

Addressing Data Gaps That Remain Before the Remedy Can Be Selected

WHAT ARE APPROPRIATE MEDIA CLEANUP STANDARDS?

۲

Agenda: Appropriate Media Cleanup Standards

- Media cleanup standards defined
- Examples of media cleanup standards
- Factors to consider when selecting media cleanup standards
- How site-specific risk-based media cleanup standards are developed

Media Cleanup Standards Defined

 Risk-based concentrations of contaminants for specific media that must be achieved for a corrective measure to be protective of human and ecological receptors under current and future land use conditions

<u>Carcinogens</u>: Based on EPA's acceptable target risk range of 10^{-4} to 10^{-6} , with 10^{-6} typically used as point of departure

Non-carcinogens: Based on a hazard quotient less than or equal to 1.0

- Non-risk-based media cleanup standards are levels that have been set, for whatever reason, as benchmarks for cleanup
 - For example, background concentrations for metals like arsenic
- Also commonly known as remedial goals or corrective action goals

Media Cleanup Standards Defined (cont.)

- Media cleanup standards are selected as the goal of corrective measures implementation
 - For example, a remedy for lead contamination in soil might be to excavate all soil containing lead at concentrations greater than 400 mg/kg
- Used to determine the success of corrective measures
- Very dependent on land use, exposure assumptions, and level of protection required

Commonly Used Media Cleanup Standards

Human Health Standards

- Maximum Contaminant Levels (MCLs)
- Federal and State Water Quality Standards
- EPA Region 9 Preliminary Remediation Goals (PRGs)
- Florida's Contaminant Cleanup Target Levels (F.A.C. 62-777)
- North Carolina Hazardous Waste Section Soil Screening Levels
- Site-Specific Concentrations
- Alternate Concentration Limits
- Site Background Concentrations

Ecological Standards

- NOAA Screening Quick Reference Tables (SQuiRTs)
- ORNL Ecotoxicological Screening Benchmarks
- EPA Region 5 Ecological Screening Levels (ESLs)

Important Media Cleanup Standard Concepts

- Site-specific media cleanup standards (MCSs) must consider all complete exposure pathways
- Selected MCSs should consider presence of multiple contaminants
- Consideration of conditional remedies
 - Prevent further degradation of media
 - Monitoring is continued
 - Institutional or other controls utilized
 - Complies with waste management standards
- Consideration of current and future land use
 - Unrestricted versus restricted exposure scenarios

How Are Risk-Based Media Cleanup Standards Developed?

- Risk-based media cleanup standards are developed by performing a risk assessment in reverse
- Back-calculated from a specific target risk level (e.g., 1 x 10⁻⁶) or a target hazard quotient (e.g., 1.0)
- Developed by evaluating potential risks posed by contaminants and media in question and considering:
 - Toxicity of constituents of concern
 - Human and ecological receptors
 - Receptor exposure assumptions
 - Exposure pathways
 - Fate and transport characteristics
 - Current and future land use

How Are Risk-Based Media Cleanup Standards Calculated?

Receptor	Off-Site Resident	On-Site Worker	Construction Worker
Exposure Frequency (d/yr)	350	225	Site-specific
Exposure Duration (yr)	30 (24 adult and 6 child)	25	Site-specific
Soil Ingestion Rate (mg/d)	200 (child) 100 (adult)	50–100	330
Drinking Water Ingestion Rate (L/d)	2	2	2
Inhalation Rate (m ³ /d)	20	20	20
Surface Area Exposed (cm ²)	2,800 (child) 5,700 (adult)	3,300	3,300
Adherence Factor (mg/cm ²)	0.02 (child) 0.07 (adult)	0.2	0.3
Body Weight (kg)	15 (child) 70 (adult)	70	70

Calculating Risk-Based Media Cleanup Standards

Ingestion of Benzene in Soil

On-Site Worker

Parameter	Units	Value
Target Risk (TR)	unitless	1 x 10 ⁻⁶
Body Weight (BW)	kg	70
Averaging Time (AT)	days	5,625 (EF x ED)
Soil Ingestion Rate (IR)	mg	100
Conversion Factor (CF)	kg/mg	1 x 10 ⁻⁶
Fraction Ingested (FI)	unitless	1.0
Exposure Frequency (EF)	days	225
Exposure Duration (ED)	years	25
Slope Factor (SF)	mg/kg-day ⁻¹	5.5 x 10 ⁻²

Calculating Risk-Based Media Cleanup Standards

Ingestion of Benzene in Soil

Construction Worker

Parameter	Units	Value
Target Risk (TR)	unitless	1 x 10 ⁻⁶
Body Weight (BW)	kg	70
Averaging Time (AT)	days	5,625 (EF x ED)
Soil Ingestion Rate (IR)	mg	330
Conversion Factor (CF)	kg/mg	1 x 10 ⁻⁶
Fraction Ingested (FI)	unitless	1.0
Exposure Frequency (EF)	days	250
Exposure Duration (ED)	years	1
Slope Factor (SF)	mg/kg-day ⁻¹	5.5 x 10 ⁻²

Guidance/References

- U.S. Environmental Protection Agency. <u>Risk-Based Clean Closure</u> <u>Memorandum</u>. March 16, 1998.
- U.S. Environmental Protection Agency. <u>RCRA Facility Investigation</u> (<u>RFI) Guidance</u>. July 26, 1989. (OSWER Directive 9502.00-6D).
- U.S. Environmental Protection Agency. <u>Risk Assessment Guidance</u> for Superfund: Volume I, Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals. December 1991. (OSWER Directive 9285.7-01B).

http://www.epa.gov/Region9/waste/sfund/prg/index.htm