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 Part II covers diagnostic evaluations of historical facility data for checking key assumptions 
implicit in the recommended statistical tests and for making appropriate adjustments to 
the data (e.g., consideration of outliers, seasonal autocorrelation, or non-detects). Also included is a 
discussion of groundwater sampling and how hydrologic factors such as flow and gradient can 
impact the sampling program.  
 
 Chapter 9 provides a number of exploratory data tools and examples, which can generally be 
used in data evaluations.  Approaches for fitting data sets to normal and other parametric distributions 
follows in Chapter 10.  The importance of the normal distribution and its potential uses is also 
discussed.  Chapter 11 provides methods for assessing the equality of variance necessary for some 
formal testing.  The subject of outliers and means of testing for them is covered in Chapter 12.  
Chapter 13 addresses spatial variability, with particular emphasis on ANOVA means testing.  In 
Chapter 14, a number of topics concerning temporal variation are provided.  In addition to providing 
tests for identifying the presence of temporal variation, specific adjustments for certain types of temporal 
dependence are covered.  The final Chapter 15 of Part II discusses non-detect data and offers several 
methods for estimating missing data.   In particular, methods are provided to deal with data containing 
multiple non-detection limits.  
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Graphs are an important tool for exploring and understanding patterns in any data set.   Plotting the 
data visually depicts the structure and helps unmask possible relationships between variables affecting 
the data set. Data plots which accompany quantitative statistical tests can better demonstrate the reasons 
for the results of a formal test. For example, a Shapiro-Wilk test may conclude that data are not normally 
distributed. A probability plot or histogram of the data can confirm this conclusion graphically to show 
why the data are not normally distributed (e.g., heavy skewness, bimodality, a single outlier, etc.).  

Several common exploratory tools are presented in Chapter 9. These graphical techniques are 
discussed in statistical texts, but are presented here in detail for easy reference for the data analyst. An 
example data set is used to demonstrate how each of the following plots is created. 

� Time series plots (Section 9.1) 

� Box plots (Section 9.2) 

� Histograms (Section 9.3) 

� Scatter plots (Section 9.4) 

� Probability plots (Section 9.5) 
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Data collected over specific time intervals (e.g., monthly, biweekly, or hourly) have a temporal 
component. For example, air monitoring measurements of a pollutant may be collected once a minute or 
once a day.  Water quality monitoring measurements may be collected weekly or monthly. Typically, 
groundwater sample data are collected quarterly from the same monitoring wells, either for detection 
monitoring testing or demonstrating compliance to a GWPS.  An analyst examining temporal data may 
be interested in the trends over time, correlation among time periods, or cyclical patterns. Some 
graphical techniques specific to temporal data are the time plot, lag plot, correlogram, and variogram.   
The degree to which some of these techniques can be used will depend in part on the frequency and 
number of data collected over time. 
 

A data sequence collected at regular time intervals is called a time series. More sophisticated time 
series data analyses are beyond the scope of this guidance.   If needed, the interested user should consult 
with a statistician or appropriate statistical texts. The graphical representations presented in this section 
are recommended for any data set that includes a temporal component. Techniques described below will 
help identify temporal patterns that need to be accounted for in any analysis of the data. The analyst 
examining temporal environmental data may be interested in seasonal trends, directional trends, serial 
correlation, or stationarity. Seasonal trends are patterns in the data that repeat over time, i.e., the data 
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rise and fall regularly over one or more time periods. Seasonal trends may occur over long periods of 
time (large scale), such as a yearly cycle where the data show the same pattern of rising and falling from 
year to year, or the trends may be over a relatively short period of time (small scale), such as a daily 
cycle. Examples of seasonal trends are quarterly seasons (winter, spring, summer and fall), monthly 
seasons, or even hourly (e.g., air temperature rising and falling over the course of a day). Directional 
trends are increasing or decreasing patterns over time in monitored constituent data, which may be of 
importance in assessing the levels of contaminants.  Serial correlation is a measure of the strength in the 
linear relationship of successive observations. If successive observations are related, statistical quantities 
calculated without accounting for the serial correlation may be biased. A time series is stationary if there 
is no systematic change in the mean (i.e., no trend) and variance across time. Stationary data look the 
same over all time periods except for random behavior. Directional trends or a change in the variability 
in the data imply non-stationarity. 

 
A time series plot of concentration data versus time makes it easy to identify lack of randomness, 

changes in location, change in scale, small scale trends, or large-scale trends over time. Small-scale 
trends are displayed as fluctuations over smaller time periods. For example, ozone levels over the course 
of one day typically rise until the afternoon, then decrease, and this process is repeated every day. Larger 
scale trends such as seasonal fluctuations appear as regular rises and drops in the graph.  Ozone levels 
tend to be higher in the summer than in the winter, so ozone data tend to show both a daily trend and a 
seasonal trend. A time plot can also show directional trends or changing variability over time. 

 
A time plot is constructed by plotting the measurements on the vertical axis versus the actual 

time of observation or the order of observation on the horizontal axis. The points plotted may be 
connected by lines, but this may create an unfounded sense of continuity. It is important to use the actual 
date, time or number at which the observation was made. This can create discontinuities in the plot but 
are needed as the data that should have been collected now appear as “missing values” but do not disturb 
the integrity of the plot. Plotting the data at equally spaced intervals when in reality there were different 
time periods between observations is not advised.  

 
For environmental data, it is also important to use a different symbol or color to distinguish non-

detects from detected data. Non-detects are often reported by the analytical laboratory with a “U” or “<” 
analytical qualifier associated with the reporting limit [RL]. In statistical terminology, they are left-
censored data, meaning the actual concentration of the chemical is known only to be below the RL. Non-
detects contrast with detected data, where the laboratory reports the result as a known concentration that 
is statistically higher than the analytical limit of detection. For example, the laboratory may report a 
trichloroethene concentration in groundwater of “5 U” or “< 5” µg/L, meaning the actual trichloroethene 
concentration is unknown, but is bounded between zero and 5 µg/L. This result is different than a 
detected concentration of 5 µg/L which is unqualified by the laboratory or data validator. Non-detects 
are handled differently than detected data when calculating summary statistics. A statistician should be 
consulted on the proper use of non-detects in statistical analysis. For radionuclides negative and zero 
concentrations should be plotted as reported by the laboratory, showing the detection status. 

 
The scaling of the vertical axis of a time plot is of some importance. A wider scale tends to 

emphasize large-scale trends, whereas a narrower scale tends to emphasize small-scale trends. A wide 
scale would emphasize the seasonal component of the data, whereas a smaller scale would tend to 
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emphasize the daily fluctuations. The scale needs to contain the full range of the data. Directions for 
constructing a time plot are contained in Example 9-1 and Figure 9-1. 

 
�����
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Construct a time series plot using trichloroethene groundwater data in Table 9-1 for each well. 
Examine the time series for seasonality, directional trends and stationarity. 

�� !�	�����"�� #�#!$�!%!�&��'���#(%)*�$!���#%�!%$��$"#%+�

  Well 1 Well 2 
Date TCE Data TCE Data 

Collected (mg/L) Qualifier (mg/L) Qualifier 
1/2/2005 0.005 U 0.10 U 
4/7/2005 0.005 U 0.12   

7/13/2005 0.004 J 0.125   
10/24/2005 0.006  0.107   

1/7/2006 0.004 U 0.099 U 
3/30/2006 0.009  0.11   
6/28/2006 0.017  0.13   
10/2/2006 0.045  0.109   

10/17/2006 0.05  NA   
1/15/2007 0.07  0.10 U 
4/10/2007 0.12  0.115   
7/9/2007 0.10  0.14   

10/5/2007 NA  0.17   
10/29/2007 0.20  NA   
12/30/2007 0.25   0.11   
NA = Not available (missing data). 
U denotes a non-detect. 
J denotes an estimated detected concentration. 

�

���,����

Step 1. Import the data into data analysis software capable of producing graphics. 

Step 2. Sort the data by date collected.  

Step 3. Determine the range of the data by calculating the minimum and maximum concentrations for 
each well, shown in the table below:  
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  Well 1 Well 2 
  TCE Data TCE Data 
  (mg/L) Qualifier (mg/L) Qualifier 
Min 0.004 U 0.099 U 
Max 0.25   0.17   

 

Step 4. Plot the data using a scale from 0 to 0.25 if data from both wells are plotted together on the 
same time series plot. Use separate symbols for non-detects and detected concentrations. One 
suggestion is to use “open” symbols (whose centers are white) for non-detects and “closed” 
symbols for detects. 

Step 5. Examine each series for directional trends, seasonality and stationarity. Note that Well 1 
demonstrates a positive directional trend across time, while Well 2 shows seasonality within 
each year. Neither well exhibits stationarity. 

Step 6. Examine each series for missing values. Inquire from the project laboratory why data are 
missing or collected at unequal time intervals. A response from the laboratory for this data set 
noted that on 10/5/2007 the sample was accidentally broken in the laboratory from Well 1, so 
Well 1 was resampled on 10/29/2007. Well 1 was resampled on 10/17/2006 to confirm the 
historically high concentration collected on 10/2/2006. Well 2 was not sampled on 10/17/2006 
because the data collected on 10/2/2006 from Well 2 did not merit a resample, as did Well 1. 

Step 7. Examine each series for elevated detection limits. Inquire why the detection limits for Well 2 
are much larger than detection limits for Well 1. A reason may be that different laboratories 
analyzed the samples from the two wells. The laboratory analyzing samples from Well 1 used 
lower detection limits than did the laboratory analyzing samples from Well 2.� 
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Open symbols denote non-detects.  Closed symbols denote detected concentrations.
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Box plots (also known as Box and Whisker plots) are useful in situations where a picture of the 
distribution is desired, but it is not necessary or feasible to portray all the details of the data. A box plot 
displays several percentiles of the data set. It is a simple plot, yet provides insight into the location, 
shape, and spread of the data and underlying distribution. A simple box plot contains only the 0th 
(minimum data value), 25th, 50th, 75th and 100th (maximum data value) percentiles. A box-plot divides 
the data into 4 sections, each containing 25% of the data. Whiskers are the lines drawn to the minimum 
and maximum data values from the 25th and 75th percentiles. The box shows the interquartile range 
(IQR) which is defined as the difference between the 75th and the 25th percentiles. The length of the 
central box indicates the spread of the data (the central 50%), while the length of the whiskers shows the 
breadth of the tails of the distribution. The 50th percentile (median) is the line within the box. In 
addition, the mean and the 95% confidence limits around the mean are shown. Potential outliers are 
categorized into two groups:  

 
� data points between 1.5 and 3 times the IQR above the 75th percentile or between 1.5 and 3 

times the IQR below the 25th percentile, and 
� data points that exceed 3 times the IQR above the 75th percentile or exceed 3 times the IQR 

below the 25th percentile. 
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 The mean is shown as a star, while the lower and upper 95% confidence limits around the mean 
are shown as bars. Individual data points between 1.5 and 3 times the IQR above the 75th percentile or 
below the 25th percentile are shown as circles. Individual data points at least 3 times the IQR above the 
75th percentile or below the 25th percentile are shown as squares.  
 

Information from box plots can assist in identifying potential data distributions.  If the upper box 
and whisker are approximately the same length as the lower box and whisker, with the mean and median 
approximately equal, then the data are distributed symmetrically.  The normal distribution is one of a 
number that is symmetric. If the upper box and whisker are longer than the lower box and whisker, with 
the mean greater than the median, then the data are right-skewed (such as lognormal or square root 
normal distributions in original units). Conversely, if the upper box and whisker are shorter than the 
lower box and whisker with the mean less than the median, then the data are left-skewed. 

A box plot showing a normal distribution will have the following characteristics: the mean and 
median will be in the center of the box, whiskers to the minimum and maximum values are the same 
length, and there would be no potential outliers. A box plot showing a lognormal distribution (in original 
units) typical of environmental applications will have the following characteristics: the mean will be 
larger than the median, the whisker above the 75th percentile will be longer than the whisker below the 
25th percentile, and extreme upper values may be indicated as potential outliers. Once the data have been 
logarithmically transformed, the pattern should follow that described for a normal distribution.  Other 
right-skewed distributions transformable to normality would indicate similar patterns. 

 It is often helpful to show box plots of different sets of data side by side to show differences 
between monitoring stations (see Figure 9-2). This allows a simple method to compare the locations, 
spreads and shapes of several data sets or different groups within a single data set. In this situation, the 
width of the box can be proportional to the sample size of each data set. If the data will be compared to a 
standard, such as a preliminary remediation goal (PRG) or maximum contaminant level (MCL), a line on 
the graph can be drawn to show if any results exceed the criteria. 
 
 It is important to plot the data as reported by the laboratory for non-detects or negative 
radionuclide data. Proxy values for non-detects should not be plotted since we want to see the 
distribution of the original data. Different symbols can be used to display non-detects, such as the open 
symbols described in Section 9.1. The mean will be biased high if using the RL of non-detects in the 
calculation, but the purpose of the box plot is to assess the distribution of the data, not quantifying a 
precise estimate of an unbiased mean. Displaying the frequency of detection (number of detected values / 
number of total samples) under the station name is also useful. Unlike time series plots, box plots cannot 
use missing data, so missing data should be removed before producing a box plot. 
 
 Directions for generating a box plot are contained in Example 9-2, and an example is shown in 
Figure 9-2. It is important to remove lab and field duplicates from the data before calculating summary 
statistics such as the mean and UCL since these statistics assume independent data. The box plot 
assumes the data are statistically independent.  
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Construct a box plot using the trichloroethene groundwater data in Table 9-1 for each well. 
Examine the box plot to assess how each well is distributed (normal, lognormal, skewed, symmetric, 
etc.). Identify possible outliers.  

���,����

�

Step 1. Import the data into data analysis software capable of producing box plots. 

Step 2. Sort the data from smallest to largest results by well.  

Step 3. Compute the 0th (minimum value), 25th, 50th (median), 75th and 100th (maximum value) 
percentiles by well. 

 
Step 4. Plot these points vertically. Draw a box around the 25th and 75th percentiles and add a line 

through the box at the 50th percentile. Optionally, make the width of the box proportional to 
the sample size. Narrow boxes reflect smaller sample sizes, while wider boxes reflect larger 
sample sizes. 

 
Step 5.  Compute the mean and the lower and upper 95% confidence limits. Denote the mean with a  

star and the confidence limits as bars. Also, identify potential outliers between 1.5×IQR and 
3×IQR beyond the box with a circle. Identify potential outliers exceeding 3×IQR beyond the 
box with a ` square. 

 
Step 6.  Draw the whiskers from each end of the box to the furthest data point to show the full range of 

the data.  
 

����
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The box plots in Figure 9-2 show the similarities and differences in the distributions of 

trichloroethene in Wells 1 and 2. The mean of trichloroethene in Well 1 is significantly lower than the 
mean in Well 2. The variance of the data from Well 1 is significantly larger than the variance from Well 
2. A parametric t-test or nonparametric Wilcoxon Rank Sum test can quantitatively confirm these 
conclusions.  Since the mean exceeds the median for both wells and the whiskers at the top of each box 
are much longer than the whiskers at the bottom of each box, we can conclude both distributions are 
skewed to the right, resembling a lognormal distribution. In fact, the Shapiro-Wilk test quantitatively 
confirms that both distributions are lognormally distributed. Both wells have their largest concentrations 
between 1.5 and 3 times the IQR, as denoted by a black circle. No data point lies outside 3 times the 
IQR. Since the data for both wells are lognormally distributed, the maximum concentrations in each well 
should not be removed just because they exceed 1.5 times the IQR. Long tails are expected for the 
lognormal distribution. The width of the 95% confidence limits confirms the large variability in Well 1 
compared to the width of the confidence limits in Well 2. Well 1 has one concentration exceeding the 
PRG of 0.23 mg/L, while Well 2 has all concentrations below the PRG. The width of each box is similar 
since the sample size as shown in the frequency of detection (FOD) are nearly the same (11 detects out 
of 14 samples for Well 1 and 10 detects out of 13 samples for Well 2). � 
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A histogram is a visual representation of the data collected into groups. This graphical technique 
provides a visual method of identifying the underlying distribution of the data. The data range is divided 
into several bins or classes and the data is sorted into the bins. A histogram is a bar graph conveying the 
bins and the frequency of data points in each bin. Other forms of the histogram use a normalization of 
the bin frequencies for the heights of the bars. The two most common normalizations are relative 
frequencies (frequencies divided by sample size) and densities (relative frequency divided by the bin 
width). Figure 9-3 is an example of a histogram using frequencies and Figure 9-4 is a histogram of 
densities. Histograms provide a visual method of accessing location, shape and spread of the data. Also, 
extreme values and multiple modes can be identified. The details of the data are lost, but an overall 
picture of the data is obtained. A stem and leaf plot offers the same insights into the data as a histogram, 
but the data values are retained.  
 

The visual impression of a histogram is sensitive to the number of bins selected. A large number of 
bins will increase data detail, while fewer bins will increase the smoothness of the histogram. A good 
starting point when choosing the number of bins is the square root of the sample size n. The minimum 
number of bins for any histogram should be at least 4. Another factor in choosing bins is the choice of 
endpoints. When feasible, using simple bin endpoints can improve the readability of the histogram. 
Simple bin endpoints include multiples of 5k units for some integer k > 0 (e.g., 0 to <5, 5 to <10, etc. or 
1 to <1.5, 1.5 to <2, etc.). Finally, when plotting a histogram for a continuous variable (e.g., 
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concentration), it is necessary to decide on an endpoint convention; that is, what to do with data points 
that fall on the boundary of a bin. Also, use the data as reported by the laboratory for non-detects and 
eliminate any missing values, since histograms cannot include missing data. With discrete variables, 
(e.g., family size) the intervals can be centered in between the variables. For the family size data, the 
intervals can span between 1.5 and 2.5, 2.5 and 3.5, and so on. Then the whole numbers that relate to the 
family size can be centered within the box. Directions for generating a histogram are contained in 
Example 9-3.  
 

�����
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Construct a histogram using the trichloroethene groundwater data in Table 9-1 for each well. 
Examine the histogram to assess how each well is distributed (normal, lognormal, skewed, symmetric, 
etc.).  

���,����
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Step 1. Import the data into data analysis software capable of producing histograms. 

Step 2. Sort the data from smallest to largest results by well.  

Step 3. With n = 14 concentrations for Well 1, a rough estimate of the number of bins is 14  = 3.74 
or 4 bins. Since the data from Well 1 range from 0.004 to 0.25, the suggested bin width is 
calculated as (maximum concentration – minimum concentration) / number of bins = (0.25 – 
0.004) / 4 = 0.0615. Therefore, the bins for Well 1 are 0.004 to <0.0655, 0.0655 to <0.127, 
0.127 to <0.1885, and 0.1885 to 0.25 mg/L.  

 
 Similarly, with n = 13 concentrations for Well 2, the number of bins is 13 = 3.61 or 4 bins. 

Since the data from Well 2 range from 0.099 to 0.17, the suggested bin width is calculated as 
(maximum concentration – minimum concentration) / number of bins = (0.17 – 0.099) / 4 = 
0.01775. Therefore, the bins for Well 2 are 0.099 to <0.11675, 0.11675 to <0.1345, 0.1345 to 
<0.15225, and 0.15225 to 0.17 mg/L.  

 
Step 4. Construct a frequency table using the bins defined in Step 3. Table 9-2 shows the frequency or 

number of observations within each bin defined in Step 3 for Wells 1 and 2. The third column 
shows the relative frequency which is the frequency divided by the sample size n. The final 
column of the table gives the densities or the relative frequencies divided by the bin widths 
calculated in Step 3. 

 
Step 5.  The horizontal axis for the data is from 0.004 to 0.25 mg/L for Well 1 and 0.099 to 0.17 for 

Well 2. The vertical axis for the histogram of frequencies is from 0 to 9 and the vertical axis 
for the histogram of relative frequencies is from 0% - 70%. 

 
Step 6.  The histograms of frequencies are shown in Figure 9-3. The histograms of relative 

frequencies or densities are shown in Figure 9-4. Note that frequency, relative frequency and 
density histograms all show the same shape since the scale of the vertical axis is divided by 
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the sample size or the bin width. These histograms confirm the data are not normally 
distributed for either well, but are closer to lognormal. 
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    Relative   

Bin Frequency Frequency (%) Density 
Well 1 

0.0040 to <0.0655 mg/L 9 64.3 10.5 
0.0655 to <0.1270 mg/L 3 21.4 3.5 
0.1270 to <0.1885 mg/L 0 0 0 
0.1885 to 0.2500 mg/L 2 14.3 2.3 

Well 2 
0.099 to <0.11675 mg/L 8 61.5 34.7 
0.11675 to <0.1345 mg/L 3 23.1 13.0 
0.1345 to <0.15225 mg/L 1 7.7 4.3 
0.15225 to 0.17 mg/L 1 7.7 4.3 

 
�
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For data sets consisting of multiple observations per sampling point, a scatter plot is one of the 
most powerful graphical tools for analyzing the relationship between two or more variables. Scatter plots 
are easy to construct for two variables, and many software packages can construct 3-dimensional scatter 
plots. A scatter plot can clearly show the relationship between two variables if the data range is 
sufficiently large. Truly linear relationships can always be identified in scatter plots, but truly nonlinear 
relationships may appear linear (or some other form) if the data range is relatively small. Scatter plots of 
linearly correlated variables cluster about a straight line.  

 
As an example of a nonlinear relationship, consider two variables where one variable is 

approximately equal to the square of the other. With an adequate range in the data, a scatter plot of this 
data would display a partial parabolic curve. Other important modeling relationships that may appear are 
exponential or logarithmic. Two additional uses of scatter plots are the identification of potential outliers 
for a single variable or for the paired variables and the identification of clustering in the data. Directions 
for generating a scatter plot are contained in Example 9-4.  
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Construct a scatter plot using the groundwater data in Table 9-3 for arsenic and mercury from a 
single well collected approximately quarterly across time. Examine the scatter plot for linear or quadratic 
relationships between arsenic and mercury, correlation, and for potential outliers.  

�� !�	������#(%)*�$!���#%�!%$��$"#%+�2�#1�3!  ���

  Arsenic Mercury Strontium 
Date Conc. Data Conc. Data Conc. Data 

Collected (mg/L) Qualifier (mg/L) Qualifier (mg/L) Qualifier 
1/2/2005 0.01 U 0.02 U 0.10  
4/7/2005 0.01 U 0.03   0.02 U 

7/13/2005 0.02  0.04 U  0.05 U 
10/24/2005 0.04  0.06   0.11  

1/7/2006 0.01  0.02  0.05  
3/30/2006 0.05  0.07   0.07  
6/28/2006 0.09  0.10   0.03  
10/2/2006 0.07  0.08   0.04  

10/17/2006 0.10  NA   0.02 U 
1/15/2007 0.02 U 0.03 U 0.15  
4/10/2007 0.15  0.11   0.03  
7/9/2007 0.12  0.08   0.10  

10/5/2007 0.10  0.07   0.09  
10/29/2007 0.30  0.29   0.05  
12/30/2007 0.25   0.23   0.22  
NA = Not available (missing data).       

U denotes a non-detect. 
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Step 1. Import the data into data analysis software capable of producing scatter plots. 

Step 2. Sort the data by date collected.  

Step 3. Calculate the range of concentrations for each constituent. If the range of both constituents are 
similar, then scale both the X and Y axes from the minimum to the maximum concentrations 
of both constituents. If the range of concentrations are very different (e.g., two or more orders 
of magnitude), then perhaps the scales for both axes should be logarithmic (log10). The data 
will be plotted as pairs from (X1, Y1) to (Xn, Yn) for each sampling date, where n = number of 
samples. 

  
Step 4. Use separate symbols to distinguish detected from non-detected concentrations. Note that the 

concentration for one constituent may be detected, while the concentration for the other 
constituent may not be detected for the same sampling date. If the concentration for one 
constituent is missing, then the pair (Xi, Yi) cannot be plotted since both concentrations are 
required. Figure 9-5 shows a linear correlation between arsenic and mercury with two 
possible outliers. The Pearson correlation coefficient is 0.97, indicating a significantly high 
correlation. The linear regression line is displayed to show the linear correlation between 
arsenic and mercury.� 
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Many software packages can extend the 2-dimensional scatter plot by constructing a 3-dimensional 
scatter plot for 3 constituents. However, with more than 3 variables, it is difficult to construct and 
interpret a scatter plot. Therefore, several graphical representations have been developed that extend the 
idea of a scatter plot for data consisting of more than 2 variables. The simplest of these graphical 
techniques is a coded scatter plot. All possible two-way combinations are given a symbol and the pairs 
of data are plotted on one 2-dimensional scatter plot. The coded scatter plot does not provide 
information on three way or higher interactions between the variables since only two dimensions are 
plotted. If the data ranges for the variables are comparable, then a single set of axes may suffice. If the 
data ranges are too dissimilar (e.g., at least two orders of magnitude), different scales may be required.  
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Construct a coded scatter plot using the groundwater data in Table 9-3 for arsenic, mercury, and 
strontium from Well 3 collected approximately quarterly across time. Examine the scatter plot for linear 
or quadratic relationships between the three inorganics, correlation, and for potential outliers.  

���,����
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Step 1. Import the data into data analysis software capable of producing scatter plots. 

Step 2. Sort the data by date collected.  

Step 3. Calculate the range of concentrations for each constituent. If the ranges of both constituents 
are similar, then scale both the X and Y axes from the minimum to the maximum 
concentrations of all three constituents. Since the ranges of concentrations are very similar, the 
minimum to the maximum concentrations of all three constituents will be used for both axes.  

  
Step 4. Let each arsenic concentration be denoted by Xi, each mercury concentration be denoted by 

Yi, and each strontium concentration be denoted by Zi. The arsenic and mercury paired data 
will be plotted as pairs (Xi, Yi) with solid blue circles for 1 � i � n. The arsenic and strontium 
paired data will be plotted as pairs (Xi, Zi) with solid red squares. The mercury and strontium 
paired data will be plotted as pairs (Yi, Zi) with solid green diamonds. If either concentration 
in each pair is a non-detect, then the non-detects will be displayed similar to Figure 9-5.  

 
Step 5. Interpret the plot. Figure 9-6 shows the linear correlation between arsenic and mercury with 

two possible outliers. The Pearson correlation coefficient is 0.97, indicating a significantly 
high correlation. The approximate 45º slope of the regression line indicates a strong 
correlation between arsenic and mercury. However, the nearly zero slope of the regression line 
between arsenic and strontium indicates little or no correlation between arsenic and strontium. 
There are two possible outliers for arsenic and strontium. Similarly, the nearly zero slope of 
the regression line between mercury and strontium indicates little or no correlation between 
mercury and strontium. There are also two possible outliers for mercury and strontium. The 
Pearson correlation coefficients for both arsenic with strontium and mercury with strontium 
are 0.23 which are not significantly different from zero.� 
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A simple, but extremely useful visual assessment of normality is to graph the data as a probability 
plot. The y-axis is scaled to represent quantiles or z-scores from a standard normal distribution and the 
concentration measurements are arranged in increasing order along the x-axis. As each observed value is 
plotted on the x-axis, the z-score corresponding to the proportion of observations less than or equal to 
that measurement is plotted as the y-coordinate. Often, the y-coordinate is computed by the following 
formula: 

  
  
yi = Φ−1 i

n + 1
�

��
�

��
 [9.1] 

where  Φ−1 denotes the inverse of the cumulative standard normal distribution, n represents the sample 
size, and i represents the rank position of the ith ordered concentration. The plot is constructed so that, if 
the data are normal, the points when plotted will lie on a straight line. Visually apparent curves or bends 
indicate that the data do not follow a normal distribution. 

Probability plots are particularly useful for spotting irregularities within the data when compared to 
a specific distributional model (usually, but not always, the normal). It is easy to determine whether 
departures from normality are occurring more or less in the middle ranges of the data or in the extreme 
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tails. Probability plots can also indicate the presence of possible outlier values that do not follow the 
basic pattern of the data and can show the presence of significant positive or negative skewness. 

If a (normal) probability plot is constructed on the combined data from several wells and normality 
is accepted, it suggests — but does not prove — that all of the data came from the same normal 
distribution. Consequently, each subgroup of the data set (e.g., observations from distinct wells) 
probably has the same mean and standard deviation. If a probability plot is constructed on the data 
residuals (each value minus its subgroup mean) and is not a straight line, the interpretation is more 
complicated. In this case, either the residuals are not normally-distributed, or there is a subgroup of the 
data with a normal distribution but a different mean or standard deviation than the other subgroups. The 
probability plot will indicate a deviation from the underlying assumption of a common normal 
distribution in either case. It would be prudent to examine normal probability plots by well on the same 
plot if the ranges of the data are similar. This would show how the data are distributed by well to 
determine which wells may depart from normality. 

The same probability plot technique may be used to investigate whether a set of data or residuals 
follows a lognormal distribution. The procedure is generally the same, except that one first replaces each 
observation by its natural logarithm. After the data have been transformed to their natural logarithms, the 
probability plot is constructed as before. The only difference is that the natural logarithms of the 
observations are used on the x-axis. If the data are lognormal, the probability plot of the logged 
observations will approximate a straight line. 

�����
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Determine whether the dataset in Table 9-4 is normal by using a probability plot. 
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Step 1. After combining the data into a single group, list the measured nickel concentrations in order 
from lowest to highest. 

Step 2. The cumulative probabilities, representing for each observation (xi) the proportion of values 
less than or equal to xi, are given in the third column of the table below. These are computed 
as i / (n + 1) where n is the total number of samples (n = 20). 

Step 3. Determine the quantiles or z-scores from the standard normal distribution corresponding to the 
cumulative probabilities in Step 2. These can be found by successively letting P equal each 
cumulative probability and then looking up the entry in Table 10-1 (Appendix D) 
corresponding to P. Since the standard normal distribution is symmetric about zero, for 
cumulative probabilities P < 0.50, look up the entry for (1–P) and give this value a negative 
sign. 

Step 4. Plot the normal quantile (z-score) versus the ordered concentration for each sample, as in the 
plot below (Figure 9-7). The curvature found in the probability plot indicates that there is 
evidence of non-normality in the data. ��

�
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Nickel 
Concentration 

(ppb) 

Order 
(i) 

Cumulative 
Probability 

[i/(n+1)] 

Normal 
Quantile  

(z-score) 
 

1.0 
 

1 
 

0.048 
 

–1.668 
3.1 2 0.095 –1.309 
8.7 3 0.143 –1.068 

10.0 4 0.190 –0.876 
14.0 5 0.238 –0.712 
19.0 6 0.286 –0.566 
21.4 7 0.333 –0.431 
27.0 8 0.381 –0.303 
39.0 9 0.429 –0.180 
56.0 10 0.476 –0.060 
58.8 11 0.524 0.060 
64.4 12 0.571 0.180 
81.5 13 0.619 0.303 
85.6 14 0.667 0.431 

151.0 15 0.714 0.566 
262.0 16 0.762 0.712 
331.0 17 0.810 0.876 
578.0 18 0.857 1.068 
637.0 19 0.905 1.309 
942.0 20 0.952 1.668 
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Step 1. List the natural logarithms of the measured nickel concentrations in Table 9-4 in order from 
lowest to highest. These are shown in Table 9-5. 

Step 2. The cumulative probabilities representing the proportion of values less than or equal to xi for 
each observation (xi), are given in the third column of Table 9-4. These are computed as i / (n 
+ 1) where n is the total number of samples (n = 20). 

Step 3. Determine the quantiles or z-scores from the standard normal distribution corresponding to the 
cumulative probabilities in Step 2. These can be found by successively letting P equal each 
cumulative probability and then looking up the entry in Table 10-1 Appendix D 
corresponding to P. Since the standard normal distribution is symmetric about zero, for 
cumulative probabilities P < 0.50, look up the entry for (1–P) and give this value a negative 
sign. 
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Order 
(i) 

Log Nickel 
Concentration 

log(ppb) 

Cumulative 
Probability 

[i/(n+1)] 

Normal 
Quantile       
(z-score) 

 
1 

 
0.00 

 
0.048 

 
–1.668 

2 1.13 0.095 –1.309 
3 2.16 0.143 –1.068 
4 2.30 0.190 –0.876 
5 2.64 0.238 –0.712 
6 2.94 0.286 –0.566 
7 3.06 0.333 –0.431 
8 3.30 0.381 –0.303 
9 3.66 0.429 –0.180 

10 4.03 0.476 –0.060 
11 4.07 0.524 0.060 
12 4.17 0.571 0.180 
13 4.40 0.619 0.303 
14 4.45 0.667 0.431 
15 5.02 0.714 0.566 
16 5.57 0.762 0.712 
17 5.80 0.810 0.876 
18 6.36 0.857 1.068 
19 6.46 0.905 1.309 
20 6.85 0.952 

 
1.668 

 

Step 4. Plot the normal quantile (z-score) versus the ordered logged concentration for each sample, as 
in the plot below (Figure 9-8). The reasonably linear trend found in the probability plot 
indicates that the log-scale data closely follow a normal pattern, further suggesting that the 
original data closely follow a lognormal distribution. �
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CHAPTER 10.  FITTING DISTRIBUTIONS 

 

10.1 IMPORTANCE OF DISTRIBUTIONAL MODELS ................................................................................................ 10-1 
10.2 TRANSFORMATIONS TO NORMALITY ............................................................................................................ 10-3 
10.3 USING THE NORMAL DISTRIBUTION AS A DEFAULT ..................................................................................... 10-5 
10.4 COEFFICIENT OF VARIATION AND COEFFICIENT OF SKEWNESS .................................................................... 10-9 
10.5 SHAPIRO-WILK AND SHAPIRO-FRANCÍA NORMALITY TESTS ...................................................................... 10-13 

10.5.1 Shapiro-Wilk Test (n ≤ 50) ............................................................................................................... 10-13 
10.5.2 Shapiro-Francía Test (n > 50) ......................................................................................................... 10-15 

10.6 PROBABILITY PLOT CORRELATION COEFFICIENT ....................................................................................... 10-16 
10.7 SHAPIRO-WILK MULTIPLE GROUP TEST OF NORMALITY ........................................................................... 10-18 

 

Because a statistical or mathematical model is at best an approximation of reality, all statistical 
tests and procedures require certain assumptions for the methods to be used correctly and for the results 
to be properly interpreted. Many tests make an assumption regarding the underlying distribution of the 
observed data; in particular, that the original or transformed sample measurements follow a normal 
distribution. Data transformations are discussed in Section 10.2 while considerations as to whether the 
normal distribution should be used as a ‘default’ are explored in Section 10.3. Several techniques for 
assessing normality are also examined, including: 

� The skewness coefficient (Section 10.4) 

� The Shapiro-Wilk test of normality and its close variant, the Shapiro-Francía test (Section 10.5) 

� Filliben’s probability plot correlation coefficient test (Section 10.6) 

� The Shapiro-Wilk multiple group test of normality (Section 10.7) 

 

10.1 IMPORTANCE OF DISTRIBUTIONAL MODELS 

As introduced in Chapter 3, all statistical testing relies on the critical assumption that the sample 
data are representative of the population from which they are selected. The statistical distribution of the 
sample is assumed to be similar to the distribution of the mostly unobserved population of possible 
measurements. Many parametric testing methods make a further assumption: that the form or type of the 
underlying population is at least approximately known or can be identified through diagnostic testing. 
Most of these parametric tests assume that the population is normal in distribution; the validity or 
accuracy of the test results may be in question if that assumption is violated. 

Consequently, an important facet of choosing among appropriate test methods is determining 
whether a commonly-used statistical distribution such as the normal, adequately models the observed 
sample data. A large variety of possible distributional models exist in the statistical literature; most are 
not typically applied to groundwater measurements and often introduce additional statistical or 
mathematical complexity in working with them. So groundwater statistical models are usually confined 
to the gamma distribution, the Weibull distribution, or distributions that are normal or can be normalized 
via a transformation (e.g., the logarithmic or square root).  
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Although the Unified Guidance will occasionally reference procedures that assume an underlying 
gamma or Weibull distribution, the presentation in this guidance will focus on distributions that can be 
normalized and diagnostic tools for assessing normality. The principal reasons for limiting the 
discussion in this manner are: 1) the same tools useful for testing normality can be utilized with any 
distribution that can be normalized-- the only change needed is perform the normality test after first 
making a data transformation; 2) if no transformation works to adequately normalize the sample data, a 
non-parametric test can often be used as an alternative statistical approach; and 3) addressing more 
complicated scenarios is outside the scope of the guidance and may require professional statistical 
consultation. 

Understanding the statistical behavior of groundwater measurements can be very challenging. The 
constituents of interest may occur at relatively low concentrations and frequently be left-censored 
because of current analytical method limitations. Sample data are often positively skewed and 
asymmetrical in distributional pattern, perhaps due to the presence of outliers, inhomogeneous mixing of 
contaminants in the subsurface, or spatially variable soils deposition affecting the local groundwater 
geochemistry. For some constituents, the distribution in groundwater is not stationary over time (e.g., 
due to linear or seasonal trends) or not stationary across space (due to spatial variability in mean levels 
from well to well).  A set of these measurements pooled over time and/or space may appear highly non-
normal, even if the underlying population at any fixed point in time or space is normal. 

Because of these complexities, fitting a distributional model to a set of sample data cannot be done 
in isolation from checks of other key statistical assumptions. The data must also be evaluated for outliers 
(Chapter 12), since the presence of even one extreme outlier may cause an otherwise recognizable 
distribution from being correctly identified. For data grouped across wells, the possible presence of 
spatial variability must be considered (Chapter 13). If identified, the Shapiro-Wilk multiple group test 
of normality may be needed to account for differing means and/or variances at distinct wells. Data 
pooled across sampling events (i.e., over time) must be examined for the presence of trends or seasonal 
patterns (Chapter 14). A clearly identified pattern may need to be removed and the data residuals tested 
for normality, instead of the raw measurements. 

A frequently encountered problem involves testing normality on data sets containing non-detect 
values. The best goodness-of-fit tests attempt to assess whether the sample data closely resemble the 
tails of the candidate distributional model. Since non-detects represent left-censored observations where 
the exact concentrations are unknown for the lower tail of the sample distribution, standard normality 
tests cannot be run without some estimate or imputation of these unknown values. For a small fraction of 
non-detects in a sample (10-15% or less) censored at a single reporting limit, it may be possible to apply 
a normality test by simply replacing each non-detect with an imputed value of half the RL. However, 
more complicated situations arise when there is a combination of multiple RLs (detected values 
intermingled with different non-detect levels), or the proportion of non-detects is larger.  The Unified 
Guidance recommends different strategies in these circumstances. 

Properly ordering the sample observations (i.e., from least to greatest) is critical to any 
distributional goodness-of-fit test. Because the concentration of a non-detect measurement is only known 
to be in the range from zero to the RL, it is generally impossible to construct a full ordering of the 
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sample.1 There are methods, however, to construct partial orderings of the data that allow the 
assignment of relative rankings to each of the detected measurements and which account for the 
presence of censored values. In turn, a partial ordering enables construction of an approximate normality 
test. This subject is covered in Chapter 15. 

10.2 TRANSFORMATIONS TO NORMALITY 

Guidance users will often encounter data sets indicating significant evidence of non-normality. 
Due to the presumption of most parametric tests that the underlying population is normal, a common 
statistical strategy for apparently non-normal observations is to search for a normalizing mathematical 
transformation. Because of the complexities associated with interpreting statistical results from data that 
have been transformed to another scale, some care must be taken in applying statistical procedures to 
transformed measurements. In questionable or disputable circumstances, it may be wise to analyze the 
same data with an equivalent non-parametric version of the same test (if it exists) to see if the same 
general conclusion is reached. If not, the data transformation and its interpretation may need further 
scrutiny. 

Particularly with prediction limits, control charts, and some of the confidence intervals described in 
Chapters 18, 20, and 21, the parametric versions of these procedures are especially advantageous. Here, 
a transformation may be warranted to approximately normalize the statistical sample. Transformations 
are also often useful when combining or pooling intrawell background from several wells in order to 
increase the degrees of freedom available for intrawell testing (Chapter 13). Slight differences in the 
distributional pattern from well to well can skew the resulting pooled dataset, necessitating a 
transformation to bring about approximate normality and to equalize the variances. 

The interpretation of transformed data is straightforward in the case of prediction limits for 
individual observations or when building a confidence interval around an upper percentile.  An interval 
with limits constructed from the transformed data and then re-transformed (or back-transformed) to the 
original measurement domain will retain its original probabilistic interpretation. For instance, if the data 
are approximately normal under a square root transformation and a 95% confidence prediction limit is 
constructed on the square roots of the original measurements, squaring the resulting prediction limit 
allows for a 95% confidence level when applied to the original data. 

The same ease of interpretation does not apply to prediction limits for a future arithmetic mean 
(Chapter 18) or to confidence intervals around an arithmetic mean compared to a fixed GWPS 
(Chapter 21). A back-transformed confidence interval constructed around the mean of log-transformed 
data (i.e., the log-mean) corresponds to a confidence interval around the geometric mean of the raw 
(untransformed) data. For the lognormal distribution, the geometric mean is equal to the median, but it is 
not the same as the arithmetic mean. Using this back-transformation to bracket the location of the true 
arithmetic population mean will result in an incorrect interval. 

For these particular applications, a similar problem of scale bias occurs with other potential 
normality transformations. Care is needed when applying and interpreting transformations to a data set 

                                                 

1  Even when all the non-detects represent the lowest values in the sample, there is still no way to determine how this subset is 
internally ordered. 
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for which either a confidence interval around the mean or a prediction limit for a future mean is desired. 
The interpretation depends on which statistical parameter is being estimated or predicted. The geometric 
mean or median in some situations may be a satisfactory alternative as a central tendency parameter, 
although that decision must be weighed carefully when making comparisons against a GWPS. 

Common normalizing transformations include the natural logarithm, the square root, the cube root, 
the square, the cube, and the reciprocal functions, as well as a few others. More generally, one might 
consider the “ladder of powers” (Helsel and Hirsch, 2002) technically known as the set of Box-Cox 
transformations (Box and Cox, 1964). The heart of these transformations is a power transformation of 
the original data, expressed by the equations: 

 

  

y
λ

=
x

λ − 1( ) λ  for λ ≠ 0

log x for λ = 0






 [10.1] 

The goal of a Box-Cox analysis is to find the value λ that best transforms the data to approximate 
normality, using a procedure such as maximum likelihood. Such algorithms are beyond the scope of this 
guidance, although an excellent discussion can be found in Helsel and Hirsch (2002). In practice,  
slightly different equation formulations can be used: 

 
  
y

λ
=

xλ for λ ≠ 0

log x for λ = 0





 [10.2] 

where the parameter λ can generally be limited to the choices  0, -1, 1/4, 1/3, 1/2, 1, 2, 3, and 4, except 
for unusual cases of more extreme powers. 

As noted in Section 10.1, checking normality with transformed data does not require any 
additional tools. Standard normality tests can be applied using the transformed scale measurements. 
Only the interpretation of the test changes. A goodness-of-fit test can assess the normality of the raw 
measurements. Under a transformation, the same test checks for normality on the transformed scale. The  
data will still follow the non-normal distribution in the original concentration domain. So if a cube root 
transformation is attempted and the transformed data are found to be approximately normal, the original 
data are not normal but rather cube-root normal in distribution. If a log transformation is successfully 
used, the original measurements are not normal but lognormal instead. In sum, a series of non-normal 
distributions can be fitted to data with the goodness-of-fit tests described in this chapter without needing 
specific tests for other potential distributions. 

Finding a reasonable transformation in practice amounts to systematically ‘climbing’ the “ladder of 
powers” described above. In other words, different choices of the power parameter λ would be attempted 
— beginning with λ = 0 and working upward from -1 toward more extreme power transformations — 
until a specific λ normalizes the data or all choices have been attempted. If no transformation seems to 
work, the user should instead consider a non-parametric test alternative. 
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10.3 USING THE NORMAL DISTRIBUTION AS A DEFAULT 

Normal and lognormal distributions are frequently applied models in groundwater data because of 
their general utility.  One or the other of these models might be chosen as a default distribution when 
designing a statistical approach, particularly when relatively little data has been collected at a site. Since 
the statistical behavior of these two models is very different and can lead to substantially different 
conclusions, the choice is not arbitrary. The type of test involved, the monitoring program, and the 
sample size can all affect the decision. For many data sets and situations, however, the normal 
distribution can be assumed as a default unless and until a better model can be pinpointed through 
specific goodness-of-fit testing provided in this chapter. 

Assumptions of normality are most easily made with regard to naturally-occurring and measurable 
inorganic parameters, particularly under background conditions. Many ionic and other inorganic water 
quality analyte measurements exhibit decent symmetry and low variability within a given well data set, 
making these data amenable to assumptions of normality.  Less frequently detected analytes (e.g., certain 
colloidal trace elements) may be better fit either by a site-wide lognormal or another distribution that can 
be normalized, as well as evaluated with non-parametric methods. 

Where contamination in groundwater is known to exist a priori (whether in background or 
compliance wells), default distributional assumptions become more problematic. At a given well, 
organic or inorganic contaminants may exhibit high or low variability, depending on local hydrogeologic 
conditions, the pattern of release from the source, the degree of solid phase absorption, degradability of a 
given constituent, and the variation in groundwater flow direction and depths. Non-steady state releases 
may result in a historical, occasionally non-linear pattern of trend increases or decreases. Such data 
might be fit by an apparent lognormal distribution, although removal of the trend may lead to normally-
distributed residuals. 

Sample size is also a consideration. With fewer than 8 samples in a data set, formal goodness-of-fit 
tests are often of limited value. Where larger sample sizes are available, goodness-of-fit tests should be 
conducted. The Shapiro-Wilk multiple group well test (Section 10.7) — even with small sample sizes — 
can sometimes be used to identify individual anomalous wells which might otherwise be presumed to 
meet the criterion of normality. Under compliance/assessment or corrective action monitoring, one might 
anticipate only four samples per well in the first year after instituting such monitoring. Under these 
conditions, a default assumption of normality for testing of the mean against a fixed standard is probably 
necessary. Aggregation of multi-year data when conducting compliance tests (see Chapter 7) may allow 
large enough sample sizes to warrant formal goodness-of-fit testing. With 8 (or more) samples, it may be 
possible to determine that a lognormal distribution is an appropriate fit for the data. Even in this latter 
approach, caution may be needed in applying Land’s confidence interval for a lognormal mean (Chapter 

21) if the sample variability is large and especially if the upper confidence limit is used in the 
comparison (i.e., in corrective action monitoring). 

The normal distribution may also serve as a reasonable default when it is not critical to ensure that 
sample data closely follow a specific distribution. For example, statistical tests on the mean are generally 
considered more robust with respect to departures from normality than procedures which involve upper 
or lower limits of an assumed distribution. Even if the data are not quite normal, tests on the mean such 
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as a Student’s t-test will often still provide a valid result. However, one might need to consider 
transformations of the data for other reasons. Analysis of variance [ANOVA] can be run with small 
individual well samples (e.g., n = 4), and as a comparison of means, it is fairly robust to departures from 
normality. A logarithmic or other transformation may be needed to stabilize or equalize the well-to-well 
variability (i.e., achieve homoscedasticity), a separate and more critical assumption of the test. 

Given their importance in statistical testing and the risks that sometimes occur in trying to interpret 
tests on other data transformation possibilities, it is useful to briefly consider the logarithmic 
transformation in more detail. As noted in Section 10.1, groundwater data can frequently be normalized 
using a logarithmic distribution model. Despite this, objections are sometimes raised that the log 
transformation is merely used to “make large numbers look smaller.” 

To better understand the log transformation, it should be recognized that logarithms are, in fact, 

exponents to some unit base. Given a concentration-scale variable x, re-expressed as   x = 10 y or  x = e y , 
the logarithm y is the exponent of that base (10 or the natural base e). It is the behavior of the resultant y 

values that is assessed when data are log-transformed. When data relationships are multiplicative in the 
original arithmetic domain (  x1

× x
2
), the relationships between exponents (i.e., logarithms) are additive 

(  y1
+ y

2
). Since the logarithmic distribution by mathematical definition is normal in a log-transformed 

domain, working with the logarithms instead of the original concentration measurements may offer a 
sample distribution much closer to normal. 

Similar to a unit scale transformation (ppm to ppb or Fahrenheit to Centigrade), the relative 
ordering of log-transformed measurements does not change. When non-parametric tests based on ranks 
(e.g., the Wilcoxon rank-sum test) are applied to data transformed either to a different unit scale or by 
logarithms, the outcomes are identical. However, other relationships among the log-transformed data do 
change, so that the log-scale numerical ‘spacing’ between lower values is more similar to the log-scale 
spacing between higher values. While parametric tests like prediction limits, t-tests, etc., are not affected 
by unit scale transformations, these tests may have different outcomes depending on whether raw 
concentrations or log-transformed measurements are used. The justification for utilizing log-transformed 
data is that the transformation helps to normalize the data so that these tests can be properly applied. 

There is also a plausible physical explanation as to why pollutant concentrations often follow a 
logarithmic pattern (Ott, 1990). In Ott’s model, pollutant sources are randomly dispersed through the 
subsurface or atmosphere in a multiplicative fashion through repeated dilutions when mixing with 
volumes of (uncontaminated) water or air, depending on the medium. Such random and repeated 
dilutions can mathematically lead to a lognormal distribution. In particular, if a final concentration (  c0

) 

is the product of several random dilutions (
 
c

i
) as suggested by the following equation: 

 ( )∏
=

×××==
n

i

ni ccccc
1

210 K  [10.3] 

the logarithm of this concentration is equivalent to the sum of the logarithms of the individual dilutions: 

 
  
log c

0( )= log c
i( )

i=1

n

∑  [10.4] 
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The Central Limit Theorem (Chapter 3) can be applied to conclude that the logged concentration 
in equation [10.4] should be approximately normal, implying that the original concentration (  c0

) should 

be approximately lognormal in distribution. Contaminant fate-and-transport models more or less follow 
this same approach, using successive multiplicative dilutions (while accounting for absorption and 
degradation effects) across grids in time and space. 

Despite the mathematical elegance of the Ott model, experience with groundwater monitoring data 
has shown that the lognormal model alone is not adequate to account for observed distribution patterns. 
While contaminant modeling might predict a lognormal contaminant distribution in space (and often in 
time at a fixed point during transient phases), individual well location points fixed in space and at rough 
contaminant equilibrium are more likely to be subject to a variety of local hydrologic and other factors, 
and the observed distributions can be almost limitless in form. Since most of the tests within the Unified 
Guidance presume a stationary population over time at a given well location (subject to identification 
and removal of trends), the resultant distributions may be other than lognormal in character. Individual 
constituents may also exhibit varying aquifer-related distributional characteristics. 

A practical issue in selecting a default transformation is ease of use. Distributions like the 
lognormal usually entail more complicated statistical adjustments or calculations than the normal 
distribution. A confidence interval around the arithmetic mean of a lognormal distribution utilizes 
Land’s H-factor, which is a function of both log sample data variability and sample size, and is only 
readily available for specific confidence levels. By contrast, a normal confidence interval around the 
sample mean based on the t-statistic can easily be defined for virtually any confidence level.  As noted 
earlier, correct use of these confidence intervals depends on selecting the appropriate parameter and 
statistical measure (arithmetic mean versus the geometric mean). 

While a transformation does not always necessitate using a different statistical formula to ensure 
unbiased results, use of a transformation does assume that the underlying population is non-normal. 
Since the true population will almost never be known with certainty, it may not be advantageous to 
simply default to a lognormal assumption for a variety of reasons. Under detection monitoring, the 
presumption is made that a statistically significant increase above background concentrations will trigger 
a monitoring exceedance. But the larger the prediction limit computed from background, the less 
statistical power the test will have for detecting true increases.  An important question to answer is what 
the consequences are when incorrectly applying statistical techniques based on one distributional 
assumption (normal or lognormal), when the underlying distribution is in fact the other. More 
specifically, what is the impact on statistical power and accuracy of assuming the wrong underlying 
distribution? The general effects of violating underlying test assumptions can be measured in terms of 
false positive and negative error rates (and therefore power). These questions are particularly pertinent 
for prediction limit and control chart tests in detection monitoring. Similar questions could be raised 
regarding the application of confidence interval tests on the mean when compared against fixed 
standards. 

To answer these questions, a series of Monte Carlo simulations was generated for the Unified 
Guidance to evaluate the impacts on prediction limit false positive error rates and statistical power of 
using normal and lognormal distributions (correctly and incorrectly applied to the underlying 
distributions).  Detailed results of this study are provided in Appendix C, Section C.1. 
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The conclusions of the Monte Carlo study are summarized as follows: 

� If an underlying population is truly normal, treating the sample data as lognormal in 
constructing a prediction limit can have significant consequences. With no retesting, the 
lognormal prediction limits were in every case considerably larger and thus less powerful than 
the normal prediction limits. Further, the lognormal limits consistently exhibited less than the 
expected (nominal) false positive rate, while the normal prediction limits tended to have slightly 
higher than nominal error rates. 

� When retesting was added to the procedure, both types of prediction limits improved. While 
power uniformly improved compared to no retest, the normal limits were still on average about 
13% shorter than the lognormal limits, leading again to a measurable loss of statistical power in 
the lognormal case. 

� On balance, misapplication of logarithmic prediction limits to normally-distributed data 
consistently resulted in (often considerably) lower power and false positive rates that were lower 
than expected. The results argue against presuming the underlying data to be lognormal without 
specific goodness-of-fit testing. 

� The highest penalties from misapplying lognormal prediction limits occurred for smaller 
background sizes. Since goodness-of-fit tests are least able to distinguish between normal and 
lognormal data with small samples, small background samples should not be presumed to be 
lognormal as a default unless other evidence from the site suggests otherwise. For larger 
samples, goodness-of-fit tests have much better discriminatory power, enabling a better 
indication of which model to use. 

� If the underlying population is truly lognormal but the sample data are treated as normal, the 
penalty in overall statistical performance is substantial only if no retesting is conducted. With no 
retesting, the false positive rates of normal-based limits were often substantially higher than the 
expected rate.  Under conditions of no retesting, misapplying normal prediction limits to 
lognormal data would result in an excessive site-wide false positive rate (SWFPR). 

� If at least one retest was added, the achieved false positive rates for the misapplied normal limits 
tended to be less than the expected rates, especially for moderate to larger sample sizes. Except 
for highly skewed lognormal distributions, the power of the normal limits was comparable or 
greater than the power of the lognormal limits. 

Overall, the Monte Carlo study indicated that adding a retest to the testing procedure significantly 
minimized the penalty of misapplying normal prediction limits to lognormal data, as long as the sample 
size was at least 8 and the distribution was not too skewed. Consequently, there is less penalty associated 
with making a default assumption of normality than in making a default assumption of lognormality 
under most situations. With highly skewed data, goodness-of-fit tests tend to better discriminate between 
the normal and lognormal models. The Unified Guidance therefore recommends that such diagnostic 
testing be done explicitly rather than simply assuming the data to be normal or lognormal. 

The most problematic cases in the study occurred for very small background sample sizes, where a 
misapplication of prediction limits in either direction often resulted in poorer statistical performance, 
even with retesting. In some situations, compliance testing may need to be conducted on an interim  
basis until enough data has been collected to accurately identify a distributional model. The Unified 
Guidance does not recommend an automatic default assumption of lognormality. 
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In summary, during detection and compliance/assessment monitoring, data sets should be treated 
initially as normal in distribution unless a better model can be pinpointed through specific testing. The 
normal distribution is a fairly safe assumption for background distributions, particularly for naturally 
occurring, measurable constituents and when sample sizes are small. Goodness-of-fit tests provided in 
this chapter can be used to more closely identify the appropriate distributions for larger sample sizes. If 
the initial assumption of normality is not rejected, further statistical analyses should be performed on the 
raw observations. If the normal distribution is rejected by a goodness-of-fit test, one should generally test 
the normality of the logged data, in order to check for lognormality of the original observations. If this 
test also fails, one can either look for an alternate transformation to achieve approximate normality 
(Section 10.2) or use a non-parametric technique. 

Since tests of normality have low power for rejecting the null hypothesis when the data are really 
lognormal but the sample size and degree of skewness are small, it is reassuring that a “wrong” default 
assumption of normality will infrequently lead to an incorrect statistical conclusion. In fact, the statistical 
power for detecting real concentration increases will generally be better than if the data were assumed to 
be lognormal. If the data are truly lognormal, there is a risk of greater-than-expected site-wide false 
positive error rates. 

When the population is more skewed, normality tests in the Unified Guidance have much greater 
power for correctly rejecting the normal model in favor of the lognormal distribution. Consequently, an 
initial assumption of normality will not, in most cases, lead to an incorrect final conclusion, since the 
presumed normal model will tend to be rejected before further testing is conducted. 

These recommendations do not apply to corrective action monitoring or other programs where it 
either known or reasonable to presume that groundwater is already impacted or has a non-normal 
distribution. In such settings, a default presumption of lognormality could be made, or a series of 
normalizing transformations could be attempted until a suitable fit is determined. Furthermore, even in 
detection monitoring, there are situations that often require the use of alternate transformations, for 
instance when pooling intrawell background across several wells to increase the degrees of freedom 
available for intrawell testing (Chapter 13). 

Whatever the circumstance, the Unified Guidance recommends whenever possible that site-
specific data be used to test the distributional presumption. If no data are initially available to do this, 
“referencing” may be employed to justify the use of, say, a normal or lognormal assumption in 
developing statistical tests at a particular site. Referencing involves the use of historical data or data 
from sites in similar hydrologic settings to justify the assumptions applied to the proposed statistical 
regimen. These initial assumptions should be checked when data from the site become available, using 
the procedures described in the Unified Guidance. Subsequent changes to the initial assumptions should 
be made if goodness-of-fit testing contradicts the initial hypothesis. 

10.4 COEFFICIENT OF VARIATION AND COEFFICIENT OF SKEWNESS 

 PURPOSE AND BACKGROUND 

Because the normal distribution has a symmetric ‘bell-shape,’ the normal mean and median 
coincide and random observations drawn from a normal population are just as likely to occur below the 
mean as above it. More generally, in any symmetric distribution the distributional pattern below the 
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mean is a mirror-image of the pattern above the mean. By definition, such distributions have no degree 
of skewness or asymmetry. 

Since the normal distribution has zero skewness, one way to look for non-normality is to estimate 
the degree of skewness. Non-zero values of this measure imply that the population is asymmetric and 
therefore something different from normal. Two exploratory screening tools useful for this task are the 
coefficient of variation and the coefficient of skewness. 

The coefficient of variation [CV] is extremely easy to compute, but only indirectly offers an 
estimate of skewness and hence normality/non-normality. A more direct estimate can be determined via 
the coefficient of skewness. Furthermore, better, formal tests can be used instead of either coefficient to 
directly assess normality. Nevertheless, the CV provides a measure of intrinsic variability in positive-
valued data sets. Although approximate, CVs can indicate the relative variability of certain data, 
especially with small sample sizes and in the absence of other formal tests (e.g., see Chapter 22, when 
comparing confidence limits on the mean to a fixed standard in compliance monitoring). 

The CV is also a valid measure of the multiplicative relationship between the population mean and 

the standard deviation for positively-valued random variables. Using sample statistics for the mean ( x ) 
and standard deviation (s), the true CV for non-negative normal populations can be reasonably estimated 
as: 

      xsCV /=       [10.5] 

  In lognormal populations, the CV is also used in evaluations of statistical power. In this latter 
case, the population CV works out to be: 

 
  
CV = exp σ

y

2( )− 1  [10.6] 

where σy is the population log-standard deviation. Instead of a ratio between the original scale standard 
deviation and the mean, the lognormal CV is estimated with the equation: 

 
  
CV = exp s

y

2( )− 1  [10.7] 

where 
 
s

y
 is the sample log-standard deviation. The estimate in equation [10.7] is usually more accurate 

than the simple CV ratio of the arithmetic standard deviation-to-mean, especially when the underlying 
population coefficient of variation is high. Similar to using the normal CV as a formal indicator of 
normality, the lognormal coefficient of variation estimator in equation [10.7] will have little relevance as 

a test of lognormality of the data.  Using it for that purpose is not recommended in the Unified 
Guidance.  But it can provide a sense of how variable a data set is and whether a lognormal assumption 
might need to be tested. 

While others have reported a ratio CV on logged measurements as ysCV y /=   for the 

transformation y = log x, the result is essentially meaningless. The actual logarithmic CV in equations 
[10.6] and [10.7] is solely determined by the logarithmic variability of σy or sy.  Negative logarithmic 
mean values are always possible, and the log ratio statistic is not invariant under a unit scale 
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transformation (e.g., ppb to ppm or ppt).  Similar problems in interpretation occur when CV estimators 
are applied to any variable which can be negatively valued, such as following a z-transformation to a 
standard normal distribution.  This log ratio statistic is not recommended for any application in the 
guidance. 

The coefficient of skewness (γ1) directly indicates to what degree a dataset is skewed or 
asymmetric with respect to the mean. Sample data from a normal distribution will have a skewness 
coefficient near zero, while data from an asymmetric distribution will have a positive or negative 
skewness depending on whether the right- or left-hand tail of the distribution is longer and skinnier than 
the opposite tail.  

Since groundwater monitoring concentrations are inherently non-negative, such data often exhibit 
skewness. A small degree of skewness is not likely to affect the results of statistical tests that assume 
normality. However, if the skewness coefficient is larger than 1 (in absolute value) and the sample size is 
small (e.g., n < 25), past research has shown that standard normal theory-based tests are much less 
powerful than when the absolute skewness is less than 1 (Gayen, 1949). 

Calculating the skewness coefficient is useful and only slightly more difficult than computing the 
CV. It provides a quick indication of whether the skewness is minimal enough to assume that the data 
are roughly symmetric and hopefully normal in distribution. If the original data exhibit a high skewness 
coefficient, the normal distribution will provide a poor approximation to the dataset. In that case — and 
unlike the CV — γ1 can be computed on the log-transformed data to test for symmetry of the logged 
measurements, or similarly for other transformations. 

 PROCEDURE 

The CV is calculated simply by taking the ratio of the sample standard deviation to the sample 

mean,  CV = s x  or its corresponding logarithmic version 
  
CV = exp s

y

2( )− 1 . 

The skewness coefficient may be computed using the following equation: 
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where the numerator represents the average cubed residual after subtracting the sample mean. 

 ►EXAMPLE 10-1 

Using the following data, compute the CVs and the coefficient of skewness to test for approximate 
symmetry.  Assume that the individual well data sets can be shown to arise from a single common 
population distribution: 
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 Nickel Concentration (ppb) 

Month Well 1 Well 2 Well 3 Well 4 
 

Jan 
 

58.8 
 

19 
 

39 
 

3.1 
Mar 1.0 81.5 151 942 
Jun 262 331 27 85.6 
Aug 56 14 21.4 10 
Oct 8.7 64.4 578 637 

 

 SOLUTION 
Step 1. Compute the mean, standard deviation (s), and sum of the cubed residuals for the nickel 

concentrations: 

 ( ) ppbx 52.16963718.58
20

1
=+++= K  

 ( ) ( ) ( )[ ] ppbs 7175.25952.16963752.169152.1698.58
19

1 222
=−++−+−= K  

 ( ) ( ) ( )[ ] 3833
3

1

1097845791.552.16963752.1698.58 ppbxx
n

i

i ×=−++−=−∑
=

K  

Step 2. Compute the arithmetic normal coefficient of variation following equation [10.5]: 

  CV = 259.7175 169.52 = 1.53  

Step 3. Calculate the coefficient of skewness using equation [10.8]: 

 
 
γ

1
= 20( )

1 2
5.97845791× 108( ) 19( )

3 2
259.7175( )

3
= 1.84  

 Both the CV and the coefficient of skewness are much larger than 1, so the data appear to be 
significantly positively skewed. Do not assume that the underlying population is normal. 

Step 4. Since the original data evidence a high degree of skewness, one can instead compute the 
skewness coefficient and corresponding sample CV with equation [10.7] on the logged nickel 
concentrations.  The logarithmic CV equals 4.97, a much more variable data set than 
suggested by the arithmetic CV.  The skewness coefficient works out to be |γ1|= 0.24 < 1, 
indicating that the logged data values are slightly skewed but not enough to clearly reject an 
assumption of normality in the logged data. In other words, the original nickel values may be 
lognormally distributed. ◄ 
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10.5 SHAPIRO-WILK AND SHAPIRO-FRANCÍA NORMALITY TESTS 

 10.5.1 SHAPIRO-WILK TEST (N ≤ 50) 

 PURPOSE AND BACKGROUND 

The Shapiro-Wilk test is based on the premise that if a data set is normally distributed, the ordered 
values should be highly correlated with corresponding quantiles (z-scores) taken from a normal 
distribution (Shapiro and Wilk, 1965). In particular, the Shapiro-Wilk test gives substantial weight to 
evidence of non-normality in the tails of a distribution, where the robustness of statistical tests based on 
the normality assumption is most severely affected. A variant of this test, the Shapiro-Francía test, is 
useful for sample sizes greater than 50 (see Section 10.5.2). 

The Shapiro-Wilk test statistic (SW) will tend to be large when a probability plot of the data 
indicates a nearly straight line. Only when the plotted data show significant bends or curves will the test 
statistic be small. The Shapiro-Wilk test is considered one of the best tests of normality available 
(Miller, 1986; Madansky, 1988). 

 PROCEDURE 

Step 1. Order and rank the dataset from least to greatest, labeling the observations as xi for rank i = 
1…n. Using the notation x(i), let the ith rank statistic from a data set represent the ith smallest 
value. 

Step 2. Compute differences 
  

x
n− i+1( ) − x

i( )






 for each i = 1…n. Then determine k as the greatest integer 

less than or equal to (n/2). 

Step 3. Use Table 10-2 in Appendix D to determine the Shapiro-Wilk coefficients, an–i+1 , for i = 
1…k. Note that while these coefficients depend only on the sample size (n), the order of the 
coefficients must be preserved when used in Step 4. The coefficients can be determined for 
any sample size from n = 3 up to n = 50. 

Step 4. Compute the quantity b given by the following equation: 

 
  
b= b

i

i=1

k

∑ = a
n− i+1

i=1

k

∑ (x
(n-i+1)

− x
(i)

)  [10.9] 

 Note that the values bi are simply intermediate quantities represented by the terms in the sum 
of the right-hand expression in equation [10.9]. 

Step 5. Calculate the standard deviation (s) of the dataset. Then compute the Shapiro-Wilk test 
statistic using the equation: 

 
  
SW =

b

s n − 1











2

 [10.10] 
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Step 6. Given the significance level (α) of the test, determine the critical point of the Shapiro-Wilk 
test with n observations using Table 10-3 in Appendix D. To maximize the utility and power 
of the test, choose α = .10 for very small data sets (n < 10), α = .05 for moderately sized data 
sets (10 ≤ n < 20), and α = .01 for larger sized data sets (n ≥ 20). Compare the SW against the 
critical point (swc). If the test statistic exceeds the critical point, accept normality as a 
reasonable model for the underlying population. However, if SW < swc, reject the null 
hypothesis of normality at the α-level and decide that another distributional model might 
provide a better fit. 

 ►EXAMPLE 10-2 

Use the nickel data of Example 10-1 to compute the Shapiro-Wilk test of normality. 

SOLUTION 
Step 1. Order the data from smallest to largest, rank in ascending order and list, as shown in columns 

1 and 2 of the table below.  Next list the data in reverse order in a third column. 

 

i x(i) x(n–i+1) x(n–i+1) – x(i) an–i+1 bi 

 
1 

 
1.0 

 
942.0 

 
941.0 

 
.4734 

 
445.47 

2 3.1 637.0 633.9 .3211 203.55 
3 8.7 578.0 569.3 .2565 146.03 
4 10.0 331.0 321.0 .2085 66.93 
5 14.0 262.0 248.0 .1686 41.81 
6 19.0 151.0 132.0 .1334 17.61 
7 21.4 85.6 64.2 .1013 6.50 
8 27.0 81.5 54.5 .0711 3.87 
9 39.0 64.4 25.4 .0422 1.07 
10 56.0 58.8 2.8 .0140 0.04 
11 58.8 56.0 –2.8  b = 932.88 
12 64.4 39.0 –25.4   
13 81.5 27.0 –54.5   
14 85.6 21.4 –64.2   
15 151.0 19.0 –132.0   
16 262.0 14.0 –248.0   
17 331.0 10.0 –321.0   
18 578.0 8.7 –569.3   
19 637.0 3.1 –633.9   
20 942.0 1.0 –941.0   

 
 

Step 2. Compute the differences 
  

x
n− i+1( ) − x

i( )






 in column 4 of the table by subtracting column 2 from 

column 3. Since the total sample size is n = 20, the largest integer less than or equal to (n/2) is 
k = 10. 

Step 3. Look up the coefficients an–i+1 from Table 10-2 in Appendix D and list in column 4. 
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Step 4. Multiply the differences in column 3 by the coefficients in column 4 and add the first k 
products (bi) to get quantity b, using equation [10.9]. 

 ( ) ( ) ( )[ ] 88.9328.20140.9.6333211.0.9414734. =+++= Kb  

Step 5. Compute the standard deviation of the sample, s = 259.72. Then use equation [10.10] to 
calculate the SW: 

 
  
SW =

932.88

259.72 19











2

= 0.679  

Step 6. Use Table 10-3 in Appendix D to determine the 0.01-level critical point for the Shapiro-Wilk 
test when n = 20. This gives swc = 0.868. Then compare the observed value of SW = 0.679 to 
the 1% critical point. Since SW < 0.868, the sample shows significant evidence of non-
normality by the Shapiro-Wilk test. The data should be transformed using logarithms or 
another transformation on the ladder of powers and re-checked using the Shapiro-Wilk test 
before proceeding with further statistical analysis. ◄ 

 10.5.2   SHAPIRO-FRANCÍA TEST (N > 50) 

The Shapiro-Wilk test of normality can be used for sample sizes up to 50. When n is larger than 
50, a slight modification of the procedure called the Shapiro-Francía test (Shapiro and Francia, 1972) 
can be used instead. Like the Shapiro-Wilk test, the Shapiro-Francía test statistic (SF) will tend to be 
large when a probability plot of the data indicates a nearly straight line. Only when the plotted data show 
significant bends or curves will the test statistic be small. 

To calculate the test statistic SF, one can use the following equation: 

 
  
SF = m

i
x

i( )
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  [10.11] 

where x(i) represents the ith ranked value of the sample and where mi denotes the approximate expected 
value of the ith rank normal quantile (or z-score). The values for mi are approximately equal to 

 
  
m

i
= Φ−1 i

n + 1







 [10.12] 

where  Φ
−1 denotes the inverse of the standard normal distribution with zero mean and unit variance. 

These values can be computed by hand using the normal distribution in Table 10-1 of Appendix D or 
via simple commands found in many statistical computer packages. 

Normality of the data should be rejected if the Shapiro-Francía statistic is too low when compared 
to the critical points provided in Table 10-4 of Appendix D. Otherwise one can assume the data are 
approximately normal for purposes of further statistical analysis. 
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10.6 PROBABILITY PLOT CORRELATION COEFFICIENT 

 BACKGROUND AND PURPOSE 

Another test for normality that is essentially equivalent to the Shapiro-Wilk and Shapiro-Francía 
tests is the probability plot correlation coefficient test described by Filliben (1975). This test meshes 
perfectly with the use of probability plots, because the essence of the test is to compute the usual 
correlation coefficient for points on a probability plot. Since the correlation coefficient is a measure of 
the linearity of the points on a scatterplot, the probability plot correlation coefficient, like the SW test 
statistic, will be high when the plotted points fall along a straight line and low when there are significant 
bends and curves in the probability plot. Comparison of the Shapiro-Wilk and probability plot 
correlation coefficient tests has indicated very similar statistical power for detecting non-normality 
(Ryan and Joiner, 1990). 

It should be noted that although some statistical software may not compute Filliben’s test directly, 
the usual Pearson’s correlation coefficient computed on the data pairs used to construct a probability plot 
will provide a very close approximation to the Filliben statistic. Some users may find this latter 
correlation easier to compute or more accessible in their software. 

 PROCEDURE 

Step 1. List the observations in order from smallest to largest, denoting x(i) as the ith smallest rank  
statistic in the data set. Then let n = sample size and compute the sample mean ( x ) and the 
standard deviation (s). 

Step 2. Consider a random sample drawn from a standard normal distribution. The ith rank statistic of 
this sample is fixed once the sample is drawn, but beforehand it can be considered a random 
variable, denoted as X(i). Likewise, by considering all possible datasets of size n that might be 
drawn from the normal distribution, one can think of the sampling distribution of the statistic 
X(i). This sampling distribution has its own mean and variance, and, of importance to the 
probability plot correlation coefficient, its own median, which can be denoted Mi. 

 To compute the median of the ith rank statistic, first compute intermediate probabilities mi for 
i = 1…n using the equation: 

 

  

m
i

=

1− .5( )
1 n

i − .3175( ) n + .365( )
.5( )

1 n













  

for i = 1

for 1 < i < n

for i = n

 [10.13] 

 Then compute the medians Mi as the standard normal quantiles or z-scores associated with the 
intermediate probabilities mi. These can be determined from Table 10-1 in Appendix D or 

computed according to the following equation, where  Φ
−1 represents the inverse of the 

standard normal distribution: 

 
  
M

i
= Φ−1 m

i( ) [10.14] 
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Step 3. With the rank statistic medians in hand, calculate the arithmetic mean of the Mi’s, denoted  M , 
and the intermediate quantity Cn, given by the equation: 

 
  
C

n
= M

i

2

i=1

n

∑ − nM
2  [10.15] 

 Note that when the dataset is “complete” (meaning it contains no non-detects, ties, or censored 
values), the mean of the order statistic medians reduces to   M = 0 . This in turn reduces the 
calculation of Cn to: 

 
  
C

n
= M

i

2

i=1

n

∑  [10.16] 

Step 4. Finally compute Filliben’s probability plot correlation coefficient: 

 

  

r =

x
i( )M i

i=1

n

∑ − nxM

C
n

⋅ s n − 1
 [10.17] 

 When the dataset is complete, the equation for the probability plot correlation coefficient also 
has a simplified form: 

 
  
r = x

i( )M i

i=1

n

∑ C
n

⋅ s n − 1





 [10.18] 

Step 5. Given the level of significance (α), determine the critical point (rcp) for Filliben’s test with 
sample size n from Table 10-5 in Appendix D. Compare the probability plot correlation 
coefficient (r) against the critical point (rcp). If r ≥ rcp, conclude that normality is a reasonable 
model for the underlying population at the α-level of significance. If, however, r < rcp, reject 
the null hypothesis and conclude that another distributional model would provide a better fit. 

 ►EXAMPLE 10-3 

Use the data of Example 10-1 to compute Filliben’s probability plot correlation coefficient test at 
the α = .01 level of significance. 

 SOLUTION 
Step 1. Order and rank the nickel data from smallest to largest and list, as in the table below. The 

sample size is n = 20, with sample mean  x  = 169.52 and the standard deviation s = 259.72. 

Step 2. Compute the intermediate probabilities mi from equation [10.13] for each i in column 3 and 
the rank statistic medians, Mi, in column 4 by applying the inverse normal transformation to 
column 3 using equation [10.14] and Table 10-1 of Appendix D. 
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Step 3. Since this sample contains no non-detects or ties, the simplified equations for Cn in equation 
[10.16] and for r in equation [10.18] may be used. First compute Cn using the squared order 
statistic medians in column 5: 

 [ ] 138.4328.3926.1328.3 =+++= KnC  

Step 4. Next compute the products 
 
x

i( ) × M
i
in column 6 and sum to get the numerator of the 

correlation coefficient (equal to 3,836.81 in this case). Then compute the final correlation 
coefficient: 

 
  
r = 3,836.81 4.138 × 259.72 19





= 0.819  

i x(i) mi Mi (Mi)
2 x(i) ×××× Mi 

 
1 

 
  1.0 

 
.03406 

 
–1.8242 

 
3.328 

 
–1.824 

2   3.1 .08262 –1.3877 1.926 –4.302 
3   8.7 .13172 –1.1183 1.251 –9.729 
4  10.0 .18082 –0.9122 0.832 –9.122 
5  14.0 .22993 –0.7391 0.546 –10.347 
6  19.0 .27903 –0.5857 0.343 –11.129 
7  21.4 .32814 –0.4451 0.198 –9.524 
8  27.0 .37724 –0.3127 0.098 –8.444 
9  39.0 .42634 –0.1857 0.034 –7.242 
10  56.0 .47545 –0.0616 0.004 –3.448 
11  58.8 .52455 0.0616 0.004 3.621 
12  64.4 .57366 0.1857 0.034 11.959 
13  81.5 .62276 0.3127 0.098 25.488 
14  85.6 .67186 0.4451 0.198 38.097 
15 151.0 .72097 0.5857 0.343 88.445 
16 262.0 .77007 0.7391 0.546 193.638 
17 331.0 .81918 0.9122 0.832 301.953 
18 578.0 .86828 1.1183 1.251 646.376 
19 637.0 .91738 1.3877 1.926 883.941 
20 942.0 .96594 1.8242 3.328 

 
1718.408 

 

Step 5. Compare Filliben’s test statistic of r = 0.819 to the 1% critical point for a sample of size 20 in 
Table 10-5 of Appendix D, namely rcp = 925. Since r < 0.925, the sample shows significant 
evidence of non-normality by the probability plot correlation coefficient. The data should be 
transformed and the correlation coefficient re-calculated before proceeding with further 
statistical analysis. ◄ 

 

10.7 SHAPIRO-WILK MULTIPLE GROUP TEST OF NORMALITY 

 BACKGROUND AND PURPOSE 

The main purpose for including the multiple group test normality (Wilk and Shapiro, 1968) in the 
Unified Guidance is to serve as a check for normality when using a Student’s t-test (Chapter 16) or 
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when assessing the joint normality of multiple intrawell data sets. The multiple group test is an extension 
of the Shapiro-Wilk procedure for assessing the joint normality of several independent samples. Each 
sample may have a different mean and/or variance, but as long as the underlying distribution of each 
group is normal, the multiple group test statistic will tend to be non-significant. Conversely, the multiple 
group test is designed to identify when at least one of the groups being tested is definitely non-normal. 

This test extends the Shapiro-Wilk procedure for a single sample, using individual SW test 
statistics computed separately for each group or sample. Then the individual SW statistics are 
transformed and combined into an overall or “omnibus” statistic (G). Like the single sample procedure 
— where non-normality is indicated when the test statistic SW is too low — non-normality in one or 
more groups is indicated when G is too low. However, instead of a special table of critical points, G is 
constructed to follow a standard normal distribution under the null hypothesis of normality. The value of 
G can simply be compared to an α-level z-score or normal quantile to decide whether the null or 
alternative hypothesis is better supported. 

Since it may be unclear which one or more of the groups is actually non-normal when the G 
statistic is significant, Wilk and Shapiro recommend that a probability plot (Chapter 9) be examined on 
the intermediate quantities, Gi (at least for the case where several groups are being simultaneously 
tested). One of these statistics is computed for each separate sample/group and is designed to follow a 
standard normal distribution under H0. Because of this, the Gi statistics for non-normal groups will tend 
to look like outliers on a normal probability plot (see Chapter 12). 

The multiple group test can also be used to check normality when performing Welch’s t-test, a 
two-sample procedure in which the underlying data of both groups are assumed to be normal, but no 
assumption is made that the means or variances are the same. This is different from either the pooled 
variance t-test or the one-way analysis of variance [ANOVA], both of which assume homoscedasticity 
(i.e., equal variances across groups). If the group variances can be shown to be equal, the single sample 
Shapiro-Wilk test can be run on the combined residuals, where the residuals of each group are formed by 
subtracting off the group mean from each of the individual measurements. However, if the group 
variances are possibly different, testing the residuals as a single group using the SW statistic may give an 
inaccurate or misleading result. Consequently, since a test of homoscedasticity is not required for 
Welch’s t-test, it is suggested to first use the multiple group test to check normality. 

Although the Shapiro-Wilk multiple group method is an attractive procedure for accommodating 
several groups of data at once, the user is cautioned against indiscriminate use. While many of the 
methods described in the Unified Guidance assume underlying normality, they also assume 
homoscedasticity. Other parametric multi-sample methods recommended for detection monitoring — 
prediction limits in Chapter 18 and control charts in Chapter 20 — all assume that each group has the 
same variance. Even if normality of the joint data can be demonstrated using the Shapiro-Wilk multiple 
group test, it says nothing about whether the assumption of equal variances is also satisfied. Generally 
speaking, except for Welch’s t-test, a separate test of homoscedasticity may also be needed. Such tests 
are described in Chapter 11. 

 PROCEDURE 

Step 1. Assuming there are K groups to be tested, let the sample size of the ith group be denoted ni. 
Then compute the SWi test statistic for each of the K groups using equation [10.10]. 
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Step 2. Transform the SWi statistics to the intermediate quantities (Gi). If the sample size (ni) of the ith 
group is at least 7, compute Gi with the equation: 

 

  

G
i
= γ + δ ln

SW
i
− ε

1− SW
i









  [10.19] 

 where the quantities γ, δ, and ε can be found in Table 10-6 of Appendix D for 7 ≤ ni ≤ 50. If 
the sample size (ni) is less than 7, determine Gi directly from Table 10-7 in Appendix D by 
first computing the intermediate value 

 

  

u
i

= ln
SW

i
− ε

1− SW
i









  [10.20] 

 (obtaining ε from the top of Table 10-7), and then using linear interpolation to find the closest 
value Gi associated with ui. 

Step 3. Once the Gi statistics are derived, compute the Shapiro-Wilk multiple group statistic with the 
equation: 

 
  
G =

1

K
G

i

i=1

K

∑  [10.21] 

Step 4. Under the null hypothesis that all K groups are normally-distributed, G will follow a standard 
normal distribution. Given the significance level (α), determine an α-level critical point from 
Table 10-1 of Appendix D as the lower α × 100th normal quantile (zα). Then compare G to 
zα. If G < zα, there is significant evidence of non-normality at the α level. Otherwise, the 
hypothesis of normality cannot be rejected. 

 ►EXAMPLE 10-4 

The previous examples in this chapter pooled the data of Example 10-1 into a single group before 
testing for normality. This time, treat each well separately and compute the Shapiro-Wilk multiple group 
test of normality at the α = .05 level. 

 SOLUTION 
Step 1. The nickel data in Example 10-1 come from K = 4 wells with ni = 5 observations per well. 

Using equation [10.10], the SWi individual well test statistics are calculated as: 

  Well 1:  SW1 = 0.7577 

  Well 2:  SW2 = 0.7396 

  Well 3:  SW3 = 0.7065 

  Well 4:  SW4 = 0.8149 
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Step 2. Since ni = 5 for each well, use Table 10-7 of Appendix D to find ε = .5521. First calculating 
u1 with equation [10.20]: 

 1641.
7577.1

5521.7577.
ln1 −=









−

−
=u  

 Then performing this step for each well group and using linear interpolation on u in Table 10-

7, the approximate Gi statistics are: 

  Well 1:  u1 = –.1641 G1 = –1.783 

  Well 2:  u2 = –.3280 G2 = –1.932 

  Well 3:  u3 = –.6425 G3 = –2.200  

  Well 4:  u4 =   .3502 G4 = –1.254 

Step 3. Compute the multiple group test statistic using equation [10.21]: 

 ( ) ( ) ( ) ( )[ ] 585.3254.1200.2932.1783.1
4

1
−=−+−+−+−=G  

Step 4. Since α = 0.05, the lower α  × 100th critical point from the standard normal distribution in 
Table 10-1 of Appendix D is z.05 = –1.645. Clearly, G < z.05 ; in fact G is equivalent to a Z-
value probability of .0002. Thus, there is significant evidence of non-normality in at least one 
of these wells (and perhaps all of them). ◄  

 ►EXAMPLE 10-5 

The data in Example 10-1 showed significant evidence of non-normality. In this example, use the 
same nickel data applying the coefficient of skewness, Shapiro-Wilk and the Probability Plot Correlation 
Coefficient tests to determine whether the combined well measurements better follow a lognormal 
distribution by first log-transforming the measurements. Computing the natural logarithms of the data 
gives the table below: 

 

 Logged Nickel Concentrations log(ppb) 

Month Well 1 Well 2 Well 3 Well 4 
 
1 

 
4.07 

 
2.94 

 
3.66 

 
1.13 

2 0.00 4.40 5.02 6.85 
3 5.57 5.80 3.30 4.45 
4 4.03 2.64 3.06 2.30 
5 2.16 4.17 6.36 6.46 
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SOLUTION 
 
  METHOD 1.  COEFFICIENT OF SKEWNESS 
 
Step 1. Compute the log-mean ( y ), log-standard deviation (sy), and sum of the cubed residuals for the 

logged nickel concentrations (yi): 

 ( ) ( )ppby log918.346.600.007.4
20

1
=+++= K  

 ( ) ( ) ( )[ ] ( )ppbs y log8014.1918.346.6918.300.0918.307.4
19

1 222
=−++−+−= K  

 ( ) ( ) ( )[ ] ( )ppbyy
n

i

i

333
3

1

log528.26918.346.6918.307.4 −=−++−=−∑
=

K  

Step 2. Calculate the coefficient of skewness using equation [10.8] with Step 1 values as:  

 
 
γ

1
= 20( )

1 2
−26.528( ) 19( )

3 2
1.8014( )

3
= −0.245  

 Since the absolute value of the skewness is less than 1, the data do not show evidence of 
significant skewness. Applying a normal distribution to the log-transformed data may 
therefore be appropriate, but this model should be further checked. The logarithmic CV of 
4.97 computed in Example 10-1 was also suggestive of a highly skewed distribution, but can 
be difficult to interpret in determining if measurements, in fact, follow a logarithmic 
distribution.  

  METHOD 2.  SHAPIRO-WILK TEST 
 
Step 1. Order and rank the data from smallest to largest and list, as in the table below. List the data in 

reverse order alongside the first column. Denote the ith logged observation by yi = log(xi). 

Step 2. Compute differences 
  

y
n− i+1( ) − y

i( )






 in column 4 of the table by subtracting column 2 from 

column 3. Since n = 20, the largest integer less than or equal to (n/2) is k = 10. 

Step 3. Look up the coefficients an–i+1 from Table 10-2 of Appendix D and list in column 5. 

Step 4. Multiply the differences in column 4 by the coefficients in column 5 and add the first k 
products (bi) to get quantity b, using equation [10.9]. 

 ( ) ( ) ( )[ ] 77.704.0140.33.53211.85.64734. =+++= Kb  
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i y(i) y(n–i+1) y(n–i+1) – y(i) an–i+1 bi 

1 0.00 6.85 6.85 .4734 3.24 
2 1.13 6.46 5.33 .3211 1.71 
3 2.16 6.36 4.20 .2565 1.08  
4 2.30 5.80 3.50 .2085 0.73 
5 2.64 5.57 2.93 .1686 0.49 
6 2.94 5.02 2.08 .1334 0.28 
7 3.06 4.45 1.39 .1013 0.14 
8 3.30 4.40 1.10 .0711 0.08 
9 3.66 4.17 0.51 .0422 0.02 
10 4.03 4.07 0.04 .0140 0.00   
11 4.07 4.03 –0.04  b = 7.77 
12 4.17 3.66 –0.51   
13 4.40 3.30 –1.10   
14 4.45 3.06 –1.39   
15 5.02 2.94 –2.08   
16 5.57 2.64 –2.93   
17 5.80 2.30 –3.50   
18 6.36 2.16 –4.20   
19 6.46 1.13 –5.33   
20 6.85 0.00 –6.85   

 

Step 5. Compute the log-standard deviation of the sample, sy = 1.8014. Then use [10.10] to calculate 
the SW test statistic: 

 
  
SW =

7.77

1.8014 19











2

= 0.979  

Step 6. Use Table 10-3 of Appendix D to determine the .01-level critical point for the Shapiro-Wilk 
test when n = 20. This gives swcp = 0.868. Then compare the observed value of SW = 0.979 to 
the 1% critical point. Since SW > 0.868, the sample shows no significant evidence of non-
normality by the Shapiro-Wilk test. Proceed with further statistical analysis using the log-
transformed data or by assuming the underlying population is lognormal.  

  METHOD 3.  PROBABILITY PLOT CORRELATION COEFFICIENT 
 
Step 1. Order and rank the logged nickel data from smallest to largest and list, as in the table below. 

Again let the ith logged value be denoted by yi = log(xi). The sample size is n = 20, the log-
mean is  y  = 3.918, and the log-standard deviation is sy = 1.8014. 

Step 2. Compute the intermediate probabilities mi from equation [10.13] for each i in column 3 and 
the rank statistic medians, Mi , in column 4 by applying the inverse normal transformation to 
column 3 using equation [10.14] and Table 10-1 of Appendix D. 
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i y(i) mi Mi (Mi)
2 y(i) ×××× Mi 

 
1 

 
0.00 

 
.03406 

 
–1.8242 

 
3.328 

 
0.000 

2 1.13 .08262 –1.3877 1.926 –1.568 
3 2.16 .13172 –1.1183 1.251 –2.416 
4 2.30 .18082 –0.9122 0.832 –2.098 
5 2.64 .22993 –0.7391 0.546 –1.951 
6 2.94 .27903 –0.5857 0.343 –1.722 
7 3.06 .32814 –0.4451 0.198 –1.362 
8 3.30 .37724 –0.3127 0.098 –1.032 
9 3.66 .42634 –0.1857 0.034 –0.680 
10 4.03 .47545 –0.0616 0.004 –0.248 
11 4.07 .52455 0.0616 0.004 0.251 
12 4.17 .57366 0.1857 0.034 0.774 
13 4.40 .62276 0.3127 0.098 1.376 
14 4.45 .67186 0.4451 0.198 1.981 
15 5.02 .72097 0.5857 0.343 2.940 
16 5.57 .77007 0.7391 0.546 4.117 
17 5.80 .81918 0.9122 0.832 5.291 
18 6.36 .86828 1.1183 1.251 7.112 
19 6.46 .91738 1.3877 1.926 8.965 
20 6.85 .96594 1.8242 3.328 

 
12.496 

 

Step 3. Since this sample contains no non-detects or ties, the simplified equations for Cn in [10.16] 
and for r in [10.18] may be used. First compute Cn using the squared order statistic medians in 
column 5: 

 [ ] 138.4328.3926.1328.3 =+++= KnC  

Step 4. Next compute the products 
 
y

i( ) × M
i
 in column 6 and sum to get the numerator of the 

correlation coefficient (equal to 32.226 in this case). Then compute the final correlation 
coefficient: 

 
  
r = 32.226 4.138 × 1.8014 19





= 0.992  

Step 5. Compare the Filliben’s test statistic of r = 0.992 to the 1% critical point for a sample of size 20 
in Table 10-5 in Appendix D, namely rcp = 925. Since r > 0.925, the sample shows no 
significant evidence of non-normality by the probability plot correlation coefficient test. 
Therefore, lognormality of the original data can be assumed in subsequent statistical 
procedures. 

Note: the Shapiro-Wilk and Filliben’s Probability Plot Correlation Coefficient tests for 
normality on a single data set perform quite comparably. Only one of these tests need be run in 
routine applications. ◄ 
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Many of the methods described in the Unified Guidance assume that the different groups under 
comparison have the same variance (i.e., are homoscedastic). This chapter covers procedures for 
assessing homoscedasticity and its counterpart, heteroscedasticity (i.e., unequal variances). Equality of 
variance is assumed, for instance, when using prediction limits to make either upgradient-to-
downgradient or intrawell comparisons. In the former case, the method assumes that the upgradient 
variance is equal to the variance in each downgradient well. In the latter case, the presumption is that the 
well variance is stable over time (i.e., stationary) when comparing intrawell background versus more 
recent measurements. 

If a prediction limit is constructed on a single new measurement at each downgradient well, it isn't 
feasible to test the variance equality assumption prior to each statistical evaluation. Homoscedasticity 
can be tested after several new rounds of compliance sampling by pooling collected compliance 
measurements within a well.  The Unified Guidance recommends periodic testing of the presumption of 
equal variances by comparing newer data to historical background (Chapter 6). 

Equality of variance between different groups (e.g., different wells) is also an important 
assumption for an analysis of variance [ANOVA]. If equality of variance does not hold, the power of the 
F-test (its ability to detect differences among the group means) is reduced. Mild differences in variance 
are generally acceptable. But the effect becomes noticeable when the largest and smallest group 
variances differ by a ratio of about 4, and becomes quite severe when the ratio is 10 or more (Milliken 
and Johnson, 1984). 

Three procedures for assessing or testing homogeneity of variance are described in the Unified 
Guidance, two of which that are more robust to departures from normality (i.e., less sensitive to non-
normality). These include: 

1. The box plot (Chapter 9), a graphical method useful not only for checking equality of variance 
but also  as an exploratory tool for visualizing the basic statistical characteristics of data sets.  It 
can also provide a rough indication of differences in mean or median concentration levels across 
several wells; 

2. Levene’s test (Section 11.2), a formal ANOVA-type procedure for testing variance inequality; 
and 

3. The mean-standard deviation scatter plot (Chapter 9 and Section 11.3), a visual tool for 
assessing whether the degree of variability in a set of data groups or wells is correlated with the 
mean levels for those groups.  This could potentially indicate whether a variance stabilizing 
transformation might be needed. 



��������		
���������������������������� ��������������

� ���	� ������	

��

���� �� �������

� ����������!����"�����!�

Box plots are described in Chapter 9. In the context of variance testing, one can construct a box 
plot for each well group and compare the boxes to see if the assumption of equal variances is reasonable. 
The comparison is not a formal test procedure, but is easier to perform and is often sufficient for 
checking the group variance assumption. 

Box plots for each data group simultaneously graphed side-by-side provide a direct visual 
comparison of the dispersion in each group. As a rule of thumb, if the box length for each group is less 
than 1.5–2 times the length of the shortest box, the sample variances may be close enough to assume 
equal group variances. If the box length for any group is greater than 1.5–2 times the length of the box 
for another group, the variances may be significantly different. A formal test such as Levene’s might be 
needed to more accurately decide. Sample data sets with unequal variances may need a variance 
stabilizing transformation, i.e., one in which the transformed measurements have approximately equal 
variances. 

Most statistical software packages will calculate the statistics needed to draw a box plot, and many 
will construct side-by-side box plots directly. Usually a box plot will also be shown with two “whiskers” 
extending from the edges of the box. These lines indicate either the positions of extreme minimum or 
maximum values in the data set.  In Tukey’s original formulation (Tukey, 1977), they indicate the most 
extreme lower and upper data points outside the box but falling within a distance of 1.5 times the 
interquartile range (that is, the length of the box) from either edge. The whiskers should generally not be 
used to approximate the overall variance under either formulation. 

A convenient tactic when using box plots to screen for heteroscedasticity is to plot the residuals of 
each data group rather than the measurements themselves. This will line the boxes up at roughly a 
common level (close to zero), so that a visual comparison of box lengths is easier. 

� ���������������!�������������

The requirements and assumptions for box plots are discussed in Section 9.2. 

� �����!����

Step 1. For each of j wells or data groups, compute the sample mean of that group
 
x j . Then compute 

the residuals (rij) for each group by subtracting the group mean from each individual 
measurement:

 
rij = xij − x j . 

Step 2. Use the procedure outlined in Section 9.2 to create side-by-side box plots of the residuals 
formed in Step 1. Then compare the box lengths to check for possibly unequal variances. 

� �� �����������

Construct box plots on the residuals for each of the following well groups to check for 
homoscedasticity. 
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Step 1. Form the residuals for each well by subtracting the sample well mean from each observation, 
as shown in the table below. 
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Step 2. Follow the procedure in Section 9.2 to compute a box plot of the residuals for each well. Line 
these up side by side on the same graph, as in Figure 11-1. 

Step 3. Compare the box lengths. Since the box length for Well 3 is more than three times the box 
lengths of Wells 4 and 6, there is informal evidence that the population group variances may 
be different. These data should be further checked using a formal test and perhaps a variance 
stabilizing transformation attempted. � 
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Levene’s test is a formal procedure for testing homogeneity of variance that is fairly robust (i.e., 
not overly sensitive) to non-normality in the data. It is based on computing the new variables: 

 •−= ijiji xxz  [11.1] 

where xij represents the jth sample value from the ith group (e.g., well) and •ix  is the ith group sample 

mean.  The symbol (•) in the notation for the group sample mean represents an averaging over subscript 
j.   The values jiz then represent the absolute values of the residuals.  Levene’s test involves running a 

standard one-way ANOVA (Chapter 17) on the variables jiz . If the F-test is significant, reject the 

hypothesis of equal group variances and perhaps seek a variance stabilizing transformation. Otherwise, 
proceed with analysis of the original jix ’s. 

Levene’s test is based on a one-way ANOVA and contrasts the means of the groups being tested. 
This implies a comparison between averages of the form: 
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Such averages of the jiz ’s are very similar to the standard deviations of the original data groups, given 

by the formula: 
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 [11.3] 

 In both cases, the statistics are akin to an average absolute residual. Therefore, the comparison of 
means in Levene’s test is closely related to a direct comparison of the group standard deviations, the 
underlying aim of any test of variance equality. 
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The requirements and assumptions for Levene’s test are essentially the same as the one-way 
ANOVA in Section 17.1, but applied to the absolute residuals instead of the raw measurements. 

� �����!����

Step 1. Suppose there are p data groups to be compared. Because there may be different numbers of 
observations per well, denote the sample size of the ith group by ni and the total number of 
data points across all groups by N. 

 Denote the observations in the ith group by jix  for i = 1…p and j = 1…ni. The first subscript 

then designates the well, while the second denotes the jth value in the ith well. After 
computing the sample mean ( xi ) for each group, calculate the absolute residuals ( jiz ) using 

equation [11.1]. 

Step 2. Utilizing the absolute residuals — and not the original data — compute the mean of each 
group along with the overall (grand) mean of the combined data set using the formula: 

 ��
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•• =
p
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j
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i

z
N

z
1 1

1
 [11.4] 

Step 3. Compute the sum of squares of differences between the group means and the grand mean, 
denoted SSgrps: 

 
  
SSgrps = ni zi• − z••( )2

i=1

p

� = nizi•
2

i=1

p

� − Nz••
2  [11.5] 

 The formula on the far right is usually the most convenient for calculation. This sum of 
squares has (p–1) degrees of freedom associated with it and is a measure of the variability 
between groups. It constitutes the numerator of the F-statistic. 
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Step 4. Compute the corrected total sum of squares, denoted by SStotal: 

 
  
SStotal = zij − z••( )2

j=1

ni

�
i=1

p

� = zij
2

j=1

ni

�
i=1

p

� − Nz••
2  [11.6] 

  Again, the formula on the far right is usually the most computationally convenient. This sum 
of squares has (N–1) associated degrees of freedom. 

Step 5. Compute the sum of squares of differences between the absolute residuals and the group 
means. This is known as the within-groups component of the total sum of squares or, 
equivalently, as the sum of squares due to error. It is easiest to obtain by subtracting SSgrps 
from SStotal and is denoted SSerror: 

 
  
SSerror = zij − zi•( )2

j=1

ni

�
i=1

p

� = SStotal − SSgrps = zij
2

j=1

ni

�
i=1

p

� − nizi•
2

i=1

p

�  [11.7] 

 SSerror is associated with (N–p) degrees of freedom and is a measure of the variability within 
groups. This quantity goes into the denominator of the F-statistic. 

Step 6. Compute the mean sum of squares for both the between-groups and within-groups 
components of the total sum of squares, denoted by MSgrps and MSerror. These quantities are 
obtained by dividing each sum of squares by its corresponding degrees of freedom: 

 
  
MSgrps = SSgrps p − 1( ) [11.8] 

 
 
MSerror = SSerror N − p( ) [11.9] 

Step 7. Compute the F-statistic by forming the ratio between the mean sum of squares for wells and 
the mean sum of squares due to error, as in Figure 11-2 below. This layout is known as the 
one-way parametric ANOVA table and illustrates each sum of squares component of the total 
variability, along with the corresponding degrees of freedom, the mean squares components, 
and the final F-statistic calculated as F = MSgrps/MSerror. Note that the first two rows of the 
one-way table sum to the last row. 

Step 8. Figure 11-2 is a generalized ANOVA table for Levene’s test. To test the hypothesis of equal 
variances across all p well groups, compare the F-statistic in Figure 11-2 to the α-level critical 
point found from the F-distribution with (p–1) and (N–p) degrees of freedom in Appendix D 
Table 17-1. When testing variance equality, only severe levels of difference typically impact 
test performance in a substantial way. For this reason, the Unified Guidance recommends 
setting α = .01 when screening multiple wells and/or constituents using Levene’s test. In that 
case, the needed critical point equals the upper 99th percentage point of the F-distribution. If 
the observed F-statistic exceeds the critical point (F.99,p–1,N–p), reject the hypothesis of equal 
group population variances. Otherwise, conclude that there is insufficient evidence of a 
significant difference between the variances. 
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Use the data from Example 11-1 to conduct Levene’s test of equal variances at the � = 0.01 level 
of significance. 

� ���������

Step 1. Calculate the group arsenic mean for each well ( xi• ): 

 Well 1 mean = 16.47 ppm Well 4 mean = 11.26 ppm 

 Well 2 mean = 15.76 ppm Well 5 mean = 13.49 ppm 

 Well 3 mean = 29.60 ppm Well 6 mean = 2.29 ppm 

Then compute the absolute residuals zij in each well using equation [11.1] as in the table 
below. 
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Step 2. Compute the mean absolute residual ( zi• ) in each well and then the overall grand mean using 
equation [11.4]. These results are listed above. 

Step 3. Compute the between-groups sum of squares for the absolute residuals using equation [11.5]: 
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 ( ) ( ) ( )[ ] ( ) 90.522,336.152452.1412.18483.124 2222 =⋅−+++= �grpsSS  

Step 4. Compute the corrected total sum of squares using equation [11.6]: 

 ( ) ( ) ( )[ ] ( ) 89.300,636.152409.138.1343.6 2222 =⋅−+++= �totalSS  

Step 5. Compute the within-groups or error sum of squares using equation [11.7]: 

   SSerror = 6,300.89 − 3,522.90 = 2,777.99  

Step 6. Given that the number of groups is p = 6 and the total sample size is N = 24, calculate the 
mean squares for the between-groups and error components using formulas [11.8] and [11.9]: 

 
  
MSgrps = 3,522.90 6 − 1( )= 704.58  

 
  
MSerror = 2,777.99 24 − 6( )= 154.33  

Step 7. Construct an ANOVA table following Figure 11-2 to calculate the F-statistic. The numerator 
degrees of freedom [df] is computed as (p–1) = 5, while the denominator df is equal to (N–p) = 
18. 
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Step 8. Determine the .01-level critical point for the F-test with 5 and 18 degrees of freedom from 
Table 17-1. This gives F.99,5,18 = 4.25. Since the F-statistic of 4.56 exceeds the critical point, 
the assumption of equal variances should be rejected. Since the original concentration data are 
used in this example, a transformation such as the natural logarithm might be tried and the 
transformed data retested. � 
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The mean-standard deviation scatter plot is described in Chapter 9. It is useful as an exploratory 
tool for multiple groups of data (e.g., wells) to aid in identifying relationships between mean levels and 
variability. It is also helpful in providing a visual assessment of variance homogeneity across data 
groups. Like side-by-side box plots, the mean-standard deviation scatter plot graphs a measure of 
variability for each well. In the latter, however, the standard deviation is plotted rather than the 
interquartile range, so a more direct assessment of variance equality can be made.  Since standard 
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deviations (and consequently variances) are often positively correlated with sample mean levels in 
skewed populations, the observed pattern on the mean-standard deviation scatter plot can offer valuable 
clues as to what sort of variance stabilizing transformation if any might work. 

� ���������������!�������������

The requirements for the mean-standard deviation scatter plot are listed in Section 9.4.  
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See Section 9.4.  

� �� ���������#�

Use the data from Example 11-1 to construct a mean-standard deviation scatter plot. 

� ���������

Step 1. First compute the sample mean ( x ) and standard deviation (s) of each well, as listed below. 
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Step 2. Plot the well means versus the standard deviations as in Figure 11-3 below. Note the roughly 
linear relationship between the magnitude of the standard deviations and their corresponding 
means. The data suggest unequal variances among the wells, as indicated by the large range in 
the standard deviations. 
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Step 3. Because lognormal data groups will tend to show a linear association between the sample 

means and standard deviations, apply a log transformation to the original arsenic 
measurements and reconstruct the mean-standard deviation scatter plot on the log scale. 
Computing the log-means and log-standard deviations and then re-plotting gives Figure 11-4. 
Now the apparent trend between the means and standard deviations is gone. Further, on the 
log scale, the standard deviations are much more similar in magnitude, all with values between 
1 and 2. The log transformation thus appears to roughly stabilize the arsenic variances. � 
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This chapter discusses screening tools and formal tests for identifying statistical outliers. Two 
screening tools are first presented: probability plots (Section 12.1) and box plots (Section 12.2). These 
are followed by two formal outlier tests: 

� Dixon’s test (Section 12.3) for a single outlier in smaller data sets, and 

� Rosner’s test (Section 12.4) for up to five separate outliers in larger data sets. 

A statistical determination of one or more statistical outliers does not indicate why the 
measurements are discrepant from the rest of the data set.  The Unified Guidance does not recommend 
that outliers be removed solely on a statistical basis.  The outlier tests can provide supportive 
information, but generally a reasonable rationale needs to be identified for removal of suspect outlier 
values (usually limited to background data).  At the same time there must be some level of confidence 
that the data are representative of ground water quality. A number of factors and considerations in 
removing outliers from potential background data are discussed in Section 5.2.3. 

12.1 SCREENING WITH PROBABILITY PLOTS 

 BACKGROUND AND PURPOSE 

Probability plots (Chapter 9) are helpful in identifying outliers in at least two ways. First, since the 
straightness of the plot indicates how closely the data fit the pattern of a normal distribution, values that 
appear “out of line” with the remaining data can be visually identified as possible outliers. Secondly, the 
two formal outlier tests presented in the Unified Guidance assume that the underlying population minus 
the suspected outlier(s) is normal.  Probability plots can provide visual evidence for this assumption. 
Data that appear non-normal after the suspected outliers have been removed from the probability plot 
may need to be transformed (e.g., via the natural logarithm) and re-examined on the transformed scale to 
see if potential outliers are still apparent. 

As an aid to the interpretation of a given probability plot, the Unified Guidance recommends 
computation of the probability plot correlation coefficient, using either Filliben’s procedure (Chapter 

10) or the simple (Pearson) correlation (Chapter 3) between the numerical pairs plotted on the graph. 
The higher the correlation, the more linear the pattern is on the probability plot and therefore a better fit 
to normality. Note that while the Filliben correlation coefficient can be compared to critical points 
derived for that test of normality (Chapter 10), a low correlation may be related to other causes of non-
normality besides the presence of outliers. The correlation coefficient is not a substitute for a formal 
outlier test, but can be useful as a screening tool. 
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 REQUIREMENTS AND ASSUMPTIONS 

Probability plots are primarily a tool to assess normality, and not to identify outliers per se.  It is 
critical that the remaining data without potential outliers is either normal in distribution or can be 
normalized via a transformation. Otherwise, the probability plot may appear non-linear and non-normal 
for reasons unrelated to the presence of outliers. Right-skewed lognormal distributions can appear to 
have one or more outliers on a probability plot unless the original data are first log-transformed. As a 
general rule, probability plots should be constructed on the original (or raw) measurements and one or 
more transformed data sets (e.g., log or square root), in order to avoid mistaking inherent data skewness 
for outliers. 

If the raw and transformed-data probability plots both indicate one or more values inconsistent 
with the pattern of the remaining values, continue with a second level of screening by temporarily 
removing the suspected outlier(s) and re-constructing the probability plots. If the raw-scale plot is 
reasonably linear, consider running a formal outlier test on the original measurements. On the other 
hand, if the raw-scale plot is skewed but the transformed-scale plot is linear, consider conducting a 
formal outlier test on the transformed measurements. 

A related difficulty occurs when sample data includes censored or non-detect values. If simple 
substitution is used to estimate a value for each non-detect prior to plotting, the resulting probability plot 
may appear non-linear simply because the censored observations were not properly handled. In this case, 
a censored probability plot (Chapter 15) should be constructed instead of an uncensored, complete 
sample plot (Chapter 9). The same caveats apply to normalizing the sample data, perhaps by attempting 
at least one transformation. The only difference is that each probability plot constructed must 
appropriately account for the observed censoring in the sample. 

PROCEDURE 

Step 1. After identifying one or more possible outliers (e.g., values much higher in concentration than 
the remaining measurements), construct a probability plot on the entire sample using the 
procedure described in Section 9.5.  Construct a censored probability plot from Section 15.3 
if the sample contains non-detects. If the data including the suspected outlier(s) follow a 
reasonably linear pattern, a formal outlier test is probably unnecessary. However, if one or 
more values are out of line compared to the pattern of the remaining data, construct a similar 
probability plot after applying one or more transformations. If one or more suspected outliers 
is still inconsistent, proceed to Step 2. 

Step 2. Compute a probability plot correlation coefficient for each plot constructed in Step 1. Use 
these correlations as an aid to interpreting the degree of linearity in each probability plot. 

Step 3. Reconstruct the probability plots from Step 1 after removing the suspected outlier(s). 
Recompute the correlation coefficients from Step 2 on this reduced sample. 

Step 4. If the ‘outlier-deleted’ probability plot on the raw concentration scale indicates a linear pattern 
with high correlation, consider running a formal outlier test on the original measurements. 
When the pattern is distinctly non-linear but the corresponding probability plot on the 
transformed-scale is fairly linear (and higher in correlation), conduct the outlier test on the 
transformed values. 
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 ►EXAMPLE 12-1 

The table below contains data from five background wells measured over a four month period. The 
value 7,066 is found in the second month at Well 3. Use probability plots on the combined sample to 
determine whether or not a formal outlier test is warranted. 

Carbon Tetrachloride Concentrations (ppb) 

Well 1 Well 2 Well 3 Well 4 Well 5 

 

1.7 

 

302 

 

16.2 

 

199 

 

275 

3.2 35.1 7066 41.6 6.5 

7.3 15.6 350 75.4 59.7 

12.1 13.7 70.1 57.9 68.4 

 

 SOLUTION 

Step 1. Examine the probability plots of the entire sample first using the raw measurements and then 
log-transformed values (Figures 12-1 and 12-2). Both these plots indicate that the suspected 
outlier does not follow the pattern of the remaining observations, but seems ‘out of line.’ The 
Pearson correlation coefficients for these probability plots are, respectively, r = 0.502 and 
0.973, indicating that the fit to normality overall is much closer using log-transformed 
measurements. 

Figure 12-1. Probability Plot on Raw Concentrations (r = .502) 
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Step 2. Next remove the suspected outlier and reconstruct the probability plots on both the original 
and logged observations (Figures 12-3 and 12-4). The plot on the original scale indicates 
heavy positive (or right-) skewness and a non-linear pattern, while the plot on the log-scale 
exhibits a fairly linear pattern. The respective correlation coefficients now become r = 0.854 
and 0.987, again favoring the log-transformed sample. On the basis of these plots, the 
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underlying data should be modeled as lognormal and the observations logged prior to running 
a formal outlier test. ◄ 

Figure 12-2. Probability Plot on Logged Observations (r = .973) 
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Figure 12-3. Outlier-Deleted Probability Plot on Original Scale (r = .854) 
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Figure 12-4. Outlier-Deleted Probability Plot on Logarithmic Scale (r = .987) 
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12.2 SCREENING WITH BOX PLOTS 

 BACKGROUND AND PURPOSE 

Probability plots as described in Section 12.1 require the remaining observations following 
removal of one or more suspected outliers to be either approximately normal or normalized via 
transformation.  Box plots (Chapter 9) provide an alternate method to perform outlier screening, one 
not dependent on normality of the underlying measurement population. Instead of looking for points 
inconsistent with a linear pattern on a probability plot, the box plot flags as possible outliers values that 
are located in either or both of the extreme tails of the sample. 

To define the extreme tails, Tukey (1977) proposed the concept of ‘hinges’ that would ‘swing’ off 
either end of a box plot, defining the range of concentrations consistent with the bulk of the data. Data 
points outside this concentration range could then be identified as potential outliers. Tukey defined the 
hinges, i.e., the lower and upper edges of the box plot,  essentially as the lower and upper quartiles of the 
data set. Then multiples of the interquartile range [IQR] (i.e., the range represented by the middle half of 
the sample) were added to or subtracted from these hinges as potential outlier boundaries. Any 
observation from 1.5 × IQR to 3 × IQR below the lower edge of the box plot was labeled a ‘mild’ low 
outlier; any value more than 3 × IQR below the lower edge of the box plot was labeled an ‘extreme’ low 
outlier. Similarly, values greater than the upper edge of the box plot in the range of 1.5 to 3 times the 
IQR were labeled ‘mild’ higher outliers,  and ‘extreme’ high outliers if more than 3 times the IQR 
beyond the upper box plot edge. 

 REQUIREMENTS AND ASSUMPTIONS 

By using hinges and multiples of the interquartile range, Tukey’s box plot method utilizes statistics 
(i.e., the lower and upper quartiles) that are generally not or minimally affected by one or a few outliers 
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in the sample.  Consequently, it isn't necessary to first delete possible outliers before constructing the 
box plot. 

Screening for outliers with box plots is a very simple technique. Since no assumption of normality 
is needed, Tukey’s procedure can be considered quasi-non-parametric. But note that rough symmetry of 
the underlying distribution is implicitly assumed. Legitimate observations from highly skewed 
distributions could be flagged as potential outliers on a box plot if no transformation of the data is first 
attempted. It may be necessary to first conduct multiple data transformations in order to achieve 
approximate symmetry before applying and evaluating potential outliers with box plots. 

PROCEDURE 

Step 1. Construct a box plot on the sample using the method given in Section 9.2. Using the IQR from 
that calculation, along with the lower and upper quartiles ( ~

.x 25 and ~
.x 75 ), compute the first pair 

of lower and upper boundaries as: 

 LB x IQR1 25 15= − ×~ ..  (12.1) 

 UB x IQR1 75 15= + ×~ ..  (12.2) 

Step 2. Construct the second pair of lower and upper boundaries as: 

 LB x IQR2 25 3= − ×~
.  (12.3) 

 UB x IQR2 75 3= + ×~
.  (12.4) 

Step 3. Label any sample measurement lower than the first lower boundary (LB1) but no less than the 
second lower boundary (LB2) as a mild low outlier. Label any measurement greater than the 
first upper boundary (UB1) but no greater than the second upper boundary (UB2) as a mild high 
outlier. 

Step 4. Label any sample measurement lower than the second lower boundary (LB2) as an extreme 
low outlier. Label any value higher than the second upper boundary (UB2) as an extreme high 
outlier. 

 ►EXAMPLE 12-2 

Use the carbon tetrachloride data from Example 12-1 to screen for possible outliers using Tukey’s 
box plot. 

 SOLUTION 

Step 1. Using the procedure described in Section 9.2, the upper and lower quartiles of carbon 
tetrachloride sample are found to be ~ ..x 25 12 9=  and ~ ..x 75 137 2= , leading to an  IQR = 124.3. 

Step 2. Compute the two pairs of lower and upper boundaries using equations (12.1), (12.2), (12.3), 
and (12.4): 
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LB
1

= 12.9 − 1.5 × 124.3 = −173.55

UB
1

= 137.2 + 1.5 × 124.3 = 323.65

LB
2

= 12.9 − 3 × 124.3 = −360

UB
2

= 137.2 + 3 × 124.3 = 510.1

 

Step 3. Scan the list of carbon tetrachloride measurements and compare against the boundaries of 
Step 2. It can be seen that the value of 350 from Well 3 is greater than UB1 but lower than 
UB2, thus qualifying as a mild high outlier. Also, the measurement 7,066 from the same well 
is higher than UB2 and so qualifies as an extreme high outlier. 

Step 4. Because the box plot outlier screening method assumes roughly symmetric data, recompute 
the box plot on the log-transformed measurements (as shown in Figure 12-5 alongside a 
similar box plot of the raw concentrations). Transforming the sample to the log-scale does 
result in much greater symmetry compared to the original measurement scale.  This can be 
seen in the close similarity between the mean and median on the log-scale box plot. With a 
more symmetric data set, the mild high outlier from Step 3 disappears, but the extreme high 
value is still classified as an outlier. ◄ 

Figure 12-5. Comparative Carbon Tetrachloride Box Plots Indicating Outliers 
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12.3 DIXON’S TEST 

 BACKGROUND AND PURPOSE 

Dixon’s test is helpful for documenting statistical outliers in smaller data sets (i.e., n ≤ 25). The 
test is particularly designed for cases where there is only a single high or low outlier, although it can also 
be adapted to test for multiple outliers. The test falls in the general class of tests for discordancy (Barnett 
and Lewis, 1994). The test statistic for such procedures is generally a ratio: the numerator is the 
difference between the suspected outlier and some summary statistic of the data set, while the 
denominator is always a measure of spread within the data. In this version of Dixon’s test, the summary 
statistic in the numerator is an order statistic nearby to the potential outlier (e.g., the second or third most 
extreme value). The measure of spread is essentially the observed sample range. 

If there is more than one outlier in the data set, Dixon’s test can be vulnerable to masking, at least 
for very small samples. Masking in the statistical literature refers to the problem of an extreme outlier 
being missed because one or more additional extreme outliers are also present. For instance, if the data 
consist of the values {2, 4, 10, 12, 15, 18, 19, 22, 200, 202}, identification of the maximum value (202) 
as an outlier might fail since the maximum by itself is not extreme with respect to the next highest value 
(200). However, both of these values are clearly much higher than the rest of the data set and might 
jointly be considered outliers. 

If more than one outlier is suspected, the user is encouraged to consider Rosner’s test (Section 

12.4) as an alternative to Dixon’s test, at least if the sample size is 20 or more. If the data set is smaller, 
Dixon’s test should be modified so that the least extreme of the suspected outliers is tested first.  This 
will help avoid the risk of masking. The same equations given below can be used, but the data set and 
sample size should be temporarily reduced to exclude any suspected outliers that are more extreme than 
the one being tested. If a less extreme value is found to be an outlier, then that observation and any more 
extreme values can also be regarded as outliers. Otherwise, add back the next most extreme value and 
test it in the same way. 

 REQUIREMENTS AND ASSUMPTIONS 

Dixon’s test is only recommended for sample sizes n ≤ 25. It assumes that the data set (minus the 
suspected outlier) is normally-distributed. This assumption should be checked prior to running Dixon’s 
test using a goodness-of-fit technique such as the probability plots described in Section 12.2. 

 PROCEDURE 

Step 1. Order the data set and label the ordered values, x(i). 

Step 2. If a “low” outlier is suspected (i.e., x(1)), compute the test statistic C using the appropriate 
equation [12.5] depending on the sample size (n): 
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C =

x
2( ) − x

1( )( ) x
n( ) − x

1( )( )  for 3 ≤ n ≤ 7

x
2( ) − x

1( )( ) x
n−1( ) − x

1( )( )  for 8 ≤ n ≤ 10

x
3( ) − x

1( )( ) x
n−1( ) − x

1( )( )  for 11 ≤ n ≤ 13

x
3( ) − x

1( )( ) x
n−2( ) − x

1( )( )  for 14 ≤ n ≤ 25
















 [12.5] 

Step 3. If a “high” outlier is suspected (i.e., x(n)), and again depending on the sample size (n), compute 
the test statistic C using the appropriate equation [12.6] as: 

 

  

C =

x
n( ) − x

n−1( )( ) x
n( ) − x

1( )( )  for 3 ≤ n ≤ 7

x
n( ) − x

n−1( )( ) x
n( ) − x

2( )( )  for 8 ≤ n ≤ 10

x
n( ) − x

n−2( )( ) x
n( ) − x

2( )( )  for 11 ≤ n ≤ 13

x
n( ) − x

n−2( )( ) x
n( ) − x

3( )( )  for 14 ≤ n ≤ 25
















 [12.6] 

Step 4. In either case, given the significance level (α), determine a critical point for Dixon’s test with 
n observations from Table 12-1 in Appendix D. If C exceeds this critical point, the suspected 
value should be declared a statistical outlier and investigated further (see discussion in 
Chapter 6). 

 

 ►EXAMPLE 12-3 

Use the data from Example 12-1 in Dixon’s test to determine if the anomalous high value is a 
statistical outlier at an α = 0.05 level of significance. 

 SOLUTION 

Step 1. In Example 12-1, probability plots of the carbon tetrachloride data indicated that the highest 
value might be an outlier, but that the distribution of the measurements was more nearly 
lognormal than normal. Since the sample size n = 20, Dixon’s test can be used on the logged 
observations. Logging the values and ordering them leads to the following table: 
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Order 

Concentration 

(ppb) 

Logged 

Concentration 

 

1 

 

1.7 

 

0.531 

2 3.2 1.163 

3 6.5 1.872 

4 7.3 1.988 

5 12.1 2.493 

6 13.7 2.617 

7 15.6 2.747 

8 16.2 2.785 

9 35.1 3.558 

10 41.6 3.728 

11 57.9 4.059 

12 59.7 4.089 

13 68.4 4.225 

14 70.1 4.250 

15 75.4 4.323 

16 199.0 5.293 

17 275.0 5.617 

18 302.0 5.710 

19 350.0 5.878 

20 7066.0 8.863 

 

 

Step 2. Because a high outlier is suspected and n = 20, use the last option of equation [12.6] to 
calculate the test statistic C: 

 
  
C =

8.863 − 5.710

8.863 − 1.872
= 0.451  

Step 3. With n = 20 and α = .05, the critical point from Table 12-1 in Appendix D is equal to 0.450. 
Since the test statistic C exceeds this critical point, the extreme high value can be declared a 
statistical outlier. Before excluding this value from further analysis, however, a valid 
explanation for this unusually high value should be sought. Otherwise, the outlier may need to 
be treated as an extreme but valid concentration measurement. ◄ 

 

12.4 ROSNER’S TEST 

 BACKGROUND AND PURPOSE 

Rosner’s test (Rosner, 1975) is a useful method for identifying multiple outliers in moderate to 
large-sized data sets. The approach developed in Rosner’s method is known as a block-style test. Instead 
of testing for outliers one-by-one in a consecutive manner from most extreme to least extreme (i.e., most 
to least suspicious), the data are examined first to identify the total number of possible outliers, k. Once k 
is determined, the set of possible outliers is tested together as a block. If the test is significant, all k 
measurements are regarded as statistical outliers. If not, the set of possible outliers is reduced by one and 
the test repeated on the smaller block. This procedure is iterated until either a set of outliers is identified 
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or none of the observations are labeled an outlier. By testing outliers in blocks instead of one-by-one, 
Rosner’s test largely avoids the problem of masking of one outlier by another (as discussed in Section 

12.3 regarding Dixon’s test). 

Although Rosner’s test avoids the problem of masking when multiple outliers are present in the 
same data set, it is not immune to the related problem of swamping.  A good discussion is found in  
Barnett and Lewis, 1994, Outliers in Statistical Data (3rd Edition), p. 236.  Swamping refers to a block 
of measurements all being labeled as outliers even though only some of the observations are actually 
outliers. This can occur with Rosner’s test especially if all the outliers tend to be at one end of the data 
set (e.g., as upper extremes). The difficulty is in properly identifying the total number of possible outliers 
(k), which can be low outliers, high outliers, or some combination of the two extremes. If k is made too 
large, swamping may occur. Again, the user is reminded to always do a preliminary screening for 
outliers via box plots (Section 12.2) and probability plots (Section 12.1). 

 REQUIREMENTS AND ASSUMPTIONS 

Rosner’s test is recommended when the sample size (n) is 20 or larger. The critical points provided 
in Table 12-2 in Appendix D can be used to identify from 2 to 5 outliers in a given data set. Like 
Dixon’s test, Rosner’s method assumes the underlying data set (minus any outliers) is normally 
distributed. If a probability plot of the data exhibits significant bends or curves, the data should first be 
transformed (e.g., via a logarithm) and then re-plotted. The formal test for outliers should only be 
performed on (outlier-deleted) data sets that have been approximately normalized. 

A potential drawback of Rosner’s test is that the user must first identify the maximum number of 
potential outliers (k) prior to running the test. Therefore, this requirement makes the test ill-advised as an 
automatic outlier screening tool, and somewhat reliant on the user to identify candidate outliers. 

 PROCEDURE 

Step 1. Order the data set and denote the ordered values x(i). Then by simple inspection, identify the 
maximum number of possible outliers, r0. 

Step 2. Compute the sample mean and standard deviation of all the data; denote these values by   x
0( )  

and s(0). Then determine the measurement furthest from   x
0( )  and denote it y(0). Note that y(0) 

could be either a potentially low or a high outlier. 

Step 3. Delete y(0) from the data set and compute the sample mean and standard deviation from the 

remaining observations. Label these new values   x
1( )  and s

(1). Again find the value in this 

reduced data set furthest from   x
1( )  and label it y(1). 

Step 4. Delete y(1), recompute the mean and standard deviation, and continue this process until all r0 
potential outliers have been removed. At this point, the following set of statistics will be 
available: 

 ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]111111000 000 ,,,,,,,,, −−− rrr
ysxysxysx K  [12.7] 

Step 5. Now test for r outliers (where r ≤ r0) by iteratively computing the test statistic: 
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R

r −1
= y

r −1( )
− x

r −1( )
s

r −1( )  [12.8] 

 First test for r0 outliers. If the test statistic 
  
R

r0 −1
 in equation [12.8] exceeds the first critical 

point from Table 12-2 in Appendix D based on sample size (n) and the Type I error (α), 
conclude there are r0 outliers. If not, test for r0–1 outliers in the same fashion using the next 
critical point, continuing until a certain number of outliers have either been identified or 
Rosner’s test finds no outliers at all. 

 ►EXAMPLE 12-4 

Consider the following series of 25 background napthalene measurements (in ppb). Use Rosner’s 
test to determine whether any of the values should be deemed statistical outliers. 

 Naphthalene Concentrations (ppb) 

Qtr BW-1 BW-2 BW-3 BW-4 BW-5 

1 3.34 5.59 1.91 6.12 8.64 

2 5.39 5.96 1.74 6.05 5.34 

3 5.74 1.47 23.23 5.18 5.53 

4 6.88 2.57 1.82 4.43 4.42 

5 5.85 5.39 2.02 1.00 35.45 

  

 SOLUTION 

Step 1. Screening with probability plots of the combined data indicates a less than linear fit with both 
the raw measurements and log-transformed data (see Figures 12-6 and 12-7); two points 
appear rather discrepant from the rest. Correlation coefficients for these plots are 0.740 on the 
concentration scale and 0.951 on the log-scale. Re-plotting after removing the two possible 
outliers gives a substantially improved correlation on the concentration scale of 0.958 but 
reduces the log-scale correlation to 0.929. Normality appears to be a slightly better default 
distribution for the outlier-deleted data set. Run Rosner’s test on the original data with k = 2 
possible outliers. 

Step 2. Compute the mean and standard deviation of the complete data set. Then identify the 
observation farthest from the mean. These results are listed, along with the ordered data, in the 
table below. After removing the farthest value (35.45), recompute the mean and standard 
deviation on the remaining values and again identify the most discrepant observation (23.23). 
Repeat this process one more time so that both suspected outliers have been removed (see 
table below). 

Step 3. Now test for 2 joint outliers by computing Rosner’s statistic on subset SSk–1 = SS1 using 
equation [12.8]: 

 
  
R

1
=

23.23− 5.23

4.326
= 4.16  
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Figure 12-6. Napthalene Probability Plot 
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Figure 12-7. Log Napthalene Probability Plot 
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Successive Naphthalene Subsets (SSi) 

SS0 SS1 SS2 

1.00 1.00 1.00 

1.47 1.47 1.47 

1.74 1.74 1.74 

1.82 1.82 1.82 

1.91 1.91 1.91 

2.02 2.02 2.02 

2.57 2.57 2.57 

3.34 3.34 3.34 

4.42 4.42 4.42 

4.43 4.43 4.43 

5.18 5.18 5.18 

5.34 5.34 5.34 

5.39 5.39 5.39 

5.39 5.39 5.39 

5.53 5.53 5.53 

5.59 5.59 5.59 

5.74 5.74 5.74 

5.85 5.85 5.85 

5.96 5.96 5.96 

6.05 6.05 6.05 

6.12 6.12 6.12 

6.88 6.88 6.88 

8.64 8.64 8.64 

23.23 23.23  

35.45   

  x0
 = 6.44   x1

 = 5.23   x2
 = 4.45 

s0 = 7.379 s1 = 4.326 s2 = 2.050 

y0 = 35.45 y1 = 23.23 y2 = 8.64 

 

Step 4. Given α = 0.05, a sample size of n = 25, and k = 2, the first critical point in Table 12-2 in 
Appendix D equals 2.83 for n = 20 and 3.05 for n = 30. The value R1 in Step 3 is larger than 
either of these critical points, so both suspected values may be declared statistical outliers by 
Rosner’s test at the 5% significance level. Before excluding these values from further analysis, 
however, a valid explanation for them should be found. Otherwise, treat the outliers as 
extreme but valid concentration measurements. 

 Note: had R1 been less than these values, a test could still be run for a single outlier using the 
second critical point for each sample size (or a critical point interpolated between them). ◄ 

 The guidance considers Dixon’s and Rosner’s outlier evaluation methods preferable for 
groundwater monitoring data situations, when assumptions of normality are reasonable and data are 
quantified.  We did not include the older method found in the 1989 guidance based on ASTM paper 
E178-75, which can still be used as an alternative.  Where data do not appear to be fit by a normal or 
transformably normal distribution, other robust outlier evaluation methods can be considered from the 
wider statistical literature.  The literature will also need to be consulted when data contains non-detect 
values along with potential outliers. 
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CHAPTER 13.  SPATIAL VARIABILITY 
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This chapter discusses a type of statistical dependence in groundwater monitoring data known as 
spatial variability. Spatial variability exists when the distribution or pattern of concentration 
measurements changes from well location to well location (most typically in the form of differing mean 
levels). Such variation may be natural or synthetic, depending on whether it is caused by natural or 
anthropogenic factors. Methods for identifying spatial variation are detailed via the use of box plots 
(Section 13.2.1) and analysis of variance [ANOVA] (Section 13.2.2). Once identified, ANOVA can 
sometimes be employed to construct more powerful intrawell background limits. This topic is addressed 
in Section 13.3. 

13.1 INTRODUCTION TO SPATIAL VARIATION 

Spatial dependence, spatial variation or variability, and spatial correlation are closely related 
concepts. All refer to the notion of measurement levels that vary in a structured way as a function of the 
location of sampling. Although spatial variation can apply to any statistical characteristic of the 
underlying population (including the population variance or upper percentiles), the usual sense in 
groundwater monitoring is that mean levels of a given constituent vary from one well to the next. 

Standard geostatistical models posit that an area exhibits positive spatial correlation if any two 
sampling locations share a greater similarity in concentration level the closer the distance between them, 
and more dissimilarity the further apart they are. Such models have been applied to both groundwater 
and soil sampling problems, but are not applicable in all geological configurations. It may be, for 
instance, that mean concentration levels differ across wells but vary in a seemingly random way with no 
apparent connection to the distance between the sampling points. In that case, the concentrations 
between pairs of wells are not correlated with distance, yet the measurements within each well are 
strongly associated with the mean level at that particular location, whether due to a change in soil 
composition, hydrological characteristics or some other factor. In other words, spatial variation may 
exist even when spatial correlation does not. 

Spatial variation is important in the guidance context since substantial differences in mean 
concentration levels between different wells can invalidate interwell, upgradient-to-downgradient 
comparisons and point instead toward intrawell tests (Chapter 6).  Not all spatial variability is natural. 
Average concentration levels can vary from well to well for a variety of reasons.   

In this guidance, a distinction is occasionally made between natural versus synthetic spatial 
variation. Natural spatial variability refers to a pattern of changing mean levels in groundwater 
associated with normal geochemical behavior unaffected by human activities. Natural spatial variability 
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is not an indication of groundwater contamination, even if concentrations at one or more compliance 
wells exceed (upgradient) background.  In contrast, synthetic spatial variability is related to human 
activity. Sources can include recent releases affecting compliance wells, migration of contaminants from 
off-site sources, or historic contamination at certain wells due to past industrial activity or pre-RCRA 
waste disposal.  Whether natural or synthetic, techniques and test methods for dealing with spatial 
variation will still be identical from a purely statistical standpoint.  It is interpreting the testing outcomes 
which will necessitate a consideration of why the spatial variation occurs. 

The goal of groundwater analysis is not simply to identify significant concentration differences 
among monitoring wells at compliance point locations.  It is also to determine why those differences 
exist.  Especially with prior groundwater contamination, regulatory decisions outside the scope of this 
guidance need to address the problem. In some cases, compliance/assessment monitoring or remedial 
action may be warranted.  In other cases, chronic contamination from offsite sources may simply have to 
be considered as the current background condition at a given location. At least the ability to attribute 
certain mean differences to natural spatial variation allows the range of potential concerns to be 
somewhat narrowed. Of course, deciding that an observed pattern of spatial variation is natural and not 
synthetic may not be easy. Ultimately, expert judgment and knowledge concerning site hydrology, 
geology and geochemistry are important in providing more definitive answers. 

One statistical approach to use when a site has multiple, non-impacted background wells is to 
conduct a one-way ANOVA for inorganic constituents on those wells. Substantial differences among the 
mean levels at a set of uncontaminated sampling locations are suggestive of natural spatial variability. At 
a true ‘greenfield’ site, ANOVA can be run on all the wells — both background and compliance — after 
a few preliminary sampling rounds have been collected. 

The Unified Guidance offers two basic tools to explore and test for spatial correlation. The first, 
side-by-side box plots (Section 13.2.1), provides a quick screen for possible spatial variation. When 
multiple well data are plotted on the same concentration axis, noticeably staggered boxes are often an 
indication of significantly different mean levels. 

A more formal test of spatial variation is the one-way ANOVA (Section 13.3.2).  When significant 
spatial variation exists and an intrawell test strategy is pursued, one-way ANOVA can also be used to 
adjust the standard deviation estimate used in forming intrawell prediction and control chart limits, and 
to increase the effective sample size of the test, via the degrees of freedom. This is discussed in Section 

13.3. 

13.2 IDENTIFYING SPATIAL VARIABILITY 

13.2.1 SIDE-BY-SIDE BOX PLOTS 

 BACKGROUND AND PURPOSE 

Box plots for graphing side-by-side statistical summaries of multiple wells were introduced in 
Chapter 9. They are also discussed in Chapter 11 as an initial screen for differences in population 
variances and as a tool to check the assumption of equal variances in ANOVA. They can further be 
employed to screen for possible spatial variation in mean levels. While variability in a sample from a 
given well is roughly indicated by the length of the box, the average concentration level is indicated by 
the position of the box relative to the concentration axis. Many standard box plot software routines 
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display both the sample median value and the sample mean on each box, so these values may be 
compared from well to well. A high degree of staggering in the box positions is then indicative of 
potentially significant spatial variation. 

Since side-by-side box plots provide a picture of the variability at each well, the extent to which 
apparent differences in mean levels seem to be real rather than chance fluctuations can be examined. If 
the boxes are staggered but there is substantial overlap between them, the degree of spatial variability 
may not be significant. A more formal ANOVA might still be warranted as a follow-up test, but side-by-
side box plots will offer a initial sense of how spatially variable the groundwater data appear. 

 REQUIREMENTS, ASSUMPTIONS AND PROCEDURE 

Requirements, assumptions and the procedure for box plots are outlined in Chapter 9, Section 9.2. 

 ►EXAMPLE 13-1 

Quarterly dissolved iron concentrations measured at each of six upgradient wells are listed below. 
Construct side-by-side box plots to initially screen for the presence of spatial variability. 

 Iron Concentrations (ppm) 

Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

       

Jan 1997 57.97 46.06 100.48 34.12 60.95 83.10 

Apr 1997 54.05 76.71 170.72 93.69 72.97 183.09 

Jul 1997 29.96 32.14 39.25 70.81 244.69 198.34 

Oct 1997 46.06 68.03 52.98 83.10 202.35 160.77 

       

Mean 47.01 55.74 90.86 70.43 145.24 156.32 

Median 50.06 57.04 76.73 76.96 137.66 171.93 

SD 12.40 20.34 59.35 25.95 92.16 51.20 

 

SOLUTION 

Step 1. Determine the median, mean, lower and upper quartiles of each well. Then plot these against a 
concentration axis to form side-by-by side box plots (Figure 13-1) using the procedure in 
Section 9.2.  . 

Step 2. From this plot, the means and medians at the last two wells (Wells 5 and 6) appear elevated 
above the rest. This is a possible indication of spatial variation. However, the variances as 
represented by the box lengths also appear to differ, with the highest means associated with 
the largest boxes.  A transformation of the data should be attempted and the data re-plotted. 
Spatial variability is only a significant problem if it is apparent on the scale of the data actually 
used for statistical analysis. 

Step 3. Take the logarithm of each measurement as in the table below. Recompute the mean, median, 
lower and upper quartiles, and then re-construct the box plot as in Figure 13-2. 
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 Log Iron Concentrations log(ppm) 

Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

       

Jan 1997 4.06 3.83 4.61 3.53 4.11 4.42 

Apr 1997 3.99 4.34 5.14 4.54 4.29 5.21 

Jul 1997 3.40 3.47 3.67 4.26 5.50 5.29 

Oct 1997 3.83 4.22 3.97 4.42 5.31 5.08 

       

Mean 3.82 3.96 4.35 4.19 4.80 5.00 

Median 

 

3.91 4.02 4.29 4.34 4.80 5.14 

 

Figure 13-1. Side-by-Side Iron Box Plots 
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Figure 13-2. Side-by-Side Log(Iron) Box Plots 

 

Step 4. While more nearly similar on the log-scale, the means and medians are still elevated in Wells 
5 and 6. Since the differences in box lengths are much less on the log-scale, the log 
transformation has worked to somewhat stabilize the variances. These data should be tested 
formally for significant spatial variation using an ANOVA, probably on the log-scale. ◄ 

13.2.2 ONE-WAY ANALYSIS OF VARIANCE FOR SPATIAL VARIABILITY 

 PURPOSE AND BACKGROUND 

Chapter 17 presents Analysis of Variance [ANOVA] in greater detail. When using ANOVA to 
check for spatial variability, the observations from each well are taken as a single group.  Significant 
differences between data groups represent monitoring wells with different mean concentration levels.  
The lack of significant well mean differences may afford an opportunity to pool the data for larger 
background sizes and conduct interwell detection monitoring tests. 

ANOVA used for this purpose should be performed either on a set of multiple non-impacted 
upgradient wells, or on historically uncontaminated compliance and upgradient background wells. If 
significant mean differences exist among naturally occurring constituent data at upgradient wells, natural 
spatial variability is the likely reason.  Synthetic consitituents in upgradient wells might also exhibit 
spatial differences if affected by an offsite- plume.  Presumably, if the flow gradient has been correctly 
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assessed and no migration of contaminants from off-site has occurred, differences in mean levels across 
upgradient wells ought to signal the influence of factors not attributable to a monitored release. A 
similar, but potentially weaker, argument can be made if spatial differences exist between 
uncontaminated historical data at compliance wells. The lack of spatial differences between 
uncontaminated compliance and upgradient background well data, may again allow for even larger 
background sample sizes. 

 REQUIREMENTS AND ASSUMPTIONS 

The basic assumptions and data requirements for one-way ANOVA are presented in Section 17.1.  
If the assumption that the observations are statistically independent over time is not met, both identifying 
spatial variability using ANOVA as well as improving intrawell prediction limits and control charts can 
be impacted.  It is usually difficult to verify that the measurements are temporally independent with only 
a limited number of observations per well.  This potential problem can be somewhat minimized by 
collecting samples far enough apart in time to guard against autocorrelation.  Another option is to 
construct a parallel time series plot (Chapter 14) to look for time-related effects or dependencies 
occurring simultaneously across the set of wells. 

If a significant temporal dependence or autocorrelation exists, the one-way ANOVA can still 
identify well-to-well mean level differences. But the power of the test to do so is lessened. If a parallel 
time series plot indicates a potentially strong time-related effect, a two-way ANOVA including temporal 
effects can be performed to test and correct for a significant temporal factor. This slightly more 
complicated procedure is discussed in Davis (1994). 

Another key assumption of parametric ANOVA is that the residuals are normal or can be 
normalized. If a normalizing transformation cannot be found, a test for spatial variability can be made 
using the Kruskal-Wallis non-parametric ANOVA (Chapter 17). As long as the measurements can be 
ranked, average ranks that differ significantly across wells provide evidence of spatial variation. 

 PROCEDURE 

Step 1. Assuming there are p distinct wells to test, designate the measurements from each well as a 
separate group for purposes of computing the ANOVA. Then follow Steps 1 through 7 of the 
procedure in Section 17.1.1 to compute the overall F-statistic and the quantities of the 
ANOVA table in Figure 13-3 below. 

 

Figure 13-3. One-Way Parametric ANOVA Table 

Source of Variation Sums of 
Squares 

Degrees of 
Freedom 

Mean Squares F-Statistic 

Between Wells SSwells p–1 MSwells = SSwells/(p–1) F = MSwells/MSerror 
Error (within wells) SSerror n–p MSerror = SSerror/(n–p)  
Total SStotal n–1   
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Step 2. To test the hypothesis of equal means for all p wells, compare the F-statistic from Step 1 to the 
α-level critical point found from the F-distribution with (p–1) and (n–p) degrees of freedom in 
Table 17-1 of Appendix D. Usually α is taken to be 5%, so that the needed comparison value 
equals the upper 95th percentage point of the F-distribution. If the observed F-statistic exceeds 
the critical point (F.95,p–1,n–p), reject the hypothesis of equal well population means and 
conclude there is significant spatial variability. Otherwise, the evidence is insufficient to 
conclude there are significant differences between the means at the p wells. 

 ►EXAMPLE 13-2 

The iron concentrations in Example 13-1 show evidence of spatial variability in side-by-side box 
plots. Tested for equal variances and normality, these same data are best fit by a lognormal distribution. 
The statistics for natural logarithms of the iron measurements are shown below; individual log data are 
provided in the Example 13-1 second table. Compute a one-way parametric ANOVA to determine 
whether there is significant spatial variation at the α = .05 significance level. 

 

 Log Iron Concentration Statistics log(ppm) 

Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

N 4 4 4 4 4 4 

Mean 3.820 3.965 4.348 4.188 4.802 5.000 

SD 0.296 0.395 0.658 0.453 0.704 0.396 

       

 Grand Mean = 4.354 

 

 

SOLUTION 

Step 1. With 6 wells and 4 observations per well, ni = 4 for all the wells. The total sample size is n = 
24 and p = 6. Compute the (overall) grand mean and the sample mean concentrations in each 
of the well groups using equations [17.1] and [17.2]. These values are listed (along with each 
group’s standard deviation) in the above table. 

Step 2. Compute the sum of squares due to well-to-well differences using equation [17.3]: 

 ( ) ( ) ( )[ ] ( ) 331.4354.424000.54965.34820.34 2222
=−+++= KwellsSS  

 This quantity has (6 – 1) = 5 degrees of freedom. 

Step 3. Compute the corrected total sum of squares using equation [17.4] with (n – 1) = 23 df: 

 ( ) ( )[ ] ( ) 935.8354.42408.506.4 222
=−++= KtotalSS  

Step 4. Obtain the within-well or error sum of squares by subtraction using equation [17.5]: 

 604.4331.4935.8 =−=errorSS  

 This quantity has (n – p) = 24–6 = 18 degrees of freedom. 
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Step 5. Compute the well and error mean sum of squares using equations [17.6] and [17.7]: 

 866.5/331.4 ==wellsMS  

 256.18/604.4 ==errorMS  

Step 6. Construct the F-statistic and the one-way ANOVA table, using Figure 13-3 as a guide: 

 

Source of Variation Sums of Squares Degrees of 

Freedom 

Mean Squares F-Statistic 

Between Wells 4.331 5 0.866 F = 0.866/0.256=3.38 

Error (within wells) 4.604 18 0.256  

Total 8.935 23   

 

Step 7. Compare the observed F-statistic of 3.38 against the critical point taken as the upper 95th 
percentage point from the F-distribution with 5 and 18 degrees of freedom. Using Table 17-1 
of Appendix D, this gives a value of F.95,5,18 = 2.77. Since the F-statistic exceeds the critical 
point, the null hypothesis of equal well means can be rejected, suggesting the presence of 
significant spatial variation. ◄ 

13.3 USING ANOVA TO IMPROVE PARAMETRIC INTRAWELL TESTS 

BACKGROUND AND PURPOSE 

Constituents that exhibit significant spatial variability usually should be formally tested with 
intrawell procedures such as a prediction limit or control chart. Historical data from each compliance 
well are used as background for these tests instead of from upgradient wells. At an early stage of 
intrawell testing, there may only be a few measurements per well which can be designated as 
background. Depending on the number of statistical tests that need to be performed across the 
monitoring network, available intrawell background at individual compliance wells may not provide 
sufficient statistical power or meet  the false positive rate criteria (Chapter 19). 

One remedy first suggested by Davis (1998) can increase the degrees of freedom of the test by 
using one-way ANOVA results (Section 13.2) from a number of wells to provide an alternate estimate 
of the average intrawell variance. In constructing a parametric intrawell prediction limit for a single 
compliance well, the intrawell background of sample size n is used to compute a well-specific sample 
mean ( x ). The intrawell standard deviation (s) is replaced by the root mean squared error [RMSE] 
component from an ANOVA of the intrawell background associated with a series of compliance and/or 
background wells.1 This raises the degrees of freedom from (n–1) to (N–p), where N is the total sample 
size across the group of wells input to the ANOVA and p is the number of distinct wells. 

                                                 

1  RMSE is another name for the square root of the mean error sum of squares (MSerror) in the ANOVA table of Figure 13-3. 
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As an example of the difference this adjustment can make, consider a site with 6 upgradient wells 
and 15 compliance wells. Assuming n = 6 observations per well that have been collected over the last 
year, a total of 36 potential background measurements are available to construct an interwell test. If there 
is significant natural spatial variation in the mean levels from well to well, an interwell test is probably 
not appropriate. Switching to an intrawell method is the next best solution, but with only six 
observations per compliance well, either the power of an intrawell test to identify contaminated 
groundwater is likely to be quite low (even with retesting) or the site-wide false positive rate [SWFPR] 
will exceed the recommended target. 

If the six upgradient wells were tested for spatial variability using a one-way ANOVA (presuming 
that the equal variance assumption is met), the degrees of freedom [df] associated with the mean error 
sum of squares term is (6 wells × 5 df per well) = 30 df (see Section 13.2). Thus by substituting the 
RMSE in place of each compliance well’s intrawell standard deviation (s), the degrees of freedom for 
the modified intrawell prediction or control chart limit is 30 instead of 5. 

ANOVA can be usefully employed in this manner since the RMSE is very close to being a 
weighted average of the individual well sample standard deviations. As such, it can be considered a 
measure of average within-well variability across the wells input to the ANOVA. Substituting the RMSE 
for s at an individual well consequently provides a better estimate of the typical within-well variation, 
since the RMSE is based on levels of fluctuation averaged across several wells. In addition, the number 
of observations used to construct the RMSE is much greater than the n values used to compute the 
intrawell sample standard deviation (s). Since both statistical measures are estimates of within-well 
variation, the RMSE with its larger degrees of freedom is generally a superior estimate if certain 
assumptions are met. 

REQUIREMENTS AND ASSUMPTIONS 

Using ANOVA to bolster parametric intrawell prediction or control chart limits will not work at 
every site or for every constituent. Replacement of the well-specific, intrawell sample standard deviation 
(s) by the RMSE from ANOVA assumes that the true within-well variability is approximately the same 
at all the wells for which an intrawell background limit (i.e., prediction or control chart) will be 
constructed, and not just those wells tested in the ANOVA procedure. This last assumption can be 
difficult to verify if the ANOVA includes only background or upgradient wells.  But to the extent that 
uncontaminated intrawell background measurements from compliance point wells can be included, the 
ANOVA should be run on all or a substantial fraction of the site’s wells (excluding those which might 
already be contaminated). Whatever mix of upgradient and downgradient wells are included in the 
ANOVA, the purpose of the procedure is not to identify groundwater contamination, but rather to 
compute a better and more powerful estimate of the average intrawell standard deviation. 

For the ANOVA to be valid and the RMSE to be a reasonable estimate of average within-well 
variability, a formal check of the equal variance assumption should be conducted using Chapter 11 
methods. A spatially variable constituent will often exhibit well-specific standard deviations that 
increase with the well-specific mean concentration. Equalizing the variances in these cases will require a 
data transformation, with an ANOVA conducted on the transformed data. Ultimately, any transformation 
applied to the wells in the ANOVA also need to be applied to intrawell background before computing 
intrawell prediction or control chart limits. The same transformation has to be appropriate for both sets 
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of data (i.e., wells included in ANOVA and intrawell background at wells for which background limits 
are desired).   

Even when the ANOVA procedure described in this section is utilized, the resulting intrawell 
limits should also be designed to incorporate retesting. When intrawell background is employed to 
estimate both a well-specific background mean ( x ) and well-specific standard deviation (s), the 
Appendix D tables associated with Chapters 19 and 20 can be used to look up the intrawell sample size 
(n) and number of wells (w) in the network in order to find a prediction or control chart multiplier that 
meets the targeted SWFPR and has acceptable statistical power. However, these tables implicitly assume 
that the degrees of freedom [df] associated with the test is equal to (n–1). The ANOVA method of this 
section results in a much larger df, and more importantly, in a df that does not ‘match’ the intrawell 
sample size (n). 

Consequently, the parametric multipliers in the Appendix D tables cannot be directly used when 
constructing prediction or control chart limits with retesting. Instead, a multiplier must be computed for 
the specific combination of n and df computed as a result of the ANOVA. Tabulating all such 
possibilities would be prohibitive.  For prediction limits, the Unified Guidance recommends the free-of-
charge, open source R statistical computing environment.  A pre-scripted program is included in  
Appendix C that can be run in R to calculate appropriate prediction limit multipliers, once the user has 
supplied an intrawell sample size (n), network size (w), and type of retesting scheme. 

If  guidance users are unable to utilize the R-script approach, the following approximation for the 
well-specific prediction limit κ-factors is suggested based on EPA Region 8 Monte Carlo evaluations.   
Given a per- test confidence level of 1- α , r total tests of w ·c well-constituents, an individual well size 
ni, a  pooled variance sample size of ndf = df + 1, and κndf,1-α obtained from annual intrawell Unified 
Guidance tables, the individual well κni,1-α factor can be estimated using the following equation: 
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where µ =1 for future 1:m observations or µ is the size of a future mean.  The value of m* is 
specific to each of the nine parametric prediction limit tests and is a function of the three coefficients A, 
b and c, individual well sample size ni and r tests.  For a 1:1 test of future means or observations, the 
equation is exact; for higher order 1:m tests, the results are approximate.2  The equation is also useful in 

                                                 

2  For each of the nine prediction limit tests, the following coefficients  (A, b & c) are recommended:   a 1:2 future 
values test (1.01, .0524 & .0158);  a 1:3 test (1.63, .108 & .0407); a 1:4 test (2.41, .157 & .0668); the modified California 
plan (1.36, .103 & .0182);  a 1:1 mean size 2 test (.5, 0 & 0); a 1:2 mean size 2 test (.898, .0856 &  .0172); a 1:3 mean size 2 
test (1.27, .168 & .0363); a 1:1 mean size 3 test (.5, 0 & 0); and a 1:2 mean size 3 test (.817, .108 & .0158). %.   The 
coefficients were obtained from regression analysis; approximation values were compared with R-script values for κ-factors.   
In 1260 comparisons of the seven tests using repeat values (m > 1),  86% of the approximations lay within or equal to + 1% of 
the true value and 96% within or equal to + 2%. The 1:4 test had the greatest variability, but all values lay within + 4%.   81% 
of the values lay within or equal to + .01 κ-units and 93% less than or equal to + .02 units.    
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gauging R-script method results.  Another virtue of this equation is that it can be readily applied to 
different individual well sample sizes based on the common  κndf,1-α for pooled  variance data.   

A less elegant solution is available for intrawell control charts. Currently, an appropriate multiplier 
needs to be simulated via Monte Carlo methods. The approach is to simulate separate normally-
distributed data sets for the background mean based on n measurements, and the background standard 
deviation based on df + 1 measurements. Statistical independence of the sample mean ( x ) and standard 
deviation (s) for normal populations allows this to work. With the background mean and standard 
deviation available, a series of possible multipliers (h) can be investigated in simulations of control chart 
performance. The multiplier which meets the targeted SWFPR and provides acceptable power should be 
selected. Further detail is presented in Chapter 20.  R can also be used to conduct these simulations. 

 ►EXAMPLE 13-3 

The logged iron concentrations from Example 13-2 showed significant evidence of spatial 
variability. Use the results of the one-way ANOVA to compute adjusted intrawell prediction limits 
(without retesting) for each of the wells in that example and compare them to the unadjusted prediction 
limits. 

SOLUTION 

Step 1. Summary statistics by well for the logged iron measurements are listed in the table below. 
With n = 4 measurements per well, use equation [13.1] and t1–α,n–1 = t.99,3 = 4.541 from Table 

16-1 in Appendix D to compute at each well an unadjusted 99% intrawell prediction limit for 
the next single measurement, based on lognormal data: 

 

  

PL
1−α

= exp y + s
y
t
1−α ,n−1

1+
1

n













 [13.1] 

 Unadjusted 99% Prediction Limits for Iron (ppm) 

 Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

       

Log-mean 3.820 3.965 4.348 4.188 4.802 5.000 

Log-SD 0.296 0.395 0.658 0.453 0.704 0.396 

n 4 4 4 4 4 4 

t.99,3 4.541 4.541 4.541 4.541 4.541 4.541 

99% PL 204.9 391.6 2183.0 657.0 4341.5 1108.1 

       

 

Step 2. Use the RMSE (i.e., square root of the mean error sum of squares [MSerror] component) of the 
ANOVA in Example 13-2 as an estimate of the adjusted, pooled standard deviation, giving 

506.256. ==errorMS . The degrees of freedom (df) associated with this pooled standard 

deviation is
  
p n − 1( )= 6 3( )= 18 , the same as listed in the ANOVA table of Example 13-2. 
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Step 3. Use equation [13.2], along with the adjusted pooled standard deviation and its associated df, to 
compute an adjusted 99% prediction limit for each well, as given in the table below. Note that 
the adjusted t-value based on the larger df is t1–α,df = t.99,18 = 2.552. 
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1−α ,df
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error

1+
1

n






















 [13.2] 

 

 Adjusted 99% Prediction Limits for Iron (ppm) 

 Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

       

Log-mean 3.820 3.965 4.348 4.188 4.802 5.000 

RMSE 0.5079 0.5079 0.5079 0.5079 0.5079 0.5079 

df 18 18 18 18 18 18 

t.99,18 2.552 2.552 2.552 2.552 2.552 2.552 

99% PL 193.2 223.3 327.5 279.1 515.8 628.7 

       

 

Step 4. Compare the adjusted and unadjusted lognormal prediction limits. By estimating the average 
intrawell standard deviation using ANOVA, the adjusted prediction limits are significantly 
lower and thus more powerful than the unadjusted limits, especially at Wells 3, 5, and 6. 

 In this example, use of the R-script approach was unnecessary, since the corresponding κ-
multiple used in 1-of-1 prediction limit tests can be directly derived analytically. ◄ 
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This chapter discusses the importance of statistical independence in groundwater monitoring data 
with respect to temporal variability. Temporal variability exists when the distribution of measurements 
varies with the times at which sampling or analytical measurement occurs. This variation can be caused 
by seasonal fluctuations in the groundwater itself, changes in the analytical method used, the re-
calibration of instruments, anomalies in sampling method, etc. 

Methods to identify temporal variability are discussed for both groups of wells (parallel time series 
plots; one-way analysis of variance [ANOVA] for temporal effects) and single data series (sample 
autocorrelation function; rank von Neumann ratio). Procedures are also presented for correcting or 
accommodating temporal effects. These include guidance on adjusting the sampling frequency to avoid 
temporal correlation, choosing a sampling interval using the Darcy equation, removing seasonality or 
other temporal dependence, and finally testing for trends with seasonal data. 

14.1 TEMPORAL DEPENDENCE 

A key assumption underlying most statistical tests is that the sample data are independent and 
identically distributed [i.i.d.] (Chapter 3). In part, this means that measurements collected over a period 
of time should not exhibit a clear time dependence or significant autocorrelation. Time dependence 
refers to the presence of trends or cyclical patterns when the observations are graphed on a time series 
plot. The closely related concept of autocorrelation is essentially the degree to which measurements 
collected later in a series can be predicted from previous measurements. Strongly autocorrelated data are 
highly predictable from one value to the next. Statistically independent values vary in a random, 
unpredictable fashion. 

While temporal independence is a complex topic, there are several common types of temporal 
dependence. Some of these include: 1) correlation across wells over time in the concentration pattern of 
a single constituent (i.e., concentrations tending to jointly rise or fall at each of the wells on common 
sampling events); 2) correlation across multiple constituents over time in their concentration patterns 
(i.e., a parallel rise or fall in concentration across several parameters on common sampling events); 3) 
seasonal cycles; 4) trends, linear or otherwise; and 5) serial dependence or autocorrelation (i.e., greater 
correlation between  sampling events more closely spaced in time). 
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Any of these patterns can invalidate or weaken the results of statistical testing. In some cases, a 
statistical method can be chosen that specifically accounts for temporal dependence (e.g., seasonal 
Mann-Kendall trend test). In other instances, the sample data need to be adjusted for the dependence.  
Future data might also need to be collected in a manner that avoids temporal correlation. The goal of this 
chapter is to present straightforward tools that can be used to first identify temporal dependence and then 
to adjust for this correlation. 

To better understand why most statistical tests depend on the assumption of statistical 
independence, consider a hypothetical series of groundwater measurements exhibiting an obvious pattern 
of seasonal fluctuation (Figure 14-1).  These data demonstrate regular and repeated cycles of higher and 
lower values. Even though fluctuating predictably and highly dependent, the characteristics of the entire 
groundwater population will be observed over a long period of monitoring.  This provides an estimate of 
the full range of concentrations and an accurate gauge of total variability. 

The same is not true for data collected from the same population over a much shorter span, say in 
five to six months.  A much narrower range of sample concentrations would be observed due to the 
cyclical pattern. Depending on when the sampling was conducted, the average concentration level would 
either be much higher or much lower than the overall average; no single sampling period is likely to 
accurately estimate either the true population mean or its variance. 

From this example, an important lesson can be drawn about temporally dependent data. Variance 
estimates in a sample of dependent, positively autocorrelated data are likely to be biased low. This is 
important because the guidance methods require and assume that an accurate and unbiased estimate of 
the sample standard deviation be available. A case in point was the practice of using aliquot replicates of 
a single physical sample for comparison with other combined replicate aliquot samples from a number of 
individual physical water quality samples (e.g., in a Student-t test). Aliquot replicate values are much 
more similar to each other than to measurements made on physically discrete groundwater samples. 
Consequently, the estimate of variance was too low and the t-test frequently registered false positives. 

Using physically discrete samples is not always sufficient. If the sampling interval ensures that 
discrete volumes of groundwater are being sampled on consecutive sampling events, the observations 
can be described as physically independent. However, they are not necessarily statistically independent. 
Statistical independence is based not on the physical characteristics of the sample data, but rather on the 
statistical pattern of measurements.  

Temporally dependent and autocorrelated data generally contain both a truly random and non-
random component.  The relative strength of the latter effect is a measured by one or more correlation 
techniques.  The degree of correlation among dependent sample measurements lies on a continuum. 
Sample pairs can be mildly correlated or strongly correlated. Only strong correlations are likely to 
substantially impact the results of further statistical testing. 
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Figure 14-1. Seasonal Fluctuations 
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14.2 IDENTIFYING TEMPORAL EFFECTS AND CORRELATION 

14.2.1 PARALLEL TIME SERIES PLOTS 

 BACKGROUND AND PURPOSE 

Time series plots were introduced in Chapter 9. A time series plot such as Figure 14-1 is a simple 
graph of concentration versus time of sample collection. Such plots are useful for identifying a variety of 
temporal patterns.  These include identifying a trend over time, one or more sampling events that may 
signal contaminant releases, measurement outliers resulting in anomalous 'spikes' due to field handling 
or analytical problems, cyclical and seasonal fluctuations, as well as the presence of other time-related 
dependencies. 

Time series plots can be used in two basic ways to identify temporal dependence. By graphing 
single constituent data from multiple wells together on a time series plot, potentially significant temporal 
components of variability can be identified.  For example, seasonal fluctuations can cause the mean 
concentration levels at a number of wells to vary with the time of sampling events. This dependency will 
show up in the time series plot as a pattern of parallel traces, in which the individual wells will tend to 
rise and fall together across the sequence of sampling dates. The parallel pattern may be the result of the 
measurement process such as mid-stream changes in field handling or sample collection procedures, 
periodic re-calibration of analytical instrumentation, and changes in laboratory or analytical methods. It 
could also be the result from significant autocorrelation present in the groundwater population itself. 
Hydrologic factors such as drought, recharge patterns or regular (e.g., seasonal) water table fluctuations 
may be responsible.  In these cases, it may be useful to test for the presence of a significant temporal 
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effect by first constructing a parallel time series plot and then running a formal one-way ANOVA for 
temporal effects (Section 14.2.2). 

The second way time series plots can be helpful is by plotting multiple constituents over time for 
the same well, or averaging values for each constituent across wells on each sampling event and then 
plotting the averages over time. In either case, the plot can signify whether the general concentration 
pattern over time is simultaneously observed for different constituents. If so, it may indicate that a group 
of constituents is highly correlated in groundwater or that the same artifacts of sampling and/or lab 
analysis impacted the results of several monitoring parameters. 

 REQUIREMENTS AND ASSUMPTIONS 

The requirements for time series plots were discussed in Chapter 9. Two very useful 
recommendations follow from that discussion.  First, a different plot symbol should be used to display 
any non-detect measurements (e.g., solid symbols for detected values, hollow symbols for non-detects). 
This can help prevent mistaking a change over time in reporting limits as a trend, since detected and 
non-detected data are clearly distinguished on the plot. It also allows one to determine whether non-
detects are more prevalent during certain portions of the sample record and less prevalent at other times.   
Secondly, when multiple constituents are plotted on the same graph, it may be necessary to standardize 
each constituent prior to plotting to avoid trying to simultaneously visualize high-valued and low-valued 
traces on the same y-axis (i.e., concentration axis). The goal of such a plot is to identify parallel 
concentration patterns over time. This can be done most readily by subtracting each constituent’s sample 
mean ( x ) from the measurements for that constituent and dividing by the standard deviation (s), so that 
every constituent is plotted on roughly the same scale. 

 PROCEDURE FOR MULTIPLE WELLS, ONE CONSTITUENT 

Step 1. For each well to be plotted, form data pairs by matching each concentration value with its 
sampling date. 

Step 2. Graph the data pairs for each well on the same set of axes, the horizontal axis representing 
time and the vertical axis representing concentration. Connect the points for each individual 
well to form a ‘trace’ for that well. 

Step 3. Look for parallel movement in the traces across the wells. Even if all the well concentrations 
tend to rise on a given sampling event, but not to the same magnitude or degree, this is 
evidence of a possible temporal effect. 

 PROCEDURE FOR MULTIPLE CONSTITUENTS, ONE OR MANY WELLS 

Step 1. For each constituent to be plotted, compute the constituent-specific sample mean ( x ) and 
standard deviation (s). Form standardized measurements (zi) by subtracting the mean from 
each concentration (xi) and dividing by the standard deviation, using the equation: 

 
 
z

i
=

x
i
− x

s
 [14.1] 

 Form data pairs by matching each standardized concentration with its sampling event. 
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Step 2. If correlation is suspected in a group of wells, average the standardized concentrations for each 
given constituent across wells for each specific sampling event. Otherwise, form a multi-
constituent time series plot separately for each well. 

Step 3. Graph the data pairs for each constituent on the same set of axes, the horizontal axis 
representing time and the vertical axis representing standardized concentrations. Connect the 
points for each constituent to form a trace for that parameter. 

Step 4. Look for parallel movement in the traces across the constituents. A strong degree of 
parallelism indicates a high degree of correlation among the monitoring parameters. 

 ►EXAMPLE 14-1 

The following well sets of manganese measurements were collected over a two-year period. 
Construct a time series plot of these data to check for possible temporal effects. 

 Manganese Concentrations (ppm) 

Qtr BW-1 BW-2 BW-3 BW-4 

1 28.14 31.41 27.15 30.46 

2 29.33 30.27 30.24 30.60 

3 30.45 32.57 29.14 30.96 

4 32.42 32.77 30.59 30.70 

5 34.37 33.03 34.88 32.71 

6 33.25 32.18 30.53 31.76 

7 31.02 28.85 30.33 31.85 

8 28.50 32.88 30.42 29.58 

 SOLUTION 

Step 1. Graph each well’s concentrations versus sampling event on the same set of axes to construct 
the following time series plot (Figure 14-2). 

 

Figure 14-2. Manganese Parallel Time Series Plot 
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Step 2. Examining the traces on the plot, there is some degree of parallelism in the pattern over time. 
Particularly for the fifth quarter, there is an across-the-board increase in the manganese level, 
followed by a general decline the next two quarterly events. Note, however, that there is little 
evidence of differences in mean levels by well location. ◄ 

 

14.2.2 ONE-WAY ANALYSIS OF VARIANCE FOR TEMPORAL EFFECTS 

 PURPOSE AND BACKGROUND 

Parametric ANOVA is a comparison of means among a set of populations. The one-way ANOVA 
for temporal effects is no exception. A one-way ANOVA for spatial variation (Chapter 13) uses well 
data sets to represent locations as the statistical factor of interest.   In contrast, a one-way ANOVA for 
temporal effects considers multiple well data sets for individual sampling events or seasons as the 
relevant statistical factor. A significant temporal factor implies that the average concentration depends to 
some degree on when sampling takes place. 

Three common examples of temporal factors include: 1) an irregular, but consistent shift of 
average concentrations over time perhaps due to changes in laboratories or analytical method 
interferences; 2)  cyclical seasonal patterns; or 3) parallel upward or downward trends.  These can occur 
in both upgradient and downgradient well data. 

If event-specific analytical differences or seasonality appear to be an important temporal factor, the 
one-way ANOVA for temporal effects can be used to formally identify seasonality, parallel trends, or 
changes in lab performance that affect other temporal effects. Results of the ANOVA can also be used to 
create temporally stationary residuals, where the temporal effect has been ‘subtracted from’ the original 
measurements. These stationary residuals may be used to replace the original data in subsequent 
statistical testing. 

The one-way ANOVA for a temporal factor described below can be used for an additional purpose 
when interwell testing is appropriate. For this situation, there can be no significant spatial variability. If 
a group of upgradient or other background wells indicates a significant temporal effect, an interwell 
prediction limit can be designed which properly accounts for this temporal dependence.  A more 
powerful interwell test of upgradient-to-downgradient differences can be developed than otherwise 
would be possible. This can occur because the ANOVA separates or ‘decomposes’ the overall data 
variation into two sources: a) temporal effects and b) random variation or statistical error. It also 
estimates how the background mean is changing from one sampling event to the next. The final 
prediction limit is formed by computing the background mean, using the separate structural and random 
variation components of the ANOVA to better estimate the standard deviation, and then adjusting the 
effective sample size (via the degrees of freedom) to account for these factors. 

 REQUIREMENTS AND ASSUMPTIONS 

Like the one-way ANOVA for spatial variation (Chapter 13), the one-way ANOVA for temporal 
effects assumes that the data groups are normally-distributed with constant variance. This requirement 
means that the group residuals should be tested for normality (Chapter 10) and also for equality of 
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variance (Chapter 11). It is also assumed that for each of a series of background wells, measurements 
are collected at each well on sampling events or dates common to all the wells. 

Two variations in the basic procedure are described below. For cases of temporal effects excluding 
seasonality, each sampling event is treated as a separate population. The ANOVA residuals are grouped 
and tested by sampling event to test for equality of variance. In cases of apparent seasonality, each 
season is treated as a distinct population. The difference is that seasons contain multiple sampling events 
across a span of multiple years, with sampling events collected at the same time of year assigned to one 
of the seasons (e.g., all January or first quarter measurements). Here, the ANOVA residuals are grouped 
by season to test for homoscedasticity. 

If the assumption of equal variances or normal residuals is violated, a data transformation should 
be considered. This should be followed by testing of the assumptions on the transformed scale. The one-
way ANOVA for a non-seasonal effect should include a minimum of four wells and at least 4 
observations (i.e., distinct sampling dates) per well. In the seasonal case, there should be a minimum of 
3-4 sampling events per distinct season, with the events thus spanning at least three years (i.e., one per 
year per season). Larger numbers of both wells and observations are preferable. Sampling dates should 
also be approximately the same for each well if a temporal effect is to be tested. 

If the data cannot be normalized, a similar test for a temporal or seasonal effect can be performed 
using the Kruskal-Wallis test (Chapter 17). The only difference from the procedure outlined in Section 

17.1.2 is that the roles of wells/groups and sampling events have to be reversed. That is, each sampling 
event should be treated as a separate ‘well,’ while each well is treated as a separate ‘sampling event.’ 
Then the same equations can be applied to the reversed data set to test for a significant temporal 
dependence. If testing for a seasonal effect, the wells in the notation of Section 17.1.2 become the 
groups of common sampling events from different years, while the sampling events are again the distinct 
wells. 

Even when a temporal effect exists and is apparent on a time series plot, the variation between well 
locations (i.e., spatial variability) may overshadow the temporal variability.  This could result in a non-
significant one-way ANOVA finding for the temporal factor. In these cases, a two-way ANOVA can be 
considered where both well location and sampling event/season are treated as statistical factors. This 
procedure is described in Davis (1994).  Evidence for a temporal effect can be documented using this 
last technique, although the two-way ANOVA isn't necessary if the goal is simply to construct 
temporally stationary residuals. That can be accomplished with a one-way ANOVA even when 
significant spatial variability exists. 

 PROCEDURE 

Step 1. Given a set of W wells and measurements from each of T sampling events at each well on each 
of K years, label the observations as xijk, for i = 1 to W, j = 1 to T, and k = 1 to K. Then xijk 
represents the measurement from the ith well on the jth sampling event during the kth year. 

Step 2. When testing for a non-seasonal temporal effect, form the set of event means (
 
x

• jk
) and the 

grand mean (
 
x

•••
) using equations [14.2] and [14.3] respectively: 
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 ∑
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• =
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ijkjk x
W

x
1

1
 for  j = 1 to T and k = 1 to K [14.2] 

 
  
x

•••
= x

ijk

k =1

K

∑
j=1

T

∑
i=1

W

∑ WTK  [14.3] 

Step 2a. If testing for a seasonal effect common to all wells, form the seasonal means (
 
x

• j•
) instead of 

the event means of Step 2, using the equation: 

 ∑
=

•• =
W

i

ijkj x
WK

x
1

1
 for j = 1 to T [14.4] 

Step 3. Compute the set of residuals for each sampling event or season using either equation [14.5] or 
equation [14.6] respectively: 

 jkijkijk xxr •−=  for i = 1 to W [14.5] 

 ••−= jijkijk xxr   for i = 1 to W and k = 1 to K [14.6] 

Step 4. Test the residuals for normality (Chapter 10). If significant non-normality is evident, consider 
transforming the data and re-doing the computations in Steps 1 through 4 on the transformed 
scale. 

Step 5. Test the sets of residuals grouped either by sampling event or season for equal variance 
(Chapter 11). If the variances are significantly different, consider transforming the data and 
re-doing the computations in Steps 1 through 5 on the transformed data. 

Step 6. If testing for a non-seasonal temporal effect, compute the mean error sum of squares term 
(MSE) using equation: 

 
  
MS

E
= r

ijk

2

k =1

K

∑
j=1

T

∑
i=1

W

∑ TK W − 1( ) [14.7] 

 This term is associated with TK(W–1) degrees of freedom. Also compute the mean sum of 
squares for the temporal effect (MST) with degrees of freedom (TK–1), using equation: 

 
  
MS

T
= W x

• jk
− x

•••( )
2

k =1

K

∑
j=1

T

∑ TK − 1( ) [14.8] 

Step 6a. If testing for a seasonal effect, compute the mean error sum of squares (MSE) using equation: 

 
  
MS

E
= r

ijk

2

k =1

K

∑
j=1

T

∑
i=1

W

∑ T WK − 1( ) [14.9] 
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 This term is associated with T(WK–1) degrees of freedom. Also compute the mean sum of 
squares for the seasonal effect (MST) with degrees of freedom (T–1), using equation: 

 
  
MS

T
= WK x

• j•
− x

•••( )
2

j=1

T

∑ T − 1( ) [14.10] 

Step 7. Test for a significant event-to-event or seasonal effect by computing the ratio of the mean sum 
of squares for time and the mean error sum of squares: 

 
 
F

T
= MS

T
MS

E
 [14.11] 

Step 8. If testing for a non-seasonal temporal effect, the test statistic FT under the null hypothesis (i.e., 
of no significant time-related variability among the sampling events) will follow an F-
distribution with (TK–1) and TK(W–1) degrees of freedom. Therefore, using a significance 
level of α = 0.05, compare FT against the critical point F.05, TK–1,TK(W–1) taken from the F-
distribution in Table 17-1 in Appendix D. If the critical point is exceeded, conclude there is a 
significant temporal effect. 

Step 8a. If testing for a seasonal effect, the test statistic FT under the null hypothesis (i.e., of no 
seasonal pattern) will follow an F-distribution with (T–1) and T(WK–1) degrees of freedom. 
Therefore, using a significance level of α = 0.05, compare FT against the critical point F.05, T–

1,T(WK–1) taken from the F-distribution in Table 17-1 of Appendix D.  If the critical point is 
exceeded, conclude there is a significant seasonal pattern. 

Step 9. If there is no spatial variability but a significant temporal effect exists among a set of 
background wells, compute an appropriate interwell prediction or control chart limit as 
follows.  First replace the background sample standard deviation (s) with the following 
estimate built from the one-way ANOVA table: 

 ( )[ ]$σ = + −
1

1
W

MS W MST E  [14.12] 

 Then calculate the effective sample size for the prediction limit as: 

 ( ) ( )[ ] ( ) ( )[ ]{ }11111* 22
−⋅−+⋅−+⋅−⋅+= WTKFTKWFTKTKn TT  [14.13] 

 ►EXAMPLE 14-2 

Some parallelism was found in the time series plot of Example 14-1. Test those same manganese 
data for a significant, non-seasonal temporal effect using a one-way ANOVA at the 5% significance 
level. 
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 Manganese Concentrations (ppm) 

Qtr Event 

Mean 

BW-1 BW-2 BW-3 BW-4 

1 29.290 28.14 31.41 27.15 30.46 

2 30.110 29.33 30.27 30.24 30.60 

3 30.780 30.45 32.57 29.14 30.96 

4 31.620 32.42 32.77 30.59 30.70 

5 33.747 34.37 33.03 34.88 32.71 

6 31.930 33.25 32.18 30.53 31.76 

7 30.513 31.02 28.85 30.33 31.85 

8 30.345 28.50 32.88 30.42 29.58 

  

 Grand mean = 31.042 

 

SOLUTION 

Step 1. First compute the means for each sampling event and the grand mean of all the data. These 
values are listed in the table above. With four wells and eight quarterly events per well, W = 4, 
T = 4, and K = 2. 

Step 2. Determine the residuals for each sampling event by subtracting off the event mean. These 
values are listed in the table below. 

 

 Manganese Event Residuals (ppm) 

Qtr BW-1 BW-2 BW-3 BW-4 

1 -1.150 2.120 -2.140 1.170 

2 -0.780 0.160 0.130 0.490 

3 -0.330 1.790 -1.640 0.180 

4 0.800 1.150 -1.030 -0.920 

5 0.622 -0.718 1.132 -1.038 

6 1.320 0.250 -1.400 -0.170 

7 0.508 -1.662 -0.182 1.338 

8 -1.845 2.535 0.075 -0.765 

 

Step 3. Test the residuals for normality. A probability plot of these residuals is given in Figure 14-3. 
An adequate fit to normality is suggested by Filliben’s probability plot correlation coefficient 
test. 
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Figure 14-3. Probability Plot of Manganese Sampling Event Residuals 
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Step 4. Next, test the groups of residuals for equal variance across sampling events.  Levene’s test 
(Chapter 11) gives an F-statistic of 1.30, well below the 5% critical point with 7 and 24 
degrees of freedom of F.95,7,24 = 2.42. Therefore, the group variances test out as adequately 
homogeneous. 

Step 5. Compute the mean error sum of squares term using equation [14.7]: 

 ( ) ( ) ( ) ( )[ ] ( )( ) 87.1324765.338.1780.150.1 2222
=⋅−+++−+−= KEMS  

Step 6. Compute the mean sum of squares term for the time effect using equation [14.8]: 

 ( ) ( ) ( )[ ] 55.77042.31345.30042.3111.30042.31290.294 222
=−++−+−= KTMS  

Step 7. Test for a significant temporal effect, computing the F-statistic in equation [14.11]: 

   FT
= 7.55 1.87 = 4.04  

 The degrees of freedom associated with the numerator and denominator respectively are (TK–
1) = 7 and TK(W–1) = 24. Just as with Levene’s test run earlier, the 5% level critical point for 
the test is F.95,7,24 = 2.42. Since FT exceeds this value, there is evidence of a significant 
temporal effect in the manganese background data. 

Step 8. Assuming a lack of spatial variation, the presence of a temporal effect can be used to compute 
a standard deviation estimate and effective background sample size appropriate for an 
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interwell prediction limit test, using equations [14.12] and [14.13] respectively. The adjusted 
standard deviation becomes: 

 ( )[ ]$ . . .σ = + ⋅ =
1

4
7 55 3 187 1814 ppm  

 while the effective sample size is: 

 ( )[ ] ( )[ ]{ } 1931.193704.481404.4781* 22
≈=⋅+⋅−+⋅⋅+=n  

 If the background data had simply been pooled together and the sample standard deviation 
computed, s = 1.776 ppm with a sample size of n = 32. So the adjustments based on the 
temporal effect alter the final prediction limit by enlarging it and reducing the effective sample 
size to account for the additional component of variation. ◄ 

 

14.2.3 SAMPLE AUTOCORRELATION FUNCTION 

 BACKGROUND AND PURPOSE 

The sample autocorrelation function enables a test of temporal autocorrelation in a single data 
series (e.g., from a single well over time). When a time-related dependency affects several wells 
simultaneously, parallel time series plots (Section 14.2.1) and one-way ANOVA for temporal effects 
(Section 14.2.2) should be considered. But when a longer data series is to be used for an intrawell test 
such as a prediction limit or control chart, the autocorrelation function does an excellent job of 
identifying temporal dependence. 

Given a sequence of consecutively-collected measurements, x1, x2,…, xn, form the set of 
overlapping pairs (xi, xi+1) for i = 1,…, n–1. The approximate first-order sample autocorrelation 
coefficient is then computed from these pairs as (Chatfield, 2004): 

 

  

r
1

=

x
i
− x( ) x

i+1
− x( )

i=1

n−1

∑

x
i
− x( )

2

i=1

n

∑
 [14.14] 

Equation [14.14] estimates the first-order autocorrelation, that is, the correlation between pairs of 
sample measurements collected one event apart (i.e., consecutive events). The number of sampling 
events separating each pair is called the lag, representing the temporal distance between the pair 
measurements. 

Autocorrelation can also be computed at other lags. The general approximate equation for the kth 
lag is given by: 
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which estimates the kth-order autocorrelation for pairs of measurements separated in time by k sampling 
events. Note that the number of pairs used to compute rk decreases with increasing k due to the fact that 
fewer and fewer sample pairs can be formed which are separated by that many lags. 

By computing the first few sample autocorrelation coefficients and defining r0 = 1, the sample 
autocorrelation function can be formed by plotting rk against k. Since the autocorrelation coefficients are 
approximately normal in distribution with zero mean and variance equal to 1/n, a test of significant 
autocorrelation at the 95% significance level can be made by examining the sample autocorrelation 

function to see if any coefficients exceed   2 n in absolute value (  ± 2 n represent approximate upper 
and lower confidence limits). 

The sample autocorrelation function is a valuable visual tool for assessing different types of 
autocorrelation (Chatfield, 2004). For instance, a stationary (i.e., stable, non-trending) but non-random 
series of measurements will often exhibit a large value of r1 followed by perhaps one or two other 
significantly non-zero coefficients. The remaining coefficients will be progressively smaller and smaller, 
tending towards zero. A series with a clear seasonal pattern will exhibit a seasonal (i.e., approximately 
sinusoidal) autocorrelation function. If the series tends to alternate between high and low values, the 
autocorrelation function will also alternate, with r1 being negative to reflect that consecutive 
measurements tend to be on ‘opposite sides’ of the sample mean. Finally, if the series contains a trend, 
the sample autocorrelation function will not drop to zero as the lag k increases. Rather, there will a 
persistent autocorrelation even at very large lags. 

 REQUIREMENTS AND ASSUMPTIONS 

The approximate distribution of the sample autocorrelation coefficients is predicated on the sample 
measurements following a normal distribution. A test for significant autocorrelation may therefore be 
inaccurate unless the sample measurements are roughly normal. Non-normal data series should be tested 
for temporal autocorrelation using the non-parametric rank Von Neumann ratio (Section 14.2.4). 

Outliers can drastically affect the sample autocorrelation function (Chatfield, 2004). Before 
assessing autocorrelation, check the sample for possible outliers, removing those that are identified. A 
series of at least 10-12 measurements is minimally recommended to construct the autocorrelation 
function. Otherwise, the number of lagged data pairs will be too small to reliably estimate the 
correlation, especially for larger lags. Sampling events should be regularly spaced so that pairs lagged by 
the same number of events (k) represent the same approximate time interval. 

 PROCEDURE 

Step 1. Given a series of n measurements, x1,…, xn, form sets of lagged data pairs (xi, xi+k), i = 1,…, 
n–k, for k ≤ [n/3], where the notation [c] represents the largest integer no greater than c. For 
longer series, computing lags to a maximum of k = 15 is generally sufficient. 
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Step 2. For each set of lagged pairs from Step 1, compute the sample autocorrelation coefficient, rk, 
using equation [14.15]. Also define r0 = 1. 

Step 3. Graph the sample autocorrelation function by plotting rk versus k for k = 0,…, [n/3], generally 

up to a maximum lag of 15. Also plot horizontal lines at levels equal to:  ± 2 n . 

Step 4. Examine the sample autocorrelation function. If any coefficient rk exceeds   2 n  in absolute 
value, conclude that the sample has significant autocorrelation. 

 ►EXAMPLE 14-3 

The following series of monthly total alkalinity measurements were collected from leachate at a 
solid waste landfill during a four and a half year period. Use the sample autocorrelation function to test 
for significant temporal dependence in this series. 

 

Date 

Total 

Alkalinity 

(mg/L) 

 

Date 

Total 

Alkalinity 

(mg/L) 

 

Date 

Total 

Alkalinity 

(mg/L) 

01/26/96 1400 07/01/97 2400 01/15/99 1350 

02/20/96 1700 08/15/97 3500 02/02/99 1560 

03/19/96 1900 09/15/97 3100 03/02/99 1220 

04/22/96 1800 10/15/97 3300 04/15/99 1390 

05/22/96 1300 11/15/97 2100 05/04/99 1940 

06/24/96 2000 12/15/97 2100 06/02/99 2160 

07/15/96 2300 01/15/98 1500 07/07/99 1990 

08/21/96 2500 02/15/98 710 08/03/99 2540 

09/15/96 1700 03/15/98 1100 09/02/99 2250 

10/15/96 1600 04/15/98 1900 10/07/99 1630 

11/11/96 1400 05/08/98 2100 11/02/99 1710 

12/10/96 1600 06/15/98 2000 12/07/99 1210 

01/22/97 1800 07/15/98 2500 01/06/00 1170 

02/11/97 1000 08/15/98 2700 02/02/00 1330 

03/04/97 720 09/02/98 2400 03/02/00 1540 

04/07/97 1400 10/06/98 3000 04/04/00 1670 

05/01/97 1600 11/03/98 2700 05/02/00 1520 

06/09/97 990 12/15/98 2680 06/06/00 2080 

 

 SOLUTION 

Step 1. Create a time series plot of the n = 54 alkalinity measurements, as in Figure 14-4. The series 
indicates an apparent seasonal fluctuation. 

Step 2. Form lagged data pairs from the alkalinity series for each lag k = 1,…, [n/3] = 18. The first 
two pairs for k = 1 (i.e., first order lag) are (1400, 1700) and (1700, 1900). For k = 2, the first 
two pairs are (1400, 1900) and (1700, 1800), etc. 

Step 3. At each lag (k), compute the sample autocorrelation coefficient using equation [14.15]. Note 
that the denominator of this equation equals (n–1)s2. For the alkalinity data, the sample mean 
and variance are   x = 1865.93 and s2 = 392349.1 respectively. The lag-1 autocorrelation is thus: 

( ) ( ) ( ) ( )
( )

64.
1.392349154

93.1865208093.1865152093.1865170093.18651400
1 =

⋅−

−⋅−++−⋅−
=

K
r  
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 Other lags are computed similarly. 

Step 4. Plot the sample autocorrelation function as in Figure 14-5. Overlay the plot with 95% 

confidence limits (dotted lines) shown at   ± 2 n = ± 2 54 = 0.27 . 

Step 5. The autocorrelation function indicates coefficients at several lags that lie outside the 95% 
confidence limits, confirming the presence of temporal dependence. Further, the shape of 
autocorrelation function is sinusoidal, suggesting a strong seasonal fluctuation in the alkalinity 
levels. ◄ 

Figure 14-4. Time Series Plot of Total Alkalinity (mg/L) 
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Figure 14-5. Sample Autocorrelation Function for Total Alkalinity 

 

14.2.4 RANK VON NEUMANN RATIO TEST 

 BACKGROUND AND PURPOSE 

The rank von Neumann ratio is a non-parametric test of first-order temporal autocorrelation in a 
single data series (e.g., from a single well over time). It can be used as an alternative to the sample 
autocorrelation function (Section 14.2.3) for non-normal data, and is both easily computed and effective. 

The rank von Neumann ratio is based on the idea that a truly independent series of data will vary in 
an unpredictable fashion as the list is examined sequentially. The first order or lag-1 autocorrelation will 
be approximately zero. By contrast, the first-order autocorrelation in dependent data will tend to be 
positive (or negative), implying that lag-1 data pairs in the series will tend to be more similar (or 
dissimilar) in magnitude than would expected by chance.  

Not only will the concentrations of lag-1 data pairs tend to be similar (or dissimilar) when the 
series is autocorrelated, but the ranks of lag-1 data pairs will share that similarity or dissimilarity. 
Although the test is non-parametric and rank-based, the ranks of non-independent data still follow a 
discernible pattern. Therefore, the rank von Neumann ratio is constructed from the sum of differences 
between the ranks of lag-1 data pairs. When these differences are small, the ranks of consecutive data 
measurements need to be fairly similar, implying that the pattern of observations is somewhat 
predictable. Given the relative position and magnitude of one observation, the approximate relative 
position and magnitude of the next sample measurement can be predicted. Low values of the rank von 
Neumann ratio are therefore indicative of temporally dependent data series. 
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Compared to other tests of statistical independence, the rank von Neumann ratio has been shown to 
be more powerful than non-parametric methods such as the Runs up-and-down test (Madansky, 1988). It 
is also a reasonable test when the data follow a normal distribution. In that case, the efficiency of the test 
is always close to 90 percent when compared to the von Neumann ratio computed on concentrations 
instead of the ranks. Thus, very little effectiveness is lost by using the ranks in place of the original 
measurements. The rank von Neumann ratio will correctly detect dependent data and do so over a variety 
of underlying data distributions. The rank von Neumann ratio is also fairly robust to departures from 
normality, such as when the data derive from a skewed distribution like the lognormal. 

 REQUIREMENTS AND ASSUMPTIONS 

An unresolved problem with the rank von Neumann ratio test is the presence of a substantial 
fraction of tied observations. Like the Wilcoxon rank-sum test (Chapter 16), Bartels (1982) 
recommends replacing each tied value by its mid-rank (i.e., the average of all the ranks that would have 
been assigned to that set of ties). However, no explicit adjustment of the ratio for ties has been 
developed. The rank von Neumann critical points may not be appropriate (or at best very approximate) 
when a large portion of the data consists of non-detects or other tied values. Especially in the case of 
frequent non-detects, too much information is lost regarding the pattern of variability to use the rank von 
Neumann ratio as an accurate indication of autocorrelation. In fact, no test is likely to provide a good 
estimate of temporal correlation, whether non-parametric or parametric. 

While the rank von Neumann ratio test is recommended in the Unified Guidance for its ease of use 
and robustness when applied to either normal or non-normal distributions, the literature on time series 
analysis and temporal correlation is extensive with respect to other potential tests. Many other tests of 
autocorrelation are available, especially when either the original measurements or the residuals of the 
data are normally distributed after a trend has been removed. Chatfield (2004) and (Madansky, 1988) are 
two good references for some of these alternate tests. 

 PROCEDURE 

Step 1. Order the sample from least to greatest and assign a unique rank to each measurement. If some 
data values are tied, replace tied values with their mid-ranks as in the Wilcoxon rank-sum test 
(Chapter 16). Then list the observations and their corresponding ranks in the order that they 
were collected (i.e., by sampling event or time order). 

Step 2. Using the list of ranks, Ri, for the sampling events i = 1…n, compute the rank von Neumann 
ratio with the equation: 

 
  
v = R

i
− R

i−1( )
2

i=2

n

∑ n n2 − 1( ) 12



  [14.16] 

Step 3. Given sample size (n) and desired significance level (α), find the lower critical point of the 
rank von Neumann ratio in Table 14-1 of Appendix D. In most cases, a choice of α = .01 
should be sufficient, since only substantial non-independence is likely to affect subsequent 
statistical testing. If the computed ratio, v, is smaller than this critical point, conclude that the 
data series is strongly autocorrelated. If not, there is insufficient evidence to reject the 
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hypothesis of independence; treat the data as temporally independent in subsequent statistical 
testing. 

 ►EXAMPLE 14-4 

Use the rank von Neumann ratio test on the following series of 16 quarterly measurements of 
arsenic (ppb) to determine whether or not the data set should be treated as temporally independent in 
subsequent tests. Compute the test at the α = .01 level of significance. 

 

Sample Date Arsenic (ppb) Rank (Ri) 

   

Jan 1990 4.0 5 

Apr 1990 7.2 15 

Jul 1990 3.1 2 

Oct 1990 3.5 3 

Jan 1991 4.4 8 

Apr 1991 5.1 9 

Jul 1991 2.2 1 

Oct 1991 6.3 13 

Jan 1992 6.5 14 

Apr 1992 7.5 16 

Jul 1992 5.8 11 

Oct 1992 5.9 12 

Jan 1993 5.7 10 

Apr 1993 4.1 6 

Jul 1993 3.8 4 

Oct 1993 4.3 7 

 

 SOLUTION 

Step 1. Assign ranks to the data values as in the table above. Then list the data in chronological order 
so that each rank value occurs in the order sampled. 

Step 2. Compute the von Neumann ratio using the set of ranks in column 3 using equation [14.16], 
being sure to take squared differences of successive, overlapping pairs of rank values: 

 
( ) ( ) ( )[ ]
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−⋅

−++−+−
=

K
ν  

Step 3. Look up the lower critical point (vcp) for the rank von Neumann ratio in Table 14-1 of 
Appendix D. For n = 16 and α = .01, the lower critical point is equal to 0.93. Since the test 
statistic v is larger than vcp, there is insufficient evidence of autocorrelation at the α = .01 level 
of significance. Therefore, treat these data as statistically independent in subsequent testing. ◄ 
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14.3 CORRECTING FOR TEMPORAL EFFECTS AND CORRELATION 

14.3.1 ADJUSTING THE SAMPLING FREQUENCY AND/OR TEST METHOD 

If a data series is temporally correlated, a simple remedy (if allowable under program rules) is to 
change the sampling frequency and/or statistical method used to analyze the data. In some cases, 
increasing the sampling interval will effectively eliminate the statistical dependence exhibited by the 
series. This may happen because the longer time between sampling events allows more groundwater to 
flow through the well screen, further differentiating measurements of consecutive volumes of 
groundwater and lessening the impact of seasonal fluctuations or other time-dependent patterns in the 
underlying concentration distribution. 

Many authors including Gibbons (1994a) and ASTM (1994) have recommended that sampling be 
conducted no more often than quarterly to avoid temporal dependence. If the sampling frequency is 
reduced, there are obviously fewer measurements available for statistical analysis during any given 
evaluation period. A t-test or ANOVA cannot realistically be run with fewer than four measurements per 
well. A prediction limit for a future mean requires at least two new observations, and a prediction limit 
for a future median requires at least three measurements, not counting any resamples. Depending on the 
length of the evaluation period (i.e., quarterly, semi-annual, annual), a change of statistical method may 
also be necessary when groundwater measurements are autocorrelated. 

When sufficient background data have been collected over a longer period of time, a prediction 
limit test for future values can be run with as few as one or two new measurements per compliance well. 
The same is true for control charts. Therefore, if a low groundwater flow velocity and/or evidence of 
statistical dependence suggest a reduction in sampling frequency, certain prediction limits and control 
charts should be strongly considered as alternate statistical procedures. 

 RUNNING A PILOT STUDY 

An optional approach to adjusting the sampling frequency is to run a site-specific pilot study of 
autocorrelation. Such a study can be conducted in several ways, but perhaps the easiest is to pick two or 
three wells from the network (perhaps one background well and one or two compliance wells) and then 
conduct weekly sampling at these wells over a one year period. For each well in the study, construct the 
sample autocorrelation function (Section 14.2.3) for a variety of constituents, and determine from these 
graphs the smallest lagged interval at which the autocorrelation coefficient becomes insignificantly 
different from zero for most of the study constituents. 

Since an autocorrelation of zero is equivalent to temporal independence for practical purposes, 
finding the smallest lag between sampling events with no correlation indicates the minimum sampling 
frequency needed to approximately ensure statistical independence. If the sample autocorrelation 
function does not drop down to zero with increasing lag (k), there may be a strong seasonal component 
or a trend involved. In these circumstances, lengthening the sampling frequency may do little to lessen 
the temporal dependence. A seasonal pattern may need to be estimated instead and regularly removed 
from the data prior to statistical testing. Likewise, any apparent trends should be investigated to 
determine if there is evidence of increasing concentration levels indicative of a possible release. 
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14.3.2 CHOOSING A SAMPLING INTERVAL VIA DARCY’S EQUATION 

Another strategy for determining an appropriate sampling interval is to use Darcy’s equation. The 
goal of this approach is to calculate groundwater flow velocity and the time needed to ensure that 
physically independent or distinct volumes of groundwater are collected on each sampling trip. As noted 
in Chapter 6, physical independence does not guarantee statistical independence. However, statistical 
independence may be more likely if the same general volume of groundwater is not re-sampled on 
multiple occasions. 

This section discusses the important hydrological parameters to consider when choosing a 
sampling interval. The Darcy equation is used to determine the horizontal component of the average 
linear velocity of ground water for confined, semi-confined, and unconfined aquifers. This value 
provides a good estimate of travel time for most soluble constituents in groundwater, and can be used to 
determine a minimal sampling interval. Example calculations are provided to further assist the reader. 
Alternative methods should be employed to determine a sampling interval in groundwater environments 
where Darcy’s law is invalid. Karst, cavernous basalt, fractured rocks, and other ‘pseudo-karst’ terranes 
usually require specialized monitoring approaches. 

Section 264.97(g) of 40 CFR Part 264 Subpart F allows the owner or operator of a RCRA facility 
to choose a sampling procedure that will reflect site-specific concerns. It specifies that the owner or 
operator shall obtain a sequence of at least four samples from each well collected at least semi-annually. 
The interval is determined after evaluating the uppermost aquifer’s effective porosity, hydraulic 
conductivity, and hydraulic gradient, and the fate and transport characteristics of potential contaminants. 
The intent of this provision is to set a sampling frequency that allows sufficient time between sampling 
events to ensure, to the greatest extent technically feasible, that independent groundwater observations 
are taken from each well. 

The sampling frequency required in Part 264 Subpart F can be based on estimates using the 
average linear velocity of ground water. Two forms of the Darcy equation stated below relate 
groundwater velocity (V) to effective porosity (Ne), hydraulic gradient (i), and hydraulic conductivity 
(K): 

 
 
V

h
= K

h
⋅ i( ) Ne  [14.17] 

 
 
V

v
= K

v
⋅ i( ) Ne  [14.18] 

where Vh and Vv are the horizontal and vertical components of the average linear velocity of 
groundwater, respectively; Kh and Kv are the horizontal and vertical components of hydraulic 
conductivity, respectively; i is the head gradient; and Ne is the effective porosity. 

In applying these equations to ground-water monitoring, the horizontal component of the average 
linear velocity (Vh) can be used to determine an appropriate sampling interval. Usually, field 
investigations will yield bulk values for hydraulic conductivity. In most cases, the bulk hydraulic 
conductivity determined by a pump test, tracer test, or a slug test will be sufficient for these calculations. 
The vertical component (Vv), however, should be considered in estimating flow velocities in areas with 
significant components of vertical velocity such as recharge and discharge zones. 
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To apply the Darcy equation to groundwater monitoring, the parameters K, i, and Ne need to be 
determined. The hydraulic conductivity, K, is the volume of water at the existing kinematic viscosity that 
will move in unit time under a unit hydraulic gradient through a unit area measured at right angles to the 
direction of flow. “[E]xisting kinematic viscosity” refers to the fact that hydraulic conductivity is not 
only determined by the media (aquifer), but also by fluid properties (groundwater or potential 
contaminants). Thus, it is possible to have several hydraulic conductivity values for different chemical 
substances present in the same aquifer. The lowest velocity value calculated using the Darcy equation 
should be used to determine sampling intervals, ensuring physical independence of consecutive sample 
measurements. 

Figure 14-6. Hydraulic Conductivity of Selected Rocks 
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A range of hydraulic conductivities (the transmitted fluid is water) for various aquifer materials is 
given in Figures 14-6 and 14-7. The conductivities are given in several units. Figure 14-8 lists 
conversion factors to change between various permeability and hydraulic conductivity units. 

The hydraulic gradient, i, is the change in hydraulic head per unit of distance in a given direction. It 
can be determined by dividing the difference in head between two points on a potentiometric surface 
map by the orthogonal distance between those two points (see calculation in Example 14-5). Water level 
measurements are normally used to determine the natural hydraulic gradient at a facility. However, the 
effects of mounding in the event of a release may produce a steeper local hydraulic gradient in the 
vicinity of the monitoring well. These local changes in hydraulic gradient should be accounted for in the 
velocity calculations. 

 

Figure 14-7. Range of Values of Hydraulic Conductivity and Permeability 
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Figure 14-8. Conversion Factors for Permeability and Hydraulic Conductivity Units 

 Permeability, k*  Hydraulic conductivity, K 

 cm2  ft2
 

 darcy  m/s  ft/s  gal/day/ft2
 

cm2 1  1.08×10–3
 

 1.01×108
 

 9.80×102
 

 3.22×103
 

 1.85×109
 

ft2
 

9.29×102
 

 1  9.42×1010
 

9.11×105
 

 2.99×106
 

 1.71×1012
 

darcy 9.87×10–9  1.06×10–11  1 9.66×10–6  3.17×10–5  1.82×101 

m/s 1.02×10–3
 

 1.10×10–6
 

 1.04×105
 

 1  3.28  2.12×106
 

ft/s 3.11×10–4
 

 3.35×10–7
 

 3.15×104
 

 3.05×10–1
  1  6.46×105

 

gal/day/ft2 5.42×10–10  5.83×10–13  5.49×10–2  4.72×10–7  1.55×10–6  1 

            

*To obtain k in ft2, multiply k in cm2 by 1.08×10–3 

            

Source: Freeze, R.A., and J.A. Cherry (1979). Ground Water. Prentice Hall, Inc., Englewood Cliffs, 

New Jersey,  p. 29.  

 

 

The effective porosity, Ne, is the ratio, usually expressed as a percentage, of the total volume of 
voids available for fluid transmission to the total volume of the porous medium de-watered. It can be 
estimated during a pump test by dividing the volume of water removed from an aquifer by the total 
volume of aquifer dewatered (see calculation in Example 14-5). Figure 14-9 presents approximate 
effective porosity values for a variety of aquifer materials. In cases where the effective porosity is 
unknown, specific yield may be substituted into the equation. Specific yields of selected rock units are 
given in Figure 14-10. In the absence of measured values, drainable porosity is often used to 
approximate effective porosity. Figure 14-11 illustrates representative values of drainable porosity and 
total porosity as a function of aquifer particle size. If available, field measurements of effective porosity 
are preferred. 
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Figure 14-9. Default Values of Effective Porosity (Ne) For Travel Time Analyses 

 

Soil textural classes 

Effective porosity of 

saturationa 

Unified soil classification system   

 GS,  GP,  GM,  GC,  SW,  SP,  SM,  SC 0.20 (20%) 

 ML,  MH 0.15 (15%) 

 CL,  OL,  CH,  OH,  PT 0.01 (1%)b 

   

USDA soil textural classes 

 Clays, silty clays, sandy clays 0.01 (1%)b 

 Silts, silt loams, silty clay loams 0.10 (10%) 

 All others 0.20 (20%) 

   

Rock units (all) 

 Porous media (non-fractured rocks such as sandstone 

and some carbonates) 

0.15 (15%) 

 Fractured rocks (most carbonates, shales, granites, etc.) 0.0001 (0.01%) 

   

Source: Barari, A., and L. S. Hedges (1985). Movement of Water in Glacial Till. Proceedings of 

the 17th International Congress of the International Association of Hydrogeologists, pp. 129-

134. 

   
aThese values are estimates and there may be differences between similar units. For example, 

recent studies indicate that weathered and unweathered glacial till may have markedly 

different effective porosities (Barari and Hedges, 1985; Bradbury et al., 1985). 

   
bAssumes de minimus secondary porosity. If fractures or soil structure are present, effective 

porosity should be 0.001 (0.1%). 

 

 

Figure 14-10. Specific Yield Values for Selected Rock Types 

Rock Type 

 

Specific Yield (%) 

Clay 2 

Sand 22 

Gravel 19 

Limestone 18 

Sandstone (semi-consolidated) 6 

Granite 0.09 

Basalt (young) 8 

  

Source: Heath, R.C. (1983). Basic Ground-Water Hydrology. U.S. Geological Survey, Water Supply Paper 

2220, 84 pp. 
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Once the values for K, i, and Ne are determined, the horizontal component of average linear 
groundwater velocity can be calculated. Using the Darcy equation [14.17], the time required for 
groundwater to pass through the complete monitoring well diameter can be determined by dividing the 
well diameter by the horizontal component of the average linear groundwater velocity.  If considerable 
exchange of water occurs during well purging, the diameter of the filter pack may be used rather than the 
well diameter. This value represents the minimum time interval required between sampling events 
yielding a physically independent (i.e., distinct) ground-water sample. Note that three-dimensional 
mixing of groundwater in the vicinity of the monitoring well is likely to occur when the well is purged 
before sampling.  Partly for that reason, this method can only provide an estimated travel time. 

Figure 14-11. Total Porosity and Drainable Porosity for Typical Geologic Materials 

 

In determining these sampling intervals, many chemical compounds do not travel at the same 
velocity as groundwater. Chemical characteristics such as adsorptive potential, specific gravity, and 
molecular size influence the way chemicals travel in the subsurface. Large molecules, for example, tend 
to travel slower than the average linear groundwater velocity because of matrix interactions. Compounds 
that exhibit a strong adsorptive potential undergo a similar fate that dramatically changes time of travel 
predictions using the Darcy equation. In some cases chemical interaction with the matrix material alters 
the matrix structure and its associated hydraulic conductivity and may result in an increase in 
contaminant mobility. This effect has been observed with certain organic solvents in clay units (see 
Brown and Andersen, 1981). Contaminant fate and transport models may be useful in determining the 
influence of these effects on movement in the subsurface. 
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 ►EXAMPLE 14-5 

Compute the effective porosity, Ne, expressed as a percent (%), using results obtained during a 
pump test. 

 SOLUTION 

Step 1. Compute the effective porosity using the following equation: 

   Ne = 100% × volume of water removed volume of aquifer dewatered  [14.19] 

Step 2. Based on a pumping rate of 50 gal/min and a pumping duration of 30 min, compute the 
volume of water removed as: 

  volume of water removed = 50 gal min × 30 min = 1,500 gal  

Step 3. To calculate the volume of aquifer de-watered, use the equation: 

 
  
V =

1

3
πhr

2  [14.20] 

 where r is the radius (in ft) of the area affected by pumping and h (ft) is the drop in the water 
level. If, for example, h = 3 ft and r = 18 ft, then: 

 
  
V =

1

3
3.14 × 3× 182( )= 1,018 ft3  

 Next, converting cubic feet of water to gallons of water, 

   V = 1,018 ft3 × 7.48 gal ft3 = 7,615 gal  

Step 4. Finally, substitute the two volumes from Step 3 into equation [14.19] to obtain the effective 
porosity: 

 
  
Ne = 100% × 1,500 gal 7,615 gal( )= 19.7%  ◄ 

 ►EXAMPLE 14-6 

Determine the hydraulic gradient, i, from a potentiometric surface map. 

 SOLUTION 

Step 1. Consider the potentiometric surface map in Figure 14-12. The hydraulic gradient can be 
constructed as i = ∆h/l, where ∆h is the difference measured in the gradient at piezometers Pz1 
and Pz2,and l is the orthogonal distance between the two piezometers. 
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Figure 14-12. Potentiometric Surface Map for Computation of Hydraulic Gradient 

 

Step 2. Using the values given in Figure 14-12, the hydraulic gradient is computed as: 

 
  
i = ∆h l = 29.2 ft − 29.1 ft( ) 100 ft = 0.001 ft ft  

Step 3. Note that this method provides only a very general estimate of the natural hydraulic gradient 
existing in the vicinity of the two piezometers. Chemical gradients are known to exist and may 
override the effects of the hydraulic gradient. A detailed study of the effects of multiple 
chemical contaminants may be necessary to determine the actual average linear groundwater 
velocity (horizontal component) in the vicinity of the monitoring wells. ◄ 

 ►EXAMPLE 14-7 

Determine the horizontal component of the average linear groundwater velocity (Vh) at a land 
disposal facility which has monitoring wells screened in an unconfined silty sand aquifer. 

 SOLUTION 

Step 1. Slug tests, pump tests, and tracer tests conducted during a hydrologic site investigation have 
revealed that the aquifer has a horizontal hydraulic conductivity (Kh) of 15 ft/day and an 
effective porosity (Ne) of 15%. Using a potentiometric map (as in Example 14-6), the regional 
hydraulic gradient (i) has been determined to be 0.003 ft/ft. 

Step 2. To estimate the minimum time interval between sampling events enabling the collection of  
physically independent samples of ground water, calculate the horizontal component of the 
average linear groundwater velocity (Vh) using Darcy’s equation [14.17]. With Kh = 15 ft/day, 
Ne = .15 (15%), and i = 0.003 ft/ft, the velocity becomes: 

 ( ) dayinordayftftftdayftVh /6.3/3.15.//003./15 =×=  

Step 3. Based on these calculations, the horizontal component of the average linear groundwater 
velocity, Vh, is equal to 3.6 in/day. Since monitoring well diameters at this particular facility 
are 4 inches, the minimum time interval between sampling events enabling a physically 
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independent groundwater sample can be computed by dividing the horizontal component into 
the monitoring well diameter: 

 
 
Minimum time interval = 4 in( ) 3.6 in day( )= 1.1 days  

 As a result, the facility could theoretically sample every other day. However, this may be 
unwise because velocity can seasonally vary with recharge rates. It is also emphasized that 
physical independence does not guarantee statistical independence. Figure 14-13 gives results 
for common situations. The overriding point is that it may not be necessary to set the 
minimum sampling frequency to quarterly at every site. Some hydrologic environments may 
allow for more frequent sampling, some less. ◄ 

Figure 14-13. Typical Darcy Equation Results in Determining a Sampling Interval 

Unit Kh (ft/day) Ne (%) Vh (in/mo) Sampling Interval 

Gravel 104 19 9.6×104 Daily 

Sand 102 22 8.3×102 Daily 

Silty Sand 10 14 1.3×102 Weekly 

Till 10–3 2 9.1×10–2 Monthly 

Silty Sand (semi-consolidated) 1 6 30 Weekly 

Basalt 10–1 8 2.28 Monthly 

 

14.3.3 CREATING ADJUSTED, STATIONARY MEASUREMENTS 

When an existing data set exhibits temporal correlation or other variability, it is sometimes 
possible to remove the temporal pattern and thereby create a set of adjusted data which are uncorrelated 
and stationary over time in mean level. As long as the same temporal pattern seems to affect both 
background and the compliance point data to be tested, the effect (e.g., regular seasonal fluctuation) can 
be estimated and removed from both data sets prior to statistical testing. Testing the adjusted data 
instead of the raw measurements in this way results in a more powerful and accurate test.  An extraneous 
source of variation not related to identifying a contaminant release has been removed from the sample 
data. 

The general topic of stationary, adjusted data is complex, contained within the extensive literature 
on time series. The Unified Guidance discusses two simple cases below: removing a seasonal pattern 
from a single well and creating adjusted data from a one-way ANOVA for temporal effects across 
several wells. More complicated situations may need professional consultation. 

14.3.3.1 CORRECTING FOR SEASONAL PATTERN IN A SINGLE WELL 

  

 BACKGROUND AND PURPOSE 

Sometimes an obvious cyclical seasonal pattern can be seen in a time series plot. Such data are not 
statistically independent.  They do not fluctuate randomly but rather in a predictable way from one 
sampling event to the next. Data from such patterns can be adjusted to correct for or remove the seasonal 
fluctuation, but only if a longer series of data is available. This is also known as deseasonalizing the 
data. Seasonal correction should be done both to minimize the chance of mistaking a seasonal effect for 
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evidence of contaminated groundwater, and also to build more powerful background-to-compliance 
point tests. 

Problems can arise, for instance, from measurement variations associated with changing recharge 
rates during different seasons. Compliance point concentrations can exceed a groundwater protection 
standard [GWPS] for a portion of the year, but on average lie below.  If the long-term average is of 
regulatory concern, the data should first be de-seasonalized before comparing it against a GWPS. 

If point-in-time, interwell comparisons are being made between simultaneously collected 
background and downgradient data, a correction may not be necessary even when seasonal fluctuations 
exist. A temporal cycle may cover a period of several years so that both the background and 
downgradient values are observed on essentially the same parts of the overall cycle.  In this case, the 
short-term averages in both data sets will be fairly stable and the seasonal or cyclical effect may 
equivalently impact both sets of data. 

For intrawell tests, the data need to be collected sequentially at each well, with background formed 
from the earliest measurements in the series. The point-in-time argument would not apply and the 
presence of seasonality should be checked and accounted for. 

Even with interwell testing, it is sometimes difficult to verify whether or not a seasonal pattern is 
impacting upgradient and compliance point wells similarly. If the groundwater velocity is low, the lag 
between the time groundwater passes through a background well screen and then travels downgradient 
may create a noticeable shift as to when corresponding portions of the seasonal cycle are observed in 
compliance point locations. It also may be the case that differences in geochemistry from well to well 
may cause the same seasonal pattern to differentially impact concentration levels at distinct wells 
(Figure 14-14). 
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Figure 14-14. Differential Seasonal Effects: Background vs. Compliance Wells 

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

9

10

 C
O

N
C

E
N

T
R

A
T

IO
N

 (
pp

m
)

WEEK
ComplianceBackground

 

If the timing of the cycle and the relative magnitude of the concentration swings are essentially the 
same in upgradient and downgradient wells, both data sets should be deseasonalized prior to statistical 
analysis. If the seasonal effects are ignored, real differences in mean levels between upgradient and 
downgradient well data may not be observed, simply because the short-term seasonal fluctuations add 
variability that can mask the difference being tested. In this case, the non-independent nature of the 
seasonal pattern adds unwanted noise to the observations, obscuring statistical evidence of groundwater 
contamination. 

 REQUIREMENTS AND ASSUMPTIONS 

Seasonal correction is only appropriate for wells where a cyclical pattern is clearly present and very 
regular over time. Many approaches to deseasonalizing data exist. If the seasonal pattern is highly 
regular, it may be modeled with a sine or cosine function. Often, moving averages and/or lag-based 
differences (of order 12 for monthly data, for example) are used. General time series models may include 
these and other more complicated methods for deseasonalizing the data. 

The simple method described in the Unified Guidance has the advantage of being easy to 
understand and apply, and of providing natural estimates of the monthly or quarterly seasonal effects via 
the monthly or quarterly means. The method can be applied to any seasonal or recurring cycle-- perhaps 
an annual cycle for monthly or quarterly data or a longer cycle for certain kinds of geologic 
environments. In some cases, recharge rates are linked to drought cycles that may be on the order of 
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several years long. For these situations, the ‘seasonal’ cycle may not correspond to typical fluctuations 
over the course of a single year. 

Corrections for seasonality should be used cautiously, as they represent extrapolation into the 
future. There should be a good physical explanation for the seasonal fluctuation as well as good 
empirical evidence for seasonality before corrections are made. Higher than average rainfall for two or 
three Augusts in a row does not justify the belief that there will never be a drought in August, and this 
idea extends directly to groundwater quality. At least three complete cycles of the seasonal pattern 
should be observed on a time series plot before attempting the adjustment below. If seasonality is 
suspected but the pattern is complicated, the user should seek the help of a professional statistician. 

 PROCEDURE 

Step 1. If a time series plot clearly shows at least 3 full cycles of the seasonal pattern, determine the 
length of time to complete one full cycle. Since the correction presumes a regular sampling 
schedule, determine the number of observations (k) in each full cycle (this number should be 
the same for each cycle). Then, assuming that N complete cycles of data are available, let xij 
denote the raw, unadjusted measurement for the ith sampling event during the jth complete 
cycle. Note that this could represent monthly data over an annual cycle, quarterly data over a 
biennial cycle, semi-annual data over a 10-year cycle, etc. 

Step 2. Compute the mean concentration for sampling event i over the N-cycle period: 

 ( ) Nxxxx iNiii +++= K21  [14.21] 

 This is the average of all observations taken in different cycles, but during the same sampling 
event. For instance, with monthly data over an annual cycle, one would calculate the mean 
concentrations for all Januarys, the mean for all Februarys, and so on for each of the 12 
months. 

Step 3. Calculate the grand mean,  x  , of all  N × k  observations: 

 
  
x =

x
ij

N × kj=1

N

∑
i=1

k

∑ =
x

i

ki=1

k

∑  [14.22] 

Step 4. Compute seasonally-corrected, adjusted concentrations using the equation: 

 
 
z

ij
= x

ij
− x

i
+ x  [14.23] 

 Computing 
 
x

ij
− x

i
 removes the average seasonal effect of sampling event i from the data 

series. Adding back the overall mean,  x , gives the adjusted zij values the same mean as the 
raw, unadjusted data. Thus, the overall mean of the corrected values,  z , equals the overall 
mean value,  x . 
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 ►EXAMPLE 14-8 

Consider the monthly unadjusted concentrations of an analyte over a 3-year period graphed in 
Figure 14-15 and listed in the table below. Given the clear and regular seasonal pattern, use the above 
method to produce a deseasonalized data set. 

 Unadjusted Concentrations  Adjusted Concentrations 

 1983 1984 1985 Monthly  

Average 

1983 1984 1985 

        

January 1.99 2.01 2.15 2.05 2.11 2.13 2.27 

February 2.10 2.10 2.17 2.12 2.14 2.14 2.21 

March 2.12 2.17 2.27 2.19 2.10 2.15 2.25 

April 2.12 2.13 2.23 2.16 2.13 2.14 2.24 

May 2.11 2.13 2.24 2.16 2.12 2.14 2.25 

June 2.15 2.18 2.26 2.20 2.12 2.15 2.23 

July 2.19 2.25 2.31 2.25 2.11 2.17 2.23 

August 2.18 2.24 2.32 2.25 2.10 2.16 2.24 

September 2.16 2.22 2.28 2.22 2.11 2.17 2.23 

October 2.08 2.13 2.22 2.14 2.10 2.15 2.24 

November 2.05 2.08 2.19 2.11 2.11 2.14 2.25 

December 2.08 2.16 2.22 2.15 2.09 2.17 2.23 

        

Overall 3-year average = 2.17     

 

 SOLUTION 

Step 1. From Figure 14-15, there are N = 3 full cycles represented, each lasting approximately a year. 
With monthly data, the number of sampling events per cycle is k = 12. 

Step 2. Compute the monthly averages across the 3 years for each of the 12 months using equation 
[14.21]. These values are shown in the fifth column of the table above. 

Step 3. Calculate the grand mean over the 3-year period using equation [14.22]: 

 ( ) 17.222.210.215.201.299.1
123

1
=+++++

⋅
= Kx  

Step 4. Within each month and year, subtract the average monthly concentration for that month and 
add-in the grand mean, using equation [14.23]. As an example, for January 1983, the adjusted 
concentration becomes: 

   z11
= 1.99 − 2.05 + 2.17 = 2.11 
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Figure 14-15. Seasonal Time Series Over a Three-Year Period 
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 The adjusted concentrations are shown in the last three columns of the table above. The 
average of all 36 adjusted concentrations equals 2.17, the same as the mean unadjusted 
concentration. Figure 14-15 shows the adjusted data superimposed on the unadjusted data. 
The raw data exhibit seasonality, as well as an upward trend. The adjusted data, on the other 
hand, no longer exhibit a seasonal pattern, although the upward trend still remains. From a 
statistical standpoint, the trend is much more easily identified by a trend test on the adjusted 
data than with the raw data. ◄ 

 

14.3.3.2 CORRECTING FOR A TEMPORAL EFFECT ACROSS SEVERAL WELLS 

 

 BACKGROUND AND PURPOSE 

When a significant temporal dependence or correlation is identified across a group of wells using 
one-way ANOVA for temporal effects (Section 14.2.2), results of the ANOVA can be used to create 
stationary adjusted data similar to the seasonal correction described in Section 14.3.3.1. The difference 
is that the adjustment is not applied to a data series at a single well, but rather simultaneously to several 
well sets. 
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The adjustment works in the same way as a correction for seasonality. First, the mean for each 
sampling event or season (averaged across wells) is computed along with the grand mean. Then each 
individual measurement is adjusted by subtracting off the event/seasonal mean and adding the overall or 
grand mean. In practice, this process is identical to adding the one-way ANOVA residual to the grand 
mean, so the already-computed results of the ANOVA can be used.  By removing or correcting for a 
significant temporal effect, the adjusted data will have a temporally stationary mean and less overall 
variation.  This allows for more powerful and accurate detection monitoring tests. 

Temporal dependence (e.g., seasonality) is sometimes observed as parallel traces on a time series 
plot across multiple wells (Section 14.2.1), although the one-way ANOVA for temporal effects is non-

significant. This can occur due to the simultaneous presence of strong spatial variability (Chapter 13). 
Differences in mean levels from well to well can be large enough to ‘swamp’ the added variation due to 
the temporal dependence. The one-way ANOVA for temporal effects will not identify the dependence 
because the mean error sum of squares will then include the spatial variation component and not just 
random error. 

Two remedies are possible when the ANOVA for temporal effects is non-significant. First, if a 
strong parallelism is evident on time series plots, the residuals from the ANOVA can still be used to 
create a set of adjusted, temporally-stationary measurements. The adjustment will not eliminate or 
remove any existing spatial variation, but it may not matter. Intrawell tests are needed anyway when 
such spatial variability is evident, and those tests assume temporal independence of the measurements 
collected at each well. 

A second remedy is to perform a two-way ANOVA, testing for both spatial variation and temporal 
effects. This procedure is discussed in Davis (1994). Not only will a two-way ANOVA more readily 
identify a significant temporal effect even when there is simultaneous spatial variability, but the F-
statistic used to test for the temporal dependence can be utilized to further adjust the appropriate degrees 
of freedom in intrawell background limits, such as prediction limits and control charts. 

 REQUIREMENTS AND ASSUMPTIONS 

The key requirement to correct for a temporal effect using ANOVA is that the same effect must be 
present in all wells to which the adjustment is applied. Otherwise, the adjustment will tend to skew or 
bias measurements at wells with no observable temporal dependence. Parallel time series plots (Section 

14.2.1) should be examined to determine whether all the wells under consideration exhibit a similar 
temporal pattern. 

The parametric one-way ANOVA assumes the data are normal or can be normalized. If the data 
cannot be normalized, a Kruskal-Wallis non-parametric ANOVA can be conducted to test for the 
presence of a temporal dependence. In this case, no residuals can be computed since the Kruskal-Wallis 
test employs ranks of the data rather than the measurements themselves. So the adjustment presented 
below is only applicable for data sets that can be normalized. 

PROCEDURE 

Step 1. Given a set of W wells and measurements from each of T sampling events at each well on each 
of K years, label the observations as xijk, for i = 1 to W, j = 1 to T, and k = 1 to K. Then xijk 
represents the measurement from the ith well on the jth sampling event during the kth year. 
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Step 2. Using the one-way ANOVA for temporal effects (Section 14.2.2), compute the sampling 
event or seasonal means (whichever is appropriate), along with the grand (overall) mean. Also 
construct the ANOVA residuals using either equation [14.5] or [14.6]. 

Step 3. Add each residual to the grand mean to form adjusted values 
 
z

ijk
= x

•••
+ r

ijk
. Use these 

adjusted values in subsequent statistical testing instead of the original measurements. 

 ►EXAMPLE 14-9 

The manganese data of Examples 14-1 and 14-2 were found to have a significant temporal 
dependence using ANOVA for temporal effects. Adjust these data to remove the temporal pattern. 

 

 Manganese Residuals (ppm) 

Qtr Event 

Mean 

BW-1 BW-2 BW-3 BW-4 

1 29.290 -1.15 2.12 -2.14 1.17 

2 30.110 -0.78 0.16 0.13 0.49 

3 30.780 -0.33 1.79 -1.64 0.18 

4 31.620 0.80 1.15 -1.03 -0.92 

5 33.747 0.6225 -0.7175 1.1325 -1.0375 

6 31.930 1.32 0.25 -1.40 -0.17 

7 30.513 0.5075 -1.6625 -0.1825 1.3375 

8 30.345 -1.845 2.535 0.075 -0.765 

  

 Grand mean = 31.042 

 

 

 SOLUTION 

Step 1. The mean of each sampling event taken across the four background wells was computed in 
Example 14-2, along with the grand mean. These results are listed in the table above, along 
with the individual residuals which were also computed in that example. 

Step 2. Add the grand mean to each residual to form the adjusted manganese concentrations, as in the 
table below. 

 Adjusted Manganese (ppm) 

Qtr Event 

Mean 

BW-1 BW-2 BW-3 BW-4 

1 29.290 29.89 33.16 28.90 32.21 

2 30.110 30.26 31.20 31.17 31.53 

3 30.780 30.71 32.83 29.40 31.22 

4 31.620 31.84 32.19 30.01 30.12 

5 33.747 31.66 30.32 32.17 30.00 

6 31.930 32.36 31.29 29.64 30.87 

7 30.513 31.55 29.38 30.86 32.38 

8 30.345 29.20 33.58 31.12 30.28 

  

 Grand mean = 31.042 
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Step 3. Plot a time series of the adjusted manganese values, as in Figure 14-16. The ‘hump-like’ 
temporal pattern evident in Figure 14-2 is no longer apparent. Instead, the overall mean is 
stationary across the 8 quarters. ◄ 

 

Figure 14-16. Parallel Time Series Plot of Adjusted Manganese Concentrations 

 

14.3.3.3 CORRECTING FOR LINEAR TRENDS 

 

If a data series exhibits a linear trend, the sample will exhibit temporal dependence when tested via 
the sample autocorrelation function (Section 14.2.3), the rank von Neumann ratio (Section 14.2.4), or 
similar procedure. These data can be de-trended, much like the data in the previous example were 
deseasonalized. Probably the easiest way to de-trend observations with a linear trend is to compute a 
linear regression on the data (Section 17.3.1) and then use the regression residuals instead of the original 
measurements in subsequent statistical analysis.  

But no matter how tempting it may be to automatically de-trend data of this sort, the user is 
strongly cautioned to consider what a linear trend may represent. Often, an upward trend is indicative of 
changing groundwater conditions at a site, perhaps due to the increasing presence of contaminants 
during a gradual waste release. The trend in this case may itself be statistically significant evidence of 
groundwater contamination, particularly if it occurs at compliance wells but not at upgradient 
background wells. The trend tests of Chapter 17 are useful for such determinations. Trends in 
background may signal other important factors, including migration of contaminants from off-site 
sources, changes in the regional aquifer, or possible groundwater mounding. 
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The overriding point is that data should be deseasonalized when a cyclical pattern might obscure 
the random deviations around an otherwise stable average concentration level, or to more clearly identify 
an existing trend. However, a linear trend is inherently indicative of a changing mean level. Such data 
should not be de-trended before it is determined what the trend likely represents, and whether or not it is 
itself prima facie evidence of possible groundwater contamination. 

A similar trend both in direction and slope may be exhibited by background wells and compliance 
wells, perhaps suggestive of sitewide changes in natural groundwater conditions.  Residuals from a one-
way ANOVA for temporal effects (Section 14.2.2) can be used to simultaneously create adjusted values 
across the well network (Section 14.3.3.2). Linear trends are just as easily identified and adjusted in this 
way as are parallel seasonal fluctuations or other temporal effects. 

 

14.3.4 IDENTIFYING LINEAR TRENDS AMIDST SEASONALITY: SEASONAL 
MANN-KENDALL TEST 

 BACKGROUND AND PURPOSE 

Corrections for seasonality or other cyclical patterns over time in a single well are discussed in 
Section 14.3.3.1. These adjustments work best when the long-term mean at the well is stationary. In 
cases where a test for trend is desired and there are also seasonal fluctuations, Chapter 17 tests may not 
be sensitive enough to detect a real trend due to the added seasonal variation. 

One possible remedy is to use the seasonal correction in Section 14.3.3.1 and illustrated in 
Example 14-8.  The seasonal component of the trend is removed prior to conducting a formal trend test. 
A second option is the seasonal Mann-Kendall test (Gilbert, 1987). 

The seasonal Mann-Kendall is a simple modification to the Mann-Kendall test for trend (Section 

17.3.2) that accounts for apparent seasonal fluctuations. The basic idea is to divide a longer multi-year 
data series into subsets, each subset representing the measurements collected on a common sampling 
event (e.g., all January events or all fourth quarter events). These subsets then represent different points 
along the regular seasonal cycle, some associated with peaks and others with troughs. The usual Mann-
Kendall test is performed on each subset separately and a Mann-Kendall test statistic Si formed for each. 
Then the separate Si statistics are summed to get an overall Mann-Kendall statistic S. 

Assuming that the same basic trend impacts each subset, the combined statistic S will be powerful 
enough to identify a trend despite the seasonal fluctuations. 

 REQUIREMENTS AND ASSUMPTIONS 

The basic requirements of the Mann-Kendall trend test are discussed in Section 17.3.2. The only 
differences with the seasonal Mann-Kendall test are that 1) the sample should be a multi-year series with 
an observable seasonal pattern each year; 2) each ‘season’ or subset of the overall series should include 
at least three measurements in order to compute the Mann-Kendall statistic; and 3) a normal 
approximation to the overall Mann-Kendall test statistic must be tenable. This will generally be the case 
if the series has at least 10-12 measurements. 
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 PROCEDURE 

Step 1. Given a series of measurements from each of T sampling events on each of K years, label the 
observations as xij, for i = 1 to T, and j = 1 to K. Then xij represents the measurement from the 
ith sampling event during the jth year. 

Step 2. For each distinct sampling event (i), form a seasonal subset by grouping together observations 
xi1, xi2,...., xiK. This results in T separate seasons. 

Step 3. For each seasonal subset, use the procedure in Section 17.3.2 to compute the Mann-Kendall 
statistic Si and its standard deviation SD[Si]. Form the overall seasonal Mann-Kendall statistic 
(S) and its standard deviation with the equations: 

 
  
S = S

i

i=1

T

∑  [14.24] 

 
  
SD S  = SD

2
S

i
 

i=1

T

∑  [14.25] 

Step 4. Compute the normal approximation to the seasonal Mann-Kendall statistic using the equation: 

 
  
Z = S − 1( ) SD S   [14.26] 

Step 5. Given significance level, α, determine the critical point zcp from the standard normal 
distribution in Table 10-1 of Appendix D. Compare Z against this critical point. If Z > zcp, 
conclude there is statistically significant evidence at the α-level of an increasing trend. If Z < –
zcp, conclude there is statistically significant evidence of a decreasing trend. If neither, 
conclude that the sample evidence is insufficient to identify a trend. 

 ►EXAMPLE 14-10 

The data set in Example 14-8 replicated below indicated both clear seasonality and an apparent 
increasing trend. Use the seasonal Mann-Kendall procedure to test for a significant trend with α = 0.01 
significance. 
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 Analyte Concentrations   

 1983 1984 1985 Si SD[Si] 

      

January 1.99 2.01 2.15 3 1.915 

February 2.10 2.10 2.17 2 1.633 

March 2.12 2.17 2.27 3 1.915 

April 2.12 2.13 2.23 3 1.915 

May 2.11 2.13 2.24 3 1.915 

June 2.15 2.18 2.26 3 1.915 

July 2.19 2.25 2.31 3 1.915 

August 2.18 2.24 2.32 3 1.915 

September 2.16 2.22 2.28 3 1.915 

October 2.08 2.13 2.22 3 1.915 

November 2.05 2.08 2.19 3 1.915 

December 2.08 2.16 2.22 3 1.915 

      

    S = 35 SD[S]= 6.558 

 

 

 SOLUTION 

Step 1. Form a seasonal subset for each month by grouping all the January measurements, all the 
February measurements, and so on, across the 3 years of sampling. This gives 12 seasonal 
subsets with n = 3 measurements per season. Note there are no tied values in any of the 
seasons except for February. 

Step 2. Use equations [17.30] and [17.31] in Section 17.3.2 to compute the Mann-Kendall statistic 
(Si) for each subset. These values are listed in the table above. Also compute their sum to form 
the overall seasonal Mann-Kendall statistic, giving S = 35. 

Step 3. Use equation [17.28] from Section 17.3.2 for all months but February to compute the standard 
deviation of Si. Since n = 3 for each of these subsets, this gives 

 
  
SD S

i
  =

1

18
n n − 1( ) 2n + 5( )=

1

18
3 ⋅ 2 ⋅11 = 1.915  

 For the month of February, one pair of tied values exists. Use equation [17.27] to compute the 
standard deviation for this subset: 

 

  

SD S
i

  =
1

18
n n − 1( ) 2n + 5( )− t

j
t

j
− 1( )2t

j
+ 5( )

j=1

g

∑








 =

1

18
3 ⋅ 2 ⋅11− 2 ⋅1⋅ 9  = 1.633  

 List all the subset standard deviations in the table above. Then use equation [14.25] to 
compute the overall standard deviation: 

 
  
SD S  = SD

2
S

i
 

i=1

12

∑ = 11⋅ 1.915( )
2

+ 1.633( )
2

= 6.558  
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Step 4. Compute a normal approximation to S with equation [17.29]: 

 
  
Z = 35 − 1( ) 6.558 = 5.18  

Step 5. Compare Z against the 1% critical point from the standard normal distribution in Table 10-1 
of Appendix D, z.01 = 2.33. Since Z is clearly larger than z.01, the increasing trend evidence in 
Figure 14-15 is highly significant. ◄ 

 

 

 

 

 



��������	
������������������������� ���������������

� � ����� ����	�
����

������������������������������������

 
15.1 GENERAL CONSIDERATIONS FOR NON-DETECT DATA .................................................................................. 15-1 
15.2 IMPUTING NON-DETECT VALUES BY SIMPLE SUBSTITUTION ....................................................................... 15-3 
15.3 ESTIMATION BY KAPLAN-MEIER ................................................................................................................ 15-7 
15.4 ROBUST REGRESSION ON ORDER STATISTICS ........................................................................................... 15-13 
15.5 OTHER  METHODS FOR A SINGLE CENSORING LIMIT.................................................................................... 15-21 
 15.5.1   COHEN'S METHOD ........................................................................................................................ 15-21 
 15.5.2   PARAMETRIC REGRESSION ON ORDER STATISTICS ....................................................................... 15-23 
15.6      USE OF THE 15%/50% NON-DETECTS RULE .....................................................................................15.24 
 
              
         

This chapter considers strategies for accommodating non-detect measurements in groundwater 
data analysis. Five particular methods are described for incorporating non-detects into parametric 
statistical procedures. These include: 

� Simple substitution (Section 15.2); 

� Kaplan-Meier (Section 15.3); 

� Robust Regression on Order Statistics (Section 15.4); 

� Cohen's Method (Section 15.5.1); and 

� Parametric Regression on Order Statistics (Section 15.5.2). 
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Non-detects commonly reported in groundwater monitoring are statistically known as "left-
censored" measurements, because the concentration of any non-detect either cannot be estimated or is 
not reported directly. Rather, it is known or assumed only to fall within a certain range of concentration 
values (e.g., between zero and the quantitation limit [QL]).  The direct estimate has been censored by 
the limitations of the measurement process or analytical technique, and is deemed too uncertain to be 
considered reliable.  Groundwater non-detect data are censored on the low or left end of a sample 
concentration range.  Other kinds of threshold data, particularly survival rates in the medical literature, 
are often reported as right-censored values. 

Historically, there has been inconsistent treatment of non-detects in groundwater analysis.  Often, 
easily applied techniques have been favored over more sophisticated methods of handling non-detects.  
This may primarily be due to the lack of familiarity and difficulties with software that can incorporate 
such methods.  Even at present, most statistical packages include analysis routines for right-censored 
values but not left-censored ones (Helsel, 2005).  Left-censored data needs to be converted to right-
censored data for analysis and then back again.   Despite these limitations, the more sophisticated 
methods are almost always superior to the methods of simple substitution.  

The past twenty years has seen considerable research on statistical aspects of non-detect data 
analysis.  Helsel (2005) provides a detailed summary of available methods for non-detects, and 
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concludes that simple substitution usually leads to greater statistical bias and inaccuracy than with better 
technical methods.  Gibbons (1994b) and Gibbons & Coleman (2001) offer a broad review of some of 
the same research, not all of it directly relating to groundwater data.  Both Gibbons and McNichols & 
Davis (1988) note that most of the existing studies focus on an estimation of parameters such as the 
mean and variance of an underlying population from which the censored and detected data originate.  
For these tasks, simple substitution methods tend to perform poorly, especially when the non-detect 
percentages are high (Gilliom & Helsel, 1986). 

Much less attention has been given to how left-censored data impact the results of statistical tests, 
the actual data-based conclusions that are drawn when using detection, compliance, or corrective action 
monitoring tests. Closely estimating the true mean and variance of the underlying background 
population may be important, but does not directly answer how well a given test performs (in achieving 
the nominal false positive error rate and correctly identifying true significant differences).  McNichols & 
Davis (1988) performed a limited study to address these concerns.  They found that simple substitution 
methods were among the best performers in simulated prediction limit tests even with fairly high rates of 
censoring, so long as the prediction limit procedure incorporated a verification resample. 

Gibbons (1994b; also Gibbons and Coleman, 2001) conducted a similar limited simulation of 
prediction limit testing performance incorporating a verification resample.  They, too, found that a type 
of simple substitution was one of the best performers when either an average of 20% or 50% of the data 
was non-detect. The Gibbons study concluded that substituting zero for each non-detect worked better to 
keep the false positive rate low than by substituting half the method detection limit [MDL]. 

Both studies primarily focused on the achievable false positive rate when censored data are 
present, rather than the statistical power of these tests to identify contaminated groundwater. In addition, 
both only considered parametric prediction limits. For data sets with fairly low detection frequencies 
(e.g., <50%), parametric prediction limits may not accurately accommodate left-censored measurements, 
with or without retesting. The McNichols & Davis study in particular found that none of the simpler 
methods for handling non-detects did well when the underlying data came from a skewed distribution 
and the non-detect percentage was over 50%. 

On balance, there are four general strategies for handling non-detects: 1) employing a test 
specifically designed to accommodate non-detects, such as the Tarone-Ware two-sample alternative to 
the t-test (Section 16.3); 2) using a rank-based, non-parametric test such as the Kruskal-Wallis 
alternative to analysis of variance [ANOVA] (Section 17.1.2) when the non-detects and detects can be 
jointly sorted and ordered (except for tied values); 3) estimating the mean and standard deviation of 
samples containing non-detects by means of a censored estimation technique; and 4) imputing an 
estimated value for each non-detect prior to further statistical manipulation.   

The first two strategies mentioned above are discussed in Chapters 16 and 17 of the Unified 
Guidance as alternative testing procedures for evaluating left-censored data when parametric distribution 
assumptions cannot be made. Tests that can accommodate non-detects are typically non-parametric and 
thus carry both the advantages and disadvantages of non-parametric methods. The third and fourth 
strategies — presented in this chapter — are often employed as an intermediate step in parametric 
analyses. Estimates of the background mean and standard deviation are needed to construct parametric 
prediction and control chart limits, as well as confidence intervals. Imputed values for individual non-
detects can be used as an alternate way to construct mean and standard deviation estimates, which are 
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needed to update the cumulative sum [CUSUM] portion of control charts or to compute the means of 
order p that get compared against prediction limits. 

The guidance generally favors the use of the more sophisticated Kaplan-Meier or Robust ROS 
methods which can address the problem of multiple detection limits.  Two older techniques-- Cohen's 
method and parametric ROS-- are also included as somewhat easier methods which can work in some 
circumstances.  Applying any of the four estimation techniques as well as simple substitution does rely 
on a fundamental underlying assumption.  Both the detectable and non-detect portions of a data set are 
assumed to arise from a single distribution, and in particular this underlying population is expected to be 
stable or stationary during the period of the sampling record.    

However, if an underlying distribution is subject to a trend over time, applying any of these 
techniques including simple substitution is more problematic.  If data indicating a decreasing trend also 
happen to contain multiple detection limit data (perhaps the result of improved analytical methods), it 
may be very difficult to determine whether there is truly a trend or analytical problems are the apparent 
cause of the observed decreases.  None of the techniques provided in this chapter can directly address 
this issue.   As discussed in Chapter 5, careful exploratory review of the historical data sets, particularly 
those which might serve as background, need to consider which data including non-detects are most 
representative of present or near-term future conditions.   In some cases, removal of the older, less 
reliable data may also resolve multiple detection limit problems.  If non-detect values higher than other 
quantified data at reasonable detection limits are included in a data set (especially if dictated by 
reporting policy rather than analytical considerations), these will almost invariably need to be removed.  
Even sophisticated multiple detection limit techniques cannot realistically address these particular 
information-limited data values.  But presuming valid and reliable data are selected, the four estimation 
techniques are provided to address the management of non-detects. 

A data set may also not be defined by a single distribution.   If observed data are the result of two 
or more different generative processes and indicate one or more separate peaks, it is referred to as a 
mixture distribution.  One example might be trace organics data in a release subject to changes in the 
flow direction of the aquifer, which can result in very high to absent values.  The subject is a complex 
one and generally beyond the scope of this guidance.  Aitchison's method can be used in limited 
situations where detectable data form one discrete distribution, and the remainder are non-detect.   The 
following discussion also addresses when Aitchison's method might be appropriate.   The non-detect 
data are simply considered as some single value, another form of simple substitution. 

���
 �������������������������� !���������� ����������

The simplest approach in managing non-detects is to substitute an imputed value for each prior to 
subsequent statistical analysis. The imputation is intended to be a ‘reasonable estimate’ of the true, but 
unknown concentration, usually a fraction (e.g., 0, ½, 1) of the reporting limit [RL]. If non-detects 
represent an absence of the contaminant being measured, replacing a reported ‘less than’ value by zero 
may make sense. If the true concentration is completely unknown, but believed to be between zero and 
the RL, half the RL, or RL/2, may be a reasonable substitution, since this choice is the maximum 
likelihood estimate [MLE] of the mean or median for a population of measurement values uniformly 
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distributed along the interval [0, RL].1 In other cases, a conservative choice might be made to maximize 
the possible concentration levels present in non-detects by selecting the RL itself as the imputation. 

Any of these substitution choices is imperfect since they ignore two realities about left-censored 
measurements. First, non-detects are a product of both the underlying distribution of actual 
concentrations and the measurement process used to estimate these concentrations. In particular, the 
measurement technique may impart random or not so random bias to the ‘true’ concentration levels, 
causing the reported values to be ‘shifted away from’ the true values. As an example, simple substitution 
of zero for each non-detect ignores the fact that only the measurements can be observed and analyzed, 
not the actual concentration levels. Physical groundwater samples that are completely devoid of a given 
chemical may not receive measurements of zero, even if the actual amount is zero. Simple substitution 
by zero thereby ignores the measurement distribution in favor of an a priori assumption about what non-
detects might represent. 

A second reality is that non-detects must be considered with respect to other, detected 
measurements, as well as the physical process that generated the data. In many cases, the entire sample 
is drawn from a single statistical distribution (representing a common physical process) but some portion 
of the lower tail has been censored during measurement, as illustrated in Figure 15-1. In this situation, 
the overall distribution (and especially the shape of the lower tail) dictates how likely it is that a given 
non-detect would have an uncensored measurement close to zero or close to the RL. Substitution by half 
the RL or by the RL itself ignores the larger distributional pattern, especially since this distribution will 
rarely be uniform in the interval [0, RL]. 

�#$%�&��������#'$(&��#)*�#+%*#,'�(��,-&(��,���&*&�*)��'-��,'��&*&�*)�

 

                                                           
1 The uniform distribution places equal probability along every point of a finite concentration or measurement range. This 

model implies that a true value close to zero is just as likely as a true value close to RL or any other point along the 
interval. 
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These realities can lead to severe biases in statistical parameter estimates made from censored data 
when simple substitution methods are used (Helsel, 2005). Even if only 20% of the data are censored, 
Gibbons (1994b) found that the false positive rate of a prediction limit test was far above the nominal 
(i.e., expected or targeted) rate of α = .05 when a simple imputation strategy was employed. For that 
reason, the Unified Guidance recommends imputation by simple substitution only in select 
circumstances described below: 

� When the sample size is too small to do anything else. 

With only a handful of measurements (e.g., 5 or less), it will be almost impossible to accurately 
apply a censored estimation technique, such as those described in Sections 15-3 to 15-5. Instead, simple 
substitution of half the RL is recommended, perhaps until enough data has been collected to allow a 
more sophisticated analysis. Three situations where simple substitution might commonly be needed 
include: 

1. Plotting cumulative sums [CUSUM] on control charts (Chapter 20). While there should be 
enough background data to allow for a more sophisticated estimate of the control limit, the 
CUSUM must be updated with each single new compliance observation (n = 1). If the new 
measurement is a non-detect, the value must be imputed for the CUSUM to be calculated.  

2. Constructing future means for prediction limits (Chapter 19). Again, if censored data exist in 
background, the prediction limit for a future mean can be computed with the help of a censored 
estimation technique. But with only 2 or 3 new measurements per compliance well (p = 2, 3), 
the same strategy will not work for computing a mean of order p. 

3. Construction of confidence intervals in compliance monitoring or corrective action. Especially 
in the early months or years after the onset of compliance monitoring or a corrective action 
plan, there may be too few compliance point measurements to allow for a statistically refined 
treatment of non-detects. Until more data has been collected that is representative of the 
conditions under which these phases of monitoring have been triggered, simple substitution of 
non-detects will probably be needed. Furthermore, if groundwater conditions are in a state of 
flux, it may be impossible — even with a larger sample size — to postulate a single, stationary 
distributional model (similar to Figure 15-1) on which to base a censored estimation 
technique. 

� When non-detects comprise no more than 10-15% of the total sample.  

If the percentage of non-detects is small enough, results of parametric t-tests and ANOVA are 
usually not significantly affected if non-detects are first replaced by half their reporting limits [RLs]. A 
similar statement can be made for parametric prediction limits, tolerance limits, control charts, and 
confidence intervals. However, because t-tests and ANOVA involve a comparison of means utilizing 
multiple data points per mean estimate,2 while prediction limits for individual observations, tolerance 
limits, and control charts focus on single measurements, it is important that retesting be included in the 
statistical procedure whenever simple substitution is utilized with these latter methods. 

                                                           
2  Parametric confidence intervals around the mean also involve an estimate of the population average using multiple data 

points. 
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� When non-detects are generated by a different physical process than the detected values, and 
thus represent a distinct statistical distribution. 

One non-detect treatment recommended in past EPA guidance — Aitchison’s method (1955), as 
applied to groundwater3 — assumed that non-detects were actually free of the contaminant being 
measured, so that all non-detects could be regarded as zero concentrations. In some cases, if an analyte 
has been detected infrequently or not at all in background measurements, and/or all non-detects are 
qualified as “U” (i.e., undetected) values, this assumption may be practical, even if it cannot be directly 
verified. Another example might be seasonal changes in groundwater elevation at wells located on the 
edges of a contaminant plume. Parameters detectable at certain times of the year may be non-detect 
during other seasons, even within the same well. Such non-detects may result from a different data-
generating mechanism, due to seasonal changes in groundwater chemistry, and so may not follow the 
same distribution as detects. 

 

�#$%�&����
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More generally, Aitchison’s original model posited a ‘spike’ of zero-valued measurements, 
combined with a lognormal distribution governing the detected values. A modification to Aitchison’s 
model known as the modified delta method4 (USEPA, 1993) has been found to be more practical and 
realistic in many circumstances (Figure 15-2). Instead of assuming that all non-detects represent zero 

                                                           
3 Aitchison’s model was not originally applied to concentration data. More typical applications were in the fields of 

economics and demographics. 
4 The original Aitchison model was termed the delta-lognormal, so called because it presumed that the data consisted of a 

mixture of two distinct populations: 1) a lognormal distribution representing the observed continuous measurements, and 
2) a ‘spike’ of values, known as a delta function, located at zero. 
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concentrations, the modified delta method assumes that non-detects constitute a separate, discrete 
distribution. When combined with the detected values, a mixture distribution is formed consisting of a 
continuous detected portion (usually the normal or lognormal distribution) and a discrete non-detect 
portion. Rather than assuming that all non-detects are zeros, the modified delta model assigns all non-
detects at half the reporting limit [RL]. (Note: this might be a method detection limit [MDL], a 
quantitation limit [QL], or a contract RL).  This method can accommodate multiple reporting limits 
since each non-detect is assigned half of its possibly sample-specific RL.  It can also accommodate low-
valued detects intermingled with the non-detects, since the non-detects and detects are modeled by 
distinct distributions. 
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When a sample contains both detects and non-detects generated by a common process and 
governed by a single underlying distribution (Figure 15-1), a more reliable strategy is to attempt to fit 
the sample to a known distribution (e.g., normal, lognormal) and then to estimate the mean and standard 
deviation of this distribution via a censored estimation technique. These adjusted estimates can be input 
into standard equations for parametric prediction, tolerance, and control chart limits, as well parametric 
confidence intervals around the mean. 

Two censored estimation methods which can address the multiple detection limit problem are 
discussed in the Unified Guidance: the Kaplan-Meier estimator and robust regression on order statistics 
[ROS] (Section 15.4). Both involve initially fitting a left-censored sample to a known distribution. After 
that, the procedures differ. The Kaplan-Meier creates an estimate of the population mean and standard 
deviation adjusted for data censoring, based on the fitted distributional model, whereas the Robust ROS 
uses the fitted model to construct a model-based imputation for each non-detect. Once the imputations 
are made, the adjusted mean and standard deviation are estimated using standard equations for the 
sample mean ( x ) and standard deviation (s). 

The key to either method is finding a single distributional model that adequately fits the joint 
sample of detects and non-detects. While each procedure does the fitting in a slightly different fashion, 
both utilize the notion of partial ranking. As discussed in Section 16.2 on “Handling Non-Detects,” the 
presence of left-censored measurements, particularly when there are multiple RLs and/or an 
intermingling of detects and non-detects, prevents a full and complete ranking of the sample. Both 
Kaplan-Meier and ROS construct a partial ranking of the data, accounting for the non-detects and 
assigning explicit ranks to each of the detected values. These detected values can then be graphed on a 
censored probability plot and fitted against a known distribution. 

The Kaplan-Meier technique estimates the approximate proportion of concentrations below each 
observed level by sorting and ordering the distinct sample values, although the exact concentrations of 
non-detects are unknown.  In particular, the probability of observing a concentration no greater than a 
given level (xi) depends on the relative proportion of the sample greater than xi. Any detects larger than 
xi obviously fall into this latter proportion, while non-detects with RLs of at most xi do not. On balance, 
the proportion of the sample greater than xi cannot be precisely calculated for every xi, but it can be 
estimated. 
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The Kaplan-Meier estimator for left-censored data thus depends on a series of conditional 
probabilities, where the frequency of lower concentrations depends on how many larger concentrations 
have already been observed. The final result is an estimate of the cumulative distribution function [CDF] 
for each distinct concentration level in the sample. 

In mathematical notation, suppose there are m distinct values in the sample (out of a total of n 
measurements), including distinct reporting limits. Order these values from least to greatest and denote 
them as x(1), x(2), …, x(m). Let ni for i = 1 to m denote the ‘risk set’ associated with value x(i). The risk set 
represents the total number of measurements — both detects and non-detects — no greater than x(i). 
Since a non-detect with a RL larger than x(i) is potentially (but not necessarily) larger than x(i), non-
detects with RL > x(i) are not included in ni.  A further term di identifies the number of detected 
measurements exactly equal to x(i). 

With these definitions in place and letting X denote a random variable concentration from the true 
underlying distribution, the Kaplan-Meier estimator is constructed from the pair of probabilities: 

 
  
Pr X ≤ x

m( )( )= 1  [15.1] 
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where x(m+1) = +�, dm+1 = 0, and nm+1 = n all by definition.  Equation [15.2] represents the conditional 
probability that the concentration does not exceed x(i) given that it does not exceed x(i+1). The final 
Kaplan-Meier CDF estimate (FKM) for each i = 1  to  m–1 (each distinct detected value) is given by a 
product of these conditional probabilities and can be expressed as: 
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Once the CDF is estimated using equation [15.3], two additional steps are made possible. One is to 
use the distinct values (x(i)) and their corresponding CDF values (FKM) to construct censored probability 
plots. The other is to use the Kaplan-Meier CDF to estimate the population mean and standard deviation. 

� ��5��������������������������

The Kaplan-Meier estimator is a non-parametric procedure originally devised to estimate survival 
probabilities for right-censored samples (Kaplan and Meier, 1958), such as in medical studies of cancer 
treatments. Because it is non-parametric, there is no requirement that the underlying population be 
normal or transformable to normality. However, in adapting the technique to left-censored data (i.e., 
samples containing non-detects), the Unified Guidance recommends that the Kaplan-Meier procedure be 
utilized to estimate the mean and variance of a normal or normalized distribution for use in parametric 
statistical tests. 

The Kaplan-Meier assumes that all detected and non-detect data arise from the same population, 
but that non-detect values have been ‘censored’ at their RLs. This implies that the contaminant of 
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concern is actually present in non-detect samples, but that the analytical method cannot accurately 
measure, or is not sufficiently sensitive to, concentrations lower than the RL. 

To construct a censored probability plot, a normal quantile or z-score needs to be computed for 
each value of the Kaplan-Meier CDF (FKM). Doing so is straightforward except for the CDF value of the 
sample maximum, which is assigned a value of one. The z-score associated with a cumulative 
probability of one is infinite.  To surmount this difficulty, the Unified Guidance recommends 
temporarily setting the CDF value for the sample maximum equal to (n – .375)/(n + .25). This value is 
the Blom plotting position often utilized in standard probability plots (Helsel, 2005).  It is close to one 
for large n, but  allows for a finite z-score. 

Estimation of the Kaplan-Meier mean and standard deviation using equations [15.4] and [15.5] 
below will tend to be slightly biased, typically with the mean on the high side and the standard deviation 
on the low side. This occurs because the Kaplan-Meier CDF levels corresponding to distinct RLs are 
treated as if they were known measurements rather than the upper bounds on possible values. As long as 
the total proportion of censored measurements is not too high, the degree of bias will tend to be small. 
Larger biases are more likely whenever the detection rate is less than 50%. 

� ���������

Step 1. Given a sample of size n containing left-censored measurements, identify and sort the m < n 
distinct values, including distinct RLs. Label these as x(1), x(2), …, x(m). 

Step 2. For each i = 1  to  m, calculate the risk set (ni) as the total number of detects and non-detects 
no greater than x(i). Also compute di as the number of detected values exactly equal to x(i). 

Step 3. Using equation [15.3], compute the Kaplan-Meier CDF estimate 
  
FKM x

i( )( )for i = 1, …, m–1. 

Also let 
  
FKM x

m( )( )= 1 . 

Step 4. Construct censored probability plots using the estimated CDF. First temporarily set 

  
FKM x

m( )( )= n − .375( ) n + .25( ) so that a finite normal quantile (or z-score; see Chapter 9) 

can be associated with x(m). Then compute normal quantiles (i.e., z-scores) for each value of 

FKM from Step 3 as 
  
z

i( ) = Φ−1 FKM x
i( )( )�

�	


��

, where �–1[�] is the inverse of the standard normal 

distribution function as discussed in the construction of probability plots in Chapter 9. Plot 
the values z(i) against the unique detected concentrations x(i) to form a normal censored 
probability plot. Plot the z(i)’s against a transformation of the x(i)’s (e.g., log, square root, 
inverse, etc.) to form a normalized censored probability plot. 

Step 5. For each attempted transformation f(�) including the unchanged observations as one option, 
compute the correlation coefficient between the pairs [f(x(i)), z(i)] (Chapter 3). The 
transformation with the highest correlation coefficient and also a linear appearance on the 
censored probability plot, is one that optimally normalizes the left-censored sample. Estimate 
the mean and standard deviation in Step 6 on the transformed scale and use these estimates in 
subsequent statistical analysis. 
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 If no transformation results in an adequately linear censored probability plot, conclude that the 
sample cannot be normalized. Mean and standard deviation estimates of the original 
concentrations can still be computed, but they will not correspond to a known probability 
distribution. 

Step 6. If the raw concentration data are approximately normal, compute mean and standard deviation 
estimates adjusted for censoring using the equations: 

 ( ) ( )[ ]
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−−⋅=
m

i
iKMiKMiKM xFxFx
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 where
  
x

0( ) = 0  and 
  
FKM x

0( )( )= FKM 0( )= 0  by definition. Otherwise, compute the adjusted 

mean and standard deviation after applying the normalizing transformation f(�) with the 
equations: 
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Estimates from equations [15.4] and [15.5] can then be used in place of the sample mean ( x ) 
and standard deviation (s) in parametric equations for prediction and control limits, and for 
confidence intervals. If a normalizing transformation is required, equations [15.6] and [15.7] 
can be used to construct similar statistical limits and intervals on the transformed scale. 
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Use the Kaplan-Meier technique on the following manganese concentration data to construct 
estimates of the population mean and standard deviation that are adjusted for censoring. 
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Step 1. From the combined sample of n = 25 measurements, identify and sort the 21 distinct values 
including distinct RLs as in the table below. Compute the risk set (ni) for each distinct level 
(x(i)) as the total number of detects and non-detects no greater than x(i). Also calculate the exact 
number of detects (di) equal to each level. 

Step 2. Compute the Kaplan-Meier estimate of the CDF using equations [15.1] and [15.3], shown in 
column 5 of the table below. Two example calculations are given by: 
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Step 3. Compute normal quantiles or z-scores for each value of FKM in the above table. First re-set the 
last entry to (n – .375)/(n + .25) = 0.9752 so that a finite quantile can be associated with the 
sample maximum. 

Step 4. Plot the z-scores against the distinct manganese levels to form a normal censored probability 
plot (Figure 15-3). The probability plot correlation coefficient is r = 0.902. The plot itself 
shows substantial curvature, suggesting that the sample is non-normal. 
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Step 5. Plot the z-scores against one or more transformations of the manganese levels. First attempt a 
log transformation, as shown in Figure 15-4. In this case, the correlation coefficient improves 
to r = 0.989 and the normalized censored probability plot looks fairly linear. Conclude that the 
sample is approximately normal on the log-scale, that is, the manganese concentrations are 
lognormal in distribution. 

Step 6. Compute Kaplan-Meier log-mean ( KMy ,µ̂ ) and log-standard deviation ( KMy ,σ̂ ) estimates for 
the manganese data using equations [15.6] and [15.7], taking f(�) as the natural logarithm. This 
gives for the log-mean: 

 ( ) [ ] ( ) [ ] ( ) [ ] ( )ppbKMy log31.296.13.106log21.28.3.3log021.2logˆ , =−⋅++−⋅+−⋅= �µ  

and for the log-standard deviation: 

 ( ) [ ] ( ) [ ] )log(18.196.131.2)3.106log(021.31.2)2log(ˆ 22
, ppbKMy =−⋅−++−⋅−= �σ  

 These adjusted mean and standard deviation estimates can then be used in place of the sample 
log-mean and log-standard deviation in parametric prediction and control limits, or in 
parametric confidence intervals. � 

 

�#$%�&�������&'),�&-���,+�+#(#*;��(,*�,/���'$�'&)&�,'�&'*��*#,')�

 



��������	
������������������������� ���������������

� � ������ ����	�
����

 

�#$%�&����"��&'),�&-���,+�+#(#*;��(,*�,/��,$$&-���'$�'&)&���78(&�

 

  

���" �� ����������������������������������

�  �3�������������������

Robust regression on order statistics [ROS] differs from Kaplan-Meier in that it uses the fitted 
model to construct a model-based imputation for each non-detect. Once the imputations are made, the 
adjusted mean and standard deviation are estimated using standard equations for the sample mean ( x ) 
and standard deviation (s). 

The first step in using Robust ROS is to find a single distributional model that adequately fits the 
joint sample of detects and non-detects. Standard probability plots (Chapter 9) and normality tests 
(Chapter 10) rely on a full ranking or ordering of the sample in order to fit candidate distributions. With 
left-censored data, the true concentrations of non-detects are unknown, so only a partial ranking is 
possible. Like Kaplan-Meier, the Robust ROS technique constructs a partial ranking of the data, 
accounting for the non-detects and assigning explicit ranks to each of the detected values. These 
detected values can be graphed on a censored probability plot to check the fit of possible distributional 
models. 

Once an adequate distribution is found, Robust ROS determines the approximate cumulative 
probability associated with each distinct RL. The method then arbitrarily distributes non-detects with a 
common RL so that each one accounts for an equal share of the estimated cumulative probability 
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assigned to that RL. Once non-detects are ranked in this manner, the fitted distributional model is used 
to impute a value for each non-detect. This last task is accomplished by conducting a linear regression 
(Chapter 17) between the detected values and the z-scores from the censored probability plot. The 
parameters of the regression line (i.e., intercept and slope) can be used to estimate the mean and standard 
deviation of the distributional model, which in turn will generate imputed values for the non-detects. 

The mathematics behind Robust ROS can be expressed as follows. First suppose there are k 
distinct RLs in the sample. Order these from least to greatest. Define Ai as the number of detected values 
between the ith and (i+1)th RLs for i = 1  to  k–1. Let Ak = number of detects above the highest RL, and 
take A0 = number of detects below the lowest RL. Also define Bi as the total number of observations, 
both detects and non-detects, with values below the ith RL. Define B0 = 0. Then the number of non-
detects below the ith RL can be written as: 

 ktoiforABBC iiii 111 =−−= −−  [15.8] 

With these definitions in place, exceedance probabilities can be assigned to each of the k RLs, 
representing the proportion of the sample greater than or equal to each distinct RL. These probabilities 
can be written as: 

 
  
pei = pei+1 +

Ai

Ai + Bi

1− pei+1( ) [15.9] 

where pej denotes the proportion of the sample exceeding the ith RL. Equation [15.9] can be interpreted 
in the following manner.  The exceedance probability associated with a given RL is equal to the 
exceedance probability assigned to the next highest RL combined with a fraction of the remaining, non-
exceedance probability (i.e., 1 – pei+1).  The specific fraction depends on the relative occurrence of 
detects between the ith and (i+1)th RLs.  When i = k, define pei+1 = 0; when i = 0, define pe0 = 1. 

Once the exceedance probabilities are computed, plotting positions for the detects — i.e., 
cumulative probabilities on a probability plot — can be calculated with the equation 
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for each set of detected values falling between the ith and (i+1)th RLs.  Note that this equation also 
applies to any detects below the lowest RL [i = 0] or above the highest RL [i = k]). Similarly, plotting 
positions for each group of non-detects can be written as: 
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With plotting positions for the detects, a normal quantile or z-score can be computed for each 
value of pdij. Then censored probability plots can be constructed using either the detected concentrations 
(xij) or some normalizing transformation of the detected values, say f(xij). If a linear probability plot can 
be identified, a linear regression (Chapter 17) can be calculated for the pairs (zij, f(xij)) and used to 
impute values for the non-detects in the sample. 



��������	
������������������������� ���������������

� � ������ ����	�
����

� ��5��������������������������

Robust ROS was originally devised to account for non-detects in water quality data (Helsel, 2005). 
Robust ROS is an extension of a technique termed regression on order statistics [ROS] (Gilliom and 
Helsel, 1986), described in Section 15.5. That procedure assumes the joint sample of detects and non-
detects follows an underlying lognormal distribution. The fitted lognormal is used to estimate the 
population mean and standard deviation as a parametric technique. Robust ROS by contrast only relies 
on a parametric model to impute values for the non-detects. It can be applied to any normal or 
normalized distribution, rather than just the lognormal distribution. It may also be regarded as quasi-
non-parametric since estimates for the sample are computed from the combined group of observed 
detects and imputed non-detects, rather than from the mean and standard deviation of the underlying 
distributional model, as in the original formulation. 

In practice, because Robust ROS is not fully non-parametric, a known distribution must be fitted to 
the entire sample in order to construct imputed values for the non-detects. Closely related to this, Robust 
ROS assumes that both detected and non-detect data arise from the same population, with non-detect 
values censored at their respective RLs. Like Kaplan-Meier, this implies that the contaminant of concern 
is present in non-detect samples, but that the analytical method cannot accurately measure 
concentrations lower than the RL. 

� ���������

Step 1. Given a left-censored sample with a total of n measurements, identify and sort the k distinct 
RLs. Following the discussion above, count the number of detected values below the lowest 
RL (A0), the number of detected values at least as great as the highest RL (Ak), and the number 
of detects between the ith and (i+1)th RLs (Ai for i = 1 to k–1).  Also let B0 = 0 and count the 
total number of detects and non-detects below the ith RL (Bi for i = 1 to k). Then use equation 
[15.8] to calculate the number of non-detects (Ci for i = 1 to k) below the ith RL. 

Step 2. Let pe0 = 1 and pek+1 = 0. For i = 1 to k, compute the probability of exceeding the ith distinct 
RL (pei) using equation [15.9]. 

Step 3. With the exceedance probabilities from Step 2, sort each group of detects associated with Ai 
and then compute plotting positions (i.e., cumulative probabilities) for these detects — pdij — 
using equation [15.10]. 

Step 4. Form normal quantiles (i.e., z-scores) associated with the detected measurements and plotting 
positions pdij by computing 

  
zij

d = Φ−1 pdij( ), where 
 
Φ−1 ⋅() is the inverse standard normal 

CDF. 

Step 5. Construct censored probability plots using the z-scores from Step 4. Plot the values 
 
zij

d  against 

the detected concentrations 
 
xij

d  to form a normal censored probability plot. Plot the 
 
zij

d ’s 

against a transformation of the 
 
xij

d ’s (e.g., log, square root, inverse, etc.) to form a normalized 

censored probability plot. 
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Step 6. For each attempted transformation f(�) including the unchanged observations as one option, 

compute the correlation coefficient between the pairs 
  

f xij
d( ), zij

d�
�



�

 (Chapter 3).  The 

transformation with the highest correlation coefficient and also a linear appearance on the 
censored probability plot, is the one that optimally normalizes the left-censored sample.  If no 
transformation results in an adequately linear censored probability plot, conclude that the 
sample cannot be normalized and that the Robust ROS may not provide reasonable 
imputations for the non-detects. 

Step 7. If a normalizing transformation can be identified, compute a linear regression (Chapter 17) of 
the values 

 
f xij

d( ) on the z-scores, 
 
zij

d , to form the regression equation ( ) ZbaXf ⋅+= ˆˆ . The 

slope and intercept can be estimated using the equations 

 ( ) ( ) ( ) 2

10

1ˆ
d

i

zd
d
ij

A

j
d

d
ij

k

i

snxfzzb ⋅−⋅−= 
==

 [15.12] 

 dd zbxa ⋅−= ˆˆ  [15.13] 

 where  zd is the mean of the z-scores associated with the detected values, nd = number of 

detects, 
  
szd

2  is the sample variance of the detected z-scores, and  xd  is the mean of the detected 

measurements. The regression intercept ( â ) is an estimate of the population mean of the 
normalized distribution, while the slope ( b̂ ) is an estimate of the population standard 
deviation. 

Step 8. Compute plotting positions (pcij) for the non-detects (i.e., censored observations) associated 
with each distinct RL using equation [15.11]. Then form a second set of z-scores, this time 

associated with the non-detects, by computing 
  
zij

c = Φ−1 pcij( ) for j = 1 to Ci; and i = 1 to k. 

Step 9. Form imputed values ( ) c
ij

c
ij zbaxf ⋅+= ˆˆˆ  using the slope and intercept from Step 7 and the 

censored z-scores from Step 8. Combine these (transformed) imputed values for the non-

detects with the (transformed) detected measurements 
 
f xij

d( ) to get censored estimates of the 

population mean and standard deviation by computing the overall sample mean ( x=µ̂ ) and 
sample standard deviation ( s=σ̂ ). 

These censored estimates can be used in place of the unadjusted sample mean ( x ) and 
standard deviation (s) in parametric equations for prediction and control limits, and for 
confidence intervals. If a normalizing transformation f(�) is needed, the censored estimates 
should be used to construct statistical limits and intervals on the transformed scale. 

� ��6���������
�

In Example 15-1, the Kaplan-Meier technique was used on a sample of background manganese 
concentrations to compute the log-mean and log-standard deviation, adjusted for the presence of non-
detects.  Apply Robust ROS to these same data to compare the estimates. 
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Step 1. The n = 25 manganese observations include 2 distinct RLs (<2 and <5). Count the number of 
detected measurements below the lowest RL, above the highest RL, and between the two RLs, 
denoted by Ai in the table below. Also count the total number of measurements — both 
detected and non-detect — below each RL, denoted below by Bi. Use equation [15.8] to count 
the number of non-detects associated with each RL, denoted below by Ci. 
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Step 2. Compute the probability of exceeding each RL using equation [15.9] and noting that pe3 = 0: 

 
  
pe2 = pe3 +

A2

A2 + B2

1− pe3( )=
18

18 + 7
= 0.72  

 
  
pe1 = pe2 +

A1

A1 + B1

1− pe2( )= 0.72 +
1

1+ 3
1− 0.72( )= 0.79  

Step 3. Sort the detects associated with each Ai and compute plotting positions for these detects using 
equation [15.10], as listed in the table below. For instance, A1 = 1, corresponding to the 
detected value 3.3. The plotting position for this observation equals 

 
  
pd11 = 1− pe1( )+

1
A1 + 1

�

�
�

�

�
� pe1 − pe2( )= 0.21+ 0.5 0.79 − 0.72( )= 0.245 

 Also form the normal quantiles (i.e., z-scores) associated with the detected observations, as 
listed below: 
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Step 4. Plot the z-scores against the detected manganese levels to form a normal censored probability 
plot (Figure 15-5). The probability plot correlation coefficient is r = 0.901, almost identical to 
the Kaplan-Meier censored probability plot constructed in Example 15-1. The plot also shows 
substantial curvature, suggesting that the sample is non-normal. Also plot the z-scores against 
a log transformation of the detected manganese values (Figure 15-6). Not only does the 
normalized probability plot appear linear, but the correlation coefficient increases to r = 0.994. 
Conclude as in Example 15-1 that the sample is approximately normal on the log-scale, so 
that the manganese concentrations are lognormal in distribution. 

Step 5. Compute a linear regression of the nd = 19 logged manganese detects against their 
corresponding z-scores using equations [15.12] and [15.13]. The sample mean and variance of 
the detected z-scores are   zd = 0.3802  and 

  
szd

2 = 0.4577 . Also, the log-mean of the detected 

observations equals 
  
log xd( )= 2.80 . The slope and intercept of the resulting line are: 

 ( ) ( )[ ] 372.13802.776.1666.43802.690.194.1
4577.18
1ˆ =−++−−⋅

×
= �b  

 278.23802.372.180.2ˆˆ =×−=⋅−= dd zbxa  



��������	
������������������������� ���������������

� � ������ ����	�
����

 

�#$%�&��������,+%)*�����&'),�&-���,+�+#(#*;��(,*�,/���'$�'&)&�,'�&'*��*#,')�

�

�#$%�&����.���,+%)*�����&'),�&-���,+�+#(#*;��(,*�,/��,$$&-���'$�'&)&�

�



��������	
������������������������� ���������������

� � ���
�� ����	�
����

Step 6. Compute plotting positions for the non-detects (i.e., censored observations) associated with 
each distinct RL using equation [15.11], listed in the table below. Form a second set of z-
scores, this time associated with the non-detects, also listed below. Note that each non-detect 
is given a distinct plotting position, even though they cannot be ordered. This is done to ‘fill 
in’ the unknown portion of the underlying distribution, but should not be interpreted as a 
legitimate ‘estimate’ for any particular non-detect observation. The positions for the first pair 
of the 3 non-detects with RLs of 2 (i.e., <2) are 

 
  
pc11 =

1
C1 + 1

�

�
�

�

�
� 1− pe1( )=

1
3+ 1
�

��
�

��
1− 0.79( )= 0.0525  

 
  
pc12 =

2
C1 + 1

�

�
�

�

�
� 1− pe1( )=

2
3+ 1

�

��
�

��
1− 0.79( )= 0.105 
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Step 7. Form a second set of z-scores associated with the censored plotting positions from Step 6. 
These are listed in the table above. Then, using the regression parameters from Step 5, form a 
prediction for each non-detect using the equation ( ) c

ij
c
ij zx ⋅+= βα ˆˆlog . Take these predictions 

as the imputed values for the set of non-detects, as listed above. The first two imputed values 
are computed as: 

 ( ) ( ) 054.0621.1372.1278.2log 11 =−⋅+=cx  

 ( ) ( ) 558.0254.1372.1278.2log 12 =−⋅+=cx  

Step 8. Combine the logged detected manganese values with the imputed values from Step 7. Then 
compute the sample mean and standard deviation using the adjusted sample. These 
calculations give )log(28.2ˆ ppb=µ  and )log(26.1ˆ ppb=σ . By comparison, the Kaplan-
Meier method in Example 15-1 gives very similar corresponding estimates of 2.31 log(ppb) 
and 1.18 log(ppb). � 
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The two preferred methods using Kaplan-Meier or Robust ROS provided above for multiple 
detection limits are computationally intensive.  Helsel (2005) indicates that public software is available 
for the Robust ROS method.  Although the more common situation encountered in evaluating data sets 
is the presence of multiple detection limits (hence the UG recommendations), two older techniques are 
still applicable in some situations.  The Cohen method and the parametric ROS techniques are both 
simpler to apply, but depend on the use of a single censoring limit.  One needs to evaluate the prospects 
before applying them.  If detectable data sets are large enough (e.g., n > 50) and detection percentages 
near or greater than 50%, most of these methods will work comparably. 

�����������=����>��������

Cohen’s adjustment (Cohen, 1959) can be useful when a significant fraction (up to 50%) of the 
observed measurements in a data set are reported as non-detects. The technique assumes that all the 
measurements, detects and non-detects alike, arise from a common population, but that the lowest 
valued observations have been censored at the QL. Using the censoring point (i.e., QL) and the pattern 
in the detected values, Cohen’s method attempts to reconstruct the key features of the original 
population, providing explicit estimates of the population mean and standard deviation. These in turn 
can be used in certain statistical interval estimates, where Cohen’s adjusted estimates are used as 
replacements for the sample mean and sample standard deviation. 

��5��������������������������

Cohen’s adjustment assumes that the common underlying population has a normal distribution. 
The technique should only be used when the observed sample data approximately fit a normal model 
including transformations to normality. Because the presence of a large fraction of non-detects will 
make explicit normality testing difficult, if not impossible, the most helpful diagnostic aid may be to 
construct a censored probability plot on the detected measurements. If the censored probability plot is 
clearly linear on the original measurement scale but not on the log-scale, assume normality for purposes 
of computing Cohen’s adjustment. If, however, the censored probability plot is clearly linear on the log-
scale, but not on the original scale, assume instead that the common underlying population is lognormal. 
Then compute Cohen’s adjustment to the estimated mean and standard deviation on the log-scale 
measurements and construct the desired statistical interval using the algorithm for lognormally-
distributed observations. 

When the detection rate is less than 50%, the accuracy of Cohen’s method worsens as the 
percentage of non-detects increases. The guidance does not generally recommend the use of Cohen’s 
adjustment when more than half the data are non-detect. In such circumstances, one should consider an 
alternate statistical method, for instance a non-parametric interval or perhaps the Wilcoxon rank-sum 
test for small samples. 

One other requirement of Cohen’s original method is that there should be just a single censoring 
point. Data sets with multiple RLs will usually require a more sophisticated treatment such as Kaplan-
Meier or Robust ROS methods or via maximum likelihood techniques (Cohen, 1963) or perhaps a 
multiply-censored probability plot technique (Helsel and Cohn, 1988). If only 2 or 3 RLs do not 
substantially differ and few detected intermingled data are lost, the censoring point (QL) can be set to 
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the highest RL.  Cohen's method requires explicit definition of the censoring limit, and is somewhat 
sensitive to variation in this parameter. 

���������

Step 1. Divide the data set into two groups, detects and non-detects. If the total sample size equals n, 
let m represent the number of detects and (n–m) represent the number of non-detects. Denote 
the ith detected measurement by xi. Then compute the mean and sample variance of the set of 
detects using the equations: 

�
  
xd =

1
m

xi
i=1

m

 ��and����
  
sd

2 =
1

m − 1
xi

2

i=1

m

 − mxd
2�

�
	




�
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Step 2. Denote the single censoring point by QL. Then compute the two intermediate quantities, h and 
γ, necessary to derive Cohen’s adjustment via the following equations: 

 ( ) %100 NDnmnh =−⋅=   and   
  
γ = sd

2 xd − QL( )2
  

Step 3. Use the intermediate quantities h and γ to determine Cohen’s adjustment parameter λ from the 
table below. 
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Step 4. Using the adjustment parameter λ found in Step 3, compute adjusted estimates of the 
population mean and standard deviation with the equations: 

   ( )QLxx dd −−= λµ̂   and  ( )22ˆ QLxs dd −⋅+= λσ  

Step 5. Once the adjusted estimates for the population mean and standard deviation are derived, these 
values can be substituted for the sample mean and standard deviation in equations for the 
statistical intervals. 
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A second useful method (EPA, 2004) for estimating mean and standard deviation parameters for 
data sets with non-detect values censored at a single limit is a parametric Regression on Order Statistics 
(ROS).  The same assumptions apply as with Cohen's method.  Both the detected and non-detect 
portions of the data are presumed to arise from a single population.   That population should either be 
normal or transformable to a normal distribution.  The parametric ROS method performs similarly to 
Cohen's method, and offers two principal advantages.   The procedure can easily be implemented on 
almost any statistical software, and the method is not sensitive to the exact censoring limit.  

If variable X originates from a normal distribution with mean � and standard deviation � 
( )[ ]σµ,NX �   and Z is the standard normal distribution ( )[ ]1,0NZ � , statistical theory indicates that 

ZX ⋅+= σµ when X and Z are at the same percentiles in their respective distributions.  For a given 
observation or sample x above a detection limit, the order statistic (i.e., the proportion of observations 
less than x) can be estimated.  This order statistic is an estimate of the percentile.  The corresponding Z-
value can be obtained from reference tables or a computer algorithm.   For a list of ordered observations 
above the detection limit (x1, x2, ..... to xm) of m detectable samples out of a total n and a corresponding 
set of Z-values (Z1,   Z2, ..... to Zm) at the same percentiles, regression analysis of X against Z will 
provide estimates of the mean and standard deviation of distribution X.   The intercept is the mean 
estimate and the slope of the regression is the standard deviation estimate. 

When sample data better fit a lognormal or other normal transformable distribution, the regression 
is performed on the transformed data.   The mean and standard deviation estimates are also for the 
transformed data (e.g., logarithmic mean and standard deviation).  One may also use the regression 
results to "fill in" or quantify the values below the detection limit.   When the Z-distribution is developed 
for the full set of total n sample values, the Z-values for the detectable portion are separated from those 
for the remaining n - m non-detect percentiles.   Estimates for the non-detect values are obtained from 
the equation ZX ⋅+= σµ ˆˆ , using µ̂  the intercept mean estimate, σ̂  the slope standard deviation 
estimate and the non-detect Z-values.   These can then be aggregated with the sample detectable values 
to obtain the overall mean and standard deviation estimate.    

���������

Step 1. Determine the appropriate normal transformation and convert the data if necessary.  Divide 
the data set into two groups, detects and non-detects. If the total sample size equals n, let m 
represent the number of detects and (n – m) represent the number of non-detects. Denote the 
ith detected measurement by xi.  Order the m detected data from smallest to largest.  
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Step 2. Define the normal percentiles for the total n sample set as follows.  For a set of i values from 1 
to n, ( ) ( )25.375. +−= nipi .  Then convert to Z-values using the inverse normal distribution 

( )ii pZ 1−Φ= .   Separate the Zi values into two groups: the larger m detected and n - m non-
detected portions.     

Step 3. Use linear regression of the ordered m data values against the corresponding Z-values.  Obtain 
the intercept and slope of the regression as the estimated mean and standard deviation 
estimates, µ̂ and σ̂ .  These can be used directly as the distributional parameter estimates or 
Step 4 can be followed. 

Step 4. Using equation mnmn ZX −− ⋅+= σµ ˆˆ  with µ̂  the intercept mean estimate, σ̂  the slope 
standard deviation estimate and the non-detect Zn-m values, calculate the remaining xn-m values 
and combine with the xm detected data.  Use the combined direct sample mean and standard 
deviation calculations as the final parameter estimates:  

    
=

=
n

i
ix

n 1

1µ̂   and  
( )

1
ˆ 1

2

−

−
=


=

n

xx
n

i
i

σ  
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Use Cohen's and the parametric ROS methods for the data in Example 15-1 and compare the 
results to the Kaplan-Meier and Robust ROS Methods.  A single overall logarithmic distribution can be 
assumed. In the example, it is possible to utilize the higher detection limit (<5) as the censoring limit, 
with the loss of only a single detected point of information. The detection frequency is still 72%. 

For Cohen's method, h = .28 and � = .465 for the logarithmic data.  The adjustment parameter from 
the above table is interpolated as � = .445.  The resulting mean and standard deviation estimates for the 
full data set are µ̂ = 2.32 log(ppb) and σ̂  = 1.22 log(ppb).  

Mean and standard deviation estimates for the parametric ROS method are µ̂ = 2.33 log(ppb) and 
σ̂  = 1.21 log(ppb) following regression of the ordered detectable log values against the corresponding 
Z- values of the standard normal distribution.   With such few non-detects near the lowest end of the 
sample distribution, the results are quite similar to the Robust ROS and Kaplan-Meier methods.  For 
higher non-detect percentages and more heavily intermingled non-detect data, the results using these 
methods can differ considerably. � 
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 In this chapter and elsewhere in the Unified Guidance, it is recommended that imputing  arbitrary 
values be limited to data sets with 10-15% or fewer non-detects and that parametric procedures be 
applied when there are 50% or fewer non-detects.   The guidance continues to suggest this basic non-
detects rule for both historical and conservative reasons.  The same approach was found in both the 
earlier RCRA 1989 and 1992 RCRA statistical guidance documents, although it was recognized in the 
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first as a guideline “based on judgment”.  It was also noted that “there is no general procedure that is 
applicable in all cases.”  The 10-15% rule using direct substitution of arbitrary values is believed 
adequate for many applications, but one of the censoring estimation techniques provided in this chapter 
can be used instead.  For a skewed distribution like the lognormal, the latter approach would be 
preferable. We have cited studies above by Davis and others indicating that parameter estimation and 
test performance can suffer when more than 50% of the data are non-detects.  Most of the common 
parameters (i.e., mean, median, standard deviation, etc.) can be estimated with tolerable bias and error 
when no more than 50% of the values are originally non-detect and the superior non-detect fitting 
techniques used.   Statistical test performance using these limitations appears to be reasonable for most 
applications. However, it should be recognized that they are only “rules of thumb”, not absolute criteria. 

Other authors (e.g., Helsel 2005) have suggested that certain tests will perform adequately even 
with higher non-detect rates in data.   The criterion of non-detect percentage is not the only factor.  For 
example with very large data sets (e.g., 100-300), quite reasonable fits can be made to the detectable 
portion using techniques found in Chapter 15 even with non-detect percentages greater than 50%.   
Having a sufficient number of detectable data is also an important consideration, applying equally to 
small data sets.  One should have a fairly good idea that the detect data themselves follow one or another 
parametric distributions.  To do so, one should have a sufficiently large number of detected data points 
for comparison. 

 A second factor is the potential application for fitted non-detect data.  As an example, fits of high 
non-detect percentage larger data sets using the lognormal distribution can provide decent parameter 
estimates (log mean and log standard deviation) for use with upper prediction limit detection monitoring 
tests.   Generally, the fits accurately describe the upper portions of the observed data sets.   At the same 
time, these estimated logarithmic parameters may result in considerably larger errors when estimating 
the true arithmetic mean and standard deviation (the bias problem in transformations), such as with 
compliance level tests.  In this case, the 50% rule is best followed. 

 The guidance generally recommends non-parametric options when non-detect data exceed 50%.   
However, even this suggestion comes with caveats.  For example, if a number of wells to be compared 
using Kruskal-Wallis non-parametric ANOVA had mostly or all well data sets greater than 50% non-
detects, the outcome would be ambiguous.   This is because the test involves comparisons of medians, 
which would lie below the detection limit.  At very high non-detect percentages, fewer options are 
available.   Upper non-parametric prediction limits can work with very few detectable values, but the 
assumption of any distributional pattern is increasingly tenuous.  In some cases, a binomial test of 
proportions (found in the 1989 guidance) may be the only realistic option.  As a final suggestion, we 
recommend that users take these factors into account and consider recommendations of other statistical 
literature in the field as well, when considering non-detect limitations to specific test procedures. 
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