

Appendix D

Techniques for Connecting Between Modules

D.1

Appendix D--Techniques for Connecting Between Modules

One of the key factors in the success of the FRAMES-HWIR Technology Software System is the
interconnections between modules in the Multimedia Multipathway Simulation Processor (MMSP). This
appendix discusses how file names and variable index parameters are accessed by the modules and provide
a variety of techniques to assist in the connection.

Each module has a set of call arguments, which serves two purposes: 1) inform the module about
which invocation of a module is occurring and 2) set the permissions for that module to read and write files.
The following arguments are passed to a module:

GetArgString(1) Always returns the time a simulation is run
GetArgString(2) Always returns the date a simulation is run
GetArgString(3) Always returns the explicit ssf directory location
GetArgString(4) Always returns the explicit grf directory location
GetArgInt(5) Always returns the storage level for a simulation (see Section 8.2 for details)
GetArgString(6) Always returns the Header Datagroup SSF Filename
 This will be hd.ssf
GetArgString(7) Always returns the Site Layout Datagroup SSF Filename

This will be sl<SiteId>.ssf where SiteId will be pulled directly from the Site Based Database
(i.e., slwp123123.ssf for Waste Pile with Site Id 123123)

GetArgString(8) Always returns the Current Modules Datagroup SSF Filename
This will be <Medium File Prefix><MedId>.ssf where <Medium File Prefix> is the two letter model
and <MedId> is the Medium Identifier for a specific medium. The use of MedId is described in
detail later. (e.g., aqlaXYZXYZaq1.ssf would be the aquifers datagroup for site laXYZXYZ aquifer
#1 thus the Medium Identifier is laXYZXYZaq1)

GetArgString(9) Always returns the Chemical Properties Datagroup SSF Filename
This will be cp<Model>.ssf for all media except surface water (e.g., cpar.ssf is the chemical
properties for the air module). The surface water will use arguments 9, 10, and 11 for the three
chemical properties datagroups it will use (e.g., cpWBNStrm.ssf cpWBNLake.ssf,
cpWBNWtlnd.ssf). But since this is consistently named most modules will not need to use this
argument to get the Chemical Properties.

GetArgString(10 - Last-1) Varies depending on modules but is not used by module developers
GetArgString(Last) The output datagroup a module is expected to write its results.

In general a module is expected to be aware of its media identifier. This media identifier is in the
site layout as “<Medium Variable Prefix>Id”. For example, the aquifer media identifier is “AquId”. For a
specific invocation on the module, a module could locate the media identifier by using the GetArgString(8)
call. This call will always return the currently executing module’s site simulation file (SSF) file name, which
contains the module’s media identifier, which is shown between the <Medium File Prefix> at the beginning
and “.ssf” at the end. The Medium Variable Prefixes and Medium File Prefixes are described in Table D.1.

D.2

Table D.1 Mapping of Medium to File Prefix and Variable Prefix

Medium Medium File Prefix Medium Variable Prefix

Landfill lf (SSF) sr (GRF) Src

Waste Pile wp (SSF) sr (GRF) Src

Surface Impoundment si (SSF) sr (GRF) Src

Aerated Tank at (SSF) sr (GRF) Src

Land Application Unit la (SSF) sr (GRF) Src

Vadose Zone vz Vad

Aquifer aq Aqu

Air ar Air

Watershed ws WSSub

Surface Water (or
Waterbody Network)

sw WBN

Farm Foodchain ff FarmFC

Terrestrial Foodchain tf TerrFC

Aquatic Foodchain af AquaFC

Ecological Exposure ee EcoRcp

Human Exposure he HumRcp

Ecological Risk er EcoRcp

Human Risk hr HumRcp

For clarity in the rest of this appendix, the following abbreviations are used for the different
behaviors of modules:

• O = “One at a Time” modules that expect to be executed for each medium of that type.
• A = “All at once” modules that execute all their media at once.
• M = “Modified All At Once” modules that simulate some subset of all the media with each

execution.

The current behavior of the models requires a number of different techniques to be used in the
FRAMES-HWIR Technology Software System. Two queries must be answered for each technique. The
first query is “Give me the information on medium (O) or media (A and M) that impact my module.” The

D.3

second query is “Give me the informaton on the medium (O) or media (A and M) that are impacted by my
module.” The first query looks from the current medium/media being simulated and back toward the
source to determine some information. The second query looks from the current medium/media being
simulated toward the risk. The techniques and example code for both the forward and backward looking
queries are given below for the six different techniques required by the modules in the FRAMES-HWIR
Technology Software System.

Code similar to the examples or “pseudocode” is expected to be used by all modules of all types.
All Medium Identifiers need to have the Medium Prefix and File Extension added when they are going to be
used as a Datagroup Name. For example, if an aquifer has a Medium Identifier of “XYZXYZaq1,” then its
SSF Data Group would be “aqXYZXYZaq1.ssf,” and its Global Results Files (GRF) Data Group would be
“aqXYZXYZaq1.grf”. Table D.1 shows the relationship between Medium, Medium File Prefix, and
Medium Variable Prefix for the Site Layout Data Group.

!Standard Preamble Code
!The psuedo code leans heavily towards being written in FORTRAN but I assume the C/C++
! programmers can adapt.
!Get Site Layout datagroup name
Call GetArgString(7,SLGroup)
!Get Medium Identifier
Call GetArgString(8,MedId)
!Remove the first two characters of the MedId and the last 4
MedId=MedId(3:Len(MedId)-4)
!Find media Index and Sub Media Index
NumMed=ReadInt(SLGroup,”Num<Med>”,”“)
!For all the media of this type
do I=1,NumMed
!Get the Medium Identifier

ReadString(SLGroup,”<Med>Id”,”“,TestMedId)
if (TestMedId.eq.MedId) MedIndex=I

end do
! At the end of this code the variable SLGroup, MedId and MedIndex are defined

Given the behavior of the current modules, a number of different Site Layout Data Group access
techniques will need to be used. Table D.2 shows the modules using the Medium File Prefix and the O, A,
or M specifier to identify the behavior of each module. The table also shows which of the techniques will
be needed for each module. For example, Table D.2 states that for the Aquifer Module, the following
techniques might be needed:

1) Vadose Zone -> Aquifer uses Technique 1 Backward
2) Aquifer -> Surfacewater uses Technique 3 Forward
3) Aquifer -> Farm Foodchain uses Technique 2 Forward
4) Aquifer -> Human Exposure uses Technique 2 Forward

D.4

For the waterbody network or surface water module the following techniques might be needed:

1) Aquifer -> Waterbody Network uses Technique 3 Backward
2) Air -> Waterbody Network uses Technique 3 Backward
3) Watershed -> Waterbody Network uses Technique 4 Backward
4) Waterbody Network -> Farm Foodchain uses Technique 6 Forward
5) Waterbody Network -> Terrestrial Foodchain uses Technique 6 Forward
6) Waterbody Network -> Aquatic Foodchain uses Technique 6 Forward
7) Waterbody Network -> Ecological Exposure uses Technique 6 Forward
8) Waterbody Network -> Human Exposure uses Technique 6 Forward

Table D.2 Mapping of Modules to Techniques for Reading Data (a)

From

O O O O O O O O A M A A A A A

To lf wp si at la vz aq ar ws sw ff tf af ee he

O vz 1 1 1 1 1

O aq ?1 ?1 ?1 ?1 ?1 1

O ar 1 1 1 1 1

A ws 2

M sw 3 3 4

A ff 2 5 6

A tf 5 6

A af 6

A ee 6 5 ?5

A he 2 2 5 6 5 5

A er 5

A hr 5

(a) O = “One at a Time”
A = “All at once”
M = “Modified All At Once”
1-6 Represent Techniques 1-6 described below
(? Represents not sure of connection)
wp,la,lf,..etc. Represent the two letter prefix for the modules

D.5

For each of the techniques detailed below, the <Src> and <src prefix> represents a medium or media that
impacts a module, and <Out> and <out prefix> represents a medium or media that a module impacts.
<Med> and <med prefix> represent the medium represented by the current module. <Med>, <Src>, and
<Out> are the Medium Variable Prefix described in Table D.1. <med prefix>, <src prefix>, and <out
prefix> are the Medium File Prefixes also in Table D.1.

D.1 Technique 1: O -> O

D.1.1 Technique 1, Backward Looking

To look “backward” in the site layout, the program must read the media’s information in the Site
Layout Data Group. Because the data are stored with a bias toward backward looking, this is the simpliest
technique that will be used.

!How many of these media impact my medium
NumSrc=ReadInt1(SLGroup,”<Med>Num<Src>”,”“,MedIndex)
do i=1,NumSrc

!What are the indices for those media
SrcIndex(i)=ReadInt2(SLGroup,”<Med><Src>Index”,”“,MedIndex,i)
!What are the fractions for those media
SrcFract(i)=ReadReal2(SLGroup,”<Med><Src>Fract”,”“,MedIndex,i)
!What are the Names of the datagroups for those media
ReadString1(SLGroup,”<Src>Id”,”“,SrcIndex,SrcGroup(i))
!Add module prefix and .grf toSrcGroup
SrcGroup(i)=”<src prefix>”+SrcGroup(i)+”.grf”

end do
! Now SrcGroup(i) is an array of datagroups to read from

!Example use of data:
! As an example read the flux rate from all the source
Con=1
Time=1
do I=1,NumSrc

Flux(i,Con,Time)=ReadReal2(SrcGroup(i),”Flux”,”g/yr”,Con,Time)
end do

D.1.2 Technique 1, Forward Looking

To look forward with this type of connection, the program needs to read the Site Layout Data
Group information for the module’s output medium. Remember that the Site Layout Data Group is
intended to be used by any module that needs it.

! How many of a particular output media type are there
NumAllOut=ReadInt(SLGroup,”<Out>Num”,”“)
! Loop through all the output media type

D.6

NumOut=0
do I=1,NumAllOut

!How many sources of the same type as my module are there
NumSrc=ReadInt1(SLGroup,”<Out>Num<Med>”,”“,i)
!Loop through all the sources of this type for the output media type
do j=1,NumSrc

!Is this media impacted by my module
SrcIndex=ReadInt2(SLGroup,”<Out><Med>Index”,”“,i,j)
!Store the indices of module of this type that use my output
If (SrcIndex.eq.MedIndex) then

OutIndex(NumOut)=I
OutCount=NumOut+1

End if
end do

end do
!At the end of this you have NumOut which represents the number of a type
!of output media that are impacted by your module and OutIndex which are the
!indices of those output media.

!Example use of data:
! As an example if the vadose zone needed to know gw flow direction
do I=1,NumOut

GwDir(i)=ReadReal1(SLGroup,”GWDir”,”degrees”,OutIndex(i))
end do

D.2 Technique 2: O -> A

D.2.1 Technique 2, Backward Looking

This is slightly more complicated than the O->O because the SrcGroup array in this technique has
the additional index of media. The additional index requires an additional loop in reading the pertainent Site
Layout Data Group information.

!How many of these media impact my medium
NumMed=ReadInt(SLGroup,”Num<Med>”,”“)
do i=1,NumMed

NumSrc=ReadInt1(SLGroup,”<Med>Num<Src>”,”“,i)
do j=1,NumSrc

!What are the indices for those media
SrcIndex(i,j)=ReadInt2(SLGroup,”<Med><Src>Index”,”“,i,j)
!What are the fractions for those media
SrcFract(i,j)=ReadReal2(SLGroup,”<Med><Src>Fract”,”“,i,j)
!What are the Names of the datagroups for those media
ReadString1(SLGroup,”<Src>Id”,”“,SrcIndex,SrcGroup(i,j))
!Add module prefix and .grf toSrcGroup

D.7

SrcGroup(i,j)=”<src prefix>”+SrcGroup(i,j)+”.grf”
end do

! Now SrcGroup(NumMed,NumSrc) is an array of datagroups to read

!Example use of data:
! As an example read the air concentration results
!Con and Time represent the Chemical and Time indices of interest
! Even though for HWIR 99 only one air simulation is expected be
Con=1
Time=1
do i=1,NumMed

do j=1,NumSrc
Flux(i,j,Con,Time)=ReadReal2(SrcGroup(i,j),”SoilConc”, +

”g/yr”,Con,Time)
end do

end do

D.2.2. Technique 2, Forward Looking

This technique is the same as that described in Section D.1.2.

D.3 Technique 3: O -> M

D.3.1 Technique 3, Backward Looking

The backward-looking version of this technique is a mixture of the backward-looking versions of
Techniques 1 and 2 (see Sections D.1.1 and D.2.1, respectively). There is an additional index on the
SrcGroup variable; however, the technique makes use of the MedIndex read in the Standard Preamble
Code. <SubMed> in this psuedo code represents the media that are executed together for a given media.
To be explicit <Med> would be replace with WBN and <SubMed> would be replaced by Rch for the
waterbody network module.

!How many of these media impact my medium
NumSubMed=ReadInt1(SLGroup,”<Med>Num<SubMed>”,”“,MedIndex)
do i=1,NumSubMed

NumSrc=ReadInt2(SLGroup,”<Med><SubMed>Num<Src>”,”“,MedIndex,i)
do j=1,NumSrc

!What are the indices for those media
SrcIndex(i,j)=ReadInt3(SLGroup,”<Med><SubMed><Src>Index”, +
”“,MedIndex,i,j)
!What are the fractions for those media
SrcFract(i,j)=ReadReal3(SLGroup,”<Med><SubMed><Src>Fract”, +

”“,MedIndex,i,j)
!What are the Names of the datagroups for those media
ReadString1(SLGroup,”<Src>Id”,”“,SrcIndex,SrcGroup(i,j))

D.8

!Add module prefix and .grf toSrcGroup
SrcGroup(i,j)=”<src prefix>”+SrcGroup(i,j)+”.grf”

end do
! Now SrcGroup(i,j) is an array of datagroups to read from by NumSubMed and NumSrc

!Example use of data:
! The example would be similar to that of O->A Backward

D.3.2 Technique 3, Forward Looking

This technique is the same as that in Section D.1.1, Technique 1, Forward Looking.

D.4 Technique 4: A -> M

D.4.1 Technique 4, Backward Looking

This technique is simpler than the the backward-looking versions of Techniques 2 or 3 because the
indices on the SrcGroup are reduced. This technique also makes use of the MedIndex read in the Standard
Preamble Code. <SubMed> in this psuedo code represents the media that are executed together for a given
media.

!How many of these media impact my medium
NumSubMed=ReadInt1(SLGroup,”<Med>Num<SubMed>”,”“,MedIndex)
do i=1,NumSubMed

NumSrc(i)=ReadInt2(SLGroup,”<Med><SubMed>Num<Src>”,”“,MedIndex,i)
do j=1,NumSrc(i)

!What are the indices for those media
SrcIndex(i,j)=ReadInt3(SLGroup,”<Med><Src>Index”,”“,MedIndex,i,j)
!What are the fractions for those media
SrcFract(i,j)=ReadReal3(SLGroup,”<Med><Src>Fract”, +
”“,MedIndex,i,j)
!What are the Names of the datagroups for those media
ReadString1(SLGroup,”<Src>Id”,”“,SrcIndex,SrcGroup(i,j))
!Add module prefix and .grf toSrcGroup

end do
SrcGroup=<src prefix>+”.grf”
! Now SrcGroup is the datagroup to read from for results from this media

!Example use of data:
!A Waterbody Network reading loading from the Watershed
!Con and Time represent the Chemical and Time indices of interest
Con=1
Time=1
! For each waterbody in this waterbody network
do I=1,NumSubMed

D.9

! For each source to that waterbody
do j=1,NumSrc(i)

! Read loadings
SoilCon(i,j,Con,Time)=ReadReal3(SrcGroup,”Loading”,

+ ”g/y”,SrcIndex(i,j),Con,Time);
end do

end do

D.4.2 Technique 4, Forward Looking

To look forward with this type of connection, the program needs to read the Site Layout Data
Group information for the module’s output medium.

! Loop through all the output media type
do I=1,NumMed

NumOut(i)=0
end do
! How many of a particular output media type are there
NumAllOut=ReadInt(SLGroup,”<Out>Num”,”“)
do I=1,NumAllOut

!How many Sub-Media are there in the output
NumSubOut=ReadInt1(SLGroup,”<Out>Num<SubOut>”,”“,i)
do j=1, NumSubOut

!How many sources of the same type as my module are there
NumSrc=ReadInt2(SLGroup,”<Out>Num<Med>”,”“,i,j)
!Loop through all the sources of this type for the output media type
do k=1,NumSrc

SrcIndex=ReadInt3(SLGroup,”<Out><Med>Index”,”“,i,j,k)
OutIndex(SrcIndex,NumOut(i))=j
OutSubIndex(SrcIndex,NumOut(i))=k
NumOut(i)=NumOut(i)+1

end do
end do

end do
! At the end of this you have NumOut(i) which represents the number of a type
! of output media that are impacted by your module, OutIndex(NumMed,NumOut) which
! are the indices of those output media, and OutSubIndex(NumMed,NumOut) which is the
! Sub Media Index. Explicitily OutIndex would be WBNIndex and OutSubIndex would
! be WBNReach Index

!Example use of data:
! As an example if watershed needed the waterbody type for each waterbody reach
do I=1,NumMed

do j=1,NumOut(i)
ReadString2(SLGroup,”WBNRchType”,””,

+ OutIndex(i,j),OutSubIndex(i,j))
end do

end do

D.10

D.5 Technique 5: A -> A

D.5.1 Technique 5, Backward Looking

This is a simpler case of reading the Site Layout Data Group that is used in the backward-looking
version of Technique 4 because the loop on NumSubMed is not needed.

!How many of these media impact my medium
NumMed=ReadInt(SLGroup,”Num<Med>”,”“)
do I=1,NumMed

NumSrc(i)=ReadInt1(SLGroup,”<Med>Num<Src>”,”“,i)
do j=1,NumSrc

!What are the indices for those media
SrcIndex(i,j)=ReadInt2(SLGroup,”<Med><Src>Index”,”“,i,j)
!What are the fractions for those media
SrcFract(i,j)=ReadReal2(SLGroup,”<Med><Src>Fract”,”“,i,j)

end do
end do
SrcGroup=<src prefix>+”.grf”
! Now SrcGroup is the datagroup to read from for results from this media

!Example use of data:
!A Farm Foodchain reading soil concentrations from a Watershed result
!Con and Time represent the Chemical and Time indices of interest
Con=1
Time=1
! For each farm foodchain
do I=1,NumMed

! For each source to that foodchain
do j=1,NumSrc(i)

! Read soil concentration
SoilCon(i,j,Con,Time)=ReadReal3(SrcGroup,”SoilConc”,

+ ”g/kg”,SrcIndex(i,j),Con,Time);
end do

end do

D.5.2 Technique 5, Forward Looking

To look forward with this type of connection, the program needs to read the Site Layout Data
Group information for the module’s output medium.

! Loop through all the output media type
do I=1,NumMed

NumOut(i)=0
end do
! How many of a particular output media type are there

D.11

NumAllOut=ReadInt(SLGroup,”<Out>Num”,”“)
do I=1,NumAllOut

!How many sources of the same type as my module are there
NumSrc=ReadInt1(SLGroup,”<Out>Num<Med>”,”“,i)
!Loop through all the sources of this type for the output media type
do j=1,NumSrc

SrcIndex=ReadInt2(SLGroup,”<Out><Med>Index”,”“,i,j)
OutIndex(SrcIndex,NumOut(i))=j
NumOut(i)=NumOut(i)+1

end do
end do
!At the end of this you have NumOut(i) which represents the number of a type
!of output media that are impacted by your module and OutIndex(i,j) which are the
!indices of those output media.

!Example use of data:
! As an example if farm foodchain needed the human receptors type
do I=1,NumMed

do j=1,NumOut(i)
FarmFract(i,j)=ReadReal2(SLGroup,”HumRcpType”,””,

+ OutIndex(i,j))
end do

end do

D.6 Technique 6: M -> A

D.6.1 Technique 6, Backward Looking

This technique is more complicated than the backward-looking version of Technique 5 because the
SrcGroup array in this technique has the additional index of media. The additional index requires an
additional loop in reading the pertainent Site Layout Data Group information.

!How many of these media impact my medium
NumMed=ReadInt(SLGroup,”Num<Med>”,”“)
do I=1,NumMed

NumSrc(i)=ReadInt1(SLGroup,”<Med>Num<Src>”,”“,i)
do j=1,NumSrc(i)

!What are the indices for those media
SrcIndex(i,j)=ReadInt2(SLGroup,”<Med><Src>Index”,”“,i,j)
SrcSubIndex(i,j)=ReadInt2(SLGroup,”<Med><Src><SubSrc>Index”,

+ ”“,i,j)
!What are the fractions for those media
SrcFract(i,j)=ReadReal2(SLGroup,”<Med><Src>Fract”,

+ ”“,i,j)
 ReadString2(SLGroup,”<Src>Id”,”“,i,j,SrcGroup(i,j))

D.12

!Add module prefix and .grf toSrcGroup
SrcGroup(i,j)=”<src prefix>”+SrcGroup(i,j)+”.grf”

end do
end do
! Now SrcGroup(i,j) is an array of datagroups to read from by NumMed and NumSrc

!Example use of data:
! For example a Farm Foodchain reads Waterbody Network Results water concentrations
! For all farms
!Con and Time represent the Chemical and Time indices of interest
Con=1
Time=1
do I=1,NumMed

!For all sources to those farms
do j=1,NumSrc(i)

WatConc(i,j)=ReadReal3(SrcGroup(i,j),”WatConc”,”g/ml”,SrcIndex(i,j),
+ SrcSubIndex(i,j),Con,Time)

end do
end do

D.6.2 Technique 6, Forward Looking

To look forward with this type of connection, the program needs to read the Site Layout Data
Group information for the module’s output medium. It is basically the same as the forward-looking portion
of Technique 5, with an additional index for the sub-medium. This technique is only to be used by the
waterbody network (surface water) module, and thus the sub-medium is the Waterbody Reach.

! Loop through all the output media type
do I=1,NumMed

NumOut(i)=0
end do
! How many of a particular output media type are there
NumAllOut=ReadInt(SLGroup,”<Out>Num”,”“)
do I=1,NumAllOut

!How many sources of the same type as my module are there
NumSrc=ReadInt1(SLGroup,”<Out>Num<Med>”,”“,i)
!Loop through all the sources of this type for the output media type
do j=1,NumSrc

SrcIndex=ReadInt2(SLGroup,”<Out><Med>Index”,”“,i,j)
SrcSubIndex=ReadInt2(SLGroup,”<Out><SubMed>Index”,”“,i,j)
If (SrcIndex.eq.MedIndex) then

 OutIndex(SrcSubIndex,NumOut(i))=j
NumOut(i)=NumOut(i)+1

end if
end do

end do
!At the end of this you have NumOut(i) which represents the number of a type

D.13

!of output media that are impacted by your module and OutIndex(i,j) which are the
!indices of those output media.

!Example use of data:
! As an example if the farm foodchain needed the human receptors
! type
do I=1,NumMed

do j=1,NumOut(i)
FarmFract(i,j)=ReadReal2(SLGroup,”HumRcpType”,””,

+ OutIndex(i,j))
end do

end do

