US ERA ARCHIVE DOCUMENT

3MRA Modeling System Technology

Science Advisory Board Review of the 3MRA Modeling System

Presented by:
Karl Castleton, DoE/PNNL
August 26, 2003

System Technology

- Need for the 3MRA technology
- Overview of the 3MRA technology
 - Science-based requirements
 - Software/Hardware requirements
- Design Features
 - Software system challenges
 - Description of 3MRA software
 - 3MRA modeling system outputs

Science-Based Requirements

- Provide comprehensive human and ecological risk
- Accommodate 2 stage Monte Carlo
- Accommodate site-based modeling
- Provide for multimedia mass balance
- Provide for appropriate aggregation of risk results
- Provide a modeling tool for research in sensitivity analyses and variability and uncertainty assessments

Software Requirements

- Implementation on Windows-based PC environment (Pentium or higher)
- Object Oriented Design (with respect for the "real world")
- Accommodate legacy codes
- Accommodate multiple programming languages (FORTRAN, C++, Java)
- Automatic QA/QC
- 100% Distributable

Design Features

- Overview of the system design
- 3MRA module data exchange
- Potential dimensionality
- Actual dimensionality

FRAMES 3MRA Modeling System

Software System Challenges

- 3MRA Complexities
 - Hardware/Software Requirements
 - Diversity of Software Development Team
 - Software System Solutions
 - Standardizing the way model developers communicate data to each other
 - Standardizing the impacts one media/object on another

Meta Data & Data Transfer Protocols

Data Dictionaries (DIC files)

- Sufficient dimensionality
- Designed as "data packets", i.e., logical grouping of data

Application Program Interface (API/IOdll)

- Facilitates data transfer throughout system
- Conducts QA checks on data (e.g., units, range)
- Accesses Model Meta Data to check validity of CSM and inform models regarding locations of incoming data

Relationship Between Dictionary Files and Data Files

<u>Data Files</u>: Contain simulation-based values per variable

<u>Dictionary Files</u>: Contain information about variables found in Data Files (Meta Data of the data)

Meta Data: Dictionary Files Ecological Exposure Example

Some Entries From a Dictionary

39	source				
Code	Dim Type	Min	Max	Units	Description
AnnInfil	2 float	0	0.03	m/d	leachate infiltration rate (annual avg., WMU subarea(s) only)
Œ	1 float	0	1E+08	g/m2/d	constituent mass emission rate-PM30
CENY	0 integer	0	10000		number of years in outputs
CEYR	1 integer	1	10000	year	year associated with output
CTda	3 float	0	1000000	ug/g	depth averaged soil concentration (from zava to zavb)
CTdaNY	2 integer	0	10000		number of years in outputs
CTdaYR	3 integer	1	10000	year	year associated with output
CTss	3 float	0	1000000	ug/g	soil concentration (annual average, all subareas)
CTssNY	2 integer	0	10000		number of years in outputs
CTssYR	3 integer	1	10000	year	year associated with output

IO DLL in SYSTEM CONTEXT

Description of 3MRA Software

- Multiple Environmental Modules
 - 13 different modules to be invoked per run
- Multi-pathway
 - 4 types of releases (air, surface water, watershed, and vadose zone)
- Multi-receptor
 - 4 receptors, with 5 cohorts (4 used for decision making)
- Software system that allows you to run both production runs as well as answer science questions

Integrating Environmental Models

3MRA Modeling System Outputs

- Requirements of ELP I, ELP II and RVP
- Human Risk Outputs
- Human Risk Roll Ups
- Ecological Risk Outputs
- Ecological Risk Roll Ups

Potential Dimensionality for 3MRA National Assessment

Simulations

Storage

Realization (10000)	Receptor Type (9)	Time (10000)
Source Types (5)	Risk Bins (7)	Receptor Locations (677)
Site (201)	Pathways (13)	
Waste Level (5)	Cohort (6)	
Chemical (43)	Distances (3)	
	Risk Measure (2)	

Total Simulations (900,850,000)

Total Numbers Potentially Stored (1.8e20) Total Bytes (1.8 Billion 10 GB hard drives)

Actual Dimensionality for 3MRA National Assessment

Simulations

Storage

Realization (1)	Receptor Type (5)	Time (1)
Source Types (5)	Risk Bins (7)	Receptor Locations (1)
Site (201)	Pathways (13)	
Waste Level (5)	Cohort (4)	
Chemical (43)	Distances (3)	
	Risk Measure (2)	

Total Simulations (90,085)

Total Numbers Stored (.96 Billion)
Total Bytes (Single 10 GB hard drives)

Conclusions 3MRA Software System

- Achieves balance
 - Between modern software (Object Oriented) and legacy
 - Complexity and simplicity
 - Runtime versus storage requirements
- Allows for testing at multiple levels and at different times
 - Modules and system
 - During development and running

Future System Enhancements

- Support more programming languages
- Develop the ability to use different modules, module dictionaries and data-sets more easily
 - A user interface for checking/updating a sitebased simulation
- Automated testing for module and system components
 - Cost of manual testing is restrictive