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1.0 INTRODUCTION

The EPA’s Composite Model for leachate migration with Transformation Products (EPACMTP)
code, is used by EPA (the Office of Solid Waste) to simulate the fate and transport of contaminants
leaching from a land-based waste management unit through the underlying unsaturated and
saturated zones. EPACMTP replaces EPACML (U.S. EPA, 1990) as the best available tool to
predict potential exposure at a downstream receptor well. EPACMTP offers improvements to
EPACML by considering: 1) the formation and transport of transformation products; 2) the
impact of groundwater mounding on groundwater velocity; 3) finite source as well as continuous
source scenarios; and 4) metals transport.

Fate and transport processes simulated by the model include: advection, hydrodynamic dispersion,
linear or nonlinear sorption, and chain-decay reactions. In cases where degradation of a waste
constituent yields daughter products that are of concern, EPACMTP accounts for the formation
and transport of up to six different daughter products. The composite model consists of a one-
dimensional module that simulates infiltration and dissolved constituent transport through the
unsaturated zone, which is coupled with a three-dimensional groundwater flow and a three-
dimensional transport sub-module. The saturated zone groundwater flow sub-module accounts for
the effects of leakage from the land disposal unit and regional recharge on the magnitude and
direction of groundwater flow. The saturated zone transport sub-module accounts for three-
dimensional advection and dispersion, chain decay reactions with up to seven different chemical
species (i.e., parent with up to six daughter products), and linear or nonolinear equilibrium
sorption.

However, EPACMTP is based on an assumption that the material properties in the vadose and
saturated zones are homogeneous. In reality, aquifer material properties are spatially variable.
In this report an approach to incorporate heterogeneity into EPACMTP is discussed. The
approach has been incorporated into the HWIR99 aquifer module (U.S.EPA, 1998).
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2.0 SIMULATION OF HETEROGENEITY
2.1 OVERVIEW

The effects of physical heterogeneity of the porous medium on the distribution of chemical
concentration in a spatially heterogeneous aquifer were assessed. The assessment was conducted
by comparing the distributions of chemical concentrations predicted by a fate and transport model
based on a heterogeneous porous medium to those predicted by the same model based on an
approximately equivalent homogeneous porous medium. The following assumptions were
adopted:

The flow is steady-state;

The transport of chemical is steady-state;

The chemical is non-reactive and conservative; and
The dispersivities are scale-independent.

The first assumption is consistent with the flow regime currently used in EPACMTP (U.S.EPA,
1996, 1997 a-c) and the corresponding segregated modules (U.S. EPA, 1999). The second
assumption was adopted to isolate the effects due to the heterogeneity of sorption. Although it is
recognized that heterogeneity of sorption characteristics also contributes to the distribution of
contaminant concentrations, it is beyond the scope of current investigation. The third assumption
was adopted to isolate the effects of reaction and degradation. The fourth assumption was adopted
to isolate the effects of scale dependency. The dispersivities that are not scale-dependent
correspond to local dispersivities. The scale dependency of macro-scale dispersivity is related to
the heterogeneity of flow and transport parameters (Gelhar, 1993).

By excluding the transient flow and transport regimes and assuming that there is no scale
dependency in dispersivities, the remaining key parameters of interest are hydraulic conductivity
(K) and effective porosity (¢). In this study, two cases of correlation were investigated: correlated
and uncorrelated. For the correlated case, spatially variable effective porosity random fields were
generated using the Fourier spectral technique of Robin et al. (1993). For the uncorrelated case,
the porosity and hydraulic conductivity random fields were individually generated, using also the
Fourier spectral technique.

Assuming a perfect correlation between hydraulic conductivity and porosity, the hydraulic
conductivity fields were calculated as a function of porosity and the mean grain size diameter using
the Kozeny-Carmen relation (Bear, 1979), shown below:

_ py[_9° d?
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where:

Fluid density

Dynamic viscosity of fluid
the gravitational acceleration
mean grain size diameter.

[ = ©
Il

In EPACMTP, hydraulic conductivity is correlated with effective porosity using the following
empirical correlation of Davis (1969):

1 0.0261 ¢
d = eX
100 p[ 0.0385 } 2:2)
where:
d = the mean particle diameter (m).

In the literature, available published information suggests that hydraulic conductivity is likely to
be log-normally distributed in space. In this study, it was assumed that hydraulic conductivity is
log-normally distributed. In subsurface hydrology, flow parameters such as hydraulic conductivity
and transmissivity are often found to be log-normally distributed (Gelhar, 1993). Because of the
correlation in Equation (2.1) and the assumed distribution of log-normality of the hydraulic
conductivity, the effective porosity was also assumed to be log-normally distributed.

In this study, two distributions were used to generate the hydraulic conductivity and effective
porosity random fields. The two distributions are presented in Tables 2.1, and 2.2. The two
distributions were intended to cover the range of site-specific spatial variability reported in the
literature.

A numerical code was used to simulate the flow and transport processes. The code selected for
the simulation was MODFLOW-SURFACT, a fully integrated groundwater flow and solute
transport three-dimensional finite-difference code (HydroGeoLogic, 1996) which is based on the
U.S.G.S. MODFLOW code (McDonald and Harbaugh, 1988).

A definition sketch of the simulation domain is presented in Figure 2.1. The flow and transport
domain is two-dimensional with an infinite source (constant concentration) located close to the
upgradient end of the domain. The domain dimensions are 2,400 m and 2,000 m for the length and
width, respectively. Parameters used in the simulations are listed in Table 2.1. Boundary and
initial conditions are described below.
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Figure 2.1 Definition Sketch of the Simulation Domain.
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Table 2.1 Parameters Used in the Simulations

Parameter Value
Layer thickness 10 m
Regional hydraulic gradient 0.006
Source infiltration rate 0.1307 m/year
Recharge rate 0.1307 m/year
Source area 19,000 m? (140 m x 140 m)
Longitudinal dispersivity 10, 50, 100 m
Transverse dispersivity 0.1 x longitudinal dispersivity
Source concentration 10° mg/L
Grid spacing (both x and y directions) 10 m

Boundary Conditions

Hydraulic heads at the upgradient and downgradient ends were prescribed such that the regional
hydraulic gradient in the x direction was 0.006. No-flow conditions were imposed along all
remaining boundaries. Zero local dispersive flux normal to domain boundary was applied to all
the domain boundaries.

Initial Condition

It was assumed that the aquifer had no contaminant concentration at the beginning of each
simulation.

2.2 SIMULATION PROCEDURE

To study the effects of the degree of heterogeneity, five sets of simulations with correlation
between hydraulic conductivity and porosity and two sets of simulations without between the two
parameters were conducted. For the correlated case, each set consisted of three subsets with three
different dispersivities. All the simulations are summarized in Table 2.2. Each set or subset of
simulations consisted of two hundred heterogeneous realizations and a simulation with
homogeneous hydraulic conductivity and effective porosity. In the homogeneous case, the mean
values of hydraulic conductivity and effective porosity were used. By trials and errors, two
hundred realizations were determined to provide reasonably stable results. The number of
realizations was therefore restricted to two hundreds.
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Table 2.2

Statistics of Random Fields.

Variance Dispersivity
Correlation Case Number

inK Ind Longitudinal (m) | Transverse (m)
10 0.1 C1

1.02 0.0014 50 5 C2
100 10 C3
10 0.1 C4

2.27 0.0049 50 5 G5
100 10 Cé6
10 0.1 C7

Correlated 3.53 0.0083 50 5 C8

100 10 C9
10 0.1 C10

4.80 0.0118 50 5 Cl11
100 10 C12
10 0.1 C13

6.09 0.015 50 5 Cl4
100 10 C15

1.02 0.0014 10 0.1 Ul

Uncorrelated
6.09 0.015 10 0.1 U2

Note: The unit of K is m/year; Mean in K = 7.55 and Mean In ¢ = -0.785.
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2.3 RESULTS
2.3.1 Correlated Case

Nodal solute concentrations of each realization were normalized using the steady state solute
concentrations of the homogeneous case at corresponding nodes to obtain concentration ratios. In
the event that the steady-state concentration was smaller 10, the steady-state concentration value
was set to 107, Nodal means and standard deviations of concentration ratios were obtained from
the two-hundred realizations.

Figure 2.2 shows a scatter plot of the concentration ratios for the two hundred realizations at x’
= x/X,, = 3.6 from the edge of the source and y’ = y/X, = 1.4 from the center of the source
for case C1. X, is the source dimension in both x and y directions (square source). Figure 2.3
presents a histogram of the logarithms of concentration ratios at the same location, along with a
fitted normal curve. A normality test was conducted using the MINITAB statistical package
(Minitab, 1998) and the results are shown in Figure 2.4 with a normal probability plot. Plotted
in Figure 2.5 are contours of logarithms of mean concentration ratios and standard deviations of
the logarithms of concentration ratios. From Figure 2.5, one can expect higher concentrations for
homogeneous case than heterogeneous case if receptor well locations are located close to the plume
center line. However, if receptor well locations are far from the plume center line, chances to
observe higher concentrations for the heterogeneous case are higher than for the homogeneous
case. The mean and standard deviation of logarithms of concentration ratios were fitted to
Equation (2.3), which is a second-order model with interaction (second-order polynomial with
Cross terms).

C
Ht _ / / 2 2 Iyl
Log = =a, +a,X’ +agy +a, X T+aly +axX’y (2.3)
Ho m, D
where
a, a, a; a, as, and a, = the coefficients of the polynomial;
Chr . .
Log = the mean or standard deviation of logarithms of
Ho) |y sp nodal concentration ratios;
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Figure 2.3 Histogram of Logarithmic Concentration Ratios with a Fitted Normal Curve at x’=3.6 and y’=1.4.
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Table 2.3

Polynomial Coefficients for the correlated case

Variance| Longitudinal/ _ )
of In K Di'sl'[:r)%rrla\\//ﬁgls?m) Variable ai az as as as as r
10/ 1 Mean 0. 0. 0. 0. 0. 0. N/A
Standard Dev. 0. 0. 0. 0. 0. 0. N/A
0.00 50/ 5 Mean 0. 0. 0. 0. 0. 0. N/A
Standard Dev. 0. 0. 0. 0. 0. 0. N/A
100/ 10 Mean 0. 0. 0. 0. 0. 0. N/A
Standard Dev. 0. 0. 0. 0. 0. 0. N/A
10/ 1 Mean -1.29E+00 1.85E-01 2.07E+00 -1.36E-02 -1.67E-02 -6.96E-02 9.60E-01
Standard Dev. 2.11E-01 -4.47E-02 4.62E-01 -4.80E-04 -1.54E-02 -6.67E-03 9.56E-01
1.02 50/ 5 Mean -6.67E-02 5.43E-03 1.94E-01 -1.93E-03 1.06E-02 2.35E-03 9.96E-01
Standard Dev. 4.47E-02 -5.97E-03 8.38E-02 -1.41E-04 -4.79E-03 -3.56E-04 9.80E-01
100/ 10 Mean -3.45E-02 -1.45E-03 9.57E-02 -7.11E-04 4.11E-03 1.11E-03 9.96E-01
Standard Dev. 2.75E-02 -3.40E-03 3.71E-02 -6.07E-06 -2.35E-03 -7.55E-05 9.86E-01
10/ 1 Mean -1.78E+00 2.88E-01 3.00E+00 -2.68E-02 2.49E-02 -7.47E-02 9.82E-01
Standard Dev. 3.09E-01 -7.91E-02 5.66E-01 1.74E-03 -1.74E-02 -1.45E-02 9.55E-01
597 50/ 5 Mean -1.11E-01 1.18E-02 3.60E-01 -4.21E-03 1.93E-02 5.15E-03 9.94E-01
Standard Dev. 7.40E-02 -8.34E-03 1.08E-01 -2.86E-04 -6.31E-03 -3.30E-04 9.76E-01
100/ 10 Mean 5.31E-02 -2.61E-03 1.79E-01 -1.59E-03 7.86E-03 2.56E-03 9.94E-01
Standard Dev. 4.67E-02 -4.83E-03 4,93E-02 -6.59E-05 -3.34E-03 3.08E-05 9.82E-01
10/ 1 Mean -1.90E+00 3.20E-01 3.32E+00 -3.21E-02 5.25E-02 -7.82E-02 9.85E-01
Standard Dev. 3.69E-01 -9.75E-02 6.01E-01 3.01E-03 -1.52E-02 -1.97E-02 9.54E-01
3.53 50/5 Mean -1.23E-01 1.50E-02 4.28E-01 -5.34E-03 2.36E-02 6.25E-03 9.93E-01
Standard Dev. 9.36E-02 -1.03E-02 1.19E-01 -3.16E-04 -7.04E-03 -3.59E-04 9.74E-01
100/ 10 Mean -5.35E-02 -2.96E-03 2.12E-01 -2.05E-03 9.70E-03 3.29E-03 9.94E-01
Standard Dev. 5.99E-02 -5.80E-03 5.52E-02 -1.05E-04 -3.90E-03 1.50E-04 9.78E-01

11
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10/ 1 Mean -1.95E+00 3.28E-01 3.52E+00 -3.40E-02 7.18E-02 -8.46E-02 9.86E-01
Standard Dev. 4.09E-01 -1.11E-01 6.27E-01 4.04E-03 -1.39E-02 -2.36E-02 9.55E-01
4.80 50/ 5 Mean -1.26E-01 1.66E-02 4.66E-01 -6.01E-03 2.66E-02 6.76E-03 9.93E-01
Standard Dev. 1.10E-01 -1.20E-02 1.28E-01 -3.20E-04 -7.52E-03 -4.60E-04 9.72E-01
100/ 10 Mean -4.90E-02 -3.27E-03 2.30E-01 -2.32E-03 1.09E-02 3.75E-03 9.93E-01
Standard Dev. 7.08E-02 -6.53E-03 5.98E-02 -1.39E-04 -4.29E-03 2.33E-04 9.75E-01
10/ 1 Mean -1.99E+00 3.25E-01 3.65E+00 -3.42E-02 8.73E-02 -9.20E-02 9.86E-01
Standard Dev. 4.40E-01 -1.21E-01 6.49E-01 4.83E-03 -1.32E-02 -2.67E-02 9.57E-01
Mean -1.26E-01 1.71E-02 4.91E-01 -6.41E-03 2.90E-02 6.95E-03 9.92E-01
6.09 50/'5 Standard Dev. 1.24E-01 -1.35E-02 1.35E-01 -3.15E-04 -7.87E-03 -5.98E-04 9.71E-01
100/ 10 Mean -4.32E-01 3.64E-02 2.40E-01 -2.50E-03 1.19E-02 4.06E-03 9.93E-01
Standard Dev. 8.10E-01 -7.28E-02 6.36E-01 -1.58E-04 -4.59E-03 -2.85E-04 9.73-01
Table 2.4 Polynomial Coefficients for the uncorrelated case
Variance F‘Igrr;\%;l:/(:;rr;all Variable a1 az as as as as r’
Dispersivity ?m)
102 10/1 Mean -1.25E+00 1.99E-01 2.00E+00 -1.53E-02 -2.36E-02 -6.56E-02 95.5
Standard Dev. 1.41E-01 -1.69E-02 4.25E-01 -2.46E-03 -1.04E-02 -5.32E-03 95.6
6.09 10/1 Mean -1.93E+00 3.36E-01 3.53E+00 -3.54E-02 6.87E-02 -8.17E-02 98.6
Standard Dev. 2.98E-01 -6.58E-02 5.78E-01 7.51E-04 -3.99E-03 -2.32E-02 95.7

12
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Figure 2.5 Contours of (a) Mean Logarithmic Concentration Ratios and (b)
Standard Deviations of Logarithmic Concentration Ratios for Case C1.
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Contours of (a) Mean Logarithmic Concentration Ratios and (b)
Standard Deviations of Logarithmic Concentration Ratios for Case
C13.
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Figure 2.11 Contours of (a) Mean Logarithmic Concentration Ratios and (b)
Standard Deviations of Logarithmic Concentration Ratios for Case U2.
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2.12 (b)
Figure 2.12 Observed vs. Predicted Values of (a) Mean Logarithmic

Concentration Ratios and (b) Standard Deviations of
Logarithmic Concentration Ratios for Case U2.
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2.13 (b)

Figure 2.13 Contours of (a) Mean Logarithmic Concentration Ratios and (b) Standard
Deviations of Logarithmic Concentration Ratios for Case C2.
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2.14 (b)

Figure 2.14 Contours of (a) Mean Logarithmic Concentration Ratios and (b) Standard
Deviations of Logarithmic Concentration Ratios for Case C3.

-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

23




-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

Cut = The nodal concentration from simulation with
heterogeneous materials; and

Cho = The nodal concentration from simulation with
homogeneous materials.

The coefficients were determined by a multiple-regression analysis using the STATISTICA
statistical software package (Statsoft, 1993). Figure 2.6a shows a comparison between the
observed and predicted values (by the polynomial). All the coefficients are listed in Table 2.3.
Fitting for standard deviations are shown in Figure 2.6b and the coefficients are also listed in
Table 2.3. In Figure 2.6 it may be observed that the majority of the mean and standard aviation
values may be accurately predicted of the polynomials.

The effects of the degree of heterogeneity were further evaluated by increasing the variances of
In ¢ and In K by up to an order of magnitude as shown in Table 2.2. The contours of mean
logarithmic concentration ratios and standard deviations of the logarithmic concentration ratios for
case C13 are presented in Figure 2.7 and the contours for the intermediate variances of In ¢ and
In K are presented in Appendix A. As seen in Figure 2.7, the increased variances in /n ¢ and In
K significantly affected the distributions of the mean logarithmic concentration ratios and the
standard deviations of logarithmic concentration ratios. Presented in Figure 2.8 are the observed
versus predicted mean logarithmic concentration ratios and the standard deviations of logarithmic
concentration ratios for Case 13. All the coefficients are listed in Table 2.3.

2.3.2 Uncorrelated Case

Two simulations (U1 and U2) were conducted to evaluate the effects associated with correlation
between logarithmic hydraulic conductivity and porosity. Results are presented in Figures 2.9 to
2.12. Figure 2.9 shows the contours of mean logarithmic concentration ratios and standard
deviations of logarithmic concentration ratios for the small variances of /n ¢ and /n K for the
uncorrelated case (Case U1), which are very similar to the results obtained for the same variances
of the correlated case presented in Figure 2.5. Figure 2.10 presents the observed versus predicted
values for mean logarithmic concentration ratios and standard deviations of logarithmic
concentration ratios for Case Ul. All the coefficients for the uncorrelated case are listed in Table
2.4. Presented in Figure 2.11 are the contours of mean logarithmic concentration ratios and
standard deviations of the logarithmic concentration ratios for the large variances of /n ¢ and In
K (Case U2). Similar to the results from the correlated case, the increased variances in /n ¢ and
In K significantly affected the distributions of the mean logarithmic concentration ratios and the
standard deviations of logarithmic concentration ratios. Presented in Figure 2.12 are the observed
versus predicted mean logarithmic concentration ratios and the standard deviations of logarithmic
concentration ratios for Case U2.

In general, the results based on correlated logarithmic conductivity and porosity are similar to
those without correlation. Additionally, correlation between logarithmic conductivity and porosity
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is more consistent with physical observation. The case of uncorrelated logarithmic conductivity
and porosity was not further investigated.

2.3.3 Dispersivity Effects

Figure 2.13 and 2.14 show the contours of mean logarithmic concentration ratios and standard
deviations of logarithmic concentration ratios for Cases C2 and C3 using two dispersivity values
of 50 and 100 m, respectively. These two values in addition to 10 m were selected to take into
account effects of different dispersivity values in Monte Carlo simulations as presented in section
3. Note that the transverse dispersivity values are 10 percent of the longitudinal dispersivity
values. Results for other variances of /n ¢ and In K using longitudinal dispersivity values of 50
and 100 m are presented in Appendix A. Fitting coefficients are listed in Table 2.3. As seen in
Figures 2.13 and 2.14, increased dispersivity resulted in significant decrease of mean logarithmic
concentration ratios and standard deviations of logarithmic concentration ratios in the simulation
domain. As dispersivity becomes increasingly large, both the mean and standard deviation of the
logarithmic concentrations approach 0 due to the increase of hydrodynamic dispersion.

2.4 TREATMENT OF HETEROGENEITY

In the previous sections, it has been shown that concentration ratios are log-normally distributed.
Alternatively, it can be stated that:

InCy) = In(Cy)) + 1 + N(O) 2.4)

m = u(x, y, o, Var(In K))
= Mean of natural logarithmic concentration ratio
o X c(x, y, o, Var(In K))
= Standard deviation of natural logarithmic concentration ratio

Note that the mean and standard deviation of the logarithmic concentration ratios are expressed in
terms of transverse dispersivity instead of longitudinal dispersivity. For steady-state transport with
asource of finite dimension, it has been shown that the longitudinal dispersion termsin the transport
equation are negligible compared with the transverse dispersion terms and may be omitted from the
transport equation without causing significant errors (Harleman and Rumer, 1963). Transverse
dispersivity values in porous materials are normally expressed as fractions of longitudinal
dispersivity values.

In Equation (2.4), the first two terms on the right hand side represent a redistribution of mean
concentration due to the presence of heterogeneity in the transport domain. The redistribution of
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mass is similar to the effects due to an increase in transverse dispersion. In this document, the
increase in transverse dispersion due to heterogeneity is referred to as macro-dispersion. The last
term represents local stochastic fluctuation of concentration, or perturbation of concentration. One
can see that the effects due to heterogeneity may be divided into two components: the macro-
dispersion effects, described by p; and the local stochastic fluctuation about the mean
concentration associated with spatially varied hydraulic conductivity, described by 6. The macro-
dispersion effects include the effects due to both the local dispersivity and the heterogeneity of the
hydraulic conductivity. In the previous sections, it has also been observed that p and ¢ approach
0, as «; and o, become increasingly large. Therefore, the macro-scale dispersion effects and local
stochastic fluctuation due to the variability of hydraulic conductivity diminish with the increase
of local-scale dispersivity values.

Because the first two terms on the right hand side of Equation (2.4) comprise the combination of
macro-dispersion and local dispersion effects (or total dispersion), the equation may be recast as:

InC, = InC/, + N(Os) 2.5)

Ht

where
Cio = Concentration computed by a modified homogeneous model with the total
transverse dispersivity.

The macro-dispersivity may be given as a function of Var (In K) (Gelhar, 1993), thus:
af = pvar(ink) (2.6)

In Equation (2.6), B isaparameter that relates Var (In K) to macro-dispersivity. Assuming that the
total dispersivity isalinear combination between macro-dispersivity and local dispersivity, the total
transverse dispersivity is given by:

at = o+ oay @.7)

The two-dimensional steady-state transport equation for a conservative solute may be written as
(Gelhar, 1993):

oCi
(G ) ¢

Cro

) 2.8)
oy

Q

0
= o+ Qg
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where

Spatially invariant mean Darcy velocity in the x direction

Distance along the flow direction from the downgradient boundary of the
waste management unit

Distance normal to the flow direction from the center line of the waste
management unit.

Note that in Equation (2.8), the longitudinal dispersion term is omitted. In addition, the equation is
based on the following conditions:

where

q = Q + 0

q, = Q +4q

Elg,] = O 2.9)
Q =0

Elg,] = 0

Spatially varied Darcy velocity in the x direction
Perturbation of Darcy velocity in the x direction
Invariant Mean Darcy velocity in they direction
Spatially varied Darcy velocity in they direction
Perturbation of Darcy velocity in the y direction
Expectation operator.

Using Equations (2.6) and (2.7), Equation (2.8) may be presented in a normalized form as follows:

where:
c
CyoRef
X
y

XWRef

ac*

(2.10)
oy’

oC” = ﬁ + iVar(mK) i
aX/ XW XW 8y/

C/ CoRef

Reference concentration

XIX \yret

YIX wres

Reference waste management (square) unit side dimension (both width and
length).

Equation (2.5) can be restated as:
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C Cro

In—L = In + Inw,,, (2.11)
CoSite CoSite
where @,, = Perturbation of concentration ratio associated with the modified
homogeneous model with total transverse dispersion
Custe = Reference concentration at the site.

From Equation (2.10), it can be stated that for a site subject to similar conditions, the concentration
at location x’, y' may be determined from:

a
Cljogte( X/, y/’ Bgte ’ TSite’ Val’(|nK)Ste)

X o i
c WSite B WStea (2.12)
_ oSite C;ef( X /’ y /’ Ref ’ TRef ’ Var(l nK)Ref)
CoRef XVVRGf WRef

It follows that, in a statistical sense, the corresponding perturbation of concentration ratio may be
determined from:

* : o
mHoSte( X/, y/’ BSte ’ TSite’ Var(an)Ste)

xWS'te WSte (2 13)
o .
= W XY, P R TR Var(InK) )
XWRef WRef

In the above two equations, parameters with the extended subscripts Ref and Ste are the reference
and site parameters, respectively. The reference parameters are those used in Table 2.3.

The parameter 3 is normally expressed as a function of local dispersivities (Gelhar, 1993). Inthe
following analysis, it is assumed that if:

Orgte  OqRef
X (2.14a)

XWRef

WdSte

then, the following condition is automatically true,
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BSite BRef

= (2.14b)
XWSite xWRef
From Equations (2.4), (2.5), and (2.10) to (2.14), it can be stated that:
/ / 0‘TSite _ / / aTRef
HgeX's Y7 Var(InK)g,) = Hpg(X's Y75 ,Var(Ink) ;) (2.15)
xWSite XWRef
and that:
o o
Og Xy V=2 Var(InK)g,) = Opg(X’s ¥ —ro, Var(InK) o) 2.16)
xWSite xWRef

Using Equation (2.4) with the mean and standard deviation given in Equations (2.15), and (2.16),
realizations of steady-state contaminant concentration at any given location X', y' may be generated.
The reference mean and standard deviation in Equations (2.15) and (2.16) may be obtained using
Equation (2.3) and coefficients in Table 2.3. Interpolation between neighboring points may be
necessary.

It should be noted that the analysis has been conducted for the case of steady-state transport. For the
case of transient transport, it is assumed that the concentration difference between the heterogeneous
and the corresponding homogeneous settings is time-invariant and equal to the corresponding
steady-state cases.
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3.0 HETEROGENEITY IN SIMULATIONS BY EPACMTP
3.1 TREATMENT OF HETEROGENEITY

In Section 2.4, it has been shown that:

In(C,) = In(C,) + 1 + N(O,) 3.1)
or, alternatively:
C. = C., C: exp(N(0,0)) 3.2)
where:
Ck = exp(u)
X y Of
w = M —,——,— Var(In K)
XW xW W

= Mean of natural logarithmic concentration ratio
a

X Y T var(in K)

Xw Xw Xw

= Standard deviation of natural logarithmic concentration ratio

() = (&)

Note that x and o may be obtained by multiplying 2.303 to the means and standard deviations of
log,, (C,,/Cy)-

In order to avoid introducing bias into the corrected concentration due to the inclusion of the
stochastic component, the following constraint is applied:

E(CHt) = E(CHOCF) 3.3)

which leads to the following bias correction in Equation (3.2):
exp(N(0,0))
exp(0.5¢%)

c, = C,C

Ht Ho “F

3.4)
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3.2 INCORPORATION OF HETEROGENEITY EFFECTS IN EPACMTP
SIMULATIONS

For the i-th realization in EPACMTP, withi =1, 2, ..., N,

o Generate a well location, Xyg;; i, Ywg ;» ffom a given CDF for well distance, and
normalize the well location using the site-based source dimension, X,;, thus:
5! = x;/(VeII, i
Wi
Y 3.5
s Twali
y =
Xui
o Generate a longitudinal dispersivity, ¢, , from a given CDF for «, , and correct for the well

distance. Generate a corresponding lateral dispersivity, o, from a predetermined
dispersivity ratio o,/ o

° Generate a value of Var(ln K) from a given CDF for Var(in K).

° Use the normalized well location (Equation (3.4)), normalized lateral dispersivity, and
Var(ln K), in conjunction with Equation (3.3) to determine mean of logarithmic
concentration ratio, u, and the associated standard deviation, o, by linear interpolation

between data points in the grid system of values of dispersivity, and variance of /n K.

] Determine a correction factor R as:

r . epWepNOo)

exp(0.562)
3.6)
-30 < N(0,0) <3o;
log,,(exp(K)) < 3
o Determine concentration due to the presence of heterogeneity using the relationship below:
Ci = C,R < C| 3.7
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where

C = concentration at the source

3.3 RESULTS OF EPACMTP SIMULATIONS WITH HETEROGENEITY

A number of EPACMTP simulations, each with 10,000 realizations, were carried out to assess
the potential effects due to the presence of heterogeneity. Relevant site parameters (waste
management unit dimension, and lateral dispersivity) were obtained from the Subtitle D industrial
landfill data base used for HWIR 1995 groundwater pathway analysis (U.S.EPA, 1995, 1997).
In each realization, model prediction correction associated with heterogeneity was introduced
through the procedure outlined in Section 3.2.

There are two cases of potential interest:

° Constant variance of In K

o Probabilistic variance of In K

Results from the above two cases are presented in the following subsections.
3.3.1 Case 1 - Constant Variance of In K

Results from 6 sets of EPACMTP simulations with Var(In K) varying from O to 6.1 are shown in
Figure 3.1. Concentrations corresponding to selected percentiles are shown in Table 3.1. In the
figure and the table, one can readily see that for a given percentile, concentration at receptor well
increases with the increase in Var (In K). In the table, a general trend may be observed. For a
given percentile, the concentrations generated by the heterogeneous model tend to be greater than
those from the homogeneous model. The difference between the two concentrations is
proportional to the value of Var (In K).

3.3.2 Case 2 - Probabilistic Variance of In K - Global Data

A literature search was conducted by Dynamac Corporation (Dynamac Corp., 1998) to determine
the distribution of Var(/n K) nationwide. Based on published information from 98 measurement
sites in 41 locations nationwide, a CDF for Var(In K) is presented in Table 3.2. It should be noted
that the CDF consists of data obtained from multiple test types, often at the same sites. Equal
weights were given to all the Var(ln K) values obtained from different test types. At a site, Var(ln
K) values obtained from different test types were treated as unique data points.

In Section 2, the maximum variance of In K is approximately 6.1 which is greater than Var(In K)
of 94 percent of the measurement sites (92 sites of the total of 97 sites). In the CDF in Table 3.2,

32



-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

the maximum value of Var(ln K) is 13.3. For sites in which Var(ln K) is greater than 6.1, the
value of Var(ln K) was set to 6.1 in the analysis.

Results are shown in Figure 3.2. Concentrations corresponding to selected percentiles are shown
in Table 3.3. Asshown in thetable, the post- 90" percentile val ues of the heterogeneity-influenced
concentrations are from 35 to 48 percent greater than the corresponding homogeneity-based
concentrations.

3.3.3 Case3- Probabilistic Variance of In K - Pump Test Data

Var(In K) values based on pump test data or combined pump test and slug test data were extracted
from the data base used to construct the CDF in Case 2. A CDF based on pump test data and
combined pump test and slug test data is presented in Table 3.4. A total of 10 data sets were
available. Details of these tests are provided in Appendix B of thisreport. This CDF is considered
more realistic than the CDF based on global data used in Section 3.3.2.

The maximum value of Var(Iln K) is 3.34 which is within the range of Var(ln K) values used in
Section 2 to develop correction factors for heterogeneity effects.

Results are shown in Figure 3.3. Concentrations corresponding to selected percentiles are shown
in Table 3.3. Asshown in thetable, the post- 90" percentile values of the heterogeneity-influenced
concentrations are from 9 to 25 percent greater than the corresponding homogeneity-based
concentrations.
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Figure 3.1 Comparison of CDF with and without Heterogeneity for the Case with
Constant Variance of In K: (a) Logarithmic Scale, (b) Logarithmic Scale for
Limited Range, and (c)Arithmetic Scale.
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Table 3.1 Normalized Receptor Well Concentrations for Selected Percentiles: Constant
Variance of Ln (K)

ciC,
Percentile [Homogeneous Constant Variance of In K: (Variance of In K)
Case (1.02) (2.27) (3.53) (4.80) (6.09)
10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
30 2.99E-38 1.20E-36 1.56E-34 9.18E-34 2.07E-33 2.64E-33
40 5.20E-20 1.92E-17 4.12E-15 2.56E-14 6.61E-14 1.22E-13
50 1.57E-12 7.88E-11 4.15E-09 1.92E-08 4.20E-08 5.98E-08
60 1.22E-07 1.14E-06 9.50E-06 2.11E-05 3.29E-05 4 .57E-05
70 4.89E-05 2.12E-04 8.38E-04 1.43E-03 1.85E-03 2.16E-03
80 2.32E-03 5.11E-03 1.11E-02 1.62E-02 2.00E-02 2.20E-02
85 1.41E-02 1.99E-02 3.51E-02 4.50E-02 5.24E-02 5.65E-02
86 1.91E-02 2.57E-02 4.18E-02 5.36E-02 6.20E-02 6.83E-02
87 2.55E-02 3.19E-02 5.28E-02 6.65E-02 7.54E-02 7.86E-02
88 3.42E-02 4.12E-02 6.68E-02 7.94E-02 8.85E-02 9.66E-02
89 4.64E-02 5.38E-02 8.16E-02 9.73E-02 1.09E-01 1.19E-01
90 6.46E-02 7.15E-02 1.00E-01 1.20E-01 1.33E-01 1.45E-01]
91 8.54E-02 9.06E-02 1.23E-01 1.51E-01 1.64E-01 1.74E-01
92 1.11E-01 1.14E-01 1.51E-01 1.83E-01 1.97E-01 2.12E-01
93 1.42E-01 1.42E-01 1.85E-01 2.21E-01 2.39E-01 2.63E-01
94 1.82E-01 1.85E-01 2.30E-01 2.73E-01 3.04E-01 3.37E-01
95 2.42E-01 2.35E-01 2.84E-01 3.47E-01 3.79E-01 4.11E-0]
96 3.08E-01 3.07E-01 3.47E-01 4.37E-01 4.91E-01 5.44E-01
97 3.85E-01 3.80E-01 4 50E-01 5.77E-01 6.64E-01 7.44E-01
98 4.91E-01 4.92E-01 6.02E-01 8.10E-01 1.00E+00 1.00E+00)
99 6.62E-01 6.81E-01 8.89E-01 1.00E+00 1.00E+00 1.00E+00)
100 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00)

-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

36




-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

Table 3.2 Distribution of Variances of log K and In K - Global Data.

Cumulative Probability Var(Log K) Var(ln K)
0.0 0.0 0.0
0.38 0.1 0.53
0.40 0.2 1.06
0.49 0.3 1.59
0.58 0.4 2.12
0.62 0.5 2.65
0.70 0.6 3.18
0.75 0.7 3.71
0.80 0.8 4.24
0.85 0.9 4.77
0.90 1.0 5.30
0.94 1.1 5.83
0.97 1.5 7.96
0.99 2.0 10.6
1.00 2.5 13.3
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Figure 3.2  Comparison of CDF with and without Heterogeneity for the
Case with Probabilistic Variance of /n K - Global Data
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Table 3.3 Normalized Receptor Well Concentrations for Selected Percentiles: Global Ln
(K) Data and Pump-Test Ln (K) Data

ciC,
Percentile (jomogeneous Probabilistic Variance of In K
Case Global data® | Pump test data®
10 0.00E+00 0.00E+00 0.00E+00
20 0.00E+00 0.00E+00 0.00E+00
30 2.99E-38 6.99E-35 8.07E-36
40 5.20E-20 5.05E-16 9.72E-17
50 1.57E-12 1.57E-09 3.39E-10
60 1.22E-07 5.42E-06 2.46E-06
70 4.89E-05 5.65E-04 3.52E-04
80 2.32E-03 9.31E-03 6.56E-03
85 1.41E-02 3.03E-02 2.52E-02
86 1.91E-02 3.85E-02 3.08E-02
87 2.55E-02 4.78E-02 3.89E-02
88 3.42E-02 6.10E-02 4.90E-02
89 4.64E-02 7.52E-02 6.37E-02
90 6.46E-02 9.55E-02 8.08E-02
91 8.54E-02 1.18E-01 1.01E-01
92 1.11E-01 1.44E-01 1.27E-01
93 1.42E-01 1.82E-01 1.57E-01
94 1.82E-01 2.28E-01 1.99E-01
95 2.42E-01 2.87E-01 2.55E-01
96 3.08E-01 3.54E-01 3.26E-01
97 3.85E-01 4.63E-01 4.05E-01
98 4.91E-01 6.20E-01 5.45E-01
99 6.62E-01 9.15E-01 7.26E-01
100 1.00E+00 1.00E+00 1.00E+00

Notes: (1) Variance of In K derived from al types of test in the data base (Dynamac Corp.,
1998).
(2 Variance of In K derived from pump test and slug test dataiin the data base (Dynamac
Corp., 1998). See also Appendix B.
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Figure 3.3  Comparison of CDF with and without Heterogeneity for the
Case with Probabilistic Variance of In K - Pump Test Data
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Table 3.4 Distribution of Variances of log K and In K - Pump Test Data.

Cumulative Probability Var(Log K) Var(ln K)
0.0 0.00 0.0
0.20 0.01 0.05
0.30 0.03 0.16
0.40 0.06 0.32
0.50 0.07 0.37
0.60 0.08 0.42
0.70 0.34 1.80
0.80 0.40 2.12
0.90 0.55 2.92
1.00 0.63 3.34
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4.0 SUMMARY

A methodology to incorporate the effects due to heterogeneity into the Monte-Carlo analysis of
groundwater pathway risk assessment has been developed. A numerical model in conjunction with
the Fourier Spectral technique was employed to generate a set of realizations of spatially
heterogeneous hydraulic conductivity and porosity, and to perform flow and transport simulations
for the generated realizations. The results were compiled to determine spatial distributions of
means and standard deviations of correction for predicted concentrations.

Results from a set of runs with constant variance of natural logarithm of hydraulic conductivity
indicated that the concentrations generated by the heterogeneous model tend to be greater than
those from the homogeneous model. The difference between the two concentrations is
proportional to the value of variance of natural logarithm of hydraulic conductivity.

Results from a preliminary test with a nationwide distribution of intra-site variance of natural
logarithm of hydraulic conductivity indicated that for the same percentile receptor well
concentrations subjected to heterogeneity are consistently greater than the corresponding
concentrations due to homogeneous settings. Using a CDF of variance of In K based on nation
wide pump test data (or combined pump test and slug test data), the post-90" percentile
concentrations with heterogeneity effects are from 9 to 25 percent greater than the corresponding
concentrations without heterogeneity effects.
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APPENDIX B

AVAILABLE PUMP TEST DATA
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Table B.1 Distribution of hydraulic conductivity values from selected papers.

Log of Hydraulic Conductivity or Variance
Reference & Site Name Aquifer Material #of | Size of Test Estimation Method Permeability of Log
Test |Zone (H/P)
H/P“| Mean Min Max
Way & McKee (1982), fluvial sandstone & 8 120 x 250 m Pump test H -3.80 -3.97 -3.65 0.01
Sweetwater County, WY claystone 75 m thick
Norris (1983), Scioto River sand & gravel outwash (13 7 miles long Pump test H -0.80 -1.00 -0.62 0.01
Valley, OH 40 - 65 ft thick
Urban & Gburek (1988), sandstone aquifer & 12 230x130 m Grain size analysis -4.48 -4.56 -4.30 0.004
Willow Grove, PA shale 17 0.7-12 m thick |pump test -3.15 -3.54 -2.53 0.08
8 groundwater contour H -4.26 -4.57 -3.07 0.25
13 slug test -3.39 -4.25 -2.53 0.34
7 recharge mound -3.09 -3.34 -2.67 0.05
Taffet et al. (1989), San Joaquin |alluvial deposit 33 300 x 500 m Pump & slug tests H -3.87 -5.52 -2.14 0.63
County, CA 6 m thick
Capuano & Jan (1996), Caly & silty-clay 16 2 wells pump test (Theis curve) H -2.46 -2.54 -1.98 0.02
Galveston County, TX 16 8 m thick pump test (Time drawdoun) -2.50 -2.62 -1.87 0.03
Hill (1996), Yuma, AZ fluvial & deltaic 30 20 x 20 miles pump test H -1.23 -1.75 -0.75 0.07
based on Hill (1993) sediments 20-40 ft thick
McCloskey & Finnemore alluvial basin 56 12 x 4 Km 11 pump tests H -1.74 -3.25 -0.62 0.55
(1996), San Jose, CA sand & gravel 100 m thick 45 specific capacity tests
Xiang (1996), Amarillo, TX sand, gravel & clay 4 x4 Km pump test: Theis -2.04 -2.44 -1.61 0.06
11 160 m thick Cooper & Jacob |[H -2.04 -2.44 -1.61 0.06
Neuman -2.40 -2.59 -2.22 0.02
Tompson et al. (1998) alluvial deposit 240 [3.8x3.8 Km pump, slug, and core tests H -2.93 0.34
Livermore, CA 100 m thick

B-2




Zhang & Brusseau (1998), sand: lower 15 m thick (21 4 x4 Km pump test H -2.99 -3.75

Tucson, AZ sand: upper 20 m thick |81 pump test -1.81 -3.75
sand: upper 11 m thick |29 Lab core test -4.74 -6.30
o . e 3 d 2
Notes: Kozeny-Carmen equation: K=() [—2] —)
y24 (1 —n ) 180

@ Hazen equation: K(m/day) = A(d,,)*, A=1.0, d,, = grain diameter (mm)

® Krumbein-Monk equation: K = 760(GM,) ¢6 *'y , GM ;= Geometric mean diameter (mm), ¢ =
standard deviation

@ P = Permeability in cm?*; H = Hydraulic Conductivity in cm/sec.
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