

On-Line Calculators for Site Assessment Calculations

> Jim Weaver Hydrologist

Region 3 RCRA Corrective Action Workshop September 15, 2004

Building a scientific foundation for sound environmenta decisions

The OnSite On-Line Site Evaluation Tools

- Aid to planning site assessment
 - "What is the travel time to the next proposed downgradient receptor well?"
- Review of modeling reports
 - "Should they really have used 10 as the retardation factor for benzene?"
- Enhance contaminant transport knowledge
 - "How does aquifer recharge affect contaminant plumes?"

Building a scientific foundation for sound environmenta decisions

On-Line Calculators & Web-Enabled Models

- <u>http://www.epa.gov/athens/onsite</u>
 - Formulas
 - Models
 - Unit Conversions
 - Scientific Demos
- On the web since 1999
- As many as 30k hits/month
- Modeling Course on Web also

Building a scientific foundation for sound environmental decisions

Calculators -- Formulas

- Hydraulic gradient (2,3, or more points)
- Vertical Gradients
- Moisture Content
- Retardation Factor
- Henry's Law Coefficients
- Longitudinal Dispersivity
- Diffusion Coefficients
- · Darcy's Law, Seepage Velocity
- · Effective Solubility from Mixtures

Building a scientific foundation for sound environmenta decisions

Calculators -- Models

- Plume Diving
- Steady State Plume Length
- Transport from continuing or fuel source
- Concentration Uncertainty
- Domenico Analytical Solutions
- Johnson-Ettinger Vapor Intrusion

Building a scientific foundation for sound environmenta decisions

Calculators – Unit Conversions

- Flow Rates, Hydraulic Conductivity
- Half Lives/Rate Constants
- Henry's Law Coefficients
- · Dates to sequential time
- Lat-Long to distance
- Fahrenheit to Celsius

Building a scientific foundation for sound environmenta decisions

Calculators -- Demos

- Borehole Concentration Averaging
- Flow in a Laboratory Column
- Unsteady Mass Balance
- · Flow in a one-dimensional aquifer

Building a scientific foundation for sound environmenta decisions

Transport of Contaminants in Ground Water

Parameters:

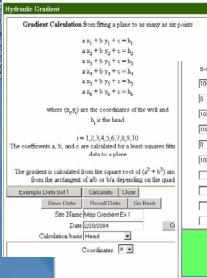
- 1 Ground water velocity
- 2 Retardation
- 3 Dispersion
- 4 Decay
- Source Forcing Function:
 - Concentration
 - Duration

Building a scientific foundation for sound environmenta decisions

Calculators

Parameters:

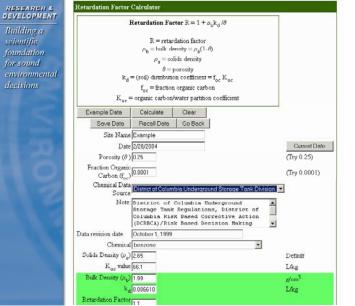
- 1 Ground water velocity, gradient calculation
- 2 Retardation Factor
- **3 Dispersivity Estimates**
- 4 Decay-rate estimation, conversions
- Forcing Function (Source)
 - Concentration
 - Duration


RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental

- Ground water flow
 - Gradient
 - Direction
- Established from 3 or more wells
- · Likely to vary over time

RESEARCH &

0



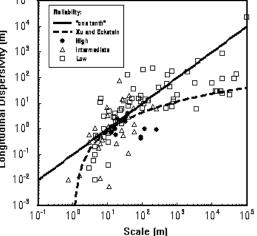
11		
-coordinate	y-coordinate	head 🕅 💌
00	0	20.00
L.	100	20.00
00	100	19.75
00	0	20.00
	100	20.00
00	100	19.75
		0.
		0.
		0.
		0.
	Number of Points in Calculation	6
	Gradient Magnitude (i)	0.003536
	Degrees from North (+ y axis)	45.00

Building a scientific foundation for sound environmenta decisions

2 Retardation Factor

- Sorption of Organics to Aquifer Materials
- Dependent Upon
 - Organic Carbon Content
 - Chemical Properties
 - Should be well-known constants ...
 - Many States have preferred/required values
 - Benzene K_{oc} = 38, 65, 83, 97, 106 L/kg

DEVELOPMENT Building a scientific foundation for sound environmenta decisions


RESEARCH &

- Apparent dilution with distance from source
 - Not measured at LUST sites
 - Two choices
 - "Rules-of-thumb"
 - e.g.: 1/10 or 1/20 plume length
 - Curve fitting

105 Reliebilty: 104 n a tanth" Cu and Eckatain _ongitudinal Dispersivity (m) High 10⁹ Intern ediate ۳ 10² - 8 Δ 10¹ R 100

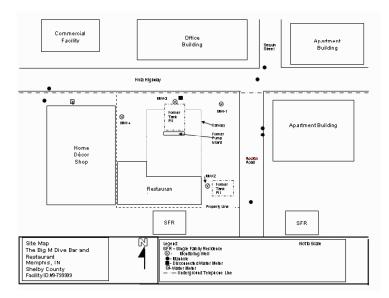
Gelhar, Welty and Rehfeldt (1992) Dispersivity Data

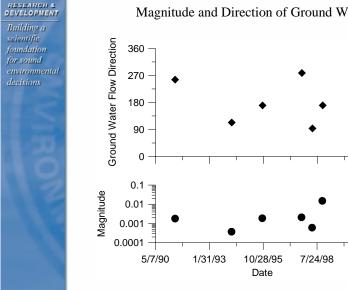
RESEARCH & DEVELOPMENT Building a scientific

- Estimate from
 - Literature Studies
 - Field Data
 - Calculator coming soon

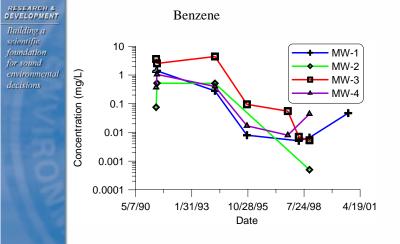
Building a scientific foundation for sound environmenta decisions

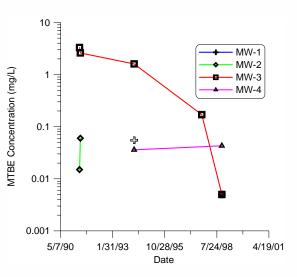
RESEARCH & DEVELOPMENT


Uncertainties

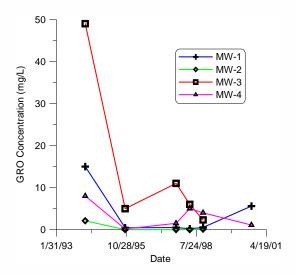

- Which parameters are known exactly? -- none
- Is the release known date, amount? – usually not
- Do model assumptions exactly match site conditions? – no

Building a scientific foundation for sound environmenta decisions


- Site Assessment Data from a LUST in Tennessee
 - Two sets of data:
 - June 1991 to March 1994
 - October 1995 to October 2000
 - Questions concerning
 - · Sufficiency of data for closing site
 - · Costs as limiting factors in assessment
 - Differences between fund-ineligible and fund-eligible sites



Magnitude and Direction of Ground Water Flow


4/19/01

Building a scientific foundation for sound environmenta decisions

Building a scientific foundation for sound environmenta decisions

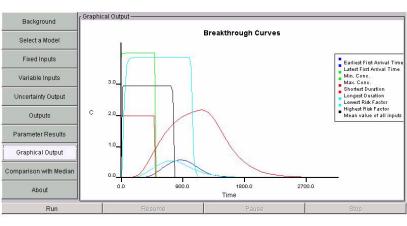
Building a scientific foundation for sound environmenta decisions

Transport Simulation

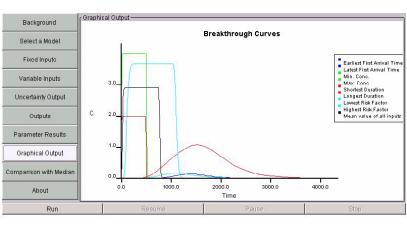
- Use "Concentration Uncertainty" calculator to estimate plume extent
 - Consider uncertainty in all inputs
 - Simulate transport from MW-3
 - Flow to the west
 - From topography
- Calculate ranges of all outcomes
 - 9 inputs → B⁽⊂)⁽
 simulations

Building a scientific foundation for sound environmental decisions

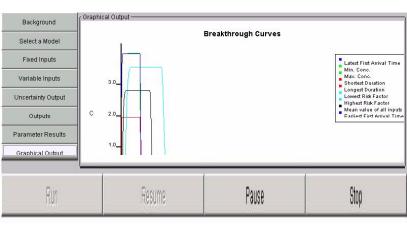
foundation Senzene Uncertainty Simulation

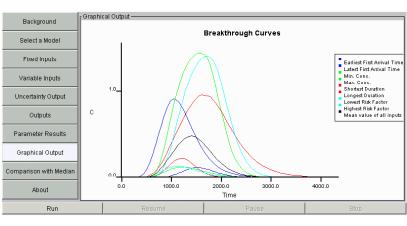

- Hydraulic Conductivity: 20 to 200 ft/d
- Gradient: 0.001 to 0.015
- Organic Carbon Partition Coefficient, K_{oc}: 38 to 107
- Fraction Organic Carbon 0.00005 to 0.00015
- Half Life < 365 to 730 days
- Dispersivity range from data tabulation

Building a scientific foundation for sound environmenta decisions


Benzene Uncertainty Simulation

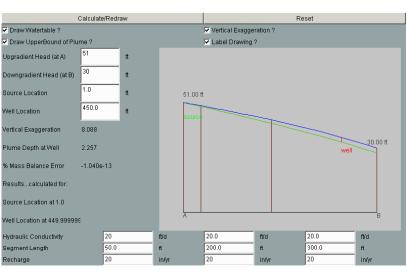
- Data from MW-3 defining the source:
 - Concentration -- 2 mg/l to 4 mg/l
 - Duration 500 days to 1000 days


Bounding curves for Receptor 50 feet from MW-3


Bounding curves for Receptor 100 feet from MW-3

Bounding curves for Receptor 215 feet from MW-3

Receptor at 215 feet, lower ground water velocity


Building a scientific foundation for sound environmenta decisions

Vertical Well Screen Placement

- Calculate expected plume diving due to recharge
- Estimate vertical placement of well screens

Building a scientific foundation for sound environmenta decisions

Calculate/Redraw		Reset	Reset	
Label Drawing ?		Ignore Conductivity Variation ?	Ignore Conductivity Variation ?	
Select Parameters:		Formation Data	Viell	
Site	East Patchogue	Water Table max. rel. Ks = 2.740	-	
		T		
Depth of Top of Screen	30.0 ft			
Screen Length	20.0 ft			
Concentrations				
Range of Measured Values		(12.0 up/ to 6400.0 up/)		
Estimated Borehole Concentration =		760.7 ugi		

Building a scientific foundation for sound environmental decisions

Results

- With high conductivity and gradient quick transport to receptors up to 500 feet away
 - Obtaining data on conductivity and better gradient data would reduce uncertainty
- Simulations with lower transport rates have diminished concentrations 200 plus feet away
- · Other examples on web site

Building a scientific foundation for sound environmenta decisions

RESEARCH & DEVELOPMENT

New/Updated

- Temperature dependent Henry's Law Coefficients
- On-line Johnson/Ettinger model
- Expanded contaminant data
- On-line modeling training course
- <u>http://www.epa.gov/athens/learn2mc</u>

Building a scientific foundation for sound environmenta decisions

Further Information

- Calculators: <u>www.epa.gov/athens/onsite</u>
- <u>Training Course:</u> www.epa.gov/athens/learn2model
- Listserve for news
- <u>Although this work was reviewed by EPA</u> and approved for presentation, it may not necessarily reflect official Agency policy.