DRAFT

Specific Site Assessment for Coal Combustion Waste Impoundments at Intermountain Power Station
Delta, Utah

Submitted to:
U.S. Environmental Protection Agency
Office of Resource Conservation and Recovery
5304P
1200 Pennsylvania Avenue NW
Washington, DC 20460

Submitted by:
GEI Consultants, Inc.
4601 DTC Blvd., Suite 900
Denver, CO 80237

December 2010
Project 092884

Stephen G. Brown, P.E.
Senior Project Engineer
Table of Contents

1.0 **Introduction** 1
 1.1 Purpose 1
 1.2 Scope of Work 1
 1.3 Authorization 2
 1.4 Project Personnel 2
 1.5 Limitation of Liability 2
 1.6 Project Datum 2
 1.7 Prior Inspections 2

2.0 **Description of Project Facilities** 3
 2.1 General 3
 2.2 Impoundment Dams and Reservoirs 3
 2.3 Spillways 5
 2.4 Intakes and Outlet Works 5
 2.5 Vicinity Map 5
 2.6 Plan and Sectional Drawings 6
 2.7 Standard Operational Procedures 6

3.0 **Summary of Construction History and Operation** 7

4.0 **Hazard Potential Classification** 8
 4.1 Overview 8
 4.2 Bottom Ash Basins 8
 4.3 Wastewater Holding Basin 8

5.0 **Hydrology and Hydraulics** 10
 5.1 Floods of Record 10
 5.2 Inflow Design Floods 10
 5.2.1 Bottom Ash Basins 10
 5.2.2 Wastewater Holding Basin 10
 5.2.3 Determination of the PMF 11
 5.2.4 Freeboard Adequacy 11
 5.2.5 Dam Break Analysis 11
 5.3 Spillway Rating Curves 11
 5.4 Evaluation 11

6.0 **Geologic and Seismic Considerations** 12

7.0 **Instrumentation** 13
 7.1 Location and Type 13
 7.2 Readings 13
 7.2.1 Flow Rates 13
7.2.2 Staff Gauges
7.3 Evaluation

8.0 Field Assessment

8.1 General
8.2 Embankment Dam
8.2.1 Dam Crest
8.2.2 Upstream Slope
8.2.3 Downstream Slope
8.3 Seepage and Stability
8.4 Appurtenant Structures
8.4.1 Outlet Structures
8.4.2 Pump Structures
8.4.3 Emergency Spillway
8.4.4 Water Surface Elevations and Reservoir Discharge

9.0 Structural Stability

9.1 Visual Observations
9.2 Field Investigations
9.3 Methods of Analysis
9.4 Seismic Stability – Liquefaction Potential

10.0 Maintenance and Methods of Operation

10.1 Procedures
10.2 Maintenance of Impoundments
10.3 Surveillance

11.0 Conclusions

11.1 Assessment of Dams
11.1.1 Field Assessment
11.1.2 Adequacy of Structural Stability
11.1.3 Adequacy of Hydrologic/Hydraulic Safety
11.1.4 Adequacy of Instrumentation and Monitoring of Instrumentation
11.1.5 Adequacy of Maintenance and Surveillance
11.1.6 Adequacy of Project Operations

12.0 Recommendations

12.1 Corrective Measures and Analyses for the Structures
12.2 Corrective Measures Required for Instrumentation and Monitoring Procedures
12.3 Corrective Measures Required for Maintenance and Surveillance Procedures
12.4 Corrective Measures Required for the Methods of Operation of the Project Works
12.5 Summary
12.6 Acknowledgement of Assessment

13.0 References

List of Tables
Table 2.1: Summary Information for Impoundment Dam Parameters

List of Figures
Figure 1: Vicinity Map
Figure 2: Site Map
Figure 3: Typical Sections

List of Appendices
Appendix A: Inspection Checklists – October 26, 2010
Appendix B: Inspection Photographs
Appendix C: Reply to Request for Information under Section 104(e)

Acronym List
CCW coal combustion waste
DNR/DWR Department of Natural Resources, Utah Division of Water Rights
DWP Los Angeles Department of Water and Power
EPA U.S. Environmental Protection Agency
FEMA Federal Emergency Management Agency
GEI GEI Consultants, Inc.
HDPE high density polyethylene
IDF inflow design flood
IPS Intermountain Power Station
IPSC Intermountain Power Service Corporation
MW megawatts
NDDH Utah Department of Health
NOAA National Oceanic and Atmospheric Administration
PMF probable maximum flood
USACE U.S. Army Corps of Engineers
USBR U.S. Bureau of Reclamation
USGS U.S. Geological Survey
1.0 Introduction

1.1 Purpose

This report presents the results of a specific site assessment of the dam safety of coal combustion waste (CCW) impoundments at the Intermountain Power Station (IPS) in Millard County, near Delta, Utah. The Intermountain Power Station is owned by Intermountain Power Agency and operated by Intermountain Power Service Corporation (IPSC). The impoundments are the Bottom Ash Basin #1, #2, and #3 and the Wastewater Holding Basin. The specific site assessment was performed on October 26, 2010.

The specific site assessment was performed with reference to Federal Emergency Management Agency (FEMA) guidelines for dam safety, which includes other federal agency guidelines and regulations (such as U.S. Army Corps of Engineers [USACE] and U.S. Bureau of Reclamation [USBR]) for specific issues, and includes defaults to state requirements where not specifically addressed by federal guidance or if the state requirements were more stringent.

1.2 Scope of Work

The scope of work between GEI Consultants, Inc. (GEI) and the U.S. Environmental Protection Agency (EPA) for the specific site assessment is summarized in the following tasks:

1. Acquire and review existing reports and drawings relating to the safety of the project provided by the EPA and IPSC.
2. Conduct detailed physical inspections of the project facilities. Document observed conditions on Field Assessment Check Lists provided by EPA for each management unit being assessed.
3. Review and evaluate stability analyses of the project’s coal combustion waste impoundment structures.
4. Review the appropriateness of the inflow design flood (IDF), and adequacy of ability to store or safely pass the inflow design flood, provision for any spillways, including considering the hazard potential in light of conditions observed during the inspections or to the downstream channel.
5. Review existing dam safety performance monitoring programs and recommend additional monitoring, if required.
6. Review existing geologic assessments for the projects.
7. Submit draft and final reports.
1.3 Authorization

GEI performed the coal combustion waste impoundment assessment as a contractor to the EPA. This work was authorized by EPA under Contract No. EP09W001698, Order No. EP-B10S-00018 between EPA and GEI, dated September 23, 2010.

1.4 Project Personnel

The scope of work for this task order was completed by the following personnel from GEI:

- Stephen G. Brown, P.E. Project Manager/Task Leader
- Nick Miller, P.E. Project Water Resources Engineer
- Gillian M. Hinchliff Project Geotechnical Engineer

The Program Manager for the EPA was Stephen Hoffman.

1.5 Limitation of Liability

This report summarizes the assessment of dam safety of coal combustion waste impoundments Bottom Ash Basins #1, #2, and #3 and the Wastewater Holding Basin at Intermountain Power Station, in Millard County, near Delta, Utah. The purpose of each assessment is to evaluate the structural integrity of the impoundments and provide summaries and recommendations based on the available information and on engineering judgment. GEI used a professional standard of practice to review, analyze, and apply pertinent data. No warranties, express or implied, are provided by GEI. Reuse of this report for any other purpose, in part or in whole, is at the sole risk of the user.

1.6 Project Datum

The project coordinate system is identified as Utah State Plane Central Zone, 1927, and the elevations are based on 1929 Mean Sea Level datum as noted on the drawing titled “Topography, Generating Station Site Intermountain Generating Station, Drawing Number SL-CM412”, dated May 1985, prepared by Los Angeles Department of Water and Power (DWP).

1.7 Prior Inspections

Inspections for the CCW impoundments are performed every five years by a State of Utah Department of Natural Resources, Utah Division of Water Rights (DNR/DWR) inspector. Detailed inspections of the CCW impoundments are performed annually by IPS professional engineers. Routine maintenance inspections of the CCW impoundments are performed monthly.
2.0 Description of Project Facilities

2.1 General

Intermountain Power Station is a coal-fired power plant consisting of two units that generate about 1900 megawatts (MW) combined. The power plant is located approximately 11 miles north of Delta in Millard County, Utah (see Figure 1). Both generating units are owned by Intermountain Power Agency and operated by Intermountain Power Service Corporation. Unit 1 went online in 1986 and Unit 2 went online in 1987.

Intermountain Power Station uses raw water pumped from the raw water holding pond located on the southeast side of the site. Water used in the power plant is discharged to either the Bottom Ash Basins or the Wastewater Holding Basin, and is reused as make-up water in the ash water management system, and the sulfur dioxide removal system. Intermountain Power Station does not discharge water to any waterway and is not located on a waterway.

The CCW impoundments are located west of the power plant. The CCW impoundments include the Bottom Ash Basin #1, #2, and #3, and the Wastewater Holding Basin and are permitted to store fly ash/flue gas emission, bottom ash, and other process residuals. Design records and construction drawings of the impoundments were available for review during the preparation of this report.

Several other impoundments are involved in the power station water management process, which reuses water for cooling and other processes until the total dissolved solids become unacceptable for use. The other impoundments at the IPS include the Ash Recycle Basin, the Settling Basin, six Evaporation Ponds and the Landfill Run-Off Basin. The Ash Recycle Basin is located directly south of the Bottom Ash Basins, and the Settling Basin is located south east of the Ash Recycle Basin. The six Evaporation Ponds are located directly west of the Bottom Ash Basins. The Landfill Run-Off Basin is located north of the Evaporation Ponds, at the northwest corner of the CCW landfill.

2.2 Impoundment Dams and Reservoirs

The embankment dams of the CCW impoundments have been assigned a Low Hazard potential by the Utah Department of Natural Resources. Hazard potential classifications for the impoundments are described in Section 4.0 of this report. The basic dimensions and geometry of the CCW impoundments are summarized in Table 2.1.

The Bottom Ash Basins were commissioned in 1986. The Bottom Ash Basins provides decant water to the Ash Water Recycle Basin for reuse in the ash water system and the sulfur dioxide removal system. The major waste sources to the pond are the bottom ash, boiler
slag, and other process materials including pulverizer rejects, and chemical clean residue. The Bottom Ash Basins were designed and constructed with a high density polyethylene (HDPE) liner (80 mil thickness) to minimize seepage from the basins. Seepage from the Bottom Ash Basins is collected and pumped back to the Ash Recycle Basin. IPS personnel indicated that currently about 200 gallons per day (gpd) is collected and pumped back into the Ash Recycle Basin.

The Bottom Ash Basins covers 105 acres (three ponds at 35 acres each) and has a nominal capacity of 3,000 acre-feet (three ponds at 1,000 acre-feet) at a maximum design depth of 46 feet. The perimeter embankment is approximately 8,600 linear feet, with two 2,250 feet long interior embankments. The Bottom Ash Basins has a minimum crest width of 20 feet and 3H:1V side slopes. The embankment slopes are either exposed earth or covered with sparse vegetation.

The Wastewater Holding Basin was commissioned in 1986. The major waste sources to the basin include flue gas emission control residuals and other process material including process water separated for re-use, wash down, coal pile run-off, boiler blowdown, cooling tower blowdown, regenerant rinsate, leachate from bottom ash, boiler slag, and pulverizer rejects. The Wastewater Holding Basin was designed and constructed with a high density polyethylene (HDPE) liner (80 mil thickness) to minimize seepage from the basins.

The Wastewater Holding Basin covers 53 acres with a storage capacity of approximately 650 acre feet. It is impounded by approximately 6,000 linear feet of perimeter embankment dikes approximately 15 feet high with crest widths of approximately 20 feet. The embankment side slopes are 3H:1V. The embankment slopes are either exposed earth or covered with sparse vegetation.

Table 2.1: Summary Information for Impoundment Dam Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dam</td>
<td></td>
</tr>
<tr>
<td>Estimated Maximum Height(^1) (ft)</td>
<td>46</td>
</tr>
<tr>
<td>Estimated Perimeter Length(^2) (ft)</td>
<td>8,600</td>
</tr>
<tr>
<td>Minimum Crest Width(^1) (ft)</td>
<td>20</td>
</tr>
<tr>
<td>Crest Elevation(^1) (ft)</td>
<td>4685.0</td>
</tr>
<tr>
<td>Design Side Slopes Upstream/Downstream (H:V) (^3)</td>
<td>3:1/3:1</td>
</tr>
<tr>
<td>Estimated Freeboard (ft) at time of site visit (#1, #2, #3)</td>
<td>31.1, 35.6, 33.9</td>
</tr>
<tr>
<td>Storage Capacity(^3) (ac-ft)</td>
<td>1,000 each</td>
</tr>
<tr>
<td>Surface Area(^3) (acres)</td>
<td>35 each</td>
</tr>
</tbody>
</table>

\(^1\) Based on drawings “Pond and Embankment Sections and Details”, Drawing Number 9255-9STU-S3090, prepared by Black and Veatch Consulting Engineers, dated February 1984.

\(^2\) Estimated from Aerial Photographs.

\(^3\) Surface area and capacity based on CERCLA 104(e) Request for Information prepared by IPSC at the request of the EPA, dated March 23, 2009.
There are no records of the original geotechnical design or material properties for the embankment perimeter dikes. However, several site specific geotechnical investigations and studies for the plant site and CCW impoundments were available for review. IPS staff indicated to GEI during the site visit that the CCW impoundment embankments were constructed of on-site, natural soils. Based on the available data provided by IPS personnel, the on-site soils consist primarily of silty sand and sandy silts, but may also contain clean sands and lean clay.

2.3 Spillways

None of the impoundments have spillways.

2.4 Intakes and Outlet Works

Inlets to the Bottom Ash Basins include four 10-inch diameter steel pipes placed on the Bottom Ash Basins’ north embankment crest and discharge directly into the Bottom Ash Basins’ energy dissipation discharge structures. The energy dissipation discharge structures consist of a 4-foot wide, 3-foot high concrete rundown structure that contains several 18-inch wide baffle blocks spaced at 3-foot on centers. When a Bottom Ash Basin approaches storage capacity, the discharge is directed by plant personnel into one of the other basins to allow for the full basin to be drained, and the bottom ash excavated and hauled to the on-site landfill. The outlet drop-inlet decant structure is provided in each Bottom Ash Basin. The outlet structure is an 18-foot by 14-foot by 47-foot high concrete structure located at the south end of each of the Bottom Ash Basins. The large concrete decant structures drains decant water by gravity through a 24-inch steel concrete encased discharge pipe to the Ash Water Recycle Basin for reuse in the ash water system and the sulfur dioxide removal system.

The inlet to the Wastewater Holding Basin is a buried and submerged inlet pipeline located near the northeast corner of the basin along the east embankment. The outlet drop-inlet decant structure is provided in the Wastewater Holding Basin. The outlet structure is a large concrete structure located at the north end of the Wastewater Holding Basin. The structure supplies water to the Wastewater Holding Basin Pump Station. From the pump station the decant water can be sent to either the Ash Water Recycle Basin or Evaporation Ponds.

2.5 Vicinity Map

Intermountain Power Station is located in Millard County approximately 11 miles north of Delta, Utah, as shown on Figure 1. The CCW impoundments are located west of the station, as shown on Figure 2.
2.6 Plan and Sectional Drawings

Survey drawings for the CCW impoundments were provided by IPSC and were prepared as part of the design package. Construction record drawings from the original construction project were provided by IPSC.

2.7 Standard Operational Procedures

IPS is a coal-fired power plant producing a total combined capacity of 1900 MW. Coal is delivered to the power plant by train, where it is then combusted to power the steam turbines. IPS is a wet coal ash disposal facility, producing significant amounts of sluiced CCW material.

Waste includes fly ash/flue gas emissions, bottom ash, boiler slag and other process materials. The waste is sluiced to the either the Bottom Ash Basins or to the Wastewater Holding Basin. Water that accumulates in the Bottom Ash Basins is decanted and conveyed to the Ash Water Recycle Basin, where it can then be pumped back to the plant for use as make-up water for the ash water system and the sulfur dioxide removal system. Water that accumulates in the Wastewater Holding Basin is decanted and either pumped to the Ash Water Recycle Basin or to the Evaporation Ponds.

When a Bottom Ash Basin approaches storage capacity, the discharge is directed by plant personnel into one of the other Bottom Ash Basins to allow for the full basin to be drained, and the bottom ash excavated and hauled to the on-site landfill. Periodically, the Wastewater Holding Pond is dewatered to allow the accumulated sludge deposits to be excavated for disposal in the on-site landfill.

According to IPS staff, an operation and maintenance crew inspects the liner condition and water levels monthly. Once every shift or twice a day, a plant operator drives around the CCW impoundments for a visual inspection. Additionally, once every year a detailed visual inspection of the CCW impoundments is performed by IPS professional engineers.
3.0 Summary of Construction History and Operation

Unit 1 at the Intermountain Power Station began commercial operation in June of 1986 and Unit 2 began commercial operation in May of 1987. The Bottom Ash Basins and Wastewater Holding Basin were commissioned in 1986. The other impoundments at IPS were commissioned in 1986, with the exception of the Settling Basin which was commissioned in 1983.

During the winter of 1988, the HDPE liner was damaged due to extreme shrinkage during a period of cold weather that resulted in multiple liner tears within the storage basins. During this event, water seeped through the bottom of the ash ponds, where it currently remains perched on an underlying clay layer, as indicated by recent measurements in the groundwater monitoring wells. IPS personnel reports that seepage or saturated areas along the embankment or at the toe of the embankment were not observed at the time of the release. Following the event, the liner was repaired and temperature expansion/contraction compensation panels were installed. In addition, groundwater recovery wells were installed to monitor, capture and pump the water perched on the underlying clay layer to the Ash Recycle Basin. IPS personnel indicated that about 200 gallons per day of leachate is collected and pumped back into the pond. The HDPE liners are continually observed visually and minor repairs are performed as needed by plant staff or sub-contractors. Also, IPS personnel indicated that periodically the embankment crests or slopes are re-graded to repair minor erosion gullies that have formed due to infrequent rainfall events.

Drawings of the original design and construction of the CCW facilities were available for review. Numerous site-specific geotechnical studies for the plant site and CCW impoundments were available for review. IPS staff indicated that the CCW impoundment embankments were constructed of on-site, natural soils. Based on the available data provided by IPS staff, the on-site soils consist primarily of silty sand and sandy silts, but may also contain clean sands and lean clay.

The CCW embankment impoundments were constructed over a foundation consisting of the natural site soils based on the design drawings and timing of the construction relative to power station commissioning. No evidence of prior releases, failures or patchwork construction was observed during the site visit or disclosed by plant personnel.
4.0 Hazard Potential Classification

4.1 Overview

According to the Federal Guidelines for Dam Safety, the hazard potential classification for the CCW impoundments is based on the possible adverse incremental consequences that result from release of stored contents due to failure of the dam or misoperation of the dam or appurtenances. Impoundments are classified as Low, Significant, or High hazard, depending on the potential for loss of human life and/or economic and environmental damages.

4.2 Bottom Ash Basins

The Bottom Ash Basins perimeter dikes, containing a total surface area of about 105 acres, total storage capacity of 3,000 acre-feet and a height of about 46 feet would be considered an “Intermediate” sized dam in accordance with the USACE Recommended Guidelines for Safety Inspection of Dams ER 1110-2-106 criteria.

The Bottom Ash Basins are not located on a waterway. An uncontrolled release of the Bottom Ash Basins content due to a failure or misoperation is not considered to cause loss of human life and the economic and environmental damages would be relatively low. The flooded area would be extensive because of the very flat surrounding topography. However, the resulting flood waters would be widespread with shallow depths. Based on the pond height and volume, the inundation area would be primarily limited to IPS property, which is very large and does not have developed property within several miles of the power station.

Based on the low potential environmental impacts to the plant site and surrounding area and consistent with the Federal Guidelines for Dam Safety and the Utah Department of Natural Resources Division of Water Rights Dam Safety Section, we recommend the Bottom Ash Basins be classified as a “Low” hazard structure.

4.3 Wastewater Holding Basin

The Wastewater Holding Basin perimeter dikes, containing a surface area of about 53 acres, storage capacity of 650 acre-feet and a height of about 15 feet would be considered a “Low” sized dam in accordance with the USACE Recommended Guidelines for Safety Inspection of Dams ER 1110-2-106 criteria.

The Wastewater Holding Basin is not located on a waterway. An uncontrolled release of the Wastewater Holding Basin content due to a failure or misoperation is not considered to cause loss of human life and the economic and environmental damages would be relatively low. The flooded area would be extensive because of the very flat surrounding topography. However, the resulting flood waters would be widespread with shallow depths. Based on the
pond height and volume, the inundation area would be primarily limited to IPS property, which is very large and does not have developed property within several miles of the power station.

Based on the low potential environmental impacts to the plant site and surrounding area and consistent with the Federal Guidelines for Dam Safety and the Utah Department of Natural Resources Division of Water Rights Dam Safety Section, we recommend the Wastewater Holding Basin be classified as a “Low” hazard structure.
5.0 Hydrology and Hydraulics

5.1 Floods of Record

Floods of record have not been evaluated and documented for the CCW impoundments at the Intermountain Power Station (IPS).

5.2 Inflow Design Floods

Currently the CCW impoundments at IPS are classified as “Low” hazard structures according to the Utah Department of Natural Resources Division of Water Rights. Based on observations during the field inspection, we concur with the “Low” hazard classifications for the Bottom Ash Basins and Wastewater Holding Basin structures (see Section 4.0). Based on the hazard classification, the State of Utah Statues and Administrative Rules for Dam Safety specifies “Low” hazard dams be capable of passing the 100-year storm event with a minimum of 3-feet of freeboard. The USACE Recommended Guidelines for Safety Inspection of Dams ER 1110-2-106 recommends an intermediate size “Low” hazard dam be capable of passing floods ranging from the 100-year to 50 percent probable maximum flood (PMF) without overtopping the dam. Similarly, the USACE guidelines recommend a small size “Low” hazard dam be capable of passing the 50-year to 100-year storm event without overtopping the dam. Considering the “Low” hazard rating, the scale of the economic and environmental damages that could potentially occur upon failure, and the recommended range of inflow design storms, it is reasonable to select the 100-year storm event as the inflow design storm for both the intermediate sized Bottom Ash Basins and the small sized Wastewater Holding Basin. The 24-hour 100-year precipitation at the Intermountain Power Station is about 2.0 inches based on National Oceanic and Atmospheric Administration (NOAA) Atlas 14 precipitation data.

5.2.1 Bottom Ash Basins

The Bottom Ash Basins contributing drainage area is limited to the total impoundment area (approximately 105 acres) because the perimeter dikes prevent surface water run-on from adjacent land. The Bottom Ash Basins currently have significant freeboard that ranges from about 31.1-feet to 35.6-feet, providing an available combined storage capacity of approximately 1,400 acre-feet. Based on the 24-hour 100-year precipitation, the Bottom Ash Basins would receive a total of approximately 17.5 acre-feet (5.8 acre-feet each) of stormwater assuming no losses. Based on this result, the Bottom Ash Basins are expected to meet the regulatory requirements for storing or passing of the 24-hour 100-year precipitation inflow design flood.

5.2.2 Wastewater Holding Basin

The Wastewater Holding Basin contributing drainage area is limited to the impoundment area (approximately 53 acres) because the perimeter dikes prevent surface water run-on from
adjacent land. The Wastewater Holding Basin currently has approximately 5.9-feet of freeboard, providing an approximately 100 acre-feet of available storage capacity. Based on the 24-hour 100-year precipitation, the Wastewater Holding Basin would receive a total of approximately 8.8 acre-feet of stormwater assuming no losses. Based on this result, the Wastewater Holding Basin is expected to meet the regulatory requirements for storing or passing of the 24-hour 100-year precipitation inflow design flood.

5.2.3 Determination of the PMF

Not applicable.

5.2.4 Freeboard Adequacy

Based on a very simplified evaluation using conservative assumptions, the freeboard appears to be adequate at Bottom Ash Basins and Wastewater Holding Basin.

5.2.5 Dam Break Analysis

Dam break analyses have not been performed for the CCW impoundments at the IPS.

5.3 Spillway Rating Curves

Not applicable.

5.4 Evaluation

Based on the current facility operations and inflow design floods documents, the CCW impoundments at the IPS appear to have adequate capacity to store the regulatory design floods with adequate freeboard based on the recommended hazard classifications for the dams.
6.0 Geologic and Seismic Considerations

The following geologic and seismic information is based on multiple site specific geotechnical studies performed for the Intermountain Power Station that were provided at the time of the inspection. The Intermountain Power Station site is near the center of the northern Sevier Desert in the Basin and Range Physiographic Province. The area of the plant site is located in the Sevier Lake drainage system and is located on a broad alluvial fan. The ground surface within this area is relatively flat, sloping only slightly to the west. The average ground surface gradient is about 25 feet per mile. No major drainages cross the site area.

At the CCW impoundments area there are two main subsurface units. The upper unit consists primarily of interbedded lenses of sand and silty sand. This unit is about 20 feet thick. The top few feet of this deposit is comprised of eolian sand, fluvial sand, and fine gravel. The underlying unit consists of fine grained silts and stiff clays of lacustrine origin. This unit is thickly bedded and extends to a depth of at least one hundred feet. Both of the two major subsurface units dip slightly toward the west, paralleling the existing topographic slope.

Groundwater levels at the CCW impoundment areas were measured during the geotechnical investigations. Groundwater levels indicated a relatively flat groundwater surface roughly paralleling the ground surface. The average groundwater surface gradient is about 0.5 percent to the west-southwest. The depths of the groundwater surface in the area range between 17 and 45 feet below the existing ground surface. No evidence of perched or artesian conditions was encountered at depths ranging from 50 to 100 feet below the ground surface during the geotechnical investigations.

The site topography is dominated by the L-1 fault system which trends northeastward through the site. The fault zone consists of relatively short, predominantly down-to-the-west faults with subdued topographic expression at the ground surface. The ridge to the east is the result of the bounding L-1 fault. The topographic expression of the western bounding faults is not as dominant with the relief about half that of the eastern bounding fault. The geotechnical studies indicate the minimum amount of displacement across the fault zone is on the order of 50 to 100 feet. However, based on analysis of aerial photographs and subsurface explorations, no faults with 50 to 100 feet of movement appear to exist beneath the CCW impoundment areas. According to the 2008 U.S. Geological Survey (USGS) Seismic Hazard Map of Utah, the site has a regional probabilistic peak ground acceleration of approximately 0.16g with a 2 percent Probability of Exceedance within 50 years (recurrence interval of approximately 2,500 years).
7.0 Instrumentation

7.1 Location and Type

Water level staff gauges are installed at all of the Intermountain Power Station CCW impoundments and are read manually. Several ground water monitoring wells are installed around the CCW impoundments perimeter to monitor water quality and for leak detection. IPS personnel indicated the groundwater monitoring wells are sampled and measured twice a year. IPS personnel provided the most recent records of water level readings from the CCW impoundments.

7.2 Readings

7.2.1 Flow Rates

Discharge through the outlet structures are not recorded at any of the CCW impoundments.

7.2.2 Staff Gauges

Water level staff gauges are located at the Bottom Ash Basins and Waste Water Holding Basin and are read manually.

7.3 Evaluation

Staff gauges and groundwater monitoring wells are the only instruments installed at the IPS CCW impoundments. It would be beneficial to install flow measurement devices at the CCW impoundments to measure and record flows into and out of the storage basins. High level alarms should also be considered to reduce the risk of overtopping the embankments. Surveyed benchmarks and embankment settlement monuments to measure and record any movement of the dikes should also be considered.
8.0 Field Assessment

8.1 General

A site visit to assess the condition of the CCW impoundments at the Intermountain Power Station was performed on October 26, 2010, by Stephen G. Brown, P.E., and Nick D Miller, P.E. of GEI. Blaine Ipson and Rand Crafts of IPSC, and Dat Quach of the Department of Water and Power City of Los Angeles assisted in the assessment.

The weather during the site visit (October 26, 2010) was sunny, with temperatures around 50 degrees Fahrenheit. The majority of the ground was dry at the time of the site visit.

At the time of inspection, GEI completed an EPA inspection checklist, which is provided in Appendix A, and photographs, which are provided in Appendix B. Field assessment of the CCW impoundments included a site walk to observe the dam crest, upstream slope, downstream slope, and intake structures.

8.2 Embankment Dam

8.2.1 Dam Crest

The dam crest of the Bottom Ash Basins and Wastewater Holding Basin appeared to be in good condition. No signs of cracking, settlement, movement, erosion or deterioration were observed during the assessment. The dam crest surface is generally composed of gravel road base material.

8.2.2 Upstream Slope

The upstream slope of the Bottom Ash Basins and Wastewater Holding Basin is protected by an 80 mil HDPE liner. The HDPE liner and the upstream slopes appeared to be in satisfactory condition. No scarps, sloughs, depressions or other indications of slope instability were observed during the inspection of the CCW impoundments. The previously described lining failure at the Wastewater Holding Basin resulted in saturated embankments. The repairs included improving the saturated subgrade with flowable concrete such that repairs could be made to the lining. A result of the repair is somewhat uneven appearance of the embankment, though the subgrade is judged to be sound.

8.2.3 Downstream Slope

The downstream slopes of the Bottom Ash Basins and Wastewater Holding Basin showed no signs of scarps, sloughs, depressions or other indications of slope instability during the inspection. The downstream slopes of the Bottom Ash Basins and Wastewater Holding
Basin are sparsely covered with vegetation consisting of greasewood shrubs, wheat grass and other native vegetation. The downstream slopes showed no signs of significant erosion. However, minor erosion rill on the downstream slope of the Wastewater Holding Basin west embankment was observed, most likely due to surface runoff.

8.3 Seepage and Stability

No evidence of ongoing seepage or potential seepage was observed at the Bottom Ash Basins and Wastewater Holding Basin.

8.4 Appurtenant Structures

8.4.1 Outlet Structures

The concrete outlet structures at the Bottom Ash Basins and Wastewater Holding Basin appeared to be in good condition. The outlet pipelines were submerged and not visible at the time of the inspections. Minor amounts of flow were discharging into the outlet structures at the Bottom Ash Basins during the time of the inspections. The Wastewater Holding Basin was discharging to the pump structure at the time of the inspection. Plant staff estimated the discharge through the Wastewater Holding Basin outlet structure to be about 200 gallons per minute (gpm). The outlet structures have been in service for approximately 24 years.

8.4.2 Pump Structures

The equipment in the Wastewater Holding Basin pump structure located along the north embankment appeared to be working properly.

8.4.3 Emergency Spillway

There are no emergency spillways present at the CCW impoundments.

8.4.4 Water Surface Elevations and Reservoir Discharge

The water levels in the Bottom Ash Basins #1, #2, and #3 were at elevations 4654.4, 4649.9, and 4651.6, respectively. Freeboard at the Bottom Ash Basins ranged from 31.1 to 35.6 feet. The water level in the Wastewater Holding Basin was at El. 4644.6, providing about 5.9 feet of freeboard.
9.0 Structural Stability

9.1 Visual Observations

The assessment team saw no visible signs of instability associated with the dikes of the CCW impoundments during the October 26, 2010 site assessment.

9.2 Field Investigations

Based on the design drawings and geotechnical studies, the following subsurface investigations were performed at the site:

- Preliminary investigations were performed at the Intermountain Power Station plant site by Dames & Moore. The reports were dated May 1978, October 1978, and April 1979.

- Multiple borings, CPT soundings and laboratory tests were performed for Waste Disposal Area by Ertech. Based on the report dated 12/19/1980, prepared by Fugro (Ertech) exploration programs appear to have been performed in 1980.

- Additional field investigations were performed for the Wastewater lagoon and landfill area, which included a total of six borings and the installation of six groundwater observation wells. According to the report, the exploration program was performed during April of 1981.

- Several groundwater monitoring wells have been installed around the perimeter of the CCW impoundments to monitor groundwater quality and for leak detection. Information collected during the installation of the groundwater monitoring wells was not provided.

9.3 Methods of Analysis

Slope stability analyses have not been performed for the CCW impoundments at the Intermountain Power Station.

9.4 Seismic Stability – Liquefaction Potential

The liquefaction potential at the CCW impoundments has not been previously evaluated based on review of the available documents. However, liquefaction and dynamic settlement analyses were evaluated for the plant site and concluded that the potential for liquefaction at the plant site is very low. Given the soils at the CCW impoundment are very similar to the plant site soils, we consider the liquefaction potential at the CCW impoundments to also be low.
10.0 Maintenance and Methods of Operation

10.1 Procedures

A detailed visual inspection of the CCW impoundments is performed annually by IPS professional engineers. An operation and maintenance crew inspects the liner condition and water levels monthly.

10.2 Maintenance of Impoundments

General maintenance of the CCW impoundments is performed by IPS staff under the guidance of IPS managers and engineers. Maintenance repairs of the HDPE liner are performed by IPS staff or specialty subcontractors. Dam safety-inspections for the CCW impoundments are performed every five years by a State of Utah Department of Natural Resources, Utah Division of Water Rights inspector.

10.3 Surveillance

Once every shift, or twice a day, a plant operator drives around the CCW impoundments for a visual inspection. There are no automatic alarm systems at the CCW impoundments. Plant personnel are available at the power plant and on 24-hour call for emergencies that may arise.
11.0 Conclusions

11.1 Assessment of Dams

11.1.1 Field Assessment

The dams and outlet works facilities associated with the CCW impoundments at the Intermountain Power Station were found to be in satisfactory condition. No visual signs of instability, movement or seepage were observed. The Wastewater Holding Basin west embankment slopes show signs of minor erosion from surface runoff and a few small animal burrow holes.

11.1.2 Adequacy of Structural Stability

There are no records of a structural stability evaluation of the CCW impoundments.

11.1.3 Adequacy of Hydrologic/Hydraulic Safety

The two CCW impoundments currently appear to have adequate freeboard and storage capacity to safely store the 24-hour, 100-year storm event inflow design flood.

11.1.4 Adequacy of Instrumentation and Monitoring of Instrumentation

The CCW impoundments have staff gauges and groundwater monitoring wells. Instrumentation and monitoring programs for the CCW impoundments are considered inadequate. The facility should have surveyed benchmarks, embankment settlement monuments to measure and record any movement of the dikes. High level alarms and flow measurement devices should be considered.

11.1.5 Adequacy of Maintenance and Surveillance

The CCW impoundments at the Intermountain Power Station have adequate maintenance and surveillance programs. The facilities are generally well maintained and routine surveillance is performed by IPS staff. Dam safety-inspections for the CCW impoundments are performed every five years by a State of Utah Department of Natural Resources, Utah Division of Water Rights inspector.

11.1.6 Adequacy of Project Operations

Operating personnel are knowledgeable and are well trained in the operation of the project. The current operations of the facilities are satisfactory.
12.0 Recommendations

12.1 Corrective Measures and Analyses for the Structures

Slope stability analyses for the CCW impoundments should be performed on the maximum section of each CCW impoundment with a phreatic surface representative of steady seepage with normal water surface conditions assuming no liner. The slope stability analysis should be presented relative to the appropriate dam analysis guidelines such as the U.S. Army Corps of Engineers, U.S. Bureau of Reclamation, or the Federal Energy Regulatory Committee.

12.2 Corrective Measures Required for Instrumentation and Monitoring Procedures

Daily water levels of the CCW impoundments are monitored by plant staff and recorded monthly. No piezometers or settlement monuments are installed at CCW impoundments. It is recommended that a more thorough instrumentation and monitoring program be developed and implemented that would include, at a minimum, settlement monuments installed along the perimeter dikes of the impoundments that receive wet coal combustion waste. Additionally, we recommended that high level alarms be installed and incorporated into the CCW impoundments.

12.3 Corrective Measures Required for Maintenance and Surveillance Procedures

We recommended IPS personnel develop and document formal inspections of the CCW impoundments, at a minimum to be performed annually by plant staff. We recommend a brief daily check inspection be conducted by IPS personnel and that a written record be maintained for the monthly inspections being conducted by IPS personnel. Also, continue efforts repair minor erosion rills observed on the embankment slopes. Due to the lack of erosion protection, minor erosion rills should be repaired promptly to prevent extensive damage to the embankment slopes.

12.4 Corrective Measures Required for the Methods of Operation of the Project Works

None.
12.5 Summary

The following factors were the main considerations in determining the final rating of the CCW impoundments at IPS.

- The dikes at the Bottom Ash Basins and Wastewater Holding Basin are Low-Hazard structures based on federal and state classifications.

- The CCW impoundments were generally observed to be in good condition in the field assessment.

- There is no stability analysis on record for the CCW impoundments.

- There is currently no instrumentation in place for the CCW impoundments, except for staff gages and groundwater monitoring wells. There is no method of accurately monitoring of perimeter dike performance (i.e. movement, settlement, etc.).

- Operational procedures are considered adequate.
12.6 Acknowledgement of Assessment

I acknowledge that the management unit(s) referenced herein was personally inspected by me and was found to be in the following condition (select one only):

SATISFACTORY
FAIR
POOR
UNSATISFACTORY

DEFINITIONS:

SATISFACTORY: No existing or potential management unit safety deficiencies are recognized. Acceptable performance is expected under all applicable loading conditions (static, hydrologic, seismic) in accordance with the applicable criteria. Minor maintenance items may be required.

FAIR: Acceptable performance is expected under all required loading conditions (static, hydrologic, seismic) in accordance with the applicable safety regulatory criteria. Minor deficiencies may exist that require remedial action and/or secondary studies or investigations.

POOR: A management unit safety deficiency is recognized for any required loading condition (static, hydrologic, seismic) in accordance with the applicable dam safety regulatory criteria. Remedial action is necessary. POOR also applies when further critical studies or investigations are needed to identify any potential dam safety deficiencies.

UNSATISFACTORY: Considered unsafe. A dam safety deficiency is recognized that requires immediate or emergency remedial action for problem resolution. Reservoir restrictions may be necessary.

I acknowledge that the management unit referenced herein:

Has been assessed on October 26, 2010 (date)

Signature: ____________________________
List of Participants:

Stephen G. Brown, P.E. Project Engineer, GEI Consultants, Inc.
Nick D. Miller, P.E. Project Engineer, GEI Consultants, Inc.
Blaine Ipson Intermountain Power Service Corporation
Rand Crafts Intermountain Power Service Corporation
Dat Quach Department of Water & Power City of Los Angeles
13.0 References

Figures
SECTION 1
SCALE: 1" = 20'

BOTTOM ASH BASIN SECTION

SECTION 5
SCALE: 1" = 20'

WASTEWATER HOLDING BASIN SECTION
Coal Combustion Dam Inspection Checklist Form

US Environmental Protection Agency

Site Name: Intermountain Power Station, Lynndyl, UT
Date: October 26, 2010

Unit Name: Bottom Ash Basin #1
Operator’s Name: Intermountain Power Service Corp.

Unit ID:
Hazard Potential Classification: High Significant Low

Inspector’s Name: Steve Brown / Nick Miller

Check the appropriate box below. Provide comments when appropriate. If not applicable or not available, record “N/A.” Any unusual conditions or construction practices that should be noted in the comments section. For large diked embankments, separate checklists may be used for different embankment areas. If separate forms are used, identify approximate area that the form applies to in comments.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Pool elevation (operator records)?</td>
<td>4654.4’</td>
<td>19. Major erosion or slope deterioration?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Decant inlet elevation (operator records)?</td>
<td>4640.0’</td>
<td>20. Decant Pipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Open channel spillway elevation (operator records)?</td>
<td>No spillway</td>
<td>Is water entering inlet, but not exiting outlet?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Lowest dam crest elevation (operator records)?</td>
<td>4685.5’</td>
<td>Is water exiting outlet, but not entering inlet?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6. If instrumentation is present, are readings recorded (operator records)?</td>
<td>N/A</td>
<td>Is water exiting outlet flowing clear?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7. Is the embankment currently under construction?</td>
<td>X</td>
<td>21. Seepage (specify location, if seepage carries fines, and approximate seepage rate below):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Foundation preparation (remove vegetation, stumps, topsoil in area where embankment fill will be placed)?</td>
<td>X</td>
<td>From underdrain?</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>9. Trees growing on embankment? (If so, indicate largest diameter below.)</td>
<td>X</td>
<td>At isolated points on embankment slopes?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10. Cracks or scarps on crest?</td>
<td>X</td>
<td>At natural hillside in the embankment area?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11. Is there significant settlement along the crest?</td>
<td>X</td>
<td>Over widespread areas?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12. Are decant trashracks clear and in place?</td>
<td>X</td>
<td>From downstream foundation area?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>13. Depressions or sink holes in tailings surface or whirlpool in the pool area</td>
<td>X</td>
<td>“Boils” beneath stream or ponded water?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14. Clogged spillways, groin or diversion ditches?</td>
<td>N/A</td>
<td>N/A</td>
<td>Around the outside of the decant pipe?</td>
<td>X</td>
</tr>
<tr>
<td>15. Are spillway or ditch linings deteriorated?</td>
<td>N/A</td>
<td>N/A</td>
<td>22. Surface movements in valley bottom or on hillside?</td>
<td>X</td>
</tr>
<tr>
<td>17. Cracks or scarps on slopes</td>
<td>X</td>
<td>24. Were Photos taken during the dam inspection?</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Major adverse changes in these items could cause instability and should be reported for further evaluation. Adverse conditions noted in these items should normally be described (extent, location, volume, etc.) in the space below and on the back of this sheet.

<table>
<thead>
<tr>
<th>Inspection Issue #</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. No trashracks on intakes.</td>
<td></td>
</tr>
<tr>
<td>16. Submerged outlet, could not observe.</td>
<td></td>
</tr>
<tr>
<td>19. A few minor erosion gullies were observed along the east dike slopes.</td>
<td>19. Plant staff has an ongoing maintenance program to address these minor issues.</td>
</tr>
<tr>
<td>20. Water in receiving pond was clear, discharge submerged.</td>
<td></td>
</tr>
</tbody>
</table>
Coal Combustion Waste (CCW)
Impoundment Inspection

Impoundment NPDES Permit # Permit UGW270004 INSPECTOR Steve Brown / Nick Miller

Date October 26, 2010

Impoundment Name Bottom Ash Basin #1

Impoundment Company Intermountain Power Service Corp.

EPA Region 8

State Agency (Field Office) Address 1595 Wynkoop St
Denver, CO 80202

Name of Impoundment Bottom Ash Basin #1

(Report each impoundment on a separate form under the same Impoundment NPDES Permit number)

New _________ Update __________

Yes No

Is impoundment currently under construction? _____ X

Is water or ccw currently being pumped into the impoundment? _____ X

IMPOUNDMENT FUNCTION: Storage of bottom ash and boiler slag.

Nearest Downstream Town: Name Delta, UT (impoundment is not located on a stream or drainage)

Distance from the impoundment 11 miles

Impoundment Location:

Longitude 112 Degrees 35 Minutes 51.7 Seconds
Latitude 39 Degrees 31 Minutes 5.4 Seconds

State UT County Millard

Does a state agency regulate this impoundment? YES X NO

If So Which State Agency? Utah Department of Natural Resources, Div. of Water Quality.
HAZARD POTENTIAL (In the event the impoundment should fail, the following would occur):

______ LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.

______ LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

______ SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

______ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

DESCRIBE REASONING FOR HAZARD RATING CHOSEN:

An uncontrolled release of the structure's contents due to a failure or misoperation is not considered to cause loss of human life and the economic and environmental damages would be relatively low. The flood extent would be limited by the very flat surrounding topography. Flood waters would likely be widespread with shallow depths. Based on the pond height and volume, the inundation area would be primarily limited to Company property. Consistent with the Federal Guidelines for Dam Safety, the dam should be classified as a "Low" hazard structure.
CONFIGURATION:

CROSS VALLEY

SIDE-HILL

DIKED

INCISED

—— Cross-Valley
—— Side-Hill
X Diked
—— Incised (form completion optional)
—— Combination Incised/Diked

Embarkment Height 46 feet
Embarkment Material Earth
Pool Area 35 acres
Liner HDPE Liner
Current Freeboard 31.1 feet
Liner Permeability 1x10^-8 cm/sec for intact HDPE
TYPE OF OUTLET (Mark all that apply)

None Open Channel Spillway
_____ Trapezoidal
_____ Triangular
_____ Triangular

_____ Depth
_____ Bottom (or average) width
_____ Top width

X Outlet

24 in inside diameter

Material
_____ corrugated metal
X welded steel
_____ concrete
_____ plastic (hdpe, pvc, etc.)
_____ other (specify_____________________

Is water flowing through the outlet? YES X NO_____

_____ No Outlet

_____ Other Type of Outlet (Specify) ________________________________

The Impoundment was Designed By Black & Veatch Consulting Engineers
Has there ever been a failure at this site? YES ______ NO __X__

If So When?__

If So Please Describe:

__
__
__
__
__
__
__
__

EPA Form, Jan 09
Has there ever been significant seepages at this site? YES X NO ______

If So When? **1988-1989**

If So Please Describe:

> During the winter of 1988 the HDPE liner was damaged due to temperature shrinkage that resulted in multiple liner tears within the storage basin.
> During this event, water seeped through the bottom of the ash pond, where it remained perched upon an underlying clay layer, as indicated by groundwater monitoring wells. However, the utility reports that seepage or saturated areas along the embankment or at the toe of the embankment were not observed at the time. Following the event, the liner was repaired and temperature expansion/contraction compensation panels were installed. In addition, groundwater recovery wells were installed to capture and pump the water perched on top of the underlying clay layer that was released during this event, back to the Ash Recycle Basin.
Has there ever been any measures undertaken to monitor/lower Phreatic water table levels based on past seepages or breaches at this site?

YES _____ NO __X__

If So which method (e.g., piezometers, gw pumping, …)? ____________________________

If So Please Describe:

The phreatic water table in the impoundment dikes has not been affected by the 1988-89 pond leak events. As indicated previously, groundwater recovery wells were installed to capture and pump the water perched on top of the underlying clay layer that was released during the 1988 liner tear event back to the Ash Recycle Basin.
Site Name: **Intermountain Power Station, Lynndyl, UT**
Date: **October 26, 2010**

Unit Name: **Bottom Ash Basin #2**
Operator’s Name: **Intermountain Power Service Corp.**

Unit ID:
Hazard Potential Classification:
High
Significant
Low

Inspector’s Name: **Steve Brown / Nick Miller**

Check the appropriate box below. Provide comments when appropriate. If not applicable or not available, record "N/A." Any unusual conditions or construction practices that should be noted in the comments section. For large diked embankments, separate checklists may be used for different embankment areas. If separate forms are used, identify approximate area that the form applies to in comments.

<table>
<thead>
<tr>
<th>Inspection Issue #</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. No trashracks on intakes.</td>
<td></td>
</tr>
<tr>
<td>16. Submerged outlet, could not observe.</td>
<td></td>
</tr>
<tr>
<td>19. A few minor erosion gullies were observed along the east dike slopes.</td>
<td>19. Plant staff has an ongoing maintenance program to address these minor issues.</td>
</tr>
<tr>
<td>20. Water in receiving pond was clear, discharge submerged.</td>
<td></td>
</tr>
</tbody>
</table>
Coal Combustion Waste (CCW)
Impoundment Inspection

Impoundment NPDES Permit # Utah Ground Water Permit UGW270004 INSPECTOR Steve Brown / Nick Miller

Date October 26, 2010

Impoundment Name Bottom Ash Basin #2

Impoundment Company Intermountain Power Service Corp.

EPA Region 8

State Agency (Field Office) Address 1595 Wynkoop St

Denver, CO 80202

Name of Impoundment Bottom Ash Basin #2

(Report each impoundment on a separate form under the same Impoundment NPDES Permit number)

New ________ Update ________

Is impoundment currently under construction? _____ X

Is water or ccw currently being pumped into the impoundment? _____ X

IMPOUNDMENT FUNCTION: Storage of bottom ash and boiler slag.

Nearest Downstream Town: Name Delta, UT (impoundment is not located on a stream or drainage)

Distance from the impoundment 11 miles

Impoundment Location:

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Degrees</th>
<th>Minutes</th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>36</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Degrees</th>
<th>Minutes</th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>31</td>
<td>5.4</td>
<td></td>
</tr>
</tbody>
</table>

State UT County Millard

Does a state agency regulate this impoundment? YES X NO _____

If So Which State Agency? Utah Department of Natural Resources, Div. of Water Quality.
HAZARD POTENTIAL (In the event the impoundment should fail, the following would occur):

_____ LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.

____X LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

_____ SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

DESCRIBE REASONING FOR HAZARD RATING CHOSEN:
An uncontrolled release of the structure's contents due to a failure or misoperation is not considered to cause loss of human life and the economic and environmental damages would be relatively low. The flood extent would be limited by the very flat surrounding topography. Flood waters would likely be widespread with shallow depths. Based on the pond height and volume, the inundation area would be primarily limited to Company property. Consistent with the Federal Guidelines for Dam Safety, the dam should be classified as a "Low" hazard structure.
CONFIGURATION:

--- Cross-Valley
--- Side-Hill
X Diked
--- Incised (form completion optional)
--- Combination Incised/Diked

Embarkment Height **46** feet
Embarkment Material **Earth**

Pool Area **35** acres
Liner **HDPE Liner**

Current Freeboard **35.6** feet
Liner Permeability **1x10^{-8} cm/sec for intact HDPE**
TYPE OF OUTLET (Mark all that apply)

- **None**
- Open Channel Spillway
- **— Trapezoidal**
- **— Triangular**
- **— Triangular**

- **— Depth**
- **— Bottom (or average) width**
- **— Top width**

- **X**

Outlet

- **24 in** inside diameter

Material

- **—** corrugated metal
- **X** welded steel
- **—** concrete
- **—** plastic (hdpe, pvc, etc.)
- **—** other (specify_______________________)

Is water flowing through the outlet? YES **X** NO_____

- **— No Outlet**

- **— Other Type of Outlet (Specify) _________________________________

The Impoundment was Designed By **Black & Veatch Consulting Engineers**

Has there ever been a failure at this site? YES _____ NO X

If So When?

If So Please Describe:
Has there ever been significant seepages at this site?

YES X NO

If So When? **1988-1989**

If So Please Describe:

- During the winter of 1988 the HDPE liner was damaged due to temperature shrinkage that resulted in multiple liner tears within the storage basin.
- During this event, water seeped through the bottom of the ash pond, where it remained perched upon an underlying clay layer, as indicated by groundwater monitoring wells. However, the utility reports that seepage or saturated areas along the embankment or at the toe of the embankment were not observed at the time. Following the event, the liner was repaired and temperature expansion/contraction compensation panels were installed. In addition, groundwater recovery wells were installed to capture and pump the water perched on top of the underlying clay layer that was released during this event, back to the Ash Recycle Basin.
Has there ever been any measures undertaken to monitor/lower Phreatic water table levels based on past seepages or breaches at this site? YES _____ NO ___

If So which method (e.g., piezometers, gw pumping, …)? ____________________________

If So Please Describe:

The phreatic water table in the impoundment dikes has not been affected by the 1988-89 pond leak events. As indicated previously, groundwater recovery wells were installed to capture and pump the water perched on top of the underlying clay layer that was released during the 1988 liner tear event back to the Ash Recycle Basin.
Site Name: **Intermountain Power Station, Lynndyl, UT**
Unit Name: **Bottom Ash Basin #3**
Operator’s Name: **Intermountain Power Service Corp.**
Unit ID:
Hazard Potential Classification: **High**
Significant
Low
Inspector’s Name: **Steve Brown / Nick Miller**

Check the appropriate box below. Provide comments when appropriate. If not applicable or not available, record “N/A.” Any unusual conditions or construction practices that should be noted in the comments section. For large diked embankments, separate checklists may be used for different embankment areas. If separate forms are used, identify approximate area that the form applies to in comments.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Frequency of Company’s Dam Inspections?
2. Pool elevation (operator records)?
3. Decant inlet elevation (operator records)?
4. Open channel spillway elevation (operator records)?
5. Lowest dam crest elevation (operator records)?
6. If instrumentation is present, are readings recorded (operator records)?
7. Is the embankment currently under construction?
8. Foundation preparation (remove vegetation, stumps, topsoil in area where embankment fill will be placed)?
9. Trees growing on embankment?
10. Cracks or scarps on crest?
11. Is there significant settlement along the crest?
12. Are decant trashracks clear and in place?
13. Depressions or sink holes in tailings surface or whirlpool in the pool area
14. Clogged spillways, groin or diversion ditches?
15. Are spillway or ditch linings deteriorated?
16. Are outlets of decant or underdrains blocked?
17. Cracks or scarps on slopes
18. Sloughing or bulging on slopes?
19. Major erosion or slope deterioration?
20. Decant Pipes
21. Seepage (specify location, if seepage carries fines, and approximate seepage rate below):
22. Surface movements in valley bottom or on hillside?
23. Water against downstream toe?
24. Were Photos taken during the dam inspection?

No

Yes

N/A

Major adverse changes in these items could cause instability and should be reported for further evaluation. Adverse conditions noted in these items should normally be described (extent, location, volume, etc.) in the space below and on the back of this sheet.

<table>
<thead>
<tr>
<th>Inspection Issue #</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. No trashracks on intakes.</td>
<td></td>
</tr>
<tr>
<td>16. Submerged outlet, could not observe.</td>
<td></td>
</tr>
<tr>
<td>19. A few minor erosion gullies were observed along the east dike slopes.</td>
<td>19. Plant staff has an ongoing maintenance program to address these minor issues.</td>
</tr>
<tr>
<td>20. Water in receiving pond was clear, discharge submerged.</td>
<td></td>
</tr>
</tbody>
</table>
Coal Combustion Waste (CCW)
Impoundment Inspection

Impoundment NPDES Permit # Permit UGW270004 INSPECTOR Steve Brown / Nick Miller

Date October 26, 2010

Impoundment Name Bottom Ash Basin #3

Impoundment Company Intermountain Power Service Corp.

EPA Region 8

State Agency (Field Office) Address 1595 Wynkoop St
Denver, CO 80202

Name of Impoundment Bottom Ash Basin #3

(Report each impoundment on a separate form under the same Impoundment NPDES Permit number)

New ______ Update ________

Is impoundment currently under construction? Yes ___ No X

Is water or ccw currently being pumped into the impoundment? Yes ___ No X

IMPOUNDMENT FUNCTION: Storage of bottom ash and boiler slag.

Nearest Downstream Town: Name Delta, UT (impoundment is not located on a stream or drainage)

Distance from the impoundment 11 miles

Impoundment Location:

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Degrees</th>
<th>Minutes</th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>36</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>31</td>
<td>5.4</td>
<td></td>
</tr>
</tbody>
</table>

State UT County Millard

Does a state agency regulate this impoundment? YES X NO _____

If So Which State Agency? Utah Department of Natural Resources, Div. of Water Quality.
HAZARD POTENTIAL (In the event the impoundment should fail, the following would occur):

_____ LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.

_____ LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

_____ SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

DESCRIBE REASONING FOR HAZARD RATING CHOSEN:
An uncontrolled release of the structure's contents due to a failure or misoperation is not considered to cause loss of human life and the economic and environmental damages would be relatively low. The flood extent would be limited by the very flat surrounding topography. Flood waters would likely be widespread with shallow depths. Based on the pond height and volume, the inundation area would be primarily limited to Company property. Consistent with the Federal Guidelines for Dam Safety, the dam should be classified as a "Low" hazard structure.
CONFIGURATION:

CROSS VALLEY

SIDE-HILL

DIKED

INCISED

Cross-Valley

Side-Hill

Diked **X**

Incised (form completion optional)

Combination Incised/Diked

- Embankment Height **46** feet
- Embankment Material **Earth**
- Pool Area **35** acres
- Liner **HDPE Liner**
- Current Freeboard **33.9** feet
- Liner Permeability **1×10^{-8} cm/sec for intact HDPE**
TYPE OF OUTLET (Mark all that apply)

- **None**
- Open Channel Spillway
- Trapezoidal
- Triangular
- Triangular

- Depth
- Bottom (or average) width
- Top width

| X | Outlet

| 24 in | inside diameter

Material
- corrugated metal
- X welded steel
- concrete
- plastic (hdpe, pvc, etc.)
- other (specify ____________________________

Is water flowing through the outlet?
YES X NO____

| X | No Outlet

| X | Other Type of Outlet (Specify)

The Impoundment was Designed By **Black & Veatch Consulting Engineers**
Has there ever been a failure at this site? YES ______ NO ______

If So When?

If So Please Describe:

__

__

__

__

__

__

__

__

__

__
Has there ever been significant seepages at this site?

YES X NO _____

If So When? 1988-1989

If So Please Describe:

During the winter of 1988 the HDPE liner was damaged due to temperature shrinkage that resulted in multiple liner tears within the storage basin.

During this event, water seeped through the bottom of the ash pond, where it remained perched upon an underlying clay layer, as indicated by groundwater monitoring wells. However, the utility reports that seepage or saturated areas along the embankment or at the toe of the embankment were not observed at the time. Following the event, the liner was repaired and temperature expansion/contraction compensation panels were installed. In addition, groundwater recovery wells were installed to capture and pump the water perched on top of the underlying clay layer that was released during this event, back to the Ash Recycle Basin.
Has there ever been any measures undertaken to monitor/lower Phreatic water table levels based on past seepages or breaches at this site?

YES _____ NO _____

If So which method (e.g., piezometers, gw pumping, …)? __________________________

If So Please Describe:

The phreatic water table in the impoundment dikes has not been affected by the 1988-89 pond leak events. As indicated previously, groundwater recovery wells were installed to capture and pump the water perched on top of the underlying clay layer that was released during the 1988 liner tear event back to the Ash Recycle Basin.
Site Name: Intermountain Power Station, Lynndyl, UT
Date: October 26, 2010

Unit Name: Wastewater Holding Pond
Operator’s Name: Intermountain Power Service Corp.

Unit ID:
Hazard Potential Classification: High Significant Low

Inspector’s Name: Steve Brown / Nick Miller

Check the appropriate box below. Provide comments when appropriate. If not applicable or not available, record “N/A”. Any unusual conditions or construction practices that should be noted in the comments section. For large diked embankments, separate checklists may be used for different embankment areas. If separate forms are used, identify approximate area that the form applies to in comments.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Pool elevation (operator records)?</td>
<td>4644.6’</td>
<td></td>
<td>19. Major erosion or slope deterioration?</td>
<td>X</td>
</tr>
<tr>
<td>3. Decant inlet elevation (operator records)?</td>
<td>Pump Controlled Discharge</td>
<td></td>
<td>20. Decant Pipes</td>
<td></td>
</tr>
<tr>
<td>4. Open channel spillway elevation (operator records)?</td>
<td>No Spillway</td>
<td></td>
<td>Is water entering inlet, but not exiting outlet?</td>
<td>X</td>
</tr>
<tr>
<td>5. Lowest dam crest elevation (operator records)?</td>
<td>4650.5’</td>
<td></td>
<td>Is water exiting outlet, but not entering inlet?</td>
<td>X</td>
</tr>
<tr>
<td>6. If instrumentation is present, are readings recorded (operator records)?</td>
<td>N/A</td>
<td></td>
<td>Is water exiting outlet flowing clear?</td>
<td>X</td>
</tr>
<tr>
<td>7. Is the embankment currently under construction?</td>
<td>X</td>
<td></td>
<td>21. Seepage (specify location, if seepage carries fines, and approximate seepage rate below):</td>
<td>N/A</td>
</tr>
<tr>
<td>8. Foundation preparation (remove vegetation, stumps, topsoil in area where embankment fill will be placed)?</td>
<td>X</td>
<td></td>
<td>From underdrain?</td>
<td>N/A</td>
</tr>
<tr>
<td>9. Trees growing on embankment? (If so, indicate largest diameter below.)</td>
<td></td>
<td>X</td>
<td>At isolated points on embankment slopes?</td>
<td>X</td>
</tr>
<tr>
<td>10. Cracks or scarps on crest?</td>
<td></td>
<td>X</td>
<td>At natural hillside in the embankment area?</td>
<td>X</td>
</tr>
<tr>
<td>11. Is there significant settlement along the crest?</td>
<td></td>
<td>X</td>
<td>Over widespread areas?</td>
<td>X</td>
</tr>
<tr>
<td>12. Are decant trashracks clear and in place?</td>
<td>X</td>
<td></td>
<td>From downstream foundation area?</td>
<td>X</td>
</tr>
<tr>
<td>13. Depressions or sink holes in tailings surface or whirlpool in the pool area</td>
<td>X</td>
<td></td>
<td>“Boils” beneath stream or ponded water?</td>
<td>X</td>
</tr>
<tr>
<td>14. Clogged spillways, groin or diversion ditches?</td>
<td>N/A</td>
<td>N/A</td>
<td>Around the outside of the decant pipe?</td>
<td>X</td>
</tr>
<tr>
<td>15. Are spillway or ditch linings deteriorated?</td>
<td>N/A</td>
<td>N/A</td>
<td>22. Surface movements in valley bottom or on hillside?</td>
<td>X</td>
</tr>
<tr>
<td>17. Cracks or scarps on slopes</td>
<td>X</td>
<td></td>
<td>24. Were Photos taken during the dam inspection?</td>
<td>X</td>
</tr>
</tbody>
</table>

Major adverse changes in these items could cause instability and should be reported for further evaluation. Adverse conditions noted in these items should normally be described (extent, location, volume, etc.) in the space below and on the back of this sheet.

Inspection Issue #
Comments

16. Submerged outlet, could not observe.

19. A few minor erosion gullies and a few abandoned small animal burrows were observed along the west dike slopes.
19. Plant staff has an ongoing maintenance program to address these minor issues.

20. Plant staff estimated flow through outlet to be about 200 gpm.
Coal Combustion Waste (CCW)
Impoundment Inspection

Impoundment NPDES Permit # **UGW270004**
INSPECTOR **Steve Brown / Nick Miller**

Date **October 26, 2010**

Impoundment Name **Wastewater Holding Pond**

Impoundment Company **Intermountain Power Service Corp.**

EPA Region **8**

State Agency (Field Office) Address **1595 Wynkoop St Denver, CO 80202**

Name of Impoundment **Wastewater Holding Pond**

(Report each impoundment on a separate form under the same Impoundment NPDES Permit number)

New __________ Update __________

Yes
No

Is impoundment currently under construction? ______ **X**

Is water or ccw currently being pumped into the impoundment? ______ **X**

IMPOUNDMENT FUNCTION: **Storage of Flue Gas, boiler slag, bottom ash and other process water**

Nearest Downstream Town: **Delta, UT** (impoundment is not located on a stream or drainage)

Distance from the impoundment **11 miles**

Impoundment Location:

Longitude **112** Degrees **36** Minutes **0.8** Seconds

Latitude **39** Degrees **30** Minutes **28.7** Seconds

State **UT** County **Millard**

Does a state agency regulate this impoundment? **YES** **X** **NO**

If So Which State Agency? **Utah Department of Natural Resources, Div. of Water Quality.**

EPA Form, Jan 09
HAZARD POTENTIAL (In the event the impoundment should fail, the following would occur):

_____ LESS THAN LOW HAZARD POTENTIAL: Failure or misoperation of the dam results in no probable loss of human life or economic or environmental losses.

__x__ LOW HAZARD POTENTIAL: Dams assigned the low hazard potential classification are those where failure or misoperation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the owner's property.

_____ SIGNIFICANT HAZARD POTENTIAL: Dams assigned the significant hazard potential classification are those dams where failure or misoperation results in no probable loss of human life but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. Significant hazard potential classification dams are often located in predominantly rural or agricultural areas but could be located in areas with population and significant infrastructure.

_____ HIGH HAZARD POTENTIAL: Dams assigned the high hazard potential classification are those where failure or misoperation will probably cause loss of human life.

DESCRIBE REASONING FOR HAZARD RATING CHOSEN:

An uncontrolled release of the structure's contents due to a failure or misoperation is not considered to cause loss of human life and the economic and environmental damages would be relatively low. The flood extent would be limited by the very flat surrounding topography. Flood waters would likely be widespread with shallow depths. Based on the pond height and volume, the inundation area would be primarily limited to Company property. Consistent with the Federal Guidelines for Dam Safety, the dam should be classified as a "Low" hazard structure.
CONFIGURATION:

CROSS VALLEY

SIDE-HILL

DIKED

INCISED

——— Cross-Valley
——— Side-Hill
——— Diked
——— Incised (form completion optional)

X Combination Incised/Diked

Embankment Height 15 feet
Pool Area 53 acres
Current Freeboard 5.9 feet

Embarkment Material Earth
Liner HDPE Liner
Liner Permeability 1x10^-8 cm/sec for intact HDPE
TYPE OF OUTLET (Mark all that apply)

None Open Channel Spillway
 Trapezoidal
 Triangular
 Triangular

 Depth
 Bottom (or average) width
 Top width

X Outlet

24 in inside diameter

Material
 corrugated metal
 welded steel
 concrete
 plastic (hdpe, pvc, etc.)
 other (specify____________________

Is water flowing through the outlet? YES X NO____

No Outlet

Other Type of Outlet (Specify) ____________________________

The Impoundment was Designed By Black & Veatch Consulting Engineers

__
Has there ever been a failure at this site? YES _____ NO X

If So When?

If So Please Describe:
Has there ever been significant seepages at this site? YES X NO _____

If So When? **1988-1989**

If So Please Describe:

During the winter of 1988 the HDPE liner was damaged due to temperature shrinkage that resulted in multiple liner tears within the storage basin.

During this event, water seeped through the bottom of the ash pond, where it remained perched upon an underlying clay layer, as indicated by groundwater monitoring wells. However, the utility reports that seepage or saturated areas along the embankment or at the toe of the embankment were not observed at the time. Following the event, the liner was repaired and temperature expansion/contraction compensation panels were installed. In addition, groundwater recovery wells were installed to capture and pump the water perched on top of the underlying clay layer that was released during this event, back to the Ash Recycle Basin.
Has there ever been any measures undertaken to monitor/lower Phreatic water table levels based on past seepages or breaches at this site?

YES _____ NO X

If So which method (e.g., piezometers, gw pumping, ...)?

If So Please Describe:

The phreatic water table in the impoundment dikes has not been affected by the 1988-89 pond leak events. The dike slopes underlying the HDPE lining in the Waste Water Holding Pond became locally saturated and soft and were stabilized using concrete during the lining repair. As indicated previously, groundwater recovery wells were installed to capture and pump the water perched on top of the underlying clay layer that was released during the 1988 liner tear event back to the Ash Recycle Basin.
Appendix B

Inspection Photographs

October 26, 2010
Photo 1: Wastewater Holding Pond, looking south from north dike.

Photo 2: Wastewater Holding Pond, looking west at north dike upstream slope.
Photo 3: Wastewater Holding Pond, looking west at north dike crest and downstream slope.

Photo 4: Wastewater Holding Pond, looking south at intake structure from north dike.
Photo 5: Wastewater Holding Pond, looking south at reservoir area from intake structure.

Photo 6: Wastewater Holding Pond, intake structure steel stop logs.
Photo 7: Wastewater Holding Pond, looking west at reservoir area and west dike from intake.

Photo 8: Wastewater Holding Pond, Intake structure platform and removable grate.
Photo 9: Wastewater Holding Pond, looking west at north dike liner.

Photo 10: Wastewater Holding Pond, looking east at east dike and liner.
Photo 11: Wastewater Holding Pond, looking south from west dike at crest and entrance ramp.

Photo 12: Wastewater Holding Pond, looking south at west dike downstream slope.
Photo 13: Wastewater Holding Pond, looking south at west dike entrance ramp, note ramp gage.

Photo 14: Wastewater Holding Pond, looking at groundwater well along west dike.
Photo 15: Wastewater Holding Pond, looking east at reservoir area and east dike from west dike.

Photo 16: Wastewater Holding Pond, looking east at reservoir area and east dike from west dike.
Photo 17: Wastewater Holding Pond, looking east at south dike crest.

Photo 18: Wastewater Holding Pond, looking east at south dike upstream slope and liner.
Photo 19: Bottom Ash Basin #3, looking at intake and south dike upstream slope and liner.

Photo 20: Bottom Ash Basin #3, looking north at west dike crest, upstream slope and liner.
Photo 21: Bottom Ash Basin #3, looking northeast from west dike at reservoir area and east inner dike

Photo 22: Bottom Ash Basin #3, looking north at west dike downstream slope.
Photo 23: Settling Basin, looking east from BA#3 south dike at settling basin reservoir area.

Photo 24: Bottom Ash Basin #1-3, looking east at south dike crest and downstream slope.
Photo 25: Bottom Ash Basin #3, looking north at intake structure.

Photo 26: Bottom Ash Basin #3, looking northeast at BA#2/#3 inner dike and liner.
Photo 27: Bottom Ash Basin #2, looking south from south dike at Settling basin slopes and reservoir area.

Photo 28: Evaporation Ponds, looking northwest from BA#3 west dike at evaporation ponds.
Photo 29: Bottom Ash Basin #1-3, looking east at north dike crest and downstream slope.

Photo 30: Bottom Ash Basin #3, looking at inlet pipeline discharging into rundown structure.
Photo 31: Bottom Ash Basin #3, looking at discharge through rundown structure.

Photo 32: Bottom Ash Basin #3, looking south from north bank at inlet area and reservoir slopes.
Photo 33: Bottom Ash Basin #1, looking south at intake and inner dike upstream slope and liner.

Photo 34: Bottom Ash Basin #2, looking south at intake and inner dike upstream slope and liner.
Photo 35: Bottom Ash Basin #2, looking northwest from inner dike at inlet and reservoir area.

Photo 36: Bottom Ash Basin #1, looking northeast from inner dike at inlet and reservoir area.
Photo 37: Bottom Ash Basin #1, looking north at east dike downstream slope.

Photo 38: Bottom Ash Basin #1, looking north at east dike downstream toe.
Photo 39: Bottom Ash Basin #1, looking north at east dike crest.

Photo 40: Bottom Ash Basin #1, looking south east dike upstream slope and liner.
Photo 41: Evaporation Pond #5, looking south at reservoir area and upstream liner.

Photo 42: Evaporation Pond #6, looking south at reservoir area and upstream liner.
Photo 43: Evaporation Pond #6, looking southeast at reservoir area and inner dikes.

Photo 44: Evaporation Pond #2, looking east at reservoir area and upstream liner, note considerable salt accumulation.
Appendix C

Reply to Request for Information Under Section 104(e)
March 23, 2009

Mr. Richard Kinch
US Environmental Protection Agency
Two Potomac Yard
2733 South Crystal Drive
5th Floor; N-5783
Arlington, VA 22202 2733

Dear Mr. Kinch,

Subject: Response to CERCLA §104(e) Information Collection Request
Intermountain Power Project, Delta, UT

As Operating Agent of Intermountain Power Project (IPP), located in Delta, Utah, the Los Angeles Department of Water & Power (LADWP) is herein providing required information in response to Environmental Protection Agency’s (EPA) Information Collection Request (ICR) on impounded management units used for coal combustion byproducts. Your CERCLA §104(e) ICR of March 9, 2009, was received by the IPP on March 13, 2009.

There are thirteen management units at the IPP to which this ICR is applicable:

<table>
<thead>
<tr>
<th>Management Unit(s)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settling Basin (one)</td>
<td>Intermediate storage</td>
</tr>
<tr>
<td>Bottom Ash Basins (three)</td>
<td>Permanent ash disposal and</td>
</tr>
<tr>
<td></td>
<td>intermediate water storage</td>
</tr>
<tr>
<td>Ash Water Recycle Basin (one)</td>
<td>Intermediate storage</td>
</tr>
<tr>
<td>Wastewater Holding Basin (one)</td>
<td>Intermediate storage</td>
</tr>
<tr>
<td>Evaporation Ponds (six)</td>
<td>Permanent disposal</td>
</tr>
<tr>
<td>Landfill Run-Off Basin (one)</td>
<td>Permanent disposal</td>
</tr>
</tbody>
</table>

The information requested was compiled by the Intermountain Power Service Corporation (IPSC), which operates the plant. Answers to the specific questions contained within the request are in Enclosure 1. Documentation specifically requested to support Question No. 6 is provided in Enclosure 2. Other supporting documentation
can be found at http://nrwr1.nr.state.ut.us/cgi-bin/damview.exe, by clicking "List by Dam Name", and choosing each applicable management unit under "Intermountain Power."

For clarifications to this submittal, please contact Mr. George W. Cross, IPSC President and Chief Operations Officer, at (435) 864-4414, or george-c@ipsc.com.

I am the Director of Generation for the LADWP, the Operating Agent for the IPP, and therefore have the authority to make the following certification as authorized representative for the IPP as required by the ICR:

I certify that the information contained in this response to EPA’s request for information and the accompanying documents is true, accurate, and complete. As to the identified portions of this response for which I cannot personally verify their accuracy, I certify under penalty of law that this response and all attachments were prepared in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based upon my inquiry of the person or persons who manage the system, those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

Signed: Eric J. Tharp

Name: Eric J. Tharp

Title: Director of Generation

DQ/RJC:sg
Enclosures
By Federal Express
c/enc: Mr. George W. Cross – IPSC
 Mr. Blaine Ipson – IPSC
 Mr. Rand Crafts – IPSC
April 20, 2004

GEORGE W. CROSS, CHIEF OPERATIONS OFFICER
INTERMOUNTAIN POWER SERVICE CORPORATION
850 WEST BRUSH WELLMAN ROAD
DELTA, UT 84624

Re: INTERMOUNTAIN POWER - BOTTOM ASH BASINS/UT00463
INTERMOUNTAIN POWER - BOTTOM ASH RECYCLE/UT00464
INTERMOUNTAIN POWER - EVAPORATION PONDS/UT00465
INTERMOUNTAIN POWER - SETTLING BASIN/UT00466
INTERMOUNTAIN POWER - STORAGE BASIN/UT00467
INTERMOUNTAIN POWER - WASTEWATER/UT00468

A field inspection of the above-referenced dams was completed on April 14, 2004, with the following in attendance:

<table>
<thead>
<tr>
<th>NAME</th>
<th>REPRESENTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terry Monroe</td>
<td>Division of Water Rights</td>
</tr>
<tr>
<td>Blain Ipson</td>
<td>Owner’s Representative</td>
</tr>
</tbody>
</table>

Based on our visual observation of the dam and appurtenant facilities, we have observed some items which need attention to ensure the satisfactory long-term operation of the facilities:

1. Several burrowing rodents were observed on the Wastewater embankment. These rodents should be eradicated.

2. Erosion gullies have formed on several areas of the downstream face of the embankments. The most notable area is at the southwest corner of the evaporation ponds. It appears that this is a result of the crest being graded to drain to the downstream side in these areas. The crest of the embankments should be graded with a slight slope so that they drain to the upstream side into the basin.
Your cooperation is appreciated. If you have any questions, please feel free to contact Kirk Forbush at (435) 896-4429.

Sincerely,

Jerry D. Olds
Jerry D. Olds, P.E.
State Engineer

JDO#m

pc: Kirk Forbush - Water Rights Regional Engineer
 Director Millard County Emergency Services
Intermountain Power Service Corporation Response to EPA March 9, 2009 Request for Information Under CERCLA §104(e)

QUESTION #1

1. Relative to the National Inventory of Dam criteria for High, Significant, Low, or Less-than-Low, please provide the potential hazard rating for each management unit and indicate who established the rating, what the basis of the rating is, and what federal or state agency regulates the unit(s). If the unit(s) does not have a rating, please note that fact.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a. Please provide the potential hazard rating for each management unit</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>Not Rated</td>
</tr>
<tr>
<td>1.b. Indicate who established the rating</td>
<td>Utah Department of Natural Resources</td>
<td>n/a</td>
</tr>
<tr>
<td>1.c. Basis for the rating</td>
<td>No potential for probable loss of human life, high economic loss, or environmental loss</td>
<td>No potential for probable loss of human life, high economic loss, or environmental loss</td>
<td>No potential for probable loss of human life, high economic loss, or environmental loss</td>
<td>No potential for probable loss of human life, high economic loss, or environmental loss</td>
<td>No potential for probable loss of human life, high economic loss, or environmental loss</td>
<td>Does not exceed 25 feet in height, does not exceed 50 acre feet (a)</td>
</tr>
<tr>
<td>1.d. Agency regulating the unit</td>
<td>Utah Department of Natural Resources</td>
</tr>
</tbody>
</table>

NOTE: For additional information for those IPP ponds, please refer to http://www.epa.gov/epaoswer/hazard/cr.htm , and click “List by Dam Name”, and choose each unit under “Intermountain Power.”

QUESTION #2

2. What year was each management unit commissioned and expanded?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. What year was each management unit commissioned and expanded?</td>
<td>1983</td>
<td>1986</td>
<td>1986</td>
<td>1986</td>
<td>1986</td>
<td>1986</td>
</tr>
</tbody>
</table>

QUESTION #3

3. What materials are temporarily or permanently contained in the unit? Use the following categories to respond to this question:
 (1) fly ash; (2) bottom ash; (3) boiler slag; (4) flue gas emission control residuals; (5) other. If the management unit contains more than one type of material, please identify all that apply. Also, if you identify “other,” please specify the other types of materials that are temporarily or permanently contained in the unit(s).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. What materials are temporarily or permanently contained in the unit?</td>
<td>Flue gas emission control residuals; OTHER (incl. wash down, coal pile run-off, boiler blowdown, cooling tower blowdown, regenerant rinseate, stormwater collection, building/structure drains)</td>
<td>Bottom ash; boiler slag; OTHER (incl. pulverizer rejects)</td>
<td>OTHER (incl. leachate from bottom ash, boiler slag, pulverizer rejects)</td>
<td>Flue gas emission control residuals; OTHER (incl. all process waters separated for re-use: wash down, coal pile run-off, boiler blowdown, cooling tower blowdown, regenerant rinseate, leachate from bottom ash, boiler slag, pulverizer rejects)</td>
<td>OTHER (incl. all pond water sources as described for WW Holding Basin, and treated sewage plant effluent)</td>
<td>OTHER (incl. leachate and run-off from combustion by-products landfill which consists of fly ash, flue gas emission control residuals, bottom ash, boiler slag, pulverizer rejects)</td>
</tr>
</tbody>
</table>

IPP Response Page 1
INTERMOUNTAIN POWER SERVICE CORPORATION RESPONSE TO EPA MARCH 9, 2009 REQUEST FOR INFORMATION UNDER CERLCA §104(e)

QUESTION #4

4. Was the management unit(s) designed by a Professional Engineer? Is or was the construction of the waste management unit(s) under the supervision of a Professional Engineer? Is inspection and monitoring of the safety of the waste management unit(s) under the supervision of a Professional Engineer?

<table>
<thead>
<tr>
<th>ICR Question</th>
<th>Settling Basin</th>
<th>Bottom Ash Basins</th>
<th>Ash Water Recycle Basin</th>
<th>Wastewater Holding Basin</th>
<th>Evaporation Ponds</th>
<th>Landfill Run-off Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.a. Was the management unit(s) designed by a Professional Engineer?</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>4.b. Is or was the construction of the waste management unit(s) under the supervision of a Professional Engineer?</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>4.c. Is inspection and monitoring of the safety of the waste management unit(s) under the supervision of a Professional Engineer?</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

NOTE: For supporting documentation on these IPP ponds, please refer to http://crowdfly.state.ut.us-ps-hdmview.exe, and click “List by Dam Name”, and choose each unit under “Intermountain Power.”
5. When did the company last assess or evaluate the safety (i.e., structural integrity) of the management unit(s)? Briefly describe the credentials of those conducting the structural integrity assessments/evaluations. Identify actions taken or planned by facility personnel as a result of these assessments or evaluations. If corrective actions were taken, briefly describe the credentials of those performing the corrective actions, whether they were company employees or contractors. If the company plans an assessment or evaluation in the future, when is it expected to occur?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.a. When did the company last assess or evaluate the safety of the management unit(s)?</td>
<td>Spring, 2008</td>
<td>Spring, 2008</td>
<td>Spring, 2008</td>
<td>Spring, 2008</td>
<td>Spring, 2008</td>
<td>Spring, 2008</td>
</tr>
<tr>
<td>5.b. Describe the credentials of those conducting the structural integrity assessments/evaluations</td>
<td>Environmental Engineer</td>
<td>Environmental Engineer</td>
<td>Environmental Engineer</td>
<td>Environmental Engineer</td>
<td>Environmental Engineer</td>
<td>Environmental Engineer</td>
</tr>
<tr>
<td>5.c. Describe the credentials of those performing the corrective actions</td>
<td>Plant Operations Supervisor, Plant Engineer (employees) HDPE Liner Repair Personnel (contractor)</td>
<td>Plant Operations Supervisor, Plant Engineer (employees) HDPE Liner Repair Personnel (contractor)</td>
<td>Plant Operations Supervisor, Plant Engineer (employees) HDPE Liner Repair Personnel (contractor)</td>
<td>Plant Operations Supervisor, Plant Engineer (employees) HDPE Liner Repair Personnel (contractor)</td>
<td>Plant Operations Supervisor, Plant Engineer (employees) HDPE Liner Repair Personnel (contractor)</td>
<td></td>
</tr>
<tr>
<td>5.d. When is the next assessment expected to occur?</td>
<td>Spring, 2009</td>
<td>Spring, 2009</td>
<td>Spring, 2009</td>
<td>Spring, 2009</td>
<td>Spring, 2009</td>
<td>Spring, 2009</td>
</tr>
</tbody>
</table>
QUESTION #6

6. When did a State or a Federal regulatory official last inspect or evaluate the safety (structural integrity) of the management unit(s)?

If you are aware of a planned state or federal inspection or evaluation in the future, when is it expected to occur? Please identify the Federal or State regulatory agency or department which conducted or is planning the inspection or evaluation. Please provide a copy of the most recent official inspection report or evaluation.

<table>
<thead>
<tr>
<th>ICR Question</th>
<th>Bottom Ash Basins</th>
<th>Ash Water Recycle Basin</th>
<th>Wastewater Holding Basin</th>
<th>Evaporation Ponds</th>
<th>Landfill Run-off Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.a. When did a State or a Federal regulatory official last inspect or evaluate the safety of the management unit(s)?</td>
<td>April, 2004</td>
<td>April, 2004</td>
<td>April, 2004</td>
<td>April, 2004</td>
<td>April, 2004</td>
</tr>
<tr>
<td>6.b. If you are aware of a planned state or federal inspection or evaluation in the future, when is it expected to occur?</td>
<td>2009 (every 5 years)</td>
<td>2009 (every 5 years)</td>
<td>2009 (every 5 years)</td>
<td>2009 (every 5 years)</td>
<td>Not expected</td>
</tr>
<tr>
<td>6.c. Please identify the regulatory agency or department which conducted or is planning the inspection or evaluation.</td>
<td>State of Utah Department of Natural Resources, Utah Division of Water Rights</td>
<td>State of Utah Department of Natural Resources, Utah Division of Water Rights</td>
<td>State of Utah Department of Natural Resources, Utah Division of Water Rights</td>
<td>State of Utah Department of Natural Resources, Utah Division of Water Rights</td>
<td>n/a</td>
</tr>
</tbody>
</table>

NOTE: For additional information on these IPR ponds, please refer to http://www1.epa.state.ut.us/dwq/dam bekan/104e.html, and click "List by Dam Name," and choose each unit under "Intermountain Power.”

QUESTION #7

7. Have assessments or evaluations, or inspections conducted by State or Regulatory officials conducted within the last year uncovered a safety issue(s) with the management unit(s), and if so, describe the actions that have been or are being taken to deal with the issue or issues. Please provide any documentation that you have for these actions.

<table>
<thead>
<tr>
<th>ICR Question</th>
<th>Bottom Ash Basins</th>
<th>Ash Water Recycle Basin</th>
<th>Wastewater Holding Basin</th>
<th>Evaporation Ponds</th>
<th>Landfill Run-off Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.a. Have evaluations conducted within the last year uncovered a safety issue with the management unit(s)?</td>
<td>No safety issues</td>
<td>No safety issues; minor maintenance items only</td>
</tr>
<tr>
<td>7.b. Describe the actions taken</td>
<td>n/a</td>
<td>Liner repair, embankment run-off erosion fill</td>
<td>Liner repair, embankment run-off erosion fill</td>
<td>Liner repair</td>
<td>Liner repair</td>
</tr>
<tr>
<td>7.c. Provide documentation</td>
<td>N/A – no safety issues</td>
</tr>
</tbody>
</table>
Intermountain Power Service Corporation Response to EPA March 9, 2009 Request for Information Under CERLCA §104(e)

QUESTION #8

8. What is the surface area (acres) and total storage capacity of each of the management unit(s)? What is the volume of materials currently stored in each of the management unit(s)? Please provide the date that the volume measurement(s) was taken. Please provide the maximum height is explained later in this Enclosure.

<table>
<thead>
<tr>
<th>ICR Question</th>
<th>Settling Basin</th>
<th>Bottom Ash Basins</th>
<th>Ash Water Recycle Basin</th>
<th>Wastewater Holding Basin</th>
<th>Evaporation Ponds</th>
<th>Landfill Run-off Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.a. What is the surface area (acres) of each of the management unit(s)?</td>
<td>14 acres</td>
<td>105 acres (three ponds at 35 acres each)</td>
<td>27 acres</td>
<td>53 acres</td>
<td>180 acres (Six ponds @ 30 acres each)</td>
<td>5 acres</td>
</tr>
<tr>
<td>8.b. What is the total storage capacity of each of the management unit(s)?</td>
<td>145 af</td>
<td>3000 af (three ponds at 1000 af each)</td>
<td>590 af</td>
<td>650 af</td>
<td>3225 af (Six ponds at approx. 540 af each, average)</td>
<td>30 af</td>
</tr>
<tr>
<td>8.c. What is the volume of materials currently stored in each of the management unit(s)?</td>
<td>103 af</td>
<td>1590 af</td>
<td>321 af</td>
<td>551 af</td>
<td>2077 af</td>
<td>Empty</td>
</tr>
<tr>
<td>8.d. Please provide the date that the volume measurement(s) was taken.</td>
<td>3/2/2009</td>
<td>3/2/2009</td>
<td>3/2/2009</td>
<td>3/2/2009</td>
<td>3/2/2009</td>
<td>3/13/09</td>
</tr>
<tr>
<td>8.e. Please provide the maximum height is explained later in this Enclosure.</td>
<td>7 ft</td>
<td>36 ft</td>
<td>27 ft</td>
<td>15 ft</td>
<td>23 ft</td>
<td>8 ft</td>
</tr>
</tbody>
</table>

NOTE: For construction drawings for these IPP ponds, please refer to http://www.state.nv.us/pwp/basinview.htm and click “List by Dam Name”, and choose each unit under “Intermountain Power.”
QUESTION #9

9. Please provide a brief history of known spills or unpermitted releases from the unit within the last ten years, whether or not these were reported to State or Federal regulatory agencies. For purposes of this question, please include only releases to surface water or to the land (do not include releases to groundwater).

<table>
<thead>
<tr>
<th>ICR Question</th>
<th>Settling Basin</th>
<th>Bottom Ash Basins</th>
<th>Ash Water Recycle Basin</th>
<th>Wastewater Holding Basin</th>
<th>Evaporation Ponds</th>
<th>Landfill Run-off Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Please provide a brief history of known spills or unpermitted releases from the unit within the last ten years</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
</tbody>
</table>

QUESTION #10

10. Please identify all current legal owner(s) and operator(s) at the facility.

Owner: Intermountain Power Agency
10653 S. River Front Parkway, Suite 120
South Jordan, UT 84095

Operating Agent: Los Angeles Department of Water & Power
111 Hope St
Los Angeles, CA 90012

Operating Company: Intermountain Power Service Corp
850 W. Brush Wellman Rd
Delta, UT 84624