
Wt Dry Soil & Tare (gm)		(w2)	33.70	1		Tare Weight		14.03
Weight of Tare (gm)		(w3)	14.09	1		Moisture Co		0.97
Weight of Water (gm)		(w4=w1-w2)	3.95	Total Weight C	f Sample Used		rrected For Hygros	copic Moisture
Weight of Dry Soil (gm)		(w5=w2-w3)	19.61	1, -	-	Weight Of S		303.61
Moisture Content (%)		(w4/w5)*100	20.14			Tare Weigh	nt (gm)	96.61
					(W6)	Total Dry W	/eight (gm)	205.01
SIEVE ANALYSIS				Cumulative				
Tare Weight	1	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
96,84	J	+Tare		{(wt ret/w6)*100}	(100-%ret)			
	A 0/*		0.00		100.00	مە	<u>-</u>	
	3.0"	96.84	0.00	0.00	100.00	3.0"	coarse grave	
	2.5"	96.84	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	96.84	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5" 1.0"	96.84	0.00	0.00	100.00	1.5"	coarse gravel	
	0.75"	96.84 96.84	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75" 0.50"	123.12	26.28	0.00	100.00	0.75"	fine gravel	
	0.30"	125.42	28.58	12.82 13.94	87.18	0.50" 0.375"	fine gravel	
	0,375 #4	123.42	31.91	15.56	84.44	0.375" #4	fine gravel coarse sand	
	#4 #10	128.75	35.42	17.28	82.72	#4 #10	medium sand	
	#20	132.20	39.24	17.20	80.86	#10 #20	medium sand	
	#40	146.50	49.66	24,22	75.78	#40	fine sand	
	#60	205.52	108.68	53.01	46.99	#60	fine sand	
	#100	279.68	182.84	89.18	10.82	#100	fine sand	
	#200	290.56	193.72	94.49	5.51	#100	fines	
						1		
							<u> </u>	
% C GRAVEL	0.00	Descripti	ve Terms		stly coarse (c)			
% F GRAVEL	15,56	trace	0 to 5%		stly medium (m	1)	LL	-
% C SAND	1.71	little	5 to 12%		e (c-m)		PL	-
% M SAND	6,95	some	12 to 30%	< 10% coa			PI	<u> </u>
% F SAND	70.27	and	30 to 50%		irse and fine (m	•	Gs	<u> </u>
% FINES	5.51	4			rse and medium	••		
% TOTAL	100.00	J		> 10% equ	al amounts eac	h (c-f)		
N.	ESCRIPTION	Dalo Duoune DO		DED SAND WIT		1		
DE	DOCKIPTION	CLAY AND GI		JED SAND WIT	LI 211 I X			
	USCS	SP-SC				J	TECH	
	0003	51-30					DATE	CB 7/9/2012
							CHECK	p. w.
							REVIEW	BST
							11671617	1 /22



	AS	AS TM D 421, l		IN SIZE AN 1140, C 117		136, C 142			
PROJECT TITLE PROJECT NO.		NIPSCO 123-88898	MCGS				H-5 AR		
REMARKS	· · · ·	123-00090						-30.0'	-
KEMAKKO				Hygroscopic M				-30.0	
WATER CONTENT (Delivered Moisture)			Trygroscopic M	Instate For Sie	Wet Soil & 1	Fare (am)	35.39	٦	
	t Wet Soil & Tare (gm) (w1) 36.89			4		Dry Soil & T	· • ·	35.37	-{
Wt Dry Soil & Tare (gm)		(w1) (w2)	33.64	-		Tare Weight		14.08	-
Weight of Tare (gm)		(w2) (w3)	14.19	-		Moisture Co	-	0.09	-
Weight of Water (gm)		(w4=w1-w2)	3,25	Total Weight C	f Somula Lised		rected For Hygros		<u> </u>
		(w4-w1-w2) (w5=w2-w3)	19.45		of sample Osed	Weight Of S			٦
Weight of Dry Soil (gm)		(w3-w2-w3) (w4/w5)*100		1		-		341.06	-
Moisture Content (%)		(₩4/₩5)*100[16.71	1	(11/2)	Tare Weigh		92.74	
					(W6)	Total Dry W	eight (gm)	248.09	
SIEVE ANALYSIS				Cumulative					
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
92.99	٦	+Tare	(***-1 alc)	{(wt ret/w6)*100}	(100-%ret)	312412			
		(Ture		{(w(100%0),100}	(100-76101)				
	3.0"	92.99	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	92.99	0.00	0.00	100.00	2.5"	coarse gravel		
	2.0"	92.99	0.00	0,00	100.00	2.0"	coarse gravel		
	2.0	92.99	0.00	0.00	100.00	1.5"	-		
	1.5 1.0"	92.99	0.00			1.0"	coarse gravel		
	0.75"	92.99	0.00	0.00	100.00	0.75"	coarse gravel		
	0.75			1 1		0.75	fine gravel		
	0.30	96.94	3.95	1.59	98.41	0.30	fine gravel		
	0.375 #4	97.95	4.96	2.00	98.00	- 0.375 #4	fine gravel		
		104.23	11.24	4.53	95.47	- #4 #10	coarse sand medium sand		
	#10	145.76	52.77	21.27	78.73	-	medium sand		
	#20 #40	248.40 293.47	155.41	62.64	37.36	#20			
			200.48	80.81	19.19	#40	fine sand		
	#60	313.68	220.69	88.96	11.04	#60	fine sand		
	#100	327.91	234.92	94.69	5.31	#100	fine sand		
	#200	334.51	241.52	97.35	2.65	#200	fines		
·		· · · · ·							
% C GRAVEL	0.00	Descripti	ive Terms	> 10%	stly coarse (c)				
% F GRAVEL	4.53	trace	0 to 5%		istly coarse (c)	ո)	LL		
% C SAND	16.74	little	5 to 12%	< 10% fin	•		PL		-
% M SAND	59.54	some	12 to 30%	< 10% cos			PI		-
% F SAND	16.54	and	30 to 50%		arse and fine (n	1)	Gs		-
% FINES	2.65	1	50105070		arse and mediu	•	03		
% TOTAL	100.00	1			ual amounts ead	-			
78 IUTAL	100.00]		> 10% equ	uar amounts ca	cii (c-i)			
[] с	DESCRIPTION	Black, WELL C	GRADED SAN	ND, trace gravel,	trace fines]			
	110.00					1			
	USCS	SW					TECH	CB	
							DATE	7/9/201	<u></u>
							CHECK	D.W.	
							REVIEW	L/>>/	<u> </u>

-


 TECH
 CB

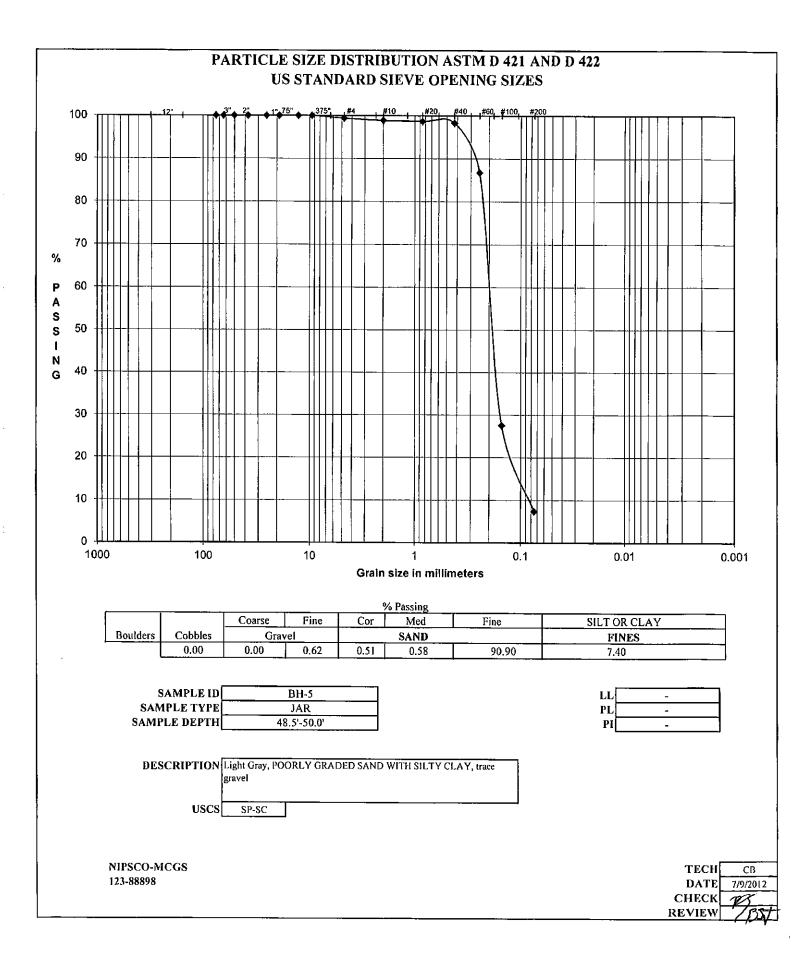
 DATE
 07/09/12

 CHECK
 D.M.L

 REVIEW
 B.S.V

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142 **PROJECT TITLE** NIPSCO-MCGS SAMPLE ID BH-5 PROJECT NO. 123-88898 SAMPLE TYPE JAR REMARKS SAMPLE DEPTH 33.5'-35.0' Hygroscopic Moisture For Sieve Sample WATER CONTENT (Delivered Moisture) Wet Soil & Tare (gm) 30,92 35.00 Wt Wet Soil & Tare (gm) (w1) Dry Soil & Tare (gm) 30.86 (w2) 31.25 Tare Weight (gm) Wt Dry Soil & Tare (gm) 13.92 (w3) 13.99 0.35 Weight of Tare (gm) Moisture Content (%) Weight of Water (gm) (w4=w1-w2) 3.75 Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture Weight of Dry Soil (gm) (w5=w2-w3)17.26 352.71 Weight Of Sample (gm) 21.73 99.55 (w4/w5)*100 Moisture Content (%) Tare Weight (gm) (W6) Total Dry Weight (gm) 252.27 SIEVE ANALYSIS Cumulative Wt Ret Tare Weight (Wt-Tare) (%Retained) %PASS SIEVE 99.65 +Tare {(wt ret/w6)*100} (100-%ret) 3.0" 99.65 0.00 0.00 100.00 3.0" coarse gravel 99.65 0.00 2.5" 0.00 100.00 2.5" coarse gravel 99.65 0.00 0.00 2.0" 100.00 2.0" coarse gravel 1.5" 99.65 0.00 0.00 100.00 1.5" coarse gravel 1.0" 99.65 0.00 0.00 100.00 1.0" coarse gravel 0.75" 113.96 14.31 5.67 94.33 0.75" fine gravel 0.50" 121.46 21.81 8.65 91.35 0.50" fine gravel 0.375" 125.93 26.28 10.42 89.58 0.375" fine gravel 129.77 #4 30.12 11.94 88.06 #4 coarse sand 139.30 39.65 #10 15.72 84.28 #10 medium sand #20 157.07 57.42 22.76 77.24 #20 medium sand 180.83 #40 81.18 32.18 67.82 #40 fine sand 279.76 #60 180.11 71.40 28.60 #60 fine sand #100 329.01 229.36 90.92 9.08 #100 fine sand #200 349.31 249.66 98.97 1.03 #200 fines % C GRAVEL 5.67 **Descriptive Terms** > 10% mostly coarse (c) % F GRAVEL 6.27 trace 0 to 5% > 10% mostly medium (m) LL 3.78 % C SAND little 5 to 12% < 10% fine (c-m) PL • % M SAND 16.46 some 12 to 30% ΡI < 10% coarse (m-f) -66.79 30 to 50% % F SAND and < 10% coarse and fine (m) Gs -% FINES 1.03 < 10% coarse and medium (f) 100.00 > 10% equal amounts each (c-f) % TOTAL DESCRIPTION Light Brown, Black, POORLY GRADED SAND, little gravel, trace fines, trace organics USCS SP TECH CB DATE 7/9/2012 CHECK W REVIEW

Global Information:	PROJECT NAME: PROJECT NUMBER:	NIPSCO-MCGS 123-88898	
	SAMPLE ID: SAMPLE TYPE: SAMPLE DEPTH:	BH-5 JAR 48.5'-50.0'	
		Light Gray, POORLY GRA SILTY CLAY, trace gravel SP-SC	DED SAND WITH
AS-RECEIVED I	n N	Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil	35.95 32.01 14.16 3.94 17.85

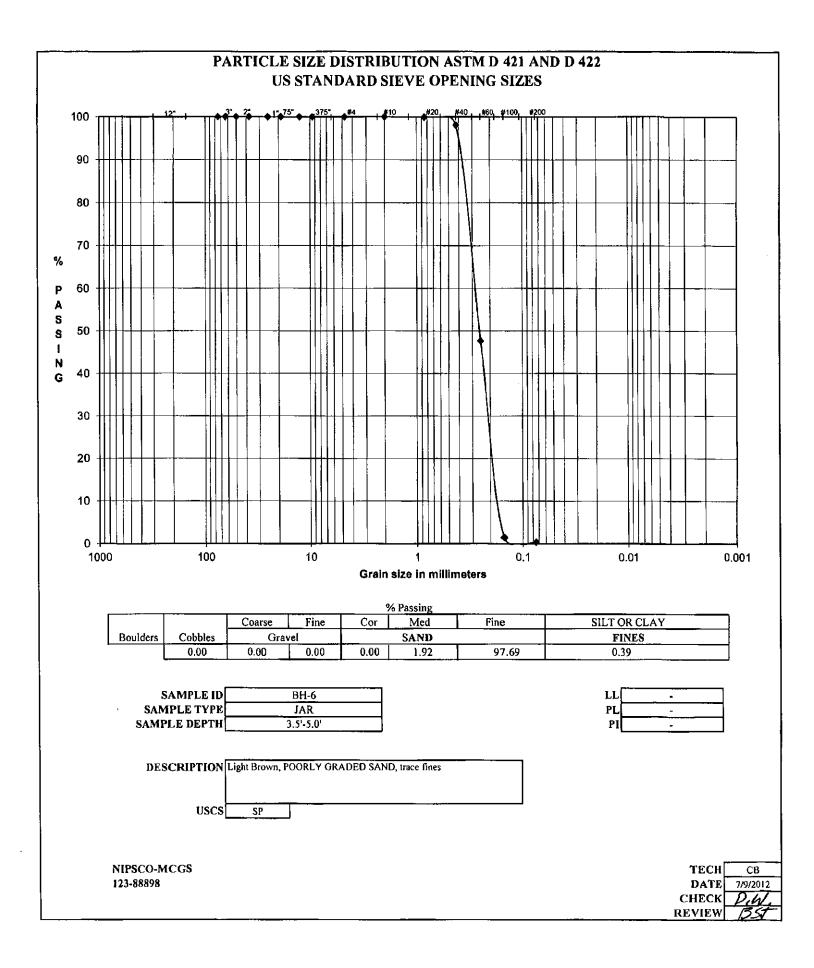

Water Content

TITLE BLOCK:

TECH	CB
DATE	07/09/12
CHECK	BS
REVIEW	13.ST

22.07%

				,	,, .			
PROJECT TITLE	[NIDSCO	MCCS		l .			····
PROJECT NO.		NIPSCO 123-88898	-MCG3	1		SAMPLE ID		H-5
REMARKS		123-86876		-				AR
	_ _			Huproscopic N	SAMPLE DEPTH 48.5 /groscopic Moisture For Sieve Sample			-50.0'
WATER CONTENT (De	livered Moistur	e)		Wet Soil & Tare (gm)			37.07	
Wt Wet Soil & Tare (gn)		(w1)	35.95	1		Dry Soil & T	·• ·	36.98
Wt Dry Soil & Tare (gm)		(w2)	32.01	4		Tare Weight	·• ·	14.18
Weight of Tare (gm)		(w3)	14.16			Moisture Cor		0.39
Weight of Water (gm)		(w4=w1-w2)	3.94	Total Weight (Of Sample Used		rected For Hygros	
Weight of Dry Soil (gm)		(w5=w2-w3)	17.85			Weight Of Sa		316.77
Moisture Content (%)		(w4/w5)*100	22.07	7		Tare Weight		82.34
		· · ·		1	(W6)	_		233.51
				ł			<u> </u>	
SIEVE ANALYSIS				Cumulative				
Tare Weight	_	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
82.38		+Tare		{(wi ret/w6)*100}	(100-%ret)			
		r						
	3.0"	82.38	0.00	0.00	100.00	3.0"	coarse gravel	
	2,5"	82.38	0.00	0.00	100.00	2,5"	coarse gravel	
	2.0"	82.38	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	82.38	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	82.38	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	82.38	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	82.38	0.00	0.00	100.00	0.50"	fine gravel	
	0.375"	82,38	0.00	0.00	100.00	0.375"	fine gravel	
	#4	83.82	1.44	0.62	99.38	#4	coarse sand	
	#10	85.00	2.62	1.12	98.88	#10	medium sand	
	#20	85.46	3.08	1.32	98.68	#20	medium sand	
	#40	86.35	3.97	1.70	98.30	#40	fine sand	
	#60	113.32	30.94	13.25	86.75	#60	fine sand	
	#100	251.56	169.18	72.45	27.55	#100	fine sand	
	#200	298.61	216.23	92.60	7.40	#200	fines	
% C GRAVEL	0.00] Deservited	ive Terms	> 100/	stly coarse (c)			
% F GRAVEL	0.60	trace	0 to 5%		•			
% C SAND	0.51	little	5 to 12%		stly medium (m	0	LL	
% M SAND	0.51	some	12 to 30%	< 10% fine < 10% coa			PL	
% F SAND	90.90	and	30 to 50%		urse (m-r) urse and fine (m)	`	PI C-	
% FINES	7.40		50105076		use and nine (in) use and medium	•	Gs	<u> </u>
% TOTAL	100.00	ł			al amounts eac	• •		
, , , , , , , , , , , , , , , , , , ,		J		> 10% equ		(0-1)		
D D	ESCRIPTION	Light Gray, PO	ORLY GRAD	ED SAND WITH	I SILTY	1		
_		CLAY, trace gr						
		-						
	USCS	SP-SC				I	тесн	СВ
							DATE	7/9/2012
1							CHECK	RE
							REVIEW	Prt
· · · · · ·								<u> </u>


Global Information: PROJECT NAME: NIPSCO-MCGS PROJECT NUMBER: 123-88898 BH-6 SAMPLE ID: SAMPLE TYPE: JAR SAMPLE DEPTH: 3.5'-5.0' DESCRIPTION: Light Brown, POORLY GRADED SAND, trace fines USCS: SP AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare 36.17 Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil

Water Content

35.49 14.06 0.68 21.43 3.17%

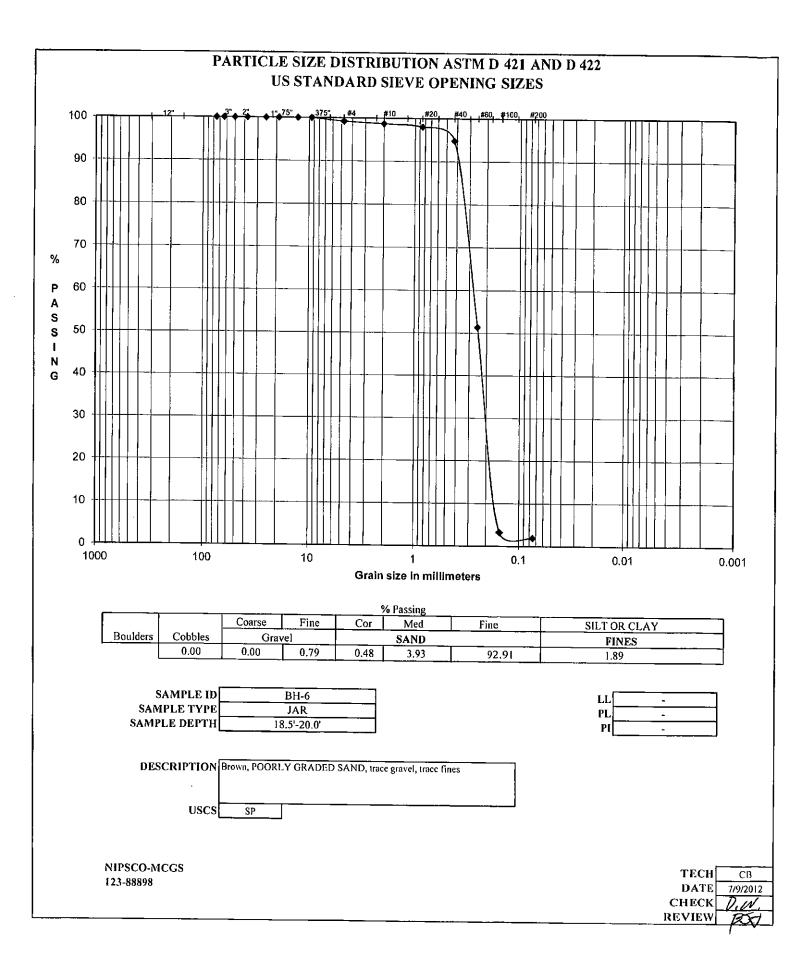
TECH	СВ
DATE	07/09/12
СНЕСК	$\mathcal{D}_{i}\mathcal{W}_{i}$
REVIEW	BSV

Abilit D 421, D 2217, D 1140, C 117, D 422, C 150, C 142									
	[MIDGOO	MOOR		~				
PROJECT TITLE		NIPSCO	-MCGS]		SAMPLE ID	BH		
PROJECT NO.	J	123-88898						.R	
REMARKS	1			SAMPLE DEPTH 3.5'-5.0' Hygroscopic Moisture For Sieve Sample					
				Hygroscopic M	loisture For Sie	•	r	<u> </u>	
WATER CONTENT (Deli	vered Moisture	·				Wet Soil & T	···· ·	32.16	
Wt Wet Soil & Tare (gm)		(w1)		4		Dry Soil & T		32.14	
Wt Dry Soil & Tare (gm)		(w2)	35.49			Tare Weight		10.89	
Weight of Tare (gm)		(w3)	14.06			Moisture Co		0.09	
Weight of Water (gm)		(w4≕w1-w2)	0,68	Total Weight C	of Sample Used		rected For Hygroso		
Weight of Dry Soil (gm)		(w5=w2-w3)	21.43			Weight Of S		367.18	
Moisture Content (%)		(w4/w5)*100	3.17	-		Tare Weight		95.69	
					(W6)	Total Dry W	eight (gm)	271.23	
SIEVE ANALYSIS				Cumulative					
Tare Weight	1	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
95.77	J	+Tare		{(wt rei/w6)*100}	(100-%ret)				
	3.0"	95.77	0.00	0.00	100.00	3.0"	operce areval		
	2.5"	95.77	0.00	0.00	100,00	2.5"	coarse gravel		
	2.0"	95.77	0.00	0.00	100.00	2.0"	coarse gravel coarse gravel		
	1.5"	95,77	0.00	0.00	100.00	1.5"	coarse gravel		
	1.5 1.0"	95.77	0.00	0.00	100.00	1.0"	•		
	0.75"	95.77	0.00	0.00	100.00	0.75"	coarse gravel		
	0.75	95.77	0.00	0.00		0.75	fine gravel		
	0.375"	95.77 95.77	0.00	0.00	100.00	0.30	fine gravel		
	0.375° #4	95.77	0.00	0.00	100.00	#4	fine gravel		
					100.00	-	coarse sand		
	#10	95.77	0.00	0.00	100.00	#10	medium sand		
	#20	95.98	0.21	0.08	99.92	#20	medium sand		
	#40	100.98	5.21	1.92	98.08	#40	fine sand		
	#60	237.70	141.93	52.33	47.67	#60	fine sand		
	#100	363.10	267.33	98.56	1.44	#100	fine sand		
	#200	365.94	270.17	99.6 1	0.39	#200	fines		
·									
% C GRAVEL	0.00] Descript	ive Terms	> 10% ma	stly coarse (c)				
% F GRAVEL	0.00	trace	0 to 5%		stly medium (m		LL		
% C SAND	0.00	little	5 to 12%	< 10% fine		"	PL		
% M SAND	1.92	some	12 to 30%	< 10% coa			PI		
% F SAND	97.69	алd	30 to 50%		urse and fine (m		Gs		
% FINES	0.39		2010/2018		arse and medium	•	03	<u> </u>	
% TOTAL	100.00	-			ial amounts eac	.,			
	100.00]		- 1078 eqt	iai amounts cac	an (C-1)			
n n	ESCRIPTION	Light Brown, P	POORLY GRA	DED SAND, tra	ce fines	1			
	ESCAN HON		CORE COR	<i>DED</i> 0111(<i>D</i> , 114					
	USCS	SP				1	ТЕСН	СВ	
		I	J				DATE	7/9/2012	
							CHECK	D.W.	
							REVIEW	BST_	

PROJECT NAME: NIPSCO-MCGS PROJECT NUMBER: 123-88898

SAMPLE ID: BH-6 SAMPLE TYPE: JAR SAMPLE DEPTH: 18.5'-20.0'

DESCRIPTION:	Brown, POORLY GRADED SAND, trace gravel,							
	trace fines							
USCS:	SP							

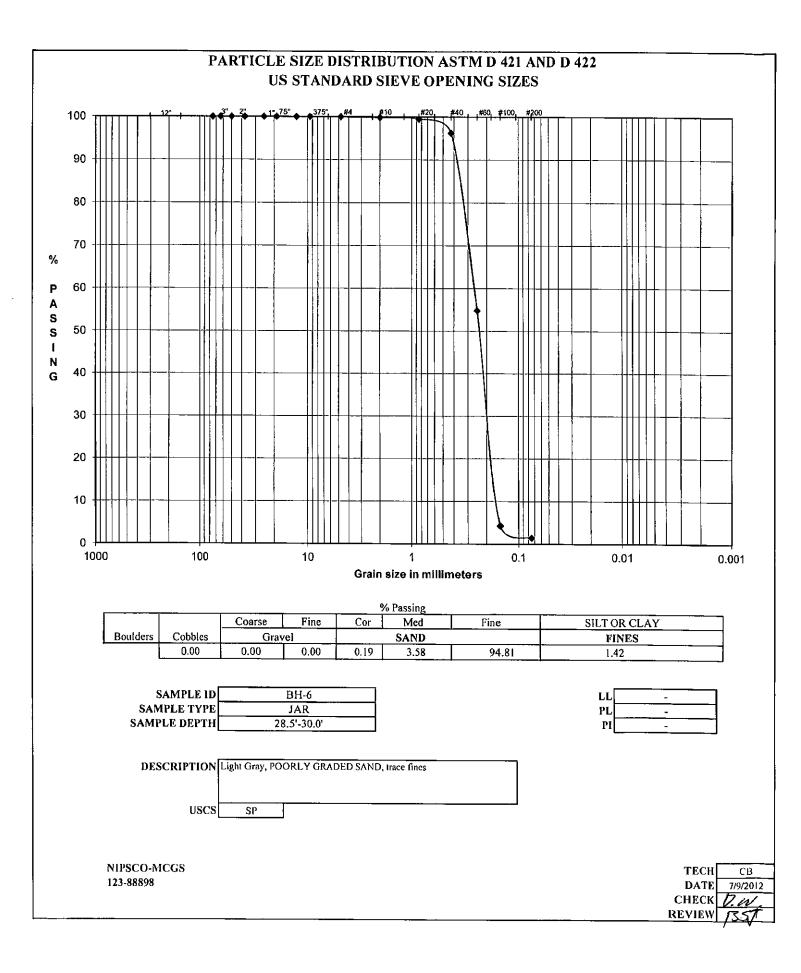

AS-RECEIVED MOISTURE CONTENT:	Weight of Wet Soil & Tare
	Weight of Dry Soil & Tare
	Weight of Tare
	Weight of Water
	Weight of Dry Soil
	Water Content

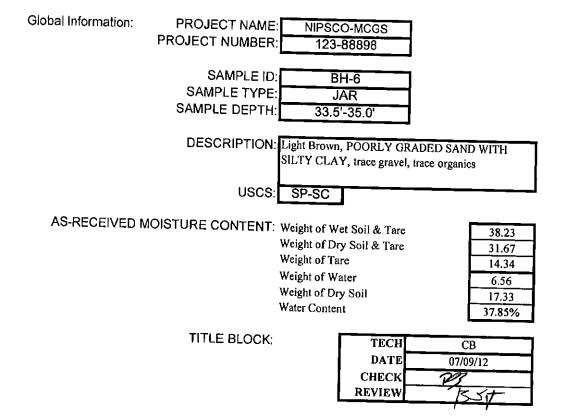
35.22
31.28
14.14
3.94
17.14
22.99%

TECH	CB
DATE	07/09/12
CHECK	P.W.
REVIEW	PSIT
	7

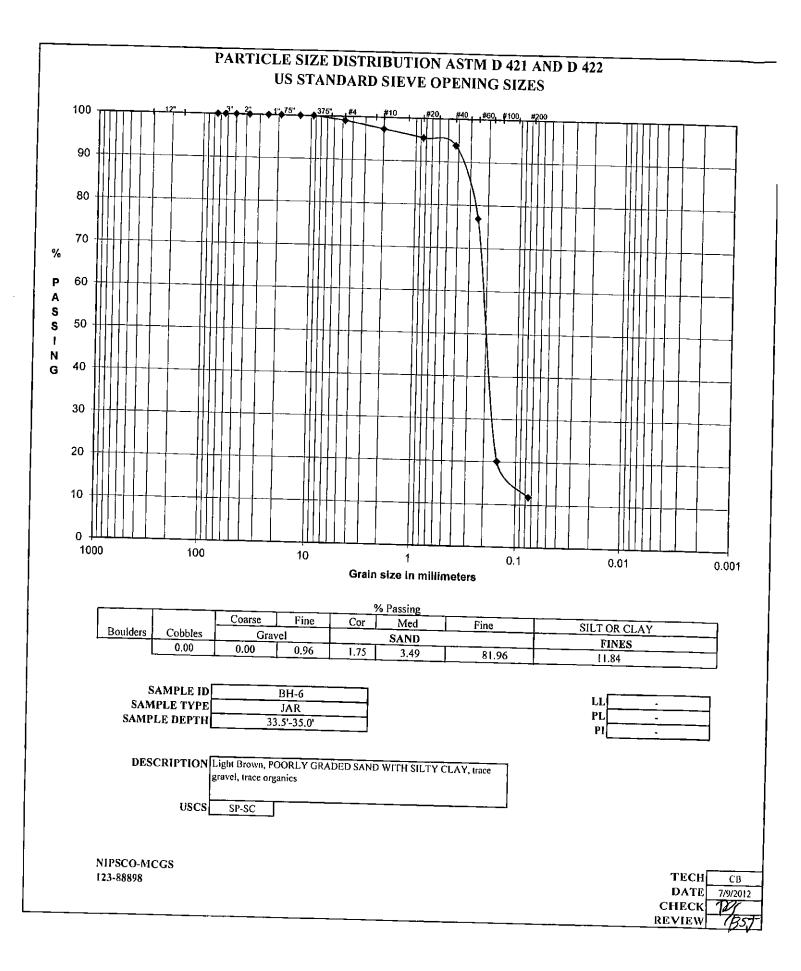
PROJECT TITLE	<u> </u>	NIDECO	MOOR						
PROJECT NO.	 	NIPSCO 123-88898	-MCGS			SAMPLE ID		1-6	
REMARKS		123-00090		4		IPLE TYPE PLE DEPTH			
REMARKS	I			Hyproscopic M	Joisture For Sie		18.5	-20.0'	
WATER CONTENT (Deli	ivered Moisture	e)		Trygroscopic iv	ioistule rol sie	Wet Soil & 1	Fare (nm)	35.43	
Wt Wet Soil & Tare (gm)		., (w1)	35.22	4		Dry Soil & 1		35.36	
Wt Dry Soil & Tare (gm)		(w2)	31.28	-		Tare Weight		13.98	
Weight of Tare (gm)		(w3)	14.14			Moisture Co	-	0.33	
Weight of Water (gm)		(w4=w1-w2)	3,94	Total Weight (Of Sample Used		rected For Hygros		
Weight of Dry Soil (gm)		(w5=w2-w3)	17.14]		Weight Of S		346.68	
Moisture Content (%)		(w4/w5)*100	22.99	1		Tare Weigh		99.85	
		· · ·	···	1	(W6)		·•• ·	246.02	
				• •	<u></u>				
SIEVE ANALYSIS				Cumulative					
Tare Weight	-	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
99.92]	+Tare		{(wt ret/w6)*100}	(100-%ret)				
			······						
	3.0"	99.92	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	99.92	0.00	0.00	100.00	2,5"	coarse gravel		
	2.0"	99.92	0.00	0.00	100.00	2.0"	coarse gravel		
	1.5"	99.92	0.00	0.00	100.00	1.5"	coarse gravel		
	1.0"	99.92	0.00	0.00	100.00	1.0"	coarse gravel		
	0.75"	99.92	0.00	0.00	100.00	0.75"	fine gravel		
	0.50"	99.92	0,00	0.00	100.00	0.50"	fine gravel		
	0.375"	99.92	0.00	0.00	100.00	0.375"	fine gravel		
	#4	101.86	1.94	0.79	99.21	#4	coarse sand		
	#10	103.05	3.13	1.27	98.73	#10	medium sand		
	#20	104.81	4.89	1.99	98.01	#20	medium sand		
	#40	112.72	12.80	5.20	94.80	#40	fine sand		
	#60	219.52	119.60	48.61	51.39	#60	fine sand		
	#100	337.96	238.04	96.75	3.25	#100	fine sand		
	#200	341,30	241.38	98.11	1.89	#200	fines		
		ı							
% C GRAVEL	0.00	1 -	ive Terms		stly coarse (c)			· · · ·	
% F GRAVEL	0.79	trace	0 to 5%		stly medium (m	1)	LL		
% C SAND	0.48	little	5 to 12%	< 10% fine			PL	-	
% M SAND	3.93	some	12 to 30%	< 10% coa			PI		
% F SAND	92.91	and	30 to 50%		urse and fine (m		Gs	•	
% FINES	1.89				urse and medium				
% TOTAL	100.00	1		> 10% equ	al amounts eac	h (c-1)			
	DODIDTION	Brewer BOORT	VOLADED			1			
	ESCRIPTION	Brown, POOKI	LI GRADED	SAND, trace grav	vel, trace fines				
	LIDENE					J			
	USCS	SP					TECH	СВ	
							DATE	7/9/2012	
							CHECK	D.W.	
							REVIEW	<u> EST</u>	

.



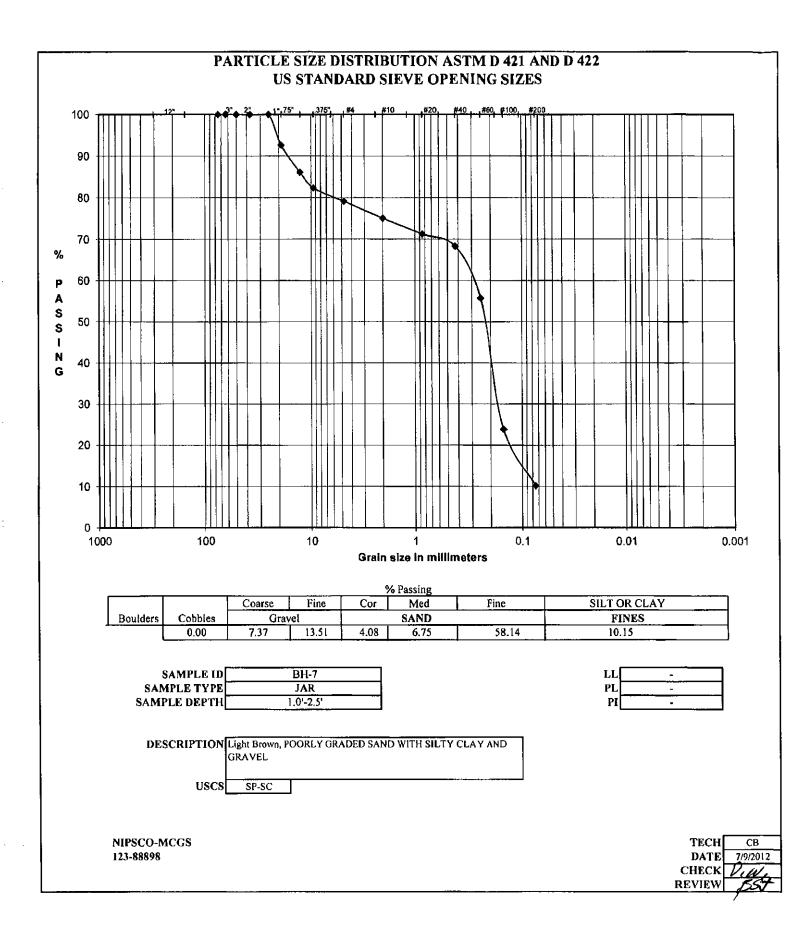

.

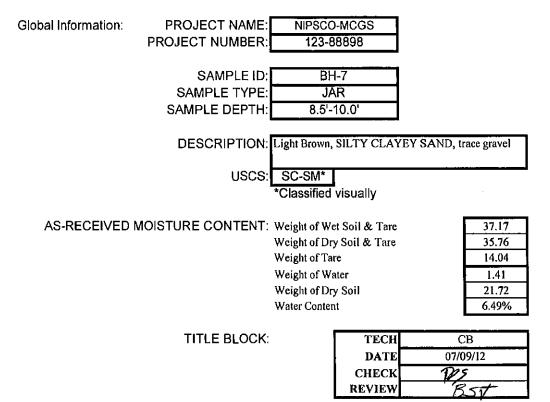
Global Information:	PROJECT NAME: PROJECT NUMBER:		D-MCGS 38898		
	SAMPLE ID: SAMPLE TYPE: SAMPLE DEPTH:	JA	1-6 \R -30.0'		
	DESCRIPTION: USCS:	Light Gray, P SP	POORLY GRA	DED SAND,	trace fines
AS-RECEIVED I		_	y Soil & Tare re ater y Soil		35.38 31.43 13.98 3.95 17.45 22.64%


TECH	CB
DATE	07/09/12
CHECK	D.W.
REVIEW	BSV

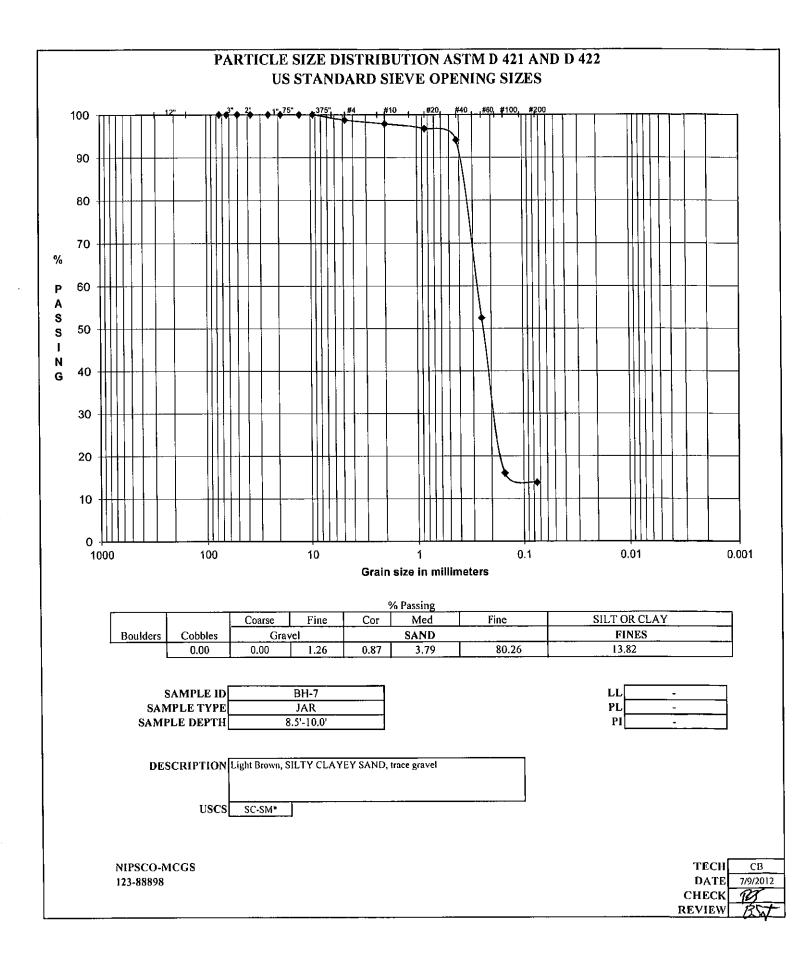
PROJECT NO. 123-98593 SAMPLE TYPE JAR WATER CONTEXT (Delivered Maisture) Hygroscopic Moisture For Sives Sample Wet Soil & Tare (gn) 29.62 WI UP Soil & Tare (gn) (wi) 33.14 Dry Soil & Tare (gn) 29.62 Weight of Tare (gn) (wi) 33.95 Total Weight Of Sample Use for Sives Corrected Gra Hygroscopic Moisture Coatent (%) 0.13 Weight of Water (gn) (wi-wvi-w2) 3.95 Total Weight Of Sample Use for Sives Corrected Gra Hygroscopic Moisture Weight Of Sample (gn) 347.64 Moisture Content (%) (wi-wvi-w2) 3.95 Total Weight Of Sample (gn) 25.062 SIEVE ANALYSIS Currotative Vi Ret (Wi-Tare) (Retained) % PASS SIEVE 3.0° 96.79 0.00 0.00 100.00 2.5° corres gravel 0.75° 96.79 0.00 0.00 100.00 1.5° corres gravel 0.75° 96.79 0.00 0.00 100.00 0.50° fing gravel 0.37° 96.79 0.00 0.00 100.00 0.50° fing gravel	PROJECT TITLE		NIPSCO	-MCGS	<u> </u>	1,		r		
REMARKS SAMPLE LIFE J.R WATER CONTENT (Delivered Multime) Hygroscopic Molsture For Sizex Sample 236.00 Wt wet soil & Tare (gn) (w1) 35.33 Dry Soil & Tare (gn) 29.60 Weight of Tare (gn) (w2) 31.43 Tare Weight (gn) 20.60 Weight of Tare (gn) (w3) 39.8 Total Weight Of Sample Used For Sizex Content (%) 0.13 Weight of Dry Soil (gn) (w4-x5)*100 22.64 Trace Weight Of Sample (gn) 39.65.01 Weight of Dry Soil (gn) (w4-x5)*100 22.64 Tare Weight (gn) 36.59 SIEVE ANALYSIS Cumulative (w1 ext-spite) (W1 ext-spite) 0.00 1.00 3.0" 2.5" Content (%) 0.00 0.00 1.5" conteng gravel 3.0" 96.79 0.00 0.00 100.00 1.5" conteng gravel 3.0" 96.79 0.00 0.00 1.0" conteng gravel 3.0" 2.5" conteng gravel 2.5" conteng gravel 3.0" 96.79	PROJECT NO.					-				
WATER CONTENT (Delivered Moisture) Hygroscopic Moisture For Sieve Sample W1 W4 Soil & Tare (gm) (w1) 35.38 W1 W1 OP Soil & Tare (gm) (w2) 31.43 Weight of Tare (gm) (w2) 31.43 Weight of Tare (gm) (w2) 31.43 Weight of Tare (gm) (w2) 3.05 Weight of Tare (gm) (w4-w2) 3.05 Weight of Water (gm) (w4-w2) 3.05 Wight of Sample Used For Nieve Content (%) M3.264 Moisture Content (%) (W4-w2) 22.64 Tare Weight (gm) 3.05 SIEVE ANALYSIS Cumulative (%Retained) % PASS SIEVE ANALYSIS Cumulative (%Retained) 5.0° 3.0° 65.79 0.00 0.00 0.5° 96.79 0.00 0.00 100.00 0.35° 96.79 0.00 0.00 100.00 2.5° 0.35° 96.79 0.00 0.00 100.00 2.5° coarse gravel 0.35° 96.79 0.00 0.00	REMARKS			<u> </u>	-1					
Mark Context (Delivered Moisture) (wi) 35.38 Dry Soil & Tare (gm) 29.62 Wi Dry Soil & Tare (gm) (wi) 31.43 Dry Soil & Tare (gm) 20.60 Wi Dry Soil & Tare (gm) (wi) 13.98 Moisture Context (%) 0.13 Weight of Tare (gm) (wi) 32.98 Moisture Context (%) 0.13 Weight of Tare (gm) (wi-wi-wi) 23.62 1.468 0.13 Weight of Tare (gm) (wi-wi-wi) 27.45 0.13 0.13 Weight of Tare (gm) (wi-wi-wi) 27.45 0.13 0.13 Siteve Context (%) (wi-wi-wi) 27.45 0.00 0.00 1.408 Yeight of Tare (gm) (wi-wi-wi) 0.27 0.00 0.00 1.00.00 2.5° 0.62 Siteve Context (%) Wi Ret (Wt-Tare) (%Retained) % PASS Siteve 2.5° 0.62 2.5° 0.62 2.5° 0.62 2.5° 0.62 2.5° 0.62 2.5° 0.63 0.50° 1.5° 96.79 0.00				<u> </u>	Hygrospopia A	SAMP	TE DEPTH	28.5	'-30.0'	
Wi Wer Soli & Tare (gm) (w1) 35.38 Dry Soli & Tare (gm) 29.62 Weight of Tare (gm) (w2) 31.43 Dry Soli & Tare (gm) 14.08 Weight of Water (gm) (w4-w1-w2) 3.95 Total Weight Of Sample Used Por Steve Corrected Por Hygroscopic Molature Weight Of Sample (gm) 3.01 3.02 Weight of Soli (gm) (w4-w1-w2) 3.95 Total Weight Of Sample Used Por Steve Corrected Por Hygroscopic Molature Weight (gm) 3.04 3.04 3.05 SIEVE ANALYSIS Cumulative (w4-w1-w2) (W6-Tare) (W6-Tare) (W6-Tare) 96.79 3.06 2.00 1.00 2.00 <t< td=""><td>WATER CONTENT (Deli</td><td>vered Moistu</td><td>re)</td><td></td><td>Trygroscopic N</td><td>noisture Por Sie</td><td></td><td></td><td></td><td></td></t<>	WATER CONTENT (Deli	vered Moistu	re)		Trygroscopic N	noisture Por Sie				
Wi Dy Soli & Tare (gm) (w2) 31.43 Tare Weight of Tare Weight (M) 22.60 Weight of Water (gm) (w4-w1-w2) 3.65 Total Weight Of Sample Used For Sieve Correct (Ps) 0.13 Weight of Dy Soil (gm) (w5=w2-w3) 17.45 Weight of Sample Used For Sieve Correct (Ps) 96.50 SIEVE ANALYSIS Cumulative (W6) Total Dy Weight (gm) 250.82 147.64 Tare Weight 96.79 0.00 0.00 100.00 2.0° 2.0° 96.79 96.79 0.00 0.00 100.00 2.0° coarse gravel 2.0° coarse gravel 2.0° coarse gravel 2.0° 0.30° 1.5° 96.79 0.00 0.00 100.00 1.5° coarse gravel 2.0° coarse gravel 1.5° coarse gravel 2.0° coarse gravel 1.5° coarse gravel 0.30° fine gravel 0.35° <td< td=""><td></td><td></td><td>· ·</td><td>35.38</td><td>-{</td><td></td><td></td><td></td><td></td><td>_</td></td<>			· ·	35.38	-{					_
Weight of Tare (gn) (wa) 13.95 Inter Tare (m) 14.08 Weight of Tare (gn) (wa)=w1.w2 3.95 Total Weight Of Sample Used Por Neve Corrected Por Hygroscopie Molsture Weight of Dry Soil (gn) (w4=w1.w2) 17.45 Weight Of Sample Used Por Neve Corrected Por Hygroscopie Molsture Moisture Content (%) (w4=w1.w2) 17.45 Weight Of Sample Used Por Neve Corrected Por Hygroscopie Molsture SIEVE ANALYSIS Cumulative (Weight Of Sample Used Por Neve Corrected Por Hygroscopie Molsture 96.79 3.0° coarse gravel 25.67 96.79 0.00 0.00 100.00 2.5° 96.79 0.00 0.00 100.00 2.0° coarse gravel 2.0° 96.79 0.00 0.00 100.00 1.5° coarse gravel 1.5° 96.79 0.00 0.00 100.00 1.5° coarse gravel 0.75° 96.79 0.00 0.00 100.00 1.5° coarse gravel 1.5° 96.79 0.00 0.00 100.00 0.375° fine gravel	Wt Dry Soil & Tare (gm)		. ,		-					_
Weight of Water (gm) Weight of Water (gm) (w4-w1-vo2) 3.95 Total Weight of Sample Used For Sizee Correct For Hystococic Moisture Weight of DS Sample (gm) 347.64 Moisture Content (%) (w4-w2) + vo2) 17.45 Weight of DS Sample (gm) 347.64 Moisture Content (%) (w4-w2) + vo2) 17.45 Weight of Sample Used For Sizee Correct For Hystococcic Moisture Weight (gm) 36.70 347.64 SIEVE ANALYSIS Cumulative (%6 Total Dry Weight (gm) 26.50 26.07 3.0" 96.79 0.00 0.00 100.00 2.5" coarse gravel 2.5" 96.79 0.00 0.00 100.00 2.5" coarse gravel 1.0" 96.79 0.00 0.00 100.00 1.5" coarse gravel 0.50" 96.79 0.00 0.00 100.00 1.5" coarse gravel 0.50" 96.79 0.00 0.00 100.00 1.5" coarse gravel 0.50" 96.79 0.00 0.00 100.00 0.50" fine gravel 0.41 97.26 0.	Weight of Tare (gm)				1					_
Weight of Dry, Soil (gm) (w5+w2-w3) 17.45 weight Of Sample Gal 16 attract of Point PythoseOpte Moliture Moisture Content (%) (w4/x5)*100 22.64 weight Of Sample Gan) 947.64 SIEVE ANALYSIS Cumulative (w6) Total Dry Weight (gm) 947.64 96.50 3.0" 96.79 0.00 0.00 100.00 2.5" coarse gravel 2.5" 96.79 0.00 0.00 100.00 2.5" coarse gravel 1.5" 96.79 0.00 0.00 100.00 1.5" coarse gravel 0.0" 96.79 0.00 0.00 100.00 1.5" coarse gravel 1.0" 96.79 0.00 0.00 100.00 1.5" coarse gravel 0.75" 96.79 0.00 0.00 100.00 0.75" fine gravel 0.75" 96.79 0.00 0.00 100.00 0.75" fine gravel 0.75" 96.79 0.00 0.00 100.00 0.75" fine gravel 0.75" 96.79 0.00 0.00 100.00 100.00 1.4"	Weight of Water (gm)				Total Weight (DE Comete I les 1	Moisture Con	tent (%)	0.13	$_$
Moisture Content (%) (w4/w5)*100 22.64 Image: Content (%) 34/.64 34/.64 36.70 SIEVE ANALVSIS Tare Weight (W0) Total Dry Weight (gn) 230.82 250.82 SIEVE ANALVSIS Cumulative (Weight (gn)) 25.9 250.82 250.82 3.0" 96.79 0.00 0.00 100.00 2.5" coarse gravel 2.0" 96.79 0.00 0.00 100.00 1.5" coarse gravel 1.5" 96.79 0.00 0.00 100.00 1.5" coarse gravel 0.75" 96.79 0.00 0.00 100.00 1.5" coarse gravel 0.75" 96.79 0.00 0.00 100.00 1.5" coarse gravel 0.75" 96.79 0.00 0.00 100.00 0.75" file gravel 0.75" 96.79 0.00 0.00 100.00 0.75" file gravel 0.75" 96.79 0.00 0.00 100.00 0.75" file gravel 0.75" 96.79 0.00 0.00 100.00	Weight of Dry Soil (gm)					J Sample Used	For Sieve Corr	ected For Hygros		_
Image: constraint of the stand	Moisture Content (%)				4				347.64	1
SIEVE ANALYSIS Cumulative (Wt-Tare) Cumulative (%Retained) SIEVE 96.79 0.00 0.00 100.00 2.5" 0.0" 2.5" 0.0" 0.00 100.00 2.5" 2.6" coarse gravel 2.5" 2.6" coarse gravel 1.6" coarse gravel 1.6"<	• /		(1111) 100	22.04	-{					
Tare Weight Wi Ret (Wi-Tare) (Waterhold) SIEVE 96.79 3.0° 96.79 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.79 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.79 0.00 0.00 100.00 2.5° coarse gravel 1.5° 96.79 0.00 0.00 100.00 1.5° coarse gravel 0.75° 96.79 0.00 0.00 100.00 1.5° coarse gravel 0.75° 96.79 0.00 0.00 100.00 0.57° fine gravel 0.37° 96.79 0.00 0.00 100.00 0.37° fine gravel 0.37° 96.79 0.00 0.00 100.00 0.37° fine gravel 0.37° 96.79 0.00 0.00 100.00 0.37° fine gravel 0.00 131					<u> </u>	(₩6)	Total Dry We	ight (gm)	250.82	
Tare Weight 96.79 Wi Rei (Wt-Tare) (%detained) % PASS (wr erks%100) SHEVE 3.0" 2.5" $(Wr erks%100)$ $(100.%ret)$ $3.0"$ coarse gravel 2.5" 96.79 0.00 0.00 100.00 $2.5"$ coarse gravel 2.0" 96.79 0.00 0.00 100.00 $2.5"$ coarse gravel 1.0" 96.79 0.00 0.00 100.00 $2.5"$ coarse gravel $1.0"$ 96.79 0.00 0.00 100.00 $1.5"$ coarse gravel $0.50"$ 96.79 0.00 0.00 100.00 $0.75"$ fine gravel $0.50"$ 96.79 0.00 0.00 100.00 $0.37"$ fine gravel $0.50"$ 96.79 0.00 0.00 100.00 $0.37"$ fine gravel 0.40 98.10 1.31 0.52 99.48 $#10$ medium sand $#00$ 336.91 240.12 95.74 4.26 $#10$ fine sand $#100$ 316.91	SIEVE ANALYSIS				Cumulative					
96.79 + Tare (10.7 MeV) (2.4 Kealmally 56.78 SIEVE $ \begin{array}{c} 3.0^{\circ} \\ 2.5^{\circ} \\ 2.0^{\circ} \\ 96.79 \\ 0.00 \\ 1.5^{\circ} \\ 0.75^{\circ} \\ 96.79 \\ 0.00 \\ 0$	Tare Weight		Wt Ret	(Wt-Tare)		0/ 04.00				
3.0° 96.79 0.00 100.00 2.5° coarse gravel 2.0° 96.79 0.00 0.00 100.00 2.5° coarse gravel 1.5° 96.79 0.00 0.00 100.00 1.5° coarse gravel 1.6° 96.79 0.00 0.00 100.00 1.5° coarse gravel 0.75° 96.79 0.00 0.00 100.00 0.75° fine gravel 0.375° 96.79 0.00 0.00 100.00 0.5° fine gravel 0.375° 96.79 0.00 0.00 100.00 0.375° fine gravel 0.375° 96.79 0.00 0.00 100.00 #4 coarse gravel 0.375° 1.31 0.52 99.48 #20 medium sand <t< td=""><td></td><td>1</td><td></td><td>(mi-raie)</td><td>•</td><td></td><td>SIEVE</td><td></td><td></td><td></td></t<>		1		(mi-raie)	•		SIEVE			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			· Ture		{(Wt rel/w6)*100}	(100-%ret)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.0"	96,79	0.00		100.00	2.01			
2.0" 96.79 0.00 0.00 100.00 2.0" coarse gravel 1.5" 96.79 0.00 0.00 100.00 1.5" coarse gravel 1.0" 96.79 0.00 0.00 100.00 1.5" coarse gravel 0.75" 96.79 0.00 0.00 100.00 1.0" coarse gravel 0.50" 96.79 0.00 0.00 100.00 0.5" fine gravel 0.37s" 96.79 0.00 0.00 100.00 0.50" fine gravel 0.37s" 96.79 0.00 0.00 100.00 0.50" fine gravel 0.37s" 96.79 0.00 0.00 100.00 0.375" fine gravel 0.37s" 96.79 0.00 0.00 100.00 0.375" fine gravel 4/40 97.26 0.47 0.19 98.1 #10 medium sand #100 336.91 240.12 95.74 4.26 #100 fine sand #200 344.04 247.25 98.58 1.42 #200 fines						the second second second second second second second second second second second second second second second s		•		
1.5" 36.79 0.00 0.000 100.00 1.5" coarse gravel 1.0" 96.79 0.00 0.00 100.00 1.5" coarse gravel 0.75" 96.79 0.00 0.00 100.00 0.75" fine gravel 0.75" 96.79 0.00 0.00 100.00 0.75" fine gravel 0.375" 96.79 0.00 0.00 100.00 0.375" fine gravel 0.375" 96.79 0.00 0.00 100.00 0.375" fine gravel #4 96.79 0.00 0.00 100.00 0.375" fine gravel #40 97.26 0.47 0.19 99.81 #10 medium sand #40 106.23 9.44 3.76 96.24 #40 fine sand #40 106.23 9.44 3.76 96.24 #40 fine sand #100 336.91 240.12 95.74 4.26 #100 fine sand #100 35.8 1.42 98.58 1.42 #200 fine sand					+ +			-		
1.0" 96.79 0.00 10000 1.0" coarse gravel 0.75" 96.79 0.00 0.00 100.00 0.75" fine gravel 0.50" 96.79 0.00 0.00 100.00 0.50" fine gravel 0.375" 96.79 0.00 0.00 100.00 0.53" fine gravel 0.375" 96.79 0.00 0.00 100.00 9.53" fine gravel 44 97.26 0.47 0.19 99.81 #10 medium sand #20 88.10 1.31 0.52 99.48 #20 medium sand #40 106.23 9.44 3.76 56.24 #40 fine sand #200 36.91 240.12 95.74 4.26 #100 fine sand <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>-</td><td></td><td></td></td<>					1			-		
0.75" 96.79 0.00 100.00 1.0" coarse gravel 0.50" 96.79 0.00 0.00 100.00 0.75" fine gravel 0.375" 96.79 0.00 0.00 100.00 0.375" fine gravel 0.375" 96.79 0.00 0.00 100.00 0.375" fine gravel 0.375" 96.79 0.00 0.00 100.00 0.375" fine gravel 44 96.79 0.00 0.00 100.00 0.375" fine gravel 44 96.79 0.00 0.00 100.00 0.375" fine gravel 44 96.79 0.00 0.00 100.00 #4 coarse sand #10 97.26 0.47 0.19 99.81 #10 medium sand #20 98.10 1.31 0.52 99.48 #20 medium sand #40 106.23 9.44 3.76 36.24 #40 fine sand #100 336.91 240.12 95.74 4.26 #1000 fine sand #20								•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					<u> </u>			-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					╋ ╴─── ╵───┤╶			fine gravel		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								coarse sand		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							#20	medium sand		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							#40	line sand		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
AC GRAVEL 0.00 Descriptive Terms > 10% mostly coarse (c) LL - % C GRAVEL 0.00 trace 0 to 5% > 10% mostly medium (m) LL - % C SAND 0.19 little 5 to 12% < 10% mostly medium (m)							#100	fine sand		
6 F GRAVEL 0.00 1.19 1.12 trace $0 \text{ to } 5\%$ > 10% mostly coarse (c) 6 M SAND 0.19 1.19 $1.12 \text{ to } 30\%$ $10\% \text{ mostly medium (m)}$ LL $ 6 \text{ M SAND}$ 3.58 some $12 \text{ to } 30\%$ $10\% \text{ coarse (m-f)}$ PL $ 6 \text{ F SAND}$ 94.81 and $30 \text{ to } 50\%$ $10\% \text{ coarse and fine (m)}$ Gs $ 6 \text{ F INES}$ 1.42 $ 10\% \text{ coarse and medium (f)}$ $ 6 \text{ T OTAL}$ 100.00 $ 10\% \text{ coarse and medium (f)}$ $ 00\% \text{ equal amounts each (c-f)}$ $ 0\% \text{ equal amounts each (c-f)}$ $ CB$ $USCS$ SP $TECH$ CB $7/9/2012$ $CHECK$ $D.6V_{10}$		#200		247.25	98.58	1.42	#200	fines		
6 F GRAVEL 0.00 1.19 1.12 trace $0 \text{ to } 5\%$ > 10% mostly coarse (c) 6 M SAND 0.19 1.19 $1.12 \text{ to } 30\%$ $10\% \text{ mostly medium (m)}$ LL $ 6 \text{ M SAND}$ 3.58 some $12 \text{ to } 30\%$ $10\% \text{ coarse (m-f)}$ PL $ 6 \text{ F SAND}$ 94.81 and $30 \text{ to } 50\%$ $10\% \text{ coarse and fine (m)}$ Gs $ 6 \text{ F INES}$ 1.42 $ 10\% \text{ coarse and medium (f)}$ $ 6 \text{ T OTAL}$ 100.00 $ 10\% \text{ coarse and medium (f)}$ $ 00\% \text{ equal amounts each (c-f)}$ $ 0\% \text{ equal amounts each (c-f)}$ $ CB$ $USCS$ SP $TECH$ CB $7/9/2012$ $CHECK$ $D.6V_{10}$				<u> </u>	<u> </u>	•-•			<u> </u>	
% F GRAVEL0.001 crace0 to 5%> 10% mostly dealse (c) $%$ C SAND0.1911tle5 to 12%< 10% mostly medium (m)	% C GRAVEL	0.00] Descriptiv	e Terms	> 10% most	thu anama (a)				
% C SAND 0.19 little 5 to 12% < 10% findstly inedum (h)	% F GRAVEL		1					г		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	% C SAND		-							1
6 F SAND 94.81 and 30 to 50% < 10% coarse and fine (m)	% M SAND		1							1
6 FINES 1.42 < 10% coarse and medium (f)	% F SAND		4							
6 TOTAL 100.00 > 10% coarse and meditinn (f) > 10% equal amounts each (c-f) DESCRIPTION Light Gray, POORLY GRADED SAND, trace fines USCS SP TECH CB DATE 7/9/2012 CHECK D. W.	% FINES			30 10 3070				Gs		
DESCRIPTION Light Gray, POORLY GRADED SAND, trace fines USCS SP TECH CB DATE 7/9/2012 CHECK D. W.	% TOTAL		1							
USCS SP TECH CB DATE $7/9/2012$ CHECK $D. ev/$			·				(0-1)			
$\begin{array}{c c} \text{TECH} & \text{CB} \\ \text{DATE} & 7/9/2012 \\ \text{CHECK} & D. M. \end{array}$	DES	CRIPTION	Light Gray, POO	RLY GRADE	D SAND, trace f	ines				
$\begin{array}{c c} \text{TECH} & \text{CB} \\ \text{DATE} & 7/9/2012 \\ \text{CHECK} & D. M. \end{array}$										
$\begin{array}{c c} \text{TECH} & \text{CB} \\ \text{DATE} & 7/9/2012 \\ \text{CHECK} & D. M. \end{array}$		ſ								
DATE $7/9/2012$ CHECK $D. m/$		USCS	SP					теси Г		
CHECK $D.m$										
									<u></u>	
								REVIEW	V.W.	

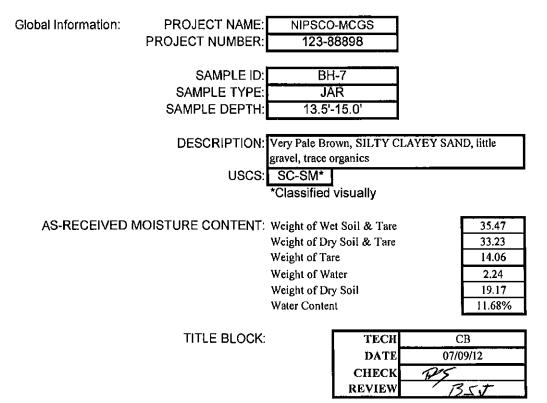
PROJECT NO. INFSCOMUSS SAMPLE ID BH-6 REMARKS JAR JAR JAR WATER CONTENT (Delivered Moisture) W(VI) B223 Provide for Sample JAR WINE soil & Tare (gm) (w1) B223 Dry Soil & Tare (gm) 20.32 WINE soil & Tare (gm) (w2) B1-67 Trace (w2) B2.64 Wine soil & Tare (gm) (w2) B1-67 Total Weight (Gram) B2.64 Weight of Tare (gm) (w2) B1-67 Total Weight (Gram) B2.69 Weight of Water (gm) (w4-w2) 6.65 Total Weight Of Sample Used for Steve Concelde For Hyporoscopic Moisture Weight Of Sample (gm) 32.69 Moisture Content (%) (w4-w5)100 32.85 Canulative Weight Of Sample (gm) 32.173 SIEVE ANALYSIS Canulative YER (W- Tare) YER and (M- Simple (gm) 32.273 96.68 0.00 0.00 100.00 3.0° coarse gravel 3.0° 96.68 0.00 0.00 100.00 3.5° coarse gravel <td< th=""><th>PROJECT TITLE</th><th></th><th>NIPSCO</th><th>D-MCGS</th><th></th><th>1</th><th></th><th></th><th></th><th></th></td<>	PROJECT TITLE		NIPSCO	D-MCGS		1				
REMARKS SAMPLE BUPTH J.S.*3-S0" WATER CONTENT (Delivered Mointure) W(Wet Soil & Tare (gm) (w1) 38.23 Protection (Status For Silere Sample U) 3.0" 3.0.3" W1 Wet Soil & Tare (gm) (w2) 11.67 Total Weight (Gm) 14.66 Weight of Tare (gm) (w2) 11.67 Trave Weight (Gm) 14.66 Weight of Tare (gm) (w2) 11.63 Total Weight (GM) 14.66 Weight of Tare (gm) (w2) 17.73 Total Weight (GM) 342.69 Weight of Tare (gm) (w4/w5)*100 37.85 Total Weight (GM) 36.55 SIEVE ANALYSIS Camutalive Camutalive 3.0" coarse gravel 3.0" 96.68 0.00 0.00 100.00 2.3" coarse gravel 3.0" 96.68 0.00 0.00 100.00 1.5" coarse gravel 2.5" 96.68 0.00 0.00 100.00 1.5" coarse gravel 2.5" coarse gravel 1.5" 96.68 0.00 0.00 100.00	PROJECT NO.			- medo	<u></u>					
WATER CONTENT (Delivered Moisture) Hygroscopic Moisture For Sieve Sample WU Wet Soli & Tare (gm) (wi) 38.23 Wi Dy Soli & Tare (gm) (wi) 31.67 Weight of Tare (gm) (wi) 31.67 Weight of Tare (gm) (wi) 14.34 Weight of Tare (gm) (wi) 44.66 Weight of Tare (gm) (wi) 43.67 Weight of Tare (gm) (wi) 32.67 Weight of Were (gm) (wi) 32.67 Weight of Sample (gm) 32.63 Moisture Contral (%) (wi/w.vi/w.vi/) 37.283 SIEVE ANALYSIS Cumulative Wit Ret (Wi-Tare) 2.5" 96.68 0.00 0.00 100.00 2.5" 96.68 0.00 0.00 100.00 2.5" coaste gravel 2.5" 96.68 0.00 0.00 100.00 2.5" coaste gravel 3.0" 96.68 0.00 0.00 100.00 2.5" coaste gravel 3.0" 96.68 0.00 0	REMARKS				-					_
Minute Contract of Large (gm) (wit) 38.23 38.23 38.23 38.23 38.23 38.23 38.23 39.75 Soil & Tare (gm) (wit) 38.23 38.23 38.23 39.75 38.23 39.75 Soil & Tare (gm) (wit) 38.23 38.23 38.23 39.75 Soil & Tare (gm) (wit) 38.23 38.23 38.23 38.23 39.75 Soil & Tare (gm) (wit) 38.23 38.23 38.23 38.25 Soil & Tare (gm) (wit) 38.23 38.25 38.25 Soil & Tare (gm) (wit) 38.23 34.260 342.			·····		Hugrosognia	SAWI	<u>LE DEPTH</u>		-35.0'	
Wi Wei Soli & Tare (gm) (wi) 38.23 Dy Soli & Tare (gm) 30.32 Weight of Tare (gm) (w2) 31.67 The Weight (gm) 14.36 Weight of Water (gm) (w4-w1-w2) 6.56 Total Weight OF Sample (gm) 342.69 Weight of Soli (gm) (w4-w-30) 17.33 Total Weight OF Sample (gm) 342.69 Moisture Content (%) (w4-w-39) 17.33 Total Weight OF Sample (gm) 342.69 SteVE ANALYSIS Cumulative Weight Of Sample (gm) 342.69 342.69 Tare Weight 96.68 0.00 0.00 100.00 2.0* 223.73 SteVE ANALYSIS Cumulative Wit Ret (Wt-Tare) (%86 miclo) % PASS SIEVE 2.0* 96.68 0.00 0.00 100.00 1.5* coarse gravel 0.75* 96.68 0.00 0.00 100.00 1.5* coarse gravel 0.0* 96.68 0.00 0.00 100.00 1.5* coarse gravel 0.0* 96.68 0.00 0.00 100.00 1.5* coarse gravel 0.0*	WATER CONTENT (Deliv	vered Moista	(re)		riygroscopic r	violsture For Ste				_
WD Dy Soli & Tare (gm) (v2) 31.67 The Weight of Tare (gm) 28.84 Weight of Tare (gm) (v3) 14.34 The Weight OF Sample Used For Sirve Corrected For Hygroscopic Moisture Weight of Dy Solit (gm) 10.01 Weight of Dy Solit (gm) (v4/w-y2) 6.56 Total Weight OF Sample Used For Sirve Corrected For Hygroscopic Moisture Weight Of Sample Used For Sirve Corrected For Hygroscopic Moisture Weight Of Sample Used For Sirve Corrected For Hygroscopic Moisture Weight Of Sample Used For Sirve Corrected For Hygroscopic Moisture Weight Of Sample Used For Sirve Corrected For Hygroscopic Moisture Weight Of Sample Used For Sirve Corrected For Hygroscopic Moisture Weight Of Sample Used For Sirve Corrected For Hygroscopic Moisture Weight Of Sample Used For Sirve Corrected For Hygroscopic Moisture Weight Of Sample Used For Sirve Corrected For Hygroscopic Moisture Weight Of Sample Used For Sirve Corrected For Hygroscopic Moisture Weight (gm) 26.55 SIEVE ANALYSIS Cumulative Cumulative Wit Ret (Wt-Tare) (%Reasined) % PASS SIEVE 3.0° 2.5° 96.68 0.00 0.00 100.00 2.5° coarse gravel 3.0° 96.68 0.00 0.00 100.00 1.5° coarse gravel 1.5° 96.68 0.00 0.00 100.00 0.50° fine gravel 0.57° 96.68 0.00	Wt Wet Soil & Tare (gm)			38.22	-					
Weight of Tarc (gn) (w3) 14.34 Maisture Cancent (%) 14.05 Weight of Tarc (gn) (w4=w1-w2) 6.56 10.01 Moisture Concent (%) 10.01 Moisture Content (%) (w4=w1-w2) 6.56 17.33 Weight Of Sample (gn) 342.69 Moisture Content (%) (w4-w5)*100 37.85 Total Weight Of Sample (gn) 342.69 Steve ANALVSIS Cumulative Weight Of Sample (gn) 342.69 223.73 Steve ANALVSIS Cumulative W Ret (W1-Tare) (%Resided) % PASS Steve 96.68 0.00 0.00 100.00 2.3" coarse gravel 2.3" 2.0" 96.68 0.00 0.00 100.00 2.3" coarse gravel 2.0" 96.68 0.00 0.00 100.00 1.5" coarse gravel 2.0" 96.68 0.00 0.00 100.00 1.5" coarse gravel 2.0" 96.68 0.00 0.00 100.00 0.375" fnee gravel 0.55<					-1				28.84	
Weight of Water (gm) (w4-w1-v2) 6.56 Total Weight Of Sample Used Por Sieve Correct Por Hygososchic Molsture Weight of Dry Soil (gm) 342.69 Weight Of Vare (%) (w4/v5)*100 37.85 Total Weight Of Sample Used Por Sieve Correct Por Hygososchic Molsture Weight (gm) 342.69 SIEVE ANALYSIS Cumulative (W6) 23.73 223.73 SIEVE ANALYSIS Cumulative (W6) 30.° coarse gravel 3.0° 96.68 0.00 0.00 100.00 2.7° coarse gravel 2.5° 96.68 0.00 0.00 100.00 2.7° coarse gravel 2.0° 2.0° coar			-		-				14.06]
Weight of Dry Soil (gm) (w5=w2.w3) 17.33 Iolar Weight Of Sample Used Por Street Corrected For Hyproscopic Moisture Weight Of Dry Meight (gm) 342.69 Moisture Content (%) (w4/w5)*100 37.85 The Weight Of Sample Used Por Street Corrected For Hyproscopic Moisture Weight Of Dry Meight (gm) 342.69 SIEVE ANALYSIS Cumulative Weight (gm) 32.37 96.68 Wt Ret (W1-Tare) (%Retained) % PASS SIEVE 3.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.5° 96.68 0.00 0.00 100.00 1.5° coarse gravel 1.5° 96.68 0.00 0.00 100.00 1.5° coarse gravel 0.75° 96.68 0.00 0.00 100.00 1.5° coarse gravel 0.37° 96.68 0.00 0.00 100.00 0.56° fine gravel 0.37° 96.68 0.00 0.00 100.00 0.57° fine gravel 0.37° 96.68 0.00 0.00 0.37° <td< td=""><td></td><td></td><td></td><td></td><td>Tradel NL 1 1 1</td><td></td><td>Moisture Cont</td><td>tent (%)</td><td>10.01</td><td>7</td></td<>					Tradel NL 1 1 1		Moisture Cont	tent (%)	10.01	7
Molisture Content (%) (w4/w5)*100 37.83 Weight (gn) 342.69 SIEVE ANALYSIS Cumulative Cumulative 223.73 SIEVE ANALYSIS Cumulative Cumulative 223.73 30* 96.68 0.00 0.00 100.00 2.5* 2.6* 96.68 0.00 0.00 100.00 2.5* coarse gravel 2.6* 96.68 0.00 0.00 100.00 2.5* coarse gravel 2.6* 96.68 0.00 0.00 100.00 1.5* coarse gravel 1.5* 96.68 0.00 0.00 100.00 1.5* coarse gravel 0.50* 96.68 0.00 0.00 100.00 1.5* coarse gravel 0.57* 96.68 0.00 0.00 100.00 0.55* fine gravel 0.50* 96.68 0.00 0.00 100.00 0.37* fine gravel 0.50* 96.68 0.00 0.00 100.00 0.37* fine gravel 0.50* 105 13.87 6.20 93.55 fine						Of Sample Used	For Sieve Corre	cted For Hygros	copic Moisture	
SIEVE ANALYSIS Cumulative Thre: Weight (gm) 96.55 316 Tare: Weight Wt Ret (Wi-Tare) (%6) Total Dry Weight (gm) 223.73 316 96.68 Wt Ret (Wi-Tare) (%6) February 515 VE 3.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 1.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 1.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 1.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 0.57° fine gravel 0.55° 96.68 0.00 0.00 100.00 0.57° fine gravel 0.50° 96.68 0.0					-{		Weight Of Sar	nple (gm)		7
SIEVE ANALYSIS Cumulative Tare Weight Wt Ret (Wt-Tare) (%Retsined) % PASS SIEVE 96.68 3.0" 96.68 </td <td></td> <td></td> <td>(****)) 100[</td> <td>37.85</td> <td>4</td> <td></td> <td></td> <td></td> <td>96.55</td> <td>1</td>			(****)) 100[37.85	4				96.55	1
Tare Weight UV Ret (W1-Tare) (WRetined) % PASS SIEVE 30.° 3.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 1.5° coarse gravel 1.5° 96.68 0.00 0.00 100.00 1.5° coarse gravel 0.75° 96.68 0.00 0.00 100.00 0.5° fine gravel 0.50° 96.68 0.00 0.00 100.00 0.375° fine gravel 0.57° 96.68 0.00 0.00 100.00 0.375° fine gravel 0.57° 96.68 0.00 0.00 100.00 0.375° fine gravel 0.57° 96.68 0.00 0.00 100.00 0.375° fine sand </td <td></td> <td>`</td> <td></td> <td></td> <td><u> </u></td> <td>(W6)</td> <td>Total Dry Wei</td> <td>ght (gm)</td> <td>223.73</td> <td>1</td>		`			<u> </u>	(W6)	Total Dry Wei	ght (gm)	223.73	1
Tare Weight UV Ret (W1-Tare) (WRetined) % PASS SIEVE 30.° 3.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 1.5° coarse gravel 1.5° 96.68 0.00 0.00 100.00 1.5° coarse gravel 0.75° 96.68 0.00 0.00 100.00 0.5° fine gravel 0.50° 96.68 0.00 0.00 100.00 0.375° fine gravel 0.57° 96.68 0.00 0.00 100.00 0.375° fine gravel 0.57° 96.68 0.00 0.00 100.00 0.375° fine gravel 0.57° 96.68 0.00 0.00 100.00 0.375° fine sand </td <td>SIEVE ANALYSIS</td> <td></td> <td></td> <td></td> <td>.</td> <td></td> <td></td> <td>· · · ·</td> <td></td> <td></td>	SIEVE ANALYSIS				.			· · · ·		
96.68 If Tarce (In Claff) (Parcelance) % PARSS SIEVE 3.0° 2.5° 96.68 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 2.0° 96.68 0.00 0.00 100.00 2.5° coarse gravel 1.5° 96.68 0.00 0.00 100.00 2.6° coarse gravel 0.75° 96.68 0.00 0.00 100.00 0.75° fine gravel 0.375° 96.68 0.00 0.00 100.00 0.37° fine gravel 0.375° 96.68 0.00 0.00 100.00 0.37° fine gravel 0.375° 96.68 0.00 100.00 0.37° fine gravel 0.37° 0.68 0.00 0.00 100.00 0.37° fine gravel 0.37° 0.30° 106.37 1.19 7.29 #10 medium sand #200 <td< td=""><td></td><td></td><td>Wt Dat</td><td>(1)(4) (Trans)</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			Wt Dat	(1)(4) (Trans)						
3.0" 96.68 0.00 0.00 100.00 2.5" 96.68 0.00 0.00 100.00 1.5" 96.68 0.00 0.00 100.00 1.5" 96.68 0.00 0.00 100.00 1.5" 96.68 0.00 0.00 100.00 0.75" 96.68 0.00 0.00 100.00 0.50" 96.68 0.00 0.00 100.00 0.50" 96.68 0.00 0.00 100.00 0.50" 96.68 0.00 0.00 100.00 0.50" fine gravel 0.375" fine gravel #4 98.83 2.15 0.99.04 #4 coarse sand #10 102.74 6.66 2.71 97.29 #10 medium sand #20 106.87 10.19 4.55 95.45 #20 medium sand #20 105.23.23 13.87 6.20 93.80 #40 fine sand #200 23.92 197.24 88.16 11.84 #20 fine sand <td></td> <td></td> <td></td> <td>(wt-fare)</td> <td></td> <td></td> <td>SIEVE</td> <td></td> <td></td> <td></td>				(wt-fare)			SIEVE			
2.5" 96.68 0.00 100.00 2.5" coarse gravel 2.0" 96.68 0.00 0.00 100.00 2.5" coarse gravel 1.5" 96.68 0.00 0.00 100.00 1.5" coarse gravel 1.0" 96.68 0.00 0.00 100.00 1.5" coarse gravel 0.75" 96.68 0.00 0.00 100.00 1.5" coarse gravel 0.50" 96.68 0.00 0.00 100.00 0.75" fine gravel 0.50" 96.68 0.00 0.00 100.00 0.50" fine gravel 0.50" 96.68 0.00 0.00 100.00 0.57" fine gravel 0.517 10.19 4.55 99.04 #4 coarse sand #10 102.74 6.06 2.71 97.29 #10 medium sand #200 108.77 1.19 4.55 95.45 #20 medium sand #10 10.25.52 178.84 79.93 20.07 #100 fine sand #200			+ i are		{(wt ret/w6)*100}	(100-%ret)				
2.5" 96.68 0.00 100.00 2.5" coarse gravel 2.0" 96.68 0.00 0.00 100.00 2.5" coarse gravel 1.5" 96.68 0.00 0.00 100.00 1.5" coarse gravel 1.0" 96.68 0.00 0.00 100.00 1.5" coarse gravel 0.75" 96.68 0.00 0.00 100.00 1.5" coarse gravel 0.50" 96.68 0.00 0.00 100.00 0.75" fine gravel 0.50" 96.68 0.00 0.00 100.00 0.50" fine gravel 0.50" 96.68 0.00 0.00 100.00 0.57" fine gravel 0.517 10.19 4.55 99.04 #4 coarse sand #10 102.74 6.06 2.71 97.29 #10 medium sand #200 108.77 1.19 4.55 95.45 #20 medium sand #10 10.25.52 178.84 79.93 20.07 #100 fine sand #200		ን በ"	06.69		<u> </u>					
2.0" 96.68 0.00 100.00 2.0" coarse gravel 1.3" 96.68 0.00 0.00 100.00 1.5" coarse gravel 1.0" 96.68 0.00 0.00 100.00 1.0" coarse gravel 0.75" 96.68 0.00 0.00 10.00 1.0" coarse gravel 0.50" 96.68 0.00 0.00 100.00 0.50" fine gravel 0.51" 96.68 0.00 0.00 100.00 0.50" fine gravel 0.375" 96.68 0.00 0.00 100.00 0.375" fine gravel 0.375" 96.68 0.00 0.00 0.00 0.375" fine gravel #44 98.83 2.15 0.96 99.04 #4 coarse gravel #10 102.74 6.06 2.71 97.29 #10 medium sand #40 110.55 13.87 6.20 93.80 #40 fine sand #400 110.55 13.87 75.94 #40 fine sand #100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>3.0"</td><td>coarse gravel</td><td></td><td></td></t<>							3.0"	coarse gravel		
1.5" 96.68 0.00 0.00 10.00 1.5" coarse gravel 1.0" 96.68 0.00 0.00 100.00 1.5" coarse gravel 0.75" 96.68 0.00 0.00 100.00 0.75" fine gravel 0.50" 96.68 0.00 0.00 100.00 0.75" fine gravel 0.51" 96.68 0.00 0.00 100.00 0.375" fine gravel 0.375" 96.68 0.00 0.00 100.00 0.375" fine gravel #4 98.83 2.15 0.96 99.04 #4 coarse gravel #20 106.87 10.19 4.55 95.54 #20 medium sand #10 102.74 6.06 2.71 97.29 #10 medium sand #20 105.5 13.87 6.20 93.80 #20 medium sand #40 110.55 13.87 6.20 93.80 #40 fine sand #100 275.52 178.84 79.93 20.07 #100 fine sand							2.5"	coarse gravel		
1.0" 96.68 0.00 100.00 1.5" coarse gravel 0.75" 96.68 0.00 0.00 100.00 0.75" fine gravel 0.50" 96.68 0.00 0.00 100.00 0.75" fine gravel 0.375" 96.68 0.00 0.00 100.00 0.375" fine gravel 0.375" 100.87 10.19 4.55 95.45 #20 medium sand #40 110.55 13.87 6.20 93.80 #40 fine sand #100 275.52 178.84 79.93 20.07 #60 fine sand <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.0"</td> <td>coarse gravel</td> <td></td> <td></td>							2.0"	coarse gravel		
0.75" 96.68 0.00 100.00 10.00 0.75" fine gravel 0.50" 96.68 0.00 0.00 100.00 0.75" fine gravel 0.375" 96.68 0.00 0.00 100.00 0.375" fine gravel 0.00 100.51 13.87 6.20 93.80 #40 medium sand #40 110.55 13.87 6.20 93.80 #40 fine sand #100 275.52 178.84 79.93 20.07 #100 fine sand #200 293.92 197.24 88.16 11.84 #200 fine sand #200 293.92 197.24 88.16 11.84 #200 fine sand #200 1.75 itile 5 10% coarse (c) fine sand #200 <						100.00	1.5"	coarse gravel		
0.50° 96.68 0.00 100.00 0.50° fine gravel 0.375° 96.68 0.00 0.00 100.00 0.50° fine gravel #4 98.83 2.15 0.96 99.04 #4 coarse sand #10 102.74 6.06 2.71 97.29 #10 medium sand #20 106.87 10.19 4.55 95.45 #20 medium sand #40 110.55 13.87 6.20 93.80 #40 fine sand #40 110.55 13.87 6.20 93.80 #40 fine sand #100 275.52 178.84 79.93 20.07 #100 fine sand #200 293.92 197.24 88.16 11.84 #200 fines % C GRA VEL 0.00 Descriptive Terms > 10% mostly coarse (c) LL - % F GRAVEL 0.96 trace 0 to 5% 10% coarse and fine (m) Gs - % F SAND 3.49 some 12 to 30% 10% coarse and fine (m) Gs - -							1.0" o	coarse gravel		
0.375" 96.68 0.00 100.00 0.30" fine gravel #4 98.83 2.15 0.96 99.04 #4 corse sand #10 102.74 6.06 2.71 97.29 #10 medium sand #20 106.87 10.19 4.55 95.45 #20 medium sand #40 110.55 13.87 6.20 93.80 #40 fine sand #60 148.27 51.59 23.06 76.94 #60 fine sand #100 275.52 178.84 79.93 20.07 #100 fine sand #200 293.92 197.24 88.16 11.84 #200 fines % C GRAVEL 0.00 Descriptive Terms > 10% mostly coarse (c) fine sand #200 % A SAND 3.49 some 12 to 30% < 10% coarse and fine (m)				······		100.00	0.75" j	fine gravel		
0.0375 96.68 0.00 100.00 0.375" fine gravel #4 98.83 2.15 0.96 99.04 #4 coarse sand #10 102.74 6.06 2.71 97.29 #10 medium sand #20 106.87 10.19 4.55 95.45 #20 medium sand #40 110.55 13.87 6.20 93.80 #40 fine sand #40 148.27 51.59 23.06 76.94 #60 fine sand #100 275.52 178.84 79.93 20.07 #100 fine sand #200 293.92 197.24 88.16 11.84 #200 fines % C GRAVEL 0.00 Descriptive Terms > 10% mostly coarse (c) fines 100 % C GRAVEL 0.36 trace 0 to 5% > 10% mostly coarse (c) fines % C GRAVEL 0.00 Descriptive Terms > 10% mostly coarse (c) Fines 11 % C GRAVEL 0.00 1.75 and 30 to 50% 10% coarse (n-f) PI -					0.00	100.00	0.50"	ine gravel		
#4 98.83 2.15 0.96 99.04 #4 coarse sand #10 102.74 6.06 2.71 97.29 #10 medium sand #20 106.87 10.19 4.55 95.45 #20 medium sand #40 110.35 13.87 6.20 93.80 #40 fine sand #60 148.27 51.59 23.06 76.94 #60 fine sand #100 275.52 178.84 79.93 20.07 #100 fine sand #200 293.92 197.24 88.16 11.84 #200 fines % C GRAVEL 0.96 Descriptive Terms > 10% mostly coarse (c) #100 fines % C GRAVEL 0.96 Lrace 0 to 5% > 10% mostly coarse (c) #200 fines % C SAND 1.75 and 30 to 50% < 10% coarse and fine (m)					0.00	100.00		-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.96	99.04		-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.71	97.29	#10 r	nedium sand		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10.19	4.55	95.45				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					6.20	93.80				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				51.59	23.06	76.94				
#200 293.92 197.24 88.16 11.84 #200 fines % C GRA VEL 0.00 Descriptive Terms > 10% mostly coarse (c) 11.84 #200 fines % C GRA VEL 0.96 trace 0 to 5% > 10% mostly coarse (c) LL - % C GRA VEL 0.96 trace 0 to 5% > 10% mostly medium (m) LL - % C SAND 1.75 trace 0 to 5% > 10% mostly medium (m) LL - % A SAND 3.49 some 12 to 30% < 10% coarse (m-f)				178.84	79.93	20.07				
M_{6} C GRA VEL 0.00 Descriptive Terms> 10% mostly coarse (c) M_{6} F GRA VEL 0.96 trace0 to 5%> 10% mostly medium (m)LL M_{6} C SAND 1.75 little5 to 12%< 10% fine (c-m)		#200	293.92	197.24	88.16	11.84				
% F GRA VEL 0.96 trace 0 to 5% > 10% mostly coarse (c) % C SAND 1.75 little 5 to 12% < 10% fine (c-m)										
% F GRA VEL 0.96 trace 0 to 5% > 10% mostly coarse (c) % C SAND 1.75 little 5 to 12% < 10% fine (c-m)			-							
6.7 GAAVEL 0.96 trace 0 to 5% > 10% mostly medium (m) LL - 6.7 SAND 1.75 little 5 to 12% < 10% fine (c-m)			Descriptiv	e Terms	> 10% most	ly coarse (c)				
6 M SAND 3.49 some 12 to 30% < 10% fine (c-m)			trace	0 to 5%				н Г	·····	
3.49 some 12 to 30% < 10% coarse (m-f)			little	5 to 12%						
81.96 and 30 to 50% < 10% coarse and fine (m)			some	12 to 30%						
6 FINES 11.84 < 10% coarse and medium (f)			and	30 to 50%						
> 10% equal amounts each (c-f) DESCRIPTION Light Brown, POORLY GRADED SAND WITH SILTY CLAY, trace gravel, trace organics USCS SP-SC TECH CB DATE 7/9/2012 CHECK							n	0° [_		
DESCRIPTION Light Brown, POORLY GRADED SAND WITH SILTY CLAY, trace gravel, trace organics USCS SP-SC TECH CB DATE 7/9/2012 CHECK	% IOTAL	100.00	ļ							
USCS SP-SC TECH CB DATE 7/9/2012 CHECK PC							·- •/			
USCS SP-SC TECH CB DATE 7/9/2012 CHECK PC	DESC	CRIPTION	Light Brown, PO	ORLY GRAD	ED SAND WITH	ISILTY				
DATE 7/9/2012 CHECK			CLAY, trace grav	el, trace organ	ics	Į				
DATE 7/9/2012 CHECK						1				
DATE 7/9/2012 CHECK		USCS	SP-SC							
CHECK P										

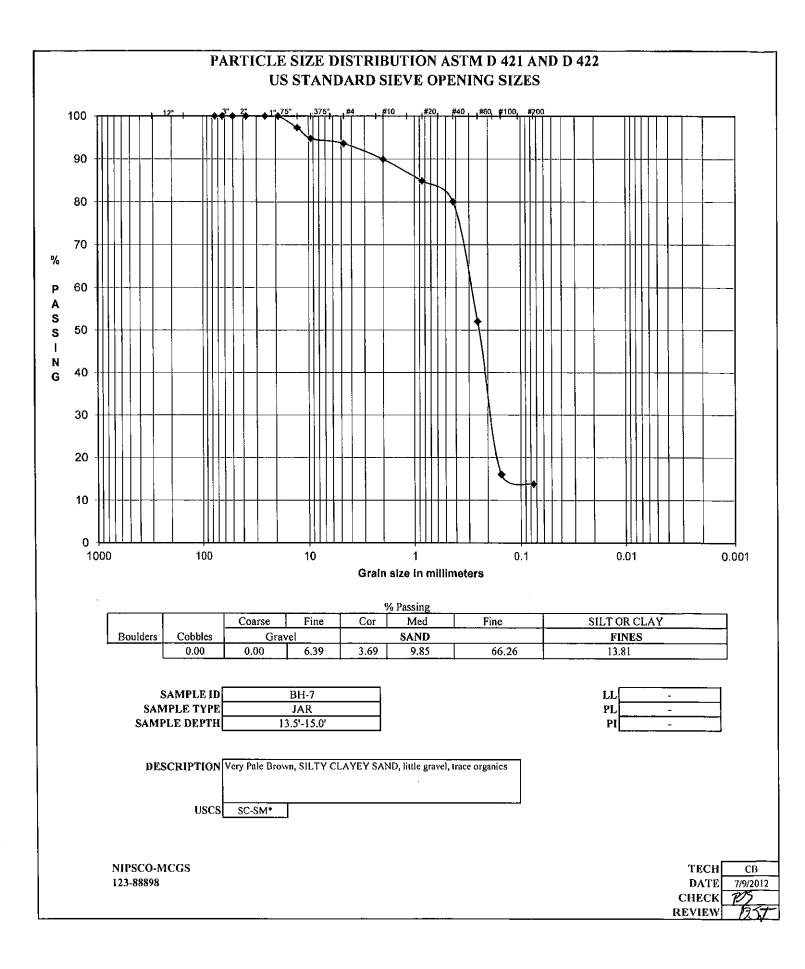

PROJECT NAME: NIPSCO-MCGS Global Information: PROJECT NUMBER: 123-88898 SAMPLE ID: BH-7 SAMPLE TYPE: JAR SAMPLE DEPTH: 1.0'-2.5' DESCRIPTION: Light Brown, POORLY GRADED SAND WITH SILTY CLAY AND GRAVEL USCS: SP-SC AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare 36.28 Weight of Dry Soil & Tare 34.65 Weight of Tare 13.88 Weight of Water 1.63 Weight of Dry Soil 20.77 Water Content 7.85% TITLE BLOCK: CB TECH DATE 07/09/12 CHECK D.C.


REVIEW

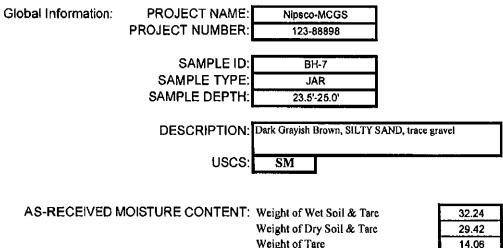
<u> </u>		·····	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
PROJECT TITLE	<u> </u>	NIPSCO	MCGS	<u> </u>	e	AMPLE ID	Bł	1.7
PROJECT NO.		123-88898	-MCGS	ر ا		IPLE TYPE		
REMARKS		123-00090		1		LE DEPTH	JA	
KEMAKKS				Hygroscopic N			1.0%	-2.5'
WATER CONTENT (Do	livered Moisture	-)		nygroscopic iv	IDISTUIC FOR SIC	Wet Soil & T	are (gm)	34.33
Wt Wet Soil & Tare (gm)	nvereu wioistart	,) (w1)	36.28	4		Dry Soil & T		34.19
Wt Dry Soil & Tare (gm)		(w2)	34.65	4		Tare Weight	-	14.06
Weight of Tare (gm)		(w3)	13.88	-		Moisture Cor		0.70
Weight of Water (gm)		(w4=w1-w2)	1.63	Total Weight ()f Sample Used		rected For Hygros	
Weight of Dry Soil (gm)		(w5=w2-w3)	20.77		ounpie osee	Weight Of Sa		322.86
Moisture Content (%)		(w4/w5)*100	7.85	-		Tare Weight		96.05
Moisture Content (70)		(13,13) 100[1.05	4	(W6)			225.24
				·	(10)	Total Dig in	- Bin (Bin)	223.24
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
96,22	7	+Tare	, ,	{(w1 ret/w6)*100}	(100-%ret)			
					-			
	3.0"	96.22	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	96.22	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	96.22	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	96.22	0,00	0.00	100.00	1.5"	coarse gravel	
	1.0"	96.22	0.00	0.00	100,00	1.0"	coarse gravel	
	0.75"	12.81	16.59	7.37	92.63	0.75"	fine gravel	
	0.50"	127.50	31.28	13.89	86.11	0.50"	fine gravel	
	0.375"	135.95	39.73	17.64	82.36	0.375"	fine gravel	
	#4	143.24	47.02	20.88	79.12	#4	coarse sand	
	#10	152.44	56.22	24.96	75.04	#10	medium sand	
	#20	160.95	64.73	28.74	71.26	#20	medium sand	
	#40	167.64	71.42	31.71	68.29] #40	fine sand	
	#60	195.89	99.67	44.25	55.75	#60	fine sand	
	#100	267.73	171.51	76.14	23.86	#100	fine sand	
	#200	298.60	202.38	89,85	10.15	#200	fines	
						- 		
		1						
% C GRAVEL	7.37	1 [·]	ive Terms		stly coarse (c)			
% F GRAVEL	13,51	trace	0 to 5%		ostly medium (n	1)	LL	
% C SAND	4.08	little	5 to 12%	< 10% fin	e (c-m)		PL	
% M SAND	6.75	some	12 to 30%	< 10% coa			PI	
% F SAND	58.14	and	30 to 50%		arse and fine (m	-	Gs	<u> </u>
% FINES	10.15	4			arse and mediur			
% TOTAL	100.00			> 10% eq	ual amounts eac	:h (c-f)		
_			0001140004	000 0 0 0 0 0 0		1		
1	DESCRIPTION			DED SAND WI	TH SILLY	1		
		CLAY AND G	RAYEL					
	10.00					7		05
	USCS	SP-SC					TECH	CB
1							DATE	7/9/2012
							CHECK	V.W.
							REVIEW	<u> </u>

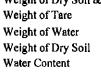

.


2

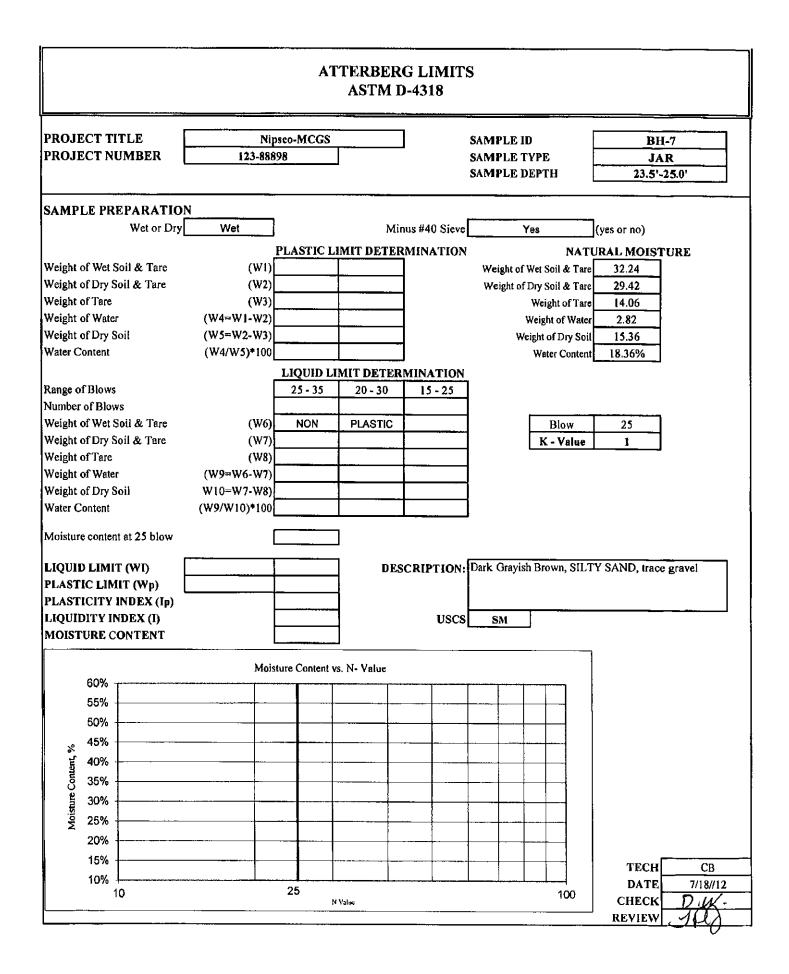


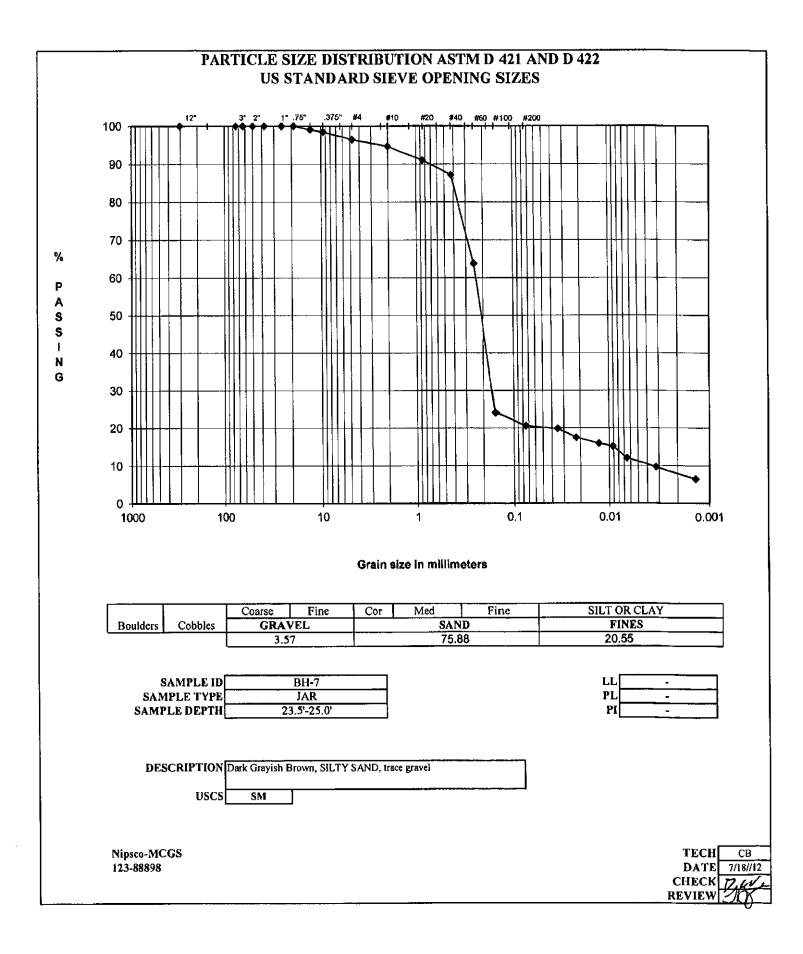
							• • •	·····	
PROJECT TITLE	(<u> </u>	NIPSCO	MCCS		s	AMPLE ID	BI		Ъ
PROJECT IIILE PROJECT NO.		123-88898	-MCG5	I		IPLE TYPE		AR	-
REMARKS		123-00070				LE DEPTH		10.0'	-
REMARKS	.			Hygroscopic M					
WATER CONTENT (Deli	vered Moisture	9		ny groscopie in		Wet Soil & T	are (gm)	24.86	٦
Wt Wet Soil & Tare (gm)	i ci cu moistai e	, (wi)	37.17	1		Dry Soil & T		24.84	4
Wt Dry Soil & Tare (gm)		(w2)	35,76	1		Tare Weight		13.98	-
Weight of Tare (gm)		(w3)	14.04	1		Moisture Cor		0.18	
Weight of Water (gm)		(w4=w1-w2)	1.41	Total Weight C	of Sample Used		ected For Hygros		·
Weight of Dry Soil (gm)		(w5=w2-w3)	21.72	1		Weight Of Sa		344.29	٦
Moisture Content (%)		(w4/w5)*100	6.49	1		Tare Weight	• ·= ·	95.06	
				1	(W6)	_		248.77	
								•	
SIEVE ANALYSIS				Cumulative					
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
96.45]	+Tare		{(wt ret/w6)*100}	(100-%ret)				
	-								
	3.0"	96.45	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	96.45	0.00	0.00	100.00	2.5"	coarse gravel		
	2.0"	96.45	0.00	0.00	100.00	2.0"	coarse gravel		
	1.5"	96.45	0.00	0.00	100.00	1.5"	coarse gravel		
	1.0"	96.45	0.00	0.00	100.00	1.0"	coarse gravel		
	0.75"	96.45	0.00	0.00	100.00	0.75"	fine gravel		
	0.50"	96.45	0.00	0.00	100.00	0.50"	fine gravel		
	0.375"	96.45	0.00	0.00	100.00	0.375"	fine gravel		
	#4	99.58	3.13	1.26	98.74	#4	coarse sand		
	#10	101.74	5.29	2.13	97.87	#10	medium sand		
	#20	104.55	8.10	3.26	96.74	#20	medium sand		
	#40	111.18	14.73	5.92	94.08	#40	fine sand		
	#60	214.57	118.12	47.48	52.52	#60	fine sand		
	#100	305.35	208.90	83.97	16,03	#100	fine sand		
	#200	310.84	214.39	86.18	13.82	#200	fines		
	·	•							
% C GRAVEL	0.00	Descript	ive Terms		stly coarse (c)			·····	-1
% F GRAVEL	1.26	trace	0 to 5%		ostly medium (n	n)	LL	-	\neg
% C SAND	0.87	little	5 to 12%	< 10% fin			PL		\dashv
% M SAND	3.79	some	12 to 30%	< 10% coa	• •		PI	· ·	
% F SAND	80.26	and	30 to 50%		arse and fine (n	-	Gs	-	
% FINES	13.82	4			arse and mediu				
% TOTAL	100.00			> 10% eq	ual amounts ead	ch (c-f)			
		<u>.</u>				7			
D	ESCRIPTION	Light Brown, S	ILTY CLAYE	EY SAND, trace	gravel	1			
						1	~~~~		
	USCS	SC-SM*					TECH		
							DATE	· · · · · · · · · · · · · · · · · · ·	2
							CHECK		
							REVIEW	1057	

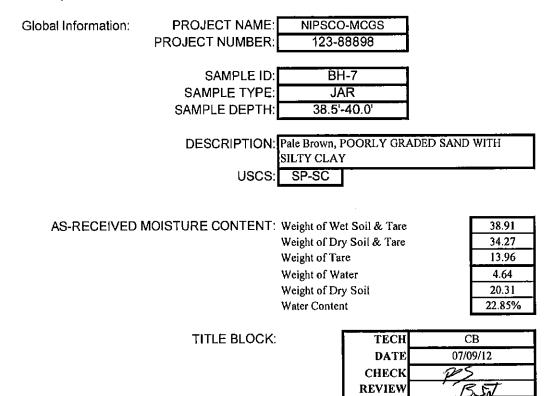




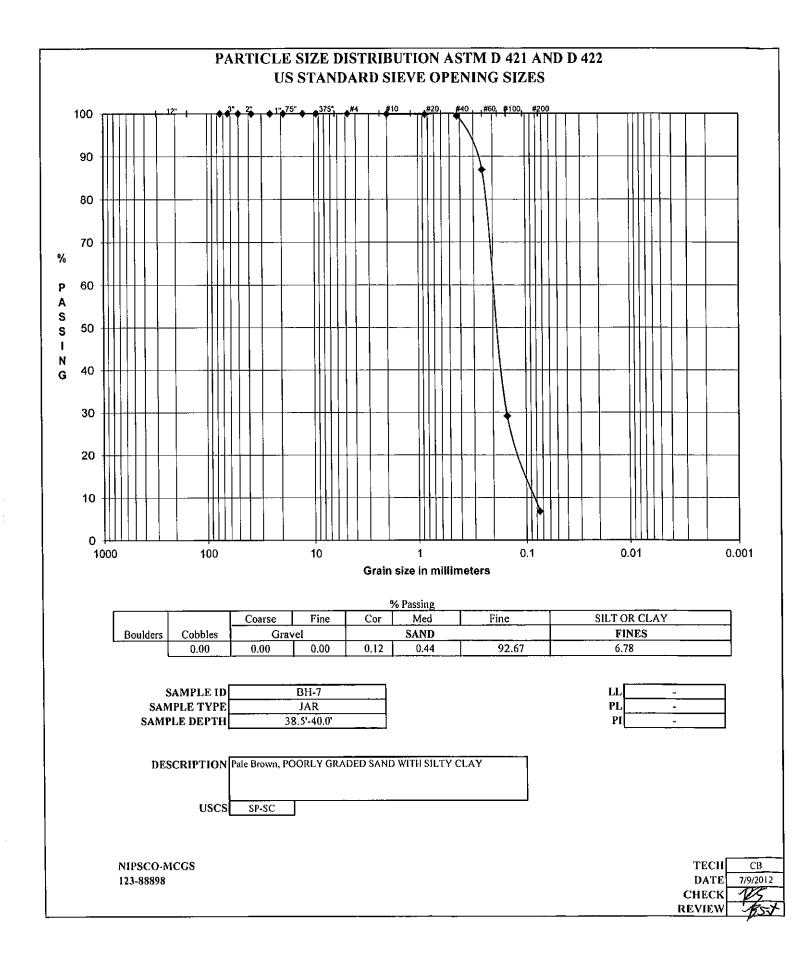
L			~, _		,,		 	
		Luna	Maga	·	~		r	<u> </u>
PROJECT TITLE		NIPSCO	-MCGS	_		AMPLE ID		<u>I-7</u>
PROJECT NO.		123-88898		-	SAMPLE TYPE JA SAMPLE DEPTH 13.5"			
REMARKS						13.5'	-15.0'	
WATER CONTENT (Da)	in a word Maintown			Hygroscopic M	loisture For Sie	•	· · · · · · · · · · · · · · · · · · ·	
WATER CONTENT (Del	ivereu moisture	· r	25.47	-		Wet Soil & T		23.75
Wt Wet Soil & Tare (gm)		(w1)	35.47	-		Dry Soil & T		23.61
Wt Dry Soil & Tare (gm)		(w2)	33.23	4		Tare Weight	·• ·	11.21
Weight of Tare (gm) Weight of Water (gm)		(w3)	14.06 2.24	Total Waight C	Comple Lined	Moisture Cor	rected For Hygros	1.13
Weight of Dry Soil (gm)		(w4=w1-w2) (w5=w2-w3)	19,17	Total weight C	JI Sample Used			
Moisture Content (%)				{		Weight Of Sa		386.61
Moisture Coment (%)		(w4/w5)*100	11.68	-	(11/6)	Tare Weight	-	95.40
					(W6)	Total Dry W	eigni (gin)	287.96
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
95.58	7	+Tare	({(wt ret/w6)*100}	(100-%ret)			
				,,,,	()			
	3.0"	95.58	0.00	0.00	100.00	3,0"	coarse gravel	
	2.5"	95.58	0.00	0.00	100.00	2,5"	coarse gravel	
	2.0"	95.58	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	95.58	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	95.58	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	95,58	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	103.39	7.81	2.71	97.29	0.50"	fine gravel	
	0.375"	110.51	14.93	5.18	94.82	0.375"	fine gravel	
	#4	113.97	18.39	6,39	93.61	#4	coarse sand	
	#10	124.60	29.02	10.08	89.92	#10	medium sand	
	#20	139.02	43.44	15.09	84.91	#20	medium sand	
	#40	152.97	57.39	19.93	80.07] #40	fine sand	
	#60	233.66	138.08	47.95	52.05	#60	fine sand	
	#100	337.21	241.63	83.91	16.09	#100	fine sand	
	#200	343.77	248.19	86.19	13.81	#200	fines	
						-		
	·	-						
% C GRAVEL	0.00	Descript	ive Terms		stly coarse (c)			<u></u>
% F GRAVEL	6.39	trace	0 to 5%	> 10% mo	stly medium (n	ı)	LL	-
% C SAND	3.69	little	5 to 12%	< 10% fin			PL	- <u>-</u>
% M SAND	9.85	some	12 to 30%	< 10% coa			PI	
% F SAND	66.26	and	30 to 50%		arse and fine (m		Gs	
% FINES	13.81	4			arse and mediu			
% TOTAL	100.00]		> 10% equ	ual amounts eac	:h (c-f)		
						٦		
U D	ESCRIPTION		vn, SILTY CL	AYEY SAND, li	ttle gravel,			
		trace organics						
	10.00					J		
	USCS	SC-SM*					TECH	СВ
							DATE	7/9/2012
							CHECK	PY
					-		REVIEW	357

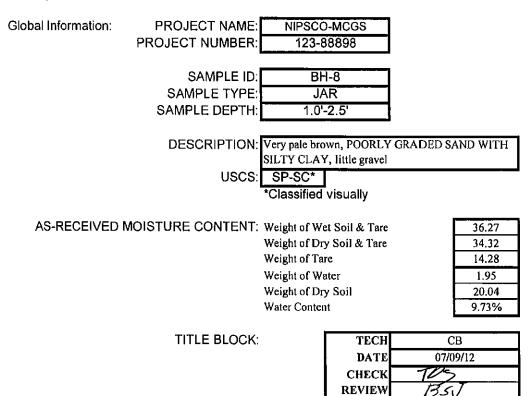

Template For Proctor, Sieve-Hydro, Atterberg, and Spec Grav.

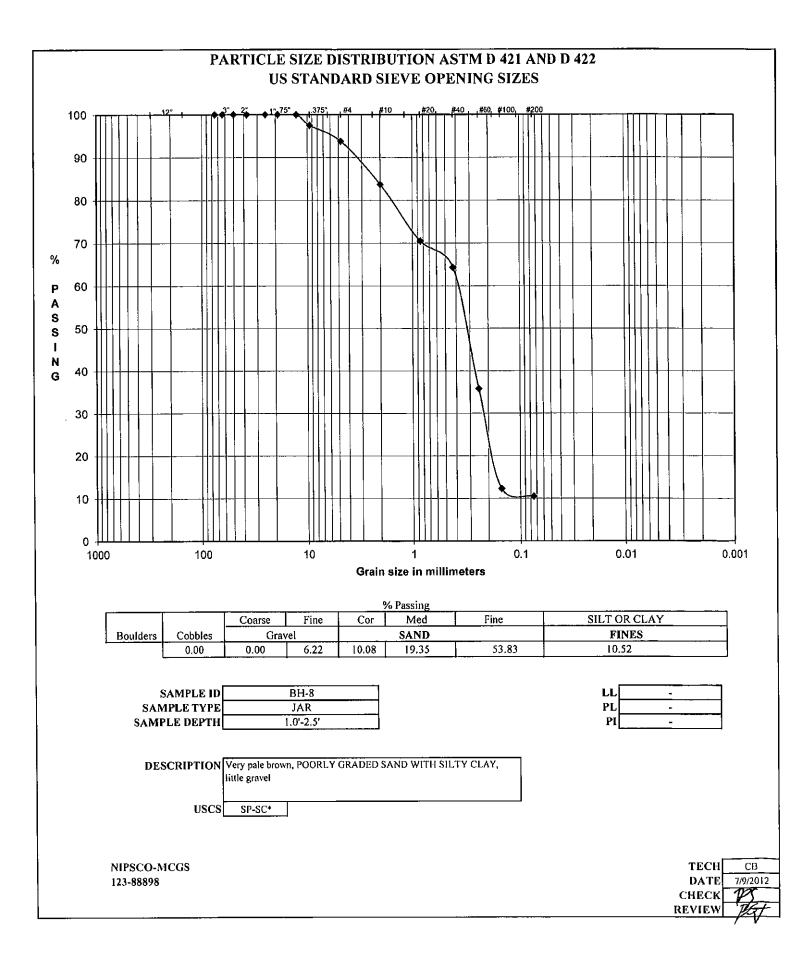



32.24
29.42
14.06
2.82
15.36
18.36%

TECH	СВ
DATE	7/18//12
CHECK	D.W.
REVIEW)00



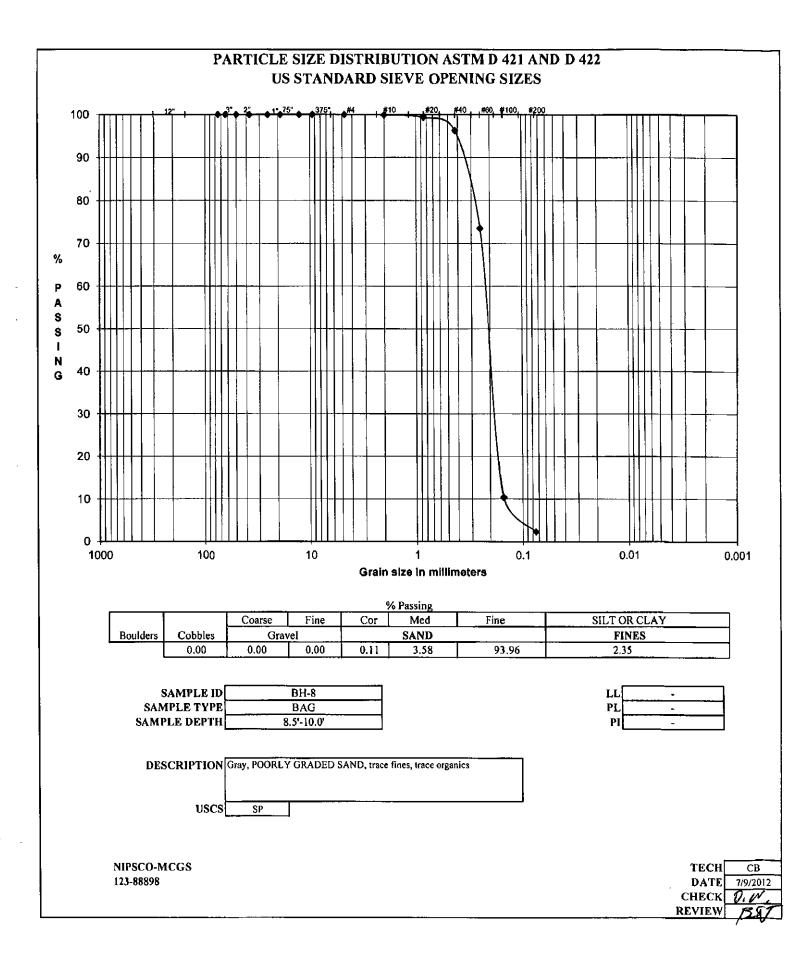

	ASTM GRAIN SIZE ANALYSIS ASTM C117, C136, D421, D422, D1140 and D2217									
PROJECT TITLE		Nipsco-N	ACGS	1	_	SAMPLE ID	[BH•7		
PROJECT NO.	123-8		1005	I	SAMPLE TYPE			JAR		
						SAMPLE DEPT	· .	23.5'-25		
AS RECEIVED V	VATER CO	NTENT			oic Moisture	Wet Soil & Tare (gm	· •	25.57		
			32.24	For Sieve	Sample	Dry Soil & Tare (gm))	25.54		
Wt. Wet Soil & Tare (gm) Wt. Dry Soil & Tare (gm)		(W1) (W2)	29.42			Tare Weight (gm) Moisture Content (%	、	0.26		
Weight of Tare (gm)		(W2) (W3)	14.06	Total Weig	ht of Sample Used I				ic Moistur	e
Weight of Water (gm)		(W4=W1-W2)	2.82		•	fore Separating On Th		425.74		
Weight of Dry Soil (gm)		(W5=W2-W3)	15.36		0	Te	ue Weight (gm)	96.66		
Moisture Content (%)		(W4/W5)*100	18.36%			To	tal Weight (gm)	328.22 (W6)	
Plus #4 Material	Sieve				(((Wt-Tare)/W6)*100)	%PASSING				
TARE WEIGHT	<u>14.07</u>		12.0"	14.07	0.0	100.0		cobbles		
-			3.0"	14.07	0.0	100.0		coarse gravel		
			2.5"	14.07 14.07	0.0	100.0		coarse gravel		
			2,0" 1.5"	14.07	0.0	100.0		coarse gravel coarse gravel		
			1.5"	14.07	0.0	100.0	-	coarse gravel		
			0.75"	14.07	0.0	100.0		fine gravel		
			0.50"	17.07	0.9	99.1	0.50"	fine gravel		
			0.375"	19.27	1.6	98.4	0.375"	fine gravel		
			#4	25.78	3.6	96.4	#4	coarse sand		
					···· · · ·					
HYDROMETER Specific Gravity	HYDROMETER ANALYSIS Weight of Sample Used For Hydrometer Test Specific Gravity (assumed) 2.65									
	r				Weight of Sample Wet		61.80			
Amount Dispersing Agent	(m)	125.00			Calculated Dry Wt. use		61.64 624378			
Type Dispersion Device		Mechanical 1 Minute		Hydrometer Bulb Number 624378 % Pass #4 Sieve For Whote Sample 96.43						
Length of Dispersion Perio	30.17	_	ETER BACI		ercent Passing #1		70.45	1		
[للسفيقيمي				Cumul Wt.					
				(Wt+Tare)	Retained	% PASSING				
			#10	31.33	1.16	94.6	#10	medium sand		
			#20	33.64	3.47	91.0	#20	medium sand		
			#40	36.10	5.93	87.2	#40	fine sand		
			#60	51.01	20.84	63.8	#60 #100	fine sand fine sand		
			#100 #200	76.42 78.67	46.25	24.1	#100 #200	line sano		
		HYDROME		1		20.0	#200	tines		•
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	1:26	(min)	R	T	K	Cc	С	LENGTH	А	
7/19/2012	1:28	2.00	18.5	21.00	0.013	5.83	12.67	13.3	1.00	
7/19/2012	1:31	5,00	17.0	21.00	0.013	5.83	11.17	13.5	1.00	
7/19/2012	1:41	15.00	16.0	21.00	0.013	5.83	10.17	13.7	1.00	
7/19/2012	1:56	30.00	15.5	21.00	0.013	5.83	9.67	13.8 14.2	1.00 1.00	
7/19/2012	2:26	60.00	13.5	21.00	0.013 0.013	5.83 5.83	7.67	14.2	1.00	
7/19/2012 7/20/2012	5:36 1:26	250.00 1440.00	12.0	21.00	0.013	5.87	4.13	14.3	1.00	
//20/2012	1.20		ZE PERCE		0.017	0.07	1	1		
Particle Diameter	% PASSING			0.00		Description	Dark Gravist	Brown, SILT	Y SAND, t	ace gravel
0,0348	19.8	% COARSE GRAV	'EL	0.00		ייי ר ר				
0.0221	17.5	% FINE GRAVEL		3.57	3.57	USCS	SM			
0.0129	15.9	% COARSE SAND	1	1.81						
0,0091	15.1	% MEDIUM SANI	>	7.46						
0.0066	12.0	% FINE SAND		66.60	75.88		PL		TROF	
0.0032	9.6	% FINES	-	20.55	4	-]P1		TECH DATE	
0.0014	6.5	% TOTAL SAMPL	.Е -	100.00	1				CHECK	
									REVIEW	
										1-44



PROJECT TITLE		NIPSCO	-MCGS			AMPLE ID	BI	1-7	
PROJECT NO.		123-88898				PLE TYPE LE DEPTH	Jź	<u>AR</u>	
REMARKS					-40.0'				
				Hygroscopic Moisture For Sieve Sample					
WATER CONTENT (Deli	vered Moisture	Г		Wet Soil & Tare (gm)				33.94	_
Wt Wet Soil & Tare (gm)		(w1)	38.91			Dry Soil & Ta		33.83	_
Wt Dry Soil & Tare (gm)		(w2)	34.27			Tare Weight		14.16	_
Weight of Tare (gm)		(w3)	13.96			Moisture Con		0.56	
Weight of Water (gm)		(w4=w1-w2)	4.64	Total Weight C	of Sample Used		ected For Hygros		1
Weight of Dry Soil (gm)		(w5=w2-w3)	20.31	4		Weight Of Sa		341.37	
Moisture Content (%)		(w4/w5)*100	22.85	-		Tare Weight		96.52	
					(W6)	Total Dry We	eight (gm)	243,49	
OFFICE ANALYVOID				Cumulative					
SIEVE ANALYSIS Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
96.77	1	+Tare	(wi-fale)	•	(100-%ret)	SIEVE			
90.77	I	+ lale		{(wt ret/w6)*100}	(100-20101)				
	3.0"	96,77	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	96.77	0.00	0.00	100.00	2.5"	coarse gravel		
	2.0"	96.77	0.00	0.00	100.00	2.0"	coarse gravel		
	1.5"	96.77	0.00	0.00	100.00	1.5"	coarse gravel		
	1.0"	96.77	0.00	0.00	100.00	1.0"	coarse gravel		
	0.75"	96.77	0.00	0.00	100.00	0.75"	fine gravel		
	0.50"	96.77	0.00	0.00	100.00	0.50"	fine gravel		
	0,375"	96.77	0.00	0.00	100.00	0.375"	fine gravel		
	#4	96.77	0.00	0.00	100.00	#4	coarse sand		
	#10	97.06	0.29	0.12	99.88	#10	medium sand		
	#20	97.21	0.44	0.18	99.82	#20	medium sand		
	#40	98.12	1.35	0.55	99.45	#40	fine sand		
	#60	128.67	31.90	13.10	86.90	#60	fine sand		
	#100	269.26	172.49	70.84	29.16	#100	fine sand		
	#20 0	323.76	226.99	93.22	6.78	#200	fines		
		1							
% C GRAVEL	0.00	1 · ·	ive Terms		stly coarse (c)			r	-
% F GRAVEL	0,00	trace	0 to 5%		stly medium (m	l)	LL		4
% C SAND	0.12	little	5 to 12%	< 10% fin			PL		_
% M SAND	0.44	some	12 to 30%	< 10% coa	. ,		PI	-	
% F SAND	92.67	and	30 to 50%		urse and fine (m	-	Gs	-	
% FINES	6.78	-			arse and medium				
% TOTAL	100.00	J		> 10% equ	ial amounts eac	h (c-l)			
	ESCRIPTION	Pale Brown PC	ORLY GRAF	DED SAND WIT		1			
		CLAY							
	USCS	SP-SC					тесн	СВ	
							DATE	7/9/201	2
							СНЕСК	PPS	
							REVIEW	<u> </u>	S₹

	AS [_]			IN SIZE AN 1140, C 117,		36, C 142	····		
		A 174 JF 74191							
PROJECT TITLE [NIPSCO	-MCGS		S	AMPLE ID	BH-8		
PROJECT NO.		123-88898		SAMPLE TYPE J			AR		
REMARKS		· · · · · · · · · · · · · · · · · · ·			SAMP	<u>LE DEPTH</u>	1.0'	-2.5'	
				Hygroscopic M	oisture For Sie	ve Sample		·	_
WATER CONTENT (Deliv	ered Moisture) _				Wet Soil & T		38.59	
Wt Wet Soil & Tare (gm)		(wI)	36,27			Dry Soil & T		38.32	
Wt Dry Soil & Tare (gm)		(w2)	34.32			Tare Weight	-	14.02	
Weight of Tare (gm)		(w3)	14.28			Moisture Cor	<u> </u>	1.11	
Weight of Water (gm)		(w4=w1-w2)	1.95	Total Weight C	of Sample Used		rected For Hygros		_
Weight of Dry Soil (gm)		(w5=w2-w3)	20.04			Weight Of Sa	ample (gm)	435.92	
Moisture Content (%)		(w4/w5)*100	9.73			Tare Weight	(gm)	96.47	
				l	(W6)	Total Dry W	eight (gm)	335.72	
SIEVE ANALYSIS			(11) m · ·	Cumulative	4/ D-1 D D	010110			
Tare Weight	1	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
96.54		+Tare		{(wt rct/w6)*100}	(100-%ret)				
	3.0"	96,54	0.00	0.00	100.00	3.0"	coarse gravel		
						2.5"	-		
	2.5"	96.54	0.00	0.00	100.00	2.3	coarse gravel coarse gravel		
	2.0"	96.54	<u>0.00</u>	0.00	100.00	1.5"	coarse gravel		
	1.5"	96.54	0.00	0.00	100.00	1.0"	coarse gravel		
	1.0"	96.54	0.00	0.00	100.00	0.75"	fine gravel		
	0.75"	96.54	0.00	0.00		0.73	-		
	0.50"	96.54	0.00	0.00	100.00	0.30	fine gravel		
	0.375"	104.95	8.41	2.51	97.49 93.78	0.373 #4	fine gravel coarse sand		
	#4	117.43	20.89			#10	medium sand		
	#10 #20	151.27	54.73 99.02	16.30	83.70 70.51	#10	medium sand		
	#20	195.56		29.49 35.65	64.35	#20 #40	fine sand		
	#40	216.22	119.68	64,19	35.81	- #40 #60	fine sand		
	#60	312.04	215.50	87.68	12.32	#00 #100	fine sand		
	#100	390.89	294.35	87.08	10.52	#100 #200	fines		
	#200	396.94	300.40	07.40	10.32	J #200	THICS		
							<u> </u>		
% C GRAVEL	0.00	Descript	ive Terms	> 10% mc	ostly coarse (c)				
% F GRAVEL	6.22	trace	0 to 5%		stly medium (n	n)	LL	-	٦
% C SAND	10.08	little	5 to 12%	< 10% fin	•	,	PL	-	-1
% C SAND	19.35	some	12 to 30%	< 10% co	• •		P]		-1
% F SAND	53.83	and	30 to 50%		arse and fine (n	1)	Gs		-1
% FINES	10.52		00.00070		arse and mediu				
% TOTAL	100.00	1			ual amounts ead				
		1		· · · · • •					
DI	ESCRIPTION	Very pale brow	n, POORLY (GRADED SAND	WITH SILTY	7			
		CLAY, little gi							
	USCS	SP-SC*				_	ТЕСН	СВ	
			-				DATE	7/9/20	12
							CHECK	19	
							REVIEW	1351	+

Global Information: PROJECT NAME: NIPSCO-MCGS PROJECT NUMBER: 123-88898 SAMPLE ID: BH-8 SAMPLE TYPE: BAG SAMPLE DEPTH: 8.5'-10.0' DESCRIPTION: Gray, POORLY GRADED SAND, trace fines, trace organics SP USCS: AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare 40.26 Weight of Dry Soil & Tare 34.62 Weight of Tare 15.87 Weight of Water 5.64 Weight of Dry Soil 18.75 Water Content 30.08% TITLE BLOCK: TECH CB 07/09/12 DATE CHECK Dur


REVIEW

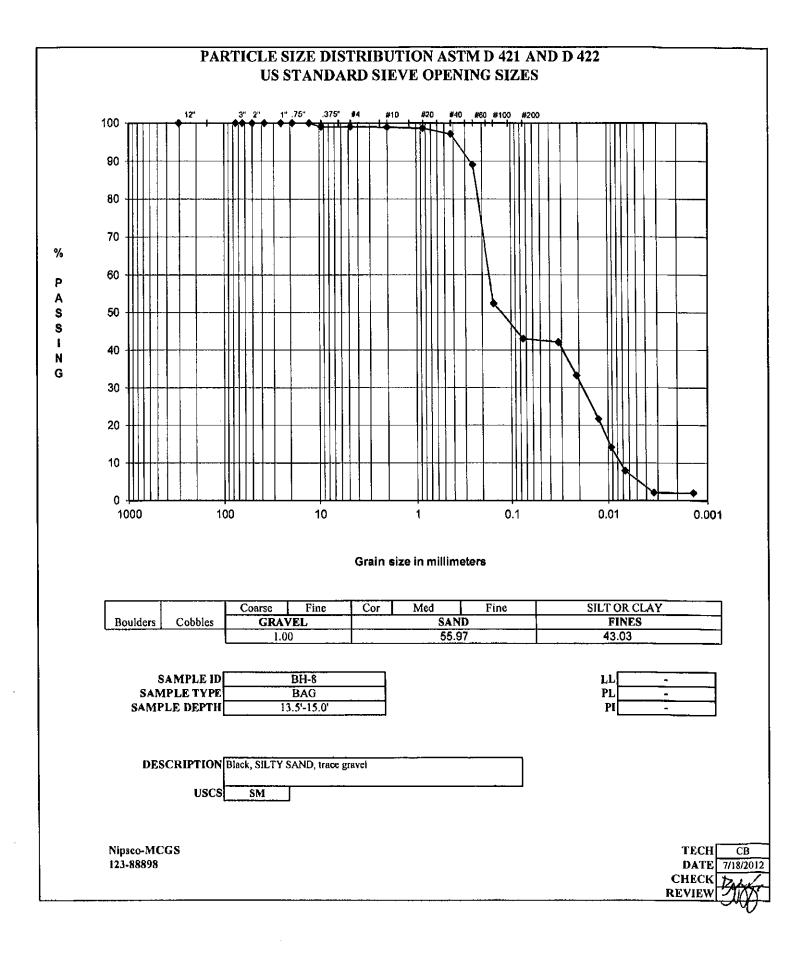
Template For Sand Grain-size and Perm

.

-

	<u>t</u>			IN SIZE AN					
	AS	<u>TM D 421, I</u>) 2217, D	1140, C 117,	D 422, C 1	36, C 142			
	r	NIDGOO	MOOR			AMPLE ID			٦
PROJECT TITLE		NIPSCO-	MCGS	I		PLE TYPE	BH		-
PROJECT NO.		123-88898		-			BA		4
REMARKS	<u> </u>			Liveresenie M		LE DEPTH	8.5'-	10.0'	
WATER CONTENT (Deli	vorod Moistura	`		Hygroscopic Moisture For Sieve Sample Wet Soil & Tare (gm)					٦
Wt Wet Soil & Tare (gm)	weren wioisture	, (w1)[40.26	1		Dry Soil & T		<u>34.95</u> 34.82	-
(B)	Wt Dry Soil & Tare (gm) (w2) 34.62					Tare Weight		13,74	-
Weight of Tare (gm)		(w2) (w3)	15.87	•		Moisture Cor	-	0.62	1
Weight of Water (gm)		(w4=w1-w2)	5.64	Total Weight C	f Sample Used		rected For Hygros		<u> </u>
Weight of Dry Soil (gm)		(w5=w2-w3)	18.75	rotat weight e	i saupie oseu	Weight Of Sa		376.23	٦
Moisture Content (%)		(w4/w5)*100	30.08			Tare Weight		96.60	-
MOISTULE COMERT (76)		(~~~) 100		4	(W6)	-		277.92	-
				l	(10)	Total Dig W	Signi (Bill)	411.74	<u> </u>
SIEVE ANALYSIS				Cumulative					
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
96.75]	+Tare	,	{(wt rel/w6)*100}	(100-%ret)	_			
	J				· · ·				
	3.0"	96.75	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	96.75	0.00	0.00	100.00	2,5"	coarse gravel		
	2.0"	96.75	0.00	0.00	100,00	2.0"	coarse gravel		
	1.5"	96.75	0,00	0.00	100.00	1.5"	coarse gravel		
	1.0"	96.75	0.00	0,00	100.00	1.0"	coarse gravel		
	0.75"	96.75	0.00	0,00	100.00	0.75"	fine gravel		
	0.50"	96.75	0.00	0.00	100,00	0.50"	fine gravel		
	0.375"	96.75	0.00	0.00	100.00	0,375"	fine gravel		
	#4	96.75	0.00	0.00	100.00] #4	coarse sand		
	#10	97.06	0.31	0.11	99.89	#10	medium sand		
	#20	98.47	1.72	0.62	99.38	#20	medium sand		
	#40	107.02	10.27	3.70	96.30	#40	fine sand		
	#60	170.33	73.58	26.48	73.52	#60	fine sand		
	#100	345.83	249.08	89.62	10.38	#100	fine sand		
	#200	368.14	271.39	97.65	2.35	#200	fines		
	<u> </u>								
		1							
% C GRAVEL	0.00	Descripti	ve Terms		stly coarse (c)			···	-
% F GRAVEL	0,00	trace	0 to 5%		stly medium (n	1)	LL		_
% C SAND	0.11	little	5 to 12%	< 10% fin	• •		PL		
% M SAND	3.58	some	12 to 30%	< 10% coa	• •		Pl		_
% F SAND	93.96	and	30 to 50%		arse and fine (m	•	Gs		
% FINES	2.35	4			arse and mediu				
% TOTAL	100.00	J		> 10% eq	ual amounts eac	:h (c-l)			
						-			
D	ESCRIPTION	Gray, POORLY	GRADED S.	AND, trace fines	, trace organics				
						ł			
		ļ					_	·	
	USCS	SP					ТЕСН	CB	
							DATE	7/9/2012	2
							CHECK	P.W.	
L							REVIEW	L Des	\square

Golder Associates - Lansing, Michigan

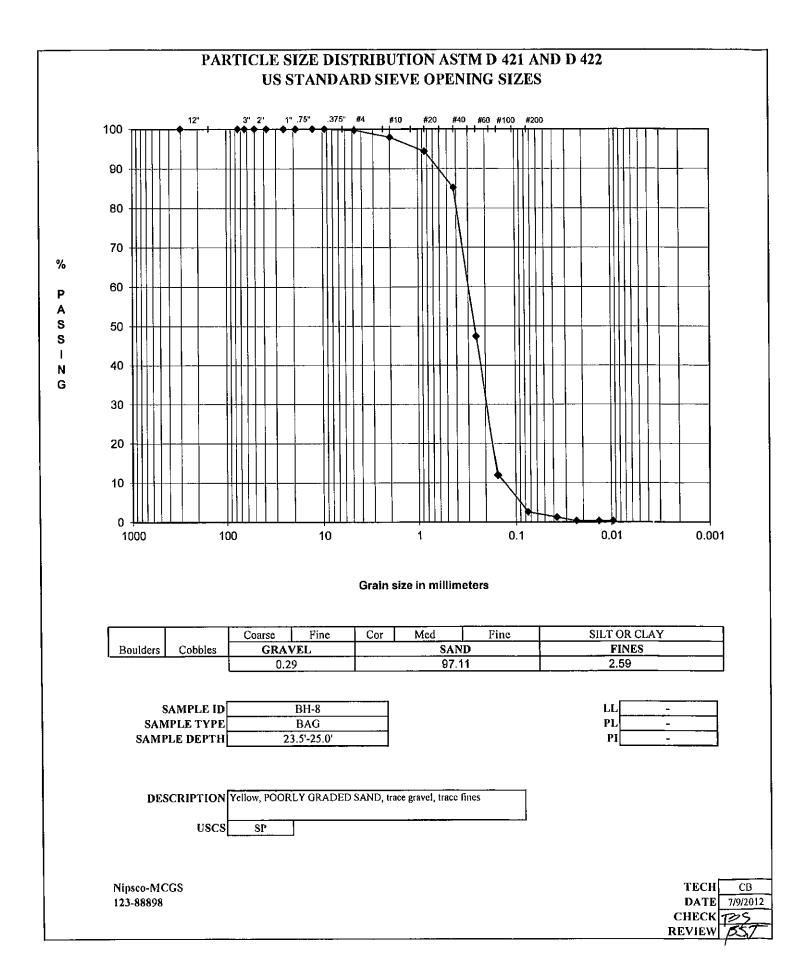

Template For Proctor, Sieve-Hydro, Atterberg, and Spec Grav.

Global Information:	PROJECT NAME:	Nipsco-MCGS	1
	PROJECT NUMBER:	123-88898]
			-
	SAMPLE ID:	BH-8	
	SAMPLE TYPE:	BAG	
	SAMPLE DEPTH:	13.5'-15.0']
	DESCRIPTION:	Black, SILTY SAND, trace g	ravel
	1000		
	USCS:	SM	
AS-RECEIVED N	OISTURE CONTENT:	Weight of Wet Soil & Tar	re 38.12
		Weight of Dry Soil & Tar	
		Weight of Tare	13.87
		Weight of Water	6.78
		Weight of Dry Soil	17.47
		Water Content	38.81%
		750	

TECH	СВ
DATE	07/18/12
CHECK	O.IN.
REVIEW	211X

				AT	TERBER ASTM D	-	\$				
	OJECT TITLE Nipsco-MCGS OJECT NUMBER 123-88898						SAMPLE II Sample T Sample D	үре	BH-8 BAG 13.5'-15.0'		
SAMP	LE PR	EPARATIO									
		Wet or Dry	Wet		Min	us #40 Sieve	Y	195	(yes or no)		
Weight Weight Weight Weight	of Dry S of Tare of Wate of Dry S		(W1) (W2) (W3) (W4=W1-W2) (W5=W2-W3)	PLASTIC LI	MIT DETER	MINATION	Weight of V Weight of I	Wet Soil & Tare Dry Soil & Tare Weight of Tare Weight of Water sight of Dry Soil	31.34 13.87 6.78 17.47	IRE	
Water C	ontent		(W4/W5)*100					Water Content	1 38.81%		
Range o Number	of Blov	₩S		25 - 35	MIT DETER 20 - 30	MINATION 15 - 25					
Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare		(W6) (W7) (W8)	NON	PLASTIC	Blow K - Value		25 1				
Weight			(W9=W6-W7)	·. ·							
Weight	-	Soil	W10=W7-W8)				4				
LIQUII PLAST PLAST LIQUII	e conter D LIMI IC LIM ICITY DITY II	1IT (Wp) INDEX (Ip) NDEX (I)	(W9/W10)*100[DES	I CRIPTION: USCS		Y SAND, trac	e gravel		
MOIST	UREC	CONTENT	l	····] 		·		٦		
	60% 55%		Mois	ture Content v	s. N- Value						
%	50% 45%										
Moisture Content, %	40% 35% 20%										
Moistur	30% 25% 20%										
	15% 10%								TECH DATE	CB 7/18/2012	
		10		25	Value			100	CHECK REVIEW	Differ	

		A			IN SIZE ANAL' 0421, D422, D11		······································	·················		
PROJECT TITLE		Nipsco-l	ACGS			SAMPLE ID	[BH-8	2	
PROJECT NO.	123-8		nous	SAMPLE TYP						
						SAMPLE DEPI	пн [13.5'-1	5.0'	
AS RECEIVED	WATER CO	NTENT			pic Moisture	Wet Soil & Tare (gm	· •	36.36		
		a		For Sieve	Sample	Dry Soil & Tare (gm)	36.24		
Wt. Wet Soil & Tare (gm)		(W1) (W2)	38.12 31.34	Tare Weight (gn) Moisture Content (, I	14.16 0.54		
Wt. Dry Soil & Tare (gm) Weight of Tare (gm)		(W2) (W3)	13.87	Total Weig	t of Sample Used				ic Moistur	re
Weight of Water (gm)		(W4=W1-W2)	6.78			ore Separating On Th		479.06		-
Weight of Dry Soil (gm)		(W5=W2-W3)	17.47		•		re Weight (gm)	96.85		
Moisture Content (%)		(W4/W5)*100	38.81%				tal Weight (gm)	380.14 (W6)	
Plus #4 Material	· · · · · · · · · · · · · · · · · · ·			(Wt+Tate)	(((Wt-Tare)/W6)*100)		44.07			
TARE WEIGHT	13.92		12.0"	13.92	0.0	100.0		cobbles		
			3.0"	13.92 13.92	0.0	100.0		coarse gravel		
			2.5" 2.0"	13.92	0.0	100.0		coarse gravel		
			1.5"	13.92	0.0	100.0		coarse gravel		
			1.0"	13.92	0.0	100.0	1.0"	coarse gravel		
			0,75"	13.92	0.0	100.0		fine gravel		
			0.50"	13.92	0.0	100.0	0.50"	fine gravel		
			0.375"	17.72	1.0	99.0	0.375"	fine gravel		
			#4	17.72	1.0	99.0	#4	coarse sand		
HYDROMETER Specific Gravity Amount Dispersing Agent	Weight of Sample Wet or Dry (gm) 55.90									
Type Dispersion Device	. (Mechanical			Hydrometer Bulb Numi		624378			
Length of Dispersion Peri-	od	I Minute			% Pass #4 Sieve For W		99.00			
TARE WEIGHT	30.49	HYDROM	ETER BAC	KSIEVE (P	ercent Passing #1 Comul Wt.					
				(Wt+Tare)	Retained	% PASSING	#14			
			#10	30.54	0.05	98.9	#10 #20	medium sand medium sand		
			#20 #40	30.72 31.57	0.23	<u>98.6</u> 97.1	#20	fine sand		
			#60	36.12	5.63	89.0	#60	fine sand		
			#100	56.68	26,19	52.4	#100	fine sand		
			#200	61.92	31.43	43.0	#200	fines		
		HYDROME								
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	2:23	<u>(min)</u> 2.00	R 29.5	T 21.00	K 0.013	Cc 5.83	C 23.67	LENGTH 11.5	<u>A</u> 1.00	
7/19/2012	2:23	5.00	29.5	21.00	0.013	5.83	18.67	12,4	1.00	
7/19/2012	2:38	15.00	18.0	21.00	0.013	5.83	12.17	13.3	1.00	
7/19/2012	2:53	30.00	13.75	21.00	0.013	5.83	7.92	14.2	1.00	
7/19/2012	3:23	60.00	10.25	21.00	0.013	5.83	4.42	14.7	1.00	
7/19/2012	6:33	250.00	7.0	21.00	0.013	5.63	1.17	15.2	1.00	
7/20/2012	2:23	1440.00	7.0 ZE PERCE	20.90	0.014	5.87	1.13	15.2	1.00]
			ZE PERCE	0.00	4	Description	Dicale SIL TY	Y SAND, trace	direvel.	
Particle Diameter 0.0323	% PASSING 42.1	% COBBLES % COARSE GRAV	τ.	0.00			IDIACK, SILT	I SAIND, UBCC	RIAAGI	
0.0323	33.2	% FINE GRAVEL		1.00	1.00	USCS	SM	<u> </u>		
0.0127	21.7	% COARSE SAND	I	0.09		1	· · · · · ·	-4		
0.0093	14.1	% MEDIUM SANI		1.83]	-]ււ			
0.0067	7.9	% FINE SAND		54.04	55.97	•	PL			
0.0033	2.1	% FINES		43.03	4	-]PI		TECH	
0.0014	2.0	% TOTAL SAMPL	E	100.00	.]				DATE CHECK	7/18/2012
									REVIEW	


Global Information:	PROJECT NAME:		1
	PROJECT NUMBER:	123-88898	1
	SAMPLE ID:	BH-8	
	SAMPLE TYPE:	BAG	1
	SAMPLE DEPTH:	23.5'-25.0']
	DESCRIPTION:	Yellow, POORLY GRADED	SAND, trace gravel, trace fines
	USCS:	SP	

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

35.18
31.75
13.90
3.43
17.85
19.22%

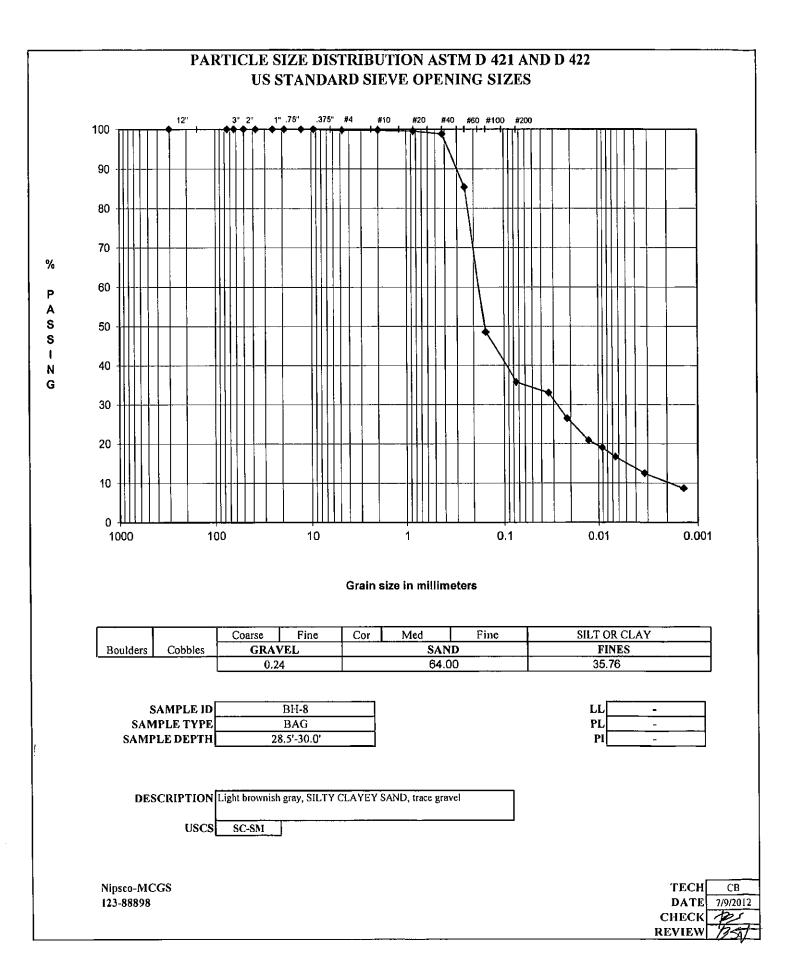
TECH	СВ
DATE	07/09/12
CHECK	PS.
REVIEW	BST

	. ··		AS	STM GRA	IN SIZE ANAL	YSIS				
<u> </u>		A	STM CII	17, C136, E	0421, D422, D11	40 and D2217	-			
PROJECT TITLE		Nipsco-N	MCGS			SAMPLE ID]	BH-8	8	
PROJECT NO.	123-8	8898				SAMPLE TYPE		BAG		
						SAMPLE DEPT	гн	23.5'-2:	5.0'	
AS RECEIVED V	VATER CO	NTENT		Hygroscopic Moisture Wet Soil & Tare (gm)		· •	27.39			
310 M -+ 0-11 & T ()		avor	35.18	For Sieve	Sample	Dry Soil & Tare (gm Tare Weight (gm)	.}	27.39		
Wt. Wet Soil & Tare (gm) Wt. Dry Soil & Tare (gm)		(WI) (W2)	31.75			Moisture Content (%	9	0.00		
Weight of Tare (gm)		(W3)	13.90	Total Weig	ght of Sample Used 1				oie Moistur	e
Weight of Water (gm)		(W4=W1-W2)	3.43		Weight + Tare, Bef	ore Separating On Th	e #4 Sieve (gm)	465.17		
Weight of Dry Soil (gm)		(W5=W2-W3)	17.85				are Weight (gm)	95.54		
Moisture Content (%)		(W4/W5)*100	19.22%				tal Weight (gm)	369.63	(W6)	
Plus #4 Material			10.01	(WI+Tare)	(((Wt-Tare)/W6)*100)	%PASSING	10.01			
TARE WEIGHT	13 <u>.61</u>		12.0" 3.0"	13.61 13.61	0.0	100.0	12.0" 3.0"	cobbles coarse gravel		
			2.5"	13.61	0.0	100.0	2.5"	coarse gravel		
			2.0"	13.61	0.0	100.0	2.0"	coarse gravel		
			1.5"	13.61	0.0	100.0	1.5"	coarse gravel		
			1.0"	13.61	0.0	100.0	1.0"	coarse gravel		
			0.75"	13.61	0.0	100.0	0.75"	fine gravel		
			0.50"	13.61	0.0	100.0	0.50"	fine gravel		
			0.375"	13.61	0.0	100.0	0.375"	fine gravel		
			#4	14.70	0.3	99.7	#4	coarse sand		
HYDROMETER Specific Gravity	ANALYSIS	2.65			Weight of Sampl	e Used For Hyd	rometer Tes	st		
	· · ·				Weight of Sample Wet	or Dry (gm)	53.12]		
Amount Dispersing Agent	(m))	125.00			Calculated Dry W1. use	d in test (gm)	53.12			
Type Dispersion Device		Mechanical			Hydrometer Bulb Num		624378	1		
Length of Dispersion Perio	od	I Minute			% Pass #4 Sieve For W	/hole Sample	99.71			
TARE WEIGHT	30.68	HYDROM	ETER BACI	KSIEVE (P	ercent Passing #1	0 - #200 Sieves)				
	30.00				Cumul Wt.	,				
				(Wt+Tare)	Retained	% PASSING	1			
			#10	31.62	0.94	97.9	#10	medium sand		
			#20	33.52	2.84	94.4	#20	medium sand		
			#40	38.42	7.74	85.2	#40	fine sand		
			#60	58.55	27.87	47.4	#60	fine sand		
			#100	77.43 82.42	46.75 51.74	12.0 2.6	#100 #200	fine sand		
		HYDROME	#200			2.0	#200	fines		
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	1:28	(min)	R	Т	K	Cc	С	LENGTH	A	
7/19/2012	1:30	2.00	6.5	21.00	0.013	5.83	0.67	15.3	1.00	
7/19/2012	1:33	5.00	6.0	21.00	0.013	5.83	0.17	15.3	1.00	
7/19/2012	1:43	15.00	6.0	21.00	0.013	5.83	0.17	15.3	1.00	
7/19/2012	1:58	30.00	6.0	21.00	0.013	5.83	0.17	15.3	1.00	
7/19/2012	2:28	60.00	5.5	21.00	0.013	5.83	-0.33	15.5	1.00	
7/19/2012	5:38 1:28	250.00 1440.00	5.25 5.0	21.00	0.013 0.014	5.83 5.87	-0.58 -0.87	15.5 15.5	1.00 1.00	
7/20/2012	1,20		ZE PERCE		0.014	5.07	-0.87	10,0	_ 1.00	
Particle Diameter	% PASSING	% COBBLES	ZE I EKCE	0.00	4	Description	Yellow POC	ORLY GRADE		ace gravel
0.0373	1.3	% COARSE GRAN	/EL	0.00		7	trace fines			Braroly
0.0236	0.3	% FINE GRAVEL		0.29	0.29	USCS				
0.0136	0.3	% COARSE SAND)	1.76		1		-		
0.0096	0.3	% MEDIUM SANI	U U	12.76		•]ււ			
0.0069	-0.6	% FINE SAND		82,59	97.11	+	PL			
0.0034	-1.1	% FINES	_	2.59	4	•	PI		ТЕСИ	
0.0014	-1.6	% TOTAL SAMPL	.E	100.00					DATE CHECK	
										RT

Global Information:	PROJECT NAME: PROJECT NUMBER:	Nipsco-MCGS 123-88898]
	Sample ID: Sample Type: Sample Depth:	BH-8 BAG 28.5'-30.0']
	DESCRIPTION:	Light brownish gray, SILTY C	CLAYEY SAND, trace gravel
	USCS:	SC-SM	

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare

31.8 13.72 Weight of Water Weight of Dry Soil Water Content


	35.10
	31.80
	13,72
	3.30
	18.08
	18.25%
1	

TITLE BLOCK:

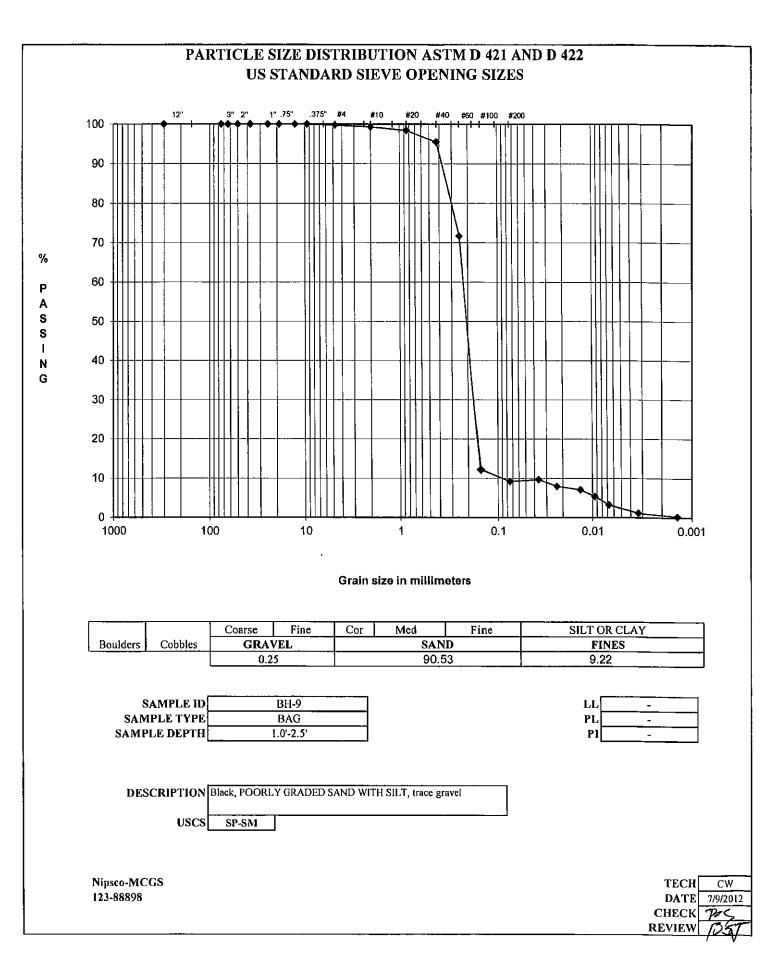
TECH	CB
DATE	07/09/12
СНЕСК	PPS
REVIEW	BST

ī.

	ASTM GRAIN SIZE ANALYSIS ASTM C117, C136, D421, D422, D1140 and D2217									
	r		1000	 	· · · · · · · · · · · · · · · · · · ·	SAMPLE ID	 		, · · · 1	·
PROJECT TITLE	123-8	Nipsco-ł	NCGS			SAMPLE ID	7	BAC		
PROJECT NO.	125-0	6696				SAMPLE DEP		28.5'-3		
			·							
AS RECEIVED	WATER CO	NTENT			pic Moisture	Wet Soil & Tare (gr	1)	33.71		
				For Sieve	Sample	Dry Soil & Tare (gr)	33.62		
Wt. Wet Soil & Tare (gm	-	(WI)	35.10			Tare Weight (gm)		15.86 0.51		
Wt. Dry Soil & Tare (gm))	(W2) (W3)	31.80	Total Wein	ht of Sample Used 1	Moisture Content (%			vic Moistur	e
Weight of Tare (gm) Weight of Water (gm)		(W4=W1-W2)	3.30			ore Separating On Th		581.25	ne moistui	٠ ١
Weight of Dry Soil (gm)		(W5=W2-W3)	18.08		··· ·· a··· ·,	• •	are Weight (gm)	95.48		
Moisture Content (%)		(W4/W5)*100	18.25%			το	otal Weight (gm)	483.32	(W6)	-
Plus #4 Material	Sieve			(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING			_	
TARE WEIGHT	13.92		12.0"	13.92	0.0	100.0	12.0"	cobbles		
			3.0"	13.92	0,0	100.0	3.0"	coarse gravel		
			2.5"	13.92	0.0	100.0	2.5"	coarse gravel		
			2.0" 1.5"	13.92 13.92	0.0	100.0	2.0" 1.5"	coarse gravel coarse gravel		
			1.5"	13.92	0.0	100.0	1.5	coarse gravel		
			0.75"	13.92	0.0	100.0	0.75"	fine gravel		
			0.50"	13.92	0.0	100.0	0.50"	fine gravel		
			0.375"	13. 92	0.0	100.0	0.375"	fine gravel		
			#4	15.06	0.2	99.8	#4	coarse sand		
HYDROMETEI Specific Gravity	HYDROMETER ANALYSIS Weight of Sample Used For Hydrometer Test Specific Gravity 2.65 Weight of Sample Wet or Dry (gan) 53.58									
Amount Dispersing Ager	nt (ml)	125.00			Calculated Dry Wt. use		53.31			
Type Dispersion Device		Mechanical			Hydrometer Bulb Num		624378	-		
Length of Dispersion Per	iod	1 Minute			% Pass #4 Sieve For W	hole Sample	99.76			
TARE WEIGHT	27.98	HYDROM	ETER BACI	KSIEVE (P	ercent Passing #1	0 - #200 Sieves)				
TARE VEIGHT	27.90				Cumul Wt.	, , ,				
				(Wt+Tare)	Retained	% PASSING	1			
			#10	27.98	0.00	99.8	#10	medium sand		
			#20	28.13	0.15	99.5	#20	medium sand		
			#40	28.50	0.52	98.8	#40	fine sand		
			#60	35.70	7,72	85.3	#60	fine sand		
			#100 #200	55.36 62.18	27.38 34.20	48.5 35.8	#100 #200	fine sand fines		
		HYDROMI				0.00	#200			
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	2:13	(min)	R	Т	K	Cc	С	LENGTH	A	
7/19/2012	2:15	2.00	23.5	21.00	0.013	5.83	17,67	12.5	1.00	
7/19/2012	2:18	5.00	20.0	21.00	0.013	5.83	14.17	13.0	1.00	
7/19/2012	2:28	15.00	17.0	21.00	0.013	5.83 5.83	11.17	13.5	1.00 1.00	
7/19/2012	2:43 3:13	30.00 60.00	16.0 14.75	21.00	0.013	5.83	10.17 8.92	13.7 14.0	1.00	
7/19/2012	6:23	250.00	14.75	21.00	0.013	5.83	6.67	14.0	1.00	
7/20/2012	2:13	1440.00	10.5	20.90	0.013	5.87	4.63	14.7	1.00	
	.1		IZE PERCE				•		•	· · · · · · · · · · · · · · · · · · ·
Particle Diameter	% PASSING			0.00	1	Description	Light brown	ish gray, SILT	Y CLAYEY	SAND,
0.0337	33.1	% COARSE GRAV	VEL	0.00	· · ·	_	trace gravel	··· · -		
0.0217	26.5	% FINE GRAVEL		0.24	0.24		SC-SM			
0.0128	20.9	% COARSE SANI		0.00	4		7			
0,0091	19.0	% MEDIUM SAN % EINE SAND	U	0.97 63.03	64.00		LL PL			
0.0065	16.7 12.5	% FINE SAND % FINES		35.76	04.00	-			TECH	СВ
0.0032	8.7	% TOTAL SAMP	LE	100.00	1	L	_J		DATE	
					-				СПЕСК	105
									REVIEW	BIT

Global Information:	PROJECT NAME:	Nipsco-MCGS	7
	PROJECT NUMBER:	123-88898	
	-		-
	SAMPLE ID:	BH-9	
	SAMPLE TYPE:	BAG	
	SAMPLE DEPTH:	1.0'-2.5'	
	DESCRIPTION:	Black, POORLY GRADED	SAND WITH SILT, trace gravel
	USCS:	SP-SM	
AS-RECEIVED	MOISTURE CONTENT:	Weight of Wet Soil & Ta	re 22.44
		Weight of Dry Soil & Ta	re <u>21.73</u>
		Weight of Tare	14.15

Weight of Dry Soil Water Content

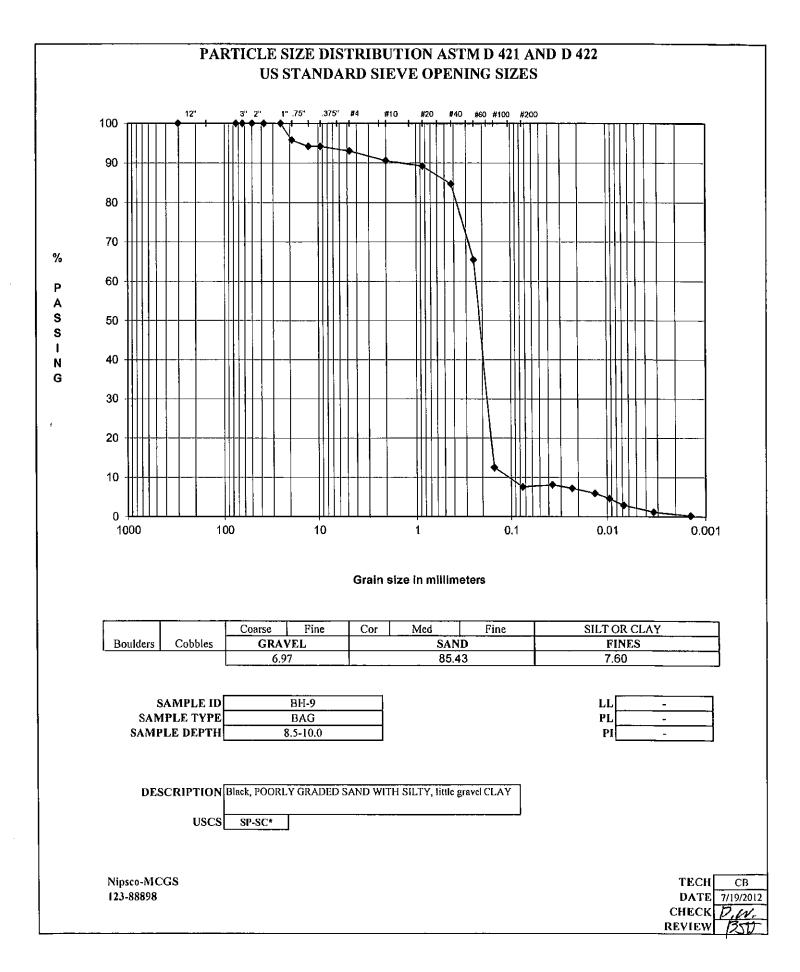

Weight of Water

- 1	22.44
	21.73
	14.15
	0.71
	7,58
	9.37%

TECH	CW
DATE	07/09/12
CHECK	TPS .
REVIEW	BAT

ASTM GRAIN SIZE ANALYSIS ASTM C117, C136, D421, D422, D1140 and D2217										
PROJECT TITLE		Nipsco-N	ACGS			SAMPLE ID	٦	BH-9	<u> </u>	
PROJECT NO.	123-8	8898	1005			SAMPLE TYPE	: F	BAC	_	
	125-0	10070				SAMPLE DEPT	- F	1.0'-2.		
AS RECEIVED V	VATER CO	NTENT			pic Moisture	Wet Soil & Tare (gm	· •	27,60		
		Г		For Sieve	Sample	Dry Soil & Tare (gm))	27.57		
Wt. Wet Soil & Tare (gm)		(WI) (W2)	22.44 21.73			Tare Weight (gm) Moisture Content (%	, ·	<u>13.98</u> 0.22		
Wt. Dry Soil & Tare (gm) Weight of Tare (gm)		(W2) (W3)	14.15	Total Weig	ht of Sample Used I				nic Moistur	'е
Weight of Water (gm)		(W4=W1-W2)	0.71	i otal Weig	-	ore Separating On Th		446.56	ne monatur	·
Weight of Dry Soil (gm)		(W5=W2-W3)	7.58				re Weight (gin)	188.99		
Moisture Content (%)		(W4/W5)*100	9.37%			То	tal Weight (gm)	257.00 (W6)	
Plus #4 Material	Sieve			(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING				
TARE WEIGHT	11.33		12.0"	11.33	0.0	100.0	12.0"	cobbles		
			3.0"	11.33	0.0	100.0		coarse gravel		
			2.5"	11.33	0.0	100.0		coarse gravel		
			2.0"	11.33	0.0	100.0		coarse gravel		
			1.5" 1.0"	11.33 11.33	0.0	100.0 100.0		coarse gravel coarse gravel		
			0.75"	11.33	0.0	100.0		fine gravel		
			0.50"	11.33	0.0	100.0		fine gravel		
			0.375"	11.33	0.0	100.0		fine gravel		
			#4	11.97	0.2	99.8	#4	coarse sand		
HYDROMETER	HYDROMETER ANALYSIS Weight of Sample Used For Hydrometer Test									
Specific Gravity	(assumed)	2.65				-				
1					Weight of Sample Wet	or Dry (gm)	58.69			
Amount Dispersing Agent	(ml)	125.00			Calculated Dry Wt. use	d in test (gm)	58.56			
Type Dispersion Device		Mechanical			Hydrometer Bulb Num		624378			
Length of Dispersion Peric	d	1 Minute			% Pass #4 Sieve For W	hole Sample	99.75			
TARE WEIGHT	30.83	HYDROM	ETER BACI	KSIEVE (P	ercent Passing #1	0 - #200 Sieves)				
					Cumul Wt.	·	1			
				(Wt+Tare)	Retained	% PASSING				
			#10	31.09	0.26	99.3	#10	medium sand		
			#20 #40	31.63 33.32	0.80	98.4 95.5	#20 #40	medium sand fine sand		
			#60	47.30	16.47	71.7	#60	fine sand		
			#100	82.26	51.43	12.1	#100	fine sand		
			#200	83.98	53.15	9.2	#200	fines		
		HYDROME	TER CALC	ULATION	S	<u> </u>				
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	2:21	(min)	R	Т	ĸ	C¢	С	LENGTH	Α	
7/19/2012	2:23	2.00	11.5	21.00	0,013	5.83	5.67	14.5	1.00	
7/19/2012	2:26	5.00	10.5	21.00	0.013	5.83	4.67	14.7	1.00	
7/19/2012	2:36	15.00	<u> </u>	21.00 21.00	0.013	5.83	4.17	14.7	1.00	
7/19/2012 7/19/2012	2:51 3:21	30.00 60.00	9.0	21.00	0.013	5.83 5.83	3.17	14.8	1.00 1.00	
7/19/2012	6:31	250.00	6.5	21.00	0.013	5.83	0.67	15.2	1.00	
7/20/2012	2:21	1440.00	6.0	20.90	0.013	5.87	0.07	15.3	1.00	
	1		ZE PERCE		1		<u>,,</u>			
Particle Diameter	% PASSING			0.00	1	Description	Black, POOF	RLY GRADED	SAND WI	TH SILT.
0.0363	9.7	% COARSE GRAV	/EL	0.00		7	trace gravel			
0.0231	7.9	% FINE GRAVEL		0.25	0.25	USCS				
0.0133	7.1	% COARSE SANE)	0.44				-		
0.0095	5.4	% MEDIUM SAN	D	3.80	l	· · ·	լու			
0.0068	3.3	% FINE SAND		86.29	90.53	· ·	PL		— ————	
0.0033	1.1	% FINES		9.22	4	· .]PI		TECH	
0.0014	0.2	% TOTAL SAMPL	.E	100.00	J				DATE CHECK	7/9/2012
									REVIEW	

.



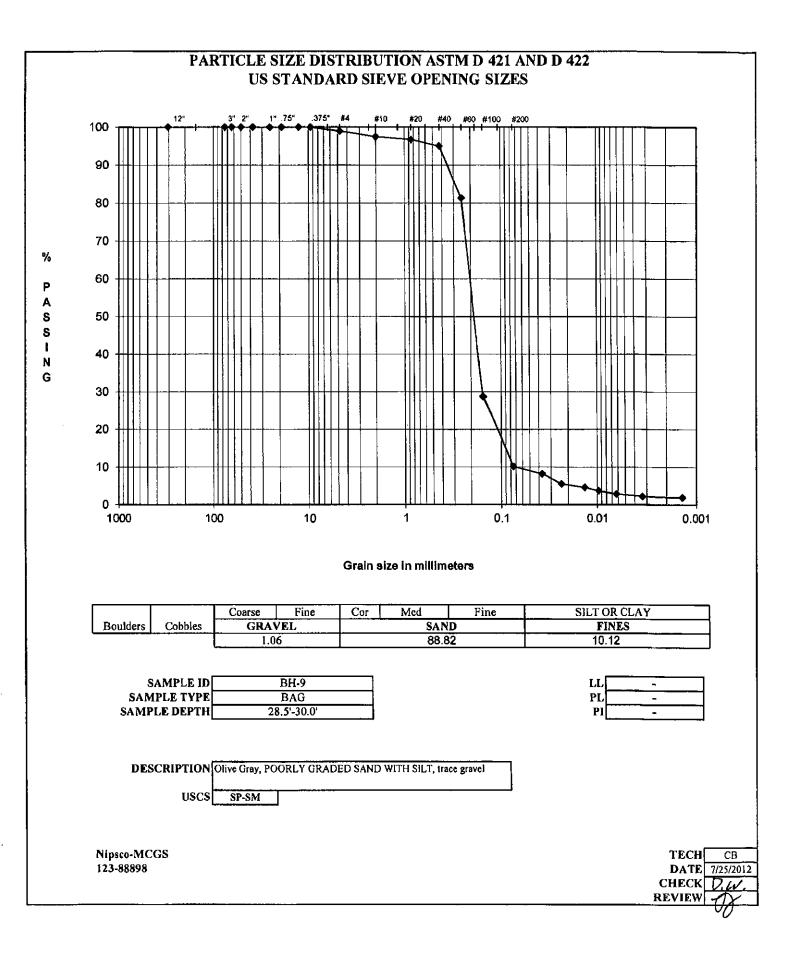
.					
Global Information:	PROJECT NAME:	Nipsco-	MCGS		
	PROJECT NUMBER:	123-8	8898		
	SAMPLE ID:	81	-9		
	SAMPLE TYPE:	BA	١G		
	SAMPLE DEPTH:	8.5-	10.0		
	DESCRIPTION:	Black, POORL	Y GRADED SA	ND WITH SIL	TY, little
		gravel CLAY			-
	USCS:	SP-SC*	····		
		* Classified	vieually		
		Classifica	visually		
AS-RECEIVED N	MOISTURE CONTENT:	Waight of Wa	t Call & Tara		61.92
AGALOLIVEDI	CONTENT.				
		Weight of Dry			53.10
		Weight of Tar	e		14.22
		Weight of Wa	ter		8.82
		Weight of Dry	y Soil		38.88
		Water Conten	t		22.69%
	TITLE BLOCK:		TECH	C	:8
			DATE	07/1	9/12

CHECK REVIEW

54

		ł			IN SIZE ANAL' 0421, D422, D11		·			
PROJECT TITLE		Nipsco-l	2001			SAMPLE ID		BH-	.0	
PROJECT NO.	123-	88898			I	SAMPLE TYP	E	BA		
						SAMPLE DEP		8.5-1		
AS RECEIVED V	VATER CO	NTENT		Hygrosed	pic Moisture	Wet Soil & Tare (gn	n)	25.72		
				For Sieve	e Sample	Dry Soil & Tare (gm	1)	25.70		
Wt. Wet Soil & Tare (gm)		(WI)	61.92			Tare Weight (gm)		13.75		
Wt. Dry Soil & Tare (gm)		(W2)	53.10			Moisture Content (%		0.17		
Weight of Tare (gm)		(W3)	14.22	Total Weig	ght of Sample Used				pic Moistu	re
Weight of Water (gm) Weight of Dry Soil (gm)		(₩4=₩1-₩2) (₩5=₩2•₩3)	8,82 38.88		weight + Tare, Bei	fore Separating On Th	ie #4 Sieve (gm) are Weight (gm)	597.90 188.36		
Moisture Content (%)		(W4/W5)*100	22.69%				ate weight (gm) stal Weight (gm)		(W6)	
Plus #4 Material	Sieve	((Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING	an in organ (Brit)	100100	((())	
TARE WEIGHT	14.08		12.0"	14.08	0.0	100.0	12.0"	cobbles		
L L			3.0"	14.08	0.0	100.0	3.0"	coarse gravel		
			2.5"	14.08	0.0	100.0	2.5"	coarse gravel		
			2.0"	14.08	0.0	100.0	2.0"	coarse gravel		
			1.5"	14.08	0.0	100.0	1.5"	coarse gravel		
			1.0"	14.08	0.0	100.0	1.0"	coarse gravel		
			0.75"	31.23	4.2	95.8	0.75"	fine gravel		
			0.50"	37.87	5.8	94.2	0.50"	fine gravel		
			0.375"	37.87	5.8	94.2	0.375"	fine gravel		
			#4	42.57	7.0	93.0	#4	coarse sand		
HYDROMETER Specific Gravity	(assumed)	2.65			Weight of Sample Weight of Sample Wet	-	rometer Tes	it]		
Amount Dispersing Agent	(ml)	125.00			Calculated Dry Wt. use	d in test (gm)	53,48]		
Type Dispersion Device		Mechanical			Hydrometer Bulb Numb	ber	624378			
Length of Dispersion Perio	bd	1 Minute			% Pass #4 Sieve For W	hole Sample	93.03			
TARE WEIGHT	28.02	HYDROM	ETER BACI	KSIEVE (P	ercent Passing #10	0 - #200 Sieves)				
					Cumul Wt.		1			
				(Wt+Tare)	Retained	% PASSING				
			#10 #20	29.43 30.22	2,20	90.6 89.2	#10 #20	medium sand medium sand		
			#40	32.80	4.78	84.7	#40	fine sand		
			#60	43.85	15.83	65.5	#60	fine sand		
			#100	74.32	46.30	12.5	#100	fine sand		
			#200	77.13	49.11	7.6	#200	fines		
		HYDROME	TER CALC	ULATION	S					
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	13:30	(min)	R	Т	К	Cc	С	LENGTH	A	
7/19/2012	13:32	2.00	10.5	21.00	0.013	5.83	4.67	14.7	1.00	
7/19/2012	13:35	5.00	10.0	21.00	0.013	5.83	4.17	14.7	1.00	
7/19/2012	13:45	15.00	9.3	21.00	0.013	5.83	3.42	14.8	1.00	
7/19/2012	14:00 14:30	30.00 60.00	8.5 7.5	21.00	0.013	5.83 5.83	2.67	15.0	1.00	
7/19/2012	14.30	250.00	6.5	21.00	0.013	5.83	1.67 0.67	15.2 15.3	1.00	
7/20/2012	13:30	1440.00	6.0	20.90	0.013	5.87	0.13	15.3	1.00	
1120/2012	15.50		ZE PERCE			0.07	0.15	10.0		· · -
Particle Diameter	% PASSING		Sol Breb	0.00	1	Description	Black, POOF		SANDWI	TH SILTY
0.0365	8.1	% COARSE GRAV	'EL	4.19	1]	little gravel C		,	
0.0231	1,2	% FINE GRAVEL		2.77	6.97	USCS				
0.0134	5.9	% COARSE SAND		2.45		1		4		
0.0095	4.6	% MEDIUM SANI)	5.86]	-]ււ			
0,0068	2.9	% FINE SAND		77.11	85.43	-	PL			
0.0033	1.2	% FINES		7.60	-	-	PI		ТЕСН	
0.0014	0.2	% TOTAL SAMPL	E	100.00]					7/19/2012
									CHECK REVIEW	

Global Information:	PROJECT NAME:	Nipsco-MCGS	1	
	PROJECT NUMBER:	123-88898	1	
	-		-	
	SAMPLE ID:	BH-9]	
	SAMPLE TYPE:	BAG	1	
	SAMPLE DEPTH:	28.5'-30.0'		
		Olive Gray, POORLY GRAD	DED SAND WIT	H SILT, trace
		gravel		
	USCS:	SP-SM		
AS-RECEIVED N	IOISTURE CONTENT:	Weight of Wet Soil & Tar	e	21.89
		Weight of Dry Soil & Tar	e	20.56
		Weight of Tare		13.80
		Weight of Water		1.33
		Weight of Dry Soil		6,76
		Water Content		19.67%

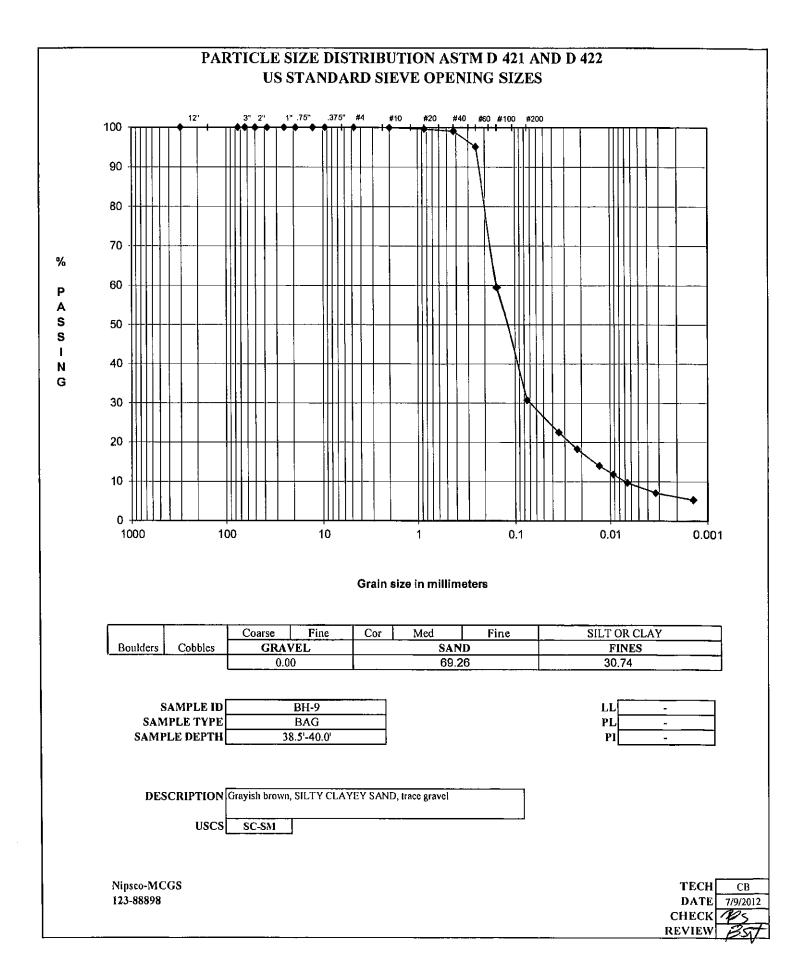

TITLE BLOCK:

.

TECH	СВ
DATE	07/25/12
CHECK	D.W.
REVIEW	MOX .
	- W

					IN SIZE ANAL D421, D422, D11					
PROJECT TITLE	1	Nipsco-	MCGS			SAMPLE ID		BH	_0	
PROJECT NO.	123-	-88898			1	SAMPLE TYP	E	BA	-	
	L					SAMPLE DEP		28.5'-3		
AS RECEIVED	WATER CO	ONTENT			pic Moisture	Wet Soil & Tare (gr	•	37.12		
We Wet Coll & Tree (`	aun	21.89	For Sieve	e Sample	Dry Soil & Tare (gn	1)	37.09		
Wt. Wet Soil & Tare (gm) Wt. Dry Soil & Tare (gm)	,	(WI) (W2)	20.56	1		Tare Weight (gm) Moisture Content (%	4	14.07 0.13		
Weight of Tare (gm)	,	(W3)	13.80	Total Wei	ght of Sample Used				nic Molstu	7A
Weight of Water (gm)		(W4=WI+W2)	1.33			fore Separating On Th			pic moisiu	
Weight of Dry Soil (gm)		(W5=W2-W3)	6.76		•	• •	are Weight (gm)			
Moisture Content (%)		(W4/W5)*100	1 9.67%			Te	otal Weight (gm)	96.08	(W6)	
Plus #4 Material		4		(Wt+Tare)	(((Wt-Tare)/W6)*100)					
TARE WEIGHT	14.16		12.0"	14.16	0.0	100.0	12.0"	cobbles		
			3.0"	14.16	0.0	100.0	3.0"	coarse gravel		
			2.5"	14.16	0.0	100.0	2,5"	coarse gravel		
			2.0" 1.5"	14.16	0.0	100.0	2.0" 1.5"	coarse gravel		
			1.5	14.16	0.0	100.0	1.5	coarse gravel		
			0.75"	14.16	0.0	100.0	0.75"	coarse gravel fine gravel		
			0.50"	14.16	0.0	100.0	0.50"	fine gravel		
			0.375"	14.16	0.0	100.0	0.375"	fine gravel		
			#4	15.18	1.1	98.9	#4	coarse sand		
UNDOAMETER		0								
HYDROMETER Specific Gravity	(assumed)				Weight of Sample	-		st 1		
Amount Dispersing Agent	t (ml)	125.00			Weight of Sample Wet Calculated Dry Wt. use		55.38 55.31	-		
Type Dispersion Device		Mechanical			Hydrometer Bulb Numt		624378	1		
Length of Dispersion Peri	od	1 Minute			% Pass #4 Sieve For W		98.94	1		
TARE WEIGHT	30.45	HYDROM	ETER BAC	KSIEVE (P	ercent Passing #10 Cumel Wt.	0 - #200 Sieves)			_	
				(Wt+Tare)	Retained	% PASSING				
			#10	31.26	0.81	97.5	#10	medium sand		
			#20	31.68	1.23	96.7	#20	medium sand		
			#40 #60	<u>32.63</u> 40.28	2.18 9.83	95.0 81.4	#40 #€0	fine sand fine sand		
			#100	69.70	39.25	28.7	₩60 #100	fine sand		
			#200	80.10	49.65	10.1	#200	fines		
		HYDROME	TER CALC	ULATION	S	· · · · · · · · · · · · · · · · · · ·			<u> </u>	
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE	<u> </u>	
7/26/2012	1:45	(min)	Ř	T	K	Cc	С	LENGTH	A	l
7/26/2012	1:47	2.00	10.5	20.70	0.014	5.93	4.57	14.7	1.00	
7/26/2012 7/26/2012	1:50 2:00	5.00 15.00	9.0 8.5	20.70 20.70	0.014	5.93	3.07	14.8	1.00	
7/26/2012	2:00	30.00	8.0	20.70	0.014 0.014	5.93 5.93	2.57 2.07	15.0 15.0	1.00	
7/26/2012	2:57	72.00	7.5	20.70	0.014	5.93	1.57	15.0	1.00	
7/26/2012	5:55	250.00	7.0	21.20	0.013	5.77	1.23	15.2	1.00	1
7/27/2012	1:45	1440.00	7.0	20.70	0.014	5.93	1.07	15.2	1.00	
			ZE PERCE			-			1	
Particle Diameter	% PASSING	% COBBLES		0.00]	Description	Olive Gray, F	OORLY GRA	DED SAN	D WITH
0.0370	8.2	% COARSE GRAV	EL	0.00			SILT, trace g	ravel	-	
0.0235	5,5	% FINE GRAVEL		1.06	1.06	USCS	SP-SM			
0.0137	4.6	% COARSE SAND		1.45	4		1			
0.0097 0.0063	3.7	% MEDIUM SAND	,	2.45 84.92	88.82	-				
0.0063	2.8	% FINE SAND % FINES		10.12	00.04		PL. PI		TROU	
0.0014	1.9	% TOTAL SAMPL	E	100.00	1	L	1. 1		TECH DATE	CB 7/25/2012
		Let a true around to	-	1 100.00	1				CHECK	12.41
					·				REVIEW	100

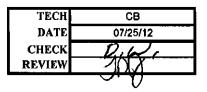
-


Global Information:	PROJECT NAME:	Nipsco-MCGS]
	PROJECT NUMBER:	123-88898	
	SAMPLE ID:	BH-9	7
	SAMPLE TYPE:		-
		BAG	_
	SAMPLE DEPTH:	38.5'-40.0'	
	DESCRIPTION:	Grayish brown, SILTY CLA	YEY SAND, Irace gravel
	USCS:	SC-SM	
	·		
		Weight of Wet Soil & To	54 77

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

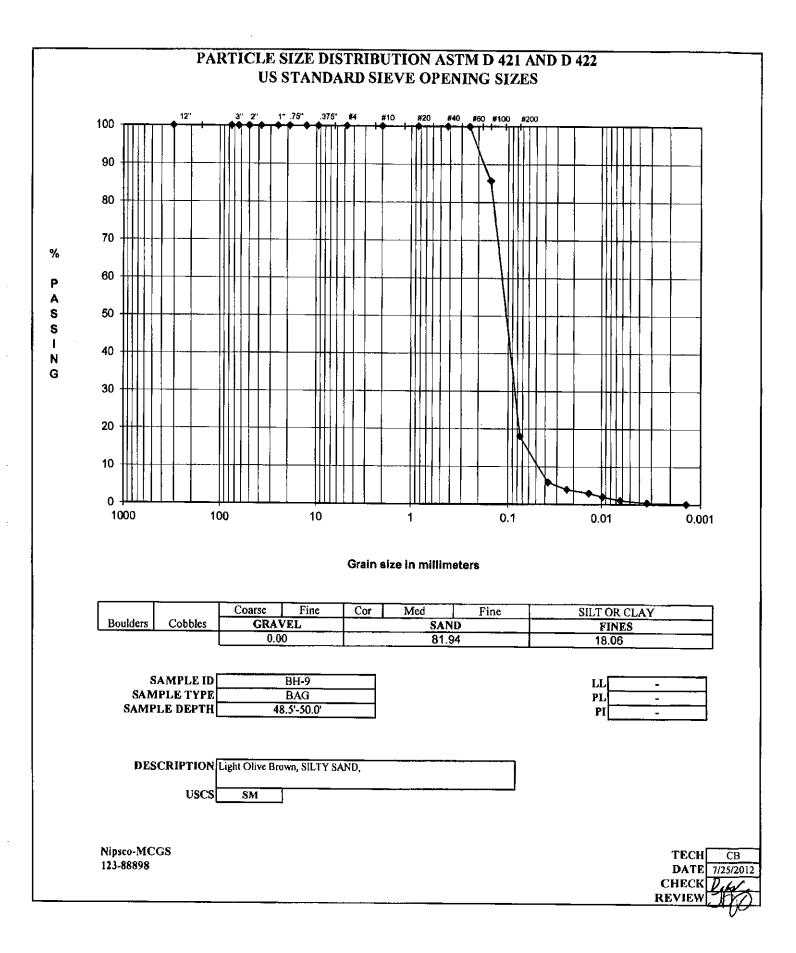
	54.77
1	48,13
	14.20
	6.64
	33.93
1	19.57%

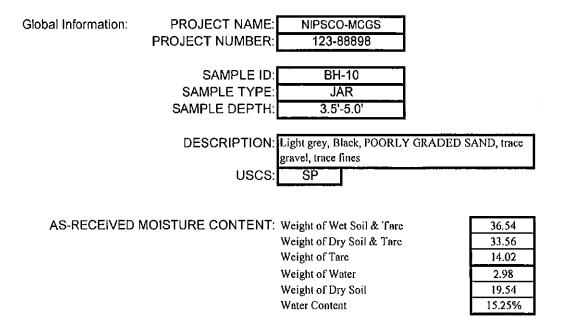
TECH	СВ
DATE	07/09/12
СНЕСК	103
REVIEW	, BSST


					IN SIZE ANAL D421, D422, D11					
PROJECT TITLE		×1:	MCGS		1	SAMPLE ID		BH		
PROJECT IIILE PROJECT NO.	100	Nipsco-I	MCUS		l	SAMPLE ID	C.			
PROJECT NO.	123-	88898				SAMPLE TYP.		BAG		
						SAMPLE DEP	111	38.5'-4	0.0	
AS RECEIVED V	VATER CO	NTENT		Hygrosco	pic Moisture	Wet Soil & Tare (gr	n)	27.16		
				For Sieve	Sample	Dry Soil & Tare (gn)	27.13		
W1. Wet Soil & Tare (gm)		(WI)	54.77			Tare Weight (gin)		14.02		
W1. Dry Soil & Tare (gm)		(W2)	48.13			Moisture Content (%	,	0.23		
Weight of Tare (gm)		(W3)	14,20	Total Weig	ght of Sample Used i	For Sieve Analys	is Corrected I		pic Moistur	·e
Weight of Water (gm)		(W4=W1-W2)	6.64		Weight + Tare, Bef	fore Separating On Tl		the second second second second second second second second second second second second second second second s		
Weight of Dry Soil (gm)		(W5=W2-W3)	33.93				are Weight (gm)			
Moisture Content (%)	<u>a.</u>	(W4/W5)*100	19.57%				otal Weight (gm)	411.38	(W6)	
Plus #4 Material		L	40.00	(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING				
TARE WEIGHT	0.00		12.0"	0.00	0.0	100.0	12.0"	cobbles		
			3.0"	0.00	0.0	100.0	3.0"	coarse gravel		
			2.5"	0.00	0.0	100.0	2.5"	coarse gravel		
			2.0" 1.5"	0.00	0.0	100.0	2.0" 1.5"	coarse gravel		
			1.5" 1.0"	0.00	0.0	100.0	1.5"	coarse gravel		
			0.75"	0.00	0.0	100.0	0.75"	fine gravel		
			0.50"	0.00	0.0	100.0	0.50"	fine gravel		
			0.375"	0.00	0.0	100.0	0.375"	fine gravel		
			#4	0,00	0.0	100.0	#4	coarse sand		
HYDROMETER	ANALVSIS									
Specific Gravity	(assumed)		l		Weight of Sample	-		s t		
		125.00	1		Weight of Sample Wet		58.58	4		
Amount Dispersing Agent	(m))				Calculated Dry Wt. use		58.45 624378			
Type Dispersion Device Length of Dispersion Perio	ad .	Mechanical 1 Minute			Hydrometer Bulb Numl % Pass #4 Sieve For W		100.00	ł		
				ZOTEVE /D		-		F	<u> </u>	
TARE WEIGIIT	28.46		ELEK DAU	KOLVE (P	ercent Passing #10	u - #200 Sleves)				
				(11) · · · · · · · · · · · · · · · · · ·	Cumul Wt.	N BACODINO	1			
				(Wt+Tare)	Retained	% PASSING				
			#10 #20	28.50 28.69	0.04	99.9 99.6	#10	medium sand medium sand		
			#20 #40	29.01	0.55	99.0	#20 #40	fine sand		
			#40 #60	31.32	2,86	95.1	#40	fine sand		
			#100	52.12	23.66	59.5	#100	fine sand		
			#200	68.94	40.48	30.7	#200	fines		
		HYDROME				1				
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	2:11	(min)	R	T	K	Cc	С	LENGTH	A	
7/19/2012	2:13	2.00	19.0	21.00	0.013	5.83	13.17	13.2	1.00	
7/19/2012	2:16	5.00	16.5	21.00	0.013	5.83	10.67	13.7	1.00	
7/19/2012	2:26	15.00	14.0	21.00	0.013	5.83	8.17	14.0	1.00	
7/19/2012	2:41	30.00	12.75	21.00	0.013	5.83	6.92	14.3	1.00	
7/19/2012	3:11	60.00	11.5	21.00	0.013	5.83	5.67	14.5	1.00	
7/19/2012	6:21	250.00	10.0	21.00	0.013	5.83	4.17	14.7	1.00	
7/20/2012	2:11	1440.00	9.0	20.90	0.014	5.87	3.13	14.8	1.00	
ļ			ZE PERCE		4	_				
Particle Diameter	% PASSING	1		0.00		Description		m, SILTY CL	AYEY SAN	D, trace
0,0346	22.5	% COARSE GRAV	/CL	0.00		1	gravel			
0.0223	18.3	% FINE GRAVEL		0.00	0.00	USCS	SC-SM			
0.0130	14.0	% COARSE SAND		0.07	4					
0.0093	11.8	% MEDIUM SAND)	0.87	60.26					
0.0066	9.7	% FINE SAND		68.32	69.26	-	PL		11113 637 6	<u></u>
0.0033	7.1 5.4	% FINES % TOTAL SAMPL	F	30.74	-	-	PI		TECH DATE	
0.0014	5.4	% TOTAL SAMPL	···	1 100.00					CHECK	
									REVIEW	

PROJECT NAME:	Nipsco-MCGS	
PROJECT NUMBER:	123-88898	
		_
SAMPLE ID:	BH-9	
SAMPLE TYPE:	BAG	
SAMPLE DEPTH:	48.5'-50.0'	
	ght Olive Brown, SILTY S	SAND,
0808:	SIVI	
OISTURE CONTENT: W	eight of Wet Soil & Ta	re 72.02
	PROJECT NUMBER: SAMPLE ID: SAMPLE TYPE: SAMPLE DEPTH: DESCRIPTION: Lin USCS:	PROJECT NUMBER: 123-88898 SAMPLE ID: BH-9 SAMPLE TYPE: BAG SAMPLE DEPTH: 48.5'-50.0' DESCRIPTION: Light Olive Brown, SILTY S

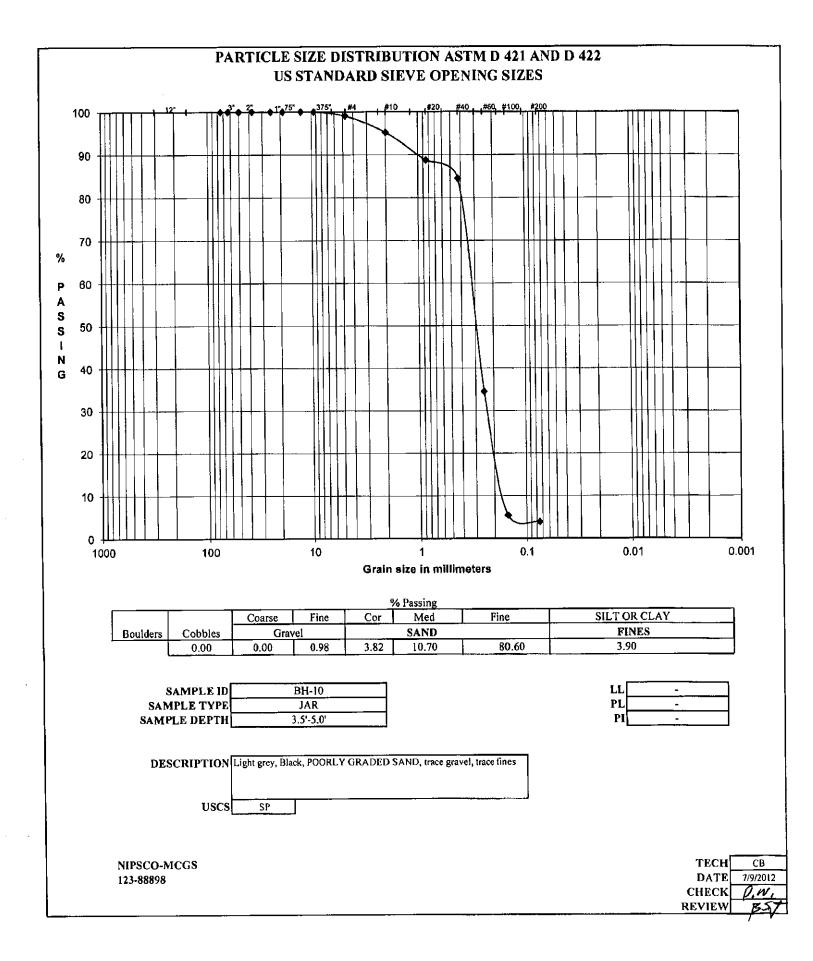
ED MOISTORE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

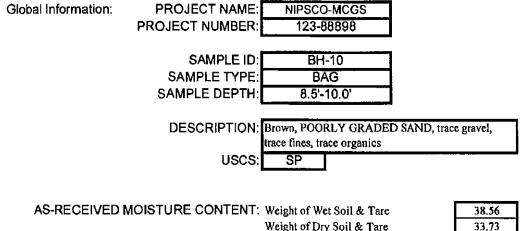

72.02
61.35
14.01
10.67
47.34
22.54%



		A			N SIZE ANAL' 421, D422, D11					
PROJECT TITLE		Nipsco-M	ACGS			SAMPLE ID	 	BH-9	,	
PROJECT NO.	123-8					SAMPLE TYPE	: 1	BAG		
						SAMPLE DEPT	н [48.5'-50).0'	
AS RECEIVED W	ATER CO	NTENT	<u> </u>		pic Moisture	Wet Soil & Tare (gn	· •	46.18	·	
		(wi)	72.02	For Sieve	Sample	Diy Soil & Tare (gm) Tare Weight (gm)	' F	46.15 15.86		
Wt. Wet Soil & Tare (gon) Wt. Dry Soil & Tare (gm)		(W2)	61.35			Moisture Content (%	, ŀ	0.10		
Weight of Tare (gm)		(W3)	14.01	Total Weig	ht of Sample Used				ic Molstur	't
Weight of Water (gm)		(W4=W1-W2)	10.67		Weight + Tare, Bel	fore Separating On The	e #4 Sieve (gm)	597.63		
Weight of Dry Soil (gm)		(W5=W2-W3)	47.34			Ta	re Weight (gm)	231.17		
Moisture Content (%)		(W4/W5)*100	22.54%				tal Weight (gm)	366.10 (W6)	
Plus #4 Material S				· ·	(((Wt-Tare)/W6)*100)		10.00			
TARE WEIGHT	0.00		12.0"	0.00	0.0	100.0		cobbles		
			3.0" 2.5"	0.00	0.0	100.0 100.0		coarse gravel coarse gravel		
			2.0"	0.00	0.0	100.0		coarse gravel		
			2.0 1.5"	0.00	0.0	100.0		coarse gravel		
			1.0"	0.00	0.0	100.0		coarse gravel		
			0.75"	0.00	0.0	100.0		fine gravel		
			0.50"	0.00	0.0	100.0	0.50"	fine gravel		
			0.375"	0.00	0.0	100.0	0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETER	ANALYSIS	2.65			Weight of Sampl	e Used For Hyd	rometer Tes	t		
opocale charny	(Weight of Sample Wet	or Dry (gm)	52.43			
Amount Dispersing Agent ((ml) [125.00			Calculated Dry Wt. use	ed in test (gm)	52.38			
Type Dispersion Device		Mechanical			Hydrometer Bulb Num	ber	624378			
Length of Dispersion Perio	d [1 Minute			% Pass #4 Sieve For W	vhole Sample	100.00			
TARE WEIGHT	30.68	HYDROMI	STER BACI	KSIEVE (P	ercent Passing #1 Cumul Wt.	0 - #200 Sieves)				
				(Wt+Tare)	Retained	% PASSING				
			#10	30.68	0.00	100.0	#10	medium sand		
			#20	30.68	0.00	100.0	#20	medium sand		
			#40	30.70	0.02	100.0	#40	fine sand		
			#60	30.73	0.05	99.9	#60	fine sand		
			#100	38.17	7,49	85.7	#100	fine sand		
			#200	73.60	42.92	18.1	#200	fines		
DATE	TIME	HYDROME ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE	-	
DATE 7/27/2012	1:30	(min)	R		K	Cc	C	LENGTH	Α	
7/27/2012	1:32	2,00	9.0	20.70	0.014	5.93	3.07	14.8	1.00	
7/27/2012	1:35	5.00	8.0	20.70	0.014	5.93	2.07	15.0	1.00	
7/27/2012	1:45	15.00	7.5	20.70	0.014	5.93	1.57	15.2	1.00	
7/27/2012	2:00	30.00	7.0	20.70	0.014	5.93	1.07	15.2	1.00	
7/27/2012	2:41	71.00	6.5	20.70	0.014	5.93	0.57	15.3	1.00	
7/27/2012	5:40	250.00	6.0	21.20	0.013	5.77	0.23	15.3	1.00	
7/28/2012	1:30	1440.00	6.0	20.70	0,014	5.93	0.07	15.3	1.00	L
	% PASSING		ZE PERCE	T 0.00	-	Description	ll inht Olive E	Brown, SILTY	SAND	
Particle Diameter 0.0371	% PASSING 5.9	% COBBLES % COARSE GRAV	EL.	0.00				MOMIL OFFI I	JANU,	
0.0236	3.9	% FINE GRAVEL		0.00	0.00	USCS	SM	<u>''</u>		
0.0137	3.0	% COARSE SAND		0.00	1		h	-		
0.0097	2.0	% MEDIUM SANE		0.04	1	•	լո			
0.0063	1.1	% FINE SAND		81.90	81.94		PL			
0.0033	0.4	% FINES		18.06		-]рі		TECH	
0.0014	0.1	% TOTAL SAMPL	E	100.00]					7/25/2012
									CHECK REVIEW	

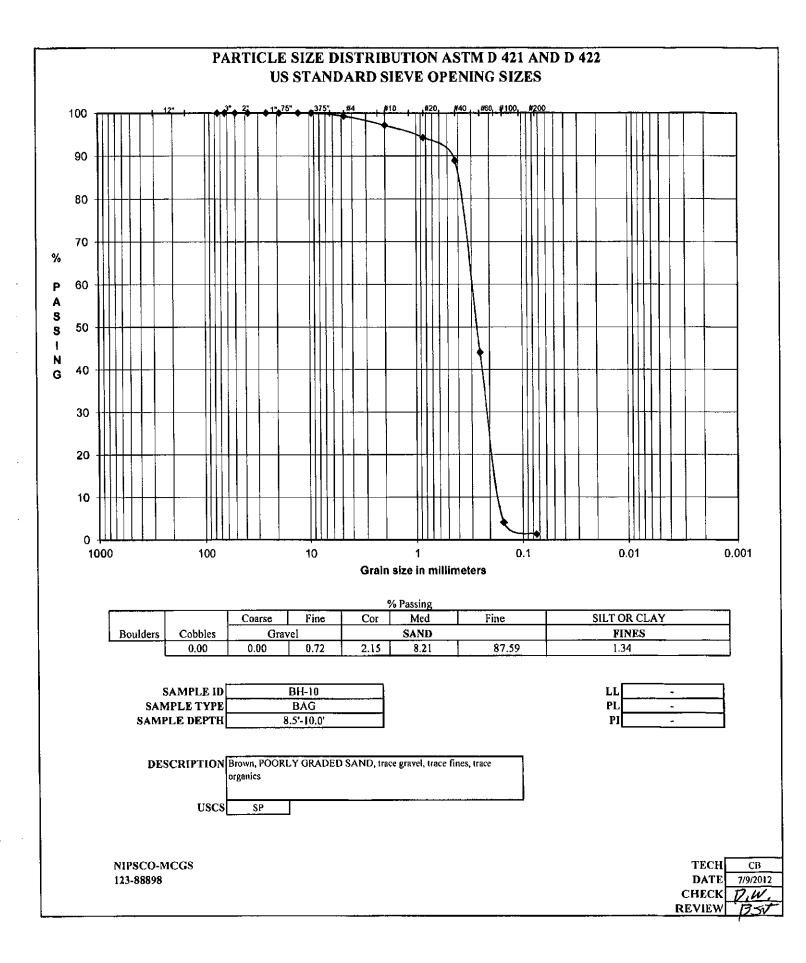
.

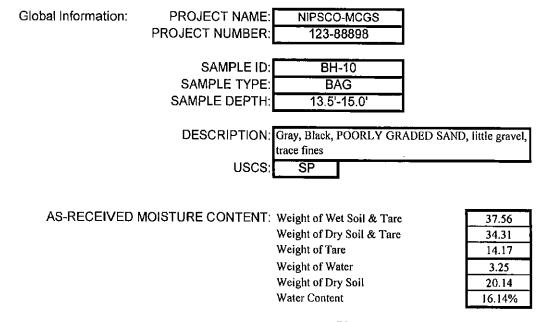

. •



TECH	СВ
DATE	07/09/12
CHECK	Dille
REVIEW	BS.+
	1 7

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142 SAMPLE ID **BH-10** NIPSCO-MCGS **PROJECT TITLE** SAMPLE TYPE PROJECT NO. 123-88898 JAR SAMPLE DEPTH 3.5'-5.0' REMARKS Hygroscopic Moisture For Sieve Sample Wet Soil & Tare (gm) 34.09 WATER CONTENT (Delivered Moisture) 33.93 36.54 Dry Soil & Tare (gm) Wt Wet Soil & Tare (gm) (w1)Tare Weight (gm) (w2) 33.56 14.16 Wt Dry Soil & Tare (gm) Weight of Tare (gm) (w3)14.02 Moisture Content (%) 0.81 Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture 2.98 (w4=w1-w2)Weight of Water (gm) Weight Of Sample (gm) 355.71 (w5=w2-w3) 19.54 Weight of Dry Soil (gm) Tare Weight (gm) 94.62 Moisture Content (%) (w4/w5)*100 15.25 (W6) Total Dry Weight (gm) 258.99 Cumulative SIEVE ANALYSIS SIEVE % PASS Tare Weight Wt Ret (Wt-Tare) (%Retained) +Tare (100-%ret) 94,67 {(wt ret/w6)*100} 3.0" 94.67 0.00 0.00 100.00 3.0" coarse gravel 2.5" 94.67 0.00 0.00 100.00 2.5" coarse gravel 94.67 0.00 0.00 100.00 2.0" 2.0" coarse gravel 94.67 0.00 0.00 100.00 1.5" coarse gravel 1.5" 0,00 0.00 100.00 1.0" coarse gravel 1.0" 94.67 0.75" 94.67 0.00 0.00 100.00 0.75" fine gravel 0.00 0.00 100.00 0.50" fine gravel 0.50" 94.67 100.00 0.375" 0.00 0.00 fine gravel 0.375" 94.67 99.02 97.21 2.54 0.98 #4 coarse sand #4 107.10 12,43 4.80 95.20 #10 medium sand #10 #20 123.79 29.12 11.24 88.76 #20 medium sand 15.50 84.50 #40 fine sand #40 134.81 40.14 264.17 169.50 65.45 #60 fine sand #60 34.55 94.59 244.98 fine sand 339.65 5.41 #100 #100 96,10 3.90 #200 #200 343.57 248.90 fines 0.00 Descriptive Terms > 10% mostly coarse (c) % C GRAVEL > 10% mostly medium (m) LL 0.98 0 to 5% % F GRAVEL trace PL % C SAND 3.82 little 5 to 12% < 10% fine (c-m) -10.70 < 10% coarse (m-f) ΡI % M SAND some 12 to 30% _ % F SAND 80.60 and 30 to 50% < 10% coarse and fine (m) Gs < 10% coarse and medium (f) 3.90 % FINES 100.00 > 10% equal amounts each (c-f) % TOTAL Light grey, Black, POORLY GRADED SAND, trace gravel, DESCRIPTION trace fines ТЕСН USCS SP CB DATE 7/9/2012 CHECK $Q_{\cdot}W_{\cdot}$ REVIEW

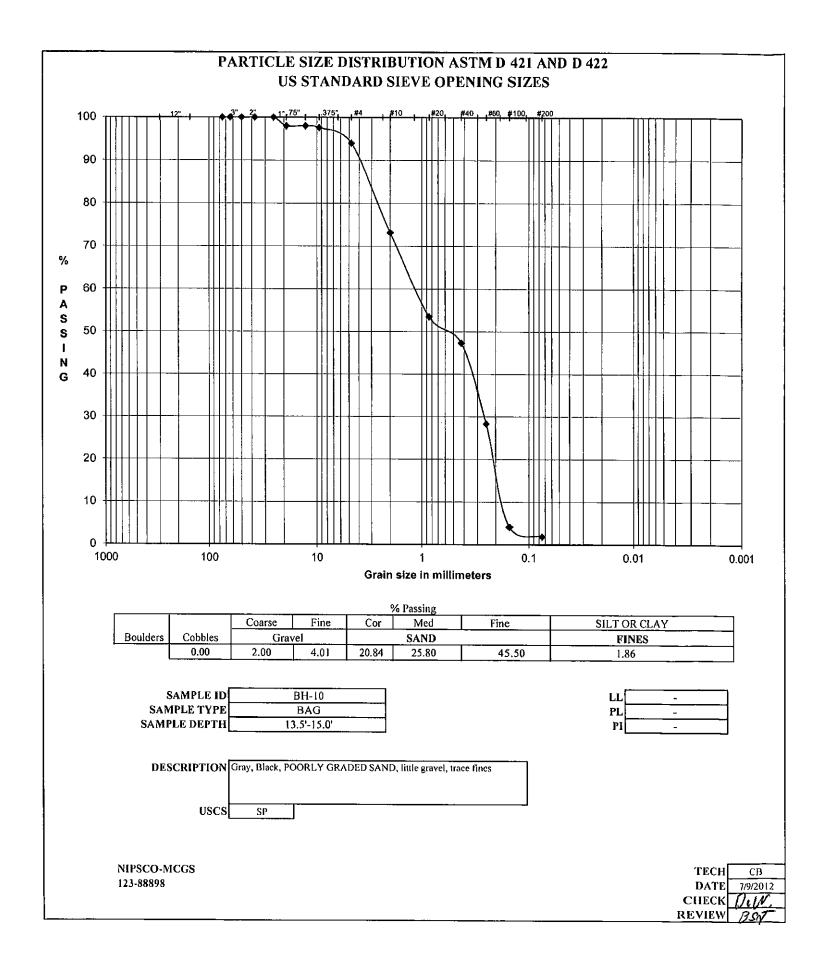



Weight of Wet sont & Tate Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

38.56
33.73
13.99
4.83
19.74
24.47%

TECH	CB
DATE	07/09/12
CHECK	D, W,
REVIEW	BSIT

		AS	TM GRA	IN SIZE AN	ALYSIS	·			<u></u>
	AS	т <mark>м D 42</mark> 1, I	D 2217, D	1140, C 117,	, D 422, <u>C</u> 1	136, C 142			==
PROJECT TITLE	···	NIPSCO	MCGS		s	AMPLE ID	BH	-10	7
PROJECT NO.		123-88898			SAM	PLE TYPE	BA	\G	
REMARKS					SAMP	LE DEPTH	8,5'-	10.0'	
				Hygroscopic M	loisture For Sie	ve Sample			
WATER CONTENT (D	elivered Moisture) _				Wet Soil & T	are (gm)	31.59	
Wt Wet Soil & Tare (gm)	I.	(wi)	38.56			Dry Soil & T	are (gm)	31.54	
Wt Dry Soil & Tare (gm)		(w2)	33.73			Tare Weight	(gm)	13.91	
Weight of Tare (gm)		(w3)	13.99			Moisture Cor	ntent (%)	0.28	
Weight of Water (gm)		(w4=w1-w2)	4.83	Total Weight C	Of Sample Used	For Sieve Cor	rected For Hygros	copic Moisture	_
Weight of Dry Soil (gm)		(w5=w2-w3)	19.74			Weight Of Sa	ample (gm)	345.73	
Moisture Content (%)		(w4/w5)*100	24.47			Tare Weight	(gm)	95.07	
					(W6)	Total Dry W	eight (gm)	249.95	
							_		
SIEVE ANALYSIS				Cumulative					
Tare Weight	_	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
95.12		+Tare		{(wt rel/w6)*100}	(100-%ret)				
	1	. .				1			
	3.0"	95.12	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	95,12	0.00	0.00	100.00	2.5"	coarse gravel		
	2.0"	95.12	0.00	0.00	100.00	2.0"	coarse gravel		
	1.5"	95.12	0.00	0.00	100.00	1.5"	coarse gravel		
1	1.0"	95.12	0.00	0.00	100.00	1.0"	coarse gravel		
	0.75"	95.12	0.00	0.00	100.00	0.75"	fine gravel		
	0.50"	95.12	0.00	0.00	100.00	0.50"	fine gravel		
	0.375"	95.12	0.00	0.00	100.00	0.375"	fine gravel		
	#4	96.92	1.80	0.72	99.28	#4	coarse sand		
	#10	102,30	7.18	2.87	97.13	#10	medium sand		
	#20	109.43	14.31	5.73	94.27	#20	medium sand		
	#40	122.81	27.69	11.08	88.92	#40	fine sand		
	#60	234.96	139,84	55.95	44.05	#60	fine sand		
	#100	334.84	239.72	95.91	4.09	#100	fine sand		
	#200	341.73	246.61	98.66	1.34	#200	fines		
<u>.</u>			<u>.</u>						
N C CDAVEL	0.00	Desert-4	ivo Termo	> 1004	athu anara (a)				
% C GRAVEL	0.00	1 .	ive Terms 0 to 5%		ostly coarse (c) ostly medium (n	n)	LL	-	٦
% F GRAVEL	2.15	trace little	5 to 12%	< 10% mc		''	PL	<u> </u>	
% C SAND	8.21	-	3 to 12%		arse (m-f)		PI		\neg
% M SAND	87.59	some and	12 to 30%		arse (m-1) arse and fine (n	1)	Gs		-
% F SAND	1.34		JU IU JU70		arse and rine (in arse and mediu:	-	63	<u> </u>	
% FINES % TOTAL	100,00	1			ual amounts ead	• •			
% IUIAL	100,00	J		> 10% eq	uar amounts car	(0-1)			
	DESCRIPTION	Brown POOR		SAND, trace gra	wel trace fines	ר			
	DESCRIPTION	trace organics		STUD, HOU BIG					
	USCS	SP				1	TECH	СВ	
	0303	LBr	I				DATE	7/9/201	2
							CHECK		
							REVIEW	B.SV	7
L							110 110 11	$-\rho_{1}$	<u>د </u>



TECH	CB
DATE	07/09/12
CHECK	Dur,
REVIEW	13ST

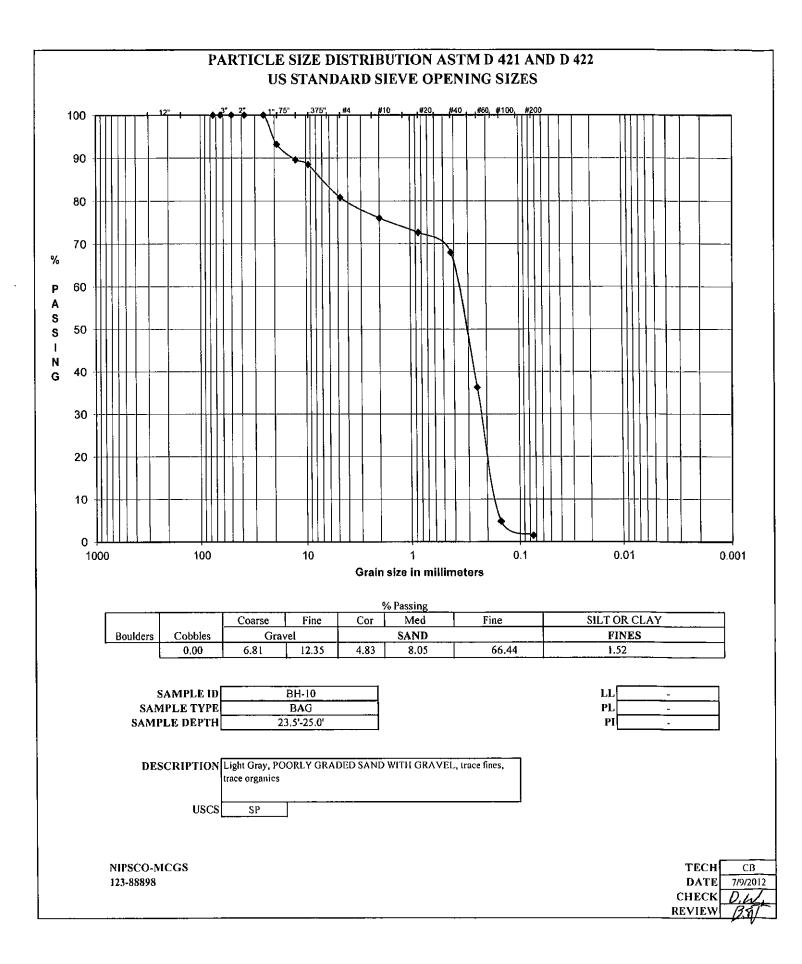
ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142

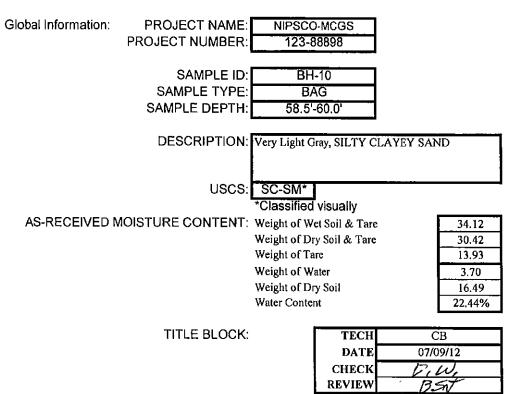
PROJECT TITLE		NIPSCO	-MCCS		S	AMPLE ID	BL	I-10	
PROJECT NO.		123-88898	-11003	I		IPLE TYPE		AG	
REMARKS		123-00090		1		LE DEPTH		-15.0'	-
REIMARKIO	I			Hygroscopic M				-13.0	
WATER CONTENT (Deli	vered Moisture)		1. g. oscopie ii		Wet Soil & T	are (gm)	36.52	٦
Wt Wet Soil & Tare (gm)		(w1)	37.56	1		Dry Soil & Ta		36.46	-
Wt Dry Soil & Tare (gm)		(w2)	34.31	1		Tare Weight	·•• ·	14.16	-
Weight of Tare (gm)		(w3)	14.17			Moisture Con		0.27	-
Weight of Water (gm)		(w4=w1-w2)	3.25	Total Weight C	of Sample Used		ected For Hygros	<u>. </u>	
Weight of Dry Soil (gm)		(w5=w2-w3)	20.14	1	•	Weight Of Sa		434.92	
Moisture Content (%)		(w4/w5)*100	16.14	1		Tare Weight		97.36	
		(1	(W6)	Total Dry We		336.65	-
					``.			_	
SIEVE ANALYSIS				Cumulative					
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
97.47]	+Tare		{(wt ret/w6)*100}	(100-%ret)				
	-								
	3.0"	97.47	0,00	0.00	100.00	3.0"	coarse gravel		
	2.5"	97.47	0.00	0.00	100.00	2.5"	coarse gravel		
	2.0"	97.47	0.00	0.00	100.00	2.0"	coarse gravel		
	1.5"	97.47	0.00	0.00	100.00	1.5"	coarse gravel		
	1.0"	97.47	0.00	0.00	100.00	1.0"	coarse gravel		
	0.75"	104.20	6.73	2.00	98.00	0.75"	fine gravel		
	0.50"	104.20	6.73	2.00	98.00	0.50"	fine gravel		
1	0.375"	105.58	8.11	2.41	97.59	0.375"	fine gravel		
	#4	117.69	20.22	6.01	93.99	#4	coarse sand		
	#10	187.84	90.37	26.84	73.16	#10	medium sand		
	#20	253.95	156.48	46.48	53.52	#20	medium sand		
	#40	274.69	177.22	52.64	47.36	#40	fine sand		
	#60	338.77	241.30	71.68	28.32	#60	fine sand		
	#10 0	420.15	322.68	95,85	4.15	#100	fine sand		
	#200	427.86	330.39	98.14	1.86	#200	fines		
								······	
	<u> </u>	1	' T	- 100/	.1 ()				
% C GRAVEL	2.00	1 .	ive Terms		stly coarse (c)	->			1
% F GRAVEL	4.01	trace	0 to 5%		stly medium (n	1)			-
% C SAND	20.84	little	5 to 12%	< 10% fin			PL	-	
% M SAND	25.80	some	12 to 30%	$< 10\% \cos (10\%)$			PI	-	
% F SAND	45.50	i and	30 to 50%		arse and fine (m		Gs	·	
% FINES	1.86	4			arse and medium	-			
% TOTAL	100.00	1		> 10% eq	ual amounts eac	sh (C-1)			
ום	ESCRIPTION	Gray, Black, PC fines	OORLY GRAI	DED SAND, littl	e gravel, trace]			
			r			J		·	
1	USCS	SP					тесн	СВ	
							DATE	7/9/201	2
							CHECK	D.W.	-
							REVIEW	13.37	<u>/</u>

Global Information: PROJECT NAME: NIPSCO-MCGS PROJECT NUMBER: 123-88898 SAMPLE ID: BH-10 SAMPLE TYPE: BAG SAMPLE DEPTH: 23.5'-25.0' DESCRIPTION: Light Gray, POORLY GRADED SAND WITH GRAVEL, trace fines, trace organics USCS: SP

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

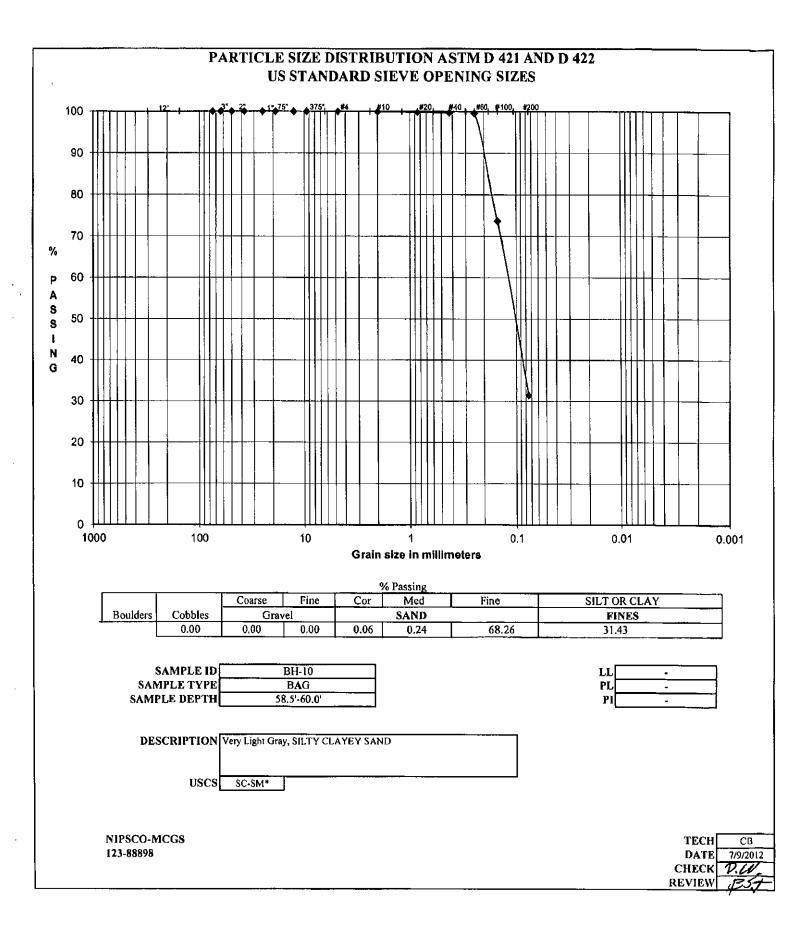
35.49 31.97 13.80 3.52 18.17
13.80 3.52
3.52
18.17
10.17
19.37%

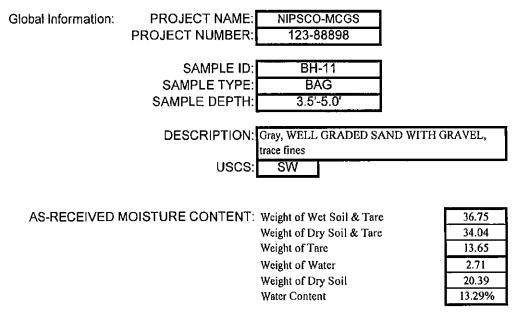

TITLE BLOCK:


TECH	CB
DATE	07/09/12
CHECK	Div.
REVIEW	PST

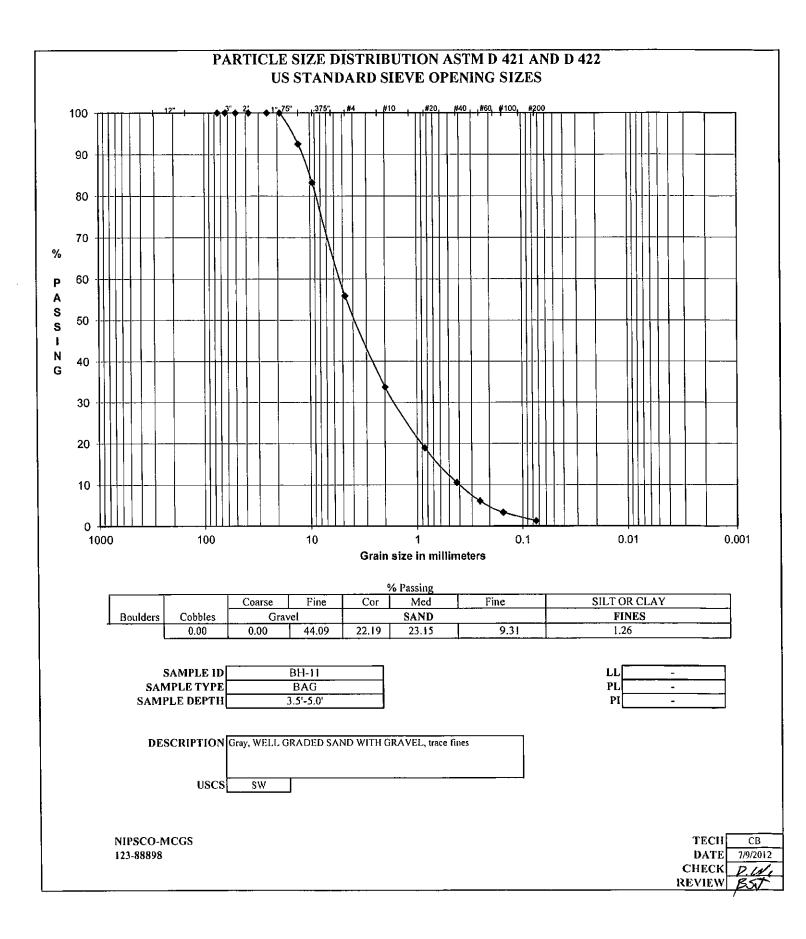
Template For Sand Grain-size and Perm

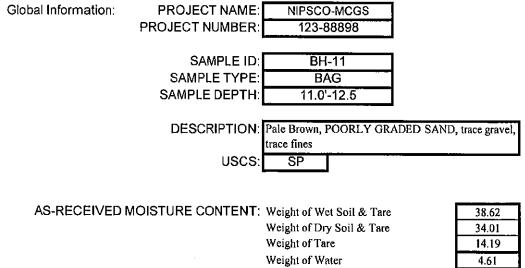
ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142


νης το τη τη τ		NIRGOO	MOOR		0			
PROJECT TITLE PROJECT NO.		NIPSCO 123-88898	-MCG5	,		AMPLE ID	·	-10 \G
REMARKS		145-00090				LE DEPTH		-25.0'
REMARKS				Hygroscopic M		-	23,3	23.0
WATER CONTENT (Deli	vered Moisture	e)		ny grossopro n		Wet Soil & Ta	are (gm)	29.83
Wt Wet Soil & Tare (gm)		/ (w1)	35.49	4 		Dry Soil & Ta		29.79
Wt Dry Soil & Tare (gm)		(w2)	31.97			Tare Weight (14.11
Weight of Tare (gm)		(w3)	13.80	1		Moisture Con		0.26
Weight of Water (gm)		(w4=w1-w2)	3.52	Total Weight C	Of Sample Used		ected For Hygros	
Weight of Dry Soil (gm)		(w5=w2-w3)	18.17	Ĭ	•	Weight Of Sa		402.41
Moisture Content (%)		(w4/w5)*100	19.37			Tare Weight	-	94.66
				1	(W6)	Total Dry We		306.97
				•		-		
SIEVE ANALYSIS				Cumulative				
Tare Weight	_	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
94.83	j	+Tare		{(w1 ret/w6)*100}	(100-%ret)			
	3.0"	94.83	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	94.83	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	94.83	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	94.83	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	94.83	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	115.74	20.91	6.81	93.19	0.75"	fine gravet	
	0.50"	126.77	31.94	10.41	89.59	0.50"	fine gravel	
	0.375"	130.09	35.26	11.49	88.51	0.375"	fine gravel	
	#4	153.66	58.83	19.16	80.84	#4	coarse sand	
	#10	168.48	73.65	23.99	76.01	#10	medium sand	
	#20	178.86	84.03	27.37	72.63	#20	medium sand	
	#40	193.18	98.35	32,04	67.96	#40	fine sand	
	#60	290,39	195.56	63.71	36.29	#60	fine sand	
	#100	386.99	292.16	95,18	4.82	#100	fine sand	
	#200	397.14	302.31	98,48	1.52	#200	fines	
N O OD AND	6.01		T	- 100/				
% C GRAVEL	6.81	1 -	ve Terms		stly coarse (c)	`		
% F GRAVEL	12.35	trace	0 to 5%		stly medium (m	1)	LL	<u> </u>
% C SAND	4.83	little	5 to 12%	< 10% fin			PL	-
% M SAND % F SAND	8.05	some	12 to 30%	< 10% coa	- /		P1 Ct	·
% FINES	66.44	and	30 to 50%		arse and fine (m		Gs	L
% TOTAL	1.52	4			arse and medium	17		
76 TUTAL	100.00	1		> 10% equ	ial amounts eac	n (c-1)		
DI	ESCRIPTION	Light Gray, PO	ORLY GRAD	ED SAND WITH	H GRAVEL.	1		
		trace fines, trace			•			
	USCS	SP				1	тесн	СВ
							DATE	7/9/2012
							СНЕСК	D.W.
							REVIEW	KT
· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·	······································



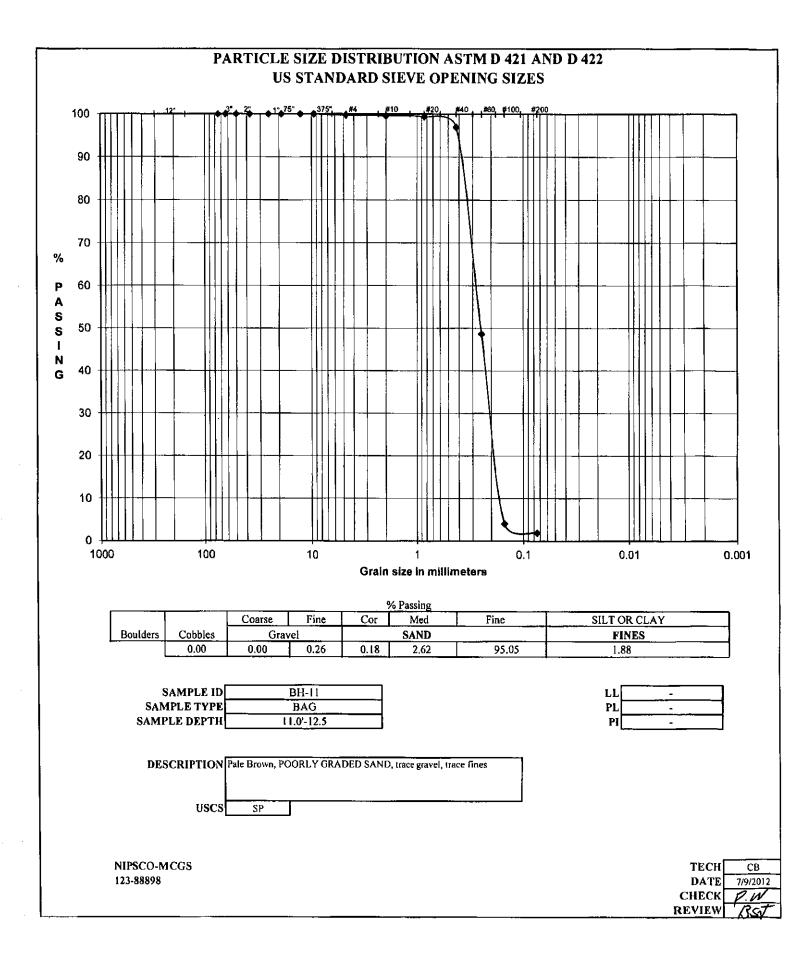
ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142


PROJECT TITLE		NIPSCO	-MCGS			AMPLE ID	BH	1-10
PROJECT NO.	123-88898			SAMPLE TYPE			BAG	
REMARKS						LE DEPTH	58.5	-60.0'
				Hygroscopic M	loisture For Sie	•		
WATER CONTENT (Deliv	vered Moisture	·	-			Wet Soil & T		37.08
Wt Wet Soil & Tare (gm)		(w1)	34.12			Dry Soil & T		36.55
Wt Dry Soil & Tare (gm)		(w2)	30.42	4		Tare Weight		14.27
Weight of Tare (gm)		(w3)	13.93			Moisture Co		2.38
Weight of Water (gm)		(w4=w1-w2)	3.70	Total Weight C	of Sample Used		rected For Hygros	
Weight of Dry Soil (gm)		(w5=w2-w3)	16.49	4		Weight Of S		417.34
Moisture Content (%)		(w4/w5)*100	22.44	4		Tare Weight		97.02
					<u>(</u> W6)	Total Dry W	eight (gm)	312.88
OTEVE ANALVOID				Committee and				
SIEVE ANALYSIS		Wt Ret	(WA Tara)	Cumulative		01EVE		
Tare Weight 97.20	1	+Tare	(Wt-Tare)	(%Retained)	% PASS (100 % not)	SIEVE		
97.20	1	+ Tare		{(wt ret/w6)*100}	(100-%ret)			
	3.0"	97.20	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	97.20	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	97.20	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	97.20	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	97.20	0,00	0.00	100.00	1.0"	coarse gravel	
	0.75"	97.20	0.00	0.00	100.00	0.75"	fine gravel	
	0,50"	97.20	0.00	0.00	100,00	0.50"	fine gravel	
	0.375"	97.20	0.00	0.00	100.00	0.375"	fine gravel	
	#4	97.20	0.00	0.00	100.00	#4	coarse sand	
	#10	97.40	0.20	0.06	99.94	#10	medium sand	
	#20	97.80	0.60	0.19	99.81	#20	medium sand	
	#40	98.15	0.95	0.30	99,70	#40	fine sand	
	#60	98.51	1.31	0.42	99,58	#60	fine sand	
	#100	179.74	82.54	26.38	73.62	#100	fine sand	
	#200	311.73	214.53	68.57	31.43	#200	fines	
						J		
an ' n								
% C GRAVEL	0.00	Descript	ive Terms		stly coarse (c)			
% F GRAVEL	0.00	trace	0 to 5%	> 1 0% mo	stly medium (m	1)	LL	
% C SAND	0.06	little	5 to 12%	< 10% fin	• •		PL	
% M SAND	0.24	some	12 to 30%	< 10% coa	ırse (m-f)		PI	<u> </u>
% F SAND	68.26	and	30 to 50%		urse and fine (m	-	Gs	-
% FINES	31.43				rse and medium	• /		
% TOTAL	100.00			> 10% equ	ial amounts eac	h (c-f)		
	CODUCTO			VEVALUE	_	1		
DE	ESCRIPTION	Very Light Gra	y, sili y cla	ATEY SAND				
	U SC S	SC-SM*		<u>_</u>]	тесн	
	0303	30-3141	l				DATE	CB 7/9/2012
							CHECK	
							REVIEW	P.W.
		· · · · · · · · · · · · · · · · · · ·					NEVIEW	⊥{5.⊃√

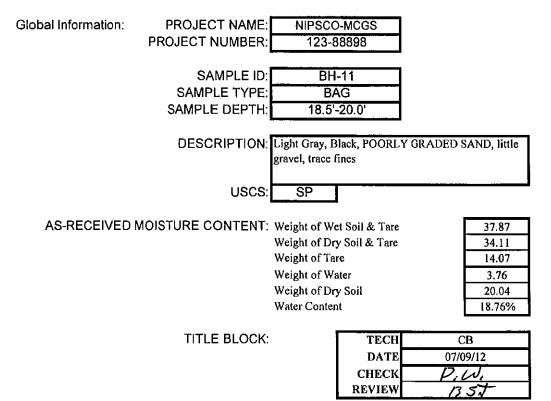


TECH	CB
DATE	07/09/12
CHECK	$\mathcal{D}_{i}\mathcal{W}_{i}$
REVIEW	BST_

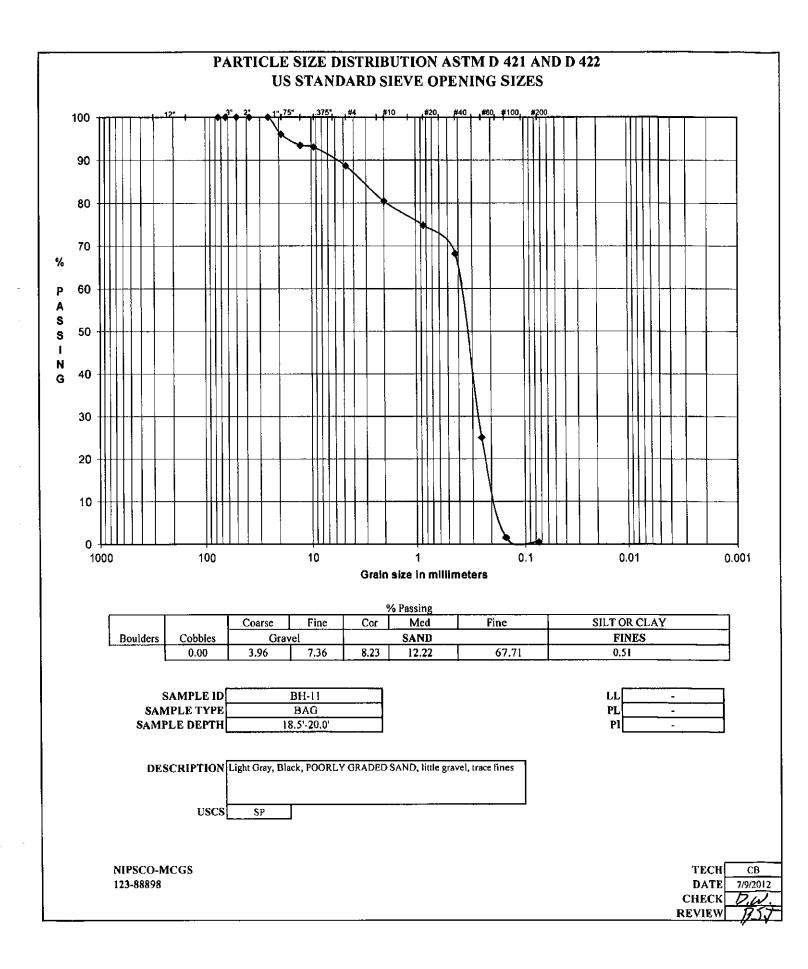
PROJECT TITLE PROJECT NO.		NIPSCO	-MCGS]		AMPLE ID		I-11
	123-88898			SAMPLE TYPE SAMPLE DEPTH				
REMARKS							3.5	-5.0'
	. 19			Hygroscopic M	loisture For Sie			24.80
WATER CONTENT (De			36.75	4		Wet Soil & T Dry Soil & T		34.89
Wt Wet Soil & Tare (gm)		(w1)	34.04	4		Tare Weight	-	
Wt Dry Soil & Tare (gm)		(w2) (w3)	13.65	-		Moisture Co		14.27
Weight of Tare (gm)		(w3) (w4≂w1-w2)	2.71	Total Waight C	A Sample Llagd	and the state of the state of the state of the state of the state of the state of the state of the state of the	rected For Hygros	
Weight of Water (gm)		(w4≕w1-w2) (w5≕w2-w3)	20.39		n sample Osed	Weight Of S		335.37
Weight of Dry Soil (gm)		(w3=w2-w3) (w4/w5)*100	13.29	-		Tare Weight		97.06
Moisture Content (%)		(##/#5)*100[13.29	-	(11/6)	Total Dry W	-	222,13
					(₩0)	Total Diy W	eight (ghi)	
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
97.28	-1	+Tare	({(wt rel/w6)*100}	(100-%ret)			
				(((110 / 010)			
	3.0"	97.28	0.00	0.00	100.00	3,0"	coarse gravel	
	2.5"	97.28	0,00	0.00	100.00	2.5"	coarse gravel	
	2.0"	97.28	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	97.28	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	97.28	0.00	0.00	100.00	1.0"	coarse gravel	
	0,75"	97.28	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	113.92	16.64	7.49	92.51	0.50"	line gravel	
	0.375"	134.55	37.27	16.78	83.22	0.375"	fine gravel	
	#4	195.22	97.94	44.09	55.91	#4	coarse sand	
	#10	244.50	147.22	66.28	33.72	#10	medium sand	
	#20	277.32	180.04	81.05	18.95	#20	medium sand	
	#40	295.92	198.64	89.43	10.57] #40	fine sand	
	#60	305.90	208.62	93.92	6.08	#60	fine sand	
	#100	312.04	214.76	96.68	3.32	#100	fine sand	
	#200	316.61	219.33	98.74	1.26	#200	fines	
								<u> </u>
% C GRAVEL	0.00	-	ive Terms		stly coarse (c)		. .	
% F GRAVEL	44.09	trace	0 to 5%		ostly medium (n	n)	LL	
% C SAND	22.19	little	5 to 12%	< 10% fin	• •		PL	
% M SAND	23.15	some	12 to 30%	< 10% coa		->	PI	
% F SAND	9.31	and	30 to 50%		arse and fine (π	-	Gs	<u> </u>
% FINES	1.26				arse and mediu			
% TOTAL	100.00	1		≥ 10% éq	ual amounts eac	un (c-1)		
	DESCRIPTION	Grav WELL G		ID WITH GRAV	FI trace fines	1		
	DESCRIPTION		INADED SAN		EL, HECE HIES			
	USCS	sw				J	ТЕСН	CB
	Uaca	<u> </u>	1				DATE	
							CHECK REVIEW	

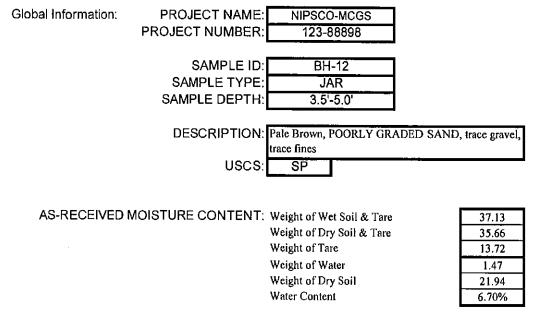


Weight of Dry Soil Water Content

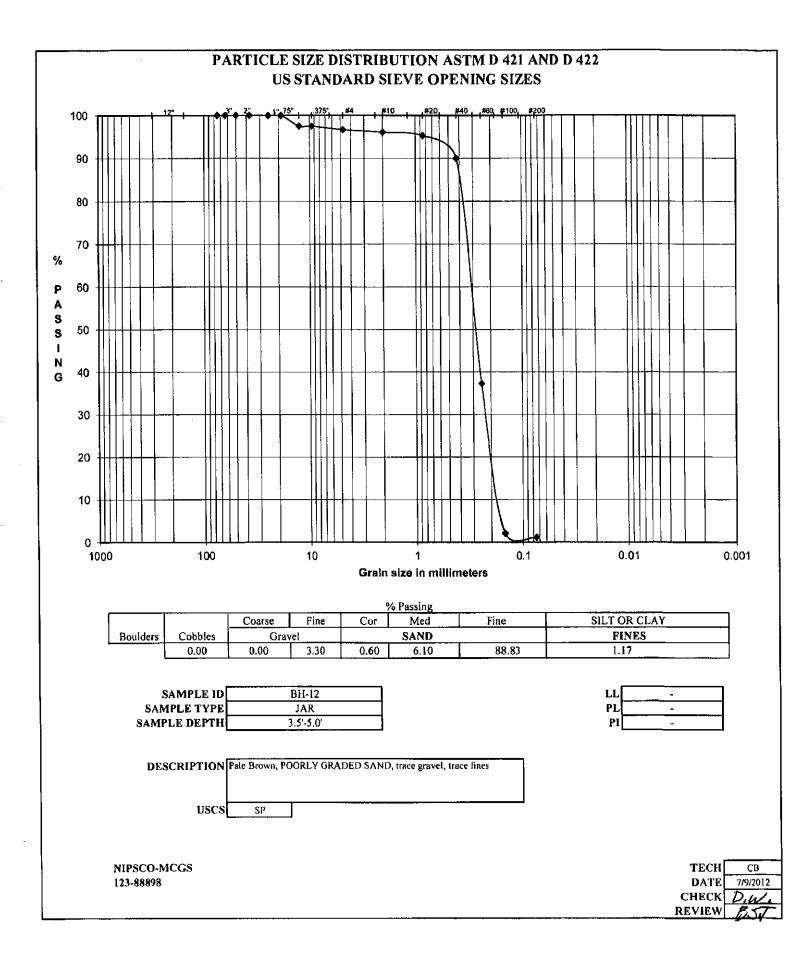

38.62
34.01
14.19
4.61
19.82
23.26%

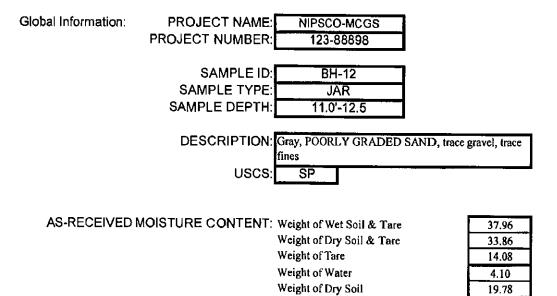
TECH	CB
DATE	07/09/12
СНЕСК	$\mathcal{O}_{\mathcal{W}}$
REVIEW	BST


PROJECT TITLE		NIPSCO	-MCGS]		AMPLE ID		I-11	
PROJECT NO.	123-88898			SAMPLE TYPE			B	BAG	
REMARKS					SAMP	LE DEPTH	11.0	¹ -12,5	
				Hygroscopic M	oisture For Sie	ve Sample	-		
WATER CONTENT (De	elivered Moisture)				Wet Soil & 1	fare (gm)	35.64	
Wt Wet Soil & Tare (gm)		(w1)	38,62			Dry Soil & T	are (gm)	35.56	
Wt Dry Soil & Tare (gm)		(w2)	34.01			Tare Weight	(gm)	14.06	
Weight of Tare (gm)		(w3)	14.19		<u>.</u>	Moisture Co		0.37	
Weight of Water (gm)		(w4=w1-w2)	4.61	Total Weight C	of Sample Used	For Sieve Cor	rected For Hygros	copic Moisture	
Weight of Dry Soil (gm)		(w5=w2-w3)	19,82			Weight Of S	ample (gm)	390.16	
Moisture Content (%)		(w4/w5)*100	23.26			Tare Weigh	t (gm)	97.19	
					(W6)	Total Dry W	eight (gm)	291.88	
SIEVE ANALYSIS				Cumulative					
Tare Weight	-	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
97.47		+Tare		{(wt ret/w6)*100}	(100-%ret)				
	2.0%	07.47	0.00	0.00	100.00	الم د			
	3.0"	97,47	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	97.47	0.00	0.00	100.00	2.5"	coarse gravel		
	2.0"	<u>97.47</u> 97.47	0.00	0.00	100.00	2.0"	coarse gravel		
	1.5" 1.0"	97.47 97.47	0.00	0.00	100.00	1.5"	coarse gravel		
						1.0"	coarse gravel		
	0.75" 0.50"	97.47	0.00	0.00	100.00	0.75"	fine gravel		
		97.47	0.00	0.00	100.00	0.50"	fine gravel		
	0.375"	97.47 98.24	0.00	0.00	100.00 99.74	0.375"	fine gravel coarse sand		
	#4 #10	98.24 98.77	1.30	0.26	99.74	#4 #10	medium sand		
			2.01			-			
	#20 #40	99.48 106.43	8.96	0.69	99.31	#20 #40	medium sand fine sand		
	#40 #60	247.42		3.07	96.93	#40	fine sand		
	#00	377.49	149.95 280.02	51.37 95.94	48.63	-	fine sand		
					4.06	#100			
	#200	383.86	286.39	98.12	1.88	#200	fines		
								-	
% C GRAVEL	0.00	Descript	ive Terms		stly coarse (c)				
% F GRAVEL	0.26	trace	0 to 5%		stly medium (n	ו)	LL		
% C SAND	0.18	little	5 to 12%	< 10% fin	• •		PL	·	
% M SAND	2.62	some	12 to 30%	$< 10\% \cos (10\%)$			PI	·	
% F SAND	95.05	and	30 to 50%		arse and fine (m	-	Gs	<u> </u>	
% FINES	1.88				arse and mediur	.,			
% TOTAL	100.00	J		> 10% equ	al amounts eac	ch (c-f)			
	DESCRIPTION	Pale Brown PC		DED SAND, trac	e gravel trace	٦			
		fines							
		ļ	,]		·	
	USCS	SP					тесн	CB	
							DATE	7/9/2012	
							CHECK	D.W.	
							REVIEW	1 BST	



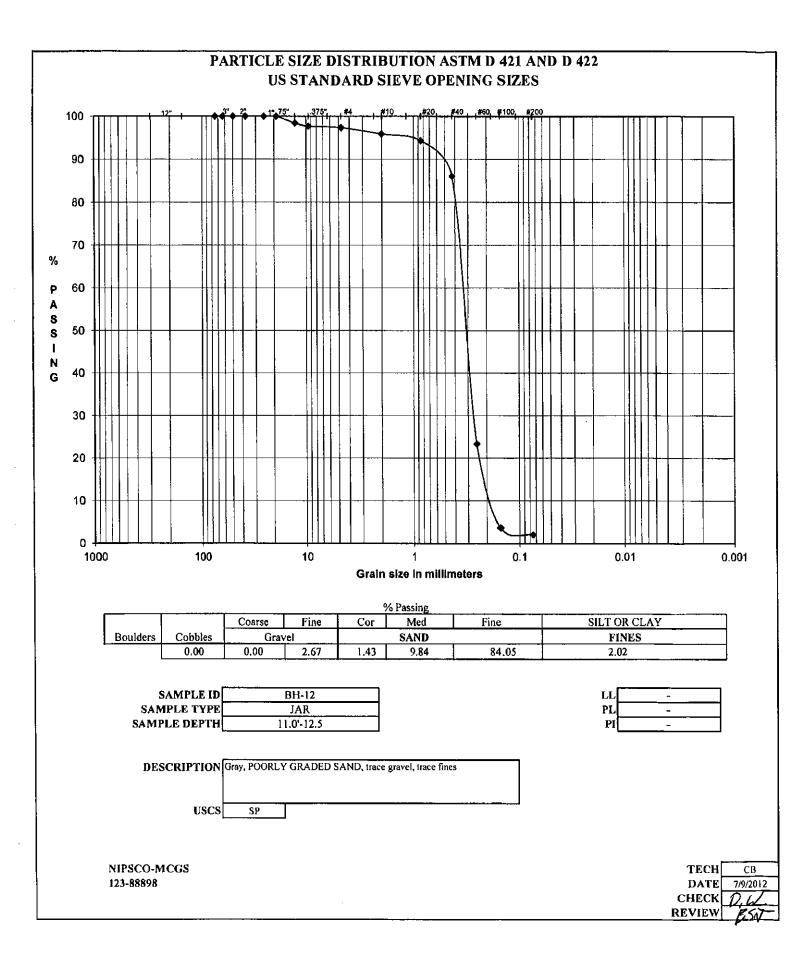
.

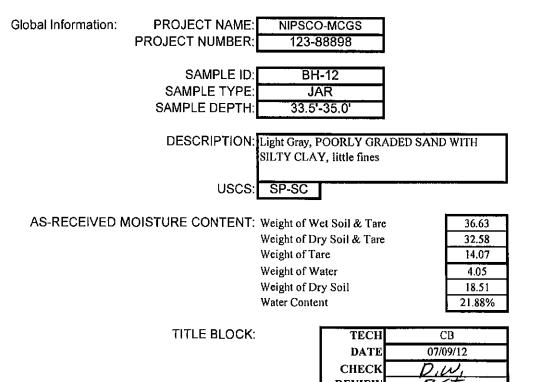

PROJECT TITLE	·	NIPSCO	-MCGS		S	AMPLE ID	BI	
PROJECT NO.		123-88898			SAMPLE			
REMARKS					SAMP	LE DEPTH		-20.0'
-	.			Hygroscopic M				<u></u>
WATER CONTENT (Deli	ivered Moisture	:)				Wet Soil &	Fare (gm)	35.48
Wt Wet Soil & Tare (gm)		(w1)	37.87	1		Dry Soil & 1	fare (gm)	35.45
Wt Dry Soil & Tare (gm)		(w2)	34.11]		Tare Weight	(gm)	13.92
Weight of Tare (gm)		(w3)	14.07			Moisture Co	ntent (%)	0.14
Weight of Water (gm)		(w4=w1-w2)	3.76	Total Weight C	of Sample Used	For Sieve Co	rrected For Hygros	scopic Moisture
Weight of Dry Soil (gm)		(w5=w2-w3)	20.04			Weight Of S	ample (gm)	421.63
Moisture Content (%)		(w4/w5)*100	18.76			Tare Weigh	t (gm)	99.85
					(W6)	Total Dry W	/eight (gm)	321.33
OTEVE ANAL VOIO				Currentedure				
SIEVE ANALYSIS		Wt Ret	(W/t Tana)	Cumulative	0/ 04 66	0 IEVE		
Tare Weight 99.97	1	+Tare	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
	1	Tale		{(wt ret/w6)*100}	(100-%ret)			
	3.0"	99.97	0.00	0,00	100.00	3.0"	coarse gravel	
	2.5"	99.97	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	99.97	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	99.97	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	99.97	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	112.71	12.74	3.96	96.04	0,75"	fine gravel	
	0.50"	121.02	21.05	6.55	93.45	0.50"	fine gravel	
	0.375"	122.32	22.35	6.96	93.04	0.375"	fine gravel	
	#4	136.37	36.40	11.33	88.67	#4	coarse sand	
	#10	162.82	62.85	19.56	80.44	#10	medium sand	
	#20	180.82	80.85	25.16	74.84	#20	medium sand	
	#40	202.09	102.12	31.78	68.22	#40	fine sand	
	#60	340.79	240.82	74.94	25.06	#60	fine sand	
	#100	416.51	316.54	98,51	1.49	#100	fine sand	
	#200	419.67	319.70	99.49	0.51	#200	fines	
% C GRAVEL	3.96	Descripti	ve Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	7.36	trace	0 to 5%		stly medium (n	1)	LL	-
% C SAND	8.23	little	5 to 12%	< 10% fine	e (c-m)		PL	-
% M SAND	12.22	some	12 to 30%	< 10% coa			PI	-
% F SAND	67.71	and	30 to 50%	< 10% coa	urse and fine (m)	Gs	-
% FINES	0.51			< 10% coa	urse and mediur	n (f)		
% TOTAL	100.00			> 10% equ	ial amounts eac	h (c-f)		
	CODERTON	Light Course DI-	ak BOOR V		<u> </u>	1		
DI	ESCRIPTION	trace fines	UK, POOKLY	GRADED SANI), nuie gravel,			
	USCS	SP]	TROF	0.0
	0303	ər]					TECH	CB
							DATE	7/9/2012
							CHECK REVIEW	
							REVIEW	/S- <u>_</u> _/



TECH	CB
DATE	07/09/12
CHECK	C.W.
REVIEW	BSAT

PROJECT TITLE		NIPSCO	-MCGS			AMPLE ID	BH	1-12
PROJECT NO.		123-88898			SAM	IPLE TYPE	J	AR
REMARKS						LE DEPTH	3.5'-5.0'	
				Hygroscopic M	loisture For Sie	ve Sample		
WATER CONTENT (D	elivered Moisture)				Wet Soil & T	Fare (gm)	37.56
Wt Wet Soil & Tare (gm)		(w1)	37.13			Dry Soil & 1	`are (gm)	37.43
Wt Dry Soil & Tare (gm)		(w2)	35.66			Tare Weight	(gm)	14.09
Weight of Tare (gm)		(w3)	13.72			Moisture Co		0.56
Weight of Water (gm)		(w4≐w1-w2)	1.47	Total Weight C)f Sample Used	For Sieve Cor	rected For Hygros	copic Moisture
Weight of Dry Soil (gm)		(w5=w2-w3)	21.94	Į		Weight Of S	ample (gm)	361.93
Moisture Content (%)		(w4/w5)*100	6,70			Tare Weigh	t (gm)	96.05
					(W6)	Total Dry W	eight (gm)	264.41
SIEVE ANALYSIS				Cumulative				
Tare Weight	_	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
96.07		+Tare		{(wt ret/w6)*100}	(100-%ret)			
	1	r ·		,		1		
	3.0"	96.07	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	96.07	0.00	0,00	100.00	2.5"	coarse gravel	
	2.0"	96.07	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	96.07	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	96,07	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	96.07	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	102.72	6,65	2.52	97.48	0.50"	fine gravel	
	0.375"	102.72	6.65	2.52	97.48	0.375"	fine gravel	
	#4	104.80	8.73	3.30	96.70	#4	coarse sand	
	#10	106.38	10.31	3.90	96.10	#10	medium sand	
	#20	108.53	12.46	4.71	95.29	#20	medium sand	
	#40	122.52	26.45	10.00	90.00	#40	fine sand	
	#60	261.95	165,88	62.74	37.26	#60	fine sand	
	#100	354.95	258.88	97.91	2.09	#100	fine sand	
	#200	357.39	261.32	98.83	1.17	#200	fines	
% C GRAVEL	0.00	Descript	ive Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	3.30	· ·	0 to 5%		stly medium (n	1)	LL	-
% C SAND	0.60	little	5 to 12%	< 10% fin			PL	_
% M SAND	6,10	some	12 to 30%	< 10% coa			PI	-
% F SAND	88.83	and	30 to 50%		arse and fine (m	1)	Gs	
% FINES	1.17	1			arse and mediu	•		L
% TOTAL	100.00	1			ual amounts ead	• •		
	<u> </u>	J		-				
1	DESCRIPTION	Pale Brown, PO fines	OORLY GRAE	DED SAND, trac	e gravel, trace]		
	HEZE	<u> </u>				J	TRAD	
	USCS	SP]				TECH	CB
							DATE	7/9/2012
							CHECK	
							REVIEW	105/

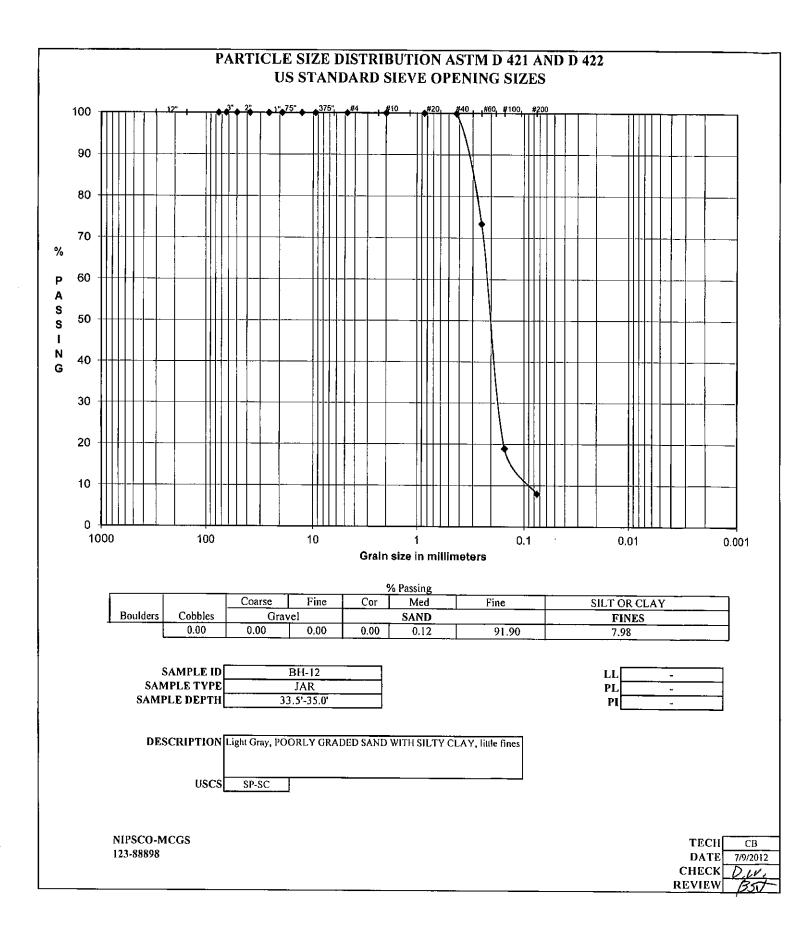



TITLE BLOCK:

Water Content

	20.73%
TECH	CB
DATE	07/09/12
CHECK	Dyla.
REVIEW	BST

PROJECT TITLE	NIPSCO-MCGS				S	AMPLE ID	BI	[-12
PROJECT NO.	· ····	123-88898				PLE TYPE		AR
REMARKS				1		LE DEPTH		-12.5
				Hygroscopic M			•	
WATER CONTENT (Deliv	ered Moisture)				Wet Soil & T	are (gm)	33.15
Wt Wet Soil & Tare (gm)		(w1)	37.96			Dry Soil & T	are (gm)	33.13
Wt Dry Soil & Tare (gm)		(w2)	33.86			Tare Weight	(gm)	13.99
Weight of Tare (gm)		(w3)	14.08	-		Moisture Co	ntent (%)	0.10
Weight of Water (gm)		(w4=w1-w2)	4.10	Total Weight C	of Sample Used	For Sieve Cor.	rected For Hygros	copic Moisture
Weight of Dry Soil (gm)		(w5=w2-w3)	19.78	ļ		Weight Of Sa	ample (gm)	323.42
Moisture Content (%)		(w4/w5)*100	20.73]		Tare Weight	(gm)	95.50
					(W6)	Total Dry W	eight (gm)	227.68
SIEVE ANALYSIS		111. D .	116 m - 1	Cumulative	A/ 34 60	015145		
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
95,50		+Tare		{(wt ret/w6)*100}	(100-%ret)			
	3.0"	95.50	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	95.50	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	95.50	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	95.50	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	95.50	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	95.50	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	99.03	3.53	1.55	98.45	0.50"	fine gravel	
	0.375"	100.76	5.26	2.31	97.69	0.375"	fine gravel	
	#4	101.57	6.07	2.67	97.33	#4	coarse sand	
	#10	104.82	9.32	4.09	95.91	#10	medium sand	
	#20	108.38	12.88	5.66	94.34	#20	medium sand	
	#40	127.23	31.73	13.94	86.06	#40	fine sand	
	#60	270.08	174.58	76.68	23.32	#60	fine sand	
	#100	314.86	219.36	96.34	3.66	#100	fine sand	
	#200	318.59	223.09	97.98	2.02	#200	fines	
% C GRAVEL	0.00	Descript	ve Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	2.67	trace	0 to 5%		stly medium (n	ı)	$\mathbf{L}\mathbf{L}$	-
% C SAND	1.43	little	5 to 12%	< 10% fin			PL	-
% M SAND	9.84	some	12 to 30%	< 10% coa			PI	-
% F SAND	84.05	and	30 to 50%		arse and fine (m	•	Gs	-
% FINES	2.02				arse and mediur			
% TOTAL	100.00			> 10% eqi	ial amounts eac	h (c-f)		
٦r	SCRIPTION	Gray, POORLY	GRADED S	AND, trace grave	l. trace fines	1		
				,		1		
	USCS	SP				J	тесн	СВ
	0303						DATE	7/9/201
							CHECK	Dia
							CHECK	V.V.1



REVIEW

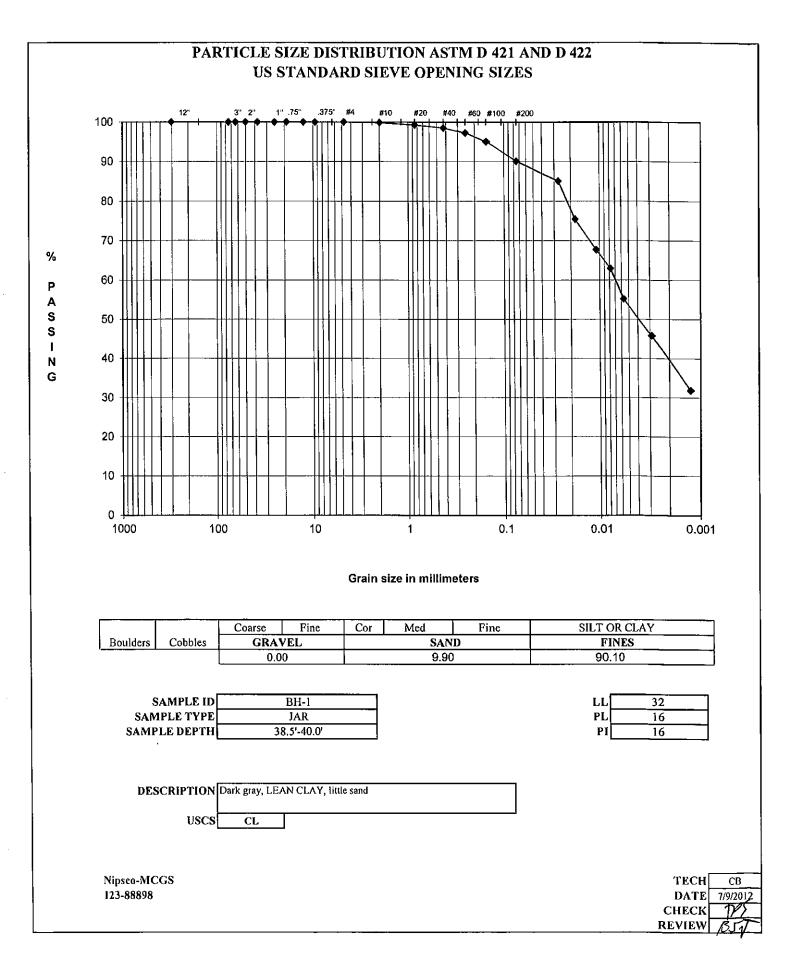
BST

PROJECT TITLE	[NIDOCO	MCCS		0				
PROJECT NO.	NIPSCO-MCGS 123-88898			I		AMPLE ID		I-12	
		123-88898		SAMPLE TYPE				JAR	
REMARKS	<u></u>				SAMPLE DEPTH 33.5'- Hygroscopic Moisture For Sieve Sample			-35.0'	
WATER CONTENT (Deli	ivered Moisture			Flygroscopic IV	loisture Por Sie	-	'ene (am)	22.60	
WATER CONTENT (Den Wt Wet Soil & Tare (gm)	ivereu moisture	;) (w1)	36.63	-		Wet Soil & T		33.58	
Wt Dry Soil & Tare (gm)		(w1) (w2)	32,58	-		Dry Soil & T	· • ·	33.49	
Weight of Tare (gm)		(w2) (w3)	14.07	4		Tare Weight		13.64	
Weight of Water (gm)		(w3) (w4=w1-w2)	4.05	Total Walaht C	Converte Line d	Moisture Co	rected For Hygros	0.45	
Weight of Dry Soil (gm)		(w4=w1-w2) (w5=w2-w3)	18.51		of Sample Osed				
Moisture Content (%)		(w4/w5)*100	21.88	-		Weight Of Sa Tare Weight		342.16	
Moisture Content (76)		(~~~).100[21.00	-	(W6)	Total Dry We		96.34 244.71	
	· · · · · ·	 .		.1	(₩0)	TOTAL DLY W	erBur (Bui)	244.71	
SIEVE ANALYSIS				Cumulative					
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
96.36]	+Tare	. ,	{(wt ret/w6)*100}	(100-%ret)				
	3								
	3.0"	96.36	0.00	0.00	100.00	3.0"	coarse gravel		
	2.5"	96.36	0.00	0.00	100.00	2.5"	coarse gravel		
	2.0"	96.36	0.00	0.00	100.00	2.0"	coarse gravel		
	1.5"	96.36	0.00	0.00	100.00	1.5"	coarse gravel		
	1.0"	96.36	0.00	0.00	100.00	1.0*	coarse gravel		
	0.75"	96,36	0.00	0.00	100.00	0.75"	fine gravel		
	0.50"	96,36	0.00	0.00	100.00	0.50"	fine gravel		
	0.375"	96.36	0.00	0.00	100.00	0.375"	fine gravel		
	#4	96.36	0.00	0.00	100.00	#4	coarse sand		
	#10	96.36	0.00	0.00	100.00	#10	medium sand		
	#20	96.40	0.04	0.02	99.98	#20	medium sand		
	#40	96.66	0.30	0.12	99.88	#40	fine sand		
	#60	161.51	65.15	26.62	73.38	#60	fine sand		
	#100	294.83	198.47	81.10	18.90	#100	fine sand		
	#200	321.54	225.18	92.02	7.98	#200	fines		
								···	
% C GRAVEL	0.00	Descript	ive Terms	> 10% mo	stly coarse (c)				
% F GRA VEL	0.00	trace	0 to 5%		stly medium (m)	LL	-	
% C SAND	0.00	little	5 to 12%	< 10% fine			PL,		
% M SAND	0.12	some	12 to 30%	< 10% coa	rse (m-f)		PI	-	
% F SAND	91.90	and	30 to 50%		rse and fine (m)	Gs		
% FINES	7.98]		< 10% coa	rse and mediun	1 (f)		•	
% TOTAL	100.00]			al amounts eac				
וח	ESCRIPTION	Light Grove PO	OPI V CD AD	ED SAND WITH		1			
	ESCRIPTION	CLAY, little fit		ED SAND WIT	1 31211				
	USCS	SP-SC		·····		I .	TECH	СВ	
	0000	L. 01-5C	l				DATE	7/9/2012	
							CHECK		
							REVIEW	PST	
							115 7 15 77	⊥ <i>F</i> ?V	

Global Information:	PROJECT NAME:	Nipsco-MCGS	7
	PROJECT NUMBER:	123-88898]
			-
	SAMPLE ID:	BH-1	
	SAMPLE TYPE:	JAR	
	SAMPLE DEPTH:	38.5'-40.0']
		ark gray, LEAN CLAY, litt	le sand
	USCS:	CL	

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

.


24.87
23.03
14.08
1.84
8.95
20.56%

TECH	СВ
DATE	07/09/12
СНЕСК	TP
REVIEW	175V

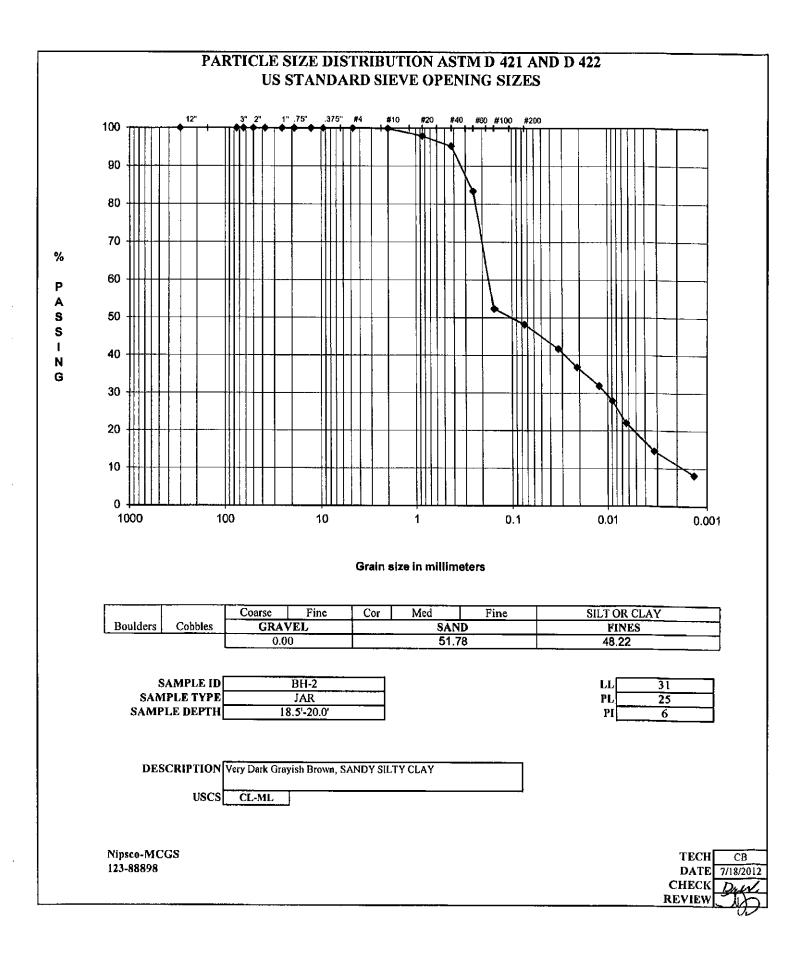
			AT	TERBER(ASTM D		8				
PROJECT TITLE PROJECT NUMB]	SAMPLE SAMPLE SAMPLE	-	BH-1 JAR 38.5'-40.0'		
SAMPLE PREPAI We	RATIO			Mir	us #40 Sieve		Yes	(yes or no)	
			PLASTIC LI	IMIT DETER					RAL MOISTU	RE
Weight of Wet Soil &	Tare	(W1)	19.58	19.18			f Wet Soil &		24.87	NL
Weight of Dry Soil &		(W2)	18.81	18.48		-	f Dry Soil &		23.03	
Weight of Tare		(W3)	14.06	14.11			Weight of		14.08	
Weight of Water		(W4≍W1-W2)	0.77	0.70			Weight of V		1.84	
Weight of Dry Soil		(W5=W2-W3)	4.75	4.37	1	V	eight of Dry		8.95	
Water Content		(W4/W5)*100		16.02%	1		Water Co		20.56%	
		• • •		MIT DETER	MINATION			<u> </u>		
Range of Blows]	25 - 35	20 - 30	15 - 25					
Number of Blows			33	20	18					
Weight of Wet Soil &	Tare	(W6)	25.18	25.94	24.35		Blow	,	25	
Weight of Dry Soil &		(W7)	22.54	23.05	21.65		K - Va	ue	1	
Weight of Tare		(W8)	13.93	14.29	13.74					
Weight of Water		(W9=W6-W7)	2.64	2.89	2.70					
Weight of Dry Soil		W10=W7-W8)	8.61	8.76	7.91					
Water Content		(W9/W10)*100	30.66%	32.99%	34.13%	1				
Moisture content at 25	5 blow		32.38%	-						
LIQUID LIMIT (WI	l)	32.38	32	DES	CRIPTION:	Dark gray,	LEAN CLA	VY, lit	tle sand	
PLASTIC LIMIT (V		16.11	16							1
PLASTICITY INDE			16	ļ						
LIQUIDITY INDEX			0.28	ļ	USCS	CL				
MOISTURE CONT	ENT		20.56%	J						
60%		Mois	ture Content v	s. N- Value		y = -0.002	1x + 0.376	3		
55%										
1										
50%		·····			· ·					
× 45%							<u>+</u>			
ย์ 40% —										
 ق 35%										
ä 30% —			╼┾╼╼┿							
v 40% ↓ v 40% ↓ v 35% ↓ 30% ↓ 25% ↓										
20%										
15%		[<u></u>			тесн	CB
10% +		I	25	I	L		⊥ ₄∩≀		DATE	7/9/2012
10				Value			100	,	СНЕСК	TP>>
									REVIEW	<u></u>

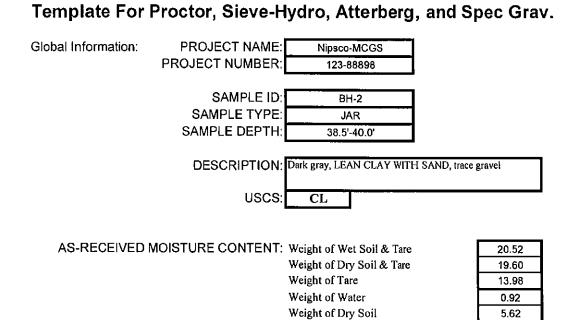
		A			IN SIZE ANAL D421, D422, D11			- <u></u>		
PROJECT TITLE		Nipsco-N	40.68			SAMPLE ID		BH-	1	
PROJECT NO.	123-8	88898	1000		1	SAMPLE TYP	F.	JAF		
						SAMPLE DEP		38.5'-4		
AS RECEIVED V	WATER CO	NTENT			pic Moisture	Wet Soil & Tare (gn	•	29.42		
W. W. O. D. & T ()		aun	24.07	For Sieve	e Sample	Dry Soil & Tare (gr	ı)	29.00		
Wt. Wet Soil & Tare (gm) Wt. Dry Soil & Tare (gm)		(W1) (W2)	24.87 23.03			Tare Weight (gm) Moisture Content (9	2)	13.91 2.78		
Weight of Tare (gm)		(W3)	14.08	Total Wei	ght of Sample Used				nic Moistur	'e
Weight of Water (gm)		(W4=W1-W2)	1.84			ore Separating On Th				•
Weight of Dry Soil (gm)		(W5=W2-W3)	8.95			Ť	are Weight (gm)	95.03		
Moisture Content (%)		(W4/W5)*100	20.56%				otal Weight (gm)	256.18	(W6)	
Plus #4 Material		n	13.00	(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING	1.00			
TARE WEIGHT	0.00		12.0"	0.00	0.0	100.0	12.0"	cobbles		
			3.0" 2.5"	0.00	0.0	100.0	3.0" 2.5"	coarse gravel coarse gravel		
			2.0"	0.00	0.0	100.0	2.0"	coarse gravel		
			1.5"	0.00	0.0	100.0	1.5"	coarse gravel		1
			1.0"	0.00	0.0	100.0	1.0"	coarse gravel		
			0.75"	0.00	0.0	100.0	0.75"	fine gravel		
			0.50"	0.00	0.0	100.0	0.50"	fine gravel		
			0.375"	0.00	0.0	100.0	0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETER Specific Gravity Amount Dispersing Agent	(assumed)				Weight of Sample Weight of Sample Wet Calculated Dry WI, use	or Dry (gin)	rometer Tes 53.36 51.92) 		
Type Dispersion Device		Mechanical			Hydrometer Bulb Numb		624378			
Length of Dispersion Perio	od	1 Minute			% Pass #4 Sieve For W	hole Sample	100.00			
TARE WEIGHT	28.05] HYDROMI	ETER BAC		ercent Passing #10 Cumul Wt.		1			
			#10	(Wt+Tare) 28.13	Retained 0.08	% PASSING 99.8	#10	medium sand		
			#20	28.44	0.39	99.2	#10	medium sand		
			#40	28.84	0.79	98.5	#40	fine sand		
			#60	29.49	1.44	97.2	#60	fine sand		
			#100	30.63	2.58	95.0	#100	fine sand		
		INPROVE	#200	33.19	5.14	90.1	#200	fines		
DATE	TIME	HYDROME ET	READING	TEMP	S TEMP.COR.	HYD.COR.	READING	EFFECTIVE	r	
7/19/2012	1:26	(min)	R		K	Cc	C	LENGTH	А	
7/19/2012	1:28	2.00	50.0	21.00	0.013	5.83	44.17	8.1	1.00	
7/19/2012	1:31	5.00	45.0	21.00	0.013	5.83	39.17	8.9	1.00	
7/19/2012	1:41	15.00	41.0	21.00	0.013	5.83	35.17	9.6	1.00	
7/19/2012	1:56	30.00	38.5	21.00	0.013	5.83	32.67	10.1	1.00	
7/19/2012	2:26	60.00	34.5	21.00	0.013	5.83	28.67	10.7	1.00	
7/19/2012	5:36	250.00	29.5	21.40	0.013	5.70	23.80	11.5	1.00	
7/20/2012	1:26	1440.00	22.0 ZE PERCE	22.10	0.013	5.47	16.53	12.7	1.00	
Particle Diameter	% PASSING		LE FERCE	0.00	-	Departmention	Darls arrest I	CANCE AV 1	641 + + + + + +	
0.0271	85.1	% COBBLES % COARSE GRAV	FL.	0.00			Dark gray, L	EAN CLAY, I	ittle sand	
0,0180	75.4	% FINE GRAVEL	-	0.00	0.00	USCS	CL	T		
0.0108	67.7	% COARSE SAND		0.15		1 2200	L	-		
0.007B	62.9	% MEDIUM SAND	i	1.37]	32	LL			
0,0057	55.2	% FINE SAND		8.38	9.90	16]PL			
0.0029	45.8	% FINES		90.10		16	РІ		TECH	
0.0013	31,8	% TOTAL SAMPL	E	100.00	J				DATE	
									CHECK	PS,
									REVIEW	レベンズ

1

Global Information:	PROJECT NAME: PROJECT NUMBER:	Nipsco-MCGS 123-88898]
	SAMPLE ID: SAMPLE TYPE: SAMPLE DEPTH:	BH-2 JAR 18.5'-20.0'	
	DESCRIPTION:	Very Dark Grayish Brown, S	SANDY SILTY CLAY
	USCS:	CL-ML	

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content


19.93
17.34
11.68
2.59
5.66
45.76%

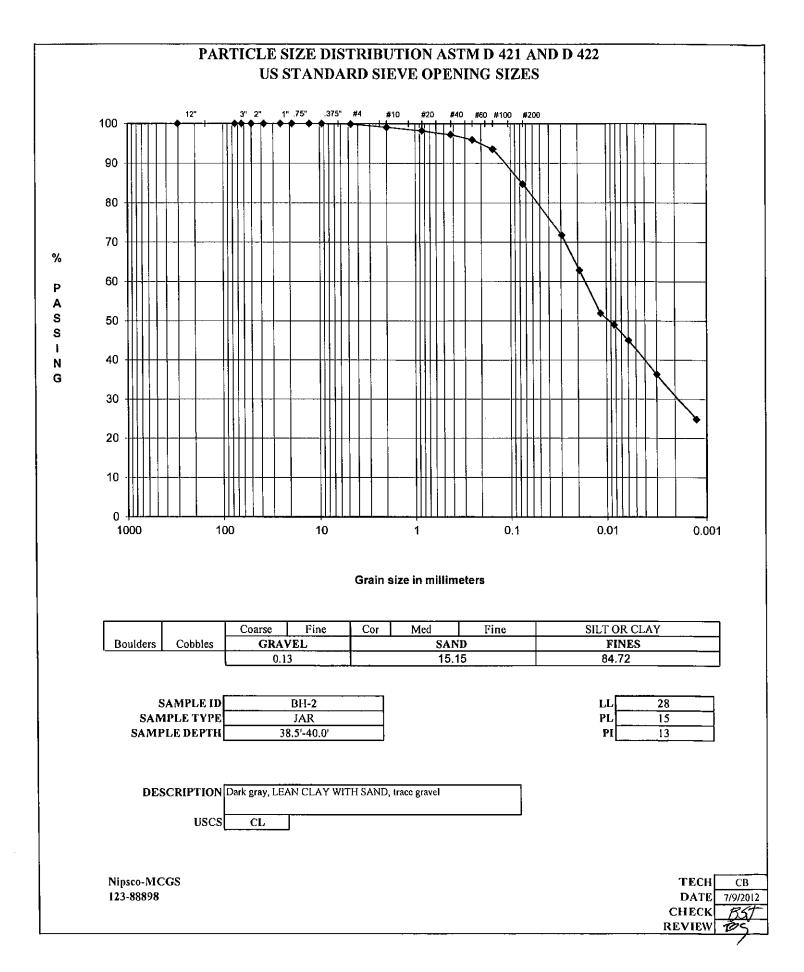

DATE	07/18/12
	07/16/12
СНЕСК /	$\mathcal{D}_{i}\mathcal{W}_{i}$
REVIEW	100

				AT	TERBER ASTM D		S				
PROJE	CT TITL	E	Nit	sco-MCGS			SAMPLE ID	Г	BH-2		
PROJE	CT NUM	BER	123-888]	I	SAMPLE TYPE	ļ	JAR		
							SAMPLE DEPTH	L	18.5'-20	<u>.0'</u>	
SAMPI	LE PREPA	ARATIO	N								
	Ŷ	Vet or Dry	Wet		Mir	us #40 Sieve	Yes		(yes or no)		
				PLASTIC L	IMIT DETER	MINATION		NATU	RAL MOISTU	RE	
Weight o	of Wet Soil	& Tare	(W1)	18.28	18.05		Weight of Wet Soil	-	19.93		
Weight o	of Dry Soil a	& Tare	(W2)	17.50	17.20		Weight of Dry Soil	& Tare	17.34		
Weight o	of Tare		(W3)	14.31	13.92		Weight	of Tare	11.68		
Weight o			(W4=W1-W2)	0.78	0.85		Weight of	Water	2.59		
-	of Dry Soil		(W5=W2-W3)	3.19	3.28		Weight of D	ry Soil	5.66		
Water Co	ontent		(W4/W5)*100	24.45%	25.91%		Water C	Content	45.76%		
				LIQUID LI	MIT DETER	<u>MINATION</u>					
Range of	fBlows			25 - 35	20 - 30	15 - 25					
	of Blows			28	26	15					
Weight o	of Wet Soil	& Tare	(W6)	26.36	28.43	24.22	Bic	w	25		
-	of D r y Soil a	& Tare	(W7)	23.46	25.10	21.67	K-V	'alue	1		
Weight o			(W8)	14.03	14.34	14.09					
Weight o			(W9 ≕ W6-W7)	2.9 0	3.33	2.55					
_	of Dry Soil		W10=W7-W8)	9.43	10.76	7.58					
Water Co	ontent		(W9/W10)*100	30.75%	30.95%	33.64%	l				
Moisture	content at	25 blow		31.32%]						
LIQUID	LIMIT (V	VD	31.32	31	DES	CRIPTION:	Very Dark Grayish B	Brown,	SANDY SILTY	CLAY	
PLASTI	CLIMIT	(Wp)	25.18	25							
PLASTI	ICITY IND	EX (Ip)		6							
LIQUID	ITY INDE	X (I)		3.43]	USCS	CL-ML				
MOIST	URE CON	TENT		45.76%							
	000/		Mois	ture Content v	s. N- Value	y = -(0.0023x + 0.3707				
	60% T							ן ן			
	55%										
	50%	• • • • • • · · · · · · · · · · · · · ·									
%	45%	· ·		— ——-}			╎╶╶┠╌╍╴┠╶╍╴				
cut,	40%		· · · · · · · · · · · · · · · · · · ·								
ont	35%										
Moisture Content, %	30%			╾┼╾╾┼							
loist	25%										
Σ	20%										
]			
	15%							1	ТЕСН	СВ	
	10% 10	· · · · · · · · · · · · · · · · · · ·	h	25	<u> </u>	l		- 00	DATE	7/18/2012	
	10				Value		I	~	CHECK	D.W.	
L									REVIEW	(λ)	

				• • • • • • • • • • • • • • • • • • • •	IN SIZE ANAL 0421, D422, D11		4		······	
PROJECT TITLE		Nipsco-	MCGS			SAMPLE ID	٦	BH-2	2	
PROJECT NO.	123-	88898				SAMPLE TYPE	3	JAR	-	
	1					SAMPLE DEPT	н	18.5'-2	0.0'	
AS RECEIVED	WATER CO	DNTENT			pic Moisture	Wet Soil & Tare (gm	· •	26.35	_	
Wt, Wet Soil & Tare (gm)	`	(WI)	19.93	For Sieve	Sample	Dry Soil & Tare (gm Tare Weight (gm))	26.23		
Wt, Dry Soil & Tare (gn)		(W1) (W2)	17.34			Moisture Content (%		0.99		
Weight of Tare (gm)		(W3)	11.68	Total Weig	t of Sample Used				ic Moistu	re
Weight of Water (gm)		(W4=W1-W2)	2.59			fore Separating On Th		345.21		
Weight of Dry Soil (gin)		(W5=W2-W3)	5.66			Ta	re Weight (gm)	96.02		
Moisture Content (%)		(W4/W5)*100	45.76%				tal Weight (gm)	246.74 ((W6)	
Plus #4 Material		,		(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING				
TARE WEIGHT	0.00		12.0"	0.00	0.0	100.0		cobbles		
			3.0"	0.00	0.0	100.0		coarse gravel		
			2.5" 2.0"	0.00	0.0	100.0		coarse gravel		
			1.5"	0.00	0.0	100.0		coarse gravel		
ł			1.0"	0.00	0.0	100.0		coarse gravel		
			0.75"	0.00	0.0	100.0		fine gravel		
			0.50"	0.00	0.0	100.0		fine gravel		
			0.375"	0.00	0.0	100.0	0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETER	RANALYSI	\$			Weight of Sampl	e Used For Hyd	rometer Tes		-	
Specific Gravity	(assumed)	2.65			Weight of Sample Wet	-	51.16	- I		
Amount Dispersing Agent	t (ml)	125.00	1		Calculated Dry Wt. use		50.66			
Type Dispersion Device	. ()	Mechanical			Hydrometer Bulb Num		624378			
Length of Dispersion Perio	od	I Minute			% Pass #4 Sieve For W		100.00			
TARE WEIGHT	30.83] HYDROM	ETER BACI	KSIEVE (P	ercent Passing #1 Cumul Wt.	U - #ZUU Sieves)				
				(Wt+Tare)	Retained	% PASSING				
			#10	30.90	0.07	99.9	#10	medium sand		
			#20	31.90	1.07	97.9	#20	medium sand		
			#40	33.24	2.41	95.2	N40	fine sand		
			#60	39.25 54.99	8.42 24.16	83.4	#60	fine sand		
			#100 #200	57.06	26.23	<u>52.3</u> 48.2	#100 #200	fine sand fines		
		HYDROME		L		1012				
DATĚ	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	1:24	(min)	R	Т	К	Cc	С	LENGTH	Α	
7/19/2012	1:26	2.00	27.0	21.00	0.013	5.83	21.17	11.9	1.00	
7/19/2012	1:29	5.00	24.5	21.00	0.013	5.83	18.67	12.4	1.00	
7/19/2012	1:39	15.00	22.0	21.00	0.013	5.83	16.17	12.7	1.00	
7/19/2012	1:54 2:24	30.00	20.0 17.0	21.00 21.00	0.013	5.83	14.17	13.0	1.00	
7/19/2012	2:24 5:34	250.00	13.25	21.00	0.013	5.83 5.83	11.17 7.42	13.5 14.2	1.00 1.00	
7/20/2012	1:24	1440.00	10.20	20.90	0.014	5.87	4.13	14.7	1.00	
			ZE PERCE						1,00	L
Particle Diameter	% PASSING			0.00	1	Description	Very Dark G	rayish Brown,	SANDY SI	LTY CLAY
0.0329	41.8	% COARSE GRAV	ÆL.	0.00	1	7				
0.0212	36.9	% FINE GRAVEL		0.00	0.00	USCS	CL-ML			
0.0124	31.9	% COARSE SAND	1	0.14			•	-		
0.0089	28.0	% MEDIUM SAN	0	4.62	a a a a a a a a a a	31	LL			
0.0064	22.0	% FINE SAND		47.02	51.78	25	PL			
0.0032	14.6	% FINES	-	48.22	4	6	PI		TECH	
0.0014	8.2	% TOTAL SAMPL	E.	100.00	J					7/18/2012
									REVIEW	D.W.
L									AND T LETT	<u>₩/</u>

.

Water Content

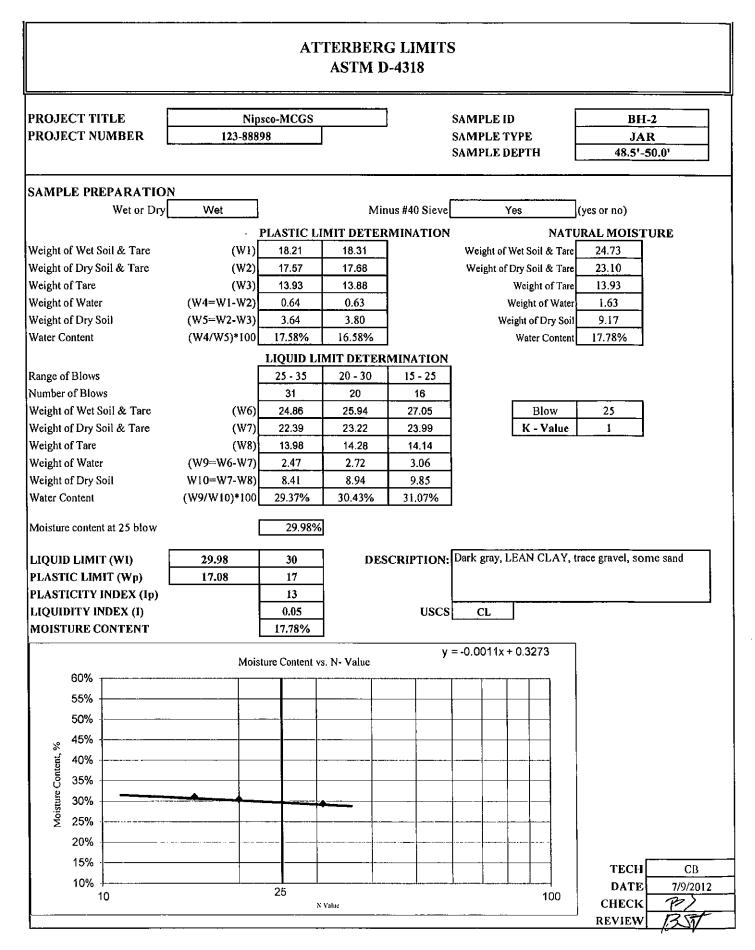

TITLE BLOCK:

TECH	СВ
DATE	07/09/12
CHECK	ËST
REVIEW	191
	7

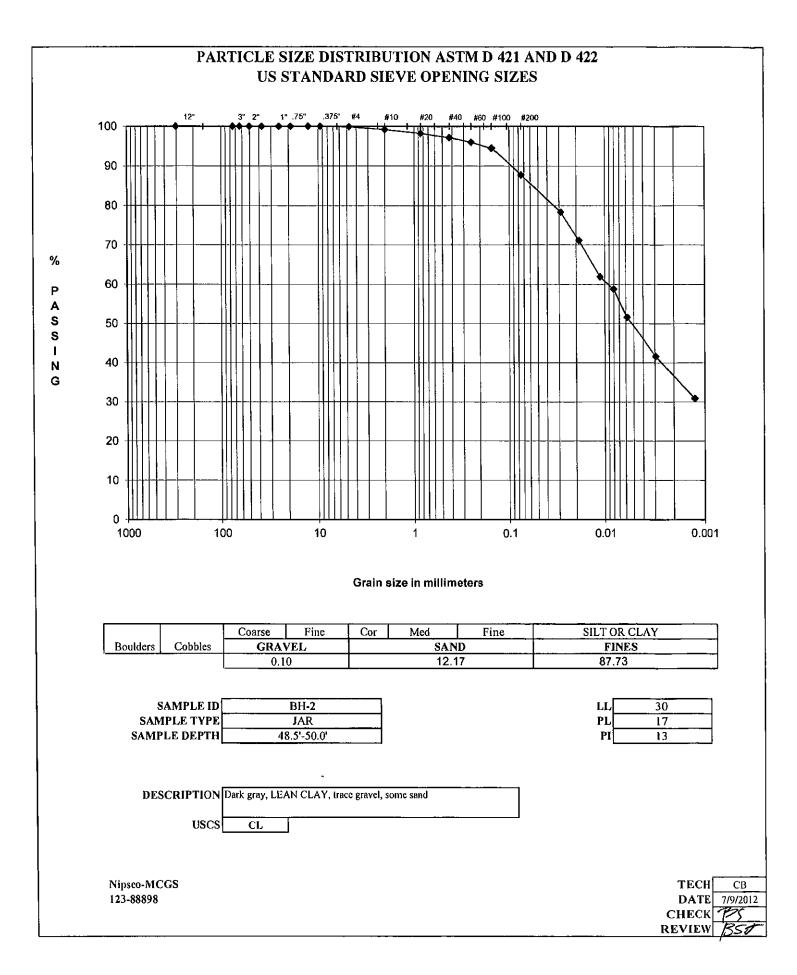
16.37%

		AT	TERBER ASTM D		8	
PROJECT TITLE PROJECT NUMBER		sco-MCGS 98]	SAMPLE ID SAMPLE TYPE SAMPLE DEPTH	BH-2 JAR 38.5'-40.0'
SAMPLE PREPARA	TION					
Wet or	r Dry Wet		Mir	us #40 Sieve	Y o s	(yes or no)
		PLASTIC LI	IMIT DETER	MINATION	NA'	TURAL MOISTURE
Weight of Wet Soil & Ta	re (W1)	18.27	18.40		Weight of Wet Soil & Ta	
Weight of Dry Soil & Tar	re (W2)	17.70	17.83		Weight of Dry Soil & Ta	
Weight of Tare	(W3)	13.98	13.99		Weight of Ta	ure 13.98
Weight of Water	(W4=W1-W2)	0.57	0.57		Weight of Wat	ter 0.92
Veight of Dry Soil	(W5≂W2-W3)	3.72	3.84		Weight of Dry So	oil 5.62
Water Content	(W4/W5)*100	15.32%	14.84%	}	Water Conte	ant 16.37%
	_	LIQUID LI	MIT DETER	MINATION	1	
Range of Blows		25 - 35	20 - 30	15 - 25]	
Number of Blows		32	24	19		
Weight of Wet Soil & Ta	re (W6)	24.50	24.86	24.55	Blow	25
Weight of Dry Soil & Tai	re (W7)	22.33	22.49	22.20	K - Value	e 1
Weight of Tare	(W8)	14.34	14.09	14.04		
Weight of Water	(W9=W6-W7)	2.17	2.37	2.35		
Weight of Dry Soil	W10≕W7-W8)	7.99	8.40	8.16		
Water Content	(W9/W 10)*100	27.16%	28.21%	28.80%		
Moisture content at 25 bl	ow	27.97%]			
LIQUID LIMIT (WI)	27.97	28	DES	CRIPTION	Dark gray, LEAN CLAY	WITH SAND, trace gravel
PLASTIC LIMIT (Wp)		15	1			
PLASTICITY INDEX (13	1			
LIQUIDITY INDEX (I))	0.10	1	USCS	6 CL	
MOISTURE CONTEN		16.37%]			
	Mois	ture Content v	s. N- Value	•	y = -0.0013x + 0.3122	
60%			1			
55%					+	
50%					┼──┼──┼──┤	
× 45%						
ត្ត៍ 40%						
8 35%						
≝ 30%						
is		╼╇┟╌╼╼┼	••			
_						
20%		 -		-		
15%					·	тесн св
10%		25		L		DATE 7/9/2012
10			Value		100	CHECK BSJ
						REVIEW PS

		4			IN SIZE ANAL D421, D422, D11					
PROJECT TITLE		Nipsco-	MCGS			SAMPLE ID		BH-	2	
PROJECT NO.	123-	88898				SAMPLE TYPI	E	JAR		
						SAMPLE DEP		38.5'-4		
AS RECEIVED	WATER CO	NTENT			pic Moisture	Wet Soil & Tare (gn	n)	24.21		
		1		For Sieve	Sample	Dry Soil & Tare (gn	1)	24.20		
Wt. Wet Soil & Tare (gm)		(WI) (W2)	20.52			Tare Weight (gm)	~	0.10		
Wt. Dry Soil & Tare (gm) Weight of Tare (gm)		(W2) (W3)	13.98	Total Weig	ght of Sample Used	Moisture Content (% For Sieve Analysi			nic Moistu	
Weight of Water (gm)		(W4=W1-W2)	0.92	roun neg		fore Separating On Th			pre trabiatui	it.
Weight of Dry Soil (gm)		(W5=W2-W3)	5.62		5 ,		are Weight (gin)			
Moisture Content (%)		(W4/W5)*100	16.37%			To	otal Weight (gm)	277.09	(W6)	
Plus #4 Material		1		(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING	1			
TARE WEIGHT	11.47		12.0"	11.47	0.0	100.0	12.0"	cobbles		
			3.0" 2.5"	<u>11.47</u> 11.47	0.0	100.0	3.0" 2.5"	coarse gravel		
ĺ			2.5" 2.0"	11.47	0.0	100.0	2.5"	coarse gravel coarse gravel		
			1.5"	11.47	0.0	100.0	1.5"	coarse gravel		
			1.0"	11.47	0.0	100.0	1.0"	coarse gravel		
			0.75"	11.47	0.0	100.0	0.75"	fine gravel		
			0.50"	11.47	0.0	100.0	0.50"	fine gravel		
			0.375"	11.47	0.0	100.0	0.375"	fine gravel		
			#4	11.84	0.1	99.9	#4	coarse sand		
HYDROMETER Specific Gravity	HYDROMETER ANALYSIS Weight of Sample Used For Hydrometer Test Specific Gravity (assumed) 2.65 Weight of Sample Wet or Dry (gm) 50.36									
Amount Dispersing Agent	(ml)	125.00			Calculated Dry Wt. use	,	50.31	1		
Type Dispersion Device		Mechanical			Hydrometer Bulb Number 624378					
Length of Dispersion Perio	bd	1 Minute			% Pass #4 Sieve For W	/hole Sample	99.87			
TARE WEIGHT	30.45	HYDROM	ETER BAC	KSIEVE (P	ercent Passing #10 Cumul Wt.	0 - #200 Sieves)				
				(Wt+Tare)	Retained	% PASSING	1			
			#10	30.85	0.40	99.1	#10	medium sand		
			#20	31.29	0.84	98.2	#20	medium sand		
			#40	31.79	1.34	97.2	#40	fine sand		
			#60	32.45	2.00	95.9	#60	fine sand		
			#100 #200	33.64 38.08	3.19 7.63	93.5 84.7	#100 #200	fine sand		
<u> </u>		HYDROME				104.7		fines		
DATE	TIME	ET	READING	ТЕМР	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/9/2012	1:14	(min)	R	Т	ĸ	Cc	С	LENGTH	A	
7/9/2012	1:16	2.00	42.0	21.00	0.013	5.83	36.17	9.4	1.00	
7/9/2012	1:19	5.00	37.5	21.00	0.013	5.83	31.67	10.2	1.00	
7/9/2012	1:29	15.00	32.0	21.00	0.013	5.83	26.17	11.1	1.00	
7/9/2012 7/9/2012	1:44 2:14	30.00 60.00	30.5 28.5	21.00 21.00	0.013 0.013	5.83	24.67	11.4	1.00	
7/9/2012	5:24	250.00	20.5	21.00	0.013	5.83 5.70	22.67 18.30	11.7 12.4	1.00 1.00	
7/10/2012	1:14	1440.00	18.0	22.10	0.013	5.47	12.53	13.3	1.00	
	. 	The second second second	ZE PERCE							L
Particle Diameter	% PASSING	% COBBLES		0.00		Description	Dark gray, L	EAN CLAY W	ITH SAND	, trace
0.0292	71.8	% COARSE GRAV	'EL	0.00		7	gravel			
0.0193	62.9	% FINE GRAVEL		0.13	0.13	USCS	CL			
0.0116	51.9	% COARSE SAND		0.79	4		7			
0.0083	49.0 45.0	% MEDIUM SANI % FINE SAND	,	1.87 12.49	15.15	28	LL PL			
0.0030	36.3	% FINES		84.72	10.10	13	PI		TECH	СВ
0.0013	24.9	% TOTAL SAMPL	E	100.00	i	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	_			7/9/2012
			•	•	-				CHECK	BSV
									REVIEW	PS



Global Information:	PROJECT NAME:	Nipsco-MCGS	7
	PROJECT NUMBER:	123-88898	
	SAMPLE ID:	8H-2	
	SAMPLE TYPE:	JAR	
	SAMPLE DEPTH:	48.5'-50.0'	
	DESCRIPTION; D	vark gray, LEAN CLAY, ti	ace gravel, some sand
	11000		
	USCS:	CL	
AS-RECEIVED	MOISTURE CONTENT: W	Veight of Wet Soil & Ta	are 24,73
		Veight of Dry Soil & Ta	

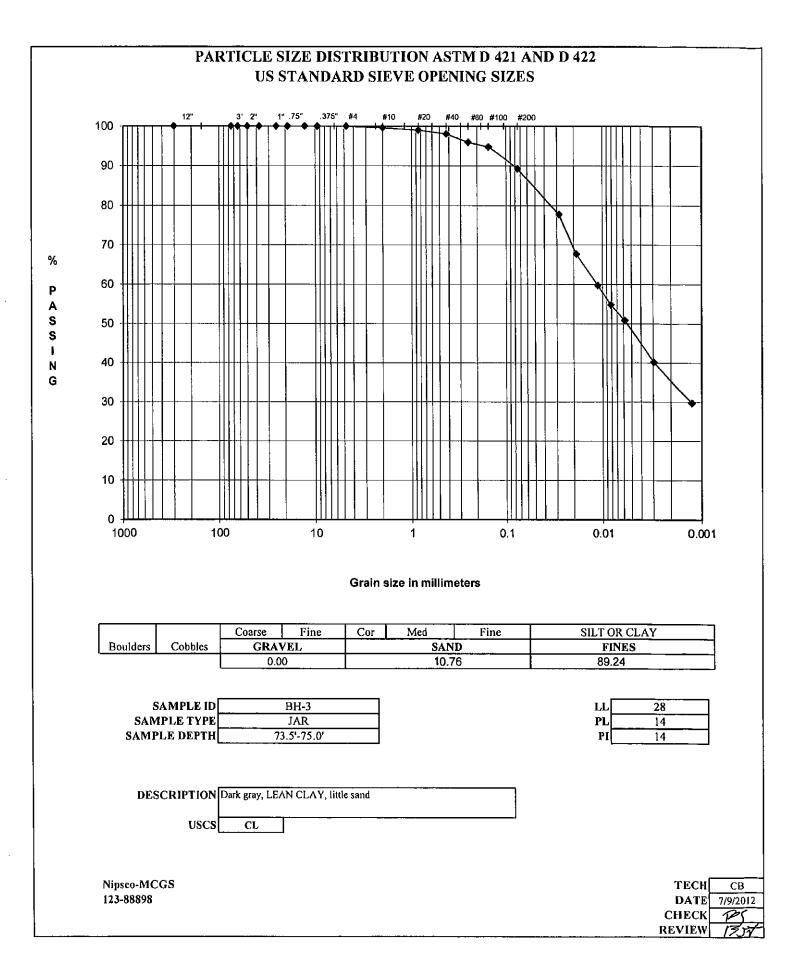

Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

24.73
23.10
13.93
1.63
9.17
17.78%

DATE	
DATE	07/09/12
СНЕСК	PS
REVIEW	BS

ASTM GRAIN SIZE ANALYSIS ASTM C117, C136, D421, D422, D1140 and D2217										
PROJECT TITLE		Nipsco-N	4005			SAMPLE ID		BH-	2 1	
PROJECT NO.	123-9	8898	1005			SAMPLE TYPI	- ł	JAF		-
I ROBET NO.						SAMPLE DEP		48.5'-5		
AS RECEIVED V	WATER CO	NTENT		Hygrosco	pic Moisture	Wet Soil & Tare (gu)	34.47		·
		_		For Sieve	Sample	Dry Soil & Tare (gm)	33.83		
Wt, Wet Soil & Tare (gm)	I	(W1)	24.73			Tare Weight (gm)		13.73		
Wt. Dry Soil & Tare (gm)		(W2)	23.10			Moisture Content (%		3.18		
Weight of Tare (gm)		(W3)	13.93	Total Weig	ght of Sample Used 1				pic Moistur	c
Weight of Water (gm)		(W4=W1-W2)	1.63 9.17		Weight + Tare, Bet	ore Separating On Th		351.38		
Weight of Dry Soil (gm) Moisture Content (%)		(W5=W2-W3) (W4/W5)*100	17.78%				are Weight (gm) tal Weight (gm)	95.96 247.54	(W6)	
Plus #4 Material	Sieve	(###3)*100	17.7070	(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING	tai weight (gin)	247.34	(40)	
TARE WEIGHT	10.96		12.0"	10.96	0.0	100.0	12.0"	cobbles		
I			3.0"	10.96	0.0	100.0	3.0"	coarse gravel		
			2,5"	10.96	0.0	100.0	2.5"	coarse gravel		
			2.0"	10.96	0.0	100.0	2.0"	coarse gravel		
			1.5"	10.96	0.0	100.0	1.5"	coarse gravel		
			1.0"	10.96	0.0	100.0	1.0"	coarse gravel		
			0.75"	10.96	0.0	100.0	0.75"	fine gravel		
			0.50"	10.96	0.0	100.0	0.50"	fine gravel		
			0.375"	10.96	0.0	100.0	0.375"	fine gravel		
			#4	11.21	0.1	99.9	#4	coarse sand		
HYDROMETER Specific Gravity	(assumed)				Weight of Sample Weight of Sample Wet		rometer Tes	t		
Amount Dispersing Agent	tonb [125.00			Calculated Dry Wt. use		48.68			
Type Dispersion Device	()	Mechanical			Hydrometer Bulb Numi		624378			
Length of Dispersion Perio	od	1 Minute			% Pass #4 Sieve For W		99.90			
TARE WEIGHT	28.04		ETER BACI	KSIEVE (P	ercent Passing #10 Cumul Wt.	•				
				(Wt+Tare)	Retained	% PASSING				
			#10	28.39	0.35	99.2	#10	medium sand		
			#20	28.86	0.82	98.2	#20	medium sand		
			#40	29.38	1.34	97.1	#40	fine sand		
			#60	29.96	1.92	96.0	#60	fine sand		
			#100 #200	30.68 33.97	2.64 5.93	94.5 87.7	#100 #200	fine sand fines		
		HYDROME				07.7	#200	Times	_	
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/9/2012	1:08	(min)	R	Т	K	Cc	С	LENGTH	А	
7/9/2012	1:10	2.00	44.0	21.00	0.013	5.83	38.17	9.1	1.00	
7/9/2012	1:13	5.00	40.5	21.00	0.013	5.83	34.67	9.7	1.00	
7/9/2012	1:23	15.00	36.0	21.00	0.013	5.83	30.17	10.4	1.00	
7/9/2012	1:38	30.00	34.5	21.00	0.013	5.83	28.67	10.7	1.00	
7/9/2012	2:08	60.00	31.0	21.00	0.013	5.83	25.17	11.2	1.00	
7/9/2012 7/10/2012	5:18 1:08	250.00 1440.00	26.0 20.5	21.40 22.10	0.013	5.70 5.47	20.30 15.03	12.0 13.0	1.00 1.00	
//10/2012	1 1.00		ZE PERCE		0.015	0.47	15.05	1 15.0	1. 1.00	
Particle Diameter	% PASSING		LEIENCE	0.00	4	Description	Dark gray, LI	FANCLAY	race oravel	some sand
0,0288	78,3	% COARSE GRAV	EL.	0.00	+]	Sour Bruy, th		Bravel,	Johno pullo
0.0188	71.1	% FINE GRAVEL		0.10	0.10	USCS	CL			
0.0112	61,9	% COARSE SAND		0.72		1		-		
0.0081	58,8	% MEDIUM SANI		2.03]	30]ււ			
0.0058	51.6	% FINE SAND		9.42	12.17	17	PL			
0,0030	41.7	% FINES		87.73		13	PI		ТЕСН	CB
0.0013	30.8	% TOTAL SAMPL	E	100.00						7/9/2012
									CHECK	1 <u>42</u>
									REVIEW	LDJ-

Global Information:	PROJECT NAME: PROJECT NUMBER:	Nipsco-MCGS 123-88898	3
	SAMPLE ID: SAMPLE TYPE: SAMPLE DEPTH:	BH-3 JAR 73.5'-75.0'	
	DESCRIPTION: DA	ark gray, LEAN CLAY, li	itle sand


AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

27.07 25.34 14.01 1.73 11.33 15.27%

TECH	СВ
DÁTE	07/09/12
CHECK	PS
REVIEW	DST

		<u></u>	AT'	TERBER ASTM D	G LIMIT)-4318	s		
PROJEC	T TITLE	Nin	sco-MCGS]	SAMPLE II	=	BH-3
PROJECT NUMBER		123-888			l	SAMPLE T		JAR
I ROULC		125-000					ертн	73.5'-75.0'
SAMPLI	E PREPARATIO	N						
	Wet or Dry			Mir	nus #40 Sieve	Y	es	(yes or no)
]	PLASTIC LI	MIT DETER	MINATION	1	N	ATURAL MOISTURE
Weight of	Wet Soil & Tare	(W1)	19.47	18.92		Weight of V		
Weight of	Dry Soil & Tare	(W2)	18.80	18.30 Weight of Dry Soil & Tar			Tare 25.34	
Weight of	Таге	(W3)	14.09	13.87			Weight of	Tare 14.01
Weight of	Water	(W4=W1-W2)	0.67	0.62		١	Weight of W	/ater 1.73
Weight of	Dry Soil	(W5=W2-W3)	4.71	4.43		We	ight of Dry	Soil 11.33
Water Con	atent	(W4/W5)*100	14.23%	14.00%			Water Con	ntent 15.27%
		-	LIQUID LI	MIT DETER	MINATION			
Range of H	Blows	[25 - 35	20 - 30	15 - 25	ļ		
Number of			30	24	15	1		
-	Wet Soil & Tare	(W6)	24.31	22.65	26.43		Blow	25
-	Dry Soil & Tare	(W7)	21.55	20.14	22.91		K - Val	ue 1
Weight of		(W8)	11.41	11.21	11.32	_		
Weight of		(W9=W6•W7)	2.76	2.51	3.52			
Weight of	-	W10=W7-W8)	10.14	8.93	11.59	_		
Water Con	ntent	(W9/W10)*100	27.22%	28.11%	30.37%			
Moisture c	content at 25 blow	[28.22%					
LIQUID I	LIMIT (WI)	28.22	28	DES	CRIPTION	Dark gray, L	EAN CLA	Y, little sand
PLASTIC	C LIMIT (Wp)	14.11	14					
PLASTIC	TTY INDEX (Ip)		14					
LIQUIDI	TY INDEX (I)		0.08		USCS	S CL		
MOISTU	RE CONTENT		15.27%					
		Mois	ture Content vs	. N- Value	у =	= -0.0021x +	0.3347	
	^{30%}				<u> </u>		1	
5	55%					+ + +		
5	50%	 _				┝──┝──┤		
ي 4	15%					<u>↓ </u>		
ہ تیل ک	10%		.					
onte	35%							
- D	30%	_ _						
oisti			-					
	25%							
2	20%							
1	15%							тесн св
1	10%			I	<u></u>			DATE 7/9/201
	10		25 א	Value			100	CHECK Pr
L								REVIEW 251

ASTM GRAIN SIZE ANALYSIS ASTM C117, C136, D421, D422, D1140 and D2217										
PROJECT TITLE		Nipsco-l	MCGS			SAMPLE ID		BH-	3	1
PROJECT NO.	123-	88898				SAMPLE TYPI	-	JAR	1	
	SAMPLE DEPTH 73.5'-75.0'									
AS RECEIVED	AS RECEIVED WATER CONTENT Hygroscopic Moisture Wet Soil & Tare (gm) 31.81									
Wt. Wet Soil & Tare (gm)	`	(W1)	27.07	For Sieve	Sample	Dry Soil & Tare (gm)	31.40 14.07		
Wt. Dry Soil & Tare (gm)		(W1) (W2)	25.34			Tare Weight (gm) Moisture Content (%	3	2.37		
Weight of Tare (gm)	,	(W3)	14.01	Total Weig	ht of Sample Used 1				pic Moistu	re
Weight of Water (gm)		(W4=W1-W2)	1.73			ore Separating On Th		380.17		
Weight of Dry Soil (gm)		(W5=W2-W3)	11.33				are Weight (gm)	95.97		
Moisture Content (%) Plus #4 Material	Siava	(W4/W5)*100	15.27%	(11h · T)	(())h T>01(()+100)		tal Weight (gm)	277.63	(W6)	
TARE WEIGHT	0.00	1	12.0"	(Wt+Tare) 0.00	(((Wt-Tare)/W6)*100) 0.0	%PASSING 100.0	12.0"	cobbles		
		1	3.0"	0.00	0.0	100.0	3.0"	coarse gravel		
			2.5"	0.00	0.0	100.0	2.5"	coarse gravel		
			2.0"	0.00	0.0	100.0	2.0"	coarse gravel		
			1.5"	0.00	0.0	100.0	1.5"	coarse gravel		
			1.0"	0.00	0.0	100.0	1.0"	coarse gravel		:
			0.75" 0.50"	0.00	0.0	100.0	0.75"	fine gravel		
			0.375"	0.00	0.0	100.0	0.50" 0.375"	fine gravel fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETER Specific Gravity	(assumed)				Weight of Sample	-		it 1		
Amount Dispersing Agent	t (ml)	125.00			Weight of Sample Wet Calculated Dry Wt. use		51.68 50.49	}		
Type Dispersion Device	• (114)	Mechanical			Hydrometer Bulb Num		624378	1		
Length of Dispersion Peri-	iod	1 Minute			% Pass #4 Sieve For W		100.00			
TARE WEIGHT	30.49	HYDROM	ETER BAC	KSIEVE (Po	ercent Passing #10	0 - #200 Sieves)	•	<u> </u>		
				(Wt+Tare)	Retained	% PASSING				
			#10	30.69	0.20	99.6	#10	medium sand		
			#20	31.00 •	0.51	99.0	#20	medium sand		
			#40	31.47	0.98	98.1	#40	fine sand		
			#60	32.55	2.06	95.9	#60	fine sand		
			#100 #200	33.14 35.92	2.65	94.8 89.2	#100 #200	fine sand fines		
		HYDROME				0,2	1200	mes		
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	1:20	(min)	R	Т	K	Cc	С	LENGTH	Α	
7/19/2012	1:22	2.00	45.0	21.21	0.013	5.76	39.24	8.9	1.00	
7/19/2012	1:25	5.00	40.0	21.00	0.013	5.83	34.17	9.7	1.00	
7/19/2012	1:35 1:50	15.00 30.00	36.0 33.5	21.00 21.00	0.013 0.013	5.83 5.83	30.17 27.67	10.4 10.9	1.00	
7/19/2012	2:20	60.00	31.5	21.00	0.013	5.83	27.67	10.9	1.00 1.00	
7/19/2012	5:30	250.00	26.0	21.00	0.013	5.70	20.30	12.0	1.00	
7/20/2012	1:20	1440.00	20.5	22.10	0.013	5.47	15.03	13.0	1.00	
		GRAIN SI	ZE PERCE	NTAGES						.
Particle Diameter	% PASSING	1		0.00		Description	Dark gray, Ll	EAN CLAY, II	ttle sand	
0.0284	77.7	% COARSE GRAV	EL	0.00			L			
0.0188	67.7	% FINE GRAVEL		0.00	0.00	USCS	CL	1		
0.0112 0.0081	59.8 54.8	% COARSE SAND % MEDIUM SANE		1.54	1	28]ււ			
0.0058	50.8	% FINE SAND		8.81	10.76	14	PL			
0.0030	40.2	% FINES		89.24		14	PI		ТЕСН	СВ
0.0013	29.8	% TOTAL SAMPL	E	100.00]		-		DATE CHECK REVIEW	7/9/2012
L									NEY IEW	<u></u>

Global Information:	PROJECT NAME:	Nipsco-MCGS	7
	PROJECT NUMBER:	123-88898	
	SAMPLE ID:	BH-4	7
	SAMPLE TYPE:	JAR	
	SAMPLE DEPTH:	23.5'-25.0']
	DESCRIPTION: Da	rk grayish brown, SAND	Y SILT
	USCS:	ML	

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

27.35
22.35
14.06
5.00
8.29
60.31%

TECH	СВ
DATE	07/19/12
CHECK	ÞS
REVIEW	1.ST

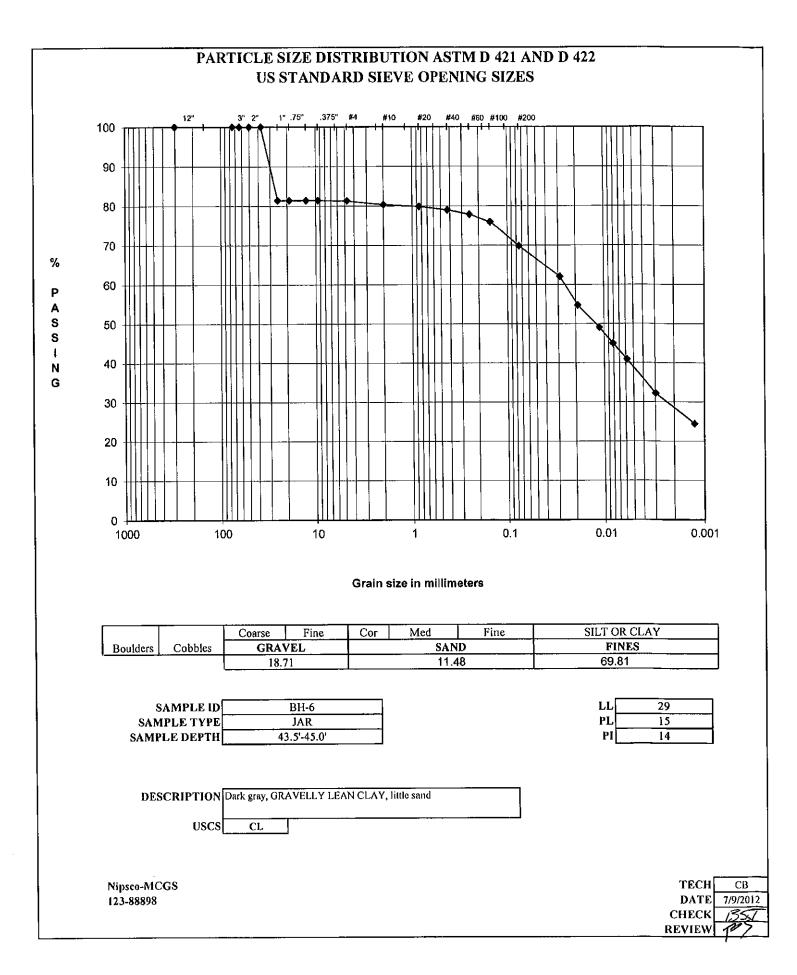
		AT'	TERBER ASTM D		S			
PROJECT TITLE	Nip	sco-MCGS			SAMPLE II)	BH-4	ŧ
PROJECT NUMBER	123-888	98			SAMPLE T SAMPLE D		JAR 23.5'-2	
SAMPLE PREPARATIO	N							
Wet or Dry	Wet		Min	us #40 Sieve	L γ	'es	(yes or no)	
	j	PLASTIC LI	MIT DETER	MINATION	[NAT	URAL MOISTL	JRE
Weight of Wet Soil & Tare	(WI)	18.02	18.07			Wet Soil & Tare		
Weight of Dry Soil & Tare	(W2)	17.48	17.56			Dry Soil & Tare		
Weight of Tare	(W3)	13.83	14.06	1	•	Weight of Tare		
Weight of Water	(W4=W1-W2)	0.54	0.51		,	Weight of Wate	r 5.00	
Weight of Dry Soil	(W5=W2-W3)	3.65	3.50		We	ight of Dry Soi	1 8.29	
Water Content	(W4/W5)*100	14.79%	14.57%			Water Conten	t 60.31%	
	_	LIQUID LI	MIT DETER	- MINATION				
Range of Blows	ſ	25 - 35	20 - 30	15 - 25	1			
Number of Blows		33	26	18	1			
Weight of Wet Soil & Tare	(W6)	22.15	21.76	21.25	1	Blow	25	
Weight of Dry Soil & Tare	(W7)	21.08	20.67	20.19	1	K - Value	1	
Weight of Tare	(W8)	13.94	14.18	14.10	1			
Weight of Water	(W9=W6-W7)	1.07	1.09	1.06	1			
Weight of Dry Soil								
Water Content	(W9/W10)*100	14.99%	16.80%	17.41%				
Moisture content at 25 blow	I	16.36%]					
LIQUID LIMIT (WI)	16.36	16	DES	CRIPTION:	Dark grayisl	ı brown, SAN	IDY SILT	
PLASTIC LIMIT (Wp)	14.68	15	1	-				
PLASTICITY INDEX (Ip)		1	1		4			
LIQUIDITY INDEX (I)		45.63		USCS	ML			
MOISTURE CONTENT		60.31%]					
0011	Mois	ture Content y	s. N- Value		y = -0.0016	x + 0.2048		
60%				ł				
55%				·····	1			
50%								
م 45%								
ត្ត៍ 40%								
35%								
1 1 30%								
i si								
			·					
20%								
15%		╼╪┹╼╼┿					тесн	СВ
10%		25					DATE	7/19/2012
10			Value			100	Снеск	Pes
}			<u>.</u>				┘ REVIEW	Dr.t

		A			IN SIZE ANAL) 0421, D422, D11					
PROJECT TITLE		Nipsco-l	ACGS			SAMPLE ID		BH-	4	
PROJECT NO.	123-8	8898				SAMPLE TYPE		JAR		
						SAMPLE DEPT	тн	23.5'-2	5.0'	
AS RECEIVED V	VATER CO	NTENT				Wet Soil & Tare (gin)	20.72		
				For Sieve	Sample	Dry Soil & Tare (gm)	20.64		
Wt, Wet Soil & Tare (gm)		(W1)	27.35			Tare Weight (gm)		14.09		
Wt. Dry Soil & Tare (gm)		(W2)	22.35	Total Wair		Moisture Content (%		1.22	nio Moletu	
Weight of Tare (gm) Weight of Water (gm)		(W3) (W4=W1-W2)	14.06 5.00	I UTAT AACIS	t of Sample Used I Weight + Tare Bef	ore Separating On Th	1	268.80	hie moistui	e
Weight of Dry Soil (gm)		(W5=W2-W3)	8.29		Hoight - Tare, Det		re Weight (gm)	96.08		
Moisture Content (%)		(W4/W5)*100	60.31%				tal Weight (gm)	170.64	(W6)	
Plus #4 Material	Sieve			(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING				
TARE WEIGHT	0.00		12.0"	0.00	0.0	100.0	12.0"	cobbles		
			3.0"	0.00	0.0	0.001	3.0"	coarse gravel		
			2.5"	0.00	0.0	100.0	2.5"	coarse gravel		
			2.0" 1.5"	0.00	0.0	100.0	2.0" 1.5"	coarse gravel coarse gravel		
			1.5 1.0"	0.00	0.0	100.0	1.5	coarse gravel		
			0.75"	0.00	0.0	100.0	0.75"	fine gravel		
			0.50"	0.00	0.0	100.0	0.50"	fine gravel		
			0.375"	0.00	0.0	100.0	0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
Weight of Sample Used For Hydrometer Test Specific Gravity (assumed) 2.65 Amount Dispersing Agent (ml) 125.00 Calculated Dry Wt. used in test (gn) 54.82 Type Dispersion Device Mechanical Hydrometer Bulb Number 624378							:			
Length of Dispersion Perio	28.47	1 Minute	ETER BAC	KSIEVE (P	% Pass #4 Sieve For W ercent Passing #10	-	100.00	<u> </u>		
	20.47				Cumul Wt,	,				
				(Wt+Tare)	Retained	% PASSING				
			#10	28.52	0.05	99.9	#10	medium sand		
			#20	28.60	0.13	99.8	#20	medium sand		
			#40	29.38	0.91	98.3	#40	fine sand		
			#60	33.12	4.65	91.4	#60	fine sand		
			#100 #200	43.94 46.59	15.47 18.12	71,4 66.5	#100 #200	fiue sand fines		
		HYDROME				00.3	#400	1005		
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	2:15	(min)	R	Т	К	Cc	С	LENGTH	A	
7/19/2012	2:17	2.00	39.5	21.00	0.013	5.83	33.67	9.9	1.00	
7/19/2012	2:20	5.00	36.0	21.00	0.013	5.83	30.17	10.4	1.00	
7/19/2012	2:30	15.00	29.5	21.00	0.013	5.83	23.67	11.5	1.00	
7/19/2012	2:45	30.00	25.0	21.00	0.013	5.83	19.17	12.2	1.00	
7/19/2012	3:15	60.00	21.0	21.00	0.013	5.83	15.17	12.9	1.00	
7/19/2012	6:25 2:15	250.00 1440.00	15.0 10.5	21.00 20.90	0.013 0.014	5.83 5.87	9.17 4.63	13.8 14.7	1.00	
1120/2012	2.13		IZE PERCE		0.014	5.67	4.05	19.7	1 1.00	
Particle Diameter	% PASSING		LETENCE	0.00	4	Description	Dark gravish	brown SAN		
0,0300	62.2	% COBBLES	/EL	0.00	<u> </u>]	Sur Erayisii	oronin, orane		
0,0194	55.7	% FINE GRAVEL	-	0.00	0.00	USCS	ML	.		
0.0118	43.7	% COARSE SAND)	0.09		1	· · · · · ·	-4		
0,0086	35,4	% MEDIUM SANI		1.59]	16]ււ			
0.0063	28.0	% FINE SAND		31.78	33.46	15	PL			
0,0032	16.9	% FINES		66.54	┨	1]PI		TECII	
0.0014	8.6	% TOTAL SAMPL	.E	100.00						7/19/2012
									CHECK REVIEW	

Global Information:	PROJECT NAME:	Nipsco-MCGS	7
	PROJECT NUMBER:	123-88898	
	SAMPLE ID:	DU a	-
	SAMPLE TYPE:	BH-6	-
	SAMPLE DEPTH:	JAR 43.5'-45.0'	-
		40.0-40.0	
		irk gray, GRAVELLY LE	AN CLAY, little sand
	USCS:	CL	
AS-RECEIVED	MOISTURE CONTENT: W	eight of Wet Soil & Ta	re 21.02

Weight of Dry Soil Water Content

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water


.

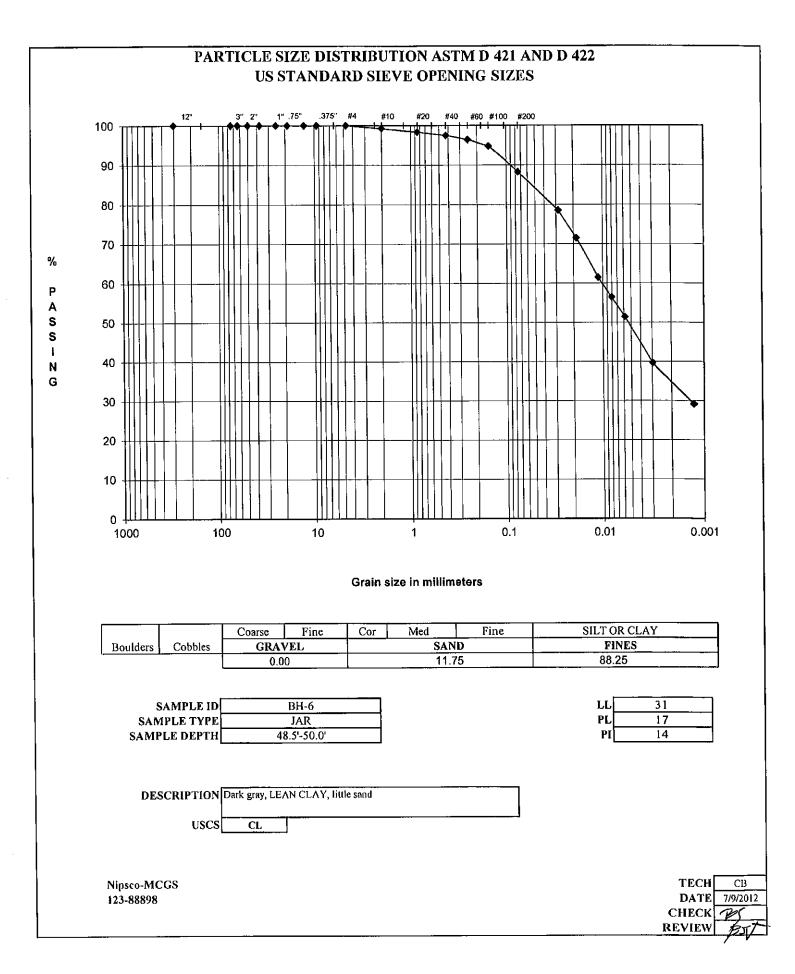
21.02
19.96
14.03
1.06
5.93
17.88%

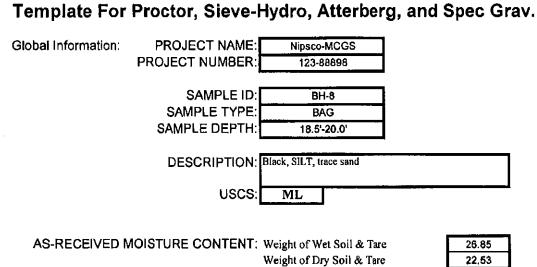
TECH	СВ
DATE	07/09/12
CHECK	BSV
REVIEW	Par

		AT	FERBER ASTM D		\$			
PROJECT TITLE	Nip	sco-MCGS			SAMPLE I	D	BH-6	· · · · · · · · · · · · · · · · · · ·
PROJECT NUMBER	123-888				SAMPLE 1		JAR	
		,			SAMPLE I	DEPTH	43.5'-45	5.0*
SAMPLE PREPARATI	ON							<u> </u>
Wet or D	ry Wet		Min	us #40 Sieve	· · · · · · · · · · · · · · · · ·	Yes	(yes or no)	
		PLASTIC LU	MIT DETER	MINATION		NA	— TURAL MOISTU	RE
Weight of Wet Soil & Tare	(W1)	16.03	15.13			Wet Soil & Ta		
Weight of Dry Soil & Tare	(W2)	15.43	14.60			f Dry Soil & Ta		
Weight of Tare	(W3)	11.48	10.96		-	Weight of Ta		
Weight of Water	(W4=W1-W2)	0.60	0.53			Weight of Wat	er 1.06	
Weight of Dry Soil	(W5=W2-W3)	3.95	3.64		w	eight of Dry So	oil 5.93	
Water Content	(W4/W5)*100	15.19%	14.56%			Water Conte	nt 17.88%	
		LIQUID LI	MIT DETER	MINATION				
Range of Blows	[25 - 35	20 - 30	15 - 25				
Number of Blows		31	26	20				
Weight of Wet Soil & Tare	(W6)	23.29	21.40	23.52		Blow	25	
Weight of Dry Soil & Tare	(W7)	20.57	19.16	20.83		K - Value	e 1	
Weight of Tare	(W8)	10.88	11.40	11.69				
Weight of Water	(W9=W6-W7)	2.72	2.24	2.69				
Weight of Dry Soil	W10=W7-W8)	9.69	7.76	9.14				
Water Content	(W9/W10)*100	28.07%	28.87%	29.43%				
Moisture content at 25 blow	, [28.94%						
LIQUID LIMIT (WI)	28.94	29	DES	CRIPTION:	Dark gray,	GRAVELLY	LEAN CLAY, littl	e sand
PLASTIC LIMIT (Wp)	14.88	15						
PLASTICITY INDEX (Ip)	14						
LIQUIDITY INDEX (I)		0.21		USCS	CL			
MOISTURE CONTENT		17.88%			b			
	Mois	ture Content vs	s. N- Value	у	= -0.0012x	+ 0.3194		
60%								
55%								
50%								
. 45%							1	
ន ដ្ 40%								
35%								
× 40% tu 40%		╼╼┧╇╼╼╼┼╸						
20%						∤ - }		
							ТЕСН	СВ
15%			1		1 1	1 1 1	E 100.000	0.00
10%		25]		
		25	Value			100	DATE	

		A			IN SIZE ANAL 1421, D422, D11					
PROJECT TITLE		Nipsco-I	MCGS			SAMPLE ID	٦	BH-	5	
PROJECT NO.	123-	88898				SAMPLE TYPE	: 1	JAR		
SAMPLE DEPTH 43.5'-45.0'										
AS RECEIVED V	AS RECEIVED WATER CONTENT Hygroscopic Moisture Wet Soil & Tare (gm) 26.26									
		t	21.02	For Sieve	Sample	Dry Soil & Tare (gm))	26.01		
Wt. Wet Soil & Tare (gm)		(W1)	21.02 19.96			Tare Weight (gm) Moisture Content (%	、 ·	2.09		
Wt. Dry Soil & Tare (gm) Weight of Tare (gm)		(W2) (W3)	19.90	Total Weig	ht of Sample Used				nie Moistu	re
Weight of Water (gm)		(W4=W1-W2)	1.06	101	-	fore Separating On Th	r	337.90		
Weight of Dry Soil (gm)		(W5=W2-W3)	5.93		U .	Ta	re Weight (gm)	98.35		
Moisture Content (%)		(W4/W5)*100	17.88%			Το	tal Weight (gm)	234.64	(W6)	
Plus #4 Material				(Wt+Tare)	(((Wt-Tare)/W6)*100)					
TARE WEIGHT	11.69		12.0"	11.69	0.0	100.0		cobbles		
			3.0"	11.69	0.0	100.0		coarse gravel		
			2.5"	11.69 11.69	0.0	100.0		coarse gravel		
			2.0" 1.5"	11.69	0.0	100.0		coarse gravel coarse gravel		
			1.0"	55.33	18.6	81.4		coarse gravel		
			0.75"	55.33	18.6	81.4		fine gravel		
			0.50"	55.33	18.6	81.4	0.50"	fine gravel		
			0.375"	55.33	18.6	81.4	0.375"	fine gravel		
			#4	55.59	18.7	81.3	#4	coarse sand		
HYDROMETER Specific Gravity	(assumed)				Weight of Sampl			t		
		125.00			Weight of Sample Wet		51.05			
Amount Dispersing Agent	(m i)	125.00 Mechanical			Calculated Dry Wt. use Hydrometer Bulb Num		50.00 624378			
Type Dispersion Device Length of Dispersion Perio	ho	1 Minute			% Pass #4 Sieve For W		81.29			
TARE WEIGHT	30.46		ETER BAC	KSIEVE (P	ercent Passing #1			I		
				(Wt+Tare)	Retained	% PASSING				
			#10	31.05	0.59	80.3	#10	medium sand		
			# 2 0	31.36	0.90	79.8	#20	medium sand		
			#40	31.90	1.44	78.9	#40	fine sand		
			#60 #100	32.60 33.77	2.14 3.31	77.8	#60	fine sand fine sand		
			#100 #200	37.52	7.06	69.8	#100 #200	fines		
		HYDROME				07.0	H200	niçə		
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		· · ·
7/9/2012	1:16	(min)	R	Ť	ĸ	Cc	С	LENGTH	Λ	
7/9/2012	1:18	2.00	44.0	21.00	0.013	5.83	38.17	9.1	1.00	1
7/9/2012	1:21	5.00	39.5	21.00	0.013	5.83	33.67	9.9	1.00	
7/9/2012	1:31	15.00	36.0	21.00	0.013	5.83	30,17	10.4	1.00	
7/9/2012	1:46	30.00	33.5	21.00	0.013	5.83	27.67	10.9	1.00	
7/9/2012 7/9/2012	2:16 5:26	60.00 250.00	31.0 25.5	21.00 21.40	0.013	5.83 5.70	25.17 19.80	11.2	1.00 1.00	
7/10/2012	1:16	1440.00	20.5	21.40	0.013	5.47	15.03	13.0	1.00	
110/2012			ZE PERCE		0.015		10.05		1,00	I
Particle Diameter	% PASSING		Intel	0.00	1	Description	Dark grav. G	RAVELLY LI	EAN CLAY	, little sand
0.0288	62.0	% COARSE GRAV	'EL	18.60		י ר				
0.0190	54.7	% FINE GRAVEL		0.11	18.71	USCS	CL	<u></u>		0
0.0112	49.0	% COARSE SAND	I	0.96						
0.0081	45.0	% MEDIUM SANI)	1.38]	29	LL			
0.0058	40.9	% FINE SAND		9.14	11.48	15	PL.			
0.0030	32.2	% FINES	_	69.81	-	14	PI		TECH	
0.0013	24.4	8 TOTAL SAMPL	E	100.00	1				DATE CHECK REVIEW	BST
					•					· +/

Global Information:	PROJECT NAME:	Nipsco-MCGS	1
	PROJECT NUMBER:	123-88898	
	SAMPLE ID:	BH-6	
	SAMPLE TYPE:	JAR	
	SAMPLE DEPTH:	48.5'-50.0'	
	DESCRIPTION: Da		ttle sand
	USCS:	CL	

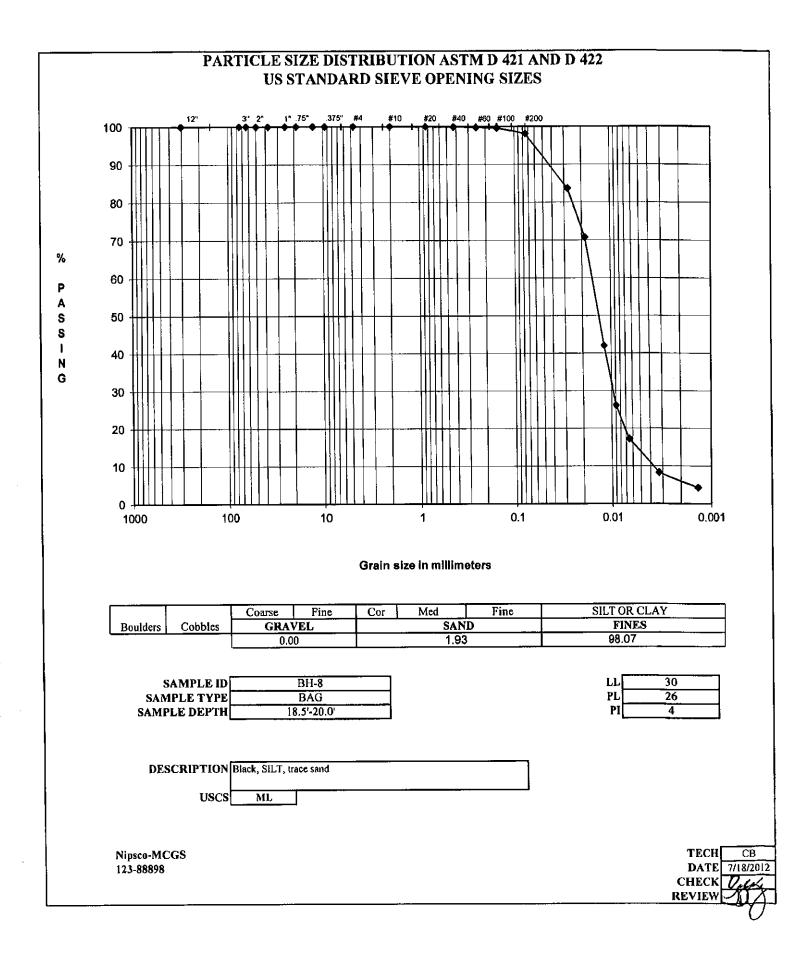

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content


23.74	
22.34	
14.15	
1.40	
8.19	
17.09%	

TECH	СВ
DATE	07/09/12
CHECK	WS
REVIEW	BST

			AT'	TERBER(ASTM D		5			
	PROJECT TITLE Nipsco PROJECT NUMBER 123-88898		sco-MCGS 98			SAMPLE II SAMPLE T SAMPLE D	YPE	BH JAR 48.5'-5	L
SAMPLE P	REPARATIO								
	Wet or Dry	Wet		Min	nus #40 Sieve	<u> </u>	res	(yes or no)	
Weight of Weight of Dr		(W1) (W2)	PLASTIC LI 18.31 17.66	MIT DETER 18.38 17.72	MINATION	Weight of	NATU Wet Soil & Tare Dry Soil & Tare	23.74 22.34	JRE
Weight of Tar		(W3)	13.84	13.64			Weight of Tare	14.15	
Weight of Wa		(W4=W1-W2)	0.65	0.66		,	Weight of Water	1.40	
Weight of Dr		(W5=W2-W3)	3.82	4.08	ļ	We	eight of Dry Soil	8.19	
Water Conter	ıt	(W4/W5)*100	17.02%	16.18%			Water Content	17.09%	
			LIQUID LI	MIT DETER	MINATION	_			
Range of Blo	ws		25 - 35	20 - 30	15 - 25				
Number of B	lows		31	22	20				
Weight of We	et Soil & Tare	(W6)	26.89	24.74	25.50		Blow	25	
Weight of Dr	y Soil & Tare	(W7)	23.95	22.22	22.75		K - Value	1	
Weight of Ta	re	(W8)	14.02	14.02	14.11				
Weight of Wa	ater	(W9=W6-W7)	2.94	2.52	2.75				
Weight of Dr	y Soil	W10=W7-W8)	9,93	8.20	8.64	-			
Water Conter	nt	(W9/W10)*100	29.61%	30.73%	31.83%	ļ			
Moisture con	tent at 25 blow	[30.56%	-					
LIQUID LIN	MIT (WI)	30.56	31	DES DES	SCRIPTION:	Dark gray, l	LEAN CLAY, I	ittle sand	
PLASTIC L	IMIT (Wp)	16.60	17	4					
	Y INDEX (ĺp)		14	4					
LIQUIDITY			0.04	4	USCS	CL			
MOISTURE	CONTENT		17.09%						
60%	/	Mois	ture Content v	vs. N- Value	У	= -0.0018x	+ 0.3506		
55%									
50%				· · · · · · · · · · · · · · · · · · ·					
* 45%	6		-						
ត្រូ៍ 40%	%	· · · · · · · · · · · · · · · · · · ·	-			- <u> </u>			
% 40% 40% 35% 30% 25%	%								
j 1 309	%		╺╼╁╌╌┽	*		+	┼┼┤		
j ≥ 259	%					-	├		
209									
159								r	
								TECH	CB
104	%		25				100	DATE CHECK	7/9/2012
	<u></u>		1	N Value					PAT
	<u> </u>							REVIEW	<u>D/</u>

		A			IN SIZE ANALY 0421, D422, D114					
PROJECT TITLE [Nipsco-N	ACGS			SAMPLE ID		BH-	5	
PROJECT NO.	123-8					SAMPLE TYPE	:	JAR		
						SAMPLE DEPT		48.5'-5	0.0'	
AS RECEIVED V	VATER COI	NTENT	I		•	Wei Soil & Tare (gm	<u> </u>	34.60		
	-	r		For Sieve	Sample	Dry Soil & Tare (gm)		34.11		
W1, Wet Soil & Tare (gm)		(WI)	23.74			Tare Weight (gm)	、 I	13.98		
Wt. Dry Soil & Tare (gm)		(W2)	22.34	Total 387 1	ght of Sample Used I	Moisture Content (%		2.43	nie Maint	P
Weight of Tare (gm) Weight of Water (gm)		(W3) (W4=WI-W2)	14.15 1.40	i otat Weig		For Sieve Analysis ore Separating On The			PIC ITIOISTUR	•
Weight of Water (gm) Weight of Dry Soil (gm)		(W4=W1-W2) (W5=W2-W3)	8.19	I	were all the pell		are Weight (gm)			
Moisture Content (%)		(W4/W5)*100	17.09%	l 			tal Weight (gm)		(W6)	
Plus #4 Material	Sieve			(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING				
TARE WEIGHT	0.00	1	12,0"	0.00	0.0	100.0	12.0"	cobbles		
			3.0"	0.00	0.0	100.0	3.0"	coarse gravel		
			2.5"	0.00	0.0	100.0	2.5" 2.0"	coarse gravel		
			2.0" 1.5"	0.00	0.0	100.0	2.0"	coarse gravel coarse gravel		
			1.5"	0.00	0.0	100.0	1.5"	coarse gravel coarse gravel		
			0.75"	0.00	0.0	100.0	0.75"	fine gravel		
			0.50"	0.00	0.0	100.0	0.50"	fine gravel		
			0.375"	0.00	0.0	100.0	0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETER Specific Gravity	(assumed)				Weight of Sample Weight of Sample Wet	-	51.10	st]		
Amount Dispersing Agent	: (ml) [125.00			Calculated Dry Wt. use		49.89	4		
Type Dispersion Device	ĺ	Mechanical			Hydrometer Bulb Numb		624378	-		
Length of Dispersion Perio	od	1 Minute	l		% Pass #4 Sieve For W	nole Sample	100.00	<u> </u>		
TARE WEIGHT	28.49	HYDROM	ETER BAC	KSIEVE (P	ercent Passing #1	0 - #200 Sieves)				
					Cumul Wt.		1			
				(Wt+Tare)	Retained	% PASSING				
			#10	28.86	0.37	99.3	#10 #20	medium sand medium sand		
			#20 #40	29.33	0.84	<u>98.3</u> 97.5	#20 #40	medium sand fine sand		
			#40 #60	30.28	1.20	96.4	#40	fine sand		
			#100	31.11	2.62	94.7	#100	fine sand		
			#200	34.35	5.86	88.3	#200	fines		
			TER CALC				DEADDIO	EFFECTIVE	Ţı	
DATE	TIME	ET (min)	READING	TEMP T	TEMP.COR. K	HYD.COR. Cc	READING C	EFFECTIVE	A	
7/9/2012	1:04	(min) 2.00	R	21.00	0.013	5.83	39.17	8.9	<u>A</u> 1.00	1
7/9/2012	1:06	5.00	41.5	21.00	0.013	5.83	35.67	9.6	1.00	ļ
7/9/2012	1:19	15.00	36.5	21.00	0.013	5.83	30.67	10.4	1.00	
7/9/2012	1:34	30.00	34.0	21.00	0.013	5.83	28.17	10.7	1.00	
7/9/2012	2:04	60.00	31.5	21.00	0.013	5.83	25.67	11.2	1.00	
7/9/2012	5:14	250.00	25.5	21.40	0.013	5.70	19.80	12.2	1.00	ļ
7/10/2012	1:04	1440.00	20.0	22.10	0.013	5.47	14.53	13.0	1.00	
	A DACONIC	· · · · · · · · · · · · · · · · · · ·	IZE PERCE	ENTAGES 0.00	4	Description	Dark area !	LEAN CLAY,	ittle cond	
Particle Diameter 0,0284	% PASSING 78.5	% COBBLES % COARSE GRA	ÆL	0.00		ີ		LEAT,	anne salliù	
0.0284	78.5	% COARSE GRAVEL		0.00	0.00	USCS	CL			
0.0112	61.5	% COARSE SANI		0.74	<u></u>					
0.0081	56.5	% MEDIUM SAN		1.78]	31]ււ			
0.0058	51.5	% FINE SAND		9.22	11.75	17]PL		·	
0,0030	39,7	% FINES		88.25	-	14	PI		TECH DATE	
0.0013	29.1	% TOTAL SAMP	LE	100.00	1				DATE CHECK	
									REVIEW	


Weight of Tare Weight of Water Weight of Dry Soil Water Content

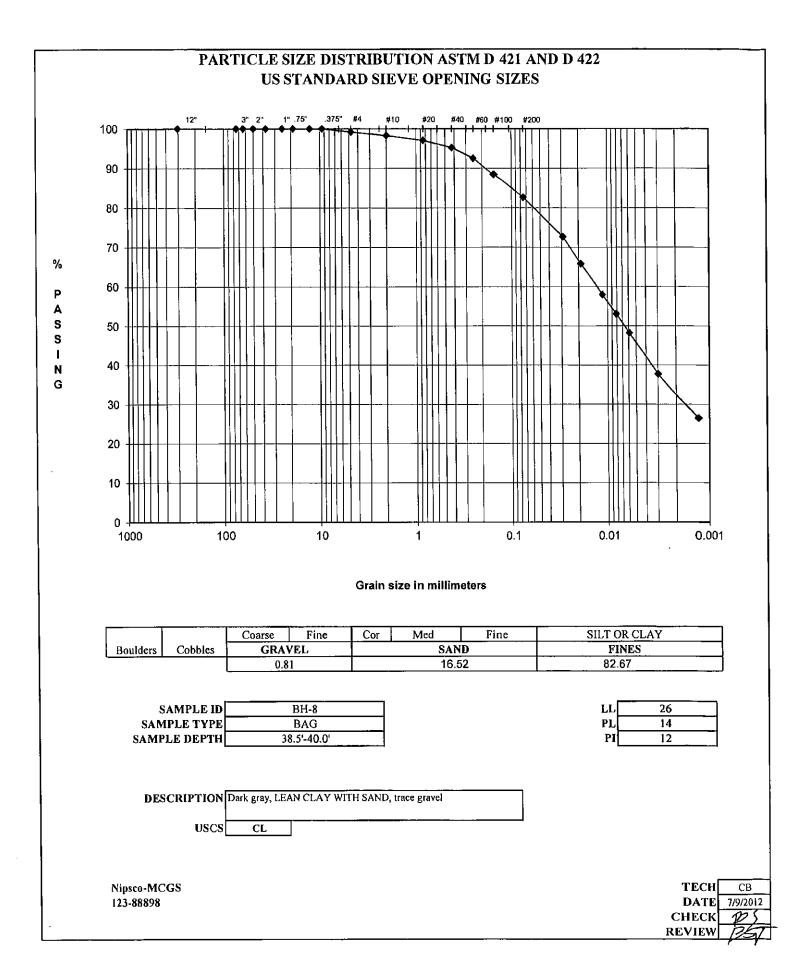
25.85
22,53
13.96
4.32
8.57
50.41%

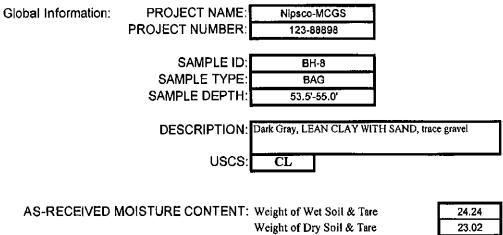
TECH	СВ
DATE	07/18/12
CHECK	Dowi
REVIEW	
	<u> </u>

				AT	TERBER ASTM D		8				
PROJE		 TIR [Nin			SAMPLE]	BH-	8	
		ŀ	123-888	sco-MCGS			SAMPLE			BA	The second second second second second second second second second second second second second second second s
PROJECT NUMBER 123-88898							SAMPLE		ŀ	18.5'-2	
SAMPI	E PR	EPARATIO	N								
SAMI I	117 T IX.	Wet or Dry			Min	us #40 Sieve		Yes		(yes or no)	
		• 1		рі детісті	MIT DETER	•				URAL MOIST	IIDF
Weight o	f Wet S	Soil & Tare	(W1)		15.72			of Wet Soil			URE
-		Soil & Tare	(W2)	16.38	15.35		_	of Dry Soil			
Weight o			(W2) (W3)	13.93	13.88		. o.Bit.	Weight			
Weight o		r	(W4=W1-W2)	0.64	0.37			Weight of			
Weight ((W5=W2-W3)	2.45	1.47		,	Weight of L			
Water Co	-		(W4/W5)*100	26.12%	25.17%			Water (
			•	LIOUID LI	MIT DETER	, MINATION					
Range of	fBlows	;]	25 - 35	20 - 30	15 - 25	}				
Number				33	28	18					
Weight o	of Wet S	Soil & Tare	(W6)	26.39	26.28	26.40		Bl	o₩	25	
Weight o	of Dry S	Soil & Tare	(W7)	23.57	23.49	23.50		K - V	alue	1	
Weight a	of Tare		(W8)	13.80	14.09	14.14					
Weight o	of Wate	r	(W9=W6•W7)	2.82	2.79	2.90					
Weight o	of Dry S	Soil	W10≂W7-W8)	9.77	9.40	9.36					
Water C	ontent		(W9/W10)*100	28,86%	29.68%	30.98%					
Moisture	e conter	nt at 25 blow	I	30.02%]						
LIQUII) LIMI	T (WI)	30.02	30	DES	CRIPTION:	Black, SII	T, trace s	and		· · · ·
1		11T (Wp)	25.65	26							1
		INDEX (lp)		4							
		NDEX (I)		6.19	1	USCS	ML				
MOIST	URE C	ONTENT		50.41%							
			Mois	ture Content v	s. N- Value		y = -0.00	14x + 0.33	52		
	60%	1			T	1	r		٦		
	55%								-		
	50%						 		-	1	
1.	45%	l							4		
ц. %	40%	ļ									
nter	40 %										
ŭ											
Moisture Content, %	30%								1		
β	25%	1				· · · · · · · · · · · · · · · · · · ·			1	1	
	20%	1							-		
1	15%	1						+	-	ТЕСН	СВ
	10%	_	<u> </u>		L					DATE	7/18/2012
1		10		25 א	Value				100	СНЕСК	D.M.
		·			•					REVIEW	- MY

		A			N SIZE ANAL 421, D422, D11	-				
PROJECT TITLE		Nipsco-N	ACGS	·····		SAMPLE ID		BH-1	8	
PROJECT NO.	123-6	88898				SAMPLE TYPE	:	BAC	}	
						SAMPLE DEPI	тн [18.5'-2	0.0'	
AS RECEIVED V	VATER CO	NTENT			pic Moisture	Wet Soil & Tare (gm	· •	25.24		
Wt. Wet Soil & Tare (gm)		(W1)	26.85	For Sieve	Sample	Dry Soil & Tare (gm) Tare Weight (gm)	,	25.06		
Wt. Dry Soil & Tare (gm)		(W2)	22.53			Moisture Content (%)	1.63		
Weight of Tare (gm)		(W3)	13.96	Total Weig	ht of Sample Used			or Hygroscop	oic Moistu	re
Weight of Water (gm)		(W4=W1-W2)	4.32		Weight + Tare, Bef	ore Separating On Th		315.28		
Weight of Dry Soil (gm)		(W5=W2-W3)	8.57				ure Weight (gm)	96.02		
Moisture Content (%) Plus #4 Material	Sieve	(W4/W5)*100	50.41%	(Wt+Tare)	(((Wt-Tare)/W6)*100)	*PASSING	tal Weight (gm)	215.74	(W6)	
TARE WEIGHT	0.00		12,0"	0.00	0.0	100.0	12.0"	cobbles		
	<u>``````</u>		3.0"	0.00	0.0	100.0	3.0"	coarse gravel		
			2.5"	0.00	0.0	100.0	2.5"	coarse gravel		
			2.0"	0.00	0.0	100.0		coarse gravel		
			1.5"	0.00	0.0	100.0		coarse gravel		
			1.0"	0.00	0.0	100.0		coarse gravel		
1			0.75" 0.50"	0.00	0.0	100.0	0.75" 0.50"	fine gravel		
			0.375"	0.00	0.0	100.0	0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
		-			······································					
HYDROMETER Specific Gravity	ANALYSIS (assumed)	2.65			Weight of Sample	e Used For Hyd	rometer Tes	t		
1					Weight of Sample Wet		51.21			
Amount Dispersing Agent	(ml)	125.00			Calculated Dry Wt. use		50.39			
Type Dispersion Device		Mechanical			Hydrometer Bulb Num		624378			
Length of Dispersion Perio		1 Minute			% Pass #4 Sieve For W	noie Sample	100.00			
TARE WEIGHT	30.45	нуркомі	STER BACI	KSIEVE (P	ercent Passing #1	0 - #200 Sieves)				
				(Wt+Tare)	Cumul Wt. Retained	% PASSING				
			#10	30.45	0.00	100.0	#10	medium sand		
			#20	30.47	0.02	100.0	#20	medium sand		
			#40	30.51	0.06	99.9	#40	fine sand		
			#60	30.57	0.12	99.8	#60	fine sand		
			#100	30.67	0.22	99.6	#100	fine sand		
	<u>-</u>	UVDDOME	#200	31.42	0.97	98.1	#200	fines		
DATE	TIME	HYDROME ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE	<u> </u>	
7/19/2012	1:20	(min)	R	T	K	Cc	C	LENGTH	А	
7/19/2012	1:22	2.00	48.0	21.00	0.013	5.83	42.17	8.4	1.00	
7/19/2012	1:25	5.00	41.5	21.00	0.013	5.83	35.67	9.6	1.00	
7/19/2012	1:35	15.00	27.0	21.00	0.013	5.83	21.17	11.9	1.00	
7/19/2012	1:50	30.00 60.00	<u>19.0</u> 14.5	21.00	0,013 0.013	5.83 5.83	13.17	13.2	1.00	
7/19/2012 7/19/2012	2:20 5:30	250.00	14.5	21.00	0.013	5.83	8.67 4.17	14.0 14.7	1.00 1.00	
7/20/2012	1:20	1440.00	8.0	20.90	0.015	5.87	2.13	15.0	1.00	
			ZE PERCE							l
Particle Dismeter	% PASSING			0.00	• •	Description	Black, SILT,	trace sand		
0.0276	83.7	% COARSE GRAV	EL	0.00	•	ן ו			<u> </u>	
0.0187	70.8	% FINE GRAVEL		0.00	0.00	USCS	ML]		
0.0120	42.0	% COARSE SAND		0.00	4		1			
0.0089	26.1	% MEDIUM SAND)	0.12	1.03	30				
0,0065 0.0033	17.2 8.3	% FINE SAND % FINES		1.81 98.07	1.93	26	РL Р1		ТЕСН	CB -
0.0033	6.3 4.2	% FINES % TOTAL SAMPL	E	100.00	4	L*	1			7/18/2012
				1	1				CHECK	
								,	REVIEW	
••••••										

Global Information:	PROJECT NAME: PROJECT NUMBER:	Nipsco-MCGS 123-88898]
	SAMPLE ID: SAMPLE TYPE: SAMPLE DEPTH:	BH-8 BAG 38.5'-40.0']
	DESCRIPTION: D	ark gray, LEAN CLAY WI	TH SAND, trace gravel
AS-RECEIVED	MOISTURE CONTENT: W	eight of Wet Soil & Tar	e 23.26

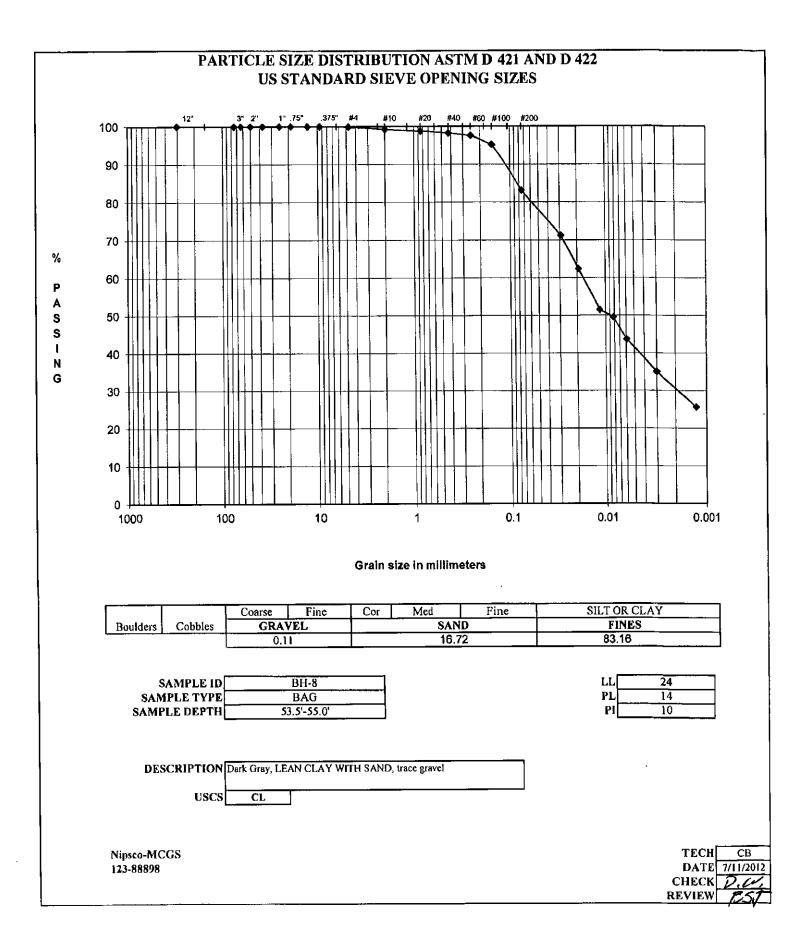

Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content


23.26
22.04
14.00
1.22
8.04
15.17%

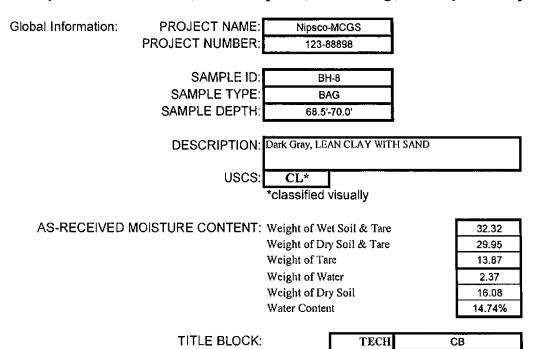
TECH	СВ
DATE	07/09/12
CHECK	PS
REVIEW	BST

	AT			5				
)		SAMPLE T	YPE		BH-8 BAG 38.5'-40	
		Min	us #40 Sieve	Υ	íes	(y	res or no)	
(W1) (W2) (W3) (W4=W1-W2) (W5=W2-W3)	17.45 17.06 13.99 0.39 3.07	18.33 17.74 13.64 0.59 4.10	MINATION	Weight of Weight of	Wet Soil & Dry Soil & Weight of Weight of V eight of Dry	Tare Tare Tare Vater / Soil	23.26 22.04 14.00 1.22 8.04	RE
			MINIATION		water Co	ntent	13,1/%	
(W6) (W7) (W8) (W9=W6-W7) W10=W7-W8) (W9/W10)*100 25.74 13.55	25 - 35 20 - 3 35 25 76) 24.67 25.46 77) 22.60 23.18 78) 13.99 14.10 77) 2.07 2.28 78) 8.61 9.08 00 24.04% 25.11		15 - 25 18 25.21 22.80 14.05 2.41 8.75 27.54%	Blow K - Value		AY WI	25 1 TH SAND, tra	ce gravel
Moist	ure Content v	s. N- Value						
	25					00	TECH DATE CHECK	CB 7/9/2012
	123-8889 N (W1) (W2) (W3) (W4=W1-W2) (W5=W2-W3) (W4/W5)*100 (W6) (W7) (W8) (W9=W6-W7) W10=W7-W8) (W9/W10)*100 25.74 13.55	Nipsco-MCGS 123-88898 PN Wet PLASTIC LI (W1) (W2) (W2) (W3) (W3) (W3) (W3) (W3) (W3) (W3) (W3) (W4=W1-W2) 0.39 (W4=W1-W2) 0.39 (W4=W1-W2) 0.39 (W4=W1-W2) 0.39 (W4-W1-W2) 0.39 (W4-W1-W2) 0.39 (W4-W1-W2) (W7) 22.60 (W8) (W7) (W6) (W7) 2.60 (W8) (W9=W6-W7) 2.07 W10=W7-W8) 8.61 (W9/W10)*100 24.04% 13.55 14 15.17% Moisture Content v 1	ASTM D	ASTM D-4318	Nipsco-MCGS SAMPLE II 123-88898 SAMPLE II SAMPLE D SAMPLE D Wet Minus #40 Sieve Y PLASTIC LIMIT DETERMINATION (W1) 17.45 18.33 (W2) 17.06 17.74 Weight of (W2) 17.06 17.74 Weight of (W2) 0.39 0.59 Weight of (W3) 13.99 13.64 Weight of (W4/W5)*100 12.70% 14.39% Weight of LIQUID LIMIT DETERMINATION 25 - 35 20 - 30 15 - 25 (W6) 24.67 25.46 25.21 (W6) 24.67 25.46 25.21 (W8) 13.99 14.10 14.05 (W9)=W6-W7) 2.07 2.28 2.41 W10=W7-W8) 8.61 9.08 8.75 (W9/W10)*100 24.04% 25.11% 27.54% 25.74 26 DESCRIPTION: Dark gray, 1 13.55 14 USCS	ASTM D-4318 Nipsco-MCGS SAMPLE ID 123-88898 SAMPLE TYPE N Minus #40 Sieve Yes Weight of Versol & 10.05 Weight of Versol & Weight of Versol & Weight of Versol & Weight of Versol & Weight of Dy Sol	ASTM D-4318 Nipseo-MCGS SAMPLE ID 123-88898 SAMPLE DEPTH N Minus #40 Sieve Yes V Minus #40 Sieve Yes PLASTIC LIMIT DETERMINATION NATUS (W1) 17.45 18.33 (W2) 17.06 17.74 (W2) 17.06 17.74 (W3) 13.99 13.84 (W4/W5)*100 12.70% 14.39% U4/W5)*100 12.70% 14.39% U4/W5)*100 12.70% 14.39% U12.260 23.18 22.60 (W5) 24.67 25.46 25.21 (W6) 24.67 25.46 25.21 (W7) 22.60 23.18 22.60 (W7) 22.60 23.18 22.60 (W9) 2.07 2.28 2.41 W10-W7-W8) 8.61 9.08 8.75 (W9/W10)*100 24.04% 25.11% 27.54% 25.74% DESCRIPTION: Dark gray, LEAN CLAY W1 0.14 15.17% U4	ASTM D-4318 Nipsce-MCCS SAMPLE ID BH-8 133-88898 SAMPLE TYPE BAAG N Wet Minus #40 Sieve Yes (yes or no) PLASTIC LIMIT DETERMINATION NATURAL MOISTU Weight of Vas Si & Tare 22.04 (W1) 17.45 18.33 Weight of Vas Si & Tare 22.04 (W2) 17.46 17.44 Weight of Vas Si & Tare 22.04 (W3) 13.99 13.64 Weight of Vas Si & Tare 22.04 (W4/W5)*100 12.70% 14.39% Weight of Vas Si & Tare 22.04 (W4/W5)*100 12.70% 14.39% Weight of Tare 12.04 (W5) 22.63 23.18 22.80 13.96 14.10 14.00 (W9) 24.67 25.48 25.21 15 K - Value 1 (W9) 20.71 2.28 2.318 22.80 15.17% 14.39% 15.17% (W9) 24.04% 25.11% 27.54% 0 Sch 9.75 15.17% (W9) 25.74 26 0.88

		A			IN SIZE ANAL ⁴ 0421, D422, D11					
PROJECT TITLE	······	Nipsco-N	4008		1	SAMPLE ID		BH-	8	
PROJECT NO.	123-8	88898	1000			SAMPLE TYPI	3	BA		
						SAMPLE DEP		38.5'-4		
AS RECEIVED V	VATER CO	NTENT				Wet Soil & Tare (gr		35.13		
14 11 + 0 1 8 Tour (- 1)		aunF	22.26	For Sieve	=	Dry Soil & Tare (gm)	34.43		
Wt. Wet Soil & Tare (gm) Wt. Dry Soil & Tare (gm)		(W1) (W2)	23.26 22.04			Tare Weight (gm) Moisture Content (%	3	<u>14.11</u> 3.44		
Weight of Tare (gm)		(W3)	14.00	Total Weig	ght of Sample Used 1		,		pic Moistur	·e
Weight of Water (gm)		(W4=W1-W2)	1.22			ore Separating On Th		325.05		
Weight of Dry Soil (gm)		(W5=W2-W3)	8.04				are Weight (gm)	82.34		
Moisture Content (%) Plus #4 Material S	Siovo	(W4/W5)*100	15.17%	(114 (T+-+)	((1))+ (T)(1)(()+100)		tal Weight (gm)	234.63	(₩6)	
TARE WEIGHT	10.79	ł	12.0"	(Wt+Tare) 10.79	(((Wt-Tare)/W6)*100) 0.0	%PASSING 100.0	12.0"	cobbles		
	10.73	Ì	3.0"	10.79	0.0	100.0	3.0"	coarse gravel		
			2.5"	10.79	0.0	100.0	2.5"	coarse gravel		
			2.0"	10.79	0.0	100.0	2.0 ¹¹	coarse gravel		
			1.5"	10.79	0.0	100.0	1.5"	coarse gravel		
			1.0"	10.79	0.0	100.0	1.0"	coarse gravel		
			0.75" 0.50"	10.79 10.79	0.0	100.0	0.75" 0.50"	fine gravel fine gravel		
			0.30	10.79	0.0	100.0	0.375"	line gravel		
			#4	12.70	0.8	99.2	#4	coarse sand		
HYDROMETER Specific Gravity	(assumed)				Weight of Sample Weight of Sample Wet	-	rometer Tes	at 1		
Amount Dispersing Agent	(mi) [125.00			Calculated Dry Wt. use		50.74			
Type Dispersion Device	()	Mechanical			Hydrometer Bulb Numb		624378	ţ		
Length of Dispersion Perio	od)	1 Minute			% Pass #4 Sieve For W	hole Sample	99.19			
TARE WEIGHT	30.83	HYDROMI	ETER BAC	KSIEVE (P	ercent Passing #10	0 - #200 Sieves)				
				(Wt+Tare)	Cumul Wt. Retained	% PASSING	1			
			#10	31.30	0.47	98.3	#10	medium sand		
			#20	31.92	1.09	97.1	#20	medium sand		
			#40	32.85	2.02	95.2	#40	line sand		
			#60	34.24	3.41	92.5	#60	fine sand		
			#100 #200	36.34 39.28	5.51 8.45	88.4 82.7	#100	Fine sand		
		HYDROME	#200 TER CALC		the second second second second second second second second second second second second second second second s	02.7	#200	fines	•	
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE	[^{***}	
7/19/2012	1:22	(min)	R	Т	K	Cc	С	LENGTH	A	
7/19/2012	1:24	2.00	43.0	21.00	0.013	5.83	37.17	9.2	1.00	
7/19/2012	1:27	5.00	39.5	21.00	0.013	5.83	33.67	9.9	1.00	
7/19/2012 7/19/2012	1:37 1:52	15.00 30.00	35.5 33.0	21.00	0.013 0.013	5.83 5.83	29.67 27.17	10.6 10.9	1.00 1.00	
7/19/2012	2:22	60.00	30.5	21.00	0.013	5.83	24.67	11.4	1.00	
7/19/2012	5:32	250.00	25.0	21.40	0.013	5.70	19.30	12.2	1.00	
7/20/2012	1:22	1440.00	19.0	22.10	0.013	5.47	13.53	13.2	1.00	
			ZE PERCE		-		·····			
Particle Diameter	% PASSING	{		0.00	ļ	Description	4	EAN CLAY V	VITH SAND	, trace
0.0289 0.0190	72.7	% COARSE GRAV % FINE GRAVEL	EL	0.00	0.81	USCS	gravel CL	T		
0.0113	58.0	% FINE GRAVEL		0.92	0.04	1 0000				
0.0081	53.1	% MEDIUM SAND		3.03	1	26	LL			
0.0059	48.2	% FINE SAND		12.57	16.52	14	PL			
0.0030	37.7	% FINES		82.67	4	12	PI		TECH	CB
0.0013	26.4	% TOTAL SAMPLI	E	100.00	J				DATE CHECK	7/9/2012
									REVIEW	105F


Weight of Dry Son Weight of Tare Weight of Water Weight of Dry Soil Water Content

24.24
23.02
13.87
1.22
9.15
13.33%


TECH	СВ
DATE	07/11/12
CHECK	D.W.
REVIEW	BST

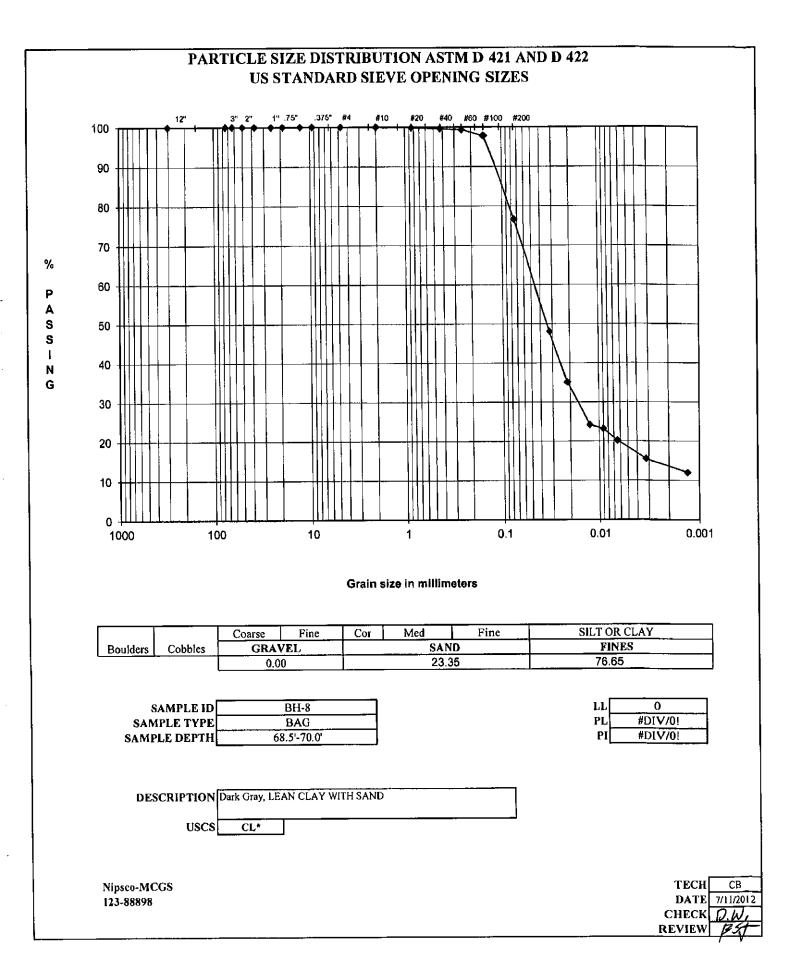
		AT	TERBER ASTM D		8	
PROJECT TITLE PROJECT NUMBER	Nip 123-888	sco-MCGS 98			SAMPLE ID SAMPLE TYPE SAMPLE DEPTH	BH-8 BAG 53.5'-55.0'
SAMPLE PREPARAT	ION					
Wet or I	Dry Wet		Min	us #40 Sieve	Yes	(yes or no)
Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil	(W1)	PLASTIC L 18.29 17.75 14.03 0.54 3.72	MIT DETER 18.33 17.78 13.98 0.55 3.80	MINATION	NA Weight of Wet Soil & T Weight of Dry Soil & T Weight of T Weight of Wa Weight of Dry S	Sare 23.02 'are 13.87 ater 1.22
Water Content	(W4/W5)+100	14.52%	14.47%		Water Con	
	(MIT DETER	' MINATION		
Range of Blows Number of Blows Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water	(W7) (W8) (W9=W6-W7)	25 - 35 31 24.77 22.34 11.48 2.43	20 - 30 24 24.32 21.75 10.95 2.57	15 - 25 18 21.91 19.66 10.79 2.25	Blow K - Valu	25 Ie 1
Weight of Dry Soil	W10≃W7-W8)	10.86	10.80	8.87	-	
Water Content Moisture content at 25 blo	(W9/W10)*100	22.38% 23.68%		25.37%	J 	
LIQUID LIMIT (WI) PLASTIC LIMIT (Wp) PLASTICITY INDEX (I LIQUIDITY INDEX (I) MOISTURE CONTENT	-	24 14 10 -0.12 13.33%	DE\$	SCRIPTION USC:		Y WITH SAND, trace gravel
	Mois	sture Content	vs. N- Value	ز	y = -0.0023x + 0.2943	
60% 55% 50% 45% 40% 35% 30% 25% 20%						
15% 10% 10		25	N Value		100	$\begin{array}{c c} TECH & CB \\ DATE & 7/11/2012 \\ CHECK & \mathcal{D}, \mathcal{W}, \\ REVIEW & \mathcal{B} \mathcal{T} \end{array}$

		ł			IN SIZE ANAL 9421, D422, D11					
PROJECT TITLE		Nipsco-l	MCGS	1		SAMPLE ID		BH-	8	
PROJECT NO.	123-	88898				SAMPLE TYP	Е	BAC		
						SAMPLE DEP	ГН	53.5'-5		
AS RECEIVED	WATER CO	ONTENT			pic Moisture	Wet Soil & Tare (gn		28.43		
			24.24	For Sieve	Sample	Dry Soil & Tare (gn	1)	28.28		
Wt. Wet Soil & Tare (gm) Wt. Dry Soil & Tare (gm)		(W1) (W2)	24.24 23.02			Tare Weight (gm) Moisture Content (%		14.15 1.06		
Weight of Tare (gm)		(W2) (W3)	13.87	Total Weig	ht of Sample Used				nic Moistu	re
Weight of Water (gm)		(W4=W1-W2)	1.22	· · · · · · · · ·		ore Separating On Th		466.34		
Weight of Dry Soil (gm)		(W5=W2-W3)	9.15			. – т	are Weight (gin)	188.58		
Moisture Content (%)		(W4/W5)*100	13.33%			Тс	otal Weight (gm)	274.84	(W6)	
Plus #4 Material				(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING				
TARE WEIGHT	14.02		12.0"	14.02	0.0	100.0		cobbles		
			3.0" 2.5"	14.02	0.0	100.0		coarse gravel		
			2.5" 2.0"	14.02 14.02	0.0	100.0		coarse gravel		
			1.5"	14.02	0.0	100.0		coarse gravel coarse gravel		
			1.0"	14.02	0.0	100.0		coarse gravel		
			0.75"	14.02	0.0	100.0		fine gravel		
			0.50"	14.02	0.0	100.0	0.50"	fine gravel		
			0.375"	14.02	0.0	100.0	0.375"	fine gravel		
			#4	14.33	0.1	99.9	#4	coarse sand		
HYDRÖMETER	ANALYSIS	s						<u> </u>		
Specific Gravity	(assumed)				Weight of Sampl	2		t		
	4-b	126.00			Weight of Sample Wet		51.25			
Amount Dispersing Agent Type Dispersion Device	(ini)	125.00 Mechanical			Calculated Dry Wt. use		50.71 624378			
Length of Dispersion Peri-	ho	1 Minute			Hydrometer Bulb Numl % Pass #4 Sieve For W		99.89			
TARE WEIGHT	30.19	······································	ETER BACT	KSIEVE (P	ercent Passing #1					
TARE WEIGHT	30.19]			Cumul Wt,	0 - 11200 Steresy				
				(Wt+Tare)	Retained	% PASSING	1			
			#10	30.54	0.35	99.2	#10	medium sand		
			#20	30.76	0.57	98.8	#20	medium sand		
			#40	31.03	0.84	98.2	#40	fine sand		
			#60	31.34	1.15	97.6	#60	fine sand		
			0014	32.56 38.68	2.37	95.2	#100	fine sand		
		HYDROME	#200		<u>8.49</u>	83.2	#200	fines		
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE	· · · ·	
7/13/2012	13:12	(min)	R	T	K	Cc	C	LENGTH	Α	
7/13/2012	13:14	2.00	42.0	21.00	0.013	5.83	36.17	9.4	1.00	
7/13/2012	13:17	5.00	37.5	21.00	0.013	5.83	31.67	10.2	1.00	
7/13/2012	13:27	15.00	32.0	21.00	0.013	5.83	26.17	11.1	1.00	
7/13/2012	13:42	30.00	31.0	21.00	0.013	5.83	25.17	11.2	1.00	
7/13/2012 7/13/2012	14:12 17:22	60.00 250.00	28.0 23.5	21.00 21.40	0.013 0.013	5.83 5.70	22.17	11.7 12.5	1.00	
7/14/2012	13:12	1440.00	18.5	22.10	0.013	5.47	13.03	13.3	1.00	
			ZE PERCE			<u> </u>	1.0.00		<u></u>	l
Particle Diameter	% PASSING			0.00		Description	Dark Gray, L	EAN CLAY V	VITH SAN), trace
0.0292	71,2	% COARSE GRAV	EL	0.00			gravel			,
0,0193	62.4	% FINE GRAVEL		0.11	0.11	USCS		<u> </u>		
0.0116	\$1,5	% COARSE SAND		0.69						
0.0082	49.6	% MEDIUM SAND)	0.97	16.70	24				
0.0060	43.7	% FINE SAND		15.07	16.72	14	PL DI		TPAP	- OD
0.0030	35.1	% FINES % TOTAL SAMPL	I:	83.16 100.00	1	10	РІ		TECII DATE	CB 7/11/2012
0,0013	23./	La total shart		100.00	1				CHECK	
									REVIEW	PST
• • • •										<u>_~~~~</u> γ

Golder Associates - Lansing, Michigan

DATE

CHECK


REVIEW

07/11/12

Z:W.

Template For Proctor, Sieve-Hydro, Atterberg, and Spec Gray.

		1			IN SIZE ANALY 0421, D422, D11					
PROJECT TITLE		Nipsco-	MCGS			SAMPLE ID]	BH-	<u></u>	
PROJECT NO.	123-	88898				SAMPLE TYPE	; I	BAC		
i kolber ho.	123					SAMPLE DEPI	,	68.5'-7	-	
AS RECEIVED V	WATER CO	NTENT		Hygrosco	pic Moisture	Wet Soil & Tare (gu)	40.86		
				For Sieve		Dry Soil & Tare (gm	-	40.72		
Wt. Wet Soil & Tare (gm)		(W1)	32.32			Tare Weight (gm)		13.99		
Wt, Dry Soil & Tare (gm)		(W2)	29.95			Moisture Content (%	<u> </u>	0.52		
Weight of Tare (gm)		(W3)	13.87	Total Weig	th of Sample Used 1				pic Moistur	e
Weight of Water (gm)		(W4=W1-W2)	2.37		Weight + Tare, Bef	ore Separating On Th		561.38		
Weight of Dry Soil (gm)		(₩ 5= ₩2-₩3)	16.08				are Weight (gm)	193.53		
Moisture Content (%) Plus #4 Material	Siava	(W4/W5)*100	14.74%	(Wt+Tare)	(((Wt-Tarc)/W6)*100)	*PASSING	tal Weight (gm)	365.93	(W6)	
TARE WEIGHT	0.00	1	12.0"	0.00	0.0	100.0	12.0"	cobbles		
	0.00)	3.0"	0.00	0,0	100.0	3.0"	coarse gravel		
			2,5"	0.00	0.0	100.0	2.5"	coarse gravel		
			2.0"	0.00	0.0	100.0	2.0"	coarse gravel		
			1.5"	0.00	0.0	100.0	1.5"	coarse gravel		
			1.0"	0.00	0.0	100.0	1.0"	coarse gravel		
			0.75"	0.00	0.0	100.0	0.75"	fine gravel		
			0.50"	0.00	0.0	100.0	0.50"	fine gravel		
			0.375"	0.00	0.0	100.0	0.375"	fine gravel		
1			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETER Specific Gravity	(assumed)		<u>,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Weight of Sample			it 1		
	<i>.</i>	100.00	1		Weight of Sample Wet		50.55	4		
Amount Dispersing Agent	(181)	125.00			Calculated Dry Wt. use		50.29	ł		
Type Dispersion Device		Mechanical 1 Minute			Hydrometer Bulb Numb % Pass #4 Sieve For W		<u>624378</u> 100.00	4		
Length of Dispersion Perio	Ju	Tiviniace			76 F855 #4 316VE FUT W	note sample	100.00			
TARE WEIGHT	30.51	HYDROM	ETER BAC	KSIEVE (P	ercent Passing #10	0 - #200 Sieves)				
		1			Cumul Wt.					
				(Wt+Tare)	Retained	% PASSING	1			
			#10	30.53	0.02	100.0	#10	medium sand		
			#20	30.60	0.09	99.8	#20	medium sand		
			#40	30.71	0.20	99.6	#40	fine sand		
			#60	30.86	0.35	99.3	#60	fine sand		
			#100	31.62	1.11	97.8	#100	fine sand		
		HYDROME	#200	42.25	11.74	76.7	#200	fines		
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE	<u> </u>	
7/13/2012	1	(min)	R	T	K	Cc	C	LENGTH	A	
7/13/2012	0:02	2.00	30.0	21.00	0,013	5.83	24.17	11,4	1.00	
7/13/2012	0:05	5.00	23.5	21.00	0.013	5.83	17.67	12.5	1.00	
7/13/2012	0:15	15.00	18.0	21.00	0.013	5.83	12.17	13.3	1.00	
7/13/2012	0:30	30.00	17.5	21.00	0.013	5,83	11.67	13.5	1.00	
7/13/2012	1:00	60.00	16.0	21.00	0.013	5.83	10.17	13.7	1.00	
7/13/2012	4:10	250.00	13.5	21.40	0.013	5.70	7.80	14.2	1.00	
7/14/2012	0:00	1440.00	11.5	22.10	0.013	5.47	6.03	14.5	1.00	
			ZE PERCE		1					
Particle Dismeter	% PASSING	1		0.00		Description	Dark Gray, L	EAN CLAY	WITH SAND	•
0.0322	48.1	% COARSE GRAV	/EL	0.00	0.00	LIECO	CI.+	1		
0.0213	35,1	% FINE GRAVEL	、	0.00	0.00		CL*	1		
0.0127 0.0090	24.2 23.2	% COARSE SAND % MEDIUM SAN		0.04	1	0]ււ			
0.0064	20.2	% MEDIUM SAN		22.95	23.35	#DIV/0!	PL			
0,0032	15.5	% FINES		76.65	<u> </u>	#DIV/0!	PI		TECH	СВ
0.0013	12.0	% TOTAL SAMPL	.E	100.00	1	L				7/11/2012
					_				CHECK REVIEW	D.W.

Global Information:	PROJECT NAME:	Nipsco-MCGS	
	PROJECT NUMBER:	123-88898]
	SAMPLE ID:	BULO	7
		BH-9	-
	SAMPLE TYPE:	BAG	
	SAMPLE DEPTH:	33.5'-35.0'	_
	DECODIDITION		THE CAND trace events
	DESCRIPTION: L	Dark gray, LEAN CLAY WI	TH SAND, trace grave
	USCS:	CL	

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

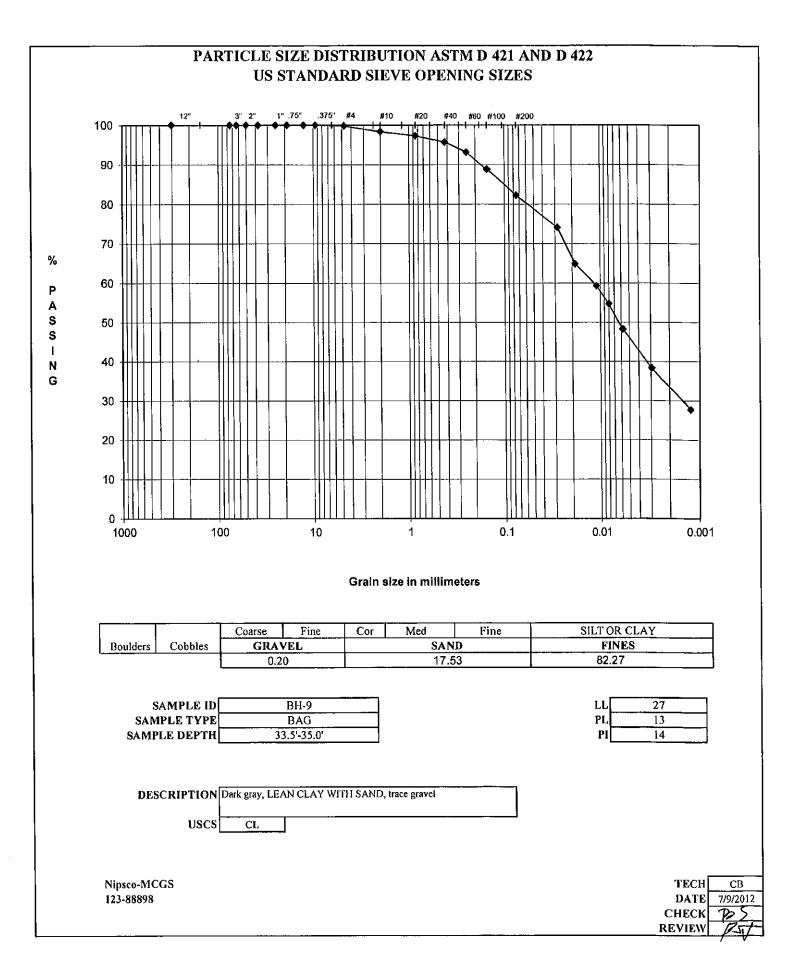
TITLE BLOCK:

TECH	СВ
DATE	07/09/12
CHECK	105
REVIEW	BST

27.35

25.40

14.03


1.95

11.37

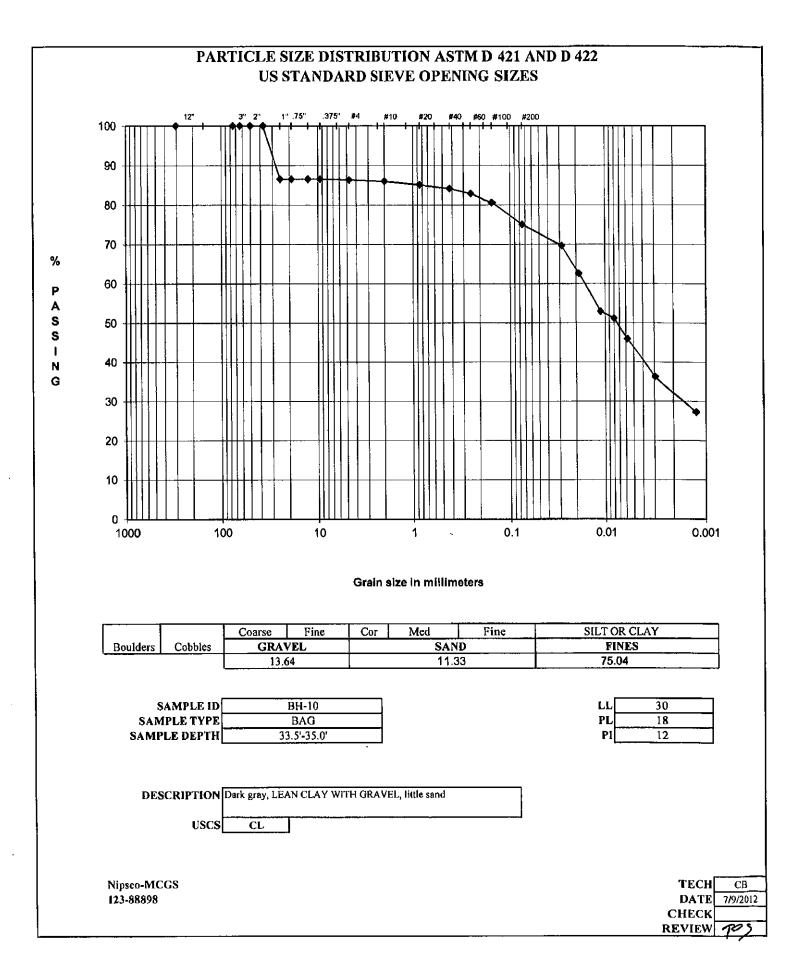
17.15%

			AT	TERBER ASTM D		S		
PRO.IF	SCT TITLE	Nin	sco-MCGS			SAMPLE ID	BH-9	
	ECT NUMBER	123-8889			I	SAMPLE TYPE	BAG	
				,		SAMPLE DEPTH	33.5'-3	
SAMP	LE PREPARATI	ON			· · · ·	<u>, , , , , , , , , , , , , , , , , , , </u>		
	Wet or Dr	y Wet		Min	us #40 Sieve	Yes	(yes or no)	
			PLASTIC LI	MIT DETER	MINATION	l NA	TURAL MOISTU	JRE
Weight	of Wet Soil & Tare	(W1)	18.12	18.27		Weight of Wet Soil & T		
-	of Dry Soil & Tare	(W2)	17.64	17.77		Weight of Dry Soil & T		
Weight	of Tare	(W3)	14.02	14.12		Weight of T	are 14.03	
Weight	of Water	(W4=W1-W2)	0.48	0.50		Weight of Wa	ater 1.95	
Weight	of Dry Soil	(W5=W2-W3)	3.62	3.65		Weight of Dry S	Soil 11.37	
Water C	Content	(W4/W5)*100	13.26%	13.70%		Water Cont	tent 17.15%	
			LIQUID LI	MIT DETER	MINATION			
Range o	f Blows	[25 - 35	20 - 30	15 - 25]		
Number	of Blows		31	20	16]		
Weight	of Wet Soil & Tare	(W6)	26.82	25.22	25.69	Blow	25	
Weight	of Dry Soil & Tare	(W7)	24.22	22.85	23.07	K - Vah	1e 1	
Weight	of Tare	(W8)	14.34	14.16	13.98			
Weight	of Water	(W9=W6-W7)	2.60	2.37	2.62			
Weight	of Dry Soil	W10=W7-W8)	9.88	8.69	9.09			
Water C	Content	(W9/W10)*100	26.32%	27.27%	28.82%	J		
Moistur	e content at 25 blow	[27.07%]				
LIOUI	D LIMIT (WI)	27.07	27] des	CRIPTION	Dark gray, LEAN CLA	Y WITH SAND, tra	ice gravel
	TC LIMIT (Wp)	13.48	13	1				Ĵ l
	ICITY INDEX (Ip)		14					
	DITY INDEX (I)	ľ	0.26	1	USCS		· · · · · · · · ·	
	URE CONTENT		17.15%	1		,,		
		Moist	ure Content v	s. N- Value	у	= -0.0015x + 0.3082		
	^{60%} T			·				
	55%					+		
1	50%							
	45%							
بر ۲	40%							
ontei	35%							
2 0								
Moisture Content, %	30%							
Ĭ	25%							
	20%		··					
1	15%						тесн	СВ
	10%	1					DATE	7/9/2012
	10		25 N	Value		100	СНЕСК	Pos
ļ								BST

	ASTM GRAIN SIZE ANALYSIS ASTM C117, C136, D421, D422, D1140 and D2217									
PROJECT TITLE		Nipsco-	MCGS			SAMPLE ID		BH-	0	
PROJECT NO.	123-	88898	1005			SAMPLE TYP	ç.	BAC	_	
						SAMPLE DEP		33.5'-3		
AS RECEIVED	WATER CO	DNTENT			pic Moisture	Wet Soil & Tare (ga		22.26		
Wt. Wet Soil & Tare (gm	`	(WI)	27.35	For Sieve	Sample	Dry Soil & Tare (gm	1)	22.22		
Wt. Dry Soil & Tare (gm		(W1) (W2)	25.40			Tare Weight (gm) Moisture Content (%	5)	0.47		
Weight of Tare (gm)	,	(W3)	14.03	Total Weig	ht of Sample Used I				nic Moistu	
Weight of Water (gm)		(W4=W1-W2)	1.95	c		ore Separating On Th		460.82		
Weight of Dry Soil (gm)		(W5=W2-W3)	11.37		-		are Weight (gm)	189.08		
Moisture Content (%)		(W4/W5)*100	17.15%			To	ntal Weight (gm)	270.48	(W6)	
Plus #4 Material	Sieve	-		(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING				
TARE WEIGHT	11.22		12.0"	11.22	0.0	100.0	12.0"	cobbles		
		-	3.0"	11.22	0.0	100.0	3.0"	coarse gravel		
			2.5"	11.22	0.0	100.0	2.5"	coarse gravel		
			2.0"	11.22	0.0	100.0	2.0"	coarse gravel		
			1.5"	11.22	0.0	100.0	1.5"	coarse gravel		
			1.0"	11.22	0.0	100.0	1.0"	coarse gravel		
			0.75"	11.22	0.0	100.0	0.75"	fine gravel		
			0.50"	11.22	0.0	100.0	0.50"	fine gravel		
			0.375"	11.22	0.0	100.0	0.375"	fine gravel		
			#4	11.76	0.2	99.8	#4	coarse sand		
HYDROMETER	ANALYSI	<u> </u>								
Specific Gravity	(assumed)				Weight of Sample			t		
		196.00			Weight of Sample Wet		54.35			
Amount Dispersing Agen	t (111)	125.00			Calculated Dry Wt. use		54.10			
Type Dispersion Device	te d	Mechanical 1 Minute			Hydrometer Bulb Num		624378			
Length of Dispersion Peri		I WINULE			% Pass #4 Sieve For W	note Sample	99.80			-
TARE WEIGHT	30.18	HYDROM	ETER BAC	KSIEVE (P	ercent Passing #10 Cumul Wt.	0 - #200 Sieves)				
				(Wt+Tare)	Retained	% PASSING	1			
			#10	30.97	0.79	98.3	#10	medium sand		
			#20	31.54	1.36	97.3	#20	medium sand		
			#40	32.40	2.22	95.7	#40	fine sand		
			#60	33.78	3.60	93.2] #60	fine sand		
			#100	36.12	5.94	88.8	#100	fine sand		
			#200	39.68	9.50	82.3	#200	lines		
	· · · · · · · · · · · · · · · · · · ·	HYDROME								
DATE	TIME	ET	READING	ТЕМР	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012 7/19/2012	1:18 1:20	(min) 2.00	R 46.0	T	K	Cc	C 40.17	LENGTH	A	
7/19/2012	1:20	2.00 5.00	46.0 41.0	21.00 21.00	0.013 0.013	5.83 5.83	40.17	8.8	1.00	
7/19/2012	1:33	15.00	38.0	21.00	0.013	5.83	35.17 32.17	9.6 10.1	1.00	
7/19/2012	1:48	30.00	35.5	21.00	0.013	5.83	29.67	10.1	1.00 1.00	
7/19/2012	2:18	60.00	32.0	21.00	0.013	5.83	26.17	11.1	1.00	
7/19/2012	5:28	250.00	26.5	21.40	0.013	5.70	20.80	12.0	1.00	
7/20/2012	1:18	1440.00	20.5	22.10	0.013	5.47	15.03	13.0	1.00	
			ZE PERCE	<u>.</u>		• •• •• •• ••			L	
Particle Diameter	% PASSING			0.00	1	Description	Dark gray, Ll	EAN CLAY W	TH SAND	, trace
0.0283	74.1	% COARSE GRAV	EL	0.00		1	gravel			
0.0187	64,9	% FINE GRAVEL		0.20	0.20	USCS				
0.0111	59.3	% COARSE SAND		1.46				-		
0.0080	54,7	% MEDIUM SAND	1	2.64	Į	27	լու			
0.0058	48.3	% FINE SAND		13.43	17.53	13	JPL			
0.0030	38.4	% FINES		82.27	1	14]61		TECH	CB
0.0013	27.1	% TOTAL SAMPL	E	100.00	J				DATE	7/9/2012
									CHECK	PZ
L									REVIEW	BJF

Global Information:	PROJECT NAME:	Nipsco-MCGS	7
	PROJECT NUMBER:	123-88898	
	SAMPLE ID:	BH-10	
	SAMPLE TYPE:	BAG	
	SAMPLE DEPTH:	33.5'-35.0'	
	DESCRIPTION: I	Dark gray, LEAN CLAY WI	TH GRAVEL, little sand
	USCS:	CL	
AS-RECEIVED	MOISTURE CONTENT: 1	Weight of Wet Soil & Ta	re 20.56

Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content


	20.56
	19.44
	13.85
1	1.12
	5.59
	20.04%

ТЕСН	СВ
DATE	07/09/12
СНЕСК	tss.+
REVIEW	TP 5 V

				AT	TERBER(ASTM D		8				
PROJECT TITLE PROJECT NUMBER			Nip 123-888	sco-MCGS 98			SAMPLE ID SAMPLE TYPE SAMPLE DEPTH			BH-10 BAG 33.5'-35.0'	
SAMP	LE PR	EPARATIO	N							·	
		Wet or Dry	Wet Minus #40 Sieve Yes					/es		(yes or no)	
		-	1	PLASTIC LIMIT DETERMINATION					NATU	RAL MOISTU	JRE
Weight of Wet Soil & Tare			(W1)	18.61	18.72		Weight of	Wet Soil	Г	20.56	
Weight of Dry Soil & Tare			(W2)	17.94	17.96 Weight of					19.44	
Weight	-		(W3)	14.16	13.74					13.85	
Weight	of Wate	r	(W4=W1-W2)	0.67	0.76			Weight o	f Water	1.12	
Weight	of Dry S	loil	(W5=W2-W3)	3.78	4.22		W	eight of E	Dry Soil	5.59	
Water C			(W4/W5)*100	17.72%	18.01%					20.04%	
				LIQUID LI	MIT DETER	MINATION					
Range of Blows]	25 - 35	20 - 30	15 - 25					
Number				35	24	20					
Weight	of Wet S	Soil & Tare	(W6)	26.87	27.08	25.54		Bi	ow	25	
Weight	of Dry S	Soil & Tare	(W7)	24.03	24.06	22.76		К-\	/alue	1	
Weight			(W8)	14.02	14.08	13.88					
Weight of Water			(W9=W6-W7)	2.84	3.02	2.78					
Weight of Dry Soil			W10=W7-W8)	10.01	9.98	8.88	~				
Water Content			(W9/W10)*100	28.37%	30.26% 31.31%						
Moistur	e conter	nt at 25 blow	[30.25%	-						
LIQUID LIMIT (WI)		30.25	30.25 30 DESCRIPTION			Dark gray, I	LEAN C	LAY W	/ITH GRAVEL	, little sand	
PLASTIC LIMIT (WP)		17.87	18]							
PLASTICITY INDEX (Ip)			12]							
LIQUIDITY INDEX (I)			0.18]	USCS	CL					
MOISTURE CONTENT			20.04%]							
			Mois	sture Content vs. N- Value $y = -0.0019x + 0.3$							
	60%	Τ							ון		
	55%						· · · · · ·	·	1		
	50%								-		
	45%	<u> </u>							-		
ਿੰਦ	40%	ļ									
atte	35%								_		
ů											
Moisture Content, %	30%										
ĮΣ	25%	1							1		
1	20%				····						
	15%						+	<u>}</u>	-	тесн	СВ
1	10%	ļ								DATE	7/9/2012
1		10		25	Value				100	СНЕСК	P.S.t
ļ										REVIEW	125

.

ASTM GRAIN SIZE ANALYSIS ASTM C117, C136, D421, D422, D1140 and D2217											
PROJECT TITLE		Ninsco.A	ACGS			SAMPLE ID	r	BH-10	0 1		
PROJECT TITLE Nipsco-MCGS PROJECT NO. 123-88898					SAMPLE TYPE	: 1	BAG				
						SAMPLE DEPT	тн [33.5'-35	5.0'		
AS RECEIVED V	VATER CO	NTENT		Hygroscopic Moisture Wet Soil & Tare (gm			<u> </u>	39.36			
AS RECEIVED V					Dry Soil & Tare (gm)		38.61				
Wt. Wet Soil & Tare (gm) (W1) 20.56				=		Tare Weight (gm)		14.27			
Wt. Dry Soil & Tare (gm) (W2) 19.44				Moisture Content (%) 3.08							
Weight of Tare (gm)	(W3)	13.85	Total Weight of Sample Used For Sleve Analysis Corrected For Hygroscopic Moisture								
Weight of Water (gm) Weight of Dry Soil (gm)		(W4=W1-W2) (W5=W2-W3)	<u>1.12</u> 5.59	Weight + Tare, Before Separating On The #4 Sieve (gm) 390.34 Tare Weight (gm) 92.92							
Moisture Content (%)		(W4/W5)*100	20.04%				al Weight (gm)		W6)		
Plus #4 Material	Sieve			(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING					
TARE WEIGHT	10.89		12.0"	10.89	0.0	100.0		cobbles			
-			3.0"	10.89	0.0	100.0		coarse gravel			
			2.5" 2,0"	10.89 10.89	0.0	100.0		coarse gravel coarse gravel			
			2,0" 1.5"	10.89	0.0	100.0		coarse gravel			
			1.0"	49.64	13.4	86.6		coarse gravel			
			0.75"	49.64	13.4	86.6		fine gravel			
			0.50"	49.64	13.4	86.6	0.50"	fine gravel			
			0.375"	49.64	13.4	86.6	0.375"	fine gravel			
			#4	50.24	13.6	86.4	#4	coarse sand			
HYDROMETER ANALYSIS Weight of Sample Used For Hydrometer Test Specific Gravity (assumed) 2.65 Weight of Sample Wet or Dry (gm) 50.70											
Amount Dispersing Agent	(ml) [125.00			Calculated Dry Wt. use		49.18				
Type Dispersion Device Mechanical				Hydrometer Bulb Number			624378				
Length of Dispersion Period 1 Minute				% Pass #4 Sieve For Whole Sample			86.36				
TARE WEIGHT	30.82	HYDROMI	ETER BAC	KSIEVE (P	ercent Passing #1	0 - #200 Sieves)					
				(Wt+Tare)	Cumul Wt. Retained	% PASSING					
			#10	31.04	0.22	86.0	#10	medium sand			
#20				31.54	0.72	85.1	#20	medium sand			
#40				32.10	1.28	84.1	#40	fine sand			
#60				32.81	1.99 3.32	82.9 80.5	#60 #100	fine sand fine sand			
			#100 #200	34.14	6.45	75.0	#100	fines			
		HYDROME								-	
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE	<u> </u>		
7/9/2012	1:06	(min)	R	T	K	Ce	C	LENGTH	<u>A</u>		
7/9/2012	1:08	2.00	45.5	21.00	0.013 0.013	5.83 5.83	39.67 35.67	8.9 9.6	1.00 1.00		
7/9/2012 7/9/2012	1:11 1:21	5.00 15.00	41.5 36.0	21.00	0.013	5.83	30.17	9.0	1.00		
7/9/2012	1:36	30.00	35.0	21.00	0.013	5.83	29.17	10.6	1.00		
7/9/2012	2:06	60.00	32.0	21.00	0.013	5.83	26.17	11.1	1.00		
7/9/2012	5:16	250.00	26.5	21.40	0.013	5.70	20.80	12.0	1.00		
7/10/2012	1:06	1440.00	21.0	22.10	0.013	5.47	15.53	12.9	1.00		
GRAIN SIZE PERCE Particle Diameter % PASSING % COBBLES				0.00 Description Dark gray, LEAN CLAY WITH GRAY					FL little		
Particle Diameter 0.0284	% PASSING 69.7	% COBBLES % COARSE GRAV	TEL	13.43	+]	sand			22, may	
0.0187	62,6	% FINE GRAVEL		0.21	13.64	USCS			-		
0.0112	53.0	% COARSE SAND		0.39			п				
0.0080	51.2	% MEDIUM SAM	>	1.86	11.33	30 18	LL PL				
0.0058	45.9 36.5	% FINE SAND % FINES		9.08 75.04	11.33	18	1PL 1PI		TECH	СВ	
0.0013	27.3	% TOTAL SAMPL	Æ	100.00	1	12	7		DATE		
	1				-				CHECK		
									REVIEW	P	

Global Information:	PROJECT NAME:	Nipsco-MCGS	3
	PROJECT NUMBER:	123-88898]
	SAMPLE ID:	BH-10]
	SAMPLE TYPE:	BAG	
	SAMPLE DEPTH:	48.5'-50.0']
	DESCRIPTION: Li	ght brownish gray, LEAN	CLAY, trace gravel, some sand
	USCS:	CL	

Template For Proctor, Sieve-Hydro, Atterberg, and Spec Grav.

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

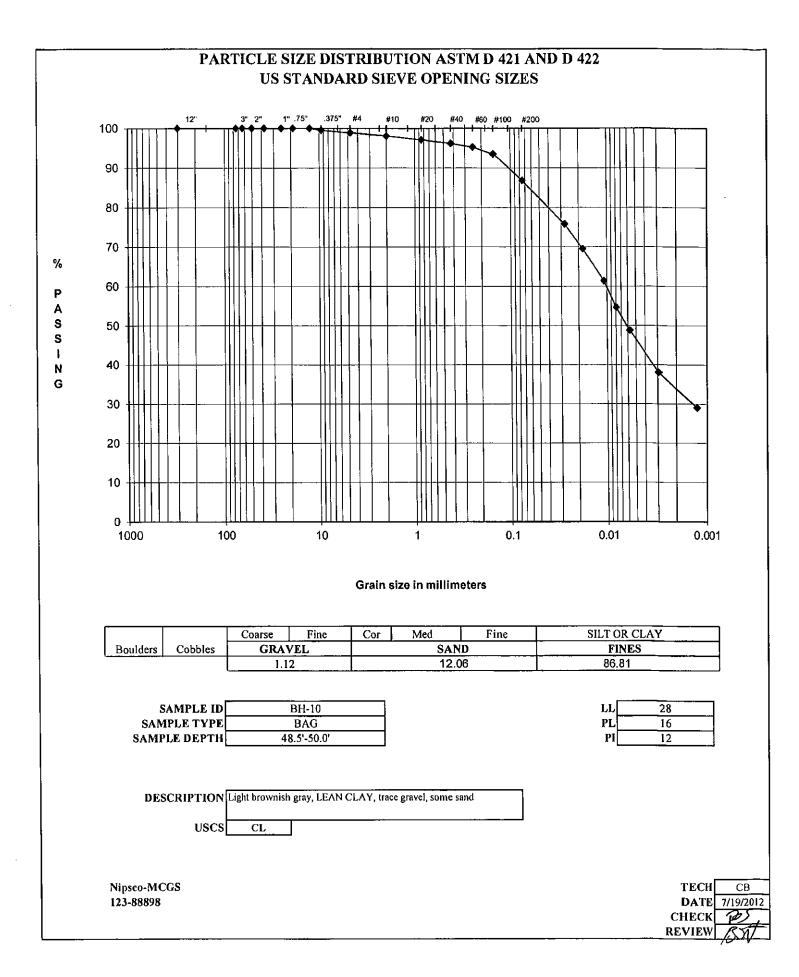
TITLE BLOCK:

TECH	СВ
DATE	07/19/12
CHECK	PS
REVIEW	BS₹

24.11

22.78

14.18


1.33

8.60

15.47%

				AT	TERBER ASTM D		S			
PROJE PROJE		ITLE UMBER	Nip 123-888	sco-MCGS 98			SAMPLE ID SAMPLE TY SAMPLE DI	/PE	BH- BA 48.5'-	G
SAMP	LE PR	EPARATION	1							<u> </u>
		Wet or Dry	Wet		Min	us #40 Sieve	Ye	es	(yes or no)	
			1	PLASTIC LI	MIT DETER	MINATION	!	NA	ATURAL MOIST	URE
Weight	of Wet S	Soil & Tare	(W1)	19.54	18.34		Weight of W	/et Soil & T	Care 24.11	
Weight	of Dry S	Soil & Tare	(W2)	<u>1</u> 8.81	17.71		Weight of E	Dry Soil & T	are 22.78	
Weight	of Tare		(W3)	14.15	13.60			Weight of T	are 14.18	
Weight	of Wate	r	(W4=W1-W2)	0.73	0.63		А	eight of Wa	ater 1.33	
Weight	of Dry S	Soil	(W5=W2-W3)	4.66	4.11		Wei	ght of Dry S	Soil 8.60	
Water C	Content		(W4/W5)*100	15.67%	15.33%			Water Cont	tent 15.47%	
				LIQUID LI	MIT DETER	MINATION				
Range o	f Blows	5		25 - 35	20 - 30	15 - 25				
Number	of Blov	vs		29	20	16				
Weight	of Wet S	Soil & Tare	(W6)	26.06	24.10	25.89		Blow	25	
Weight	of Dry S	Soil & Tare	(W7)	23.43	21.88 23.25 K-V				ue 1	
Weight	of Tare		(W8)	13.91	14.01	14.07				
Weight	of Wate	r	(W9=W6-W7)	2.63	2.22	2.64				
Weight	of Dry S	Soil	W10=W7-W8)	9.52	7.87 9.18					
Water C	Content		(W9/W10)*100	27.63%	28.21%	28.76%				
Moistur	e conter	nt at 25 blow	I	28.00%]					
LIQUI	D LIMI	т смр Г	28	28] des	CRIPTION:	Light browni	sh gray, Ll	EAN CLAY, trace	gravel, some
		4IT (Wp)	15.50	16	1		sand	••••		
		INDEX (Ip)		12						
		NDEX (I)		0.00	1	USCS	CL			J
		ONTENT		15.47%			۰			
			Mois	lure Content v	s. N- Value		y = -0.0008x	+ 0.3		
1	60%	1								
	55%					-				
	50%					-	<u> </u>			
	45%		<u> </u>	 }						
, ř	40%	 								
j ju	35%	<u> </u>								
l ai	30%									
Moisture Content, %										
Σ	25%	1								
	20%	· · ·					-			
	15%							\rightarrow	ТЕСН	СВ
1	10%	 		25					DATE	
		10			Value			100	СНЕСК	Pas
1		·····							REVIEW	1357

	ASTM GRAIN SIZE ANALYSIS ASTM C117, C136, D421, D422, D1140 and D2217									
PROJECT TITLE		Nipsco-l	MCGS			SAMPLE ID	Γ	BH-1	0	
PROJECT NO.	123-1	88898				SAMPLE TYPE		BAC		
		J				SAMPLE DEPT		48.5'-5	_	
AS RECEIVED V	AS RECEIVED WATER CONTENT Hygroscopic Moisture Wet Soil & Tare (gm) 30.56									
			24.11	For Sieve	Sample	Dry Soil & Tare (gm))	30.39		
WI. Wet Soil & Tare (gm)		(WI) (W2)	24.11 22,78			Tare Weight (gin)	、	13.85		
Wt. Dry Soil & Tare (gm) Weight of Tare (gm)		(W2) (W3)	14.18	Total Weig	ht of Sample Used	Moisture Content (%		1.03	lo Moistu	
Weight of Water (gm)		(W4=WI-W2)	1.33	I Otal Trug		ore Separating On Th	,	503.83	ac moisiu	re
Weight of Dry Soil (gm)		(W5=W2-W3)	8.60				re Weight (gm)	95.06		
Moisture Content (%)		(W4/W5)*100	15.47%				lal Weight (gm)		(W6)	
Plus #4 Material	Sieve			(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING				
TARE WEIGHT	10.98		12.0"	10.98	0.0	100.0	12.0"	cobbles		
-			3.0"	10.98	0.0	100.0	3.0"	coarse gravel		
			2.5"	10.98	0.0	100.0		coarse gravel		
			2.0"	10.98	0.0	100.0		coarse gravel		
			1.5"	10.98	0.0	100.0	1.5"	coarse gravel		
			1.0"	10.98	0.0	100.0	1.0"	coarse gravel		
			0.75"	10.98	0.0	100.0	0.75"	fine gravel		
			0.50" 0.375"	10.98 12.93	0.0	100.0 99.5	0.50" 0.375"	fine gravel		
			#4	15.53	1.1	99.5	#4	fine gravel coarse sand		
				10.00		20.2		Coarse sailu		
HYDROMETER Specific Gravity	ANALYSIS	2.65			Weight of Sampl	e Used For Hyd	rometer Tes	t		
-1					Weight of Sample Wet	or Dry (gm)	55.57	1		
Amount Dispersing Agent	(mi)	125.00			Calculated Dry Wt. use	· · · · · · · · · · · · · · · · · · ·	55.00			
Type Dispersion Device		Mechanical			Hydrometer Bulb Num		624378			
Length of Dispersion Perio	od bo	1 Minute			% Pass #4 Sieve For W	hole Sample	98.88			
TARE WEIGHT	30.45	HYDROM	ETER BAC	KSIEVE (Po	ercent Passing #1 Cunul Wt.	0 - #200 Sieves)			<u>. </u>	
				(Wt+Tare)	Retained	% PASSING				
			#10	30.91	0.46	98.0	#10	medium sand		
			#20	31.43	0.98	97.1	#20	medium sand		
			#40	31.96	1.51	96.2	#40	fine sand		
			#60	32.47	2.02	95.2	N60	fine sand		
			#100	33.44	2.99	93.5	#100	fine sand		
			#200	37.16	6.71	86.8	#200	fines		
		HYDROME						·		
DATE	TIME	ET	READING	ТЕМР	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	2:15 2:17	(min) 2.00	R 	T 21.00	<u>K</u> 0.013	Cc	C	LENGTH	<u> </u>	
7/19/2012	2:17	5.00	46.0	21.00	0.013	5.83 5.83	42.17 38.67	8.4 9.1	1.00	
7/19/2012	2:30	15.00	44.0	21.00	0.013	5.83	38.07 34.17	9.1 9.7	1.00 1.00	
7/19/2012	2:45	30.00	36.25	21.00	0.013	5.83	30.42	9.7 10.4	1.00	
7/19/2012	3:15	60.00	33.0	21.00	0.013	5.83	27.17	10.9	1.00	
7/19/2012	6:25	250.00	27.0	21.00	0.013	5.83	21.17	11.9	1.00	
7/20/2012	2:15	1440.00	22.0	20.90	0.014	5.87	16.13	12.7	1.00	
		GRAIN SI	ZE PERCE							
Particle Diameter	% PASSING			0.00		Description	Light browni	sh gray, LEAN	CLAY, tra	ce gravel,
0.0276	75.8	% COARSE GRAV	EL	0.00			some sand			
0,0182	69.5	% FINE GRAVEL		1.12	1.12	USCS	CL]		
0.0108	61.4	% COARSE SAND		0.83	4		1			
0.0079	54.7	% MEDIUM SAND)	1.89	13.04	28				
0.0057	48.8	% FINE SAND		9.35	12.06	16	PI.		TD 01	
0.0029 0.0013	38.0 29.0	% FINES % TOTAL SAMPL	F	86.81	4	12	PI		TECH	
0.0013	2735	LA LOTAL SAMIL	L	L_100.00	J				CHECK	7/19/2012
1									REVIEW	12em
L	<u></u>					-				

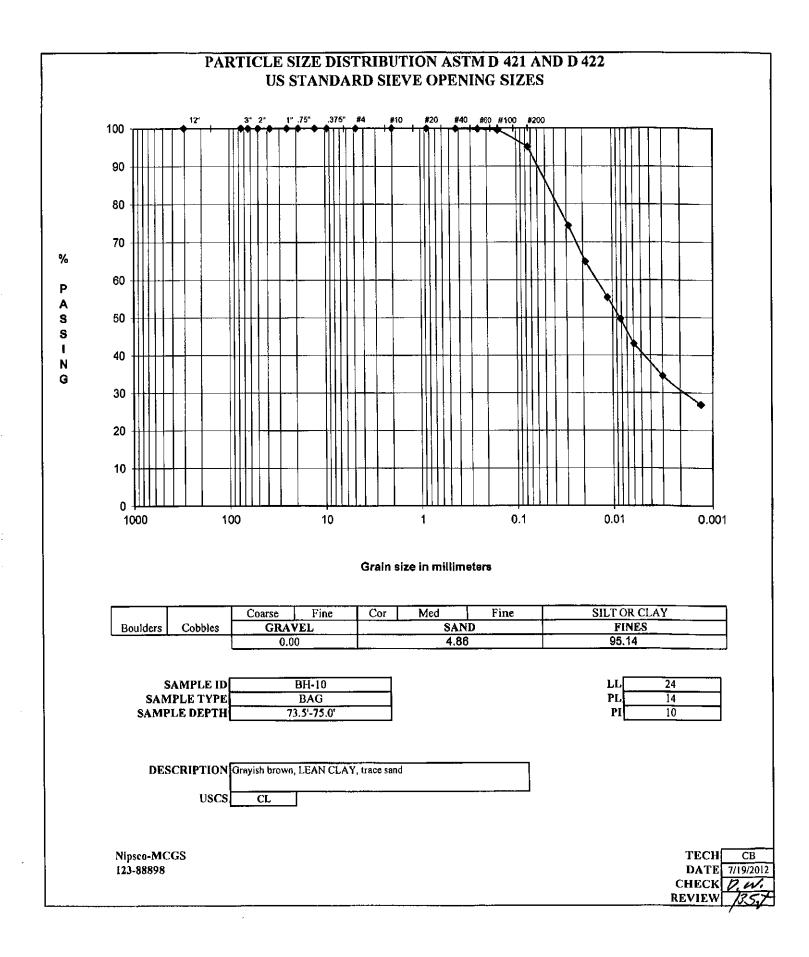
			1
Global Information:	PROJECT NAME:	Nipsco-MCGS	
	PROJECT NUMBER:	123-88898	
	SAMPLE ID:	BH-10	
	SAMPLE TYPE:	BAG	
	SAMPLE DEPTH:	73.5'-75.0'	
			•
	DESCRIPTION; G	rayish brown, LEAN CLAY	, trace sand
	USCS:	CL	
	3		
AS-RECEIVED	MOISTURE CONTENT: W	eight of Wet Soil & Tar	33.56
		eight of Dry Soil & Tare	
	И	eight of Tare	13.91
	N	eight of Water	2.53

Weight of Dry Soil

Water Content

Template For Proctor, Sieve-Hydro, Atterberg, and Spec Grav.

TITLE BLOCK:


TECH	СВ
DATE	07/19/12
CHECK	Dun .
REVIEW	BST

17.12 14.78%

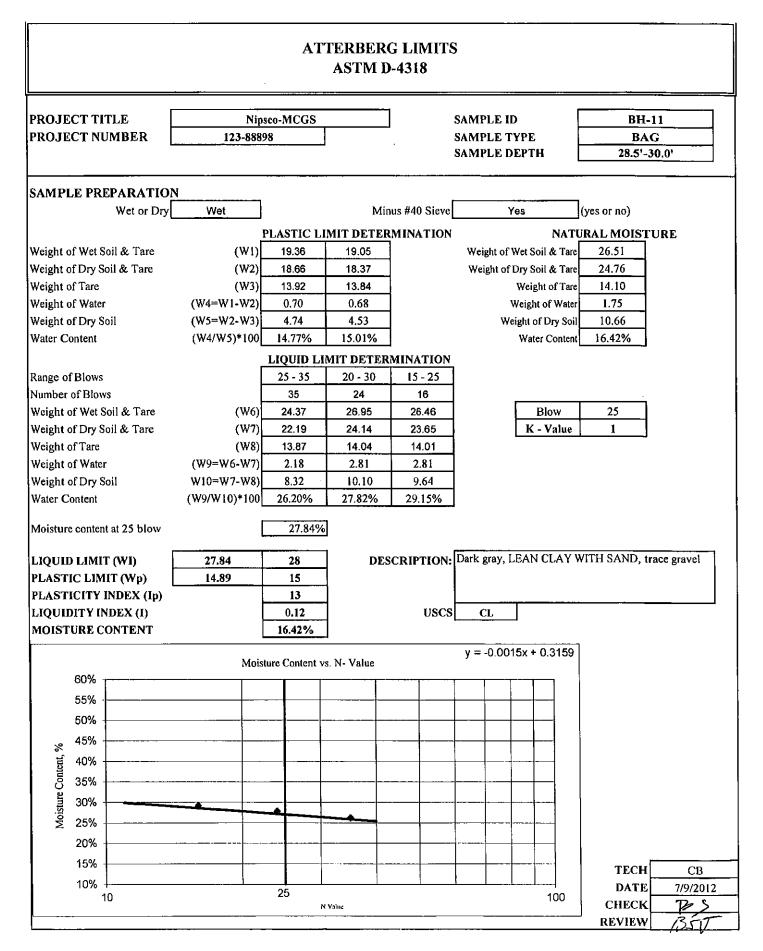
			·····	AT	TERBER ASTM D		5		······································	
PROJE	CT TI	TLE	Nip	sco-MCGS	SAMPLE ID			BH-	10	
		UMBER	123-888				SAMPL		BA	G
							SAMPL	E DEPTH	73.5'-*	75.0'
SAMP	LE PR	EPARATIO	N						_	
		Wet or Dry	Wet		Min	us #40 Sieve		Yes	(yes or no)	
			:	PLASTIC LI	MIT DETER	MINATION		NAT	URAL MOIST	URE
Weight	of Wet S	Soil & Tare	(W1)	19.03	20.91			t of Wet Soil & Tar		
-		oil & Tare	(W2)	18.39	20.08		-	t of Dry Soil & Tar		
Weight	of Tare		(W3)	13.82	14.18			Weight of Tar	e 13.91	
Weight	of Water	r	(W4=W1-W2)	0.64	0.83			Weight of Wate	er 2.53	
Weight	of Dry S	ioil	(W5=W2-W3)	4.57	5.90			Weight of Dry So	il 17.12	
Water C	ontent		(W4/W5)*100	14.00%	14.07%			Water Conter	nt 14.78%	
			_	LIQUID LI	MIT DETER	MINATION	_			
Range o	f Blows			25 - 35	20 - 30	15 - 25]			
Number	of Blov	٧S		29	26	18]			
Weight	of Wet S	Soil & Tare	(W6)	27.59	29.61	25.88		Blow	25	
Weight	of Dry S	ioil & Tare	(W7)	24.97	26.65	23.52	1	K - Value	1	
Weight	of Tare		(W8)	13.92	14.19	14.16	1			
Weight	of Wate	r	(W9=W6-W7)	2.62	2.96	2.36				
Weight	of Dry S	Soil	W10=W7-W8)	11.05	12.46	9.36	1			
Water C	ontent		(W9/W10)*100	23.71%	23.76%	25,21%				
Moistur	e conten	it at 25 blow	ĺ	24.03%						
LIQUII) LIMI	T (WI)	24.03	24	DES	CRIPTION:	Grayish	brown, LEAN C	LAY, trace sand	
		IIT (Wp)	14.04	14	1					
		INDEX (Ip)		10						1
		NDEX (I)		0.07	1	USCS	CL			
MOIST	URE C	ONTENT		14.78%			N			
			Mois	ture Content v	s. N- Value	y =	-0.0015x	(+ 0.2778		
	60% ·					<u>-</u>			ĺ	
	55%	<u> </u>					<u> </u>			
	50% ·	<u> </u>					+			
	45%						┨ ┃		1	
ਨੂੰ ਸੂ	40%	<u> </u>								
ontei	35%									
e V										
Moisture Content, %	30%									
Σ	25%			╾╋╾╼						
	20%	+	· · · · · · · · · · · · · · · · · · ·				+			
	15%	+	· .				+		тесн	СВ
	10%	Ļ	l	I					DATE	7/19/2012
		10		25	l Value			100	CHECK	Dew.
Į								· · ·	REVIEW	13.5×t

ASTM GRAIN SIZE ANALYSIS ASTM C117, C136, D421, D422, D1140 and D2217										
PROJECT TITLE	[Nipsco-ł	MCGS			SAMPLE ID	1	BH-L	0 1	
PROJECT NO.	123-1	88898				SAMPLE TYPE	3	BAG	_	
						SAMPLE DEP	гн [73.5'-7	5.0'	
AS RECEIVED V	WATER CO	NTENT			pic Moisture	Wet Soil & Tare (gar	· •	28.35		
Wt. Wet Soil & Tare (gm)		(WI)	33.56	For Sieve	Sample	Dry Soil & Tare (gm Tare Weight (gm)	"	28.25		
Wt. Dry Soil & Tare (gm)		(W1) (W2)	31.03			Moisture Content (%	ង	0.71		
Weight of Tare (gm)		(W3)	13.91	Total Weig	ht of Sample Used				ic Moistu	re
Weight of Water (gm)		(W4=W1-W2)	2.53	•		fore Separating On Th		462.43		
Weight of Dry Soil (gm)		(W5=W2-W3)	17.12			T	are Weight (gm)	95.77		
Moisture Content (%)		(W4/W5)*100	14.78%				tal Weight (gm)	364.09 (W6)	
Plus #4 Material		I		. ,	(((Wt-Tare)/W6)*100)		10.00			
TARE WEIGHT	0.00		12.0"	0.00	0.0	100.0		cobbles		
			3.0" 2.5"	0.00	0.0	100.0		coarse gravel		
			2.5"	0.00	0.0	100.0		coarse gravel		
			1.5"	0.00	0.0	100.0		coarse gravel coarse gravel		
			1.0"	0.00	0.0	100.0	1.0"	coarse gravel		
			0.75"	0.00	0.0	100.0	0.75"	fine gravel		
			0.50"	0.00	0.0	100.0	0.50**	fine gravel		
			0.375"	0.00	0.0	100.0	0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETER	ANALYSIS	5	•							
Specific Gravity	(assumed)	2.65			Weight of Sampl	-		t L		
	_n	125.00			Weight of Sample Wet		53.06 52.69			
Amount Dispersing Agent Type Dispersion Device	(ma)	Mechanical			Calculated Dry Wt. use Hydrometer Bulb Num		624378			
Length of Dispersion Perio	bd	1 Minute			% Pass #4 Sieve For W		100.00			
TARE WEIGHT	30.69		ETER BACI	KSIEVE (Pe	ercent Passing #1			1	- <u>-</u>	
				au	Curnul Wt.		1			
			#10	(Wt+Tare) 30.69	Retained 0.00	% PASSING 100.0	#10	medium sand		
			#10	30.71	0.02	100.0	#20	medium sand		
			#40	30.76	0.07	99.9	#40	fine sand		
			#60	30.81	0.12	99.8	#60	fine sand		
			#100	30.93	0.24	99.5	#100	fine sand		
		INDROM	#200	33.25	2.56	95.1	#200	fines		
DATE	TDAE	HYDROME ET	READING				PEADING	FEFE		
DATE 7/19/2012	TIME 2:17	(min)	R	TEMP T	TÊMP.COR. K	HYD.COR. Cc	READING C	EFFECTIVE	А	
7/19/2012	2:19	2.00	45.0	21.00	0.013	5.83	39.17	8.9	1.00	
7/19/2012	2:22	5.00	40.0	21.00	0.013	5.83	34.17	9.7	1.00	
7/19/2012	2:32	15.00	35.0	21.00	0.013	5.83	29.17	10.6	1.00	
7/19/2012	2:47	30.00	32.0	21.00	0.013	5.83	26.17	11.1	1.00	
7/19/2012	3:17	60.00	28.5	21.00	0.013	5.83	22.67	11.7	1.00	
7/19/2012	6:27	250.00	24.0	21.00	0.013	5.83	18.17	12.4	1.00	
7/20/2012	2:17	1440.00	20.0 ZE PERCE	20.90	0.014	5.87	14.13	13.0	1.00	I
Particle Diameter	% PASSING			0.00	{	Description	Grayish brow		V trace so	nd
0.0284	74.3	% COARSE GRAV	'EL	0.00				in, durite our	i, induc Sa	110
0,0188	64.8	% FINE GRAVEL		0.00	0.00	USCS	6 CL	1	-	
0.0113	55.4	% COARSE SAND		0.00]			-		
0.0082	49.7	% MEDIUM SANI)	0.13		24	լո			
0.0060	43,0	% FINE SAND		4.73	4.86	14	PL			·
0.0030	34.5	% FINES		95.14	4	10	PI		TECH	
0.0013	26.8	% TOTAL SAMPL	E	100.00	1					7/19/2012
									CHECK REVIEW	
L	·-								NEVIEW	⊥ <i>/2.3√</i> ″

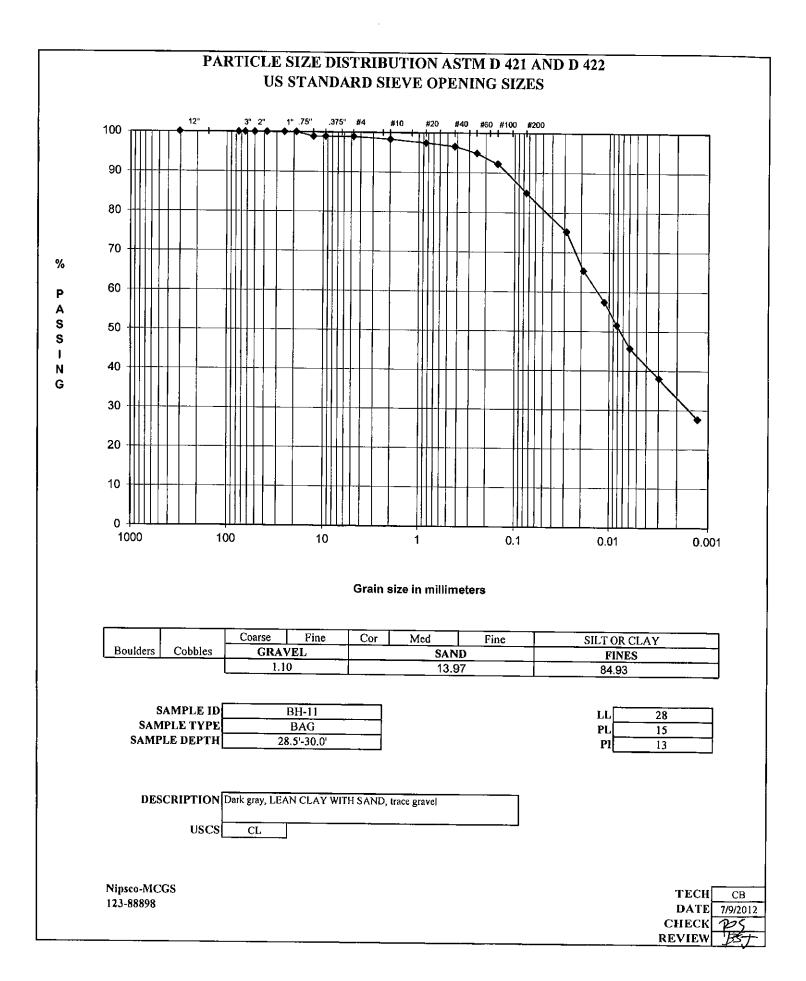
:

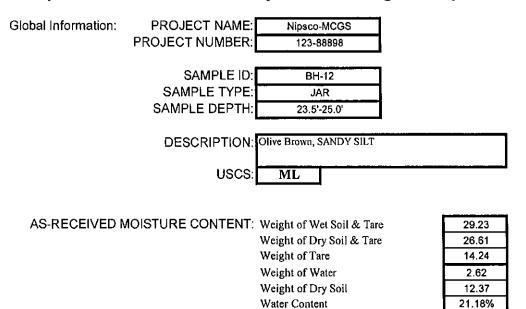
Template For Proctor, Sieve-Hydro, Atterberg, and Spec Grav.

Global Information:	PROJECT NAME:	Nipsco-MCGS	7
	PROJECT NUMBER:	123-88898	1
	SAMPLE ID:	BH-11	-
	SAMPLE TYPE:	BAG	4
	SAMPLE DEPTH:	28.5'-30.0'	
		ark gray, LEAN CLAY W	TH SAND, trace gravel
	USCS:	CL	
		Veight of Wet Soil & Ta	re 26.51


AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

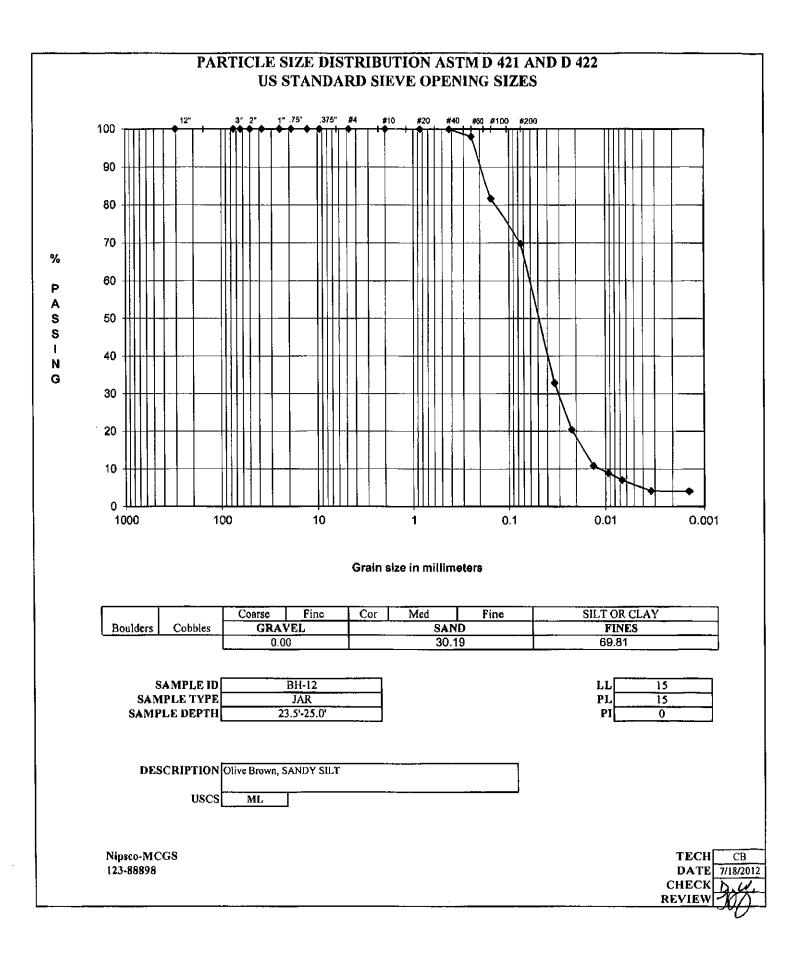
-


1	26.51
	24.76
	14.10
	1.75
	10.66
	16.42%


TITLE BLOCK:

TECH	СВ
DATE	07/09/12
CHECK	PPS
REVIEW	B3V

		A		-	IN SIZE ANAL 9421, D422, D11	-	1			
PROJECT TITLE		Nipsco-N	1005			SAMPLE ID		BH-		
PROJECT NO.	123-8	·····				SAMPLE TYP	Е	BA		
						SAMPLE DEP		28.5'-3	0.0'	
AS RECEIVED WA	AS RECEIVED WATER CONTENT Hygroscopic Moisture Wet Soil & Tare (gm) 40.10									
		F	26.51	For Sieve	Sample	Dry Soil & Tare (gr	n)	39.34		
Wt. Wet Soil & Tare (gm) Wt. Dry Soil & Tare (gm)		(W1) (W2)	26.51 24.76			Tare Weight (gin) Moisture Content (9	%)	15.69 3.21		
Weight of Tare (gm)		(W3)	14.10	Total Weig	t of Sample Used	,	,		pic Moistu	re
Weight of Water (gm)		(W4=W1-W2)	1.75		-	ore Separating On T		447.70	•	
Weight of Dry Soil (gm)		(W5=W2-W3)	10.66			1	`are Weight (gm)	99.62		
Moisture Content (%)		(W4/W5)*100	16.42%				otal Weight (gm)	337.24	(W6)	
Plus #4 Material Si			10.00	(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING	1 10.04			
TARE WEIGHT	30.69		12.0" 3.0"	30.69 30.69	0.0	100.0	12.0" 3.0"	cobbles		
			3.0" 2.5"	30.69	0.0	100.0	2.5"	coarse gravel coarse gravel		
			2.0"	30.69	0.0	100.0	2.0"	coarse gravel		
			1.5"	30.69	0.0	100.0	1.5"	coarse gravel		
			1.0"	30.69	0.0	100.0	1.0"	coarse gravel		
			0.75"	30.69	0.0	100.0	0.75"	fine gravel		
			0.50"	34.39	1.1	98.9	0.50"	fine grave)		
			0.375"	34.39	1.1	98.9	0.375"	fine gravel		
			#4	34.39	1.1	98.9	#4	coarse sand		
Specific Gravity	HYDROMETER ANALYSIS Weight of Sample Used For Hydrometer Test Specific Gravity (assumed) 2.65 Weight of Sample Wet or Dry (gm) 51.79									
Amount Dispersing Agent (n	nl)	125.00			Calculated Dry Wt. use	ed in test (gen)	50.18			
Type Dispersion Device		Mechanical			Hydrometer Bulb Number 624378					
Length of Dispersion Period		1 Minute			% Pass #4 Sieve For W	/hole Sample	98.90			
TARE WEIGHT	28.51	HYDROMI	ETER BAC	KSIEVE (P	ercent Passing #1	0 - #200 Sieves)			
					Cumul Wt.		-			
			#10	(Wt+Tare) 28.82	Retained 0.31	% PASSING 98.3				
			#10 #20	29.26	0.75	97,4	#10 #20	medium sand medium sand		
			#40	29.70	1.19	96.6	#40	line sand		
			#60	30.54	2.03	94.9	#60	fine sand		
			#100	31.90	3.39	92.2	- #100	fine sand		
	<u> </u>		#200	35.60	7.09	84.9	#200	fines		
	711/0	HYDROME					DEADNIO			
DATE 7/19/2012	TIME 1:24	ET (min)	READING R	TEMP T	TEMP.COR. K	HYD.COR. Cc	READING	EFFECTIVE LENGTH	Α	
7/19/2012	1:24	2.00	44.0	21.00	0.013	5.83	38.17	9.1	1.00	
7/19/2012	1:29	5.00	39.0	21.00	0.013	5.83	33.17	9.9	1.00	
7/19/2012	1:39	15.00	35.0	21.00	0.013	5.83	29 .17	10.6	1.00	
7/19/2012	1:54	30.00	32.0	21.00	0.013	5.83	26.17	11.1	1.00	
7/19/2012	2:24	60.00	29.0	21.00	0.013	5.83	23.17	11.5	1.00	
7/19/2012	5:34	250.00	25.0	21.40	0.013	5.70	19.30	12.2	1.00	
7/20/2012	1:24	1440.00	19.5 ZE PERCE	22.10	0.013	5.47	14.03	13.2	1.00	
Particle Diameter	% PASSING		LE FERCE	0.00	-	Descriptio	n Dark gray, L	FANCLAVY) trace
0,0288		% COBBLES % COARSE GRAV	EL.	0.00			gravel			, 11400
0.0190		% FINE GRAVEL		1.10	1 1.10	USC				
0.0113		% COARSE SAND		0.61		-		-		
0.0082	51.6	% MEDIUM SANE)	1.73	1	28]rr			
0.0059	45.7	% FINE SAND		11.63	13.97	15	PL			
0.0030	38.0	% FINES	-	84.93	-	13	_PI		TECH	
0.0013	27.6	% TOTAL SAMPL	Ŀ	100.00	J				DATE CHECK	
									REVIEW	


Template For Proctor, Sieve-Hydro, Atterberg, and Spec Grav.

TITLE BLOCK:

and out	
ТЕСН	СВ
DATE	07/18/12
CHECK	P.W.
REVIEW	JAX -
	0

			AT	TERBER(ASTM D		s			
PROJECT TI PROJECT NU		Nip 123-888	sco-MCGS 98			SAMPLE I SAMPLE 1 SAMPLE 1	YPE	BH- JA 23.5'-2	R
SAMPLE PRE	EPARATION Wet or Dry	Wet		Min	us #40 Sieve		Yes	(yes or no)	
Weight of Wet So Weight of Dry So Weight of Tare Weight of Water Weight of Dry So	oil & Tare	(₩1) (₩2) (₩3) (₩4≂₩1-₩2) (₩5=₩2-₩3)	PLASTIC LI 16.75 15.99 10.96 0.76 5.03	MIT DETER 15.01 14.48 10.89 0.53 3.59	MINATION	Weight of Weight of	NA Wet Soil & Ta Dry Soil & Ta Weight of Ta Weight of Wa reight of Dry S	are 26.61 are 14.24 ater 2.62	URE
Water Content		(W4/W5)*100	15.11%	14.76%			Water Cont	ent 21.18%	
Range of Blows Number of Blow Weight of Wet S Weight of Dry So Weight of Tare Weight of Water Weight of Dry So Water Content Moisture content	oil & Tare oil & Tare oil	(W6) (W7) (W8) (W9=W6-W7) W10=W7-W8) (W9/W10)*100	LIQUID LI 25 - 35 30 28.90 26.94 14.07 1.96 12.87 15.23%	MIT DETER 20 - 30 24 31.64 29.28 13.84 2.36 15.44 15.28%	MINATION 15 - 25 16 34.84 32.05 13.92 2.79 18.13 15.39%		Blow K - Valu	25 ie 1	
LIQUID LIMIT PLASTIC LIM PLASTICITY I LIQUIDITY IN MOISTURE CO	IT (Wp) [NDEX (Ip) IDEX (I)	15.32 14.94	15 15 0 0.00 21.18%	DES	CRIPTION: USCS		n, SANDY S	SILT	
		Mois	ture Content v	s. N- Value	у	= -0.0001x +	0.1557		
60% - 55% - 50% - 45% - 40% - 35% - 30% - 20% -									
15% - 10% - 1	0	•	25 N	i Value			100	TECH DATE CHECK REVIEW	CB 7/18/2012

					N SIZE ANAL 421, D422, D11					
PROJECT TITLE		Nipsco-l	ACGS			SAMPLE ID		BH-I	2 7	
PROJECT NO.	123-8	38898				SAMPLE TYPI	E	JAR		
-						SAMPLE DEP	ГН	23.5'-2	5.0'	
AS RECEIVED W	VATER CO	NTENT	<u> </u>		pic Moisture	Wet Soil & Tare (gr	1)	27.95		
		[For Sieve	Sample	Dry Soil & Tare (gm)	27.93		
Wt. Wet Soil & Tare (gm) Wt. Dry Soil & Tare (gm)		(W1) (W2)	<u>29.23</u> 26.61			Tare Weight (gm) Moisture Content (%	9	<u>13.98</u> 0.14		
Weight of Tare (gin)		(W3)	14.24	Total Weig	ht of Sample Used I				ic Moistur	e
Weight of Water (gm)		(W4=W1-W2)	2.62	_	Weight + Tare, Bef	ore Separating On Th	e #4 Sieve (gm)	392.16		
Weight of Dry Soil (gm)		(W5=W2-W3)	12.37				are Weight (gin)	94.96		
Moisture Content (%) Plus #4 Material S	Sieve	(W4/W5)*100	21.18%	(Wt+Tare)	(((Wt-Tare)/W6)*100)	To %PASSING	ital Weight (grn)	296.77 (W6)	
TARE WEIGHT	0.00		12.0"		0.0	100.0	12.0"	cobbles		
u	<u>~~~</u>		3.0"	0.00	0.0	100.0	3.0"	coarse gravel		
			2.5"	0.00	0.0	100.0	2.5"	coarse gravel		
			2.0"	0.00	0.0	100.0	2.0"	coarse gravel		
			1.5" 1.0"	0.00	0.0	100.0	1.5" 1.09	coarse gravel		
			0.75"	0.00	0.0	100.0	1.0" 0.75"	eoarse gravel fine gravel		
			0.50"	0.00	0.0	100.0	0.50"	fine gravel		
			0.375"	0.00	0.0	100.0	0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETER	ANALYSIS	3		•						
					Weight of Sample	e Used For Hyd	rometer Tes	t		
Specific Gravity	(assumed)	2.65						•		
	()) [126.00			Weight of Sample Wet		52.41	4		
Amount Dispersing Agent (Type Dispersion Device	(ml)	125.00 Mechanical			Calculated Dry Wt. use Hydrometer Bulb Numb		52.33 624378	4		
Length of Dispersion Perio	d	1 Minute			% Pass #4 Sieve For W		100.00			
TARE WEIGHT	30.49	······································	ETER BACI		ercent Passing #10	•	1	•		
Ľ	ليحت فتقتص				Cumul Wt.					
				(Wt+Tare)	Retained	% PASSING]			
			#10	30.49	0.00	100.0	#10	medium sand		
			#20 #40	30.51 30.53	0.02	100.0 99.9	#20 #40	medium sand fine sand		
			#40 #60	31.54	1.05	98.0	#60	fine sand		
			#100	40.08	9.59	81.7	#100	fine sand		
			#200	46.29	15.80	69.8	#200	fines		
		HYDROME								
DATE 7/19/2012	TIME 1:22	ET (min)	READING R	TEMP T	TEMP.COR. K	HYD.COR. Cc	READING C	EFFECTIVE LENGTH	А	
7/19/2012	1:24	2.00	23.0	21.00	0.013	5.83	17.17	12.5	1.00	
7/19/2012	1:27	5.00	16.5	21.00	0.013	5.83	10.67	13.7	1.00	
7/19/2012	1:37	15.00	11.5	21.00	0.013	5.83	5.67	14,5	1.00	
7/19/2012	1:52	30.00	10.5	21.00	0.013	5.83	4.67	14.7	1.00	
7/19/2012 7/19/2012	2:22 5:32	60.00 250.00	9.5 8.0	21.00 21.00	0.013 0.013	5.83 5.83	3.67 2.17	14.8 15.0	1.00 1.00	
7/20/2012	1:22	1440.00	8.0	20.90	0.013	5.87	2.17	15.0	1.00	
			ZE PERCE	NTAGES						<u> </u>
Particle Diameter	% PASSING			0.00		Description	Olive Brown	, SANDY SILT	[
0.0337	32.8	% COARSE GRAV	'EL	0.00	0.00	110.00		-		
0.0223 0.0133	20.4 10.8	% FINE GRAVEL % COARSE SAND		0.00	0.00	USCS	6 ML	1		
0.0094	8.9	% MEDIUM SAND		0.00		15	Ղււ			
0.0067	7.0	% FINE SAND		30.11	30.19	15	PL			
0.0033	4.1	% FINES		69.81		0]PI		TECH	CB
0.0014	4.1	% TOTAL SAMPL	E	100.00	l ·					7/18/2012
									CHECK REVIEW	Dilde
L	·									<u>-46</u>

Template For Proctor, Sieve-Hydro, Atterberg, and Spec Grav. Global Information: PROJECT NAME: Nipsco-MCGS PROJECT NUMBER: 123-88898 SAMPLE ID: BH-12 SAMPLE TYPE: JAR SAMPLE DEPTH: 38.5'-40.0'

DESCRIPTION:	Light Olive Brown, ELASTIC SILT, little sand	٦
USCS:	MH	

AS-RECEIVED MOISTURE CONTENT: Weight of Wet Soil & Tare Weight of Dry Soil & Tare Weight of Tare Weight of Water Weight of Dry Soil Water Content

TITLE BLOCK:

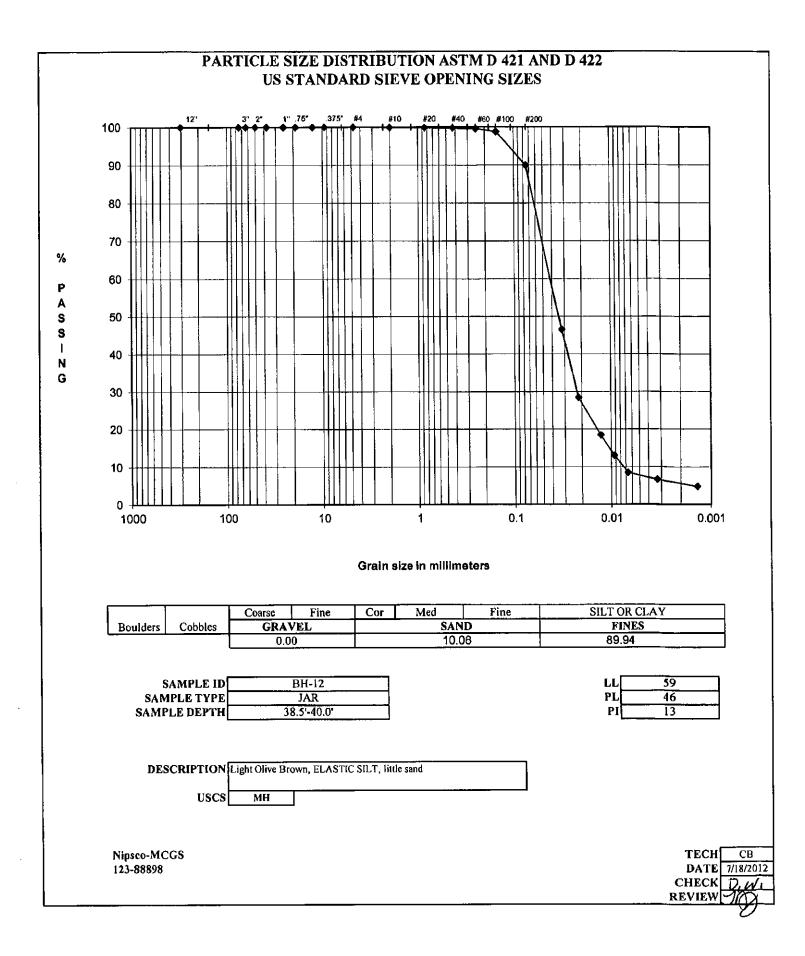
-

TECH	CB
DATE	07/18/12
CHECK	P.W.
REVIEW	JAF

34.50

31.05

14.09


3,45

16.96

20.34%

		AT'	TERBERO ASTM D		S		
PROJECT TITLE PROJECT NUMBER	Nip	sco-MCGS 98			SAMPLE I SAMPLE T SAMPLE D	YPE	BH-12 JAR 38.5'-40.0'
SAMPLE PREPARATIO	DN						
Wet or Dr	y Wet		Min	us #40 Sieve		Yes	(yes or no)
	<u> </u>	PLASTIC LI	MIT DETER	MINATION		NAT	URAL MOISTURE
Weight of Wet Soil & Tare	(W1)	17.88	19.28		Weight of	Wet Soil & Tar	e 34.50
Weight of Dry Soil & Tare	(W2)	16.70	17.66		Weight of	Dry Soil & Tar	
Weight of Tare	(W3)	14.13	14.18			Weight of Tar	
Weight of Water	(W4=W1-W2)	1.18	1.62			Weight of Wate	
Weight of Dry Soil	(W5=W2-W3)	2.57	3.48		W	eight of Dry So	
Water Content	(W4/W5)*100	45.91%	46.55%			Water Conter	nt 20.34%
	-		MIT DETER	1	•		
Range of Blows		25 - 35	20 - 30	15 - 25	ļ		
Number of Blows	ļ	34	28	15	ł		
Weight of Wet Soil & Tare	(W6)	24.38	23.44	23.38		Blow	25
Weight of Dry Soil & Tare	(W7)	20.57	20.02	19.92	4	K - Value	1
Weight of Tare	(W8)	14.02	14.18	14.19	4		
Weight of Water	(W9=W6-W7)	3.81	3.42	3.46	4		
Weight of Dry Soil	W10=W7-W8)	6.55	5.84	5.73	4		
Water Content	(W9/W10)*100	58.17%	58.56%	60.38%]		
Moisture content at 25 blow	i	59.13%]				
LIQUID LIMIT (WI)	59.13	59	DES	CRIPTION:	Light Olive	Brown, ELA	STIC SILT, little sand
PLASTIC LIMIT (Wp)	46.23	46	1				
PLASTICITY INDEX (lp)		13					
LIQUIDITY INDEX (I)		-1.99	1	USCS	5 MH		
MOISTURE CONTENT		20.34%]			_	
	Mois	ture Content v	s N. Value		y = -0.001	2x + 0.6213]
85%					1	· · · · · · · · · · · · · · · · · · ·	
750/							
75%							
× 65%						┝╌┼╌┨	
55%		╺╼┫╌╇┥					
% 65%							
25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	<u> </u>					+	
35%	-				<u> </u>		
							ТЕСНС
25% 10		25	·····	• •		100	DATE 7/18/ CHECK D
		м	Value				REVIEW 10

		A			N SIZE ANALY 421, D422, D11			- U_		
PROJECT TITLE		Nipsco-N	1005	1		SAMPLE ID	<u>، ،</u>	BH-1	2	
PROJECT NO.	123-8					SAMPLE TYPE	: F	JAR		
	123-0					SAMPLE DEPT		38.5'-40		
AS RECEIVED V	VATER CO	NTENT			ic Moisture	Wet Soil & Tare (gm)	28.72		
		-		For Sieve	Sample	Dry Soil & Tare (gm)) [28.68		
Wt. Wet Soil & Tare (gm)		(W1)	34.50			Tare Weight (gm)	、	0.28		
Wt. Dry Soil & Tare (gm)		(W2)	31.05 14.09	Total Waia	nt of Sample Used	Maisture Content (%)			ie Moistu	
Weight of Tare (gm) Weight of Water (gm)		(W3) (W4=W1-W2)	3.45	LOIAI WEIGI	-	ore Separating On The		384.94	ac Moistu	C
Weight of Water (gni) Weight of Dry Soil (gm)		(W5=W2·W3)	16.96		Hoight - Tare, Dor	• •	re Weight (gm)	96.17		
Moisture Content (%)		(W4/W5)*100	20.34%				al Weight (gm)	287.97 (W6)	
Plus #4 Material	Sleve			(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING				
TARE WEIGHT	0,00		12.0" [0.00	0.0	100.0	-	cobbles		
6			3.0"	0.00	0.0	100.0	3.0"	coarse gravel		
			2.5"	0.00	0.0	100.0		coarse gravel		
			2.0"	0.00	0.0	100.0		coarse gravel		
			1.5"	0.00	0.0	100.0		coarse gravel		
			1.0"	0.00	0.0	100.0		coarse gravel		
			0.75"	0.00	0.0	100.0		fine gravel		
			0.50"	0.00	0.0	100.0	0.50" 0.375"	fine gravel		
			0.375" #4	0.00	0.0	100.0 100.0	0.375 #4	fine gravel coarse sand		
			#4	0.00	0.0	100.0		60m36 3mi0		
HYDROMETER	ANALYSIS				Weight of Sampl	. Head Fan Hudi	romoton Toc			
Specific Gravity	(assumed)	2.65			•			1		
		100.00			Weight of Sample Wet		55.34 55.19			
Amount Dispersing Agent	(m1)	125.00			Calculated Dry Wt. use		624378			
Type Dispersion Device	.	Mechanical 1 Minute			Hydrometer Bulb Num % Pass #4 Sieve For W		100.00	•		
Length of Dispersion Perio		-	<u></u>					1		
TARE WEIGHT	30.17	HYDROM	ETER BACI	KSIEVE (Pe	rcent Passing #1	0 - #200 Sieves)				
				411 m)	Cumul WI.		1			
				(Wt+Tare)	Retained 0.06	% PASSING 99.9	014	medium sand		
			#10 #20	30.23 30.25	0.08	99.9 99.9	#10 #20	medium sand		
			#40	30.29	0.12	99.8	#40	fine sand		
			#60	30.41	0.24	99.6	#60	fine sand		
			#100	30.82	0.65	98.8	#100	fine sand		
			#200	35.72	5.55	89.9	#200	fines		
		HYDROME	TER CALC	ULATION	5					
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
7/19/2012	2:19	(min)	<u>R</u>	Т	<u> </u>	Cc	C	LENGTH	A	
7/19/2012	2:21	2.00	31.5	21.00	0.013	5.83	25.67	11,2	1.00	
7/19/2012	2:24	5.00	21.5	21.00	0.013	5.83	15.67	12.9	1.00	l
7/19/2012	2:34	15.00	16.0	21,00	0.013	5.83	10.17	13.7	1.00	l
7/19/2012	2:49	30.00	<u>13.0</u> 10.5	21.00 21.00	0.013 0.013	5.83 5.83	7.17 4.67	14.2	1.00 1.00	}
7/19/2012	3:19	60.00 250.00	9.5	21.00	0.013	5.83	3.67	14.7	1.00	
7/19/2012 7/20/2012	6:29 2:19	1440.00	8.5	20.90	0.013	5.87	2.63	15.0	1.00	
(12012012	2.17		ZE PERCE					L	<u> </u>	I
Particle Diameter	% PASSING			0.00		Description	Light Olive I	Brown, ELAST	IC SILT. II	ttle sand
0.0319	46.5	% COARSE GRAV	'EL	0.00		ר ר	-	.,		
0,0217	28.4	% FINE GRAVEL		0.00	0.00	USCS	MH			
0.0129	18.4	% COARSE SAND	I	0.11				_		
0.0093	13.0	% MEDIUM SANI)	0.11		59	ໄຕ			
0.0067	8.5	% FINE SAND		9.84	10.06	46	PL			
0.0033	6,6	% FINES		89.94	4	13]PI		TECH	
0.0014	4.8	% TOTAL SAMPL	E	100.00	J					7/18/2012
									CHECK	
l									REVIEW	1200-

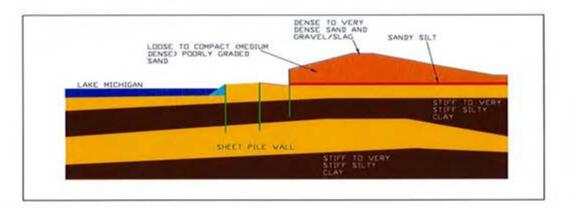
APPENDIX E

Slope Stability Analyses

	SUBJECT SLOPE STABILITY SUMMARY					
Golder	Job No. Ref. Mi	12388898 NIPSCO chigan City, IN	Made By Checked Reviewed	JRR MJW MRF	Date Sheet	8/27/2012 of

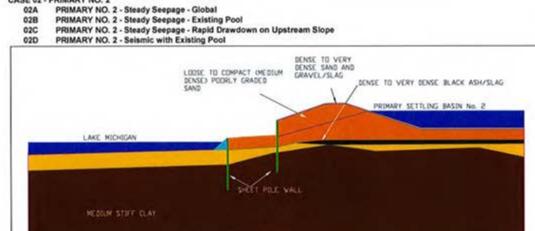
OBJECTIVE:

To analyze the stability of the four existing hydraulic structures at the NIPSCO Michigan City Generating Station (MCGS)

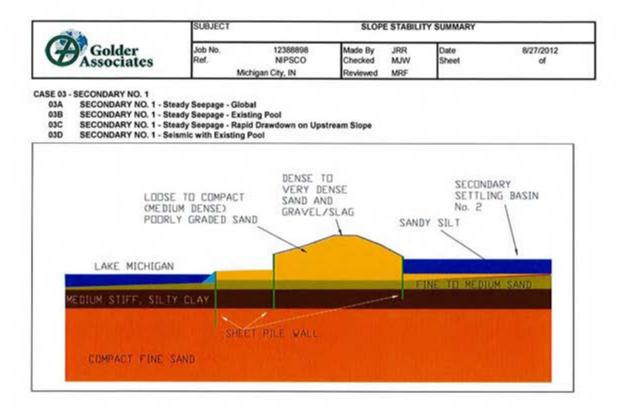

- for the following conditions:
- Steady seepage global
- Steady seepage-existing pool on the downstream slope
- Rapid drawdown on the upstream slope; and
- Seismic (pseudo-static) with normal pool and steady seepage on the downstream slope. Probability of Exceedance 2% in 50 years.
- The four hydraulic structures are:
- 01 Primary Number 1 (Primary No. 1)
- 02 Primary Number 2 (Primary No. 2)
- 03 Secondary Number 1 (Secondary No. 1)
- 04 Secondary Number 2 (Secondary No. 2)
- 05 Final Settling Pond (FSP)

06 - Bottom Ash Area (BAA) - No analyses were performed on the BAA. The BAA surface slopes toward the FSP, with a small embankment on the NW side approximately 2-feet in height. This embankment is shared with the FSP. The BAA does not satisfy the criteria set forth by the U.S. EPA for units requiring further evaluation.

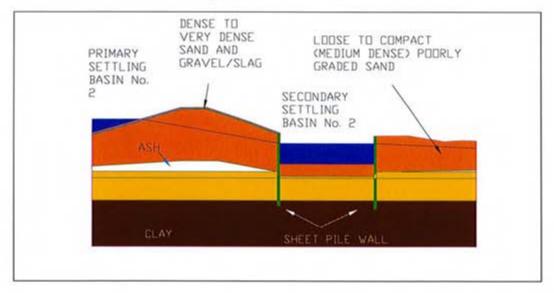
CONDITIONS:


CASE 01 - PRIMARY NO. 1

- 01A PRIMARY NO. 1 - Steady Seepage - Global
- 01B
- PRIMARY NO. 1 Steady Seepage Existing Pool PRIMARY NO. 1 Steady Seepage Rapid Drawdown on Upstream Slope 01C
- PRIMARY NO. 1 Seismic with Existing Pool 01D



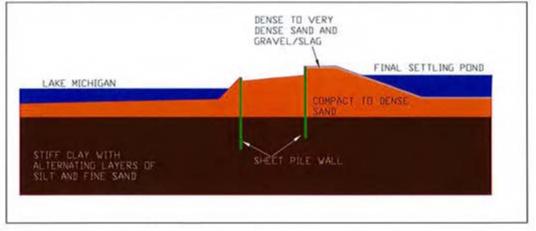
02A



P112e Projects/12388898 NPSCO MCGS Geatech Investigation/200 Reports/201 Stope Stability/Appendix E - Stope Stability Analyses/Stope Stability Summary 8 2 12 dax.

CASE 04 - SECONDARY NO. 2

- 04A
- 04B
- SECONDARY NO. 2 Steady Seepage Global SECONDARY NO. 2 Steady Seepage Existing Pool SECONDARY NO. 2 Steady Seepage Rapid Drawdown on Upstream Slope 04C
- 04D SECONDARY NO. 2 - Seismic with Existing Pool



P Is2-Projects/12288698 NPSCO MCGS Gedech Investigation200 Reports/201 Supe StabilityAppends E - Stope Stability Analyses/Stope Stability Summary 8 2 12 dox

	SUBJECT		SLOPE STABILITY SUMMARY			
Golder	Job No. Ref.	12388898 NIPSCO	Made By Checked	JRR MJW	Date Sheet	8/27/2012 of
	M	ichigan City, IN	Reviewed	MRF		

CASE 05 - FINAL SETTLING POND

- 05A
- 05B
- FINEL SETTLING POND FSP Steady Seepage Global FSP Steady Seepage Existing Pool FSP Steady Seepage Rapid Drawdown on Upstream Slope FSP Seismic with Existing Pool 05C
- 05D

ASSUMPTIONS:

1) Material Properties used for analysis are shown below. Properties were estimated based on the field exploration and laboratory testing.

Material	Internal Friction Angle (°)	Cohesion (psf)	Dry Unit Weight (pcf)	Saturated Unit Weight (pcf)	Undrained Shear Strength (psf)	Layer Thickness (ft)	Hydraulic Conductivity (cm/s)
Loose to Medium Dense Fill	33	0	100	110	NA	Varies	1x10 ⁻³
Large Limestone Riprap	45	0	140	145	NA	Varies	100
8-inch Riprap	45	0	140	145	NA	1	100
Crushed Blast Furnace Slag	40	0	120	130	NA	Varies	1
Medium Dense Bottom Ash Fill	35	0	100	110	NA	Varies	1x10-3
Loose Silty Sand	30	0	100	120	NA	Varies	1x10 ⁻³
Medium to Very Stiff Clay	30	70	116	136	750-2500	Varies	1x10 ⁻⁶
Native Sand	40	0	110	120	NA	Varies	3x10 ⁻³

2) Drained shear strengths were used for this analysis for longterm conditions.

3) Factor of Safety Acceptance Criteria

The acceptance criteria is based on the values published by the US Army Corps of Engineers, EM 1110-2-1902.

Analysis Condition	Required FS	Slope
Steady Seepage - Global - Existing Pool	1.5	Downstream
Steady Seepage - Local - Existing Pool	1.4	Downstream
Rapid Drawdown - Existing Pool	1.3	Upstream
Seismic - Existing Pool	1.0	Downstream

4) Seismic Hazard

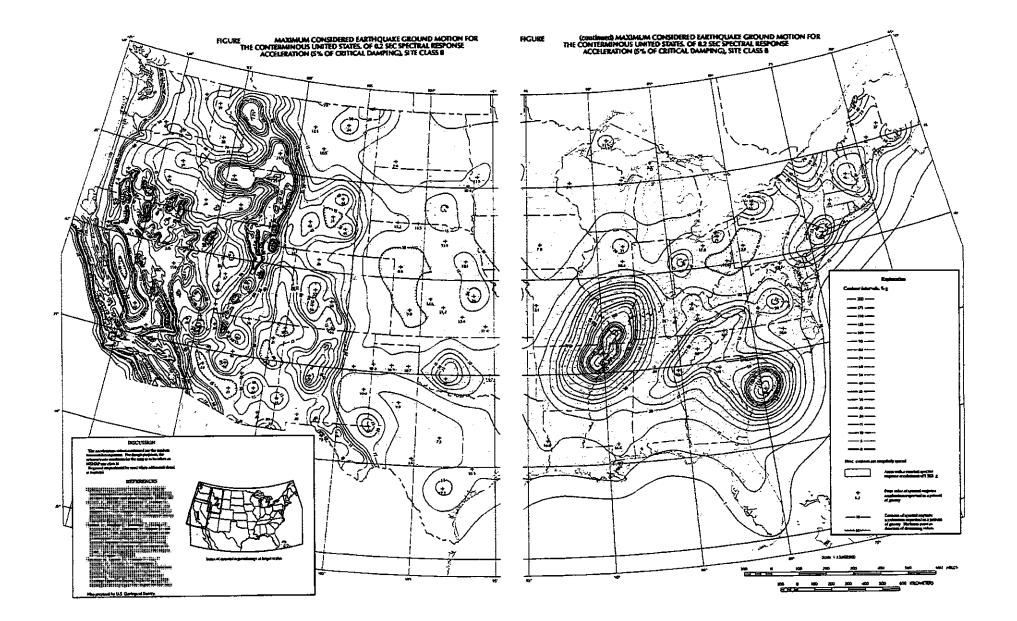
Seismic Value of 0.1319 x gravity, g (for 2% probability of earthquake in 50 years.) (Ref. 3).

	SUBJECT SLOPE STABILITY SUMMARY						
Golder	Job No. Ref.	12388898 NIPSCO	Made By Checked	JRR MJW	Date Sheet	8/27/2012 of	
	M	chigan City, IN	Reviewed	MRF			

CALCULATIONS:

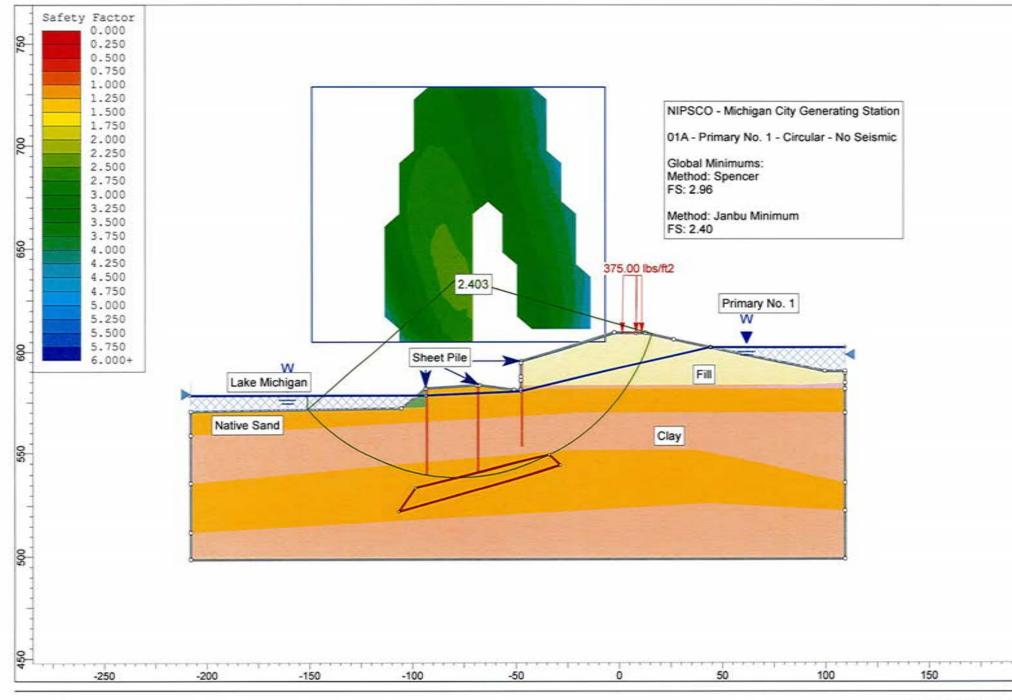
01		PRIMAR	RY NO. 1		
	01A	01B	01C	01D	
Circular	2.40	2.20	1.84	1.48	Janbu Min
Block	2.46	2.19	1.98	1.54	Janbu Min
Circular	2.96	2.29	2.03	1.56	Spencer
Block	3.53	2.27	2.17	1.88	Spencer
		PRIMAR	TY NO. 2		
02	02A	02B	02C	02D	
Circular	1.90	2.15	1.59	1.46	Janbu Min
Circular	2.35	2.25	1.74	1.53	Spencer
255	194223		ARY NO. 1	5226	
03	03A	03B	03C	03D	-
Circular	2.59	2.13	1.59	1,49	Janbu Min
Circular	3.26	2.22	1.64	1.56	Spencer
		SECOND	ARY NO. 2		
04	04A	04B	04C	04D	
Circular	1.83	2.09	2.09	1.44	Janbu Min
Circular	2.40	2.14	2.14	1.50	Spencer
		FINAL SETT	LING POND		
05	05A	05B	05C	05D	
Circular	3.12	1.81	1.35	1.04	Janbu Min
Block	3.11	1.92	1.43	1.17	Janbu Min
Circular	4.05	1.94	1.50	1.10	Spencer
Block	4.31	2.10	1.59	1.24	Spencer

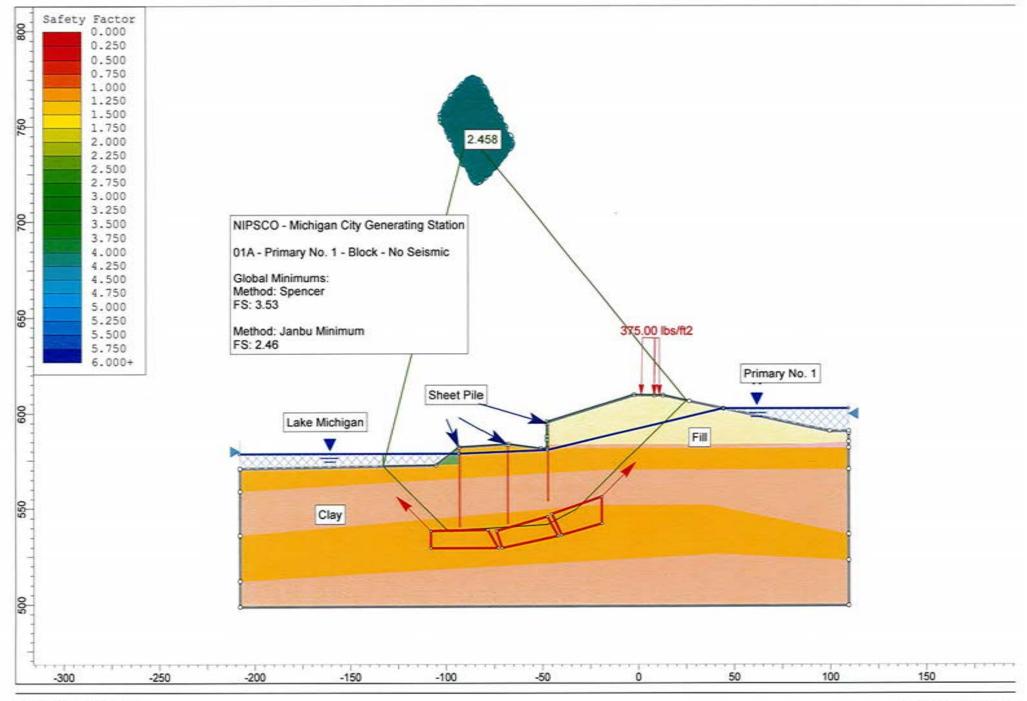
CONCLUSIONS:

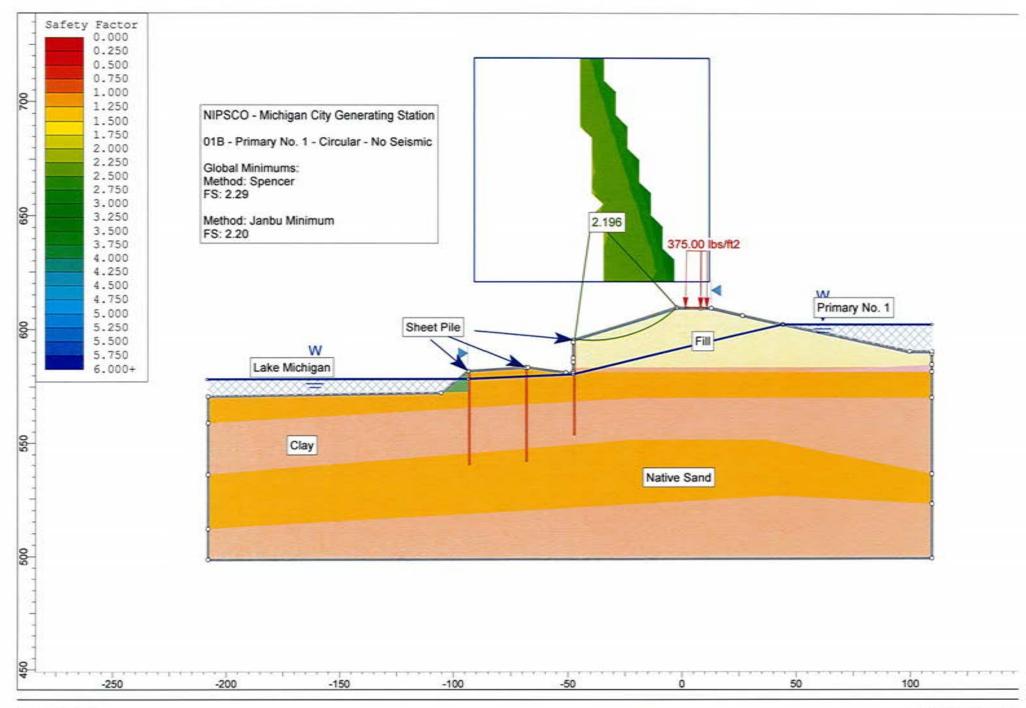

Using the strength parameters that were conservatively estimated from the latest geotechnical exploration and previous boring information, each of the 5 hydraulic structures meets the Acceptance Criteria for the conditions analyzed.

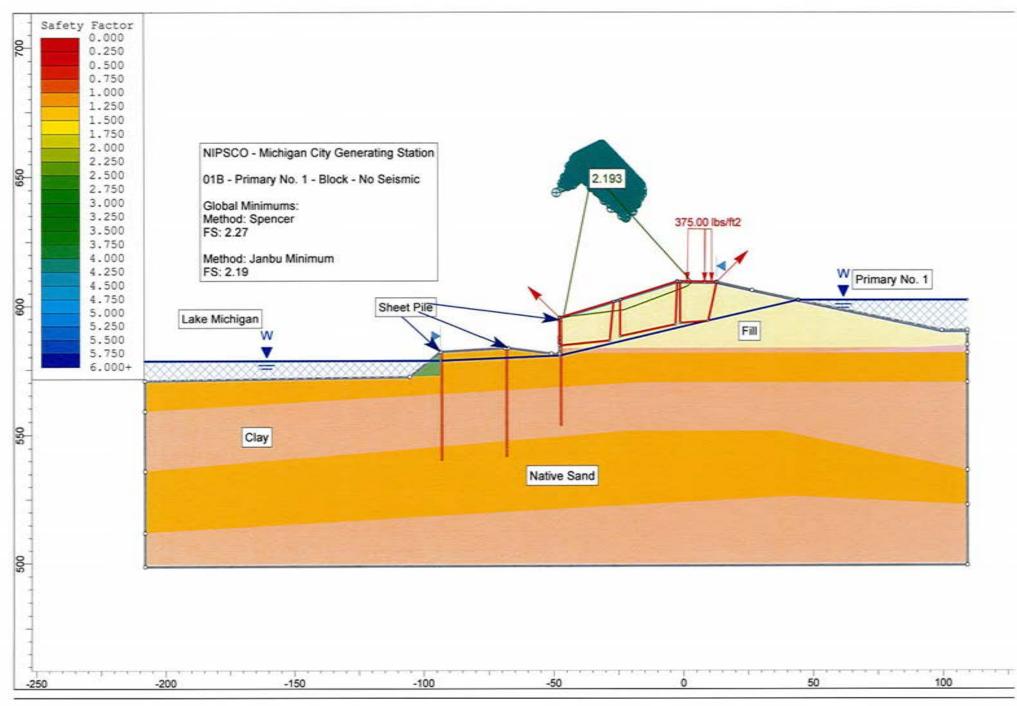
REFERENCES:

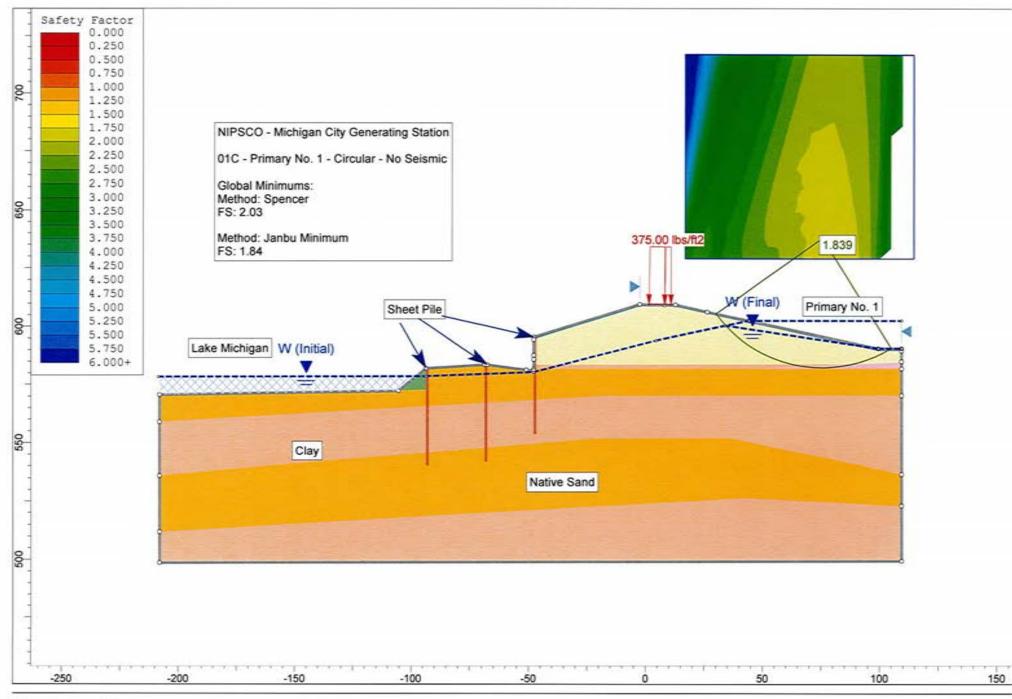
- Rocscience Inc. (2006) "SLIDE ver 6.018, 2D Limit Equilibrium Slope Stability for Soil & Rock Slopes"
 United States Army Corps of Engineers, Slope Stability, EM 1110-2-1902, 10/31/2003
 United States Geological Society (USGS), Earthquake Ground Motion Tool, version 5.0.9, 10/26/2008

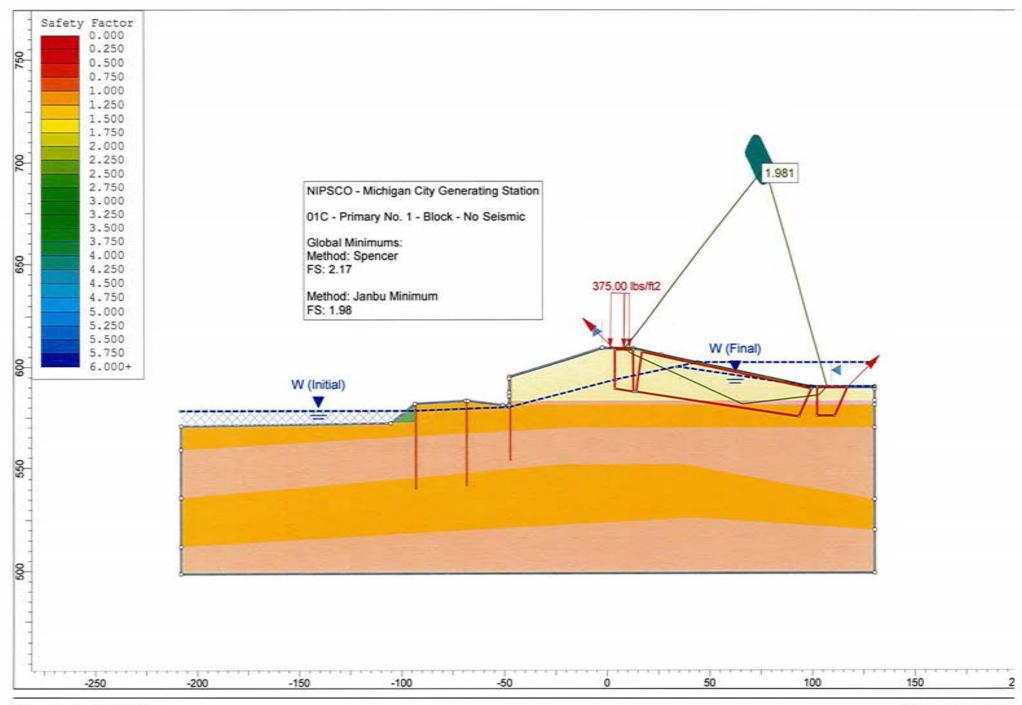

P112s-Projects/12268866 NIPSCO MCGS Gestech Investigator/200 Reports/201 Stope Stability/Appendix E - Stope Stability Analyses/Stope Stability Gummary 8.2.12 etcs

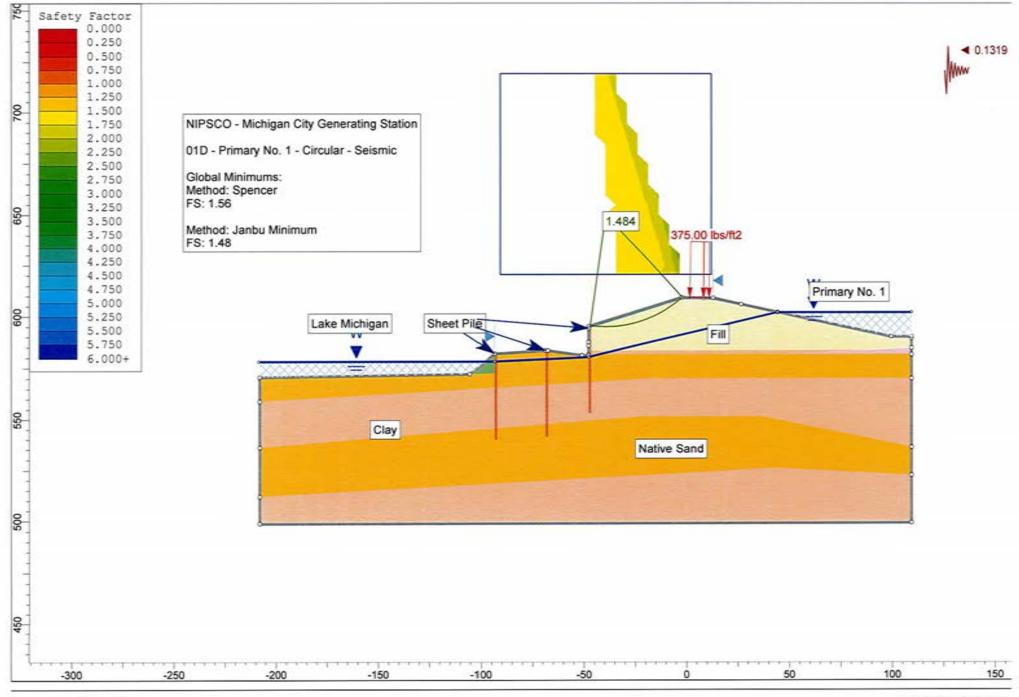

e Help		-
elect Analysis Option Probabilistic hazard curves	 Description 	1
Region and DataSet Selection -	Cutput for All Calculations	_
Geographic Region:	Data are based on a 0.05 deg grid spacing	2
Conterminous 48 States	. Frequency of Exceedance values less than	
	1E-4 should be used with caution.	
Data Edition:	Ground Motion Frequency of Exceedance	
2002 Data	 (g) (per year) 	
P. Contraction of the second se	0.005 3.0951E-02	1
atton Zp Code Batch File	0.007 2.1239E-02	
	0.011 1.4099E-02	
	0.017 9.14252-03	
5 Digit Zip Code:	0.025 5.6811E-03	
46360	0.038 3.3075E-03 0.057 1.7871E-03	
	0.057 1.7671E-03 0.085 8.9912E-04	
	0.128 4.2782E-04	
	0.192 1.96992-04	
lasic Hazard Curve	0.288 8.9662-05	
Select Hazard Curve:	0.432 4.11062-05	
Hazard Curve for 0.2sec	• 0.649 1.8903E-05	
Hazard Curve for 0.2sec	0.973 8.53558-06	
	1.460 3.6772E-06	
Calculate View	2.190 1.4546E-06	
	3.280 4.8395E-07	
ingle Hazard Curve Value	4.920 8.8761E-08	
Return Period Prob. & Time Ground Motion	7.380 0.000E00	
Prob. of Exceedance:r Exposure Time (Years): -		
2 + 50		
· · · ·		
	Ground Motion Freq. of Exceed. Return Fd. P.E. Exp. Time (g) (per year) (years) % (years)	
	(q) (per year) (years) % (years) 0.1319 4.0404E-04 2475.00 2.00 50.0	
	0.1319 4.04045-04 2473.00 2.00 50.0	
		_
	View Maps Clear Data	
	22211	
Calculate	20303	
	science for a changing world	


and the second second second second second second second second second second second second second second second

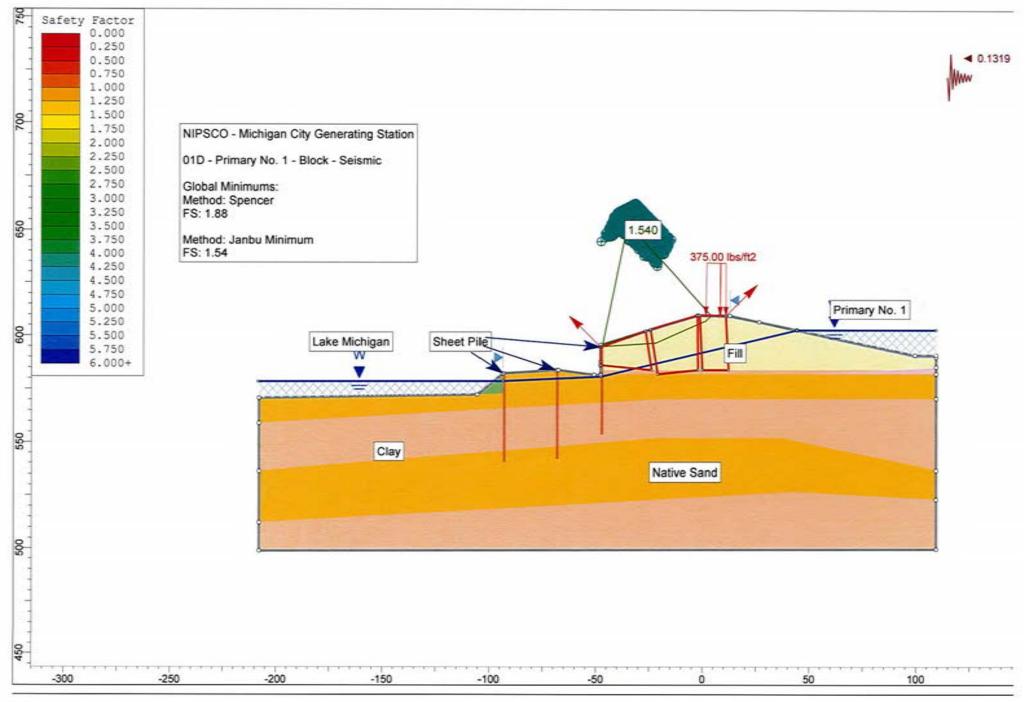

,



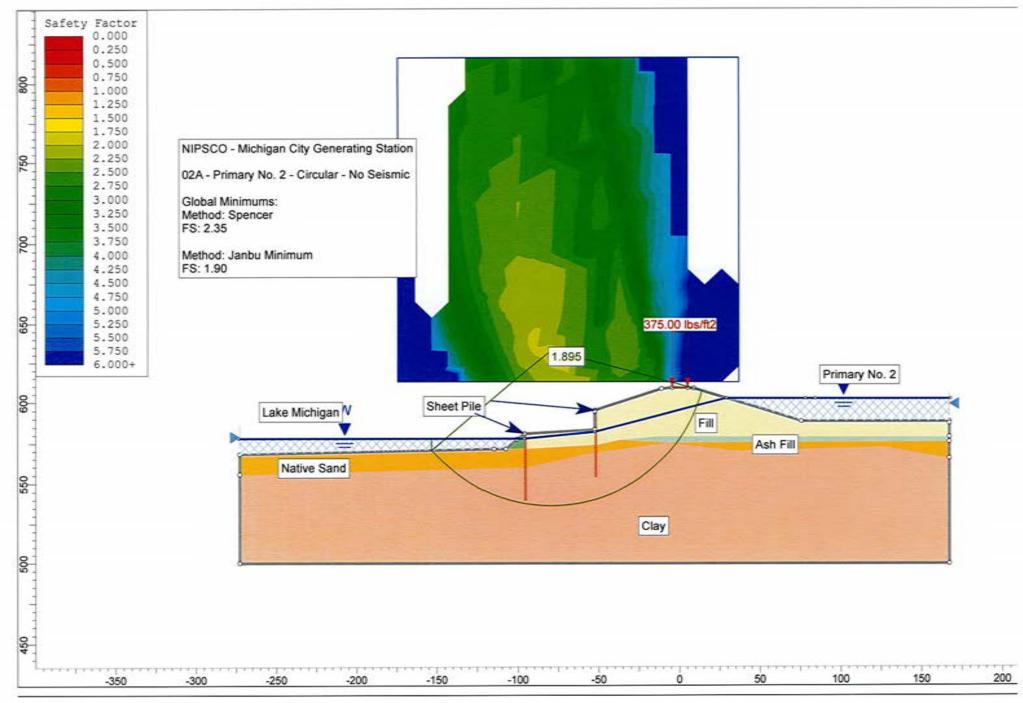

Primary No. 1-BLOCK.slim



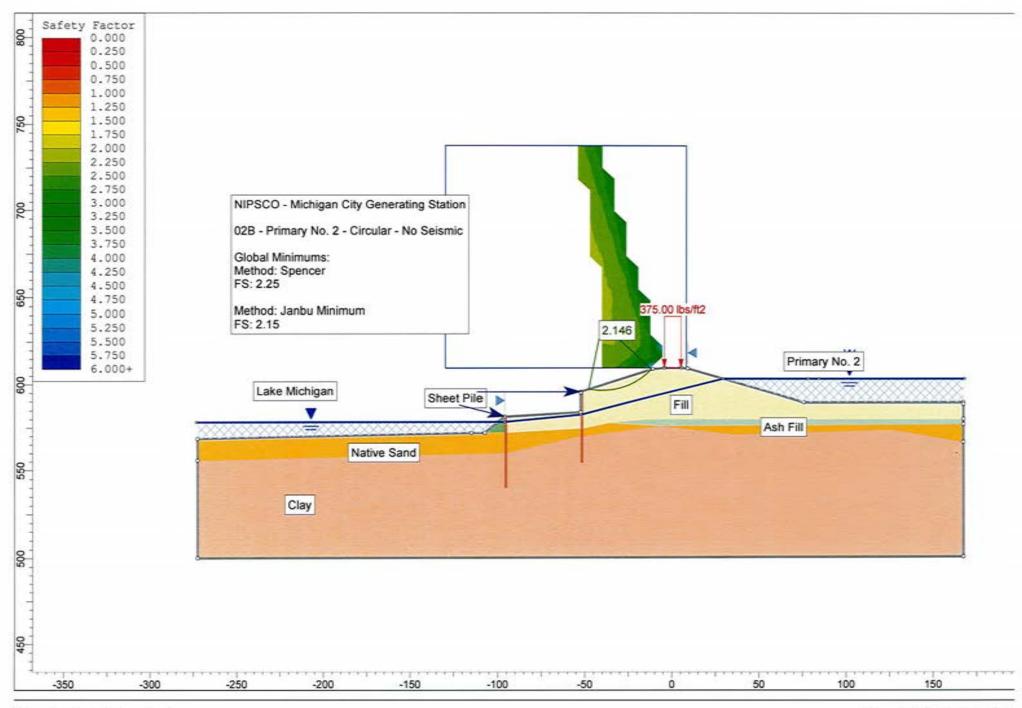
Primary No. 1-BLOCK.slim



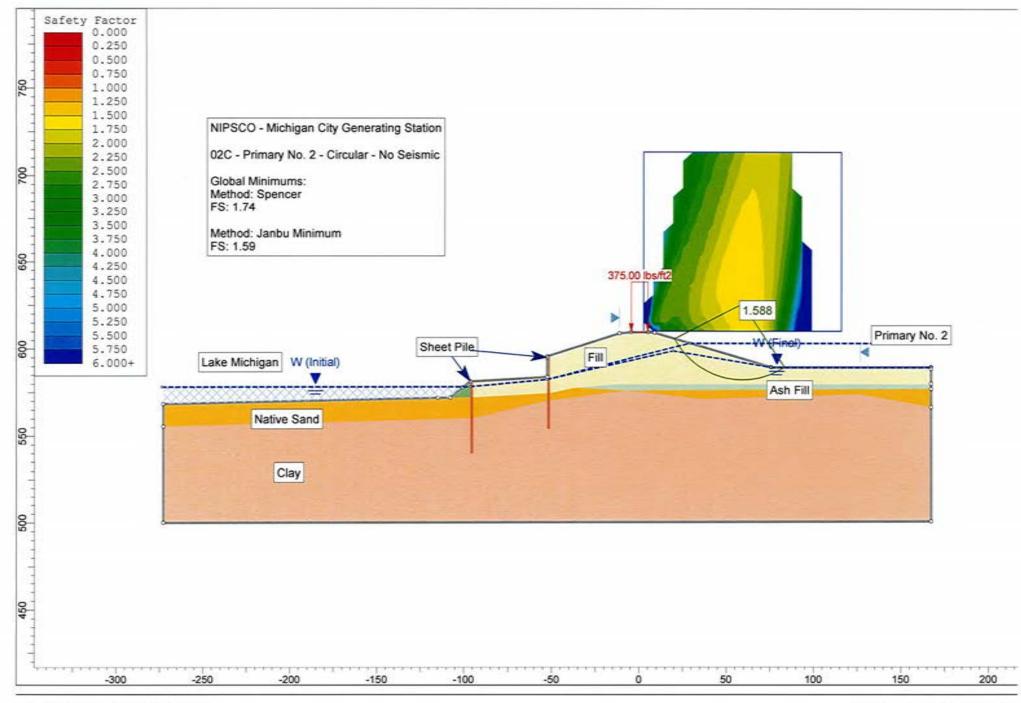
Primary No. 1-rapid-BLOCK.slim

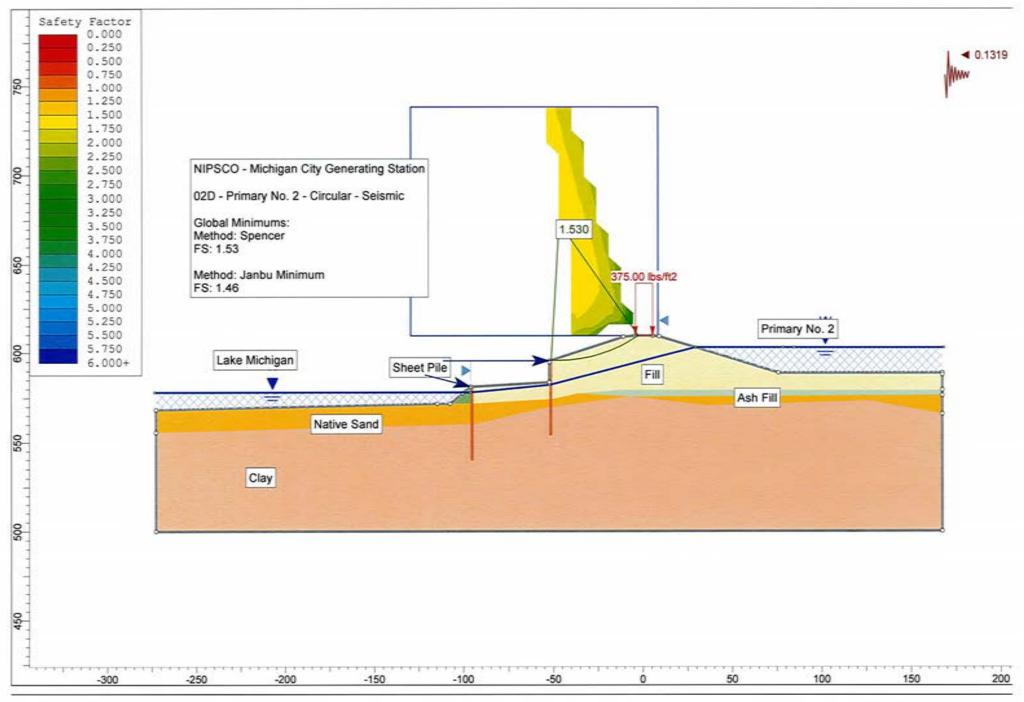

Primary No. 1-SEISMIC.slim

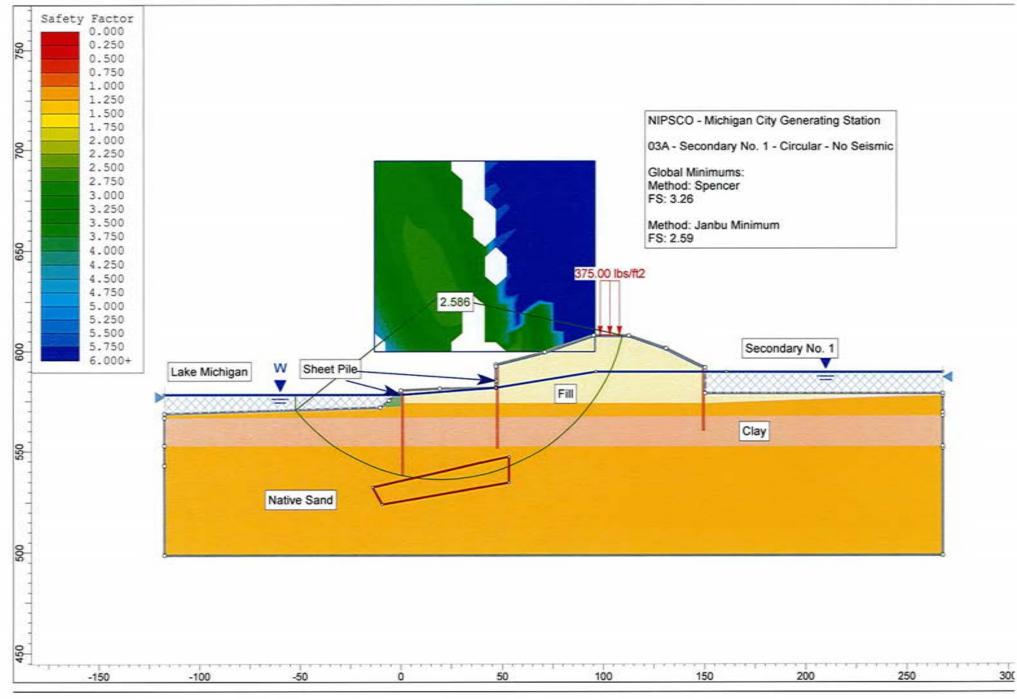
7/16/2012, 10:31:52 AM

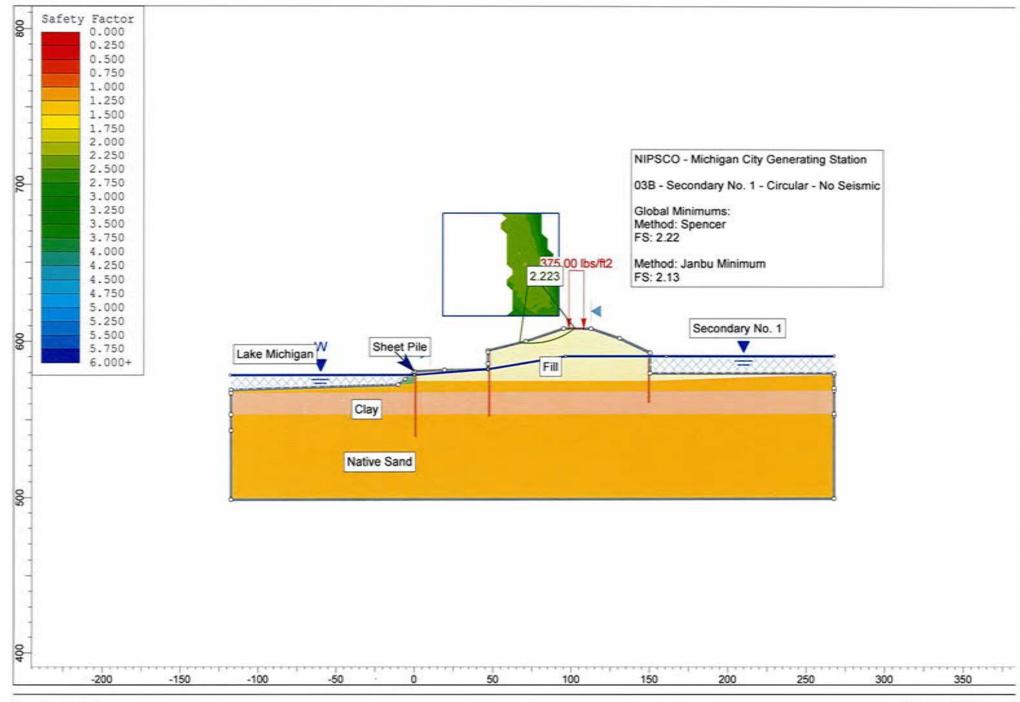


Primary No. 1-SEISMIC.slim

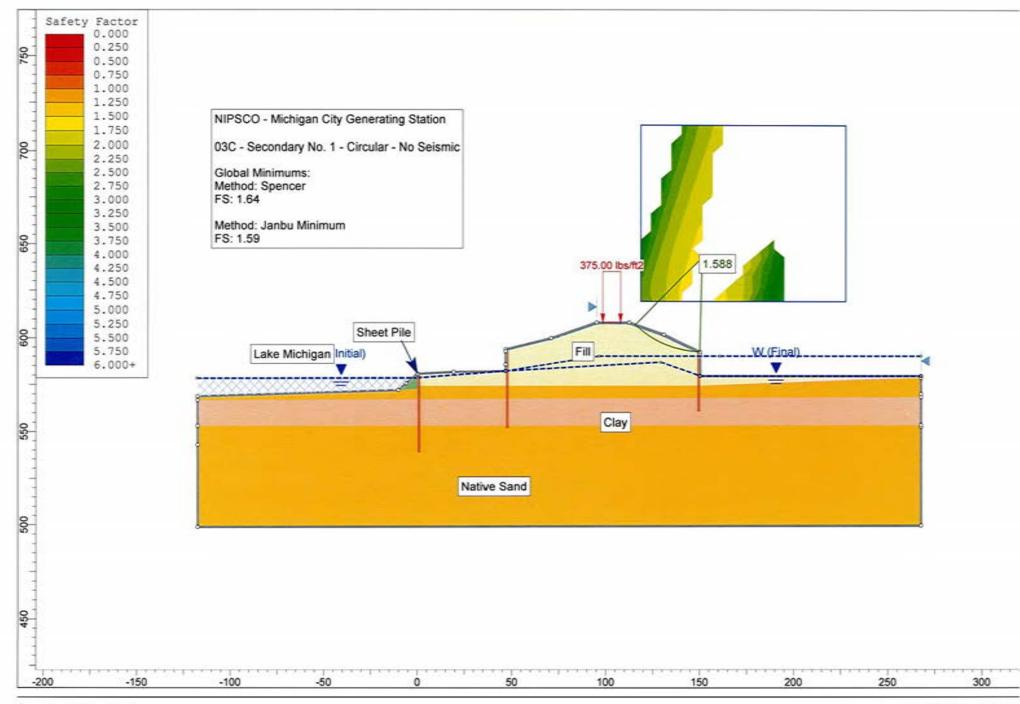

7/16/2012, 10:31:52 AM


Primary No 2 updated wz_pile.slim

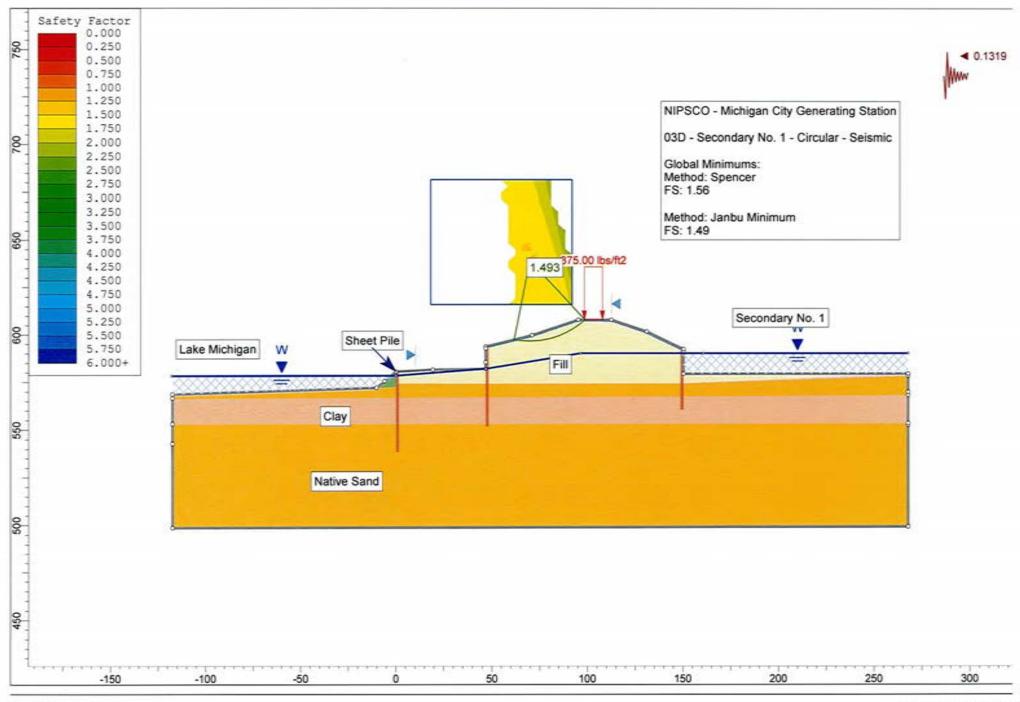

Primary No 2 updated wz_pile.slim



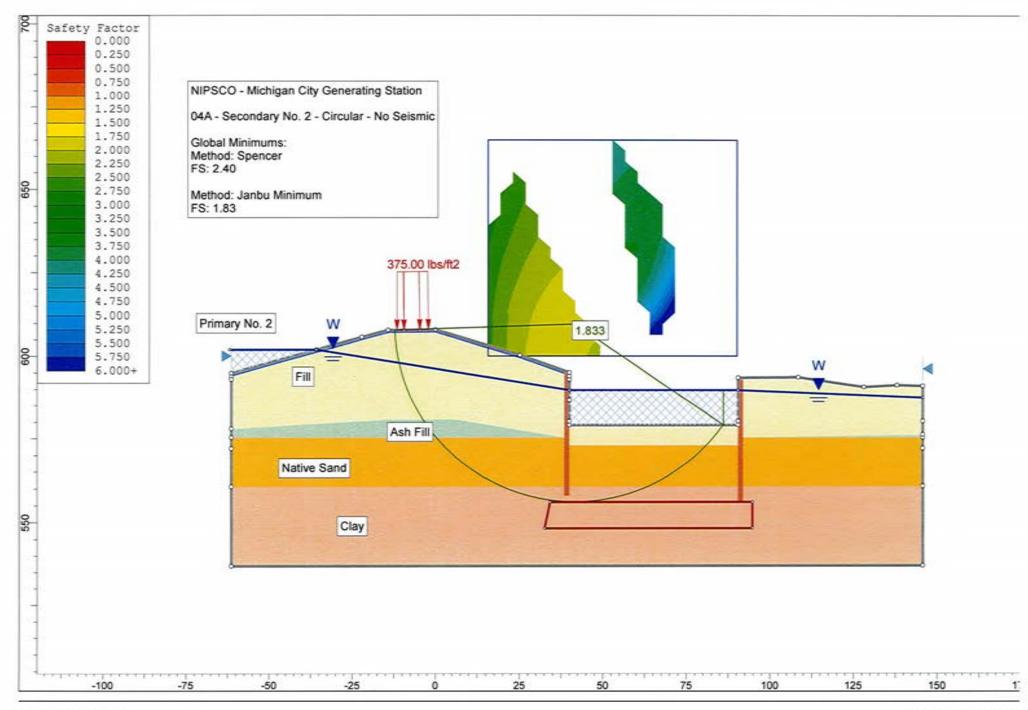
Primary No 2 updated wz_pile-rapid.slim

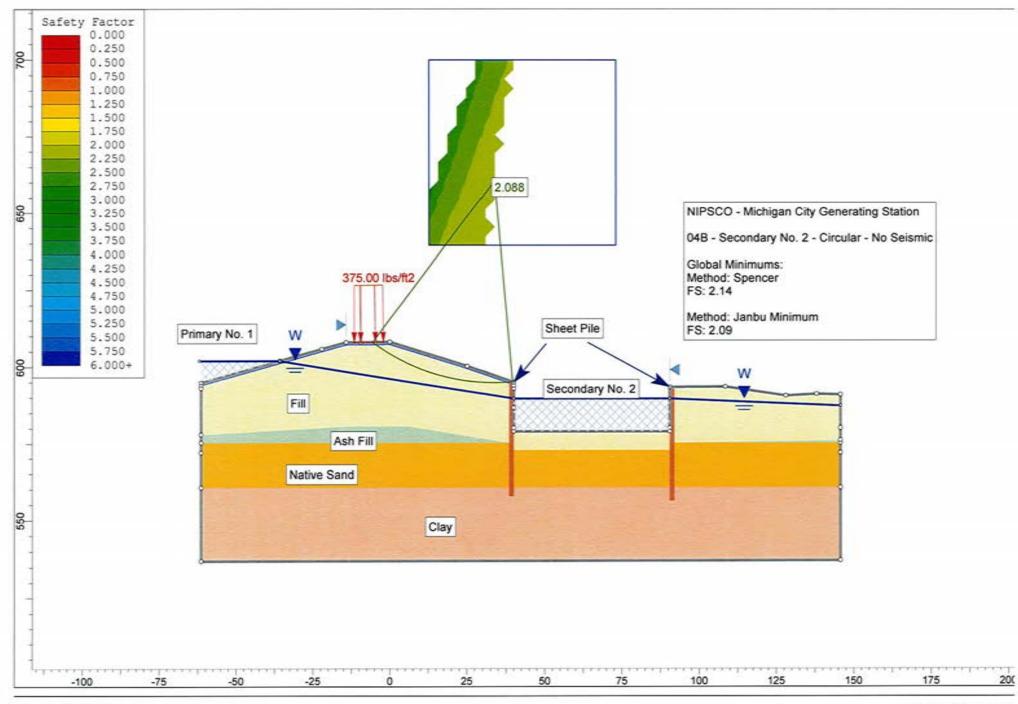


Primary No 2 updated wz_pile.slim

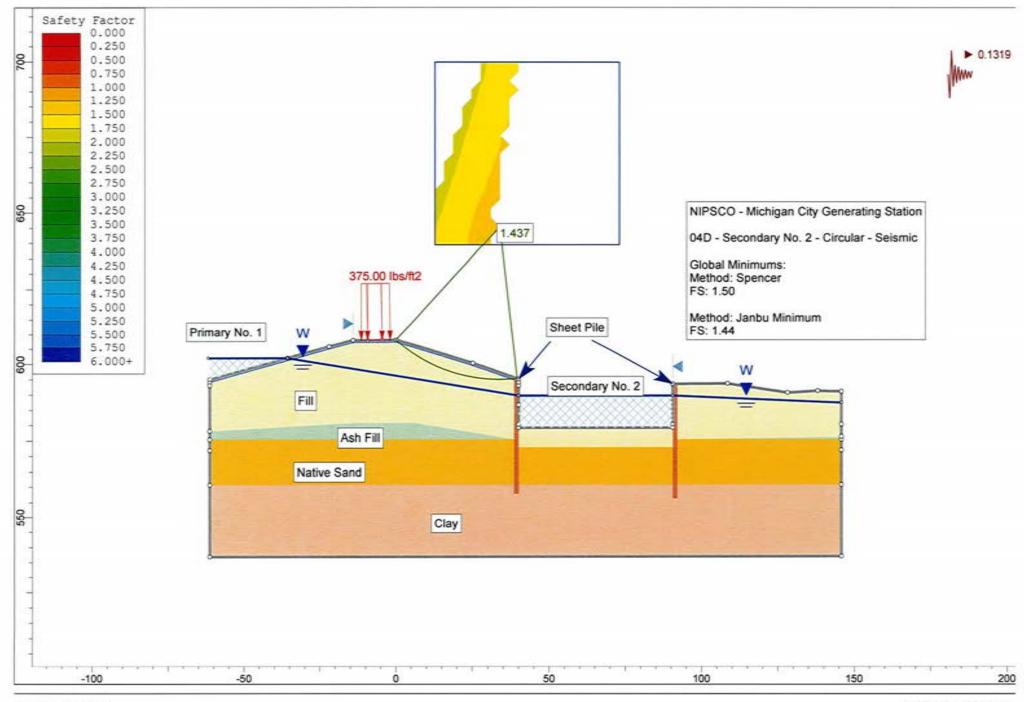


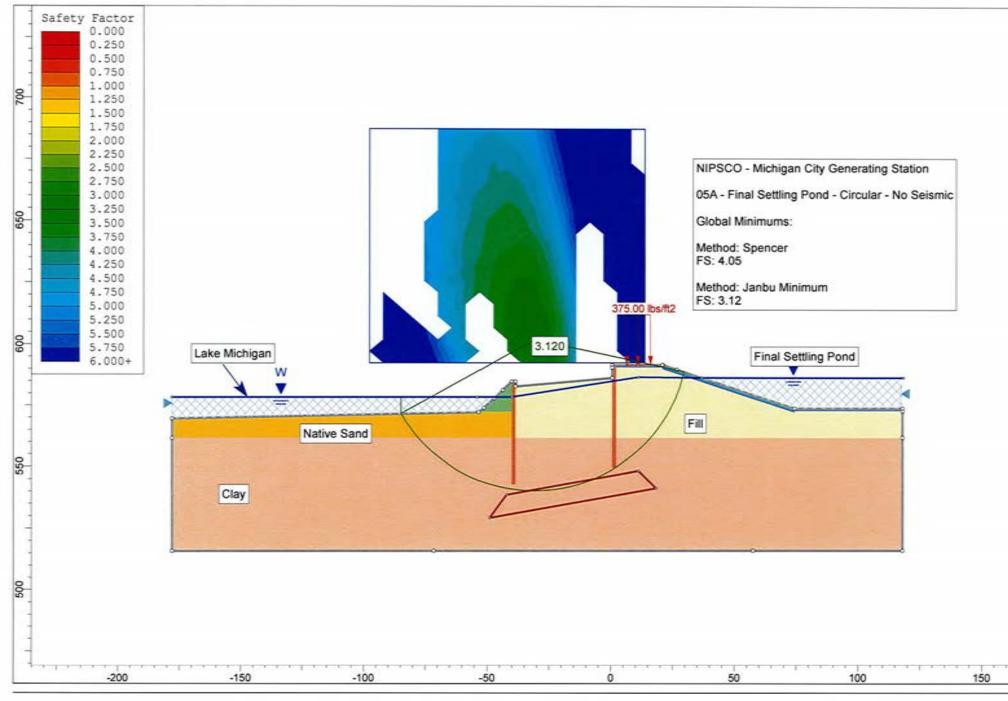
Secondary No.1.slim

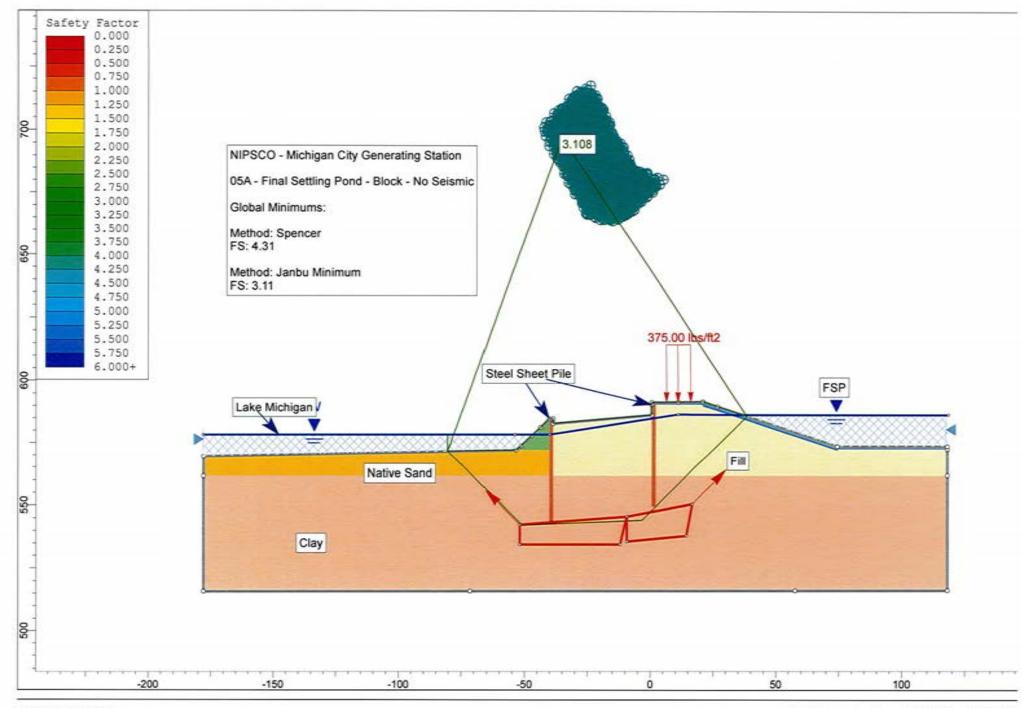

Secondary No.1-rapid.slim


7/10/2012, 10:58:47 AM

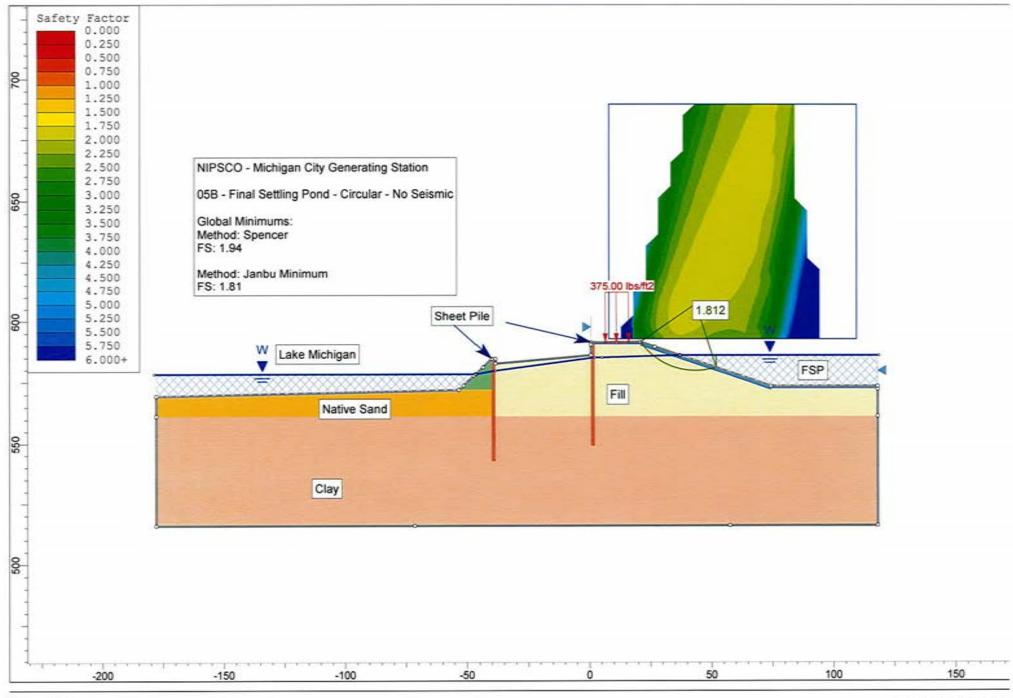
Secondary No.1.slim

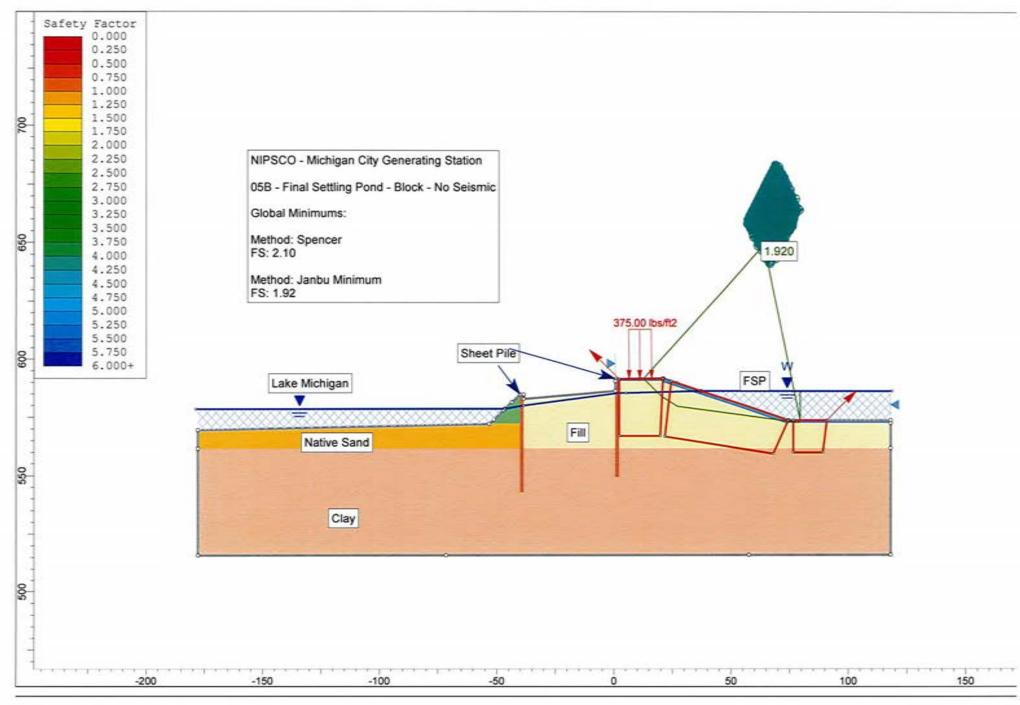

7/10/2012, 10:58:47 AM

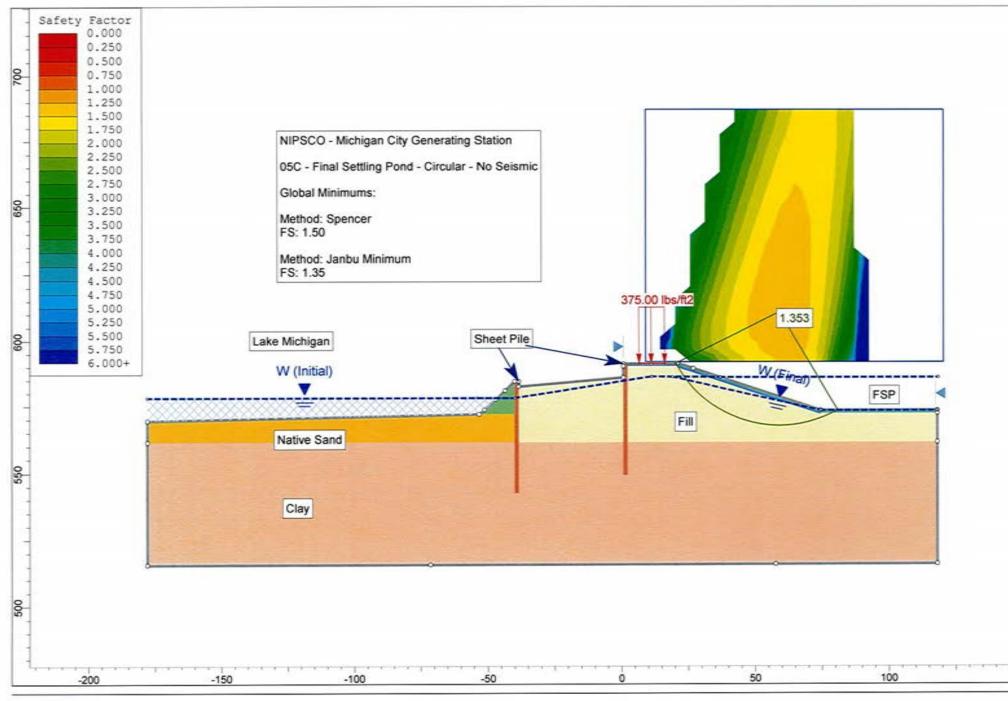




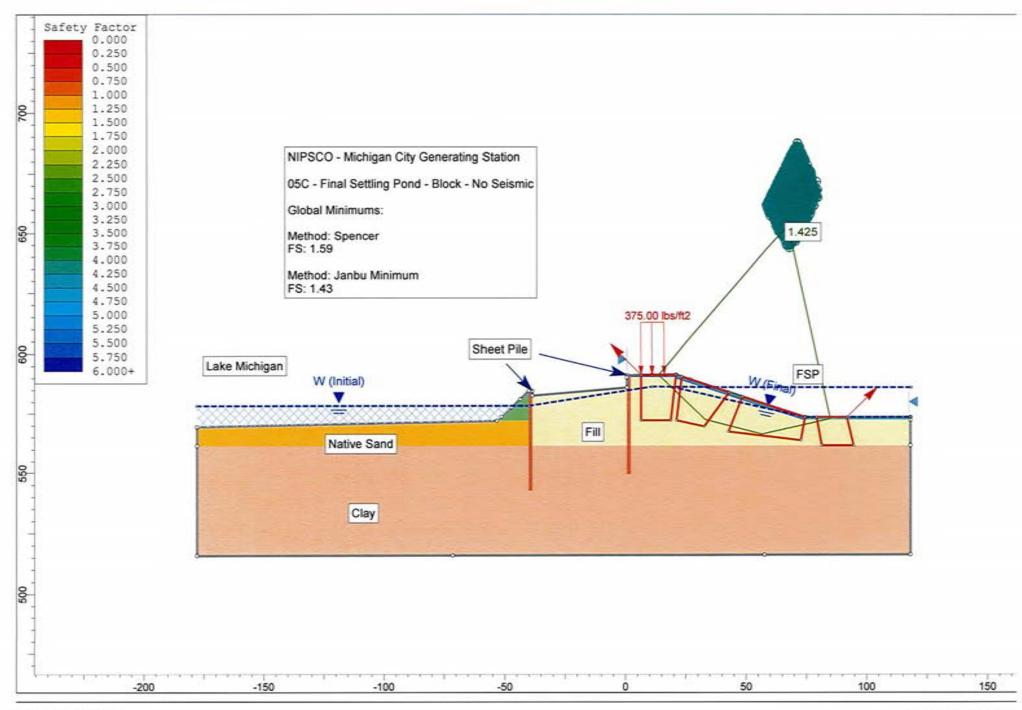
Secondary No. 2-rapid.slim



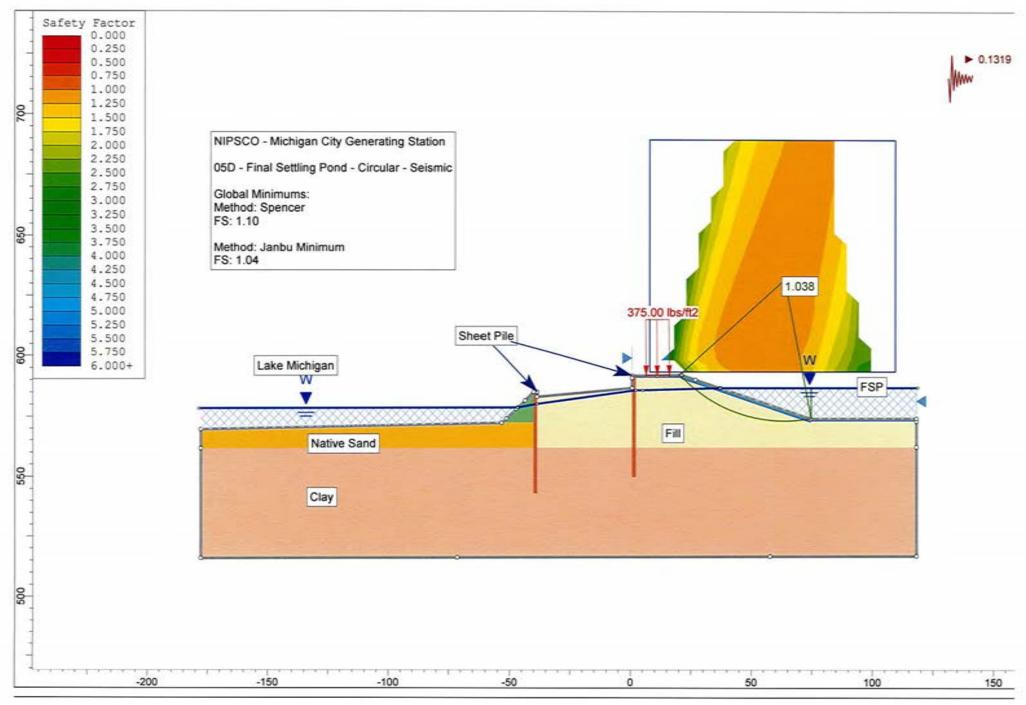

FSP-Global.slim

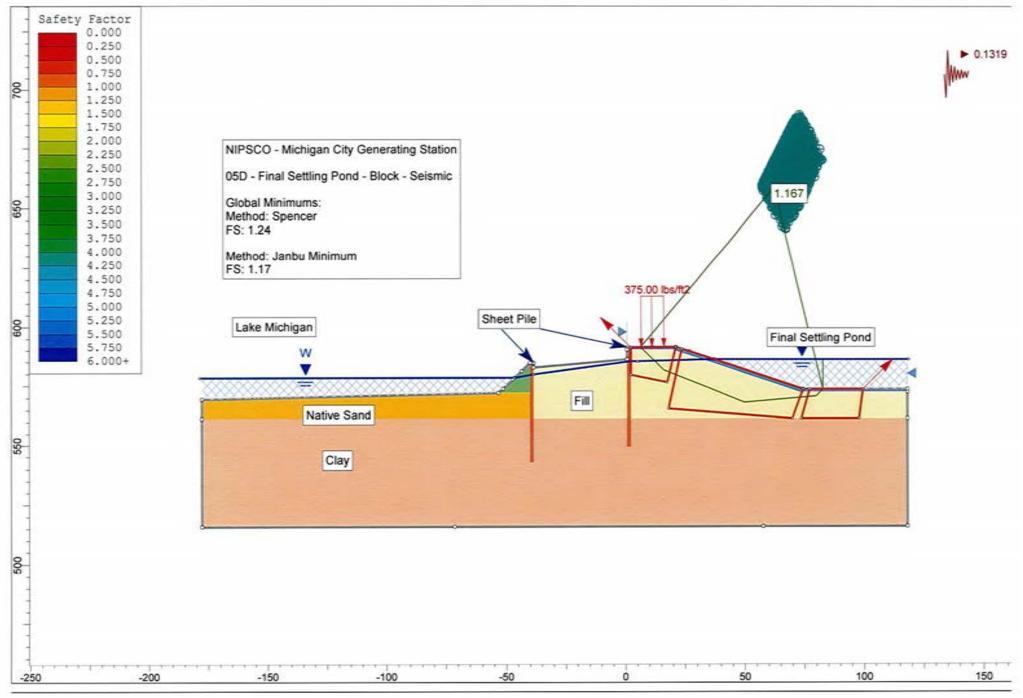


FSP-Global BLOCK.slim

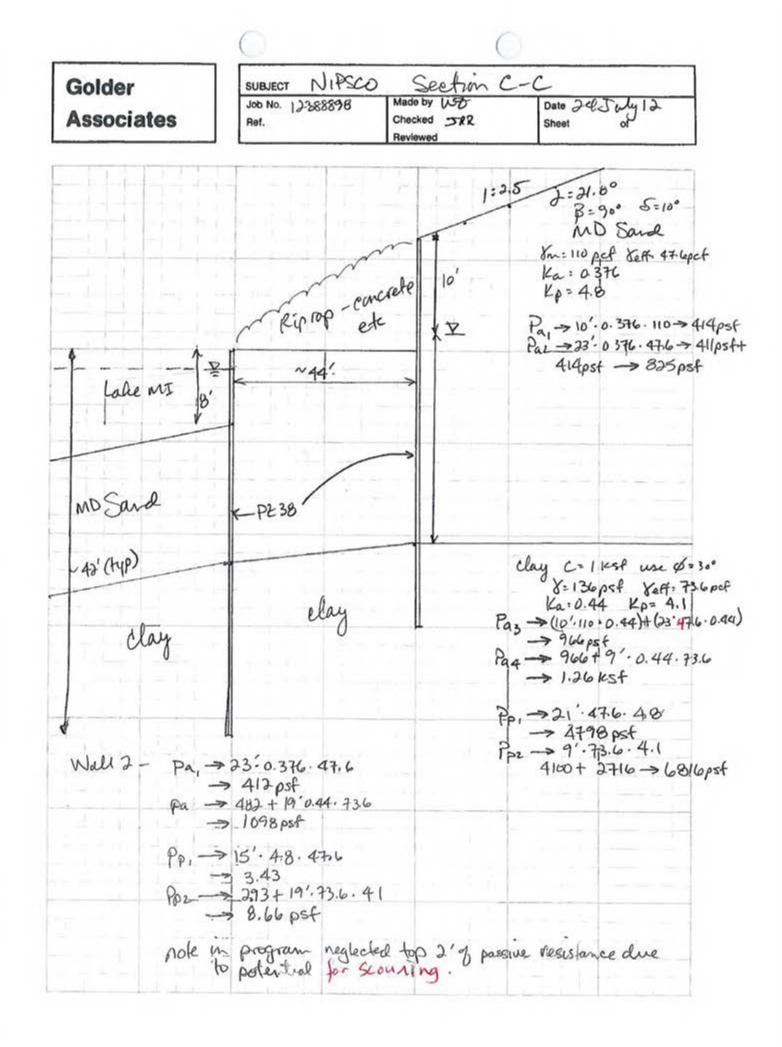


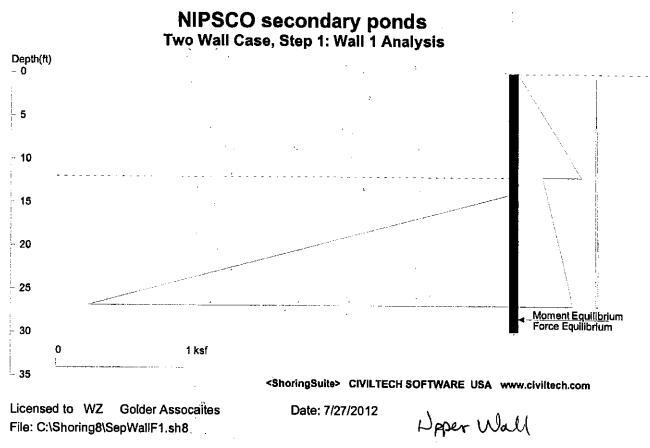
FSP-Local.slim




FSP-rapid.slim

FSP-rapid-BLOCK.slim


FSP-Local SEISMIC.slim



FSP-Local-BLOCK SEISMIC.slim

APPENDIX F

Sheet Piles Analyses

Wall Height=12.0 Pile Diameter=1.0

Pile Spacing=1.0

Wall Type: 1, Sheet Pile

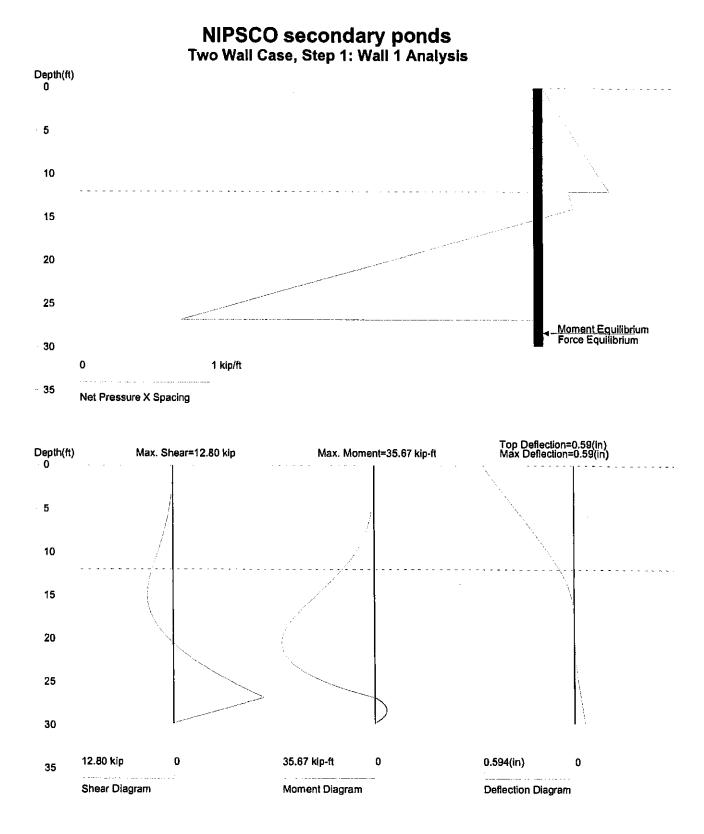
PILE LENGTH: Min. Embedment=17.80 Min. Pile Length=29.80 (in graphics and analysis) User inputted Embedment=30.00, Pile Length=42.00 MOMENT IN PILE: Max. Moment=35.67 per Pile Spacing=1.0 at Depth=20.53

SYSTEM FACTOR OF SAFETY (Approximate)=1.69

The request embedment is 17.8, the user input fixed embedment = 30.

PILE SELECTION:

Request Min. Section Modulus = 13.0 in3/ft=697.40 cm3/m, Fy= 50 ksi = 345 MPa, Fb/Fy=0.66 PZ38 has Section Modulus = 46.8 in3/ft=2515.97 cm3/m. It is greater than Min. Requirements! OK Top Deflection = 0.59(in) based on E (ksi)=29000.00 and 1 (in4)/foot=280.8


DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE):

Z1	P1	Z2	P2	Slope	
*	Above	Base			
0.000	0.000	12	0.496	0.041333	
*	Below	Base			
12.00	0.190	15.00	0.237	0.015818	
15.00	0.237	18.00	0.285	0.015818	
18.00	0.285	21.00	0.332	0.015818	
21.00	0.332	24.00	0.380	0.015818	r
24.00	0.380	27.00	0.427	0.015818	
27.00	0.427	30.00	0.475	0.015818	
+	Sur-	charg			
0.000	0.000	0.600	0.001	0.001193	
0.600	0.001	1.200	0.001	0.001191	
1.200	0.001	1.800	0.002	0.001185	
1.800	0.002	2.400	0.003	0.001178	

1		0.00		1.00	
ASSIVE SPACING: No.		Z depth		Spacing	
			*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
2		12.00		1.00	
1		0.00		1.00	
CTIVE SPACING: No.		Z depth		Spacing	
14	Below 0.000	Base 33.00	4.783	0.2517	
<u>Z1</u>	P1 Bolow	<u>72</u>	P2	Slope	
ASSIVE PRESSURES		70	00	Si	
28.80	0.017	31.20	0.017	-0.00013	
26.40	0.017	28.80	0.017	-0.00006	
24.00	0.017	26.40	0.017	0.000023	
22.80	0.017	24.00	0.017	0.000100	
21.60	0.017	22.80	0.017	0.000157	
20.40	0.017	21.60	0.017	0.000218	
19.20	0.016	20.40	0.017	0.000283	
18.00	0.016	19.20	0.016	0.000351	
16.80	0.015	18.00	0.016	0.000421	
15.60	0.015	16.80	0.015	0.000494	
14.40	0.014	15.60	0.015	0.000569	
13.20	0.013	14.40	0.014	0.000644	
12.00	0.012	13.20	0.013	0.000718	
11.40	0.012	12.00	0.012	0.000773	
10.80	0.011	11.40	0.012	0.000809	
10.20	0.010	10.80	0.011	0.000844	
9.600	0.010	9.000 10.20	0.010	0.000911	
9.000	0.009	9.000 9.600	0.010	0.000943 0.000911	
8.400	0.009	8.400 9.000	0.009 0.010	0.000974	
7.200	0.008 0.00 9	7.800	0.009	0.001003	
6.600 7.200	0.008	7.200	0.008	0.001030	
6.000	0.007	6.600	0.008	0.001056	
5.400	0.006	6.000	0.007	0.001080	
4.800	0.006	5.400	0.006	0.001102	
4.200	0.005	4.800	0.006	0.001122	
3.600	0.004	4.200	0.005	0.001139	
3.000	0.004	3.600	0.004	0.001154	
		~ ~ ~ ~		0 0044 0 4	

1

UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in

PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS

Based on pile spacing: 1.0 foot or meter

User Input Pile, pz38: E (ksi)=29000.0, I (in4)/foot=280.8

File: C:\Shoring8\SepWallF1.sh8

<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com

Licensed to WZ Golder Assocaites

report.out ****** SHORING WALL CALCULATION SUMMARY The leading shoring design and calculation software Software Copyright by CivilTech Software www.civiltech.com ****************************** ShoringSuite Software is developed by civilTech Software, Bellevue, WA, USA. The calculation method is based on the following references: 1. FHWA 98-011, FHWA-RD-97-130, FHWA SA 96-069, FHWA-IF-99-015 2. STEEL SHEET PILING DESIGN MANUAL by Pile Buck Inc., 1987 3. DESIGN MANUAL DM-7 (NAVFAC), Department of the Navy, May 1982 4. TRENCHING AND SHORING MANUAL Revision 12, California Department of TERPORTATION 2000 TRENCHING AND SHORING MANUAL REVISION 12, Carrienta Department of Transportation, January 2000
 EARTH SUPPORT SYSTEM & RETAINING STRUCTURES, Pile Buck Inc. 2002
 DESIGN OF SHEET PILE WALLS, EM 1110-2-2504, U.S. Army Corps of Engineers, 31 March 1994
 EARTH RETENTION SYSTEMS HANDBOOK, Alan Macnab, McGraw-Hill. 2002
 AASHTO HB-17, American Association of State and Highway Transportation Officials, 2 September 2002 UNITS: Width/Spacing/Diameter/Length/Depth - ft, Force - kip, Moment - kip-ft, Friction/Bearing/Pressure - ksf, Pres. Slope - kip/ft3, Deflection - in Licensed to WZ Golder Assocaites Date: 7/27/2012 File: C:\Shoring8\SepwallF1.sh8 Title: NIPSCO secondary ponds Subtitle: Two wall Case, Step 1: wall 1 Analysis ******* Wall Type: 1. Sheet Pile Wall Height: 12.00 Pile Diameter: 1.00 Pile Spacing: 1.00 Factor of Safety (F.S.): 1.00 Lateral Support Type (Braces): 1. No Top Brace Increase (Multi-Bracing): Add 15%* Embedment Option: 3. Fixed Fixed Embedment: 30.00 Friction at Pile Tip: No Pile Properties: Pile Diameter: 1.00 Pile Properties: Steel Strength, Fy: 50 ksi = 345 MPa Allowable Fb/Fy: 0.66 Elastic Module, E: 29000.00 Moment of Inertia, I: 184.20 User Input Pile: pz38 * DRIVING PRESSURE (ACTIVE, WATER, & SURCHARGE) * No. Z1 top Top Pres. Z2 bottom Z2 bottom Bottom Pres. Slope 21 LOP 10 . _____ 1 ٠ Above Base 2 0.000 0.000 Below 0.496 12 0.041333 Base 15.00 18.00 21.00 3 0.237 0.285 0.332 0.380 4 12.00 0.190 $\begin{array}{c} 0.015818 \\ 0.015818 \\ 0.015818 \\ 0.015818 \end{array}$ 15.00 18.00 0.237 0.285 0.332 5 6 21.00 24.00 27.00 30.00 24.00 7 0.015818 0.427 8 0.380 0.015818 ĝ 30.00 0.427 0.015818 **1**0 0.522 0.625 0.702 0.015818 30.00 33.00 36.00 39.00 42.00 45.00 0.025685 0.025685 0.025685 0.025685 0.548 11 12 36.00 0.625 0.702 42.00 45.00 48.00 ī3 0.779 14 15 0.856 0.025685 0.856 0.933 16 17 51.00 54.00 57.00 48.00 0,933 1.010 51.00 54.00 57.00 1.010 1.088 0.025685 18 1.088 1.165 0.025685 60.00 19 1.242 1.319 1.396 0.025685 60.00 63.00 66.00 69.00 72.00 75.00 78.00 63.00 20 21 1.242 0.025685 0.025685 0.025685 0.025685 69.00 1.473 1.550 1.627 22 23 24 25 26 1.396 1.473 72.00 75.00 0.025685 1.627 1.704 0.025685 81.00 84.00 87.00 1.704 1.781 0.025685 27 0.025685 0.025685 0.025685 0.025685 81.00 1.781 1.858 1.858 84.00 87.00 1.935 29 30 1.935 90.00 2.012 90.00 93.00 2.089 2.166 2.243 2.320 0.025685 31 93.00 2.089 96.00 32 33 34 96.00 2.166 99.00 99.00 2.243 102.0 0.025685 2.320 105.0 2.397 0.025685

	105.0 2.397 108.0 2.475 0.025665 35 106.0 2.475 11.0 2.552 0.025665 38 114.0 2.629 0.025665 0.025665 38 114.0 2.629 117.0 0.025665 39 117.0 2.706 120.0 2.783 0.025665 41 0.000 0.000 0.600 0.001 0.001193 42 0.600 0.001 1.200 0.001193 43 1.200 0.001 1.200 0.001193 44 1.200 0.002 2.400 0.001193 45 1.600 0.002 0.001193 44 1.200 0.004 3.600 0.004 0.001193 45 1.600 0.006 0.001122 0.001102 46 4.200 0.006 0.00102 0.001102 50 5.400 0.0068 7.200 0.008 0.00103 51 6.500 0.								
35 36 37 38	105.0 108.0 111.0 114.0	2.397 2.475 2.552 2.629	report 108.0 111.0 114.0 117.0	2.475 2.552 2.629 2.706	0.025685 0.025685 0.025685 0.025685 0.025685				
39 40 41 42	117.0 * 0.000 0.600	2.706 Sur- 0.000 0.001	120.0 charg 0.600 1.200	2.783 0.001 0.001	0.025685 0.001193 0.001191				
44 45 46 47	1.800 2.400 3.000 3.600	0.002 0.003 0.004 0.004	2.400 3.000 3.600 4.200	0.003 0.004 0.004 0.005	0.001178 0.001167 0.001154 0.001139				
48 49 50 51	4.200 4.800 5.400 6.000	0.005 0.006 0.006 0.007	4.800 5.400 6.000 6.600	0.006 0.006 0.007 0.008	0.001122 0.001102 0.001080 0.001056				
52 53 54 55	6.600 7.200 7.800 8.400	0.008 0.008 0.009 0.009	7.200 7.800 8.400 9.000	0.008 0.009 0.009 0.010	0.001030 0.001003 0.000974 0.000943				
50 57 58 59 60	9.000 9.600 10.20 10.80 11.40	0.010 0.010 0.011 0.011 0.012	9.600 10.20 10.80 11.40 12.00	0.010 0.011 0.011 0.012 0.012	0.000878 0.000844 0.000809 0.000773				
61 62 63 64	12.00 13.20 14.40 15.60	0.012 0.013 0.014 0.015	13.20 14.40 15.60 16.80	0.013 0.014 0.015 0.015	0.000718 0.000644 0.000569 0.000494				
65 66 67 68	16.80 18.00 19.20 20.40	0.015 0.016 0.016 0.017	18.00 19.20 20.40 21.60	0.016 0.016 0.017 0.017	0.000421 0.000351 0.000283 0.000218				
70 71 72 73	21.60 22.80 24.00 26.40 28.80	0.017 0.017 0.017 0.017 0.017	22.80 24.00 26.40 28.80 31.20	0.017 0.017 0.017 0.017 0.017	0.000137 0.000100 0.000023 -0.00006 -0.00013				
74 75 76 77	31.20 33.60 36.00 38.40	0.017 0.016 0.016 0.015	33.60 36.00 38.40 40.80	0.016 0.016 0.015 0.015 0.014	-0.00019 -0.00023 -0.00026 -0.00028				
78 79 80	40.80 43.20 45.60	0.014 0.014 0.013	43.20 45.60 48.00	0.014 0.013 0.000	-0.00029 -0.00029 -0.00543				
* PASS No.	IVE PRESSURE * Zl top	Top Pres.	Z2 bottom	Bottom Pres.	Slope				
1 2 3	* 14 33.00	Below 0.000 4.537	Base 33.00 120.0	Bottom Pres. 4.783 33.60	0.2517 0.334092				
* ACTI No.	VE SPACE * Z depth	Spacing							
1 2 	0.00 12.00	1.00 1.00							
	Z depth	Spacing							
*For Tieback: Input1 = Diameter; Input2 = Bond Strength *For Plate: Input1 = Diameter; Input2 = Allowable Pressure *For Deadman: Input1 = Horz. Width; Input2 = Allowable Pressure; Angle = O									

piles	The calculated moment and shear are per pile spacing. Sheet piles are per one foot or meter; Soldier piles are per pile.								
Top Pressures start at depth = 0.00									

* CALCULATE REQUEST EMBEDMENT * The Request Embedment, Yend = 17.80 The user input fixed embedment = 30.0

.

report.out -----CANTILEVER CASE----** Approximate Factor of Safety based on fixed embedment, FS = 1.69 Note; User input fixed embedment is 30, which is deeper than calculated embedment. Use calculated embedment = 17.8 for graphics and analysis. D1=0.00D2=12.00 ----== D3=29.80 D1 - TOP DEPTH D2 - EXCAVATION BASE D3 - PILE TIP (20% increased, see EMBEDMENT Notes below) MOMENT BALANCE: M=0.00 AT DEPTH=26.84 WITH EMBEDMENT OF 14.84 FORCE BALANCE: F=0.00 AT DEPTH=29.80 WITH EMBEDMENT OF 17.80 The program calculates an embedment for moment equilibrium, then increase the embedment by 20% to reach force equilibrium. A Balance Force=12.90 is developed from depth=26.84 to depth=29.80 Total Passive Pressure = Total Active Pressure, OK! ***************** * EMBEDMENT Notes * Based on USS Design Manual, first calculate embedment for moment equilibrium, then increased by 20 to 40 % to reach force equilibrium. The embedment for moment equilibrium is 14.84 * The 20% increased embedment for force equilibrium is 17.80 (Used by Program) The 30% increased embedment for force equilibrium is 19.29 The 40% increased embedment for force equilibrium is 20.77 Based on AASHTO 2002 Standard Specifications, first calculate embedment for moment equilibrium, then add safety factor of 30% for temporary shoring; add safety factor of 50% for permanent shoring. The embedment for moment equilibrium is 14.84 Add 30% embedment for temporary shoring is 19.29 Add 50% embedment for permanent shoring is 22.25 * BASED ON USS DESIGN MANUAL (20% increased), PROGRAM CALCULATED MINIMUM EMBEDMENT = 17.80 TOTAL MINIMUM PILE LENGTH = 29.80 * MOMENT IN PILE (per pile spacing)* Pile Spacing: sheet piles are one foot or one meter; soldier piles are one pile. Overall Maximum Moment = 35.67 at 20.53 Maximum Shear = 12.80 Moment and Shear are per pile spacing: 1.0 foot or meter * VERTICAL LOADING * vertical Loading from Braces = 0.00 Vertical Loading from External Load = 0.00 Total Vertical Loading = 0.00 Overall Maximum Moment = 35.67 at 20.53 The pile selection is based on the magnitude of the moment only. Axial force is neglected. Request Min. Section Modulus = 12.97 in3/ft = 697.40 cm3/m, Fy= 50 ksi = 345 MPa, Fb/Fy=0.66 PZ38 has been found in Sheet Pile list! PZ38(English): Sx= 46.80 in3/ft Ix= 280.80 in4/ft Wei PZ38(Metrics): Sx= 2515.97 cm3/m Ix= 383.46 x100cm4/m weight= 38.00 lb/ft Weight= 0.555 kN/m * Note: All the pile dimensions are in English Units per one foot width. PZ38 is capable to support the shoring! I (in4)/foot=280.80 Top deflection = 0.594(in) Max. deflection = 0.594(in) ********PRESSURE, LOAD, SHEAR, MOMENT, AND DEFLECTION V.S. DEPTH*********** The shear and moment are per single soldier pile (secant/tangent pile) or one foot of sheet pile (concrete wall). The deflection is based on users input pile below: User Input Pile: pz38 Elastic Module, E (ksi)= 29000.00

Page 3

report.out Moment of Inertia, I (in4)/foot= 280.8

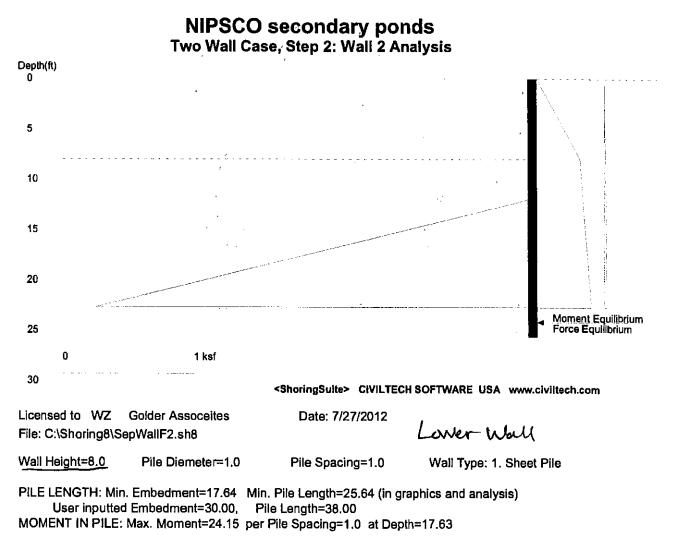
LOAD SHEA kip/ft kip MOMENT DEFLECTION kip-ft in DEPTH PRESS. NO SHEAR ft ksf 0.00 0.04 0.07 0.11 $0.00 \\ 0.00 \\ 0.00$ 0.594 0.593 0.591 0.589 1 0.00 0.00 0.00 ž 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0.00 4 0.00 0.15 0.19 0.01 0.00 0.588 5 0.01 0.00 6 7 0.01 0.00 0.585 0.22 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.02 8 0.26 0.01 0.00 0.00 ğ 0.01 0.01 0.02 0.30 0.00 0.00 0.581 0.34 0.37 0.580 0.578 0.577 0.575 10 $0.00 \\ 0.00$ 0.00 īī 0.02 0.02 0.02 0.41 0.00 12 0.00 13 0.02 14 0.49 0.02 0.01 0.00 0.573 0.01 0.01 0.572 0.570 15 0.52 0.02 0.00 16 17 0.56 0.02 0.02 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.60 0.00 0.01 0.569 18 0.63 0.01 0.567 0.03 0.67 0.71 19 0.01 0,00 0.565 20 21 22 ō.oo 0.564 0.01 0.75 0.78 0.82 0.03 0.03 0.04 0.03 0.00 0.562 0.561 0.03 23 0.04 0.01 0.00 0.00 0.559 0.557 0.556 24 25 26 27 0.86 0.04 0.04 0.02 0.02 0.04 0.01 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.93 0.97 0.554 0.01 0.02 0.02 0.02 0.01 28 29 1.01 0.01 0.01 0.551 0.549 30 31 0.01 0.01 1.08 0.05 0.05 0.03 0.548 0.546 1.12 0.05 0.05 0.03 32 0.05 Ô.05 0.03 0.01 0.544 33 34 35 1.19 1.23 1.27 1.31 0.05 0.543 0.541 Õ. 05 0.03 0.01 0.05 0.03 0.01 0.05 0.03 0.04 0.04 0.04 0.540 0.538 0.536 0.535 0.05 0.01 36 37 0.02 0.02 0.02 0.06 0.06 1.34 38 1.38 0.06 0.06 0.06 0.533 0.02 0.02 39 1.42 0.04 40 1.46 0.05 41 42 43 0.05 0.530 1.49 0.06 0.06 0.02 0.06 0.06 1.53 0.03 0.05 0.05 0.06 0.03 0.527 0.525 0.524 0.522 0.520 0.519 0.517 44 45 0.07 0.07 0.07 1.61 0.03 1.64 0.07 0.07 0.03 1.68 46 0.06 1.72 1.75 1.79 47 0.06 48 0.07 0.07 0.07 0.04 49 0.08 0.08 0.07 0.04

•

50

1.83

0.08


0.08

0.07

0.04

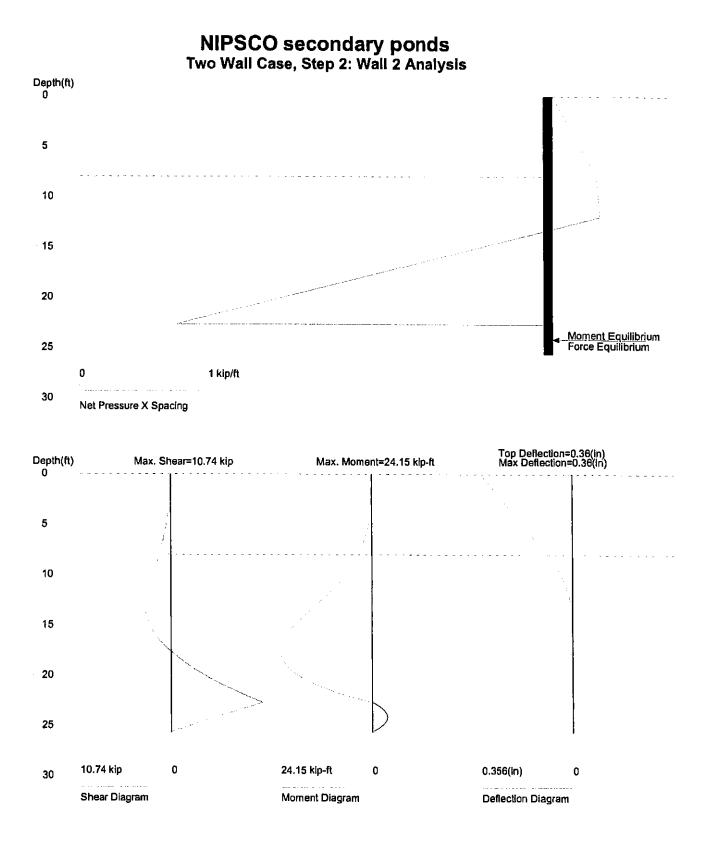
0.516

PRESS. - Sum of all pressures (Net pressure). (Active) direction is positive LOAD - Liner load (force per unit depth) = Pressures multiply by acting space

SYSTEM FACTOR OF SAFETY (Approximate)=1.70

The request embedment is 17.6, the user input fixed embedment = 30.

PILE SELECTION:


Request Min. Section Modulus = <u>8.8 in3/ft</u>=472.17 cm3/m, Fy= 50 ksi = 345 MPa, Fb/Fy=0.66 PZ38 has Section Modulus = <u>46.8 in3/ft</u>=2515.97 cm3/m. It is greater than Min. Requirements!

DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE):

P1	Z2	P2	Slope
Above	Base		
0.000	8	0.331	0.041375
Below	Base		
0.331	23	0.412	0.005400
0.482	42	1.1	0.032526
Sur-	charg		
0.000	0.600	0.001	0.001193
0.001	1.200	0.001	0.001191
0.001	1.800	0.002	0.001185
0.002	2.400	0.003	0.001178
0.003	3.000	0.004	0.001167
0.004	3.600	0.004	0.001154
0.004	4.200	0.005	0.001139
0.005	4.800	0.006	0.001122
	Above 0.000 Below 0.331 0.482 Sur- 0.000 0.001 0.001 0.001 0.002 0.003 0.004 0.004	Above Base 0.000 8 Below Base 0.331 23 0.482 42 Sur- charg 0.000 0.600 0.001 1.200 0.002 2.400 0.003 3.000 0.004 3.600 0.004 4.200	Above Base 0.000 8 0.331 Below Base 0.412 0.331 23 0.412 0.482 42 1.1 Sur- charg 0.000 0.600 0.001 0.001 1.200 0.001 0.001 1.800 0.002 0.002 2.400 0.003 0.003 3.000 0.004 0.004 3.600 0.004 0.004 4.200 0.005

4.800	0.006	5.400	0.006	0.001102	
5.400	0.006	5.400 6.000	0.006	0.001102 0.001080	
6.000	0.000	6.600	0.008	0.001056	
6.600	0.007	7.200	0.008	0.001030	
7.200	0.008	7.800	0.008	0.001003	
7.800	0.008	8.400	0.009		
8.400	0.009	9.000	0.009	0.000974	
9.000	0.009			0.000943	
9.600		9.600	0.010	0.000911	
	0.010	10.20	0.011	0.000878	
10.20	0.011	10.80	0.011	0.000844	
10.80	0.011	11.40	0.012	0.000809	
11.40	0.012	12.00	0.012	0.000773	
12.00	0.012	13.20	0.013	0.000718	
13.20	0.013	14.40	0.014	0.000644	
14.40	0.014	15.60	0.015	0.000569	
15.60	0.015	16.80	0.015	0.000494	
16.80	0.015	18.00	0.016	0.000421	
18.00	0.016	19.20	0.016	0.000351	
19.20	0.016	20.40	0.017	0.000283	
20.40	0.017	21.60	0.017	0.000218	
21.60	0.017	22.80	0.017	0.000157	
22.80	0.017	24.00	0.017	0.000100	
24.00	0.017	26.40	0.017	0.000023	
ASSIVE PRESSURES:					
Z1	P1	Z2	P2	Slope	
*	Below	Base			
12	0.000	23	3.43	0.3118	
23	2.93	42	8.66	0.3016	
CTIVE SPACING:					
No.		Z depth		Spacing	
1		0.00		1.00	
2		8.00		1.00	
PASSIVE SPACING:					
No.		Z depth		Spacing	
1		0.00		1.00	

UNITS: Width, Spacing, Diameter, Length, and Depth - ft; Force - kip; Moment - kip-ft Friction, Bearing, and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in

PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS

Based on pile spacing: 1.0 foot or meter

User Input Pile, pz38: E (ksi)=29000.0, I (in4)/foot=280.8

File: C:\Shoring8\SepWallF2.sh8

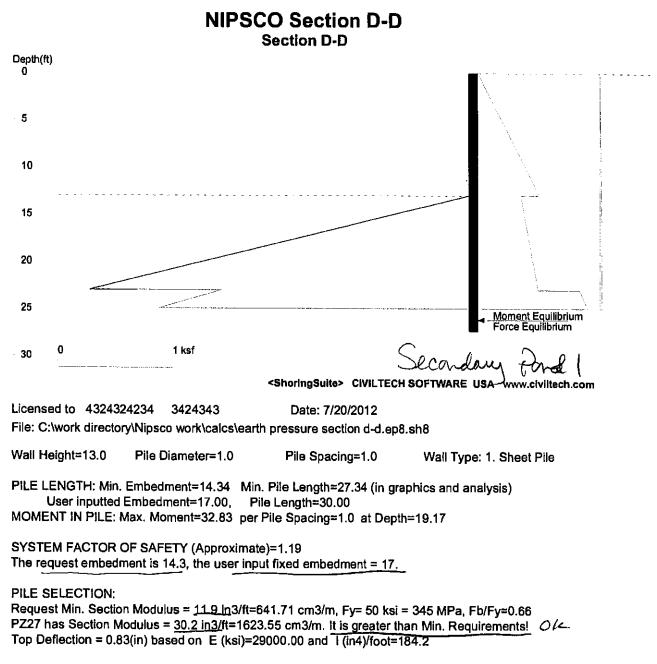
ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com

Licensed to WZ Golder Assocaites

-: . -.

report.out **************** . *********** SHORING WALL CALCULATION SUMMARY The leading shoring design and calculation software Software Copyright by CivilTech Software www.civiltech.com ShoringSuite Software is developed by CivilTech Software, Bellevue, WA, USA. The calculation method is based on the following references: 1. FHWA 98-011, FHWA-RD-97-130, FHWA SA 96-069, FHWA-IF-99-015 2. STEEL SHEET PILING DESIGN MANUAL by Pile Buck Inc., 1987 3. DESIGN MANUAL DM-7 (NAVFAC), Department of the Navy, May 1982 4. TRENCHING AND SHORING MANUAL Revision 12, california Department of Transportation, January 2000 6. EARTH SUPPORT SYSTEM & RETAINING STRUCTURES, Pile Buck Inc. 2002 5. DESIGN OF SHEET PILE WALLS, EM 1110-2-2504, U.S. Army Corps of Engineers, 31 March 1994 7. EARTH RETENTION SYSTEMS HANDBOOK, Alan Macnab, McGraw-Hill. 2002 8. AASHTO HB-17, American Association of State and Highway Transportation Officials, 2 September 2002 ************** UNITS: Width/Spacing/Diameter/Length/Depth - ft, Force - kip, Moment - kip-ft, Friction/Bearing/Pressure - ksf, Pres. Slope - kip/ft3, Deflection - in Licensed to WZ Golder Assocaites Date: 7/27/2012 File: C:\Shoring8\SepWallF2.sh8 Title: NIPSCO secondary ponds Subtitle: Two Wall Case, Step 2: Wall 2 Analysis ******************************** Pile Properties: Steel Strength, Fy: 50 ksi Allowable Fb/Fy: 0.66 Elastic Module, E: 29000.00 Moment of Inertia, I: 280.80 User Input Pile: pz38 50 ksi = 345 mPa * DRIVING PRESSURE (ACTIVE, WATER, & SURCHARGE) * NO. Z1 top Top Pres. Z2 bottom ZZ bottom Bottom Pres. Slope -------------* 1 Above Base ž 0.000 0.000 0.331 0.041375 8 3 Below Base 23 42 4 8 0.331 0.412 0.005400 5 23 0.482 1.1 0.032526 charg 0.600 Sur-0.000 67 0.000 0.001 0.001193 0.600 0.001 0.001 0.002 0.003 1.200 1.800 2.400 3.000 89 0.001191 0.001185 0.001 0.002 1.800 0.001178 0.001167 0.001154 0.001139 10 11 12 13 14 15 0.003 0.004 0.004 0.005 0.004 3.000 3.600 3.600 4.200 0.001122 4.200 4.800 0.006 0.006 0.006 0.007 0.008 5.400 0.006 4.800 5.400 6.000 6.600 16 17 0.007 0.001080 6.600 7.200 7.800 8.400 0.001056 0.001030 0.001003 0.000974 0.008 18 0.008 19 20 21 7.200 0.008 0.009 8.400 9.000 0.010 0.000943 22 23 24 25 9.000 9.600 0.010 0.000911 0.000878 0.000844 0.000809 0.010 10.20 0.011 0.011 0.012 0.012 0.013 0.014 10.20 10.80 0.011 10.80 11.40 12.00 13.20 26 27 11.40 12.00 0.000773 0.000718 0.000644 0.000569 0.012 28 29 14.40 13.20 0.013 14.40 0.014 0.015 0.000494 30 15.60 0.015 16.80 0.015 31 32 33 16.80 0.015 18.00 0.016 18.00 19.20 0.016 19,20 0.016 0.000351 0.016 20.40 0.017 0.000283 34 20.40 0.017 21.60 0.017 0.000218

report.out								
35 36	21.60 22.80	0.017 0.017	22.80 24.00	0.017 0.017	0.000157 0.000100			
37	24.00	0.017	26.40	0.017	0.000023			
38 39 40	26.40 28.80	0.017 0.017	28.80 31.20	0.017 0.017	-0.00006 -0.00013			
40 41	31.20 33.60	0.017 0.016	33.60 36.00	0.016 0.016	-0.00019 -0.00023			
41 42	36,00	0.016	38.40	0.015	-0.00026			
43 44	38.40 40.80	0.015 0.014	40.80 43.20	0.014 0.014	-0.00028 -0.00029			
45 46	43.20 45.60	0.014 0.013	45.60 48.00	0.013	-0.00029 -0.00543			
	IVE PRESSURE *							
NO.	Z1 top	Top Pres.	Z2 bottom	Bottom Pres.	slope			
1 2	* 12	Below 0.000	Base	3.43	0 3119			
3	23	2.93	23 42	8.66	0.3118 0.3016			
' ACTI	VE SPACE * Z depth							
		Spacing						
1 2	0.00 8.00	1.00 1.00						
* PASS	IVE SPACE *							
NO.	Z depth	Spacing						
1	0.00	1.00						
piles Top * CAL T	are per pile. Pressures star CULATE REQUEST he Request Embe	t at depth ≖ 0	.00		are per one foot or meter; Soldier			
		CANTILEVE	R CASE d on fixed embeda					
Note:		•		•	embedment. Use calculated embedment			
	for graphics a	nd analysis.						
	== D2=8.0	-						
	D3=25. D1 - TOP DEPT							
D2 - EXCAVATION BASE D3 - PILE TIP (20% increased, see EMBEDMENT Notes below)								
			=22.70 WITH EMB 25.64 WITH EMBE					
reach A B	force equilibri Balance Force=10	ium.).89 is develope		70 to depth=25.64	ncrease the embedment by 20% to			
*****	******	**************	ULTS*********	****	****			
Based % to r	reach force équ	Manual, first ca ilibrium. ment equilibrium		t for moment equi	librium, then increased by 20 to 40			
ine en	weament ion mo	nent equilibriu		ne 7				

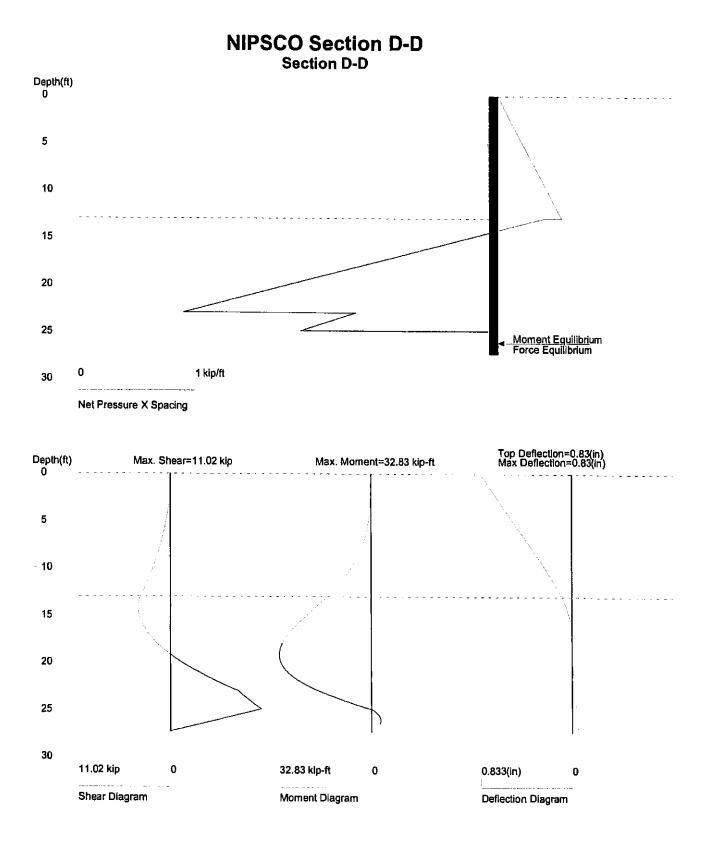

Page 2

report.out * The 20% increased embedment for force equilibrium is 17.64 (Used by Program) The 30% increased embedment for force equilibrium is 19.11 The 40% increased embedment for force equilibrium is 20.58 Based on AASHTO 2002 Standard Specifications, first calculate embedment for moment equilibrium, then add safety factor of 30% for temporary shoring; add safety factor of 50% for permanent shoring. The embedment for moment equilibrium is 14.70 Add 30% embedment for temporary shoring is 19.11 Add 50% embedment for permanent shoring is 22.04 * BASED ON USS DESIGN MANUAL (20% increased), PROGRAM CALCULATED MINIMUM EMBEDMENT = 17.64 TOTAL MINIMUM PILE LENGTH = 25.64* MOMENT IN PILE (per pile spacing)* Pile Spacing: sheet piles are one foot or one meter; soldier piles are one pile. Overall Maximum Moment = 24.15 at 17.63 Maximum Shear = 10.74Moment and Shear are per pile spacing: 1.0 foot or meter * VERTICAL LOADING * Vertical Loading from Braces = 0.00 Vertical Loading from External Load = 0.00 Total Vertical Loading = 0.00 Overall Maximum Moment = 24.15 at 17.63 The pile selection is based on the magnitude of the moment only. Axial force is neglected. Request Min. Section Modulus = 8.78 in3/ft = 472.17 cm3/m, Fy= 50 ksi = 345 MPa. Fb/Fy=0.66 PZ38 has been found in Sheet Pile list! PZ38(English): Sx= 46.80 in3/ft Ix= 280.80 in4/ft Weight= 38.00 lb/ft PZ38(Metrics): Sx= 2515.97 cm3/m Ix= 383.46 x100cm4/m Weight= 0.555 k Weight= 0.555 kN/m * Note: All the pile dimensions are in English Units per one foot width. PZ38 is capable to support the shoring! I (in4)/foot=280.80 Top deflection = 0.356(in) Max. deflection = 0.356(in)*******PRESSURE, LOAD, SHEAR, MOMENT, AND DEFLECTION V.S. DEPTH********** The shear and moment are per single soldier pile (secant/tangent pile) or one foot of sheet pile (concrete wall). The deflection is based on users input pile below: User Input Pile: pz38 Elastic Module, E (ksi)= 29000.00 Moment of Inertia, I (in4)/foot= 280.8 PRESS. - Sum of all pressures (Net pressure). (Active) direction is positive LOAD - Liner load (force per unit depth) = Pressures multiply by acting space PRESS. MOMENT DEFLECTION kip-ft in NO DEPTH LOAD SHEAR ksf kip/ft kip ft 0.00 1 0.00 0.00 0.00 0.00 0.356 0.00 0.00 0.00 0.01 0.01 23 0.00 0.00 0.00 0.355 0.00 0.06 0.00 0.00 0.354 4 0.10 0.00 0.00 0.00 0.353 0.352 0.351 0.350 0.349 5 0.13 0.16 0.00 0.01 0.00 6 7 0.19 0.22 0.01 0.01 Ō.00 8 0.01 0.01 0.00 0.00 0.00 0.348 0.347 9 0.26 0.01 0.01 0.00 0.29 10 0.01 0.01 0.00 11 12 13 0.00 0.01 0.01 0.00 0.346 0.02 0.02 0.02 0.35 0.00 0.345 0.00 0.00 0.00 0.344 14 15 0.02 0.00 0.343 0.42 0.02 0.45 0.02 0.02 0.00 0.01 0.01 16 0.48 0.02 0.00 0.341 0.00 0.00 0.340 0.339 17 0.51 0.02 0.51 0.55 0.58 0.61 0.64 0.67 0.71 18 0.02 0.02 19 20 0.02 0.01 0.02 0.00 0.338 0.00 0.00 0.00 0.03 0.03 0.336 0.03 21 0.03 0.335 0.334 0.333 0.332 0.331 0.01 0.01 22 0.03 0.00 23 0.03 0.03 0.01 24 0.03 0.03 0.01 25 0.77 0.03 0.03 0.01 0.00 26 0.80 0.03 0.03 0.01 0.00 0.330

Page 3

278901233333334444444444445555555555555566666666	0.0.0.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05	0.044 0.040 0.00000000	0.022 0.022 0.022 0.022 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	report. 0.001 0.011 0.001 0.011 0.001 0.010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000	9876544321098765432109876543210098765432299109887543227776533224222222222222222222222222222222222
--	---	--	---	---	---	---

Golder	SUBJECT	Section 1		nd (-Se	condary
Associates	Job No. Ref.	Made Checi Revie	ked JRR	Date Jo : Sheet	July 12
TITL			J= 21.8°		
		1:2.5	d= 21.0	B=90"	wall angle
			Veducin Dens		
13'	P227		Ka: 0.37	6 Veff=	
	··		Pa= 13'. 0.37	6.110-> 5	38psf→0.
6= 10°	⊻ 13'		Dense Sa Jost= 120 Kq = 0.2 0.372 Ksf	nd \$= 40	2.
6= 10° ××××		R.	Kq = 0.2	6 8ef . 57	h6pcf
117'	23'	Paz =	10' 57.6.	076 -> 15	$opsf \rightarrow 0.55$
Kp= 4.14		cl	ay calisf	- use p	30°
			Y-	Stopet Ver	- 73. pf
		Pa	-> (13'.11D.	0.44)+ (10	1.576.1.44)
		1	0.8010 2-> 7'.7	st 36.0.44-	> 1.11 KSF
Pr= 10'. 6.90	· 47,6pct ->	3,28 kst	H - 1		
Paz -> 0' Das -> 2	1345F + 1.971	est -> 4.1Est			
	1345F + 1.971	cs(-> 4.1Est			
	1345F + 1.971	cs(→ 4.1Est			
	1345F + 1.971	cs(→ 4.1Est			
	13KSF + 1.971	cs(→ 4.1Est			
	1345F + 1.971				
	13KSF + 1.97				
	13KSF + 1.97				



DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE):

· Z1	P1	Z2	P2	Slope	
 *	Above	Base		*,*,,	· · · · · · · · · · · · · · · · · · ·
0	0.000	13	0.538	0.041385	
+	below	base			
13	0.372	23	0.522	0.015000	
23	0.88	30	1.11	0.032857	
+	Sur-	charge			
0.000	0.000	0.650	0.001	0.001193	
0.650	0.001	1.300	0.002	0.001190	
1.300	0.002	1.950	0.002	0.001184	
1.950	0.002	2.600	0.003	0.001175	
2.600	0.003	3.250	0.004	0.001163	
3.250	0.004	3.900	0.005	0.001148	
3.900	0.005	4.550	0.005	0.001130	
4.550	0.005	5.200	0.006	0.001110	

5.200	0.006	5.850	0.007	0.001087	
5.850	0.007	6.500	0.007	0.001061	
6.500	0.007	7.150	0.008	0.001034	
7.150	0.008	7.800	0.009	0.001004	
7.800	0.009	8.450	0.009	0.000972	
8.450	0.009	9.100	0.010	0.000939	
9.100	0.010	9.750	0.011	0.000904	
9.750	0.011	10.400	0.011	0.000868	
10.400	0.011	11.050	0.012	0.000831	
11.050	0.012	11.700	0.012	0.000792	
11.700	0.012	12.350	0.012	0.000753	
12.350	0.013	13.000	0.013	0.000713	
13.000	0.013	14.300	0.014	0.000653	
14.300	0.014	15.600	0.015	0.000572	
15.600	0.015	16,900	0.015	0.000491	
16.900	0.015	18.200	0.016	0.000412	
18.200	0.016	19.500	0.016	0.000336	
19.500	0.016	20.800	0.017	0.000263	
20.800	0.017	22.100	0.017	0.000195	
22.100	0.017	23.400	0.017	0.000130	
23.400	0.017	24.700	0.017	0.000071	
24.700	0.017	26.000	0.017	0.000017	
26.000	0.017	28.600	0.017	-0.000055	
PASSIVE PRESSURES:					
Z1	P 1	Z2	P2	Slope	
*	Below	Base	· -		
13.000	0.000	23	3.28	0.3280	
23	2.13	30	4.1	0.2814	
ACTIVE SPACING:					
No.		Z depth		Spacing	
1		0.00		1.00	
2		13.00		1.00	
PASSIVE SPACING:		T al a sa dh			
No.		Z depth 0.00		Spacing	

UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in

PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS

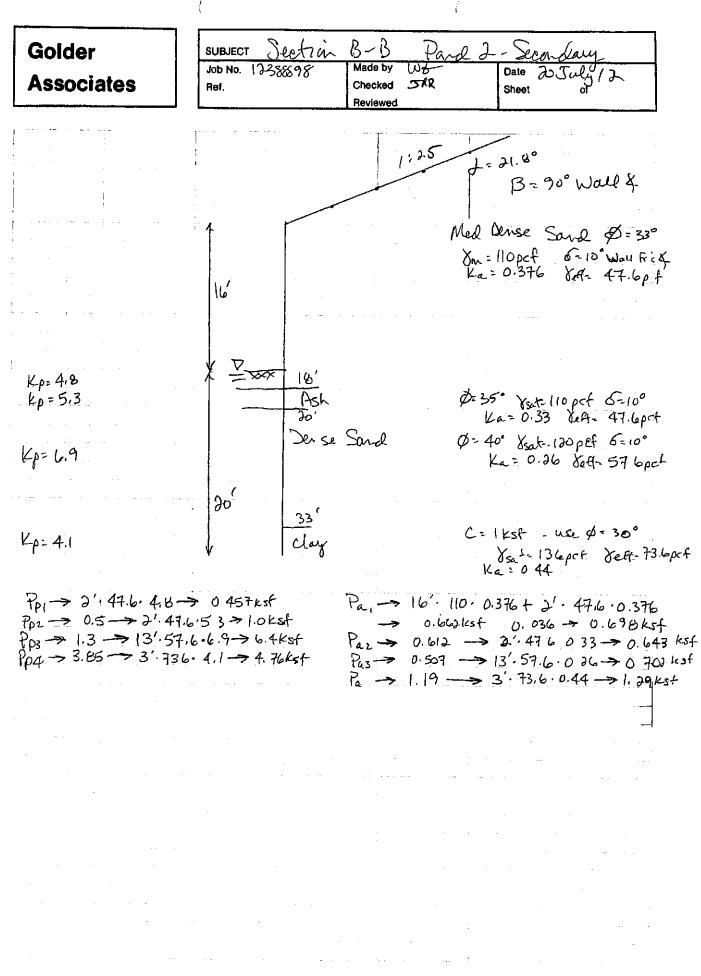
Based on pile spacing: 1.0 foot or meter

User Input Pile, PZ27: E (ksi)=29000.0, I (in4)/foot=184.2

File: C:\work directory/Nipsco work\calcs\earth pressure section d-d.ep8.sh8

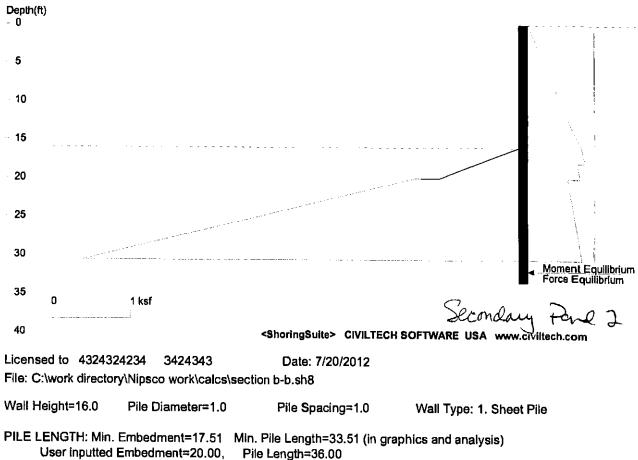
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com

Licensed to 4324324234 3424343


report.out ********* . ******* SHORING WALL CALCULATION SUMMARY The leading shoring design and calculation software Software Copyright by CivilTech Software www.civiltech.com ShoringSuite Software is developed by CivilTech Software, Bellevue, WA, USA. The calculation method is based on the following references: 1. FHWA 98-011, FHWA-RD-97-130, FHWA SA 96-069, FHWA-IF-99-015 2. STEEL SHEET PILING DESIGN MANUAL by Pile Buck Inc., 1987 3. DESIGN MANUAL DM-7 (NAVFAC), Department of the Navy, May 1982 4. TRENCHING ANO SHORING MANUAL Revision 12, California Department of Transportation, January 2000 6. EARTH SUPPORT SYSTEM & RETAINING STRUCTURES, Pile Buck Inc. 2002 5. DESIGN OF SHEET PILE WALLS, EM 1110-2-2504, U.S. Army Corps of Engineers, 31 March 1994 7. EARTH RETENTION SYSTEMS HANDBOOK, Alan Macnab, McGraw-Hill. 2002 8. AASHTO HB-17, American Association of State and Highway Transportation Officials, 2 September 2002 ****** UNITS: Width/Spacing/Diameter/Length/Depth - ft, Force - kip, Moment - kip-ft, Friction/Bearing/Pressure - ksf, Pres. Slope - kip/ft3, Deflection - in Licensed to 4324324234 3424343 Date: 7/20/2012 File: C:\work directory\Nipsco work\calcs\earth pressure section d-d.ep8.sh8 Title: NIPSCO Section D-D Subtitle: Section D-D *********INPUT DATA**************************** **** * DRIVING PRESSURE (ACTIVE, WATER, & SURCHARGE) * No. 21 top Top Pres. Z2 bottom ZZ bottom Bottom Pres. Slope **--**---------12 * Above Base 0 0.000 13 0.538 0.041385 base 3 × below 13 4 0.372 23 0.522 0.015000 23 * 5 0.88 30 1.11 0.032857 Sur-0.000 charg 0.650 67 0.000 0.001 0.001193 0.001 1.300 1.950 2.600 3.250 3.900 0.002 0.002 0.003 0.004 8 0.650 0.001190 0.001184 1.950 0.002 0.001175 0.001163 0.001148 0.001130 10 11 12 13 14 15 16 0.003 3.250 0.004 0.005 0.005 4.550 3.900 0.005 4.550 5.200 5.850 0.001110 0.006 0.006 5.850 0.007 6.500 7.150 7.800 0.001061 0.001034 0.001004 0.007 6.500 0.007 17 0.008 18 0.009 0.009 0.010 8.450 9.100 19 7.800 0.009 0.000972 20 21 22 23 8.450 0.009 0.000904 9.100 0.011 0.011 0.010 9.750 9.750 10.40 0.011 10.40 10.40 11.05 11.70 12.35 13.00 14.30 15.60 0.000868 0.000831 0.000792 0.000753 0.000713 0.000653 0.000572 0.000491 0.011 0.012 24 25 26 27 28 11.05 0.012 0.012 11.70 12.35 0.013 0.013 0.013 0.013 13.00 14.30 0.014 0.015 16.90 18.20 19.50 20.80 29 30 31 32 15.60 0.015 0.015 16.90 18.20 19.50 0.000412 0.000336 0.000263 0.015 0.016 0.016 0.016 0.017 33 20.80 0.017 22.10 23.40 0.017 0.000195 34 22.10 0.017 0.017 0.000130

			report.	out	
35 36	23.40 24.70	0.017 0.017	24.70 26.00	0.017 0.017	0.000071 0.000017
37	26.00	0.017	28.60	0.017	-0.00005
38 39	28.60 31.20	0.017 0.017	31.20 33.80	0.017 0.016	-0.00013 -0.00019
40 41	33.80 36.40	0.016 0.016	36.40 39.00	0.016 0.015	-0.00023 -0.00026
42 43	39.00	0.015	41.60	0.014	-0.00028
44	41.60 44.20	0.014 0.013	44.20 46.80	0.013 0.013	-0.00029 -0.00029
45 46	46.80 49.40	0.013 0.012	49.40 52.00	0.012 0.000	-0.00029 -0.00458

	IVE PRESSURE *	Top Bros	7) battom	Botton Droc	Slope
		Top Pres.		BULLUM Pres.	510pe
1 2	* 13.00	Below 0.000	Base 23 30	3.28 4.1	0.3280
3	23	2.13	30	4.1	0.2814
* ACTT	/E SPACE *				
NO.	Z depth	Spacing			
1	0.00	1.00 1.00			
2	13.00	1.00			
	IVE SPACE *				
	Z depth	Spacing			
1	0.00	1.00			
*For T	eback: Input1	= Diameter: Inp	ut2 = Bond Stren	 ath	
*For P	late: Input1 =	= Diameter; Inp Diameter; Input = Horz. Width;	2 = Allowable Pr	essure	10 - 0
	cauman. Imputi	- HUIZ, WILLIN,	Inputz = Allowab	Te Pressure, Ang	
*****	*****	*************CALCUL	ATION**********	*****	****
The	calculated mome	nt and shear are	per pile spacin	o. Sheet piles	are per one foot or meter; Soldier
	are per pile.			p p	
тор	Pressures start	at depth $=$ 0.0	0		
* CAL	CULATE REQUEST E	MBEDMENT *			
TI TI	ne Request Embed he user input fi	ment, Yend = 14. xed embedment =	34 17.0		
		CANTILEVER			
** App	roximate Factor	of Safety based	on fixed embedme	nt, FS = 1.19	
			hich is deeper t	han calculated e	mbedment. Use calculated embedment
= 14.3	for graphics an	d analysis.			
	D1=0.00	I			
	== D2=13.0	0			
	D3=27.3	4			
	D1 - TOP DEPTH				
	D2 - EXCAVATIO D3 - PILE TIP	(20% increased,	See EMBEDMENT NO	otes below)	
мом	ENT BALANCE: M=0	.00 AT DEPTH=2	4.95 WITH EMBED	MENT OF 11.95	
	CE BALANCE: F=0.		.34 WITH EMBEDN		
Тһе	program calcula	tes an embedment	for moment equi	ilibrium, then in	ncrease the embedment by 20% to
AB	force equilibriu alance Force=11.	08 is developed	from depth=24.95	5 to depth=27.34	
Tot	al Passive Press	ure = Total Acti	ive Pressure,	OK!	
*****	******	***********	TC++++++++++++++	****	***
		KE JUL			
Based	DMENT Notes * on USS Design Ma	nnual, first cald	culate embedment	for moment equi	librium, then increased by 20 to 40
% to r	each force equil	libriúm. ent equilibrium i			
			Dane	. 7	


report.out * The 20% increased embedment for force equilibrium is 14.34 (Used by Program) The 30% increased embedment for force equilibrium is 15.54 The 40% increased embedment for force equilibrium is 16.74 Based on AASHTO 2002 Standard Specifications, first calculate embedment for moment equilibrium, then add safety factor of 30% for temporary shoring; add safety factor of 50% for permanent shoring. The embedment for moment equilibrium is 11.95 Add 30% embedment for temporary shoring is 15.54 Add 50% embedment for permanent shoring is 17.93 * BASED ON USS DESIGN MANUAL (20% increased), PROGRAM CALCULATED MINIMUM EMBEDMENT = 14.34 TOTAL MINIMUM PILE LENGTH = 27.34* MOMENT IN PILE (per pile spacing)* Pile spacing: sheet piles are one foot or one meter; soldier piles are one pile. overall Maximum Moment = 32.83 at 19.17 Maximum Shear = 11.02 Moment and Shear are per pile spacing: 1.0 foot or meter * VERTICAL LOADING * Vertical Loading from Braces = 0.00 Vertical Loading from External Load = 0.00 Total Vertical Loading = 0.00 Overall Maximum Moment = 32.83 at 19.17 The pile selection is based on the magnitude of the moment only. Axial force is neglected. Request Min. Section Modulus = 11.94 in3/ft = 641.71 cm3/m, Fy= 50 ksi = 345 MPa, Fb/Fy=0.66 P227 has been found in Sheet Pile list! P227(English): Sx= 30.20 in3/ft Ix= 184.20 in4/ft Weight= 27.00 lb/ft P227(Metrics): Sx= 1623.55 cm3/m Ix= 251.54 x100cm4/m Weight= 0.394 k Weight= 0.394 kN/m * Note: All the pile dimensions are in English Units per one foot width. PZ27 is capable to support the shoring! I (in4)/foot=184.20 Top deflection = 0.833(in) Max. deflection = 0.833(in) ********PRESSURE, LOAD, SHEAR, MOMENT, AND DEFLECTION V.S. DEPTH********* The shear and moment are per single soldier pile (secant/tangent pile) or one foot of sheet pile (concrete wall). The deflection is based on users input pile below: User Input Pile: PZ27 Elastic Module, E (ksi)= 29000.00 Moment of Inertia, I (in4)/foot= 184.2 PRESS. - Sum of all pressures (Net pressure). (Active) direction is positive LOAD - Liner load (force per unit depth) = Pressures multiply by acting space NO DEPTH PRESS. LOAD SHEAR MOMENT DEFLECTION kip/ft kip ft ksf kip-ft in 0.00 ${}^{0.00}_{0.00}_{0.00}_{0.00}$ 0.00 1 0.00 0.00 0.833 23 0.00 0.00 0.831 0.00 0.00 0.07 0.00 0.829 4 0.10 0.00 0.14 0.17 0.00 0.01 5 0.01 ŏ.ŏŏ 0.825 67 0.01 0.01 0.00 0.823 0.21 0.24 0.27 0.01 0.01 0.00 0.00 0.821 0.00 0.00 0.00 0.00 8 0.01 0.01 0.01 0.00 0.819 ğ 0.01 0.00 0.817 0.01 0.31 10 0.01 0.00 0.815 0.813 0.811 11 0.01 īž 0.38 0.02 0.02 0.00 0.00 0.38 0.41 0.45 0.48 0.51 0.55 0.58 0.58 0.00 13 14 15 16 17 18 0.02 0.02 0.00 0.809 0.02 0.02 0.00 0.807 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.804 0.01 0.02 0.00 0.802 0.800 0.798 0.796 0.794 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.01 19 20 21 22 23 24 25 0.03 0.03 0.65 0.03 0.03 0.01 0.68 0.03 0.03 0.01 ō.ōō 0.792 0.72 0.75 0.79 0.82 0.03 0.03 0.01 0.00 0.790 0.03 0.01 0.00 0.788 0.03 0.03 0.01 0.00 0.786 0.04 0.01 0.00 0.784 26 0.04 0.86 0.782 0.00

Page 3

228901233336789012344567890123455	0.92 0.99 1.06 1.12 1.22 1.27 1.334 1.44 1.554 1.64 1.758 1.64 1.758 1.858	0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05	0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06	0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.066 0.07 0.0	report. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	0.780 0.778 0.776 0.774 0.769 0.765 0.763 0.765 0.763 0.765 0.763 0.759 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.749 0.747 0.745 0.749 0.741 0.738 0.734 0.738 0.734 0.732 0.726 0.726 0.726
44 45 46 47 48 50 51 52 53 54	1.47 1.51 1.54 1.61 1.64 1.68 1.71 1.75 1.78 1.81	0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07	0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07	0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.07 0.07 0.07	0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03	$\begin{array}{c} 0.747\\ 0.743\\ 0.738\\ 0.7336\\ 0.7336\\ 0.7336\\ 0.7336\\ 0.7330\\ 0.7730\\ 0.7730\\ 0.7730\\ 0.7730\\ 0.7722\\ 0.7716\\ 0.7710\\ 0.7710\\ 0.7709\\ 0.7700\\ 0.7709\\ 0.7709\\ 0.7709\\ 0.7709\\ 0.7709\\ 0.7700\\ 0.7709\\ 0.7700\\ 0.7709\\ 0.7709\\ 0.7700\\ 0.7709\\ 0.7700\\ 0.7709\\ 0.7700\\ 0.$

NIPSCO secondary ponds Section B - B

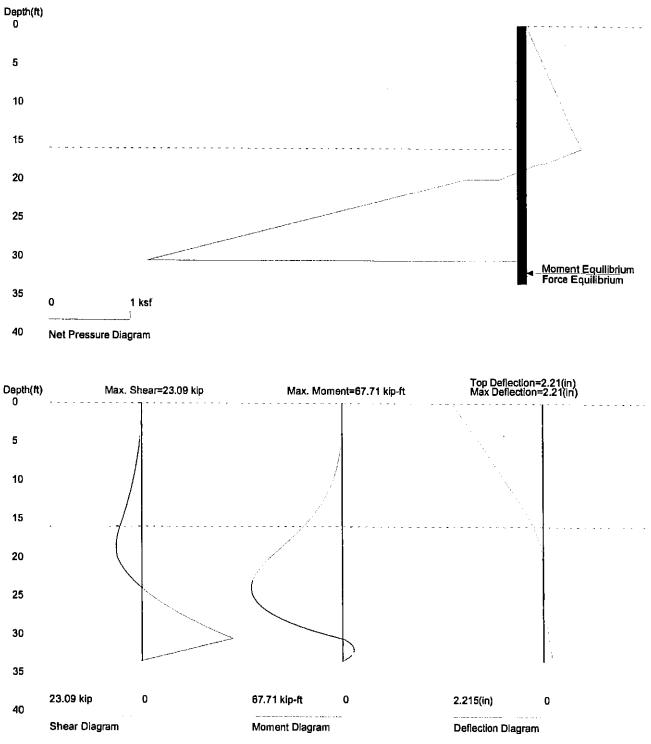
MOMENT IN PILE: Max. Moment=67.71 per Pile Spacing=1.0 at Depth=24.01

SYSTEM FACTOR OF SAFETY (Approximate)=1.14

The request embedment is 17.5, the user input fixed embedment = 20.

PILE SELECTION:

Request Min. Section Modulus = <u>24.6 in3/ft</u>=1323.65 cm3/m, Fy= 50 ksi = 345 MPa, Fb/Fy=0.66 <u>PZ27</u> has Section Modulus = <u>30.2 in3/ft</u>=1623.55 cm3/m. It is <u>greater than Min. Requirements</u> Top Deflection = 2.21(in) based on E (ksi)=29000.00 and I (in4)/foot=184.2


DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE):

 Z1	P1	Z2	P2	Slope	
*	Above	Base		<u></u>	
0.000	0.000	16	0.662	0.041375	
+	below	base			
16	0.662	18	0.698	0.018000	
18	0.612	20	0.643	0.015500	
20	0.507	33	0.702	0.015000	
33	1.19	36	1.29	0.033333	
*	Sur-	charge			
0.000	0.000	0.800	0.001	0.001193	
0.800	0.001	1.600	0.002	0.001188	
1.600	0.002	2.400	0.003	0.001179	
2.400	0.003	3.200	0.004	0.001165	
3.200	0.004	4.000	0.005	0.001147	
4.000	0.005	4.800	0.006	0.001125	

	1	• ••	0.00		1.00
PASSIVE S	PACING: No.		Z depth		Spacing
			10.00		1.00
	2		16.00		1.00 1.00
	<u>No.</u>		Z depth 0.00	· · · ·	Spacing
CTIVE SP			7 al4b		
					2.0000
	33	3.85	36	4.76	0.3033
	20.000	1.3	33	6.4	0.3923
	18.000	0.5	20.000	1.0	0.2500
	16.000	0.000	18.000	0.5	0.2500
	•	Below	Base		-1000
	Z1	P1	Z2	P2	Slope
	RESSURES:				
	32.000	0.017	35.200	0.016	-0.000213
	30.400	0.017	32.000	0.017	-0.000166
	28.800	0.017	30.400	0.017	-0.000126
	27.200	0.017	28.800	0.017	-0.000078
	25.600	0.017	27.200	0.017	-0.000024
	24.000	0.017	25.600	0.017	0.000039
	22.400	0.017	24.000	0.017	0.000109
	20.800	0.017	22.400	0.017	0.000187
	19.200	0.016	20.800	0.017	0.000272
	17.600	0.016	19.200	0.016	0.000362
	16.000	0.015	17.600	0.016	0.000458
	15.200	0.015	16.000	0.015	0.000531
	14.400	0.014	15.200	0.015	0.000581
	13.600	0.014	14.400	0.014	0.000631
	12.800	0.013	13.600	0.014	0.000681
	12.000	0.012	12.800	0.013	0.000730
	11.200	0.012	12.000	0.012	0.000779
	10.400	0.010	11.200	0.012	0.000826
	9.600	0.010	10.400	0.010	0.000872
	8.800	0.009	9.600	0.010	0.000959 0.000917
	8.000	0.008	8.800	0.009 0.010	0.000998
	7.200	0.007 0.008	7.200 8.000	0.008	0.001035
	5.600 6.400	0.006	6.400	0.007	0.001068
	E 200	A AAA	0 400	A A A T	

UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in

NIPSCO secondary ponds Section B - B

PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS

Based on pite spacing: 1.0 foot or meter User Input Pile, pz27: E (ksi)=29000.0, I (in4)/foot=184.2

File: C:\work directory\Nipsco work\calcs\section b-b.sh8

<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com

Licensed to 4324324234 3424343

report.out **** . *********** SHORING WALL CALCULATION SUMMARY The leading shoring design and calculation software Software Copyright by CivilTech Software www.civiltech.com ShoringSuite Software is developed by CivilTech Software, Bellevue, WA, USA. The calculation method is based on the following references: 1. FHWA 98-011, FHWA-RD-97-130, FHWA SA 96-069, FHWA-IF-99-015 2. STEEL SHEET PILING DESIGN MANUAL by Pile Buck Inc., 1987 3. DESIGN MANUAL DM-7 (NAVFAC), Department of the Navy, May 1982 4. TRENCHING AND SHORING MANUAL Revision 12, California Department of Transportation, January 2000 6. EARTH SUPPORT SYSTEM & RETAINING STRUCTURES, Pile Buck Inc. 2002 5. DESIGN OF SHEET PILE WALLS, EM 1110-2-2504, U.S. Army Corps of Engineers, 31 March 1994 7. EARTH RETENTION SYSTEMS HANDBOOK, Alan Macnab, McGraw-Hill. 2002 8. AASHTO HB-17. American Association of State and Highway Transportation Officials. 2 Sept 8. AASHTO HB-17. American Association of State and Highway Transportation Officials. 2 Sept 8. AASHTO HB-17. American Association of State and Highway Transportation Officials. 2 Sept 8. AASHTO HB-17. American Association of State and Highway Transportation Officials. 2 Sept 8. AASHTO HB-17. American Association of State and Highway Transportation Officials. 2 Sept 8. AASHTO HB-17. American Association of State and Highway Transportation Officials. 2 Sept 8. AASHTO HB-17. American Association AMERICAN AMER ************* ****** 8. AASHTO HB-17, American Association of State and Highway Transportation Officials, 2 September 2002 UNITS: Width/Spacing/Diameter/Length/Depth - ft, Force - kip, Moment - kip-ft, Friction/Bearing/Pressure - ksf, Pres. Slope - kip/ft3, Deflection - in Licensed to 4324324234 3424343 Date: 7/20/2012 File: C:\work directory\Nipsco work\calcs\section b-b.shB Title: NIPSCO secondary ponds Subtitle: Section B - B steel Strength, Fy: 50 ksi = Allowable Fb/Fy: 0.66 Elastic Module, E: 29000.00 Moment of Inertia, I: 184.20 User Input Pile: pz27 50 ksi = 345 MPa * DRIVING PRESSURE (ACTIVE, WATER, & SURCHARGE) * No. 21 top Top Pres. 22 bottom Bottom Pres. slope 1 2 * Above Base 0.000 0.000 16 0.662 0.041375 34 below base 16 0.662 0.612 18 0.698 0.018000 5 18 20 0.643 0.015500 67 20 33 0.015000 0.507 33 0.702 1.19 1.29 36 0.033333 8 9 Surcharge 0.800 0.000 0.001193 0.001188 0.001179 0.000 0.001 0.002 10 0.800 0.001 1.600 2.400 11 12 13 14 15 16 17 18 1.600 0.002 0.001165 0.001147 0.001125 2.400 0.003 0.004 3.200 4.000 0.004 0.005 4.800 5.600 6.400 7.200 8.000 4.000 0.005 0.006 4.800 0.006 0.001098 0.001098 0.001068 0.001035 0.000998 0.006 6.400 7.200 8.000 0.007 0.008 0.009 8.800 19 0.000959 0.009 0.010 20 21 22 23 8.800 0.010 0.010 0.00091/ 0.000872 0.000826 0.000779 0.000730 0.000681 0.000681 0.000581 0.010 10.400 0.011 11.200 12.000 12.800 13.600 0.011 0.012 0.012 10.400 11.200 24 0.012 12.000 12.800 0.013 26 27 14.400 13.600 0.014 0.014 14.400 0.015 0.014 28 29 0.000531 0.015 16.000 16.000 17.600 19.200 20.800 0.015 17.600 0.016 30 31 32 0.016 0.016 19.200 0.000362 20.800 22.400 24.000 0.016 0.000272 0.017 0.000187 22.400 33 0.017 0.017 0.000109 24.000 0.017 25.600 0.017

			report					
35 36	25.600 27.200	0.017 0.017	27.200 28.800	0.017 0.017	-0.000024 -0.000078			
37 38	28.800 30.400	0.017 0.017	30.400 32.000	0.017 0.017	-0.000126 -0.000166			
39 40	32.000 35.200	0.017 0.016 0.015	35.200 38.400 41.600	0.016 0.015 0.014	-0.000213 -0.000257 -0.000283			
41	38.400 41.600	0.014	44.800	0.013	-0.000293 -0.000293			
41 42 43 44 45	44.800 48.000 51.200	0.013 0.012 0.011	48.000 51.200 54.400	0.012 0.011 0.011	-0.000286			
46 47	54.400 57.600	0.011 0.010	57.600 60.800	0.010 0.009	-0.000274 -0.000258 -0.000241			
48	60.800	ŏ.ŏōÿ	64.000	0.000	-0.002794			
* PASS No.		-	Z2 bottom	Bottom Pres.	Slope			
1 2 3	* 16.000 18.000 20.000	Below	Base 18 000	0.5	0.2500			
3	18.000	0.5	Base 18.000 20.000 33 36	6.4	0.2500 0.2500 0.3923			
5	33	3.85	36	4.76	0.3033			
* ACTI	VE SPACE *							
	Z depth							
	0.00 16.00	1.00 1.00						
	IVE SPACE *							
NO.	Z depth	Spacing						
1	0.00	1.00						
*FOr F *For C		Diameter; Input = Horz. Width;	t2 = Allowable P Input2 = Allowa	ressure ble Pressure; Ang				
The				**************************************	are per one foot or meter; Soldier			
тор	Pressures start	t at depth = 0.0	00					
٦	CULATE REQUEST E The Request Embed The user input fi	iment, Yend = 17	.51 20.0					
		CANTILEVER						
Note:	proximate Factor	-			embedment. Use calculated embedment			
	s for graphics an	nd analysis.						
	D1=0.00	U						
	== D2=16.0	DO						
	D3=33.	51						
	D1 - TOP DEPTH D2 - EXCAVATION BASE D3 - PILE TIP (20% increased, see EMBEDMENT Notes below)							
	MENT BALANCE: M= RCE BALANCE: F=0							
			t for moment equ	uilibrium, then i	increase the embedment by 20% to			
Α	force equilibri Balance Force=23 tal Passive Pr es	.38 is developed	from depth≈30. ive Pressure,	59 to depth=33.51 OK!	L			
****	***************************************							

Page 2

* EMBEDMENT Notes *
Based on USS Design Manual, first calculate embedment for moment equilibrium, then increased by 20 to 40
% to reach force equilibrium is 14.59
* The 20% increased embedment for force equilibrium is 17.51 (Used by Program)
The 30% increased embedment for force equilibrium is 20.43
Based on AASNTO 2002 Standard Specifications, first calculate embedment for moment equilibrium, then add
Safety factor of 30% for temporary shoring; add safety factor of 50% for permanent shoring.
Add 30% embedment for temporary shoring is 13.93
Add 50% embedment for permanent shoring is 21.89
* BASED ON USS DESIGN MANUAL (20% increased), PROGRAM CALCULATED MINIMUM EMBEDMENT = 17.51
TOTAL MINIMUM PILE LENGTH = 33.51
* MOMENT IN PILE (per pile spacing)*
Pile Spacing: Sheet piles are one foot or one meter; soldier piles are one pile.
Overall Maximum Moment = 67.71 at 24.01
Maximum Shear = 23.09
* VERTICAL LOADING *
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Vertical Loading from Braces = 0.00
Ver

•

At Golder Associates we strive to be the most respected global group cf companies specializing in ground engineering and environmental services. Employee owned since our formation in 1980, we have created a unique culture with pride in ownership, resulting in long-term organizational stability. Golder professionals take the time to build an understancing of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating 'rom offices located throughout Africa, Asia, Australasia, Europe, North America and South America
 Africa
 + 27 11 254 4800

 Asia
 + 852 2562 3658

 Australasia
 + 61 3 8862 3500

 Europe
 + 356 21 42 30 20

 North America
 + 1 800 275 3281

 South America
 + 55 21 3095 9500

solutions@golder.com www.gdder.com

Golder Associates Inc. 15851 South US 27, Suite 50 Lansing, MI 48906 USA Tel: (517) 482-2262 Fax: (517) 482-2460

Appendix G

References

NIPSCO –MICHIGAN CITY GENERATING STATION REFERENCE LIST

- NPDES Permit No. IN0000116 issued to NIPSCO Michigan City Generating Station, dated March 15, 2011.
- 2. October 4, 2010 response by NIPSCO to EPA (5306P) Request for Information regarding the Michigan City Generating Station.
- May 8, 2012 memorandum from EPA to GZA regarding EPA Comments on Northern Indiana Pub Serv Co

 Michigan City Generating Station, Michigan City, IN, Round 10 Draft Assessment Report
- July 31, 2012 response by NIPSCO to EPA regarding NIPSCO's review of the March 29, 2012 Draft Report.
- 5. August 27, 2012 Technical Memorandum and Calculations by Golder Associates, Inc. entitled *FINAL REPORT – SUMMARY OF HYDRAULIC EVALUATION OF IMPOUNDMENTS* for the Michigan City Generating Station.
- 6. August 27, 2012 Technical Report by Golder Associates, Inc. entitled 2012 GEOTECHNICAL INVESTIGATION AND EMBANKMENT STABILITY ANALYSES, NIPSCO Michigan City Generating Station, Michigan City, Indiana.