

CORPORATE EHS SERVICES

Duke Energy Corporation 526 South Church St. Charlotte, NC 28202

Mailing Address: EC13K/PO Box 1006 Charlotte, NC 28201-1006

Via E-Mail and Overnight Courier

February 4, 2011

Mr. Stephen Hoffman US Environmental Protection Agency Two Potomac Yard 2733 S. Crystal Drive 5th Floor, N-237 Arlington, VA 22202-2733

Re: Response to EPA letter regarding Dam Safety Assessment Report Wabash River Generating Station, Vigo County, Indiana

Dear Mr. Hoffman:

Duke Energy Indiana (DEI) received the letter from Suzanne Rudzinski, Director of the Office of RCRA of the United States Environmental Protection Agency (EPA) dated January 7, 2011 and the final report from O'Brien & Gere titled "Dam Safety Assessments for CCW Impoundments for Wabash River Generating Station." The site assessment of the Primary Ash Pond (Pond A and Pond B), Secondary Ash Pond, and South Ash Pond was conducted by the EPA's engineering contractors on May 11, 2010.

DEI supports EPA's objective to ensure the safe operation and maintenance of coal combustion residue (CCR) impoundments and is committed to meeting all state and federal requirements. Based on ongoing monitoring, maintenance and inspections, DEI is confident that the CCR impoundments have the structural integrity necessary to protect the public and the environment. The O'Brien and Gere report on the Wabash River Generating Station supports this conclusion and found that acceptable performance is expected in accordance with the applicable safety regulatory criteria.

Today's submittal is in response to the above referenced letter from EPA dated January 7, 2011. As outlined in EPA's letter the contractor made several recommendations addressing minor deficiencies and secondary studies/investigations. The DEI response to each of these recommendations can be found in the first attachment. If you have any questions regarding the

responses, comments, or need additional information, please contact Richard Meiers at 317-838-1955.

Sincerely, Duke Energy Indiana

Horpten R.

R. F. Klopfstein General Manager Wabash River Station

Attachment (2)

- DEI Responses to EPA Recommendations
- Addendum to Sargent and Lundy Pond Examination Report additional information

Attachment - DEI Responses to EPA Recommendations

6.1. URGENT ACTION ITEMS

None of the recommendations are considered to be urgent, since the issues noted above do not appear to threaten the structural integrity of the impoundments in the near term.

DEI Response

DEI agrees.

6.2. LONG TERM IMPROVEMENT

Primary and Secondary Ash Ponds

The soil strength data and other basic data used in the stability analysis completed by Sargent & Lundy were not presented in their report; therefore, we cannot comment on the validity of the analysis. We recommend that an addendum to the report be prepared that presents the basis of the analysis. If the data used in the analysis cannot be substantiated with a reasonable degree of confidence, additional investigation of the east dike may be required to provide valid data for the slope stability analysis.

<u>DEI Response</u>

The additional information referenced above was not provided to the contract inspectors during the site visit but was provided by DEI as an attachment to our comments on the draft report. The attachment included the additional information used as the basis for the slope stability analysis for the Sargent and Lundy Pond Examination Report. The attachment is again included with these responses. This recommendation is considered complete.

A hydrologic and hydraulic analysis should be performed to evaluate the potential for overtopping of the embankments during a 100-year to 50 percent PMP flood event and to identify a maximum surcharge pool elevation for slope stability analysis of that loading case.

DEI Response

DEI will have a hydrologic and hydraulic analysis for the Primary and Secondary Ash Ponds conducted by an independent engineering firm. This analysis will be completed by December 31, 2011.

Large trees growing in the outboard slope of the east dike and within five feet of the toe of the outboard slope of Primary Pond A should be removed along with other woody vegetation in accordance with standard dam safety practice. The primary reason behind the standard practice to remove trees from embankment dams is due to the potential for an uprooted tree to jeopardize the stability of the embankment and shorten seepage paths through the dike. Given

that the Primary Pond A is nearly full of ash and does not retain a significant quantity of surface water (or liquid wastes) and no evidence of seepage was observed at the toe of this dike, the argument that the trees provide a measure of stability against rising and falling Wabash River levels may have merit, but only if it can be shown through investigation and analysis that the embankment will retain adequate stability should trees be uprooted, and if there is no future intent to remove the impounded ash and return Primary Ash Pond A to retaining large volumes of surface water or liquid wastes. If a decision is made to leave the trees in place, we recommend that underbrush and new tree growth be maintained to allow foot access for future visual inspections of the slope.

DEI Response

DEI will remove the underbrush and have this completed as soon as practical but no later than October 1, 2011. Any new tree growth will be noted during inspections and removed as necessary as soon as practical. DEI will have an independent engineering firm evaluate the impact of uprooted trees and have that completed by December 31, 2011.

The trees growing along the outboard slope and within 5 feet of the toe of the Secondary Ash Pond dike should be removed. Additional maintenance recommendations are provided below:

- Remove trees/control heavy vegetation along freeboard of upstream slopes
- Place additional gravel road base in low areas on crest and re-grade to maintain positive drainage
- Monitor outboard slopes for erosion and repair if conditions worsen

DEI Response

DEI will remove trees growing along the outboard slope along the toe of the Secondary Ash pond dike and additional gravel will be placed in low areas on the crest. DEI will regrade the road to maintain positive drainage. This will be completed as soon as practical but no later than October 1, 2011. Outboard slopes will be inspected in accordance with the DEI inspection program.

South Ash Pond

In general, the South Pond appeared to be in good condition. No major improvements to the South Pond are recommended at this time. Some minor maintenance recommendations are provided below:

- Place and compact additional gravel road base to provide minimum 6-inches of cover over non-woven geotextile along crest roads and secondary roads.
- Mow vegetated slopes at least twice annually to control vegetation
- Repair erosion along groin on outboard northwest corner of the South Pond

DEI Response

DEI will place and compact additional gravel to maintain 6" of cover on areas where geotextile is exposed on the access road for the South Pond and will have that completed as soon as practical but no later than December 31, 2011. DEI agrees to mow the vegetation at least twice a year on the South Ash Pond berms beginning in the

year 2011. Erosion along the groin on the NW corner of the South Pond will be repaired as soon as practical but no later than October 1, 2011.

6.3. MONITORING AND FUTURE INSPECTION

The quarterly internal inspections should continue as planned; however, we recommend that the inspections be documented on a standard dam safety inspection checklist similar to the one provide by IDNR. Consideration should be given to inspections by licensed dam safety engineers on a regular basis to document the continued proper maintenance and operation of the CCW impoundments.

DEI Response

DEI has developed and implemented a formal ash pond dike inspection program with scheduled inspections performed by internal and third party personnel that meet the criteria listed above. Written records of the inspections will be created and maintained. This recommendation is considered complete.

6.4. TIME FRAME FOR COMPLETION OF REPAIRS/IMPROVEMENTS

We recommend that the addendum or additional investigations needed to substantiate the stability analysis of the east dike of the Primary Pond A and Secondary Pond be completed within one year of this inspection. Other recommended maintenance items should be completed as soon as practical within one year of this inspection.

DEI Response

As noted above in each response, DEI has identified when each task will be completed.

Attachment - Addendum to Sargent and Lundy Pond Examination Report – additional information

ISSUE SUMMARY Form SOP-0402-07, Revision 7B

	DESIGN CONTROL SUMM	ARY
CLIENT:	Duke Energy Indiana, Inc.	UNIT NO.: Page No.: 1
PROJECT NAME:	Wabash River Pond Examination Program	
PROJECT NO .:	10444-806	INUCLEAR SAFETY- RELATED
CALC. NO.:	WRC-F-002S	NOT NUCLEAR SAFETY-RELATED
TITLE:	Ash Pond Slope Stability Analyses	
EQUIPMENT NO .:		
	NTIFICATION OF PAGES ADDED/REVISED/SUPERSE	
Calculation starts on Attachment B (8 page	this page. Added pages 2 through 19, Attachment A (2	2 pages) and
Attachment B (o paj	yes).	
		INPUTS/ ASSUMPTIONS
DEVISION	Defense a	
REVIEW METHOD: STATUS:	Approved	REV. 0 DATE FOR REV.: /// 23/09
	abri Motan/ & Sabri Motan.	DATE: 11/12/2009
	ROGER WU / Poll	DATE: 11/23/05
APPROVER		DATE: 1/23/02
APPROVER	. Rocioik / Monde (, Jacob	
IDEN	NTIFICATION OF PAGES ADDED/REVISED/SUPERSE	EDED/VOIDED & REVIEW METHOD
		INPUTS/ ASSUMPTIONS
REVIEW METHOD:		REV.
STATUS:		DATE FOR REV.:
PREPARER		DATE:
REVIEWER		DATE:
APPROVER		DATE:
IDEN	TIFICATION OF PAGES ADDED/REVISED/SUPERSE	EDED/VOIDED & REVIEW METHOD
		INPUTS/ ASSUMPTIONS
REVIEW METHOD:		REV
STATUS:		DATE FOR REV.:
PREPARER		DATE:
REVIEWER		
APPROVER		DATE:

NOTE: PRINT AND SIGN IN THE SIGNATURE AREAS

Sargent & Lundy			bility Analysos		Calc. No. WRC-F-002S	
		Ash Pond Slope Stability Analyses		Rev. 0	Date	
		Safety-Related	X	X Non Safety-Related		Page 2 of
Client	Duke Energy	y Indiana, Inc.	Pre	epared by E.S. Motan	Date	11/12/2009
Project	Wabash River Pond Examination Program		Reviewed by		Date	

Approved by

Total Number of Pages: 29

Date

TABLE OF CONTENTS

10444-806

Proj. No.

Section	Page	Total Pages
1.0 Purpose	3	1
2.0 Design Input	3	1
3.0 Assumptions	3	1
4.0 Methodology	3	2
5.0 Calculations	4	15
6.0 Summary	18	1
7.0 References	18	2
Attachment A	A-1	2
Attachment B	B-1	8

25				Calc. No. WRC-F-002S		
Sargent	S. Lundy				Rev. 0	Date
		Safety-Related	X	Non Safety-Related	Page 3	of
Client	Duke Energy	Indiana, Inc.	Pre	epared by: E.S. Motan	Date 1	1/12/2009
Project	Wabash River Pond Examination Program		Reviewed by		Date	
Proj. No.	10444-806		Ар	proved by	Date	

1.0 Purpose

The purpose of this calculation is to determine the factors of safety of the existing exterior slopes of the Fly Ash Pond A dike, Pond B dike, and the Secondary Settling Pond Dike for the static and seismic conditions at the Wabash River Generating Station near Terre Haute, Indiana.

2.0 Design Input

- The subsoil profile, the geotechnical laboratory test results, and the recommended in-situ and embankment fill soil parameters were obtained from Ref. 1. The available borings nearest the pond location are B-11 and B-14 in Ref.1 (See also Fig. 1).
- Dike cross-sections and the cross-section locations were obtained from Refs. 2, 3, 4, 5.
- Top elevation of all pond dikes was considered at approximately El. 484' per Refs. 3 and 5.
- The approximate ground elevation is 464 feet at Pond A, Secondary Settling Pond, and Pond B areas (Refs. 2, 4).
- The top elevation of the ash fill is approximately 15 feet higher than the top of the Pond A dike as noted during the pond examination performed by S&L on 10/28/2009. The ash slopes down toward the top of the dike around the edges. This slope was considered as 3 Horizontal: 1 Vertical.
- The ash deposited in Pond A is estimated to have substantially drained and reached a condition where an angle of internal friction as well as a water table elevation can be associated with it. There are no test results available for the in-situ shear strength parameters of the ash deposited in Pond A. Ref. 6 contains triaxial compression test results on compacted samples of the ash from the existing ponds. The shear strength parameters obtained from these tests were discounted to some extent for use in the stability analyses to account for the uncompacted state of the ash inside the ponds. The Secondary Settling Pond contains water only.

3.0 Assumptions

None.

4.0 Methodology

The slope stability analyses were performed using SLOPE/W program Version 5.11 (Ref. 10). This program has been verified and validated in accordance with S&L SOP 0204 procedures. The S&L program number is 03.7.747-5.11. The runs were performed on Computer # ZD 2638. For static and seismic slope stability analyses, a large number of slip planes were generated and the factor of safety against sliding was determined for each plane. The slip planes were represented by circular arcs. The potential slip circles were analyzed using the Simplified Bishop Method which is routinely used by engineers for slope stability evaluations (See pages A-1 and A-2 for an overview of the method). Figure 4 shows the rectangular grid that forms the center points of the potential slip circles.

Sargent & Lundy		Aon one of the one of the one of the		Calc. No. WRC-F-002S		
					Rev. 0	Date
		Safety-Related	X	Non Safety-Related	Page 4	of
Client	Duke Energy	/ Indiana, Inc.	Pre	epared by: E.S. Motan	Date 1	1/12/2009
Project	Wabash River Pond Examination Program		Reviewed by		Date	
Proj. No.	10444-806		Ap	proved by	Date	

At each grid point, a number of circles tangent to each of the closely-spaced horizontal lines in the bottom portion of the figure are generated. The minimum factor of safety for each grid point is determined and registered by the software for each grid point. Once all grid points are covered in this manner, the minimum of all the FS values, the center of the most critical slip circle with the lowest FS, and the slip surface are displayed by the software.

The slope stability analyses in clayey embankments often include the effect of a crack that may open up during the service life of the earth structure as a combined result of the repeated wetting/drying repeated freeze/thaw, and gradual lateral deformation (particularly on clayey foundation soils) of the compacted dike soil over a period of several years. The shear strength available along this crack is assumed to be nonexistent, and the potential slip planes are started at the bottom of the crack. However, the dikes considered in this calculation have not shown such a condition over a period of approximately 30 years, and therefore, the slope stability analyses performed for this calculation do not consider this effect.

The slope stability analyses were also performed for the seismic conditions using a horizontal acceleration coefficient. For seismic stability, two separate analyses ("effective stress" and "total strength") are normally performed, and the smaller of the two values obtained is considered as the minimum slope factor of safety against seismic failure (Ref. 7). Generally, for small seismic events that do not significantly alter the porewater pressures in the fill and the in-situ soils, an effective stress analysis would be appropriate. If the porewater distribution is significantly altered as a result of ground shaking during a strong earthquake, the total stress analysis would be appropriate.

5.0 Calculations

Subsoil Conditions

The soil conditions shown in borings B-11 and B-14 (Ref.1) were considered as generally representative of the pond embankment area. B-11 is 45 feet deep, and B-14 is 10 feet deep.

The soils encountered consist of, from top to bottom:

- 1. Medium stiff to very soft silty clay (approximately 14 feet thick),
- 2. Loose to medium-dense to dense sand to the bottom of the boring (45 feet).

Bedrock was not encountered at 45-ft depth in B-11 although other borings (such as B-1 and B-2) further west encountered shale bedrock at depths as shallow as 18 feet. This indicates an overall downslope gradient from west to east at the top of the rock toward the Wabash River.

Approximately upper six (6) feet of the in-situ clay was described as medium stiff to very stiff (Standard Penetration Blow Counts 5 to 11 blows/ft), whereas the remaining 8 feet was described as soft to very soft (Standard Penetration Blow Counts 2 to 5 blows/ft). However, the slope stability analyses consider the same set of unit weight, friction angle, and cohesion values for both layers.

Sargent & Lundy		Ash Pond Slope Sta	oility	Analyses	Calc. N WRC-F	
					Rev. 0	Date
	2	Safety-Related	X	Non Safety-Related	Page 5	of
Client	Duke Energy	Indiana, Inc.	Pre	epared by: E.S. Motan	Date 1	1/12/2009

Client	Duke Energy Indiana, Inc.	Prepared by: E.S. Motali	Date TITZZOUS
Project	Wabash River Pond Examination	Reviewed by	Date
Proj. No.	10444-806	Approved by	Date

The **effective-stress** embankment and in-situ soil parameters used in the static and seismic analyses are shown below:

	TAB	LE	1
--	-----	----	---

Material	Unit Weight (lb/ft ³)	Friction Angle, ϕ'_{cu}	Cohesion, c' _{cu} (lb/ft ²)
Riprap	110	40	0
Pond Ash	90	25	0
Embankment Fill	120 (*)	22 (*)	250 (*)
In-situ Silty Clay	122 (*)	30 (*)	0 (*)
In-situ Sand	118 (*)	30 (*)	0 (*)

(*) Data from Ref. 1.

The total-stress parameters used in the seismic analyses are as follows:

TABLE 2

Material	Unit Weight (lb/ft ³)	Friction Angle, ϕ_{cu}	Cohesion, c _{cu} (lb/ft ²)
Riprap	110	40	0
Pond Ash	90	10	250
Embankment Fill	120 (*)	0 (*)	1500 (*)
In-situ Silty Clay	122 (*)	16 (*)	200 (*)
In-situ Sand	118 (*)	30 (*)	0 (*)

(*) Data from Ref. 1.

Many of the parameters in Tables 1 and 2 are provided in Ref. 1 for the design of the south ash pond. The unit weight and shear strength parameters of the riprap were estimated using typical values for rock fills. Also, as indicated above, the shear strength parameters of the compacted ash (Ref. 6) were reduced to adjust for the uncompacted condition of the ash in Pond A. Laboratory test data on the total strength parameters of the compacted dike fill were not available. The total strength shear strength of the compacted dike fill was represented with a cohesion of 1500 lb/ft² and a friction angle of zero degrees. This is considered as a conservative assumption as the shear strength of compacted fills

	Ash Pond Slope Stat		bility Analyses		Calc. No. WRC-F-002S	
Sargent & Lundy					Rev. 0	Date
		Safety-Related	X	Non Safety-Related	Page 6	6 of
Client	Duke Energy	/ Indiana, Inc.	Pre	pared by: E.S. Motan	Date	11/12/2009
Project		er Pond Examination	Re	viewed by	Date	
	Program					

Approved by

Date

generally increases over time as a result of gradual drying and consolidation of the fill soil which is usually compacted on the wet side of the optimum compaction moisture content.

Slope Stability Analyses

Proj. No.

10444-806

Pond B dike construction is essentially identical to that of the Secondary Settling Pond Dike. Also the South pond constructed in 2005 is being filled against the exterior slope of Pond B to eventually achieve an equilibrium condition on both sides of the dike. Therefore, Pond B dike stability was not evaluated in this calculation. The locations of the sections analyzed are shown on Fig. 3.

The seismic slope stability analyses were performed for a horizontal ground acceleration value of 0.05g. This value was obtained from the USGS map of 10-percent exceedance level Peak Ground Acceleration (PGA) values within a 50-year period (Ref. 9). The original seismic slope stability analyses were also performed with 0.05g horizontal acceleration (Ref. 1).

For the static stability analyses in terms of effective stresses, a groundwater surface profile was used. The groundwater surface was approximated in the form of three straight lines shown in Figures 4 and 5. Since no toe seepage along the pond slopes was observed during a recent pond examination (Ref. 8), the groundwater surface was considered to drop within the body of the dikes to the level of the groundwater table observed in the soil borings (Approximately EI. 456). The water level within the ash in Pond A is not known, and was considered at about two (2) feet below the top of the berm.

Pond A Dike

The perimeter dike has an exterior slope of 2H:1V and an interior slope of 1-1/2H:1V (Section D-D on Fig. 2). The main body of the dike consists of compacted clayey soil. The dike is approximately 20 feet high.

Secondary Settling Pond Dike

The perimeter dike has an exterior slope of approximately 3H:1V and an interior slope of 3H:1V (Section 1-1 on Fig. 2). The main body of the dike also consists of compacted clayey soil. The dike is approximately 20 feet high. A layer of riprap was placed over the exterior slope of the dike (Fig. 2). The riprap placed over the interior slope above and below the water line was considered part of the embankment fill as its effect on the overall dike stability is very minor.

	Ash Pond Slope Stab		bility Analyses		Calc. No. WRC-F-002S	
Sargent & Lundy					Rev. 0	Date
	8.9 • 5 ³	Safety-Related	X	Non Safety-Related	Page 7	of
Client	Duke Energy	/ Indiana, Inc.	Pro	epared by: E.S. Motan	Date	1/12/2009
Project	Wabash River Pond Examination Program		Reviewed by		Date	
Proj. No.	10444-806		Ар	proved by	Date	

FIGURE 1 (From Ref. 1)

	r.	Ash Pond Slope Stability Analyses			Calc. No. WRC-F-002S	
Sargent	& Lundy				Rev. 0	Date
	345	Safety-Related	X	Non Safety-Related	Page 8	of
Client	Duke Energy	/ Indiana, Inc.	Pre	epared by: E.S. Motan	Date 1	1/12/2009
Project	Wabash Rive	er Pond Examination	Reviewed by		Date	

Approved by

Date

nie ferense	The game with the second secon	Section D.D. a.m.	COLVE DIVE LOCATION AS STORN ON PLAN	SERVING OI & SUCHAD NOCH SERVING OI & SUCHAD NOCHAD N	Eal WK	SECTION L (c-51)
ల ల ాళ్ల క్ర ఆండ లే	Ŋ	ిందే. ఇంది. జ		2010 to 1012		

POND A DIKE (From Ref. 5)

Program

Proj. No.

10444-806

SECONDARY SETTLING POND DIKE (From Ref. 3)

FIGURE 2

		Ash Pond Slope Stability Analyses		Calc. No. WRC-F-002S		
Sargent & Lundy					Rev. 0	Date
		Safety-Related	X	Non Safety-Related	Page 9	of
Client	Duke Energy	/ Indiana, Inc.	Pre	epared by: E.S. Motan	Date	11/12/2009
Project	Wabash Rive Program	er Pond Examination	Re	viewed by	Date	
Proj. No.	10444-806		Ар	proved by	Date	

FIGURE 3

		Ash Pond Slope Sta	bility	ility Analyses		o. -002S
Sargent	t & Lundy				Rev. 0	Date
		Safety-Related	X	Non Safety-Related	Page 1	0 of
Client	Duke Energy	v Indiana, Inc.	Pre	epared by: E.S. Motan	Date 1	1/12/2009

Onone	Buke Lifergy maland, men		
Project	Wabash River Pond Examination Program	Reviewed by	Date
Proj. No.	10444-806	Approved by	Date

		Ash Pond Slope Sta	Analyses	Calc. N WRC-F		
Sargent	S. Lundy				Rev. 0	Date
		Safety-Related	X	Non Safety-Related	Page 1	1 of
Client	Duke Energy	y Indiana, Inc.	Pro	epared by: E.S. Motan	Date 1	1/12/2009
		Destanting Destanting			Data	

Project	Wabash River Pond Examination Program	Reviewed by	Date
Proj. No.	10444-806	Approved by	Date

	Ash Pond Sic			Analyses	Calc. N WRC-F	
Sargent & Lundy'''					Rev. 0	Date
	- N/	Safety-Related	X	Non Safety-Related	Page 1	8 of
Client	Duke Energy	y Indiana, Inc.	Pre	epared by: E.S. Motan	Date 1	11/12/2009
			- D.	where we all have	Data	

Project	Wabash River Pond Examination	Reviewed by	Date	
Proj. No.	10444-806	Approved by	Date	

Results

Figures 6 through 11 contain the results of the runs with the minimum factors of safety indicated. The computer analysis printout of the static analysis for Section D-D is also provided as an example (Attachment B).

The results of the static and seismic stability analyses for both ponds are summarized in Table 3. The cross-sections analyzed are shown in Figs. 4 and 5.

	TABLE 3	
Section Analyzed	Static FS _{min} (Min FS = 1.5)	Seismic FS _{min} (Min FS = 1.1)
Pond A Dike (Section D-D) (Figs. 6, 7, 8)	1.624	1.426 (Effective Stress) 1.181 (Total Stress)
Secondary Settling Pond (Section 1-1) (Figs. 9, 10, 11)	2.315	1.993 (Effective Stress) 1.970 (Total Stress)

6.0 Summary

The stability analyses of the Pond A and the Secondary Settling Pond dikes at the Wabash River Generating Station indicated acceptable factors of safety for the existing exterior slopes of the dikes against a mass slope instability under the weight of the dikes as well as the external forces acting on the dikes (hydrostatic, ash fill retained). The minimum acceptable static factor of safety is 1.5 per Ref. 7 for the "downstream" slope of embankment dams.

Acceptable slope factors of safety were also obtained from the seismic analyses performed with a lateral seismic load coefficient of 0.05g (10-percent exceedance level in 50-year period). The minimum acceptable seismic factor of safety is 1.1 per Ref. 7 for the "downstream" slope of embankment dams, which was exceeded in the calculations.

Stability analyses were not performed for Pond B dike since ash is being gradually deposited against the exterior face of this dike as the new ash disposal area south of the Pond B is filled.

7.0 References

- 1. Patriot Engineering (2000) "Revised Report of Geotechnical Investigation Proposed New Fly Ash Pond West Terre Haute, Indiana".
- Sargent & Lundy Drawing C-51, "Ash and Secondary Ash Ponds Sheet 1, Wabash River Station, Public Service Indiana, Terre Haute, Indiana" Rev. D, dated 1/22/87.

48	Ash Pond Slope Stability Analyses				o. -002S
Sargent & Lundy				Rev. 0	Date
, Here	Safety-Related	X	Non Safety-Related	Page 1	9 of LAST
					111010000

Client	Duke Energy Indiana, Inc.	Prepared by: E.S. Motan	Date 11/12/2009
Project	Wabash River Pond Examination Program	Reviewed by	Date
Proj. No.	10444-806	Approved by	Date

^{3.} Sargent & Lundy Drawing C-53, "Ash and Secondary Ash Ponds Section & Details – Sheet 1, Wabash River Station, Public Service Indiana, Terre Haute, Indiana" Rev. C, dated 1/22/87.

4. Sargent & Lundy Drawing B-554, "Ash Disposal Area Plan South Portion - Units 1 to 6, Wabash River Station, Public Service Indiana, Terre Haute, Indiana" Rev. H, dated 1/22/87.

5. Sargent & Lundy Drawing B-555, "Ash Disposal Area Sections Units 1 to 6, Wabash River Station, Public Service Indiana, Terre Haute, Indiana" Rev. G, dated 1/22/87.

6. Burns & McDonnell (2002) "Addendum No. 2 to Slope Stability Analysis – South Ash Pond Extension, Wabash Generating Station, West Terre Haute, Indiana".

7. USDA (1990) "Earth Dams and Reservoirs", Technical Release No. 60, U.S. Department of Agriculture, Soil Conservation Service, Engineering Division.

8. SL-010066, "Wabash River Pond Examination Program – Pond Examination Report", Rev. 0, November 2009.

9. USGS (2008) "Documentation for the 2008 Update of the United States National Seismic Hazard Maps", Open File Report 2008-1128.

10. GEO-SLOPE International Ltd. (2002) "SLOPE/W for Slope Stability Analysis", Version 5.11.

		Ash Pond Slope Stability Analyses			Calc. No. WRC-F-002S
	& Lundy""	Ash Pond Slope S	Rev. 0 Date		
		Safety-Related X Non Safety-Related			ed Page A-1 of
Client	Duke Energy	/ Indiana, Inc.	Prepa	red by E.S. Motan	Date 11/12/2009
Project		Wabash River Pond Examination Program		wed by	Date

Approved by

Date

The Simplified Bishop Method

Proj. No.

10444-806

The Simplified Bishop Method used in slope stability analyses in this calculation was developed by Bishop (1955). The potential slip surfaces that can cause slope stability concern are assumed to be circular (See Figure 1.a below) or a combination of straight lines (blocks). The soil mass bounded by the slope face and the slip circle is normally divided into a series of vertical slices. One such slice is shown on Figure 1.a. The forces acting on each slice are shown on Figure 1.b. These are:

- 1. Weight of the slice (W),
- 2. Shear Resistance Force along the base of the slice (S),
- 3. Normal Force along the base of the slice (N), and
- 4. Lateral inter-slice forces (E_i and E_{i+1}).

a Sara and lands sig at face

b Typical slice

Figure 1

			01.1.111		Calc. No. WRC-F-002S
Sargent & Lundy		Ash Pond Slope	Rev. 0 Date		
		Safety-Relat	ed X	Non Safety-Relate	d Page A-2 of Un
Client	Duke Energy	y Indiana, Inc.	Prepa	ared by E.S. Motan	Date 11/12/2009
Project	Wabash Riv Examination		Revie	ewed by	Date
Proj. No.	10444-806	Approved by		Date	

The Shear Force along the base of the slice (S) may be due to friction (cohesionless soils) or both cohesion and friction (cohesive soils). In cohesionless soil, the relationship between S and N is expressed as $S = N \tan \varphi$ where φ is the internal friction angle of the soil. In cohesive soil, the corresponding equation is $S = cL + N \tan \varphi$ where c is the cohesive component of the shear strength and L is the length of the slice along the base (Mohr-Coulomb Equation). The two lateral force components (E_i and E_{i+1}) are assumed to be equal in magnitude and do not figure in the overall stability of the slices.

During the stability analysis, the total moments (about point O in Figure 1) resisting failure (M_r) and the total moments that tend to mobilize the soil mass due to the weight of the soil or the external forces that act on the soil (M_m) are calculated. Both moments are calculated relative to the center of the circular slip surface and are summations of the contributions from each slice. M_r is the summation of the shear resistance force (S) for each slice along the base of the slice multiplied by the moment arm (radius of the circle).

At the start of the analysis, the maximum values of soil strength parameters (c, ϕ) can be assigned to calculate S for each slice and a factor of safety (FS) can be calculated using M_r/M_m ratio. However, the vertical equilibrium of each slice may not necessarily be satisfied. Therefore, the analysis actually starts with an assumed FS value on c and ϕ (actually tan ϕ) and the value of FS is varied until vertical equilibrium is satisfied for each slice within a prescribed margin of tolerance. At this point, the M_r/M_m ratio calculated is the FS for the particular slip circle considered. Therefore, the Simplified Bishop Analysis is a successive approximation type procedure that requires a number of iterations on FS for each slip circle.

This same procedure is repeated for a large number of potential slip circles to determine the location of the circle with the lowest FS. The available computer programs perform this analysis methodically by using an imaginary grid above the slope. At each grid point, several slip circles with different radii are generated using the grid point as the center of the circles. The lowest FS for all circles at each grid point is registered by the software. Once all grid points are processed, the software marks the grid point with the lowest FS and draws the slip circle corresponding to the lowest FS. If desired, other grid points can be clicked on to obtain FS values for other slip circles that might be of interest.

Due to a number of simplifications (i.e., lateral slice forces, as well as horizontal and moment equilibrium for each slice are not considered) inherent in it, this method has been named the "Simplified Bishop Method". Incorporating all forces affecting the slices would have made the analysis statically indeterminate (i.e., can not be solved by using lateral force, vertical force, and moment equilibrium conditions in two-dimensional space) and would have required substantially more elaborate analyses.

Reference:

 Bishop, A.W. (1955) "<u>The Use of the Slip Circle in the Stability Analysis of Slopes</u>", Geotechnique, Vol. 5, No. 1, pp. 7-17.

	10444-806
PONDAD~1.SLP	CALC # WRC-F-002S
00 +0.0000e+000	Thes. ¢
10 +0.000001000	P-B-3

ł

PBOUNDARY 0 SEISMIC +0.0000e+000 +0.0000e+000 +0.0000e+000 +0.0000e+000 INTEGRATION

-1

-1 ENGINEERING FT MATLCOLOR 5

MATLCOL	OR	5	
1	128	0	64
2	191	255	128
3	128	255	128
4	128	255	191
5	128	255	255
2	120	233	233
د	120	255	233

	Q FOE		- 14			104-44-806 COLC # WEC-F-DOZS
	QUECAL (ATTE CEDURAN DATA	NTR-SLILE FORCES		COLC # WRC-F-002S Rev. of P. B-4
	ц 0		SI ICE CE		- 1	888888888888888888888888888888888888888
	5 4 ZADIUS				AS_Load_Y	0.0000e+000 0.00000e+000 0.0000e+0000 0.0000e+00000 0.0000e+00000 0.0000e+00000 0.00000e+000000 0.0000e+00000000 0.00000e+0000000000
	COOLDINATES		Mid_Height	$\begin{array}{c} 4.266579e-001\\ 1.186988e+000\\ 2.803390e+000\\ 5.803390e+000\\ 5.5374582e+000\\ 5.5374582e+000\\ 5.5374582e+000\\ 1.044109e+001\\ 1.122276e+001\\ 1.122276e+001\\ 1.122276e+001\\ 1.122276e+001\\ 1.33249e+001\\ 1.33249e+001\\ 1.33324e+001\\ 1.447439e+001\\ 1.447439e+001\\ 1.447439e+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+001\\ 1.435986+000\\ 1.3333206+000\\ 1.496703e+000\\ $	AS_Load_X	0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000
	- CENTER		Y_R_Bottom	631779e+002 624778e+002 614801e+002 611474e+002 6013944e+002 6066224e+002 6066224e+002 606621e+002 606621e+002 607926e+002 612947e+002 612947e+002 612188e+002 612188e+002 61188e+002 657159e+002 7721659e+002 7721659e+002 7721659e+002 7721659e+002 7721659e+002 657159e+002 657159e+002 657159e+002 657159e+002 657159e+002 7721659e+002 7721659e+002 7721659e+002 77216599296 772165969696 77216596969692 7721659696902 77216559696902 77216559696902 77216559696902 77216559696902 77216559696902 77216559696902 77216559696902 77216559696902 77216559696902 77216559696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 7721656969002 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 772165696902 7721666902 7721757 7721666902 7721757 7721666902 77217577 7721757777777777	A_Modifier	1.000000000000000000000000000000000000
	Method 🖌		Y_R_TOP Y	540000e+002 540000e+002 649543e+002 649543e+002 659086e+002 658058e+002 6581714e+002 658714e+002 778585e+002 77557e+002 7755856+002 7755956+002 7755956+002 7755956+002 7755956+002 7755956+002 7755956+002 7755956+002 7755956+002 7755956+002 7755956+002 7755956+002 7755956+002 7755956+002 7755956+002 7755116+002 8810000e+002 8810000e+002 8400000000002 840000000002 840000000002 84000000002 84000000002 84000000002 84000000002 84000000002 84000000002 84000000002 84000000002 84000000002 84000000002 840000000002 84000000002 84000000002 840000000002 84000000002 840000000002 84000000002 84000000002 84000000002 840000000000	P_Load_Y	0 0.000000000 0 0.0000000000 0 0.00000000
	slip_surface Met	3 3		4. 558108e+001 4. 5. 1908056e+001 4. 5. 1908056e+001 4. 5. 1908056e+001 4. 5. 572568e+001 4. 5. 572568e+001 4. 5. 572568e+001 4. 5. 572568e+001 4. 6. 145135e+001 4. 6. 125847e+001 4. 6. 52756897e+001 4. 6. 5275847e+001 4. 6. 5275847e+001 4. 7. 209415e+001 4. 7. 209415e+001 4. 7. 8028392e+001 4. 8. 8214392e+001 4. 8. 8214392e+001 4. 8. 8204473e+001 4. 9. 000000e+001 4. 9. 2000000e+001 4. 9. 2000000e+001 4. 9. 2000000e+001 4. 1. 012908e+002 4.	P_Load_X	0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 5	slip_	001 1893	X_Right	0002 99.0002 88.02773956777395667744558 0002 99.0002 88.020202 87.773956777357 0002 99.0002 88.020202 86.5334709002 0002 99.0002 88.020202020002 87.7373950000000000000000000000000000000000	A_Load_Y	$\begin{array}{c} \textbf{0.0000} \textbf{0.000} \textbf{0.0000} $
	Radius	4.740000e+001	Y_L_Bottom	4.640000e+002 4.631779e+002 4.618940e+002 4.618940e+002 4.6114778e+002 4.611474e+002 4.607196e+002 4.606588e+002 4.606588e+002 4.605588e+002 4.610042e+002 4.61188e+002 4.61188e+002 4.651188e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.65305e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739741e+002 4.739766556 4.73976656656 4.7397665665666002 4.739766666002 4.739766666002 4.739766666002 4.739766666002 4.739766666002 4.739766666002 4.739766666002 4.7397666002 4.7397666002 4.7397666002 4.7397666002 4.7397666002 4.7397666002 4.7397666002 4.7397666002 4.7397666002 4.7397666002 4.7397666002 4.7397666002 4.73976660002 4.7397660002 4.7397660002 4.7397660002 4.7397660002 4.7397660002 4.7337660002 4.7400002 4.7400000000000000000000000000000000000	_Load_X A	00000000000000000000000000000000000000
09 . AM	Center_Y	5.080000e+002	Y_L_Top	4.640000e+002 4.640000e+002 4.640000e+002 4.640000e+002 4.659086e+002 4.659086e+002 4.659086e+002 4.659086e+002 4.6697257e+002 4.716342e+002 4.735428e+002 4.735428e+002 4.735428e+002 4.73599e+002 4.775399e+002 4.775399e+002 4.775399e+002 4.775399e+002 4.775399e+002 4.775399e+002 4.775399e+002 4.775399e+002 4.775399e+002 4.775399e+002 4.7753996+002 4.840000e+002 4.8400000e+002 4.8400000e+002 4.8400000e+002 4.8400000e+002 4.840000000000000000000000	L_Load_Y A	0.00006+000 0.00006+000 0.00006+000 0.00006+000 0.000006+000 0.000006+000 0.000006+000 0.000006+000 0.000006+000 0.00000000 0.000000000 0.000000000 0.000000
DATESTAMP 11/12/2009 TIMESTAMP 11:35:11 A	Center_X	6.100000e+001	X_Left	4.558108e+001 4.558108e+001 5.190856e+001 5.190856e+001 5.57258e+001 5.572568e+001 6.145135e+001 6.3459135e+001 6.3459135e+001 6.717703e+001 6.717703e+001 6.717703e+001 7.48112701 7.48112701 7.48112701 8.2268476e+001 7.671983991001 7.671983990001 8.620946e+001 8.620946e+001 8.620946e+001 8.620946e+001 8.620946e+001 8.620946e+001 9.6000000e+001 9.6000000001 1.0000000000000101 1.000000000	L_Load_X	0.0000e+000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.00000e+0000 0.00000e+0000 0.0000000000
DATE TIME			SL#	HUW420220001004200200000000000000000000000	۶L#	10w4v0/80011

POND A DIKE SECT D-D STATIC

AWAYYS RESOURS FOR ORTHERE ORDER

DATESTAMP 11/12/2009

10444-806 CALLE # WRC-F-0025 TOEN. 10 P. B-5

	ShearRight	$\begin{array}{c} 0.0000 \pm +000\\ 0.00000 \pm +000\\ 0.000000 \pm +000\\ 0.00000 \pm +000\\ 0.00000 \pm +000\\ 0.00000 \pm +000\\ 0.00000$
4	sideright	-1.0137e+002 -7.1004e+002 -7.1040e+002 -1.7040e+003 -1.7040e+003 -3.151e+003 -3.151e+003 -3.3896e+003 -3.3896e+003 -5.3741e+003 -5.5426+003 -7.3436e+003 -7.3436e+003 -7.5432e+003 -7.556+
POND A DIKE SECI D-D STALL	shearLeft	0.0000e+000 0.0000e+0000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+00000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.00000e+00000 0.0000e+00000 0.00000e+0000000 0.00000e+0000000000
	000 SideLeft	0.0000e+000 1.0137e+002 3.5620e+002 1.11654e+002 1.1351e+003 1.1351e+003 3.13516e+003 3.3741e+003 5.0145e+003 5.0145e+003 6.5441e+003 7.5432e+003 7.5422e+003 7.5422e+003 7.54226+00326+003 7.54226+003 7.54226+00326+00326+00326+00326+00
0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 2.5000e+002 2.5000	Applied_Lambda= 0.0000 .ngle Cohesion Si	0.0000e+000 0.0000e+0000 0.0000e+0000 0.00000e+0000 0.00000e+0000 0.00000e+0000 0.0000000000
3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 2.2000e+00000000000000000000000000000000	Applied Phi_Angle	3.0000e+001 3.00000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000000000000000000000000000000000
1.8100e+002 2.4138e+002 3.5763e+002 4.0583e+002 4.0583e+002 4.0583e+002 4.0583e+002 5.7146e+002 6.6802e+002 7.473e+002 8.5555e+002 8.5555e+002 8.5555e+002 8.5555e+002 9.1759e+002 9.1759e+002 9.1759e+002 9.1759e+002 9.2557e+002 9.3579e+002 7.5929e+002 7.5929e+002 7.5929e+002 7.1614e+002	1.6241460 ShearMob	5.0266 ± 001 1.3445 ± 002 1.3445 ± 002 2.5627 ± 002 3.5679 ± 002 5.5739 ± 002 5.5739 ± 002 7.2980 ± 002 7.2980 ± 002 7.2980 ± 002 7.2980 ± 002 8.2132 ± 002 8.2132 ± 002 8.7154 ± 002 8.7154 ± 002 9.4604 ± 002 9.57556 ± 002 9.57556 ± 002 9.57556 ± 002 9.57556 ± 002 9.57556 ± 002 9.5900 ± 002 9.7900 ± 002 9.7900 ± 002 9.7900 ± 002 9.7900 ± 002 9.7900 ± 002 1.0218 ± 002
$\begin{array}{c} \textbf{4.7648} \textbf{6.3546} \textbf{6.02} \\ \textbf{6.3546} \textbf{6.002} \\ \textbf{9.4146} \textbf{6.002} \\ \textbf{9.4146} \textbf{6.002} \\ \textbf{1.5044} \textbf{6.003} \\ \textbf{1.5786} \textbf{6.003} \\ \textbf{1.7586} \textbf{6.003} \\ \textbf{1.7586} \textbf{6.003} \\ \textbf{2.35796} \textbf{6.003} \\ \textbf{2.35796} \textbf{6.003} \\ \textbf{2.35106} \textbf{6.003} \\ \textbf{2.35106} \textbf{6.003} \\ \textbf{2.92556} \textbf{6.003} \\ \textbf{2.92566} \textbf{6.003} \\ \textbf{2.92556} \textbf{6.003} \\ \textbf{2.92556} \textbf{6.003} \\ \textbf{2.92556} \textbf{6.003} \\ \textbf{2.92566} \textbf{6.003} \\ \textbf{2.925566} \textbf{6.003} \\ \textbf{2.925566} \textbf{6.003} \\ \textbf{2.925566} \textbf{6.003} \\ \textbf{2.925566} \textbf{6.003} \\ \textbf{2.925666} \textbf{6.003} \\ \textbf{2.925666} \textbf{0.03} \\ \textbf{2.925666} \textbf{0.03} \\ \textbf{2.9256666} \textbf{0.03} \\ \textbf{2.9266662} \textbf{0.03} \\ \textbf{2.92666264003} \\ \textbf{2.92666264003} \\ \textbf{2.926666264003} \\ \textbf{2.926666264003} \\ \textbf{2.926666264003} \\ \textbf{2.926666264003} \\ \textbf{2.926666264003} \\ 2.926666264003 \\ \textbf{2.926666264003 \\ \textbf{2.9266666666666666666666666666666666666$	Bishop_Method_Fm= SL# Normal_M	$\begin{array}{c} 1.4140 \pm 002\\ 3.7822 \pm 002\\ 5.6255 \pm 002\\ 7.2091 \pm +002\\ 1.3132 \pm +003\\ 1.31341 \pm +003\\ 1.31341 \pm +003\\ 2.5557 \pm 003\\ 2.5557 \pm 003\\ 2.5557 \pm 003\\ 2.5517 \pm +003\\ 3.0747 \pm +003\\ 3.07477 \pm 003\\ 3.0044 \pm 003\\ 3.12176 \pm 003\\ 3.12196 \pm 003\\ 3.12196 \pm 003\\ 3.12196 \pm 003\\ 3.10196 \pm 003\\ 3.10$
860222222222222222222222222222222222222	Bisho SL#	40.222222222222222222222222222222222222

POND A DIKE SECT D-D STATIC

0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000	ShearRight	0.0000e+000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+000000 0.0000e+0000 0.0000e+0000000000	ShearRíght	-4.2993e+000 -3.0949e+001 -9.3928e+001 -1.9389e+002 -3.5442e+002 -5.7726e+002 -1.1801e+003 -1.5275e+003 -1.8596e+003 -2.4575e+003 -2.4575e+003 -2.8075e+003
TIC -1.2283e+003 -3.7638e+002 1.7785e+002 3.0548e+002 -8.0000e-005	sideright	-1.0137e+002 -3.5620e+002 -1.1351e+002 -1.7040e+003 -2.3760e+003 -3.1151e+003 -3.2151e+003 -5.3741e+003 -5.3741e+003 -5.3741e+003 -7.0125e+003 -7.3436e+003 -7.3436e+003 -7.5432e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.5452e+003 -7.54556e+003 -7.54556e+003 -7.54556e+003 -7.54556e+003 -7.54556e+003 -7.54556e+003 -7.54556690 -7.5455690 -7.5455690 -7.5455690 -7.5455690 -7.5456690 -7.5566600 -7.5566600 -7.5566600 -7.5566600	sideright	-9.9049e+001 -3.5909e+002 -7.35909e+002 -1.1956e+003 -1.1856e+003 -2.5601e+003 -3.2576e+003 -4.2276e+003 -4.2276e+003 -7.0423e+003 -7.0423e+003 -7.7532e+003 -7.7532e+003
SECT D-D STATIC 0.0000e+000 -1. 0.0000e+000 -3. 0.0000e+000 1. 0.0000e+000 3. 0.0000e+000 3.	ShearLeft	0.0000e+000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.00000e+00000 0.00000e+00000000e+0000000000	ShearLeft	0.0000e+000 4.2993e+000 3.39249e+001 1.9389e+002 3.5442e+002 8.5553e+002 1.1801e+003 1.5275e+003 1.5275e+003 1.5275e+003 2.4575e+003 2.4575e+003 2.6687e+003 2.6687e+003 2.6687e+003
POND A DIKE 2.2450e+003 1.2283e+003 3.7638e+002 -1.7785e+002 -1.7785e+002 -3.0548e+002	0.0000 SideLeft	0.0000e+000 1.0137 e+002 7.1054 e+002 1.1351e+003 1.7040e+003 3.1351e+003 3.1351e+003 3.1351e+003 4.6599e+003 5.0145e+003 6.5633e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5482e+003 7.5583e+003 7.5585e+003 7.5586e+00366603 7.558666030030000000000000000000000	8631 SideLeft	0.0000e+000 9.9049e+001 7.35309e+002 7.35309e+002 7.3533e+002 7.3533e+003 7.3533e+003 7.3533e+003 7.3536e+003 7.6537e+003 6.49158e+003 6.49158e+003 7.0423e+003 7.0423e+003 7.0423e+003 7.0453e+003
2.5000e+002 2.5000e+002 2.5000e+002 2.5000e+002 2.5000e+002 2.5000e+002	Applied_Lambda= 0.0 ngle Cohesion	0.0000e+000 0.0000e+0000 0.0000e+000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000e+0000 0.0000000000	Applied_Lambda= ~0.3631 ngle Cohesion Si	0.000000000000000000000000000000000000
2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001	Applied Phi_Angle	3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 3.0000e+001 2.2000	Applied Phi_Angle	3.0000±001 3.0000±0000 3.0000±001 3.0000±001 3.0000±001 3.0000±001 3.0000±001 3.0000±001 3.0000±001 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±0000 3.0000±00000 3.0000±0000 3.0000±0000 3.0000±00000 3.0000±0000 3.0000±00000 3.0000±0000 3.0000±0000000 3.0000±0000000±000000 3.0000±0000000000
9.6472e+002 9.0196e+002 8.3139e+002 7.1137e+002 3.3926e+002	1.5101325 ShearMob	 5.4642e+001 1.4589e+002 2.71654e+002 3.97128e+002 5.04566+002 5.04566+002 6.08740e+002 6.8740e+002 8.3784e+002 8.3784e+002 8.3784e+002 8.3784e+002 8.3784e+002 9.4279e+002 9.4279e+002 9.4279e+003 1.0100e+003 1.0215e+003 1.0324e+003 3.5500e+002 3.5500e+002 	1.6463010 ShearMob	5.1344e+001 1.4345e+002 2.2220e+002 4.2322e+002 5.4361e+002 6.5126e+002 6.5126e+002 8.1313e+002 8.5526e+002 8.5523e+002 8.5523e+002 8.5523e+002 8.5523e+002 8.5530e+002 8.5930e+002 8.5930e+002 8.5930e+002
2.6864e+003 2.1819e+003 1.5520e+003 7.8653e+003 -9.4638e+001	anbu_Method_Ff= :L# Normal_F	1.4292e+002 5.5656+002 1.0389e+002 1.0389e+002 1.0389e+003 1.5513e+002 1.3197e+003 2.0512e+003 2.0577e+003 2.5557e+003 2.55772e+003 2.55778e+003 3.1254e+003 3.1254e+003 3.1254e+003 3.1254e+003 3.1254e+003 3.16128e+003 3.1628e+003 3.1628e+003 3.1628e+003 3.16128e+003 3.1628e+0038	_Method_Fm= Normal_M	$\begin{array}{c} 1.4641\pm+002\\ 4.0906\pm+002\\ 6.33850\pm+002\\ 1.2068\pm+003\\ 1.5501\pm+003\\ 1.5571\pm+003\\ 1.5571\pm+003\\ 2.4558\pm+003\\ 2.3493\pm+003\\ 2.5558\pm+003\\ 2.5558\pm+00$
2246 309	Janbı SL#	40w4v6v80010w4v6v80010w4v6v800000000000000000000000000000000000	M-P_SL#	H0w400000011041

10444-806 CALCH LURC-F-0075

Rev. 6 1. B-7

		A number F.C.
-2.8653e+003 -2.8422e+003 -2.7366e+003 -2.7356e+003 -2.3315e+003 -2.3315e+003 -1.73928e+003 -1.73928e+003 -1.75928e+003 -1.75928e+003 -2.0251e+002 -2.0251e+002 -2.0251e+002 -2.7544e+013 -7.7544e-013	FOS	1.5198991 1.6241460 1.5101325 1.6463010
8988 e+003 8988 e+003 7565 0 e+003 7565 0 e+003 4692 e+003 1125 0 e+003 1125 0 e+003 1125 0 e+003 1272 e+003 1445 0 e+003 1445 0 e+003 1445 0 e+003 1805 0 e+005 0 e+003 1805 0 e+005 0 e+003 1805 0 e+003 1805 0 e+003 1805 0 e+0	Act_Force	2.0081e+004 1.8873e+004
3 1	Res_Force	3.0325e+004 3.1157e+004
POND A DIKE 7.7532e+003 7.9988e+003 7.9988e+003 7.9602e+003 7.4692e+003 7.4692e+003 7.4692e+003 6.6172e+003 6.6172e+003 6.0172e+003 6.0172e+003 5.4459e+003 3.4459e+003 3.4459e+003 5.84709 5.847003 5.84709 5.847003 5.8400350050003000000000000000000000000000	Act_Moment	1.0080e+006 1.0080e+006 1.0080e+006
0.0000e+000 0.0000e+000 0.0000e+000 2.5000e+000 2.5000e+000 2.5000e+002 2.55000e+002 2.5500000000000000000000000000000000	Res_Moment	1.5320e+006 1.6371e+006 1.6594e+006
3.0000e+001 3.0000e+001 3.0000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001 2.2000e+001	weight	6.4640e+004 6.4640e+004 6.4640e+004 6.4640e+004 6.4640e+004
8.5040e+002 8.5383e+002 8.2599e+002 8.1314e+002 8.6877e+002 8.6877e+002 8.6877e+002 8.6877e+002 8.6877e+002 8.0877e+002 8.0444e+002 8.9157	ary Volume	5.3733e+002 5.3733e+002 5.3733e+002 5.3733e+002 5.3733e+002
15 2.9488e+003 16 2.9488e+003 17 2.9783e+003 18 2.9781e+003 19 2.94781e+003 294781e+003 202 2.94781e+003 202 2.94781e+003 21 2.94781000 23 2.94701003 23 2.85531e+003 24450e+003 26 2.44576+003 26 2.44576+003 27 2.07776+003 28 7.90226+003 29 7.90226+003 29 7.90226+003 20 2.83561003 20 2.845761003 20 2.845761003 20 2.845761003 20 2.845761003 20 2.845761003 20 2.845761003 20 2.845761003 20 2.845761003 20 2.845761003 20 2.942561003 20 2.942561003 20 2.945761003 20 2.942561003 21 2.257761003 22 2.445761003 23 2.857561003 23 2.857561003 23 2.857561003 24 2.857561003 24 2.957761003 25 2.445761003 26 2.942561003 26 2.945561003 26 2.945561003 27 2.977761003 28 2.945561003 28 2.945561003 28 2.945561003 28 2.945561003 28 2.945561003 28 2.945561003 28 2.945561003 28 2.945561003 28 2.94556103 28 2.95556103 28 2.95556103 28 2.95556103 28 2.95556103 28 2.95556103 28 2.95556103 28 2.95556103 28 2.95556103 29 2.95556103 20 2.955566103 20 2.9555666103 20 2.9555666600200020000000000000000000000000	slip_surface_summary Analysis	Ordinary Method Janbur Wethod Janbur Wethod M-P Method

2

Page 5

REVIEW COMMENT Form SOP-0402-03, Revision 7B

Project:	Duke Energy Indiana, Inc.	Unit:	
Project No.:	10444-806 Calc. No. WRC-F-002S	Calc. Rev. 0	
Calc. Title:	Ash Pond Slope Stability Analyses	h	
#	Comment	Resolution	
	NONE		_
			_
			_
			_
Reviewed by	1. W. ROGER WU / Pollin	Date: 11/23/09	