

Preamble

CAS #	CONSTITUENT	Wastewater	Nonwastewater			
			TOTALS	LEACH		
75-07-0	Acetaldehyde (ethanal)					
98-82-8	Cumene	.67	18,000	2.5		
124-40- 3	Dimethylamine					
110-00- 9	Furan	.16	1300	.06		
79-10-7	Acrylic acid	No exit levels because no EQC is available for this constituent. The criteria for				
98-01-1	2- Furancarboxaldehyde (furfural)	exit would be to meet LDR treatment standards in Section 268.				

Table 1: Constituents Not on Appendices VII, VIII, or IX

CASNUM	Constituent	NWW TOTALS	NWW LEACH	WW TOTALS
96-45-7	Ethylene thiourea	0.51	0.00017	.00053
62-38-4	Phenyl mercuric acetate	0.0093	0.0045	0.012

Table 2: Modeled Constituents Without EQCs

Table 3. EPACMTP Modeling Options Management Industrial Subtitle D: Scenarios: Landfill i) ii) Surface Impoundment iii) Waste Pile iv) Land Application Unit M o d e l i n q Finite Source Monte Carlo; Scenario: Regulatory 90% (yields an approximate DAF of 10 for a Protection Level: continuous source landfill) S o u r c e Parameters: Waste Unit Area: Site based, form OSW Industrial Subtitle D Survey Unit Site based, from OSW Industrial Subtitle D Waste Volume: Survey Infiltration Rate: Landfill: Site-based, derived from water balance using HELP model Surface Site-based, derived from impoundment depth Impoundment: using Darcy's law Waste Pile: Site-based derived from water balance using HELP model Land Application Site-based, derived from water balance using HELP model Unit Leaching Duration: Landfill Derived, continues until all constituent has leached out Surface 20 years (operational life of waste unit) Impoundment 20 years (operational life of waste unit) <u>Waste Pile</u> <u>Land</u> Application 40 years <u>Unit</u> Chemical Specific Parameters: Decay Rate: <u>Organics</u> Hydrolysis rates based on measurements or based on appropriate structure-activity relationships Metals No decay

Sorption:	
Organics:	K_{oc} estimated from K_{ow} , which is based on
	measurements or based on appropriate
	structure-activity relationships
<u>Metals</u> :	MINTEQ sorption isotherms (Pb, Hg, Ni, Cr
	(III), Ba, Cd)
	pH dependent isotherms (As, Cr (VI), Se (VI),
	Th)

Unsaturated Zone Parameters:

Depth	t o	Site-base	ed,	from	API/	JSGS	hyd	droged	ologic
groundwater:		database							
Soil Hydrauli	С	National	dist	ribution	for	the	main	soil	types
Parameters:									
Fraction Orga	nic	National	dist	ribution	for	the	main	soil	types
Carbon:									
Bulk Density:		National	dist	ribution	for	the	main	soil	types

Saturated Zone Parameters:

Recharge Rate:	Site-ba	,	deriv		
	precipitat	-			
Saturated	Site-based,	, irom	API/USGS	hydroc	geologic
Thickness:	database				
Hydraulic	Site-based,	, from	API/USGS	hydroc	geologic
Conductivity:	database				
Porosity:	Effective	porosity	derived	from r	national
_	distributio	on of aqui:	fer partic	le diame	eter
Bulk Density:	Derived from	om porosity	Y		
Dispersivity:	Derived fr	om a natio	onal distr	ibution	and is
	based on di	istance to	the recept	tor well	
Groundwater	Site-based,	, from USGS	s regional	temperat	ture map
Temperature:	National				STORET
Fraction Organic	database				
Carbon:	National	distributi	lon, from	ı EPA	STORET
рН	database		- ,		
T					

Receptor Well Location:

	Nationwide distribution based the survey
Angle Off-Center:	Uniform within \pm 90° from plume centerline (no restriction to be within plume)
	1
±	Uniform throughout saturated thickness of aquifer

Table 4Effect of 1,000 year versus 10,000 year modeling timehorizon on leachate concentration limit

k_{oc} (cm ³ /g)	10,000 years	1,000 years
0.0	1.0	1.0
3,384 (R=10)	1.0	1.2
37,224 (R=100)	1.0	60

Table 5 Aggregate effect of modeling alternatives on leachate concentration limits for non-degrading, non-sorbing constituents for four waste management scenarios

Waste		
Management Scenario	HWIR proposal	Alternative Options
Landfill	1.0	0.71
Surface Impoundment	0.22	0.27
Waste Pile	0.29	484
Land Application Unit	0.08	0.22