


     

 

 
 

      EPA 530/R-09-007a 

 

         ERRATA SHEET —MARCH 2009 UNIFIED GUIDANCE  
August 9, 2010 

 
 The following are corrections made to a number of Example calculations and 

equations in the March 2009 Unified Guidance [EPA 530/R-09-007]: 

 

Chapter 10, Example 10-1: In the initial table of Nickel concentrations, ‘Years’ has 

been changed to ‘Wells’ to maintain consistency with succeeding examples.  At the 

bottom of page 10-11, the following sentence was added (to allow for pooling): 

“Assume that the individual well data sets can be shown to arise from a single common 

population.” 
 

Chapter 10, Example 10-4 Calculations for the Multiple Group Shapiro-Wilk 
Test (full revised example text in parentheses): 
 

“The previous examples in this chapter pooled the data of Example 10-1 into a 

single group before testing for normality. This time, treat each well separately and 

compute the Shapiro-Wilk multiple group test of normality at the α = .05 level. 

 

 SOLUTION 

Step 1. The nickel data in Example 10-1 come from K = 4 wells with ni = 5 

observations per well. Using equation [10.10], the SWi individual well test 

statistics are calculated as: 

  Well 1:  SW1 = 0.7577 

  Well 2:  SW2 = 0.7396 

  Well 3:  SW3 = 0.7065 

  Well 4:  SW4 = 0.8149 

Step 2. Since ni = 5 for each well, use Table 10-7 of Appendix D to find ε = .5521. 

First calculating u1 with equation [10.20]: 
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 Then performing this step for each well group and using linear interpolation on 

u in Table 10-7, the approximate Gi statistics are: 

  Well 1:  u1 = –.1641 G1 = –1.783 

  Well 2:  u2 = –.3280 G2 = –1.932 

  Well 3:  u3 = –.6425 G3 = –2.200  

  Well 4:  u4 =   .3502 G4 = –1.254 

Step 3. Compute the multiple group test statistic using equation [10.21]: 

 ( ) ( ) ( ) ( )[ ] 585.3254.1200.2932.1783.1
4

1
−=−+−+−+−=G  

Step 4. Since α = 0.05, the lower α  × 100th critical point from the standard normal 

distribution in Table 10-1 of Appendix D is z.05 = –1.645. Clearly, G < z.05 ; in 

fact G is equivalent to a Z-value probability of .0002. Thus, there is significant 

evidence of non-normality in at least one of these wells (and perhaps all of 

them). ◄ “ 

Chapter 12, Example 12-1 Calculations for Screening with Probability Plots 
 

 In Figures 12-1 through 12-4 and the accompanying text, normality correlation 

coefficients have been adjusted (using the method in UG Section 10.6) as follows: 

  Figure 12-1 Raw Correlation Coefficient (N =20) -- .502 

  Figure 12-2 Log  “                  “    (N =20)   -- .973 

  Figure 12-3 Raw  “     “, 1 outlier removed (N = 19)  -- .854   

  Figure 12-4 Log  “     “, 1 outlier removed (N = 19)  -- .987 

Chapter 13, Example 13-1 Tables of Iron Concentrations 
 

p.13-3.  The median should be 50.06 ppm for Well 1; for Well 2, the mean is 55.74 

ppm. 

For comparative purposes, well sample standard deviations have been added at the 

bottom of this table:  Well 1—12.40; Well 2—20.34; Well 3—59.35; Well 4—25.95; 

Well 5—92.16; and Well 6—51.20 ppm 

p.13-4 (log iron concentration table)  The median for Well 1 is 3.91 log(ppm).  

Sample well log standard deviations are already found in the table on page 13-7. 
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Chapter 13, Example 13-2 ANOVA Calculations for Log Iron Concentrations 
(full revised example text in parentheses): 
 

“ SOLUTION 

Step 1. With 6 wells and 4 observations per well, ni = 4 for all the wells. The total 

sample size is n = 24 and p = 6. Compute the (overall) grand mean and the 

sample mean concentrations in each of the well groups using equations [17.1] 

and [17.2]. These values are listed (along with each group’s standard deviation) 

in the above table. 

Step 2. Compute the sum of squares due to well-to-well differences using equation 

[17.3]: 

 ( ) ( ) ( )[ ] ( ) 331.4354.424000.54965.34820.34
2222

=−+++= KwellsSS  

 This quantity has (6 – 1) = 5 degrees of freedom. 

Step 3. Compute the corrected total sum of squares using equation [17.4] with (n – 1) 

= 23 df: 

 ( ) ( )[ ] ( ) 935.8354.42408.506.4
222

=−++= KtotalSS  

Step 4. Obtain the within-well or error sum of squares by subtraction using equation 

[17.5]: 

 604.4331.4935.8 =−=errorSS  

 This quantity has (n – p) = 24–6 = 18 degrees of freedom. 

Step 5. Compute the well and error mean sum of squares using equations [17.6] and 

[17.7]: 

 866.5/331.4 ==wellsMS  

 256.18/604.4 ==errorMS  

Step 6. Construct the F-statistic and the one-way ANOVA table, using Figure 13-3 as 

a guide: 

 

Source of Variation Sums of Squares Degrees of 

Freedom 

Mean Squares F-Statistic 

Between Wells 4.331 5 0.866 F = 0.866/0.256=3.38 

Error (within wells) 4.604 18 0.256  

Total 8.935 23   
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Step 7. Compare the observed F-statistic of 3.38 against the critical point taken as the 

upper 95th percentage point from the F-distribution with 5 and 18 degrees of 

freedom. Using Table 17-1 of Appendix D, this gives a value of F.95,5,18 = 

2.77. Since the F-statistic exceeds the critical point, the null hypothesis of 

equal well means can be rejected, suggesting the presence of significant spatial 

variation. ◄  ” 

Chapter 13, Example 13-3 ANOVA Pooled Variance Used for Prediction Limit 

Calculations for Log Iron Concentrations 
 

With the slight modification in 506.256. ==errorMS  from Example 13.2, as shown 

in Step 2 p.13-11, the resulting table with well-specific prediction limits is changed 

to: 

 
 Adjusted 99% Prediction Limits for Iron (ppm) 

 Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

       

Log-mean 3.820 3.965 4.348 4.188 4.802 5.000 

RMSE 0.5079 0.5079 0.5079 0.5079 0.5079 0.5079 

df 18 18 18 18 18 18 

t.99,18 2.552 2.552 2.552 2.552 2.552 2.552 

99% PL 193.2 223.3 327.5 279.1 515.8 628.7 

       

 

Chapter 14, Section 14.2.2  Procedure for Estimating Sample Size for a 
prediction limit with significant temporal variation, Step 9 (modifies equations 

for total events): 

 

“ Step 9. If there is no spatial variability but a significant temporal effect exists among a 

set of background wells, compute an appropriate interwell prediction or control 

chart limit as follows.  First replace the background sample standard deviation 

(s) with the following estimate built from the one-way ANOVA: 

 ( )[ ]$σ = + −
1

1
W

MS W MST E                                  [14.12] 

 Then calculate the effective sample size for the prediction limit as: 

 ( ) ( )[ ] ( ) ( )[ ]{ }11111* 22
−⋅−+⋅−+⋅−⋅+= WTKFTKWFTKTKn TT  [14.13]  ” 

 

Chapter 14, Example 14-2, Steps 5, 7 and 8: 
 
Although the final calculation is correct, the value for (W-1) in equation [14.7] is 3, 

not 7: 

 

“ Step 5. Compute the mean error sum of squares term using equation [14.7]: 

 ( ) ( ) ( ) ( )[ ] ( )( ) 87.1324765.338.1780.150.1
2222

=⋅−+++−+−= KEMS  ” 
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The corrected degrees of freedom language in Step 7 is: 

“ Step 7. Test for a significant temporal effect, computing the F-statistic in equation 

[14.11]: 

 
  
F

T
= 7.55 1.87 = 4.04  

The degrees of freedom associated with the numerator and denominator respectively are 

(TK–1) = 7 and TK(W–1) = 24. Just as with Levene’s test run earlier, the 5% 

level critical point for the test is F.95,7,24 = 2.42. Since FT exceeds this value, 

there is evidence of a significant temporal effect in the manganese background 

data. “ 

In Step 8, the estimated adjusted standard deviation is: 

( )[ ]$ . . .σ = + ⋅ =
1

4
7 55 3 187 1814 ppm   

Chapter 14, Example 14-7, Step 2: 
 
Although the final calculation is correct, the value for Ne should be a decimal: 

 

“ Step 2. To estimate the minimum time interval between sampling events enabling the 

collection of physically independent samples of ground water, calculate the 

horizontal component of the average linear groundwater velocity (Vh) using 

Darcy’s equation [14.17]. With Kh = 15 ft/day, Ne = .15 (15%), and i = 0.003 

ft/ft, the velocity becomes: 

 ( ) dayinordayftftftdayftVh /6.3/3.15.//003./15 =×= ” 

Chapter 16, Example 16-3, Shapiro-Wilk Calculations in Steps 1 and 2: 
 
The G multiple group value in Step 1 is -6.671 using original benzene data.  The 

corresponding value for the log transformed data is G = -.512 in Step 2.  Other 

results are correct. 

 

Chapter 17, Example 17-6, Mann-Kendall Test Calculations, Steps 2 & 3: 

In Step 2, the Mann-Kendall statistic S =194, not 196.   The standard deviation 

calculation of 37.79 in Step 3 is correct.   The modified S changes the Z-

approximation to 5.11 in Step 3: 

 

    ( ) 11.579.37/1194 =−=Z  
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Chapter 18, Example 18-2, Statistics in Table, and Step 2: 

The joint well log mean for chrysene is 2.553, not 2.533 ppb.  This changes the 

future mean prediction limit calculation in Step 2: 

 

  ( )( ) ( )ppbPL (log85.3
8

1

4

1
706.998.2553.2 =++=  

Chapter 19, Example 19-2, Step 4: 

The median value of the initial three data for well CW-2 is .36, not .41 ppb.  Other 

results are not affected. 

Chapter 21, Example 21-7, Step 4: 

The correct value for (n-1) in the denominator should be 9, not 8 as applied with 

equation [21.25]. This changes the UCL calculation results as follows: 

 

 

“ Step 4. Since the comparison to the GWPS of 20 ppb is to be made at the α = 0.05 

significance level, the confidence limit is (1–α) = 95% confidence. Since the 

remediation effort aims to demonstrate that the true mean TCE level has 

dropped below 20 ppb, a one-way UCL needs to be determined using equation 

[21.25]. A logical point along the trend to examine is the last sampling event at 

t0 = 30.  Using the estimated regression value at t0 = 30, and the fact that F.90,2,8 

= 3.1131, the UCL on the mean TCE concentration at this point becomes: 

 
( )

ppbUCL 87.12
2333.889

3.1530

10

1
1131.360.152861.6

2

95 =








×

−
+×××+=  

 Since this upper limit is less than the GWPS for TCE, conclude that the 

remediation goal has been achieved by t0 = 30. In fact, other times can also be 

tested using the same equation. At the next to last sampling event (t0 = 26), the 

UCL is: 

  
( )

ppbUCL 14.18
2333.889

3.1526

10

1
1131.360.152272.13

2

95 =








×

−
+×××+=  “ 

 

 

 


