GUIDANCE FOR EVALUATING MEDICAL WASTE TREATMENT TECHNOLOGIES

FINAL REPORT

Prepared for:
Office of Solid Waste
U.S. Environmental Protection Agency
Washington, DC 20460

EPA Contract Number 68-WO-0032
RTI Report Number 94U-5400-005/01-F
GUIDANCE FOR EVALUATING MEDICAL WASTE TREATMENT TECHNOLOGIES

January 1993

Prepared for

Work Assignment Leader: Kristina Meson
Office of Solid Waste
U.S. Environmental Protection Agency
Washington, D.C. 20460

Prepared by

Eugene C. Cole, Dr.P.H.
Terrence K. Pierson, Ph.D.
Dana R. Greenwood
Keith E. Leese
and
Karin K. Foarde

Research Triangle Institute
P.O. Box 12194
Research Triangle Park, NC 27709

Submitted by: T.K. Pierson, Project Leader

Approved by: D.F. Naugle, Center Director
Center for Environmental Analysis
DISCLAIMER

The material presented in this document has been funded by the United States Environmental Protection Agency (EPA) under contract number 68-WO-0032. It is a final report that has not been subject to the Agency's peer and administrative review. The views expressed in this document are those of the authors and are based upon previous EPA sponsored evaluation of medical waste treatment technologies, as well as current thinking regarding medical waste treatment, and do not represent official Agency policy.

This report was printed on recycled paper
ACKNOWLEDGEMENTS

This document was prepared as a product of the evaluation of medical waste treatment technologies and methods under EPA Contract No. 68-WO-0032, Work Assignment No. 5, "Medical Waste Treatment Technologies Evaluation and Program Support". The authors wish to express appreciation to Mary Greene and Kristina Meson whose valuable assistance as Work Assignment Managers helped guide this work to a successful completion. In addition, they wish to express their appreciation to Durann Williams who provided valuable assistance in preparing and assembling this document.
ABSTRACT

The Medical Waste Tracking Act of 1988 (MWTA) requires EPA, among other things to evaluate national medical waste issues. Section 11008 of the MWTA requires EPA to prepare a series of reports to Congress on various issues related to medical waste. Specifically, Sections 11008 (a)(6) and (7) require EPA to evaluate available and potentially available methods for treating medical waste and their ability to render medical waste noninfectious or less infectious, and unrecognizable and otherwise protect human health and the environment.

This document presents guidance for the evaluation of the effectiveness of medical waste treatment technologies to reduce or inactivate microorganisms that may be present in medical waste. The treatment technologies addressed in this guidance document are:

• Incineration
• Steam Autoclaving
• Chemical Treatment, Mechanical/Chemical Treatment
• Nonionizing Radiation
 Microwave Irradiation
 Radiofrequency Irradiation
• Gamma Irradiation (no test method)
Table of Contents

DISCLAIMER ... i

ACKNOWLEDGEMENTS ... ii

ABSTRACT .. iii

1.0 INTRODUCTION .. 1
 1.1 WASTE CHARACTERISTICS ... 1
 1.2. TREATMENT DEFINITIONS ... 4
 1.2.1 Microbial Inactivation ... 4
 1.2.1.1 Level I Microbial Inactivation ... 4
 1.2.1.2 Level II Microbial Inactivation ... 4
 1.2.1.3 Level III and IV Microbial Inactivation .. 6
 1.3 OPERATION EVALUATION ... 6
 1.3.1 Test Organism Selection ... 6
 1.3.2 Test Organism Procurement ... 7
 1.3.3 Test organism quantitation .. 7
 1.3.4 Test load preparation .. 7
 1.3.5 Test load exposure .. 7
 1.3.6 Organism recovery .. 8
 1.3.7 Quality Control Procedures ... 8
 1.3.7.1 Organisms .. 9
 1.3.7.2 Media ... 9
 1.3.7.3 Reagents .. 9
 1.3.7.4 Equipment .. 9

2.0 INCINERATION ... 11
 2.1 GENERAL DESCRIPTION OF TREATMENT TECHNOLOGY 11
 2.1.1 Operational Parameters .. 11
 2.1.1.1 Incinerator Parameters .. 11
 2.1.1.2 Waste Characteristics ... 11
 2.1.1.3 Residuals ... 12
 2.1.2 Incinerator Types ... 12
 2.1.2.1 Multiple Chamber Pathological Waste Incinerators 12
 2.1.2.2 Controlled Air Incinerators ... 12
 2.1.2.3 Rotary Kilns ... 13
 2.2 OPERATION EVALUATION ... 13
 2.2.1 Equipment/Materials/Reagents ... 13
 2.2.2 Test Organism Selection ... 14
 2.2.3 Test Organism Procurement ... 14
 2.2.4 Test Organism Quantitation ... 17
 2.2.5 Test Load Preparation ... 17
4.1.2 Operational Parameters .. 35
 4.1.2.1 Concentration/pH/Interference 35
 4.1.2.2 Exposure Time/Temperature 36
 4.1.2.3 Neutralization ... 36
 4.1.2.4 Waste Characteristics ... 36
 4.1.2.5 Residuals ... 36

4.1.3 Static systems .. 38

4.1.4 Recirculating System .. 38
 4.1.4.1 Size ... 38
 4.1.4.2 Application .. 38
 4.1.4.3 Standard Operating Conditions 38

4.1.5 Flow-Through System .. 39
 4.1.5.1 Size ... 39
 4.1.5.2 Application .. 39
 4.1.5.3 Standard Operating Conditions 39

4.2 OPERATION EVALUATION .. 39
 4.2.1 Test Organism Selection .. 39
 4.2.2 Test Organism Procurement and Preparation 40
 4.2.3 Test Organism Quality Control 40
 4.2.4 Test Organism Preparation and Exposure 40
 4.2.4.1 Static Chemical Treatment 40
 4.2.4.2 Recirculating Systems 40
 4.2.4.3 Flow-Through Systems 41

4.2.5 Organism Recovery .. 41

4.2.6 Treatment Validation and Routine Testing Frequency 42

4.2.7 Quality Control Procedures ... 43

5.0 NONIONIZING RADIATION TREATMENT 44

5.1 GENERAL DESCRIPTION OF TECHNOLOGY 44

 5.1.1 Operational Parameters .. 44
 5.1.1.1 Frequency/Duration/Direction of Propagation 44
 5.1.1.2 Waste Characteristics/Destruction/Moisture 44
 5.1.1.3 Residuals ... 45

 5.1.2 Standard Operating Conditions 45
 5.1.2.1 Microwave Systems ... 45
 5.1.2.2 Shortwave Radiofrequency Systems 45

5.2 OPERATION EVALUATION .. 45

 5.2.1 Test Organism Selection .. 45
 5.2.2 Test Organism Procurement 46
 5.2.3 Test Organism Quality Control 46
 5.2.4 Test Challenge Preparation and Loading 46
 5.2.5 Test Load Exposure .. 46
 5.2.5.1 Microwave System .. 46
 5.2.5.2 RF Treatment .. 47
5.2.6 Organism Recovery ... 47
5.2.7 Treatment Validation and Routine Testing 47
5.2.8 Quality Control Procedures 47

6.0 WORKER HEALTH AND SAFETY 48
 6.1 OCCUPATIONAL CONCERNS OF MEDICAL WASTE TREATMENT ... 48
 6.1.1 Biological Hazards .. 48
 6.1.2 Physical and Chemical Hazards 48
 6.1.3 Health Promotion and Protection 48
 6.1.4 Onsite Medical Waste Treatment Technologies 48
 6.1.4.1 Incineration .. 48
 6.1.4.2 Steam Autoclaving 49
 6.1.4.3 Chemical/Mechanical Treatment 49
 6.1.4.4 Microwave Irradiation 49
 6.1.5 Offsite Medical Waste Treatment Technologies 50
 6.1.5.1 Incineration .. 50
 6.1.5.2 Steam Autoclaving 50
 6.1.5.3 Non-ionizing Irradiation 50

6.2 WORKER TRAINING .. 50
 6.2.1 Safety .. 50
 6.2.2 Biohazards .. 51
 6.2.3 Incinerator Operator Safety Training 51

6.3 SUPERVISION ... 52
6.4 HEALTH SURVEILLANCE AND IMMUNIZATION 52
6.5 PERSONAL PROTECTIVE EQUIPMENT 52

7.0 FACILITY MAINTENANCE ... 53
 7.1 GENERAL REQUIREMENTS FOR ALL TECHNOLOGIES 53
 7.2 INCINERATION .. 53
 7.2.1 Additional Maintenance Recommendations 53

7.3 STEAM AUTOCLAVE TREATMENT SYSTEMS 56
 7.3.1 Benchtop Autoclave 56
 7.3.2 Standard Laboratory Autoclave 56
 7.3.3 Prevacuum Autoclave 56
 7.3.4 Large Gravity Displacement Autoclave 56

7.4 CHEMICAL MEDICAL WASTE TREATMENT SYSTEMS 58
 7.4.1 Static Antimicrobial Chemical Treatment 58
 7.4.2 Recirculating Mechanical/Chemical Treatment Systems 58
 7.4.3 Flow-Through Mechanical/Chemical Waste Treatment System 58

7.5 NONIONIZING RADIATION TREATMENT SYSTEMS 60
 7.5.1 Microwave Systems .. 60
 7.5.2 Shortwave Radiofrequency Systems 60

REFERENCES .. 63

vii
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sampling Train for Determination of Indicator Spore Emissions</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Ash Quality Pipe Assemblies</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Preparation and Analysis Scheme for Microbial Testing of Impinger Samples</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Preparation and Analysis Scheme for Microbial Testing of Ash</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Analysis Scheme for Pipe Sample Microbial Viability Tests</td>
<td>23</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1.1 Medical Waste Types Appropriate For Treatment By Technology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.2 Evaluation of Effectiveness of Medical Waste Treatment Technologies</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.3 Recommended Frequency of Efficacy Testing By Technology</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2.1 Quality Assurance/Quality Control Procedures for Indicator Spore Testing of Medical Waste Incinerators</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>4.1 Advantages and Disadvantages of Antimicrobial Agents</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>4.2 Selected Antimicrobial Efficacy Claims for Microbial Inactivation</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>4.3 Selected Disinfectant Neutralizers</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>7.1 Typical Maintenance Schedule for a Medical Waste Incinerator</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>7.2 Typical Maintenance Schedule for a Steam Autoclave Medical Waste Treatment System</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>7.3 Typical Maintenance Schedule for a Mechanical/Chemical Medical Waste Treatment System</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>7.4 Typical Maintenance Schedule for a Microwave Medical Waste Treatment System</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>7.5 Typical Maintenance Schedule for a Shortwave Radiofrequency Medical Waste Treatment System</td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>