Part II

Environmental Protection Agency

Hazardous Waste Management System: General
ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 260

[FR 1935-7]

Hazardous Waste Management System: General

AGENCY: Environmental Protection Agency.

ACTION: Revisions to final rule and interim final rule and request for comments.

SUMMARY: Subtitle C of the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act of 1976, as amended (RCRA), directs the Environmental Protection Agency (EPA) to promulgate regulations to protect human health and the environment from the improper management of hazardous waste. The first phase of EPA's regulations implementing this directive are contained in Parts 262 and 263 of this chapter (which were promulgated on February 26, 1980) and Parts 261, 264, 265, 122, 123, and 124 of this chapter (which are being promulgated today).

This regulation (Part 260) sets forth definitions of words and phrases which appear in Parts 262 through 265 and contains provisions which are generally applicable to all those regulations. It was originally published on February 26, 1980, concurrent with the promulgation of EPA's Part 262 and 263 regulations. It is now being amended to add new provisions required by today's publication of Parts 261, 264 and 265 and to revise one of the definitions published in February.

DATES: Effective date: November 19, 1980. Comment date: For the interim final portions of this regulation, public comments will be accepted until July 18, 1980.

ADDRESSES: Comments on interim final portions should be sent to Docket Clerk (Docket No. 3000), Office of Solid Waste (WH-502), U.S. Environmental Protection Agency, 401 M Street, S.W., Washington, D.C. 20460. The public docket for this regulation is located in Room 2711 of the above address, and is available for viewing from 9:00 a.m. to 4:00 p.m., Monday through Friday, excluding holidays.

Single copies of these regulations will be available approximately 30 days after publication from Ed Cox, Solid Waste Information, U.S. Environmental Protection Agency, 26 West St. Clair Street, Cincinnati, Ohio 45228 (513) 684-5362. Multiple copies will be available from the Superintendent of Documents, Washington, D.C. 20402.

For information on the implementation of these regulations, contact the EPA Regional Offices below:

Region I—Dennis Huebner, Chief, Waste Management Branch, John F. Kennedy Building, Boston, Massachusetts 02203 (617) 223-5777.
Region II—Dr. Ernest Regina, Chief, Solid Waste Branch, 26 Federal Plaza, New York, New York 10007 (212) 224-0494/5.
Region IV—James Scarbrough, Chief, Residuals Management Branch, 345 Courtland Street N.E., Atlanta, Georgia 30365 (404) 530-5010.
Region VI—R. Stan Jorgensen, Acting Chief, Solid Waste Branch, 1201 Elm Street, First International Building, Dallas, Texas 75270 (214) 767-2645.
Region VII—Robert L. Morby, Chief, Hazardous Materials Branch, 324 E. 11th Street, Kansas City, Missouri 64106 (816) 504-5307.
Region VIII—Lawrence P. Gazda, Chief, Waste Management Branch, 1860 Lincoln Street, Denver, Colorado 80203 (303) 837-2221.

SUPPLEMENTARY INFORMATION:

I. Authority

This regulation is issued under the authority of Sections 3006, 3002(a), 3001 through 3007, 3010, and 7004 of the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act of 1976, as amended (RCRA), 42 U.S.C. 6905, 6912(a), 6921 through 6927, 6930, and 6974.

II Background

Subtitle C of RCRA establishes a Federal program to provide comprehensive regulation of hazardous waste. When fully implemented, this program will provide "cradle-to-grave" regulation of hazardous waste. Section 3001 of Subtitle C directs EPA to identify the characteristics of and to list those hazardous wastes which are subject to regulation under Subtitle C. Sections 3002 and 3003 require EPA to establish standards for generators and transporters of hazardous waste which will ensure proper recordkeeping and reporting, the use of a manifest system to track shipments of hazardous waste, the use of proper labels and containers, and the delivery of the waste to properly permitted treatment, storage, and disposal facilities. To ensure that these facilities are designed, constructed, and operated in a manner which protects human health and the environment, Section 3004 of RCRA directs EPA to promulgate technical, administrative, monitoring, and financial standards for them. These independently enforceable standards will be used by EPA to issue permits to owners and operators of facilities under Section 3005. For those States interested in administering the RCRA program instead of EPA, Section 3006 requires the Agency to issue guidelines under which States may seek authorization to carry out the program. Finally, under Section 3010, all persons engaging in activities subject to control under Sections 3002 through 3004 above must notify EPA or States having authorized RCRA hazardous waste programs.

Early this year, EPA began issuing the regulations which comprise the Subtitle C hazardous waste management system. On February 26, 1980, it promulgated standards for generators and transporters of hazardous waste under Sections 3002 and 3003 of RCRA, respectively (Parts 262 and 263), and issued a public notice establishing procedures for filing a notice of hazardous waste activity under Section 3010. Today EPA is publishing permit procedures and guidelines for the approval of State hazardous waste programs under Sections 3005 and 3006, respectively (Parts 122, 123, and 124), and the first phase of its Section 3001 hazardous waste list and characterizations and Section 3004 facility standards (Parts 261, 264, and 265). As discussed in the preambles to those two latter regulations, EPA expects to be amending its Sections 3001 and 3004 regulations later this year to bring additional wastes into the hazardous waste management system and to add additional facility standards.

Table 1 below shows where each of these regulations appears in the Federal Register.
III. Subpart A

1. Section 260.1 (Purpose, scope, and applicability). This section explains the purpose of Part 260 and outlines the contents of the remaining sections. It is largely self-explanatory.

2. Section 260.2 (Availability of information; confidentiality of information). The Agency expressed its basic stance on confidentiality in §250.27 of the proposed Section 3002 regulations, which stated that all information provided in connection with the requirements of RCRA must be made available to any person, as authorized by Section 3007(b) of RCRA, the Freedom of Information Act (FOIA, 5 U.S.C. 552), and the EPA regulations adopted to implement the FOIA and Section 3007(b) (40 CFR Part 2). Proposed §250.27 applied also to the recordkeeping and reporting systems under Section 3004 of the proposed regulations, because they were designed to use information supplied on the manifest as the data base.

A number of commenters argued that all RCRA reports and information should be made known to the public because public knowledge of this information is essential to the effective enforcement of RCRA. In general, they argued that in order for the public oversight and citizen suit provisions of RCRA to be effective, the public must have information on the types and amounts of waste being handled by facilities, data from the monitoring of ground water and surface water, information on the type of process generating the waste and the hazardous properties of the waste, and any information reported to the Agency regarding fires, explosions, and discharges of hazardous waste, including data on the degradation of ground water.

The Agency has sought to balance the public need for information against legitimate claims of confidentiality. Neither Section 3007(b) of RCRA nor the Freedom of Information Act, however, authorize or require full public disclosure of information collected pursuant to RCRA. Section 3007(b) directs the Administrator to consider as confidential any information which would be entitled to protection under Section 1905 of Title 16 of the United States Code, upon a satisfactory showing by the claimant that his information does indeed warrant confidential treatment. The provisions of the Freedom of Information Act concerning the availability of information do not apply to confidential trade secrets and commercial or financial information (Section 552(b)(4)).

Because of this provision in RCRA, the Agency cannot impose a blanket requirement in the regulations that specific information must be released to the public in all cases. However, the public may obtain information on the type of process producing the wastes listed in the Section 3001 rules from the background documents supporting the Section 3001 regulations. In addition, the Subpart D rules require owners or operators to notify local authorities of fires, explosions, or discharges of hazardous waste which have the potential for adversely affecting human health and the environment outside the facility. Thus, information of this type may also be available to the public.

Several commenters suggested that EPA should clearly state that the confidentiality provisions of proposed §250.27 apply to the information required in the Section 3001 rules. The Agency agrees, and has therefore placed the provisions concerning confidentiality in Part 260 of the final rules. Section 260.1 of this Part makes it clear that the §250.27 confidentiality provisions apply to all information required to be submitted under the final Sections 3001 through 3004 standards.

3. Section 260.3 (Use of number and gender). This section establishes simple rules of grammatical construction concerning number and gender. It has been added to allow EPA to simplify the drafting of its final Part 261 through 265 regulations by eliminating the need for such awkward phrases as "he/she/it" or "the owner (or in event there is more than one owner, the owners)". It is self-explanatory.

Although there is no direct counterpart to this section in the proposed Subtitle C rules, the Agency is issuing it as a final, rather than interim final standard. This is simply a rule of usage and, therefore, it is unnecessary to solicit comments on it.

IV. Supart B

In EPA’s proposed regulations, each regulation had its own set of definitions (see §§250.11, 250.21, 250.31, and 250.41). To eliminate the unnecessary repetition this produced, all the definitions which are applicable to more than one of EPA’s final regulations have been consolidated into this subpart. Definitions of terms which are used only once, or only in conjunction with a single section or subpart, will generally be defined in the section or subpart in which they are used. We hope this reorganization will make the regulations less cumbersome and easier to follow.
When Part 290 was published in February, it contained definitions of twelve terms used in EPA's Parts 282 and 283 regulations and a preamble discussion of each (45 FR 12722). Except for the definition of "on-site", which has been revised since February, these terms will not be discussed again here.

Of the new definitions which are being added to Part 290 today, most are self-explanatory and non-controversial and therefore need not be addressed in this preamble. Those which do require explanation are either dealt with in the preambles accompanying the regulation in which the term is used or in the discussion which follows.

1. Definition of Active Portion. The proposed definition of "active portion" stated that portions of facilities closed before the effective date of the regulations, but not in accordance with the Section 3004 closure requirements, would be considered to be active portions. Several commenters were concerned that portions of facilities which were closed before the effective date of the regulations, and all applicable closure requirements, were not active portions. The Agency believed that the following statement in the preamble to the proposed Section 3004 regulations stated that Agency's intent generally not to regulate portions of facilities closed before the effective date of the regulations:

"RCRA is written in the present tense and its regulatory scheme is organized in a way which seems to contemplate coverage only of those facilities which continue to operate after the effective date of the regulations. The Subpart D permitting regulations and Subpart E permitting procedures are not directed at inactive facilities. (43 FR 58994)"

However, the Agency realizes that its original intent would have been more clearly stated if the words "or inactive portions of active facilities" had been added to the above sentence. The Agency's intent is not to regulate under Subtitle C portions of facilities closed before the effective date of the regulations. The only exception to this is that owners and operators of facilities which continue to operate after the effective date of the regulations must ensure that portions of facilities closed before the effective date of these regulations do not interfere with the monitoring or control of active portions. This requirement regulates the facility which operates under the RCRA regulations, although it may require the owner or operator, before he receives a permit, or as a permit condition, to take certain measures on portions of his facility closed before the effective date of these regulations.

2. Definitions of Disposal and Disposal Facility. Several commenters suggested that the statutory definition of "disposal" given in Section 1004(3) of RCRA should be reworded to make it clear that an uncontrolled release or discharge of hazardous waste does not constitute disposal. They argued that this change is necessary because, otherwise, accidental discharges will have to be permitted before they are allowed to occur.

Regardless of whether a discharge of hazardous waste is intentional or not, the human health and environmental effects are the same. Thus, intentional and unintentional discharges are included in the definition of "disposal".

However, the Agency agrees that permits logically can only be required for intentional disposal of hazardous waste. Therefore, the definition of "disposal facility" has been modified to indicate the Agency's intent that the term does not apply to activities involving truly accidental discharge of hazardous waste.

In addition, the definition has been further modified to make it clear that only facilities at which hazardous waste is to remain after closure are, for the purposes of these regulations, disposal facilities. Thus, for example, a surface impoundment used for waste treatment from which the emplaced waste and waste residue is to be removed before closure of the impoundment, for purposes of these regulations, is not both a treatment and a disposal facility, but rather, only a treatment facility. That does not mean it might not be "disposing" of wastes within the meaning of that term in Section 1004(3) of RCRA. It merely means that EPA, for purposes of reference in these regulations, will call it a "treatment facility."

3. Definition of Existing Facility. Several commenters pointed out what they perceived as a serious fault in Section 3006(e) of RCRA, which is that the Section limits interim status to owners and operators of facilities "in existence" on or before October 21, 1976. The statute requires that, in order to operate legally, facilities which have come into existence after October 21, 1976, must obtain a permit by the effective date of the Section 3005 regulations (i.e., within 180 days after the promulgation date of the regulations). Because it is unlikely that permits can be issued within 180 days for all facilities not "in existence" by October 21, 1976, the commenters felt that the language of the statute was unfair to the owners and operators of these facilities.

EPA agrees that the language of the statute as it now stands would make the RCRA program unworkable. However, the language of RCRA is clear and EPA has had no alternative but to follow it in the regulations. As the preamble to the Part 292 regulations discusses, EPA expects that amendments to RCRA now in conference will be passed shortly and will cure this problem.

In the proposed rules, existing facilities were limited to those which were in operation or under "physical construction" by a certain date. Physical construction was defined as:

"excavation, movement of earth, erection of forms or structures, the purchase of equipment or any other activity involving the actual preparation of the Hazardous Waste Management facility."

The Agency has expanded this aspect of the definition of "existing facility" in the final rules. The Agency believes that facilities for which substantial financial commitments have been incurred through contractual obligations to purchase specially designed structures or equipment, should also be considered to be existing facilities. Accordingly, the final Part 290 definition provides that a facility which has "commenced construction" by a certain date is an "existing facility."

In determining whether construction has commenced, as the term is defined in Part 290, it is first necessary to determine whether the owner or operator has obtained and continues to hold all necessary preconstruction approvals or permits required by Federal, State, and local laws and regulations. If all such permits have not been obtained or maintained, construction has not commenced.

Assuming that the permit requirement is satisfied, in order to have "commenced construction," it is still necessary for facilities to meet one of two additional requirements. The first requirement is that a continuous physical on-site construction program has begun by the date in question. The words "continuous" and "on-site" are key to this test. It will not suffice merely to have begun erection of auxiliary buildings or construction sheds unless there is clear evidence (through contracts or otherwise) that construction of the entire facility will go forward in a

Accordingly, EPA encourages every facility built or under construction on the promulgation date of the RCRA program regulations to notify EPA and file Part A of the permit application so that it can be quickly processed for interim status when the change in the law takes effect.
continuous manner (no breaks greater than 18 months). Nor will it suffice that erection of certain components began off-site.

The alternative requirement is that by the date in question, binding agreements—which cannot be canceled or modified without substantial loss—were established for construction of the facility to be completed within a reasonable time. The words "substantial" and "for construction" are key to this test. In order to minimize administrative burdens and to provide some certainty, the Agency will consider a loss as being substantial if the cost to cancel a construction agreement is more than 10 percent of the total project cost. Whether a loss equal to or less than 10 percent is substantial will be considered on a case-by-case basis. The loss must also be related to contractual obligations for construction. Options to purchase for feasibility, engineering, or design studies will not be considered to be contractual obligations for construction.

These conditions for "commenced construction" are adopted from EPA’s Prevention of Significant Deterioration (PSD) regulations issued under the Clean Air Act (see 43 FR 26395).

4. Definition of Generator. Several comments on the proposed definition of "generator" concerned corporations controlling plants in several locations which each produce hazardous waste. They questioned whether each plant, or only the corporate headquarters, is the generator. Some commenters thought that the latter should be designated as the generator because this would allegedly reduce the number of manifests and records that the corporation would collectively be required to develop. RCRA directs the Agency to monitor and control the movement of hazardous waste. The only way that the Agency can do so is to know the source of the waste. If the reports which EPA received on hazardous waste identified the corporate headquarters as the generator, EPA would not know which of the corporation’s plants produced the waste and, thus, would be unable to monitor the waste’s movement. For this reason, the final definition has been modified to make it clear that the plant, and not the parent company, is the generator. However, corporate headquarters may prepare and submit separate reports for each of the corporation’s facilities.

Certain producers (e.g., farmers and small generators) were excluded from the proposed definition of “generator.” Because these exclusions are specifically dealt with in the final Part 261 and Part 262 regulations, it is unnecessary to attempt to include the substance of these regulations in the final definition of "generator".

5. Definition of On-Site. The Agency is amending the definition of "on-site," which was promulgated in the Part 260 regulations issued on February 26, 1980 (45 FR 12724). In the preamble which accompanied that definition, the Agency pointed out that the manifest is necessary "to safeguard human health and the environment in the transportation of hazardous waste, regardless of the distance that the waste is being transported." However, the preamble went on to say that:

"Merely crossing the public right-of-way to gain access to property under the control of the generator does not create the same dangers to the public that transportation upon public highways entails. [emphasis added]"

For this reason, the proposed definition of "on-site" (43 FR 50976) was revised to include as "on-site," non-contiguous property owned by the generator which is connected by "a right-of-way which he controls and to which the public does not have access." This revision allowed generators to transport their waste within these confined limits without preparing a manifest for it.

The Agency now realizes, however, that the revised definition of "on-site" (45 FR 12724) could be interpreted to allow unmanifested waste to be transported along a public right-of-way. This was not what the Agency had intended when revising the proposed definition. Therefore, that definition has been amended to make it clear that the entrance and exit of the geographically contiguous property—which may be divided by a public or private right-of-way—must be directly across from each other in order to be considered to be the same site.

6. Definition of Representative Sample. The Agency mistakenly provided two definitions of the term "representative sample" in the proposed rules, one in § 250.11(b)(5), and the other in § 250.41(b)(73). The latter was concerned solely with samples characteristic of ground water beneath a facility. Several commenters pointed out that the definition was too restrictive because the proposed regulations required samples to be taken of things other than ground water. The Agency agrees, and has restructured the final ground water monitoring standards so that a definition of "representative sample" specific to ground water is no longer needed. It has therefore been deleted from the final rules.

The definition provided in § 250.11(b)(5) was broader than that contained in § 250.41(b)(73). § 250.11(b)(5) defined representative sample as:

Any sample of the waste which is statistically equivalent to the total waste in composition, and in physical and chemical properties. Representative samples may be generated using the methods set out in Appendix I of this Subpart. [emphasis added]

Many commenters objected to the aspect of this definition which required that the sample be statistically equivalent to the total waste. They argued that statistical equivalence has an exact meaning, and that interpreted literally, the proposed definition would have required the entire waste stream to be sampled, or a statistical data base established for it, in order to ensure that every constituent of the waste stream was known to some level of accuracy and precision. These commenters felt that this aspect of the definition was unreasonable.

The Agency agrees that requiring a representative sample to be statistically equivalent to the waste is currently infeasible for most waste streams. This is particularly true for "composite" or heterogeneous wastes. The Agency will, in the future, develop and publish in SW–846, "Test Methods for the Evaluation of Solid Waste", practical procedures for obtaining statistically equivalent representative samples of hazardous waste. However, until they are developed, the Agency agrees that the definition of "representative sample" should not require that the samples be statistically equivalent to the total waste. Therefore, the definition has been changed to require that representative samples exhibit the average properties of the universe or whole (e.g., waste or ground water).

V. Subpart C

1. Section 260.20 (General). Section 7004 of RCRA states that any person may petition EPA for the promulgation, amendment, or repeal of any regulation under RCRA. That section further directs the Administrator to develop and publish minimum guidelines for the public to participate in this process.

EPA’s proposed Subtitle C regulations contained no guidelines to assist the public in framing rulemaking petitions or to advise them of the procedures EPA would follow in acting on their petitions. EPA received a number of comments, often in the context of a specific regulatory provision (e.g., the list of hazardous wastes issued under Section 3001), suggesting that EPA establish rulemaking procedures for Subtitle C.
EPA agrees this would be desirable, and accordingly is adding a subpart to its final rules which (1) establishes the procedures for petitioning EPA to amend, modify, or revoke any provision in Parts 260 through 265 and (2) establishes procedures governing EPA's action on such petitions.

These procedures reflect normal informal rulemaking practice under the Administrative Procedures Act and are largely self-explanatory. Except for two types of petitions—petitions to approve equivalent methods and petitions to amend Part 261 to exclude a waste produced by a particular facility—EPA is not establishing information requirements for petitions. These requirements will of necessity vary with the nature of the regulatory provision which the petitioner is seeking to add or amend, and are not readily susceptible to precise articulation in a regulation. However, petitioners should be able to glean a great deal of information which would be useful in drafting rulemaking petitions from preamble discussions of provisions and associated background documents. In the case of EPA's hazardous waste characteristics and list, the regulations themselves identify the criteria against which all rulemaking (including that initiated by EPA) will be evaluated.

This entire subpart is being published in interim final form to give the public an opportunity to comment on EPA's procedures.

2. Section 260.21 (Petitions for equivalent testing or analytical methods). In its proposed Section 3001 regulations, EPA required persons to determine whether their waste exhibited one of the Agency's proposed hazardous waste characteristics using specified testing and analytical methods or "an equivalent method". (See proposed §§ 250.13(a)(1) and (ii), (a)(2)(ii), (b)(ii), and (d)(2)(ii). Section 250.11(b)(2) of the proposed rules defined "equivalent method" as any method: which the Administrator determines to be functionally equivalent or superior to the method specified.

The proposed rules did not, however, provide any procedures for requesting EPA to approve testing or analytical methods as equivalent to those specified in proposed Section 3001. Several commenters suggested that such procedures should be included in the regulations.

EPA agrees and believes the procedures set forth in § 260.21 will work well for petitions for equivalent methods. However, because specific types of data are required to determine whether a testing or analytical protocol is "equivalent" or "superior" to an existing method, EPA has also established specific information requirements for petitions for equivalent methods. These requirements necessarily require a petitioner to fully evaluate the alternative method and to undertake a thorough comparative analysis of this method and EPA's.

Requiring less data would place too large a burden on EPA, considering its limited resources for developing alternative testing methods. The Agency believes that those who desire to use a method other than that prescribed in the final rules will typically have the data required in § 260.21 because they will have found the prescribed method to be inappropriate for their purposes, and will have already committed resources to develop an equivalent method.

3. Section 260.22 (Petitions to amend Part 261 to exclude a waste produced at a particular facility). This provision is discussed in Section VII of the preamble to Part 261.

Regulatory Analysis

The Agency has prepared for the regulations promulgated under Sections 3001 through 3004 and 3010 of RCRA, an Economic Impact Analysis, an Environmental Impact Statement, a Reports Impact Analysis, an Operations Impact Analysis, and an Evaluation Plan. EPA has prepared a summary regulatory analysis of the final regulations based on the above reports. This Regulatory Analysis describes the various alternative approaches that the Agency might have used to implement the hazardous waste program, and explains why certain choices were made.

Except for the Evaluation Plan (which was prepared under Executive Order 12044), or as otherwise specified below, copies of these documents may be reviewed in the EPA Regional Office libraries, and at the EPA headquarters library, Room 2404, Waterside Mall, 401 M Street, S.W., Washington, D.C. 20460. The Evaluation Plan will be available for review only at the EPA headquarters library.

I. Economic Analysis

The Agency prepared an Economic Impact Analysis under Executive Order 11949, as amended by Executive Order 11949. It indicates that there are both costs and benefits associated with this regulatory program.

1. Benefits. TheSubtitle C regulatory program will reduce the damage to human health and the environment from improper management of hazardous waste. The following is a brief list of some of the many expected improvements:

 (1) Ground-water pollution from leaching of toxic pollutants from improperly designed and managed landfills and surface impoundments will be reduced.
 (2) Poisoning and injury due to direct contact with randomly dumped wastes will be reduced.
 (3) Pollution of surface waters from hazardous waste stored or disposed of in fields and on riverbanks will be reduced.
 (4) Illicit dumping of waste in farm fields, wooded areas, along roadsides, and in ditches and streams will be reduced.
 (5) Emission of toxic gases from improperly run incinerators will be reduced.
 (6) Accidents, mistakes, and malfunctions at hazardous waste management facilities, which could affect people near the site, will be reduced in number and in severity, due to improved training of personnel, monitoring and inspections, and required emergency equipment.
 (7) Contingency plans will spell out procedures to ensure rapid and effective responses to emergencies to minimize any danger to off-site residents and the environment.
 (8) Facilities will be decontaminated or otherwise secured at closure, and disposal sites will be monitored and maintained after closure, to reduce the possibility of future adverse impacts on human health or the environment.

The Agency believes these improvements will be substantial and noticeable. The expected improvements are not quantifiable, however, since records of past practices and problems are extremely limited. Also, it is difficult or impossible to quantify benefits deriving from reduced adverse impacts on health or the environment. The dollar value of preventing a case of cancer, for example, is not truly ascertainable. In addition to the major non-quantifiable economic benefits expected from decreases in human health problems and in pollution of our air, land, and water, EPA expects an improvement in economic efficiency and equity, and substantial direct savings from avoiding clean up costs in the future.

An economy functions efficiently and equitably when the price of goods produced in the society reflects the actual social and private costs of production (i.e., when the costs are internalized). Until now, in most states, firms could dispose of wastes in environmentally unsafe ways at a cost substantially less than that for adequate disposal. Thus, the price of goods often

HeinOnline -- 45 Fed. Reg. 33070 1980
did not reflect the full social cost of production.

Pre-RCRA practices for managing hazardous waste created economic inequities. The costs of disposal often fell randomly on individuals affected by improper management or on the public at large since tax revenues were used to clean up inadequate facilities. It would be more equitable for the costs of adequate hazardous waste management to fall on the consumers and producers of the products which generate the hazardous waste.

Pre-RCRA management practices also caused economic inefficiencies. Because the price of goods did not reflect the cost of properly managing the waste produced as part of the manufacturing process, these goods were priced too low relative to other goods. Because prices were lower than the true social cost of producing the product, consumers were able to buy more of these goods than they could if proper waste management costs were included in the product price. Thus, companies manufactured and sold more of these products and generated more hazardous waste than was economically efficient. These products, thus, had an unfair competitive edge over other products which didn't generate hazardous waste. Furthermore, because companies did not have to either pay the cost of proper waste management or pass it along to customers, the incentives to develop technology and process changes to lessen the quantity of hazardous waste generated or to recover the waste as a useful material were weak compared to what they might have been if proper waste management was required. Additionally, companies which wanted to properly manage their wastes were put at a competitive disadvantage by doing so because they bore costs which their competitors did not.

The RCRA Subtitle C Regulations will ensure that those generating hazardous waste will pay appropriately for their safe management. Most of this cost will be passed on to consumers, while some may be borne by the generator, particularly where price increases are held down in some way (e.g., by foreign competition or competition with other products). In either case, the economy will be made more efficient and equitable because those receiving the benefits will also pay the costs, and prices will serve as a more efficient allocator of resources.

In recent years, with increasing frequency, society has been forced to properly dispose of waste that was previously disposed of haphazardly. The best known example of this is Love Canal in New York, where 20,000 tons of waste were buried over a period of years. The diagnosis of a severe health hazard in the area due to wastes seeping into house basements and surfacing in backyards caused society to take remedial action. The price tag to the State and Federal governments is expected to be about $6 million for clean up, relocating residents, health and environmental testing services, and other expenses associated with the disaster. Thus, society is spending about $1,600 per ton in its effort to clean up waste improperly disposed of, and more will be spent before the area is returned to normal. Further, the $1,600 per ton excludes human health costs and suffering, which might easily outweigh actual dollar costs. Given that average disposal costs after the RCRA regulatory program is in place are estimated to be around $80 per ton, it clearly pays to do the job right in the first place.

Given that damages from improper hazardous waste management often take decades to surface, we may be paying dearly for past waste mismanagement for many years to come. Further, without a regulatory program, new problem sites would continue to be developed. Ultimately, clean up of all of these sites could cost billions of dollars.

2. Costs and Impacts. Phase I of the RCRA Subtitle C program will broadly affect American industry. The Agency focused its Economic Impact Analysis (EIA) on major hazardous waste-generating segments within 22 industries. The study covered approximately 23,000 generators who produced an estimated 13.7 million metric tons of hazardous waste in 1978. The RCRA hazardous waste standards are expected to cover about 67,000 hazardous waste generators that are expected to produce about 41 million metric tons of hazardous waste in 1980. The Agency's analysis shows that 62% of this hazardous waste is from the chemical and allied industries.

As a result of the Phase I regulations, the annual hazardous waste disposal costs for the 29,000 generators covered by the EIA are predicted to increase by $510 million. Of this annual cost, about 50% is for compliance with surface impoundment requirements. Recurring operational and administrative expenses account for $330 million (1980 dollars) of the total annual cost; the rest is for capital and other initial expenditures (as annualized). Total capital and other initial expenditures are estimated at $310 million.

The distribution of the annual compliance cost by major RCRA hazardous waste management activity is provided in Table I. The major part of the cost is for treatment and disposal facility closure and post-closure activities which will occur in the future, but which EPA assumes owners will prepare for in advance of their occurrence. The $510 million annual cost amounts to less than 0.2 percent of the value of sales of the affected industries.

<table>
<thead>
<tr>
<th>Table I—Distribution of RCRA Costs by Type of Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance activity</td>
</tr>
<tr>
<td>Closure/post-closure</td>
</tr>
<tr>
<td>Treatment and disposal</td>
</tr>
<tr>
<td>Monitoring/testing</td>
</tr>
<tr>
<td>Administration</td>
</tr>
<tr>
<td>Contingency planning</td>
</tr>
<tr>
<td>Recycling/recovery/reporting</td>
</tr>
<tr>
<td>Training</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

*Detail does not add to total due to independent rounding.

The Phase I standards establish the RCRA Subtitle C program, and will be followed by Phase II, which will establish the standards for permit issuance. These are scheduled to be promulgated in the fall of 1980. While the regulations have not yet been written, it is conceivable that the added costs of the Phase II regulations could double the total costs for the affected industries.

As part of the EIA, the Agency performed detailed analyses of parts of six major industries which EPA believed could be substantially affected economically by the regulations. They were segments of the textiles, leather tanning, electroplating, inorganic chemicals, organic chemicals, and nonferrous metal smelting and refining industries. The analyses showed that 36 plants may close the 4200 studied, costing as many as $300 jobs. Negative impacts are concentrated in the following industry sectors: Primary zinc and secondary lead smelting and refining, sodium dichromate and titanium dioxide production, tanneries, non-iron and sheet metal, and other industries (e.g., tanning, electroplating, and metal finishing).
felled fabric processing in the textile industry. Overall, price increases resulting from the regulation for products from these industries were not found to be substantial except for

projected price increases for electroplating job shops (6.6%) and cellulose non-chrome tanneries (1–3%). Table II summarizes these impacts.

<table>
<thead>
<tr>
<th>Industry</th>
<th>Plants generating hazardous waste (thousands)</th>
<th>Potential closure (#)</th>
<th>Potential employment loss</th>
<th>Possible price increase (percent)</th>
<th>Annual costs (in millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroplating 1</td>
<td>2,356</td>
<td>60</td>
<td>1,560</td>
<td>6.0</td>
<td>$500.7</td>
</tr>
<tr>
<td>Inorganic chemicals 2</td>
<td>95</td>
<td>3</td>
<td>697</td>
<td><1</td>
<td>49.0</td>
</tr>
<tr>
<td>Leather tanning 3</td>
<td>271</td>
<td>11</td>
<td>11,180</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>Nonferrous smelting 4</td>
<td>257</td>
<td>2</td>
<td>1,560</td>
<td><1</td>
<td>64.2</td>
</tr>
<tr>
<td>Organic chemicals 5</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.2</td>
</tr>
<tr>
<td>Textiles 6</td>
<td>1,166</td>
<td>10</td>
<td>740</td>
<td>0</td>
<td>23.3</td>
</tr>
<tr>
<td>Other manufacturing 7</td>
<td>29,000</td>
<td>12</td>
<td>19,740</td>
<td>25.9</td>
<td>510.0</td>
</tr>
</tbody>
</table>

1 Job shops only.
2 Cost study covered seven product lines, detailed impact study covered four. Significant impacts possible in sodium dichromate (1 closure of 3 plants—136 jobs) and titanium dioxide (2 closures of 13 plants—562 jobs).
3 Significant impacts possible in tanneries (8 closures of 16 plants—695 jobs) and sheepwashes (5 closures of 29 plants—100 jobs).
4 Significant impact possible in primary zinc industry (1 closure of 6 plants—500 to 1,500 jobs).
5 Cost study covered less product lines, detailed impact study covered four.
6 Cost study includes costs for five industry segments whose waste is no longer classified as hazardous waste. Significant impact possible in the felled fabric processing segment (2 closures of 19 plants—226 jobs).

EPA performed less detailed analyses for the other industry segments in the EIA. This qualitative analysis shows the possibility of plant closures in some sectors of the explosives, petroleum refining, pharmaceuticals, organic chemicals, and plastics industries.

The effects of the Phase I requirements will interact with those of some other EPA regulations. It is too early to estimate these effects in general. But, as an example, the water pretreatment standards for electroplaters were expected to close 587 job shops until the Agency, working with the Small Business Administration, developed a Federal assistance program. As a result of the RCRA Subtitle C program alone, 60 job shops may close, and the Agency may find it more difficult to mitigate the effect of the pretreatment regulations on other plants.

3. Limits of Analysis. In order to make the economic analysis practical, the Agency had to make some fundamental assumptions and limit the scope of the analysis. In what it believed were the major waste generating industries. The EIA could not cover all industry segments which generate hazardous waste. Simple extrapolation of the compliance cost for the 26,000 generators studied to the 67,000 generators that are expected to be regulated during Phase I, would more than double the EIA estimate. The costs for surface impoundments alone, for those industries not included in the analysis, have been roughly estimated to be somewhere between $800–900 million.

The EIA was based on hazardous waste volumes believed to exist in the covered industry segments because their waste appeared on EPA’s hazardous waste list or was believed to exhibit one of the four hazardous waste characteristics. The uncertainty over this latter aspect of the analysis is somewhat reflected in the 1980 waste volume estimate which EPA believes could range between 28 million and 56 million metric tons. The 41 million metric tons previously quoted is EPA’s best estimate. To the extent these generators discover or discover that their specific wastes do not meet the hazardous waste characteristics, the costs and impacts will be less.

The EIA made two major assumptions: (1) Although disposal prices may increase significantly under RCRA, the study assumed that generators would be unable to reduce the volume of waste disposed and will not be able to find a cheaper way to manage it, and (2) acceptable off-site waste disposal capacity will be readily available.

Finally, the analysis is based on final Sections 3002 and 3003 regulations and a January 1980 draft of the Sections 3001 and 3004 requirements. The draft regulations have substantially changed since that time. In most instances, the alterations have led to cost reductions. For instance, a number of changes which would greatly reduce the amount of waste covered by the regulations have not been factored into the analysis. Also, the financial requirements have been deferred in the Part 265 regulations but are still covered in the economic impact study. On the other hand, control of underground injection has been added to the regulations, but it is not covered in the EIA.

The Agency is now analyzing the final Phase I regulations and will make the results publicly available this summer in an economic analysis summary. EPA will publish a notice in the Federal Register concerning its availability. In the interim, anyone wishing to review the current version of the economic analysis may do so at EPA Headquarters and Regional Office libraries. A more extensive summary of the economic analysis can be found in the Regulatory Analysis which is also available in the Regional Office and EPA Headquarters libraries.

II. Environmental Analysis

EPA voluntarily prepared an Environmental Impact Statement (EIS) under the National Environmental Policy Act 42 U.S.C. § 4321 et seq. (NEPA). (See the NEPA discussion in the preamble accompanying the Parts 264 and 265 rules issued elsewhere in today’s Federal Register.) EPA will publish a Federal Register notice within 60 days of the promulgation of these regulations announcing the availability of the EIS for those interested in obtaining a copy of it.

Industry Assistance

The Agency recognizes that these regulations may have a substantial impact on certain industrial sectors, particularly on firms in a poor competitive position. The Agency will provide a limited degree of assistance to such firms. For example, the Agency is preparing guidance manuals which interpret the regulations and offer advice on efficient compliance with substantive requirements. Seminars and public hearings will be held to explain the regulations, respond to questions, and describe available financial resources.
assistance. Limited technological assistance may be available.

The Agency has also established an industry assistance program in the Office of Solid Waste. The staff of this program have been charged with (1) identifying industry and community RCRA compliance problems and seeking solutions to them, (2) coordinating assistance activities with the States, other parts of EPA, and other Federal agencies (e.g., the Small Business Administration and the Economic Development Administration), (3) planning and conducting seminars, and (4) coordinating production of written material designed to assist those least able to cope with the regulatory burden.

The Agency would ideally like to provide this assistance to anyone who wants it. However, because the industry assistance program may receive more requests for help than it can initially respond to, it may be necessary to establish priorities to determine which requests should be answered first. If this is the case, the program will concentrate first on the following industry sectors, which the Agency believes most need help: chrome pigments, chlorine, electroplating (job shops), woven fabric finishing, felt fabric finishing, sheepskin tanneries, vegetable tanneries, primary and secondary aluminum, primary and secondary copper, primary and secondary lead, primary tungsten, primary zinc, petroleum refining, pesticides, plastics, and pharmaceuticals. EPA plans to meet with the trade associations of these industries in order to define specific assistance responses.

Anyone having suggestions on how the Agency can help industry comply with these regulations should contact: Michael Barclay, RCRA Industry Assistance Coordinator, Office of Solid Waste (WH-555), U.S. Environmental Protection Agency, Washington, D.C. 20460 (202) 755-9190.

Dated: May 2, 1980.
Douglas M. Costle,
Administrator.

Title 40 CFR Part 260 is revised to read as follows:

PART 260—HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL

Subpart A—General

Sec.
260.1 Purpose, scope and applicability.
260.2 Availability of information; confidentiality of information.
260.3 Use of number and gender.

Subpart B—Definitions

260.10 Definitions.

Subpart C—Rulemaking Petitions

260.20 General.
260.21 Petitions for equivalent testing or analytical methods.
260.22 Petitions to amend Part 261 to exclude a waste produced at a particular facility.

Appendix I—Overview of Subtitle C Regulations

Authority: Secs. 1006, 2002(a), 3001 through 3007, 3009, and 7004, of the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act of 1976, as amended (42 U.S.C. 6905, 6922(e), 6921 through 6927, 6930, and 6974).

Subpart A—General

§ 260.1 Purpose, scope, and applicability.

(a) This part provides definitions of terms, general standards, and overview information applicable to Parts 260 through 265 of this chapter.
(b) In this part: (1) Section 260.2 sets forth the rules that EPA will use in making information it receives available to the public and sets forth the requirements that generators, transporters, or owners or operators of treatment, storage, or disposal facilities must follow to assert claims of business confidentiality with respect to information that is submitted to EPA under Parts 260 through 265 of this chapter.
(2) Section 260.3 establishes rules of grammatical construction for Parts 260 through 265 of this chapter.
(3) Section 260.10 defines terms which are used in Parts 260 through 265 of this chapter.
(4) Section 260.20 establishes procedures for petitioning EPA to amend, modify, or revoke any provision of Parts 260 through 265 of this chapter and establishes procedures governing EPA's action on such petitions.
(5) Section 260.21 establishes procedures for petitioning EPA to approve testing methods as equivalent to those prescribed in Parts 261, 264, or 265 of this chapter.
(6) Section 260.22 establishes procedures for petitioning EPA to amend Subpart D of Part 261 to exclude a waste from a particular facility.

§ 260.2 Availability of information; confidentiality of information.

(a) Any information provided to EPA under Parts 260 through 265 of this chapter will be made available to the public to the extent and in the manner authorized by the Freedom of Information Act, 5 U.S.C. section 552, section 3007(b) of RCRA and EPA regulations implementing the Freedom of Information Act and section 3007(b), Part 2 of this chapter, as applicable.
(b) Any person who submits information to EPA in accordance with

Parts 260 through 265 of this chapter may assert a claim of business confidentiality covering part or all of that information by following the procedures set forth in § 2203(b) of this chapter. Information covered by such a claim will be disclosed by EPA only to the extent, and by means of the procedures, set forth in Part 2, Subpart B of this chapter. However, if no such claim accompanies the information when it is received by EPA, it may be made available to the public without further notice to the person submitting it.

§ 260.3 Use of number and gender.

As used in Parts 260 through 265 of this chapter:
(a) Words in the masculine gender also include the feminine and neuter genders; and
(b) Words in the singular include the plural; and
(c) Words in the plural include the singular.

Subpart B—Definitions

§ 260.10 Definitions.

(a) When used in Parts 260 through 265 of this chapter, the following terms have the meanings given below:
(1) "Act" or "RCRA" means the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act of 1976, as amended, 42 U.S.C. section 6901 et seq.
(2) "Active portion" means that portion of a facility where treatment, storage, or disposal operations are being or have been conducted after the effective date of Part 261 of this chapter and which is not a closed portion. (See also "closed portion" and "inactive portion").
(3) "Administrator" means the Administrator of the Environmental Protection Agency, or his designee.
(4) "Aquifer" means a geologic formation, group of formations, or part of a formation capable of yielding a significant amount of ground water to wells or springs.
(5) "Authorized representative" means the person responsible for the overall operation of a facility or an operational unit (i.e., part of a facility), e.g., the plant manager, superintendent or person of equivalent responsibility.
(6) "Closed portion" means that portion of a facility which an owner or operator has closed in accordance with the approved facility closure plan and all applicable closure requirements. (See also "active portion" and "inactive portion").
(7) "Confined aquifer" means an aquifer bounded above and below by
impermeable beds or by beds of distinctly lower permeability than that of the aquifer itself; an aquifer containing confined ground water.

(8) “Constituent” or “hazardous waste constituent” means a constituent which caused the Administrator to list the hazardous waste in Part 261, Subpart D, of this Chapter, or a constituent listed in Table 1 of § 261.24 of this Chapter.

(9) “Container” means any portable device in which a material is stored, transported, treated, disposed of, or otherwise handled.

(10) “Contingency plan” means a document setting out an organized, planned, and coordinated course of action to be followed in case of a fire, explosion, or release of hazardous waste or hazardous waste constituents which could threaten human health or the environment.

(11) “Disposal facility” means a hazardous waste treatment, storage, or disposal facility which has received an EPA permit (or a facility with interim status) in accordance with the requirements of 40 CFR Parts 122 and 124 of this Chapter, or a permit from a State authorized in accordance with Part 123 of this Chapter, that has been designated on the manifest by the generator pursuant to § 262.20.

(12) “Dike” means an embankment or ridge of either natural or man-made materials used to prevent the movement of liquids, sludges, solids, or other materials.

(13) “Discharge” or “hazardous waste discharge” means the accidental or intentional spilling, leaking, pumping, pouring, emitting, emptying, or dumping of hazardous waste into or on any land or water.

(14) “Disposal” means the discharge, deposit, injection, dumping, spilling, leaking, or placing of any solid waste or hazardous waste into or on any land or water so that such solid waste or hazardous waste or any constituent thereof may enter the environment or be emitted into the air or discharged into any waters, including ground waters.

(15) “Disposal facility” means a facility or part of a facility at which hazardous waste is intentionally placed into or on any land or water, and at which waste will remain after closure.

(16) “EPA hazardous waste number” means the number assigned by EPA to each hazardous waste listed in Part 261, Subpart D, of this Chapter and to each characteristic identified in Part 261, Subpart C, of this Chapter.

(17) “EPA identification number” means the number assigned by EPA to each generator, transporter, and treatment, storage, or disposal facility.

(18) “EPA region” means the states and territories found in any one of the following ten regions:

Region I—Maine, Vermont, New Hampshire, Massachusetts, Connecticut, and Rhode Island.
Region III—Pennsylvania, Delaware, Maryland, West Virginia, Virginia, and the District of Columbia.
Region IV—Kentucky, Tennessee, North Carolina, Mississippi, Alabama, Georgia, South Carolina, and Florida.
Region V—Minnesota, Wisconsin, Illinois, Michigan, Indiana, and Ohio.
Region VI—New Mexico, Oklahoma, Arkansas, Louisiana, and Texas.
Region VII—Nebraska, Kansas, Missouri, and Iowa.
Region IX—California, Nevada, Arizona, Hawaii, Guam, American Samoa, Commonwealth of the Northern Mariana Islands.
Region X—Washington, Oregon, Idaho, and Alaska.

(19) “Equivalent method” means any testing or analytical method approved by the Administrator under §§ 260.30 and 260.21.

(20) “Existing hazardous waste management facility” or “existing facility” means a facility which was in operation, or for which construction had commenced, or on or before October 21, 1976. Construction had commenced if:

(i) The owner or operator has obtained all necessary Federal, State, and local preconstruction approvals or permits; and either

(ii)(a) A continuous physical, on-site construction program has begun, or

(b) The owner or operator has entered into contractual obligations—which cannot be cancelled or modified without substantial loss—for construction of the facility to be completed within a reasonable time.

(21) “Facility” means all contiguous land, and structures, other appurtenances, and improvements on the land, used for treating, storing, or disposing of hazardous waste. A facility may consist of several treatment, storage, or disposal operational units (e.g., one or more landfills, surface impoundments, or combinations of them).

(23) “Food-chain crops” means tobacco, crops grown for human consumption, and crops grown for feed for animals whose products are consumed by humans.

(24) “Freeboard” means the vertical distance between the top of a tank or surface impoundment dike, and the surface of the waste contained therein.

(25) “Free liquids” means liquids which readily separate from the solid portion of a waste under ambient temperature and pressure.

(26) “Generator” means any person, by site, whose acts or process produces hazardous waste identified or listed in Part 261 of this Chapter.

(27) “Ground water” means water below the land surface in a zone of saturation.

(28) “Hazardous waste” means a hazardous waste as defined in § 261.3 of this Chapter.

(29) “Incompatible portion” means that portion of a facility which is not operated after the effective date of Part 261 of this Chapter. (See also “active portion” and “closed portion”.)

(30) “Incinerator” means an enclosed device using controlled flame combustion, the primary purpose of which is to thermally break down hazardous waste. Examples of incinerators are rotary kiln, fluidized bed, and liquid injection incinerators.

(31) “Incompatible waste” means a hazardous waste which is unsuitable for:

(i) Placement in a particular device or facility because it may cause corrosion or decay of containment materials (e.g., container inner liners or tank walls); or

(ii) Commingling with another waste or material, under uncontrolled conditions because the commingling might produce heat or pressure, fire or explosion, violent reaction, toxic dusts, mists, fumes, or gases, or flammable fumes or gases.

(See Part 265, Appendix V, of this Chapter for examples.)

(32) “Individual generation site” means the contiguous site at or on which one or more hazardous wastes are generated. An individual generation site, such as a large manufacturing plant, may have one or more sources of hazardous waste but is considered a single or individual generation site if the site or property is contiguous.

(33) “In operation” refers to a facility which is treating, storing, or disposing of hazardous waste.

(34) “Injection well” means a well into which fluids are injected. (See also “underground injection”.)

(35) “Inner liner” means a continuous layer of material placed inside a tank or container which protects the
construction materials of the tank or container from the contained waste or reagents used to treat the waste.

(36) "International shipment" means the transportation of hazardous waste into or out of the jurisdiction of the United States.

(37) "Landfill" means a disposal facility or part of a facility where hazardous waste is placed in or on land and which is not a land treatment facility, a surface impoundment, or an injection well.

(38) "Landfill cell" means a discrete volume of a hazardous waste landfill which uses a liner to provide isolation of wastes from adjacent cells or wastes. Examples of landfill cells are trenches and pits.

(39) "Land treatment facility" means a facility or part of a facility at which hazardous waste is applied onto or incorporated into the soil surface; such facilities are disposal facilities if the waste will remain after closure.

(40) "Leachate" means any liquid, including any suspended components in the liquid, that has percolated through or drained from hazardous waste.

(41) "Liner" means a continuous layer of natural or man-made materials, beneath or on the sides of a surface impoundment, landfill, or landfill cell, which restricts the downward or lateral escape of hazardous waste, hazardous waste constituents, or leachate.

(42) "Management" or "hazardous waste management" means the systematic control of the collection, source separation, storage, transportation, processing, treatment, recovery, and disposal of hazardous waste.

(43) "Manifest" means the shipping document originated and signed by the generator which contains the information required by Part 262, Subpart B of this Chapter.

(44) "Manifest document number" means the serially increasing number assigned to the manifest by the generator for recording and reporting purposes.

(45) "Mining overburden returned to the mine site" means any material overlying an economic mineral deposit which is removed to gain access to that deposit and is then used for reclamation of a surface mine.

(46) "Movement" means that hazardous waste transported to a facility in an individual vehicle.

(47) "New hazardous waste management facility" or "new facility" means a facility which began operation, or for which construction commenced after October 21, 1976. (See also "Existing hazardous waste management facility").

(48) "On-site" means the same or geographically contiguous property which may be divided by public or private right-of-way, provided the entrance and exit between the properties is at a cross-roads intersection, and access is by crossing as opposed to going along, the right-of-way. Non-contiguous properties owned by the same person but connected by a right-of-way which he controls and to which the public does not have access, is also considered on-site property.

(49) "Open burning" means the combustion of any material without the following characteristics:

(i) Control of combustion air to maintain adequate temperature for efficient combustion,

(ii) Containment of the combustion-reaction in an enclosed device to provide sufficient time and mixing for complete combustion, and

(iii) Control of emission of the gaseous combustion products.

(See also "incineration" and "thermal treatment").

(50) "Operator" means the person responsible for the overall operation of a facility.

(51) "Owner" means the person who owns a facility or part of a facility.

(52) "Partial closure" means the closure of a discrete part of a facility in accordance with the applicable closure requirements of Parts 264 or 265 of this Chapter. For example, partial closure may include the closure of a trench, a unit operation, a landfill cell, or a pit, while other parts of the same facility continue in operation or will be placed in operation in the future.

(53) "Person" means an individual, trust, firm, joint stock company, Federal Agency, corporation (including a government contractor), partnership, association, State, municipality, commission, political subdivision of a State, or any interstate body.

(54) "Personnel" or "facility personnel" means all persons who work at, or oversee the operations of, a hazardous waste facility, and whose actions or failure to act may result in noncompliance with the requirements of Parts 264 or 265 of this Chapter.

(55) "Pile" means any non-containerized accumulation of solid, nonflowing hazardous waste that is used for treatment or storage.

(56) "Point source" means any discernible, confined, and discrete conveyance, including, but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, or vessel or other floating craft, from which pollutants are or may be discharged. This term does not include return flows from irrigated agriculture.

(57) "Publicly owned treatment works" or "POTW" means any device or system used in the treatment (including recycling and reclamation) of municipal sewage or industrial wastes of a liquid nature which is owned by a "State" or "municipality" (as defined by Section 502(4) of the CWA). This definition includes sewers, pipes, or other conveyances only if they convey wastewater to a POTW providing treatment.

(58) "Regional Administrator" means the Regional Administrator for the EPA Region in which the facility is located, or his designee.

(59) "Representative sample" means a sample of a universe or whole (e.g., waste pile, lagoon, ground water) which can be expected to exhibit the average properties of the universe or whole.

(60) "Run-off" means any rainwater, leachate, or other liquid that drains over land from any part of a facility.

(61) "Run-on" means any rainwater, leachate, or other liquid that drains over land onto any part of a facility.

(62) "Saturated zone" or "zone of saturation" means that part of the earth's crust in which all voids are filled with water.

(63) "Sludge" means any solid, semi-solid, or liquid waste generated from a municipal, commercial, or industrial wastewater treatment plant, water supply treatment plant, or air pollution control facility exclusive of the treated effluent from a wastewater treatment plant.

(64) "Solid waste" means a solid waste as defined in § 261.2 of this Chapter.

(55) "State" means any of the several States, the District of Columbia, the Commonwealth of Puerto Rico, the Virgin Islands, Guam, American Samoa, and the Commonwealth of the Northern Mariana Islands.

(66) "Storage" means the holding of hazardous waste for a temporary period at the end of which the hazardous waste is treated, disposed of, or stored elsewhere.

(67) "Surface impoundment" or "impoundment" means a facility or part of a facility which is a natural topographic depression, man-made excavation, or diked area formed primarily of earthen materials (although it may be lined with man-made materials), which is designed to hold an accumulation of liquid wastes or wastes containing free liquids, and which is not an injection well. Examples of surface impoundments are holding, storage.
settling, and aeration pits, ponds, and lagoons.

(68) "Tank" means a stationary device, designed to contain an accumulation of hazardous waste which is constructed primarily of non-earthen materials [e.g., wood, concrete, steel, plastic] which provide structural support.

(69) "Thermal treatment" means the treatment of hazardous waste in a device which uses elevated temperatures as the primary means to change the chemical, physical, or biological character or composition of the hazardous waste. Examples of thermal treatment processes are incineration, molten salt, pyrolysis, calcination, wet air oxidation, and microwave discharge. (See also "incinerator" and "open burning").

(70) "Totally enclosed treatment facility" means a facility for the treatment of hazardous waste which is connected and operated in a manner which prevents the release of any hazardous waste or any constituent thereof into the environment during treatment. An example is a pipe in which waste acid is neutralized.

(71) "Transportation" means the movement of hazardous waste by air, rail, highway, or water.

(72) "Transporter" means a person engaged in the offsite transportation of hazardous waste by air, rail, highway, or water.

(73) "Treatment" means any method, technique, or process, including neutralization, designed to change the physical, chemical, or biological character or composition of any hazardous waste so as to neutralize such waste, or so as to recover energy or material resources from the waste, or so as to render such waste non-hazardous, or less hazardous; safer to transport, store, or dispose of; or amenable for recovery, amenable for storage, or reduced in volume.

(74) "Underground injection" means the subsurface emplacement of fluids through a bored, drilled or driven well; or through a dug well, where the depth of the dug well is greater than the largest surface dimension. (See also "injection well").

(75) "Unsaturated zone" or "zone of aeration" means the zone between the land surface and the water table.

(76) "United States" means the 50 States, the District of Columbia, the Commonwealth of Puerto Rico, the U.S. Virgin Islands, Guam, American Samoa, and the Commonwealth of the Northern Mariana Islands.

(77) "Water (bulk shipment)") means the bulk transportation of hazardous waste which is loaded or carried on board a vessel without containers or labels.

(78) "Well" means any shaft or pit dug or bored into the earth, generally of a cylindrical form, and often walled with bricks or tubing to prevent the earth from caving in.

(79) "Well injection": (See "underground injection").

Subpart C—Rulemaking Petitions

§ 260.21 Petitions for equivalent testing or analytical methods.

(a) Any person seeking to add a testing or analytical method to Parts 261, 264, or 265 of this Chapter may petition for a regulatory amendment under this section and § 260.20. To be successful, the person must demonstrate to the satisfaction of the Administrator that the proposed method is equal to or superior to the corresponding method prescribed in Parts 261, 264, or 265 of this Chapter, in terms of its sensitivity, accuracy, and precision (i.e., reproducibility).

(b) Each petition must include, in addition to the information required by § 260.20(b):

(1) A full description of the proposed method, including all procedural steps and equipment used in the method;

(2) A description of the types of wastes or waste matrices for which the proposed method may be used;

(3) Comparative results obtained from using the proposed method with those obtained from using the relevant or corresponding methods prescribed in Parts 261, 264, or 265 of this Chapter;

(4) An assessment of any factors which may interfere with, or limit the use of, the proposed method; and

(5) A description of the quality control procedures necessary to ensure the sensitivity, accuracy, and precision of the proposed method.

(c) After receiving a petition for an equivalent method, the Administrator may request any additional information on the proposed method which he may reasonably require to evaluate the method.

(d) If the Administrator amends the regulations to permit use of a new testing method, the method will be incorporated in "Test Methods for the Evaluation of Solid Waste: Physical/Chemical Methods," SW-846, U.S. Environmental Protection Agency, Office of Solid Waste, Washington, D.C. 20460.

[Comment: This manual will be provided to any person on request, and will be available for inspection or copying at EPA headquarters or any EPA Regional Office.]

§ 260.22 Petitions to amend Part 261 to exclude a waste produced at a particular facility.

(a) Any person seeking to exclude a waste at a particular generating facility from the lists in Subpart D of Part 261 may petition for a regulatory amendment under this section and § 260.20. To be successful, the petitioner must demonstrate to the satisfaction of the Administrator that the waste
produced by a particular generating facility does not meet any of the criteria under which the waste was listed as a hazardous waste and, in the case of an acutely hazardous waste listed under §261.11(a)(2), that it also does not meet the criterion of §261.11(a)(3). A waste which is so excluded may still, however, be a hazardous waste by operation of Subpart C of Part 261.

(b) The procedures in this section and §260.20 may also be used to petition the Administrator for a regulatory amendment to exclude from §261.3(a)(2)(ii) or (c), a waste which is described in those sections and is either a waste listed in Subpart D, contains a waste listed in Subpart D, or is derived from a waste listed in Subpart D. This exclusion may only be issued for a particular generating, storage, treatment, or disposal facility. The petitioner must make the same demonstration as required by paragraph (a) of this section, except that where the waste is a mixture of solid waste and one or more listed hazardous wastes or is derived from one or more hazardous wastes, the demonstration may be made with respect to each constituent listed waste or the waste mixture as a whole. A waste which is so excluded may still be a hazardous waste by operation of Subpart C of Part 261.

(c) If the waste is listed with codes “T,” “C,” “R,” or “F” in Subpart D, the petitioner must show that demonstration samples of the waste do not exhibit the relevant characteristic defined in §§261.21, 261.22, 261.23, or 261.24 using any applicable test methods prescribed therein.

(d) If the waste is listed with code “H” in Subpart D, the petitioner must demonstrate that:

1. Demonstration samples of the waste do not contain the constituent (as defined in Appendix VII) that caused the Administrator to list the waste, using the appropriate test methods prescribed in Appendix III; or

2. The waste does not meet the criterion of §261.11(a)(3) when considering the factors in §261.11(a)(3) (i) through (xi).

(e) If the waste is listed with the code “H” in Subpart D, the petitioner must demonstrate that the waste does not meet both of the following criteria:

1. The criterion of §261.11(a)(2).

2. The criterion of §261.11(a)(6) when considering the factors listed in §261.11(a)(6) (i) through (xi).

(f) [Reserved for listing radioactive wastes.]

(g) [Reserved for listed infectious wastes.]

(h) Demonstration samples must consist of enough representative samples, but in no case less than four samples, taken over a period of time sufficient to represent the variability or the uniformity of the waste.

(i) Each petition must include, in addition to the information required by §260.20(b):

1. The name and address of the laboratory facility performing the sampling or testing of the waste;

2. The names and qualifications of the persons sampling and testing the waste;

3. The dates of sampling and testing;

4. The location of the generating facility;

5. A description of the manufacturing processes or other operations and feed materials producing the waste and an assessment of whether such processes, operations, or feed materials can or might produce a waste that is not covered by the demonstration;

6. A description of the waste and an estimate of the average and maximum monthly and annual quantities of waste covered by the demonstration;

7. Pertinent data on and discussion of the factors delineated in the respective criterion for listing a hazardous waste, where the demonstration is based on the factors in §261.11(a)(3);

8. A description of the methodologies and equipment used to obtain the representative samples;

9. A description of the sample handling and preparation techniques, including techniques used for extraction, containerization and preservation of the samples;

10. A description of the tests performed (including results);

11. The names and model numbers of the instruments used in performing the tests; and

12. The following statement signed by the generator of the waste or his authorized representative:

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this demonstration and all attached documents, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

(j) After receiving a petition for an exclusion, the Administrator may request any additional information which he may reasonably require to evaluate the petition.

(k) An exclusion will only apply to the waste generated at the individual facility covered by the demonstration and will not apply to waste from any other facility.

(l) The Administrator may exclude only part of the waste for which the demonstration is submitted where he has reason to believe that variability of the waste justifies a partial exclusion.

(m) The Administrator may (but shall not be required to) grant a temporary exclusion before making a final decision under §260.20(d) whenever he finds that there is a substantial likelihood that an exclusion will be finally granted. The Administrator will publish notice of any such temporary exclusion in the Federal Register.

Appendix I—Overview of Subtitle C Regulations

The Agency believes that there are many people who suspect, but are not sure, that their activities are subject to control under the RCRA Subtitle C rules. This appendix is written for these people. It is designed to help those who are unfamiliar with the hazardous waste control program to determine with which, if any, of the regulations they should comply.

Definition of Solid Waste

The first question which such a person should ask himself is: "Is the material I handle a solid waste?" If the answer to this question is "No", then the material is not subject to control under RCRA and, therefore, the person need not worry about whether he should comply with the Subtitle C rules.

Section 261.2 of this Chapter provides a definition of "solid waste" which expands the statutory definition of that term given in section 1004(27) of RCRA. This definition is diagrammed in Figure 1 below.

Figure 1 explains that all materials are either: (1) Garbage refuse, or sludge; (2) solid, liquid, semi-solid or contained gaseous material; or (3) something else. No materials in the third category are solid waste. All materials in the first category are solid waste, unless they are one of the five exclusions specified in §261.4(a).

Definition of Hazardous Waste

If a person has determined that his material is a "solid waste", the next question he should ask is: "Is the solid waste I handle a hazardous waste?"

Hazardous waste is defined in §261.3 of this chapter. Section 261.3 provides that, in general, a solid waste is a hazardous waste if: (1) It is, or contains, a hazardous waste listed in Subpart D of
Part 261 of this Chapter, or (2) the waste exhibits any of the characteristics defined in Subpart C of Part 261.

However, Parts 260 and 261 also contain provisions which exclude (§§ 261.4(b), 260.20, and 260.22) certain solid wastes from the definition of "hazardous waste," even though they are listed in Subpart D or exhibit one or more of the characteristics defined in Subpart C.

Figure 2 depicts the interplay of these special provisions with the definition of "hazardous waste". It presents a series of questions which a person should ask himself concerning his waste. After doing so, the person should be able to determine if the solid waste he handles is a hazardous waste.

Hazardous Waste Regulations

If this is the case, the person should look at Figure 3. Figure 3 depicts the special provisions specified in the final Part 261 rules for hazardous waste which:

1. Is generated by a small quantity generator
2. Is or is intended to be legitimately and beneficially used, re-used, recycled, or reclaimed
3. Is a sludge; is listed in Part 261, Subpart D; or is a mixture containing a waste listed in Part 261, Subpart D.

For each of these Groups, Figure 3 indicates with which Subtitle C regulations (if any) the person handling these wastes must comply. Figure 3 also explains that, if a person handles hazardous waste which is not included in any one of the above three categories, his waste is subject to the Subtitle C regulations diagrammed in Figure 4.

Figure 4 is a flowchart which identifies the three categories of activities regulated under the Subtitle C rules, and the corresponding set of rules with which people in each of these categories must comply. It points out that all people who handle hazardous waste are either: (1) Generators of hazardous waste, (2) transporters of hazardous waste, (3) owners or operators of hazardous waste treatment, storage, or disposal facilities, or (4) a combination of the above. Figure 4 indicates that all of these people must notify EPA of their hazardous waste activities in accordance with the Section 3010 Notification Procedures (see 45 FR 12746 et seq.), and obtain an EPA identification number.

It should be noted that people handling wastes listed in Subpart D of Part 261 who have filed, or who intend to file an application to exempt their waste from regulation under the Subtitle C rules, must also comply with the notification requirements of section 3010.

If a person generates hazardous waste, Figure 4 indicates that he must comply with the Part 262 rules. If he transports it, he must comply with the Part 263 rules. The standards in both these Parts are designed to ensure, among other things, proper recordkeeping and reporting, the use of a manifest system to track shipments of hazardous waste, the use of proper labels and containers, and the delivery of the waste to a permitted treatment, storage, or disposal facility.

If a person owns or operates a facility which treats, stores, or disposes of hazardous waste, the standards with which he must comply depend on a number of factors. First of all, if the owner or operator of a storage facility is also the person who generates the waste, and the waste is stored at the facility for less than 90 days for subsequent shipment off-site, then the person must comply with § 262.34 of the Part 262 rules.

All other owners or operators of treatment, storage, or disposal facilities must comply with either the Part 264 or the Part 265 rules. To determine with which of these sets of rules an owner or operator must comply, he must find out whether his facility qualifies for interim status. To qualify, the owner or operator must: (1) Have been treating, storing, or disposing of the hazardous waste, or commenced facility construction on or before October 21, 1976, (2) comply with the Section 3010 notification requirements, and (3) apply for a permit under Part 122 of this Chapter.

If the owner or operator has done all of the above, he qualifies for interim status, and he must comply with the Part 265 rules. These rules contain administrative requirements, monitoring and closure standards, and an abbreviated set of technical and closure and post-closure cost estimate requirements. The owner or operator must comply with these standards until final administrative disposition of his permit application is made. If a permit is issued to the owner or operator, he must then comply with the permit which will be based on the Part 264 rules.

If the owner or operator has not carried out the above three requirements, he does not qualify for interim status. Until he is issued a permit for his facility, the owner or operator must stop waste management operations (if any) at the facility, and send his hazardous waste (if any) to a facility whose owner or operator has interim status or to a storage facility following the Part 262 rules.

In order to apply for a permit, the owner or operator must comply with the procedures specified in Part 122 of this Chapter.

It should be noted that the Agency will be periodically revising the rules depicted in Figures 3 and 4. All persons are encouraged to write to EPA to verify that the regulations which they are reading are up-to-date. To obtain this verification, contact Solid Waste Information, U.S. Environmental Protection Agency, 26 West St. Clair Street, Cincinnati, Ohio 45268 (513) 694-5362.
FIGURE 1
DEFINITION OF A SOLID WASTE

All materials

Garbage, refuse or sludge
Solid, liquid, semi-solid or contained gaseous material which is:
1. discarded
2. served its intended purpose
3. a manufacturing or mining by-product

Does §261.4(a) exclude your material from regulation under RCRA because it is one of the following:
1. domestic sewage
2. CWA point source discharge
3. Irrigation return flow
4. AEC source, special nuclear or by-product material
5. In situ mining waste

YES
THE MATERIAL IS NOT A RCRA SOLID WASTE

NO

THE MATERIAL IS A RCRA SOLID WASTE irrespective of whether you:
1. discard it
2. use it
3. reuse it
4. recycle it
5. reclaim it
6. store it or accumulate it for purposes 1-5 of above
FIGURE 2

DEFINITION OF A HAZARDOUS WASTE

- Is the solid waste excluded from regulation under §261.4(b)?
 - NO
 - Is the solid waste listed in Part 261, Subpart D, or is it a mixture that contains a waste listed in Subpart D?
 - NO
 - YES
 - Has the waste or mixture been excluded from the lists in Subpart D or §261.3 in accordance with §§260.20 and 260.227?
 - YES
 - Does the waste exhibit any of the characteristics specified in Part 261, Subpart C?
 - NO
 - NO
 - THE WASTE IS A HAZARDOUS WASTE (see figure 3)
 - YES
 - NO
 - THE WASTE IS SUBJECT TO CONTROL UNDER SUBTITLE D (if land disposed)
FIGURE 3
SPECIAL PROVISIONS FOR CERTAIN HAZARDOUS WASTE

THE WASTE IS A HAZARDOUS WASTE (see figure 2)

\[\text{YES} \]

Is it generated by a small quantity generator as defined in §261.5?

\[\text{YES} \rightarrow \text{It is subject to the special requirements of §261.5} \]

\[\text{NO} \]

Is it or is it intended to be legitimately and beneficially used, re-used, recycled, or reclaimed?

\[\text{NO} \rightarrow \text{Therefore, it must be intended to be discarded. IT IS SUBJECT TO THE SUBTITLE C REGULATIONS DIAGRAMMED IN FIGURE 4.} \]

\[\text{YES} \]

Is it a sludge or is it listed in Part 261, Subpart D or is it a mixture containing a waste listed in Part 261, Subpart D?

\[\text{NO} \rightarrow \text{IT IS NOT SUBJECT TO REGULATION UNDER SUBTITLE C} \]

\[\text{YES} \]

IT IS SUBJECT TO THE FOLLOWING REQUIREMENTS WITH RESPECT TO ITS TRANSPORTATION OR STORAGE:
- Notification under Section 3010
- Parts 262 and 263
- Part 264, Subparts A through E
- Part 265, Subparts A through E, and G, H, I, J, & L
- Parts 122 and 124
All persons who handle hazardous waste subject to control under Subtitle C not covered in figure 3

- Notify EPA according to Section 3010 of RCRA
- Obtain EPA ID Number

Generators Transporters Owners or Operators of T/S/D* Facilities

On-Site Generators Storing Wastes < 90 days for subsequent shipment off-site O/O** who qualify for interim status O/O who don't qualify for interim status

Part 262 Part 263 §262 34 of Part 262 Part 265

- Stop operations, if any
- Send waste inventory, if any, to a facility whose owner or operator has interim status, or a permit, following the Part 262 rules
- Apply for permit under Part 122 & resume or commence operations only after permit is issued by EPA under Parts 122, 124 and 264, or by a State with an EPA-approved hazardous waste permit program.

* T/S/D stands for Treatment, Storage, or Disposal
** O/O stands for Owners or Operators
Part III

Environmental Protection Agency

Hazardous Waste Management System

Identification and Listing of Hazardous Waste
ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 261

[FR 1471-3]

Hazardous Waste Management System: Identification and Listing of Hazardous Waste

AGENCY: Environmental Protection Agency.

ACTION: Final rule, interim final rule, and request for comments.

SUMMARY: Subtitle C of the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act of 1976, as amended ("RCRA"), requires the Environmental Protection Agency ("EPA") to promulgate regulations establishing a Federal hazardous waste management system. The keynotes of Subtitle C is Section 3001, which requires EPA to identify the characteristics of and to list those solid wastes which must be managed as hazardous wastes under that system.

This regulation is the first phase of EPA's implementation of Section 3001. It identifies four characteristics of hazardous waste to be used by persons handling solid waste to determine if that waste is a hazardous waste. In addition, it lists 83 process wastes as hazardous wastes and approximately 400 chemicals as hazardous wastes if they are discarded. Persons who generate, transport, treat, store or dispose of hazardous wastes identified or listed in this regulation must comply with all applicable requirements of Parts 222, 223, and 262 through 265 of this Chapter and the notification requirements of Section 3010 of RCRA.

In addition to identifying and listing hazardous wastes, this regulation also sets forth the criteria used by EPA to identify characteristics of hazardous wastes and to list hazardous wastes.

DATES:

Effective Date: These regulations, in the form published today, complete EPA's initial rulemaking on the subjects covered and are final agency action. They become effective on November 19, 1980, which is six months from the date of promulgation as Section 3010 requires. Today's promulgation begins the various schedules provided by RCRA for filing notifications and permit applications, and for States to apply for interim authorization.

Comment Dates: EPA will accept public comments on these regulations as follows:

Region I, Dennis Huebner, Chief, Radiation, Waste Management Branch, John F. Kennedy Building, Boston, Massachusetts 02203 (617) 223-5777.
Region II, Dr. Ernest Regna, Chief, Solid Waste Branch, 20 Federal Plaza, New York, New York 10007, (212) 264-0580/5.
Region IV, James Scabruch, Chief, Residuals Management Branch, 345 Courtland Street, N.E., Atlanta, Georgia 30305, (404) 881-3016.
Region VI, R. Stan Jorgensen, Acting Chief, Solid Waste Branch, 1201 Elm Street, First International Building, Dallas, Texas 75270, (214) 797-2045.
Region VII, Robert L. Morby, Chief, Hazardous Materials Branch, 324 E. 11th Street, Kansas City, Missouri 64106, (816) 374-3007.
Region VIII, Lawrence P. Gazda, Chief, Waste Management Branch, 1890 Lincoln Street, Denver, Colorado 80203, (303) 637-2221.

For further information about these meetings, contact Geraldine Wyer, Public Participation Officer, Office of Solid Waste (HW-582), U.S. Environmental Protection Agency, Washington, D.C. 20460, (202) 755-9157.

SUPPLEMENTARY INFORMATION:

I. Introduction

The improper management of hazardous waste is probably the most serious environmental problem in the United States today. EPA estimates that in 1979 the United States generated almost 60 million metric tons of hazardous waste, but that only 10 percent of this waste was managed in an environmentally sound manner. The remainder—over 50 million tons—was transported, treated, stored or disposed of in a manner which potentially threatens human health and the environment.

This mismanagement has tragic consequences. EPA has on file hundreds of cases of damage to human health or the environment resulting from the
indiscriminate dumping or other improper management of hazardous waste. The vast majority of these cases involve the pollution of groundwater—the source of drinking water for about half the nation’s population—from the open dumping of wastes or from improperly operated landfills and surface impoundments. In many of these cases, the supplies were so badly contaminated with toxic or cancer-causing chemicals and heavy metals that residents in the area had to obtain drinking water from other sources. In more tragic cases, residents were not aware of the contamination, continued to drink the water, and suffered serious health effects.

Groundwater pollution is not the only problem posed by improper hazardous waste management. EPA’s damage case file also includes incidents where the improper disposal of hazardous waste has polluted streams, rivers, lakes and other surface waters, killing aquatic life, destroying wildlife, and denuding areas of vegetation. In other cases, the vaporization of volatile organic materials from wastes which were improperly disposed of has been linked to respiratory illnesses, skin diseases (including skin cancer) and elevated levels of toxic materials in the blood and tissues of humans and domestic livestock. In still other cases, the mismanagement of hazardous waste has resulted in fires, explosions or the generation of toxic gases which have killed or seriously injured workers and firemen.

It is against the backdrop of such incidents that Congress enacted the Resource Conservation and Recovery Act of 1976, as amended, 42 U.S.C. 6901 et seq. ("RCRA" or "Act"). Although the Act has several objectives (including the promotion of resource recovery and the proper management of non-hazardous solid waste), Congress’ "overriding concern" (H.R. Rep. No. 94-1461, 94th Cong., 1st Sess. 3 [1976] ("H.R. Rep.")) in enacting RCRA was to establish the statutory framework for a national system which would insure the proper management of hazardous waste.

That framework is contained in Subtitle C of the statute. It requires EPA to establish a Federal “cradle to grave” management system for hazardous waste, including standards for generators of hazardous waste (Section 3002), standards for transporters of hazardous waste (Section 3003), standards and permit requirements for owners and operators of facilities that treat, store or dispose of hazardous waste (Sections 3004 and 3005) and a manifest system which will track the movement of the waste from the point of generation to the point of disposal (Sections 3002, 3003 and 3004). Under Section 3006 of Subtitle C, EPA may authorize States to operate a State hazardous waste program in lieu of the Federal program if they meet certain requirements.

The centerpiece of this system is Section 3001 of Subtitle C, which requires EPA to identify and list those solid wastes which must be managed as hazardous wastes according to the standards established by EPA under Sections 3002 through 3005. This identification is a two-part process. First, EPA is required to develop criteria for identifying the characteristics of hazardous waste and for listing hazardous wastes (Section 3001(a)). Then, based on these criteria, EPA must actually identify specific characteristics of hazardous waste and list particular hazardous wastes (Section 3001(b)).

EPA began developing regulations to implement these requirements shortly after RCRA was enacted. During 1977 and 1978, the Agency met extensively with experts in hazardous waste management, States, Federal agencies, industry, environmental groups and other individuals and organizations to discuss possible criteria, and to obtain suggestions for characteristics and listed wastes. Drafts of proposed regulations were developed and widely disseminated to the public for comment. Based on these meetings, several public hearings, written comments on its draft regulations and information collected by EPA, a final proposed regulation was developed and published in the Federal Register on December 18, 1978 (43 FR 58949-58986). EPA held five public hearings on its December 18, 1978, proposal (43 FR 58946). Several hundred persons testified at these hearings. In addition, EPA received an estimated 1,000 sets of written comments on its proposed Section 3001 regulations.

Based in part on these comments, EPA proposed a supplemental list of hazardous wastes on August 22, 1979 (44 FR 49002-49004). The Agency also held a hearing on this proposal and received a number of written comments.

The Agency has carefully considered the comments received on its December 18, 1978, and August 22, 1979, proposals, as well as comments received on a number of reports, studies and other documents associated with its Section 3001 rulemaking which were noticed for public comment after the close of the comment period on the proposed regulations, in developing the final and interim final regulations published today.

II. Organization of Regulations and Preamble

In response to comment that its proposed Subtitle C regulations were difficult to read, EPA has totally reorganized them. Regulations implementing Section 3001, which were originally proposed as Subpart A of Part 230 of Title 40 of the Code of Federal Regulations have been recodified as Part 261 of Title 40. Similar changes have been made in the remainder of the Subtitle C regulations. The following table shows the correlation between the statutory provisions of Subtitle C and the sections of EPA’s proposed and final regulations which implement those provisions:

<table>
<thead>
<tr>
<th>Statutory section</th>
<th>Proposed rule</th>
<th>Final rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>General provisions and definitions.</td>
<td>§§ 250.10(c) through 250.11, 250.21, 250.31, 250.41</td>
<td>Part 260.</td>
</tr>
<tr>
<td>3001.</td>
<td>§§ 250.10(a) and (b), 250.12 through 250.15, 250.26(a)</td>
<td>Part 261.</td>
</tr>
<tr>
<td>3002.</td>
<td>§§ 250.22 through 250.28, 250.29(a)</td>
<td>Part 262.</td>
</tr>
<tr>
<td>3003.</td>
<td>§§ 250.42 through 250.46</td>
<td>Part 263.</td>
</tr>
<tr>
<td>3004 (permuting standards).</td>
<td>§§ 250.4(a), 250.10(a) through 250.42 through 250.48</td>
<td>Part 264.</td>
</tr>
<tr>
<td>3004 (interim status).</td>
<td>§§ 250.40(c), 250.48</td>
<td>Part 265.</td>
</tr>
<tr>
<td>Standards.</td>
<td>Parts 122 and 124</td>
<td>Part 266.</td>
</tr>
<tr>
<td>3008.</td>
<td>Part 123, §§ 250.30(c), 250.20(b), 250.30(d)</td>
<td>Part 267.</td>
</tr>
</tbody>
</table>

The recodification of EPA’s Section 3001 regulations from a Subpart of Part 250 to Part 261 has necessitated some major reorganization of those regulations. Proposed § 250.10 is now largely incorporated in Subpart A. The purpose of this subpart is to tell the reader what materials are subject to the Federal hazardous waste management system established by Parts 232 through 265, 122 and 124. It contains a definition of solid waste, a definition of hazardous waste, and a list of materials which are excluded from all or a portion of the requirements in those parts. It also designates the points in the waste generation and handling process when a hazardous waste must begin to be managed in accordance with EPA’s Parts 262 through 265 standards and explains when a hazardous waste ceases to be a hazardous waste. Finally, it establishes special requirements for small quantity generators of hazardous waste as originally contained in § 250.26(a) of EPA’s proposed generator standards.)

1See 44 FR 49277, 49278 (August 22, 1979); 44 FR 50624 (October 2, 1979); 44 FR 76827 (December 28, 1979); 45 FR 20593 (January 10, 1980); 45 FR 14232 (March 5, 1980).
Subpart B (§§ 250.12 and 250.14 of the proposed rule) establishes the criteria used by EPA in identifying the characteristics of hazardous waste and listing particular hazardous wastes. Subpart C (proposed § 250.13) contains the hazardous waste characteristics which EPA has identified and Subpart D (proposed § 250.14) the particular hazardous wastes which EPA has listed to date based on those criteria. As noted in the definition of hazardous waste in Subpart A, these two subparts are the cornerstone for the Federal hazardous waste management system because they identify which solid wastes will be regulated as hazardous wastes under that system.

The following table provides a rough correlation between the various provisions of EPA's proposed and final Section 3001 regulations:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Proposed rule</th>
<th>Final rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose of regulations</td>
<td>§ 250.10(a)</td>
<td>§ 251.1.</td>
</tr>
<tr>
<td>General definitions</td>
<td>§ 250.11</td>
<td>§ 250.12, 251.2, 251.25.</td>
</tr>
<tr>
<td>Definition of solid waste</td>
<td>§ 250.10(b)</td>
<td>§ 251.1.</td>
</tr>
<tr>
<td>Definition of hazardous waste</td>
<td>§ 250.10(c)</td>
<td>§ 251.2.</td>
</tr>
<tr>
<td>Exclusions</td>
<td>§ 250.10(g), 250.11(a)(7), 250.20(a)(4)</td>
<td>§ 251.4.</td>
</tr>
<tr>
<td>Small quantity generators</td>
<td>§ 250.20(a)</td>
<td>§ 251.5.</td>
</tr>
<tr>
<td>Criteria...</td>
<td>§ 250.12 (a) and (b), 250.14</td>
<td>Subpart B.</td>
</tr>
<tr>
<td>For identifying characteristics...</td>
<td>§ 250.12(a)</td>
<td>§ 250.10.</td>
</tr>
<tr>
<td>For listing...</td>
<td>§ 250.12(b), 250.14</td>
<td>§ 251.11.</td>
</tr>
<tr>
<td>Characteristics...</td>
<td>§ 250.13</td>
<td>§ 250.11.</td>
</tr>
<tr>
<td>Ignitability...</td>
<td>§ 250.13(a)</td>
<td>§ 250.21.</td>
</tr>
<tr>
<td>Corrosivity...</td>
<td>§ 250.13(b)</td>
<td>§ 250.22.</td>
</tr>
<tr>
<td>Reactivity...</td>
<td>§ 250.13(c)</td>
<td>§ 250.23.</td>
</tr>
<tr>
<td>Toxicity...</td>
<td>§ 250.13(d)</td>
<td>§ 250.24.</td>
</tr>
<tr>
<td>Lists...</td>
<td>§ 250.14</td>
<td>§ 250.31.</td>
</tr>
<tr>
<td>Nonhazardous sources...</td>
<td>§ 250.14(a)</td>
<td>§ 250.31.</td>
</tr>
<tr>
<td>Specific sources...</td>
<td>§ 250.14(b)(2)</td>
<td>§ 250.32.</td>
</tr>
<tr>
<td>Discarded chemicals</td>
<td>§ 250.14(f)</td>
<td>§ 250.32.</td>
</tr>
<tr>
<td>Procedures for exempting listed wastes from particular regulating facilities</td>
<td>§ 250.15</td>
<td>§ 250.20, 250.21.</td>
</tr>
<tr>
<td>Petitions...</td>
<td>§ 250.12(b)</td>
<td>§ 250.22.</td>
</tr>
</tbody>
</table>

Except for some broad issues which cut across all the Section 3001 regulations (and in some cases EPA’s Section 3002 through 3004 standards), the preamble to this regulation will generally follow the structure of the final regulations. It will discuss some of the more significant issues raised during the public comment period on EPA’s proposed regulations and the revisions made in response to those comments. Background documents which address these comments and revisions can explain the basis for these regulations in more detail are available as noted above.

III. General Issues

A. Phasing of Regulations

Several months prior to the proposal of EPA’s Section 3001 regulations, the State of Illinois, several environmental groups, and a solid waste trade association sued the Agency under Section 7004 of RCRA to obtain a court order requiring EPA to promulgate final regulations under Section 3001 and other sections of the Act) by a date certain. On January 3, 1979, the court issued an order directing EPA to issue final regulations under Section 3001 by December 31, 1979. State of Illinois v. Costle, 12 ERC 1897 (D.D.C. 1979). This order was subsequently modified to require EPA to use its best efforts to meet an April 1980, promulgation date (Order of December 18, 1979).

Given our limited resources, it has not been possible both to meet this deadline and to make final decisions on every segment of the very ambitious regulatory program which the Agency proposed on December 18, 1978, and August 22, 1979. We have tried to prioritize our efforts, insofar as possible, to deal with the most serious environmental problems first (e.g., ones that are national in scope, are not dealt with by other State or Federal regulations) and to finalize those portions of the proposed regulations which must be issued if a core hazardous waste management program is to go into effect.

For these reasons, the final regulation published today defers final action on a number of aspects of the proposed regulation, including integrating the regulation of polychlorinated biphenyls ("PCBs") under RCRA and the Toxic Substances Control Act ("TSCA"); fully regulating wastes that are used, re-used, reclaimed or recovered; and a number of proposed listed wastes. To assist States in developing hazardous waste programs under Section 3006 of RCRA and the regulated community in preparing to comply with future regulatory requirements, EPA is providing the following information on its current schedule for acting on these deferred portions:

1. PCB Integration. On February 17, 1978 (43 FR 7150) EPA issued final regulations under Section 9(e) of TSCA establishing storage, landfiling, incineration, packaging, marking, placarding and recordkeeping requirements for waste PCBs. Revisions to these regulations were published on May 31, 1979 (44 FR 31514).

Because of the potential overlap between the RCRA hazardous waste management standards and the TSCA PCB marking and disposal regulations, in its proposed Section 3004 regulations, EPA requested comment on five alternative ways of integrating the two sets of regulations (43 FR 56993-56994). See also 43 FR 31539 (May 31, 1979).

Based on the comments received, and EPA's own review of the two sets of regulations, the Agency has made a tentative decision that the best way to regulate PCBs is to merge the TSCA PCB rules into the final RCRA regulations.

Unfortunately, it has not been possible to complete this task to date. Both rules are lengthy and complicated, and must be carefully coordinated to avoid regulatory loopholes and disruption of the ongoing TSCA PCB program. Completing this coordination by April of this year would have required diverting personnel from the task of finalizing the RCRA hazardous waste program. EPA decided that it made little sense to use its limited resources on revising an existing regulatory program when so much work needed to be done to develop a new one.

EPA expects to complete the task of integrating the RCRA regulations and TSCA PCB rules by the fall of 1980, and to amend Parts 201 through 256 to bring waste PCBs into the Subtitle C system at the same time that it promulgates its final Phase II Section 3004 standards. In the interim, the handling and disposal of waste PCBs will continue to be regulated under TSCA and other EPA statutes.

2. Regulation of Wastes Which Are Used, Re-Used, Recovered or Reclaimed. As discussed in some detail in section IV.B. of this preamble, EPA will be deferring the promulgation of standards to regulate hazardous waste recycling and reclamation operations and the actual use and re-use of hazardous waste until beginning in the fall of 1980.

3. Radioactive Wastes. In its December 16, 1978, regulation, EPA proposed to list the following radioactive materials as hazardous wastes: waste rock and overburden from uranium mining; overburden and slimes from phosphate surface mining; waste gypsum from phosphoric acid production; and slag and fluid bed ashes from elemental phosphorus production (§ 250.14(b)(2)). At the same time, it proposed to establish special management standards for these wastes.
which would regulate their disposal (§§ 250.46–2 and 250.46–4) and prevent their being used as fill in land used for residential development or in building products unless radon emissions and gamma radiation could be reduced to specified levels (§§ 250.46–5(c) and 250.46–6). The purpose of these latter use restrictions was to reduce the amount of radiation to which persons living or working in buildings constructed either on land where these wastes were deposited or with materials containing these wastes would be exposed.

In February, 1980, the House of Representatives passed a bill which would amend RCRA to temporarily suspend EPA's authority to regulate these wastes under Subtitle C except as necessary:

to prevent radiation exposure which presents an unreasonable risk to human health from the use in construction or land reclamation (with or without revegetation) of solid waste from the extraction, beneficiation or processing of phosphate rock or the extraction of uranium ore (Section 3(d) of H.R. 3994).

Because Congressional action on this provision is imminent (see section III.E. of this preamble), we are deferring the development of final or interim final regulations establishing a criterion for listing radioactive wastes, listing radioactive phosphate and uranium wastes, and establishing management standards for those wastes until Congress has spoken. Assuming Congress acts by the end of the summer, we would hope to promulgate regulations for radioactive wastes by the fall of 1980. This would give EPA some time to better refine its final standards and conform them to any legislative amendments, to fully respond to comments on its proposal and to coordinate its final standards with other regulations on used and re-used, recovered and reclaimed wastes (see section IV.B.4.d of this preamble).

Although the use of radioactive mining wastes in residential landfill and construction materials may pose a serious health hazard, this hazard is limited to approximately half a dozen states where these wastes are generated and used with more than one-third of the wastes covered by today's regulation, which are more ubiquitous and are frequently transported across state lines, these wastes can probably be regulated effectively at the state level pending EPA action.

5. Other Listed Wastes. The other waste streams on which EPA has deferred final action fall into four basic categories: Wastes which EPA intends to list as hazardous but for which revised background documents could not be completed in time for promulgation of this regulation; wastes for which EPA currently has insufficient data to make a final determination that the wastes are hazardous; wastes which available data suggest are not hazardous; and wastes which are no longer produced.

It is EPA's intent to amend this regulation to add most of the wastes included in the final category of deferred wastes by June 15, 1980 (see Appendix A) and the remainder by fall, 1980 (see Appendix B). Persons handling wastes identified or listed in both this regulation and Appendix A may, if they desire, save themselves the expense and inconvenience of a second notification under Section 3010 of RCRA by including Appendix A wastes in the notification to be filed on August 18, 1980. Owners and operators of facilities which treat, store or dispose of the wastes in both categories may similarly avoid having to amend their Part A permit application (see 40 CFR 122.22) by including Appendix A wastes in their initial application.

EPA will take action on the second category of deferred wastes—wastes for which EPA currently has insufficient data to make a final listing determination—as soon as it is able to obtain the information necessary to make those decisions. To enable the Agency to gather such information without the ex parte contact restraints normally imposed on post-proposal rulemaking activities, EPA will in the future be reopening the comment period on its December 18, 1978, proposal to list these wastes. EPA does not plan on taking any further action on the final two categories of wastes.

EPA does not believe that phasing the promulgation of Section 3001 in this fashion will frustrate the objectives of the statute or unduly complicate implementation of the hazardous waste program. Sections 2002(b), 3001(c), and 7002 of the Act clearly contemplate that regulations under Section 3001 will be periodically expanded or otherwise revised. See also H.R. Rep. at 25. The preview of the content and timing of future regulations provided above should help to minimize the disruption that phased promulgation of major portions of the Section 3001 regulations might cause for the regulated community and for States which are attempting to formulate their hazardous waste programs. In light of these considerations and the pressing need to begin implementation of a national hazardous waste program as soon as possible, EPA sees no reason to postpone publication of those portions of its Section 3001 regulations which it is ready to finalize today pending a final decision on the remaining portions. Such an approach would cause an unwarranted delay in the commencement of the program.

B. Interim Final Provisions

The following portions of this regulation are being published as “interim final” regulations: the lists of hazardous wastes (Subpart D), the criteria for listing hazardous wastes (§ 261.11), and the definition of “solid waste” (§ 261.2) and “domestic sewage” (§ 261.4(a)). This means that, although these regulations are promulgated for purposes of the 90-day notification requirement under Section 3010(a), the six-month effective date under Section 3010(b) and the 90-day petition deadline under Section 7006, the public will have an additional opportunity to comment on them before they are published as “final final” regulations.

The lists of hazardous wastes under Subpart D are being published in interim final form to allow the public an opportunity to comment on the
additional data EPA has collected since the close of the public comment period to support the listing of these wastes. Because EPA received comments on only approximately twenty-five percent of the wastes listed in its December 16, 1978, and August 22, 1979, proposals, the Agency does not anticipate receiving very many comments on its revised support documents or having to make major changes in the list of wastes published today before issuing a "final final" regulation.

The criteria for listing (§ 260.11) have been substantially revised in response to public comment. While EPA believes that these changes are a logical outgrowth of the public comment period, it also recognizes that they would probably benefit from the fine tuning that an additional round of public comment would provide. For this reason, the Agency is also publishing § 260.11 in interim final form.

EPA's proposed definition of "solid waste" has been clarified and a new definition of "domestic sewage" has been added in response to public comment. Because of the difficulties inherent in devising workable, broadly applicable definitions of these terms, and their potential regulatory impact, we would like to obtain some additional comment on them before publishing them in final form.

It is EPA's intent to act on all interim final portions of these regulations prior to the compliance date of Parts 262 and 263 and the effective date of Parts 264 and 265.

C. Data Base for Regulations

EPA received a number of comments on its December 16, 1978, and August 22, 1979, proposals to promulgate final regulations under Section 3001 (and the rest of Subtitle C) until it could develop an extensive data base on hazardous waste characteristics and individual hazardous wastes, including extensive industry-specific waste studies, risk assessments, and in-depth waste analyses.

In the final regulations published today, the Agency has made every attempt to base its rules on the data available on waste generation, composition and management, on the potential health and environmental hazards posed by waste constituents, and on exposure pathways. It has also exercised its best efforts to use good scientific analysis and judgment to supplement available data and to respond to comments received on its proposed regulation. In some instances, within time and budget constraints, EPA has undertaken additional waste analyses and testing.

While the acquisition of more information is often a scientific objective, Section 3001 requires the Agency to establish regulations where it has limited, but meaningful data. The broad discretion provided to EPA under the statute, the tight statutory promulgation deadlines coupled with Congress' acknowledged recognition of the lack of available data on hazardous waste management (see H.R. Rep. at 26), and the critical nature of the hazardous waste problem (see H.R. Rep. pt 3, 4, 11, 17–23; S. Rep. No. 94–998, 94th Cong. 2d Sess. at 3, 4 ("S. Rep.") all support EPA's ongoing forward with a regulatory program even though its data base and regulations are less than perfect. The courts have repeatedly sanctioned this approach under other EPA statutes where, as here, the Agency is implementing a complex program in an area "fraught with scientific uncertainty" where Congress has directed EPA "to act quickly and decisively despite the lack of exact data". Weyerhaeuser Company v. Castle, 550 F.2d 1011, 1025–1026 (D.C. Cir. 1977). See also Ethyl Corp. v. EPA, 541 F.2d 1, 24 (D.C. Cir. 1976); Society of Plastics Industries, Inc. v. OSHA, 509 F.2d 1301, 1308 (2d Cir.), cert. denied, 421 U.S. 992 (1975).

We are committed to improving our data base for these regulations and refining them in the future. The Agency has recently instituted a multi-year, multi-million dollar program to survey specific industries and collect waste samples and other information which will expand its data base on the hazardous waste generated by these industries. EPA also anticipates that implementation of the Subtitle C regulations—particularly the waste testing requirements—will, over the next several years, substantially increase the national pool of information on hazardous wastes. The petitioning procedures set forth in §§ 260.20 through 260.22 should provide yet another revenue of information which can be used to improve this regulation in the future.

D. Developing a National Hazardous Waste Management System

EPA received a number of comments on its proposed regulations identifying particular wastes or management situations where a strict application of EPA's proposed regulations would result in overregulation of the wastes at issue. For example, commenters identified several wastes which exhibited EPA's proposed characteristics but which would not normally be thought of as hazardous, and data situations where the application of EPA's proposed Section 3004 standards was arguably unnecessary.

In the regulations promulgated today, particularly the Part 264 and 265 regulations, we have tried to address some of these criticisms, to the extent feasible, and to achieve a better balance between the often competing goals of regulatory specificity and broad applicability. Where we think specific standards are appropriate, we have promulgated specific standards; where more flexibility is required, we have either used broader standards or used specific standards and articulated exceptions or provided for individual variances. We have done our best to lay the groundwork for a hazardous waste management system which is workable and understandable, and which provides appropriate regulation of most hazardous wastes identified be listed in this Part.

This system may not work perfectly for every waste, however. It may overregulate in some instances and underregulate in others. This is an unavoidable consequence of attempting to develop a national hazardous waste management program which has to regulate thousands of wastes in literally hundreds of thousands of individual transportation, treatment, storage and disposal situations. To develop a program which would provide precisely the right degree of environmental and health protection in each management situation would require regulations that would be either so vague that they would offer little guidance to the regulated community and would be largely unenforceable or so extensive and so encumbered with provisions for case-by-case variances that they would be an administrative nightmare for both EPA and the hundreds of thousands of persons and facilities which are potentially subject to them.

We think that the system we have promulgated today, although not perfect in all aspects, is within the scope of what Congress intended when, in 1976, it directed EPA to establish hazardous waste management standards which were "necessary to protect health and the environment" in eighteen months. We do not think that Congress expected EPA to develop a program which could not implement or enforce or to indefinitely postpone the issuance of regulations until it could develop standards which would provide the degree of precision desired by some commenters. Neither of these approaches would provide any health or environmental protection at all.

In these regulations we have tried to strike a balance between these two extremes. Where we have failed to achieve the right balance, we suspect that this will become apparent in the early stages of implementing the
program. If there are situations where a strict application of the standards contained in these rules would bring about a result which was obviously not intended, the Agency would appreciate being advised of it so that we can take appropriate action. We are prepared to react to these problems with regulatory amendments, interpretive guidance and reasonable implementation and enforcement, as appropriate.

E. Pending Legislative Amendments

The United States Senate and House of Representatives have each recently passed a bill to reauthorize and amend RCRA (S. 1156 and H.R. 3994). Both bills contain amendments to Section 3001 which, if enacted, would repeal or temporarily suspend EPA's authority to regulate certain utility and energy development wastes as hazardous wastes under Subtitle C. These bills are now awaiting action by a conference committee. Because it appears likely that Congress will act before November 19, 1980 to exempt these wastes, EPA has temporarily excluded them from this regulation (see § 261.4(b)). This exclusion will be revised, if necessary, to conform to the legislation which is ultimately enacted.

F. Consideration of Economic Impact of the Development of the Regulations

In its proposed regulations, EPA expressed uncertainty on the appropriate role that cost considerations and economic impact should play in the development of the hazardous waste regulations:

> It is also not clear to what extent RCRA allows economic impact to be taken into account, since the Act is silent on this point. Thus, the Agency is faced with the problem of how to deal with these potential impacts with little economic data and without clear Congressional guidance. (43 FR 58971)

A variety of comments were received on this issue, expressing three predominant themes: (a) The Act and its legislative history require the Agency to analyze its regulations in terms of costs and benefits; (b) the legislative materials preclude any consideration of costs in the development of regulations; and, (c) EPA must prepare an economic impact analysis.

EPA has re-examined the legislative history of RCRA. Although the legislative history is sparse, it does contain sufficient indications of Congressional intent to lead the Agency to the conclusion that EPA may not consider cost burden upon industry in choosing the level of its standards. The Agency may, however, take cost considerations in account in order to select the most effective regulation among various alternatives that meet the statutory requirement of being "necessary to protect human health and the environment." In addition, the Agency may prepare economic analyses to supplement its regulations as an aid to congressional, intergovernmental, or public understanding of the regulatory program.

EPA disagrees with the position of several commenters that cost, or economic considerations more generally, must be a factor in EPA's decisions under Subtitle C. There is no explicit requirement in the Act directing EPA to consider costs in the development of its initial regulations. The singular focus of protecting human health and the environment distinguishes RCRA from the other major pollution control statutes. For example, in developing effluent guideline limitations under the Clean Water Act, the Administrator is to consider, among other things, "the total cost of the application of technology in relation to the the effluent reductions to be achieved . . ." Section 304(b)(1)(B), 33 U.S.C. 1314(b)(1)(B). See also Section 304(b)(2)(B). The Clean Air Act also directs that in establishing new source performance standards for stationary sources of air pollution the Administrator should "consider the cost of achieving such emission reduction and any nonair quality health and environmental impact and energy requirements." Section 111(a)(1)(C), 42 U.S.C. 7221(a)(1)(C).

The silence of the statute itself appears especially significant because earlier drafts of the legislation which either explicitly called for considerations of cost or implicitly sanctioned such consideration. A draft bill for use by the relevant House Subcommittee would have required that hazardous waste regulations "shall be such as will minimize the risk of adverse effects on human health while taking to the greatest extent possible into account the economic cost and benefits of achieving such standards." Section 351(e), Subcommittee on Transportation and Commerce, Draft of the Solid Waste Utilization Act (December 8, 1975). When this bill was redrafted for introduction to the House of Representatives as H.R. 14496, this provision calling for consideration of costs and benefits had been deleted. The House bill, however, required that hazardous waste regulations "reasonably protect" human health and the environment. H.R. 14496, 94th Cong., 2d Sess., § 306 (1976). The legislative materials accompanying H.R. 14496 provided no guidance on what effect, if any, the draftsmen intended the potentially moderating phrase "reasonably protect" should have on the development of regulations. In the compromise bill reconciling the differences between the Senate and House bills, the adverb "reasonably" was deleted. In the debate in the House prior to the Act's passage there was no discussion of the effect of this deletion on the intended operation of the Act.

Congress was aware that the hazardous waste regulation would impose substantial costs on the regulated community. See, e.g., H.R. Rep. at 4, S. Rep. at 4. Despite this recognition, Congress deliberately rejected provisions that would require consideration of cost burden on industry or to moderate the Act's environmental objectives. For these reasons, the Agency concludes that the Act prohibits it from considering such costs in the development of Subtitle C regulations as a basis for lessening the standards it considers necessary to ensure protection of human health or the environment.

The Agency has, however, considered cost-effectiveness in choosing among alternatives that meet the requirements of the statute. In addition, the Administrator may refer to other considerations such as energy or environmental impacts, and the costs of implementation and enforcement burdens. For instance, the information received or developed in the course of rulemaking on the cost implications of its proposed regulations may be used by EPA to determine the relative cost-effectiveness of various methods to implement a particular requirement.

Information on economic impacts may also be useful in informing Congress about the implementation of the hazardous waste program, developing new legislative or Agency initiatives which might affect the regulatory program, and advising the public about the projected impacts of the program. See Hercules, Inc. v. Environmental Protection Agency, 599 F. 2d 91, 113 (D.C.Cir. 1978). EPA has prepared an economic impact analysis on the entire Subtitle C regulatory program. This analysis provides detailed information on the projected economic impacts of these regulations. The report should facilitate public understanding of the task that the Agency is undertaking.

G. Rulemaking Petitions

EPA's December 18, 1978, proposed Section 3001 regulations contained no special procedures for petitioning the Agency to identify a new characteristic or list a new hazardous waste, or to modify or revoke an existing
characteristic or listing. They simply provided that a petition to identify a characteristic or list a solid waste as a hazardous waste would be granted if EPA found that the proposed characteristic or waste met EPA's criteria for characteristics or listing (proposed § 250.12(c)).

EPA received a number of comments urging it to establish standardized procedures for the submission and processing of petitions to modify its characteristics or list of wastes. Some of these commenters simply wanted to know how to file a petition and how EPA would act on it. Others insisted that EPA establish rulemaking procedures which complied with the Administrative Procedures Act, mistakenly thinking that because proposed § 250.12(c) did not articulate the procedures EPA would follow in acting on petitions, the Agency would grant petitions, thereby modifying its regulations, without going through normal rulemaking procedures.

To provide the guidance desired by the first set of commenters and to assuage the concerns of the second, we have included in Subpart C of Part 260 procedures for the submission and processing of petitions to add, revoke or otherwise modify any of the Subtitle C hazardous waste regulations, including the hazardous waste characteristics and lists. This provision expressly requires that a tentative decision to grant a petition be made in the form of an advance notice of proposed rulemaking or a proposed regulation, thus starting the rulemaking process.

EPA received a number of comments suggesting that, in drafting § 260.12(c), EPA specified the information to be contained in petitions to amend its characteristics or lists of hazardous wastes, petitioners would not know what type of data to submit to the Agency and that the Agency would have to expend a substantial amount of time reviewing incomplete petitions.

EPA agrees that this may have been a problem with its proposed regulation. The Agency's proposed criteria for listing were not particularly well-articulated. In addition, the background documents for characteristics and for individual wastes also failed, in some cases, to provide meaningful guidance as to the kinds of information which should be submitted in a rulemaking petition.

We think we have remedied most of these deficiencies in this regulation. In response to comment, we have substantially expanded the criteria for listing, so that the factors which EPA will be using in making a listing decision are much better stated. The background documents for both the characteristics and lists have been materially upgraded, so that they now provide a good model for rulemaking petitions. In short, we think the regulations published today, with their supporting materials, will enable petitioners to intelligently frame rulemaking petitions.

For this reason, EPA thinks it is probably unnecessary to establish detailed informational requirements for petitions. Moreover, developing a list of such requirements would be very difficult, because the types of data and degree of detail required will vary substantially from waste to waste and from characteristic to characteristic. If, in the future, EPA finds that most petitioners are submitting insufficient information, we will reconsider establishing more specific data requirements for these petitions.

EPA recognizes that some organizations—primarily environmental groups—may not have the skills, resources, or data collection authority to fashion rulemaking petitions which contain all of the information which EPA will need to make a decision to establish a new characteristic or list a new waste. If such petitions, although incomplete, appear to have merit, EPA will attempt to obtain the supplemental data necessary to make a tentative rulemaking determination. These organizations should recognize, however, that this will necessarily delay any final action on their petitions.

IV. Subpart A.

A. Section 261.1 (Purpose, Scope and Applicability)

Although this section is largely self-explanatory, two points regarding the function of EPA's Section 3001 regulation, which were apparently a source of misunderstanding during the comment period, are deserving of special attention.

First, the purpose of this regulation is to identify those wastes which, because of the hazards they may pose in transportation, treatment, storage or disposal, should be subject to appropriate management requirements under Subtitle C. It does not dictate how wastes should be managed (although it may identify properties of the waste which will affect management practices). Management standards and permitting requirements are imposed under Sections 3002 through 3005 and Section 3010 of RCRA.

Second, although this regulation limits what may be regulated as a "hazardous waste" under Sections 3002 through 3005 and 3010 of RCRA, it does not limit those materials which may be considered "hazardous wastes" under other sections of the statute, particularly Section 3007 (which authorizes EPA to obtain information on "hazardous waste" in order to develop regulations or enforce RCRA) and Section 7003 (which authorizes the Agency to institute civil actions against firms causing "imminent and substantial hazards caused by "hazardous wastes"). Unlike Sections 3002 through 3004 and Section 3010, Congress did not confine the operation of Sections 3007 and 7003 to "hazardous wastes identified or listed under this subtitle" (emphasis added). To avoid future confusion on this point, EPA has stated it explicitly in § 261.1(b).

B. Section 261.2 (Definition of Solid Waste)

Because no material can be a "hazardous waste" without first being a "solid waste" (Section 1004(5)), what constitutes a "solid waste" is really the definitional starting point for the hazardous waste management system. Section 1004(27) of RCRA defines a solid waste as:

- any garbage, refuse, sludge from a wastewater treatment plant, water supply treatment plant or air pollution control facility and other discarded material, including solid, liquid, semisolid, or contained gaseous material resulting from industrial, commercial or mining and agricultural operations, and from community activities, but does not include solid or dissolved materials in domestic sewage, or solid or dissolved materials in irrigation return flows, or industrial discharges which are point sources subject to permits under section 402 of the Federal Water Pollution Control Act... or source, special nuclear, or byproduct material as defined by the Atomic Energy Act of 1954... (Section 1004(27)).

In its proposed regulations, EPA adopted this definition, with its exclusions, in its entirety (§ 250.11(a)(2)). In addition, it proposed to construe the term "other discarded material" in Section 1004(27) to include:

1. Any material which is not re-used—i.e., is abandoned or committed to final disposal;
2. Any material which is re-used by being placed in or on the land or water so that the material or any constituent thereof is released into the environment; and
3. Waste oil burned as fuel.

EPA noted that it would add other uses to the third category of discarded materials if it found that it was necessary to control such uses (43 FR 58954).

This definition of "other discarded material" was based on four major considerations. First, after reviewing both the language and framework of...
RCRA and its legislative history, EPA concluded that Subtitle C was intended to regulate hazardous wastes irrespective of their end use—i.e., regardless of whether they are committed to final disposal or intended to be used, re-used, recycled or reclaimed.

Second, the Agency concluded that all hazardous wastes, regardless of their end use, may pose significant health and environmental hazards. Wastes that present a hazard in storage or transport arguably pose the same danger in storage or transport irrespective of whether they are destined for disposal or for use, re-use, recycle or reclamation. Wastes which are used or re-used by being placed on the land—e.g., chemical-bearing sludges used as fertilizers, contaminated waste oil used as a dust suppressant on roads and radioactive mining wastes used as residential land fill—may pose almost the same hazards as if they were simply dumped there. Wastes which are used, re-used, recycled or reclaimed in some other fashion, and the facilities which recycle or reclaim them, may also create serious health or environmental problems. For example, waste drums containing hazardous residues which were used as municipal trash cans have injured children; waste solvent reclamation facilities have caused serious air pollution problems.

Third, EPA decided that excluding wastes that are used, re-used, recycled or reclaimed from Subtitle C would make the regulatory program largely unworkable and create a major regulatory loophole not intended by the Act. Without a manifest system (or its functional equivalent) there would be no way of assuring that wastes which were intended to be used, re-used, recycled or reclaimed were in fact delivered to their intended destination. Whether a waste was subject to Subtitle C requirements would be based primarily on the intent of the person handling it. This would make the requirements difficult to enforce and theoretically allow wastes to move in and out of the hazardous waste management system depending on what the person then handling the waste planned to do with it.

Finally, the Agency decided that, insofar as feasible, its regulations should try to achieve a workable balance between the requirement in Subtitle C that hazardous waste be properly managed and RCRA’s overall objective of promoting the use, re-use, recycling and reclamation of wastes. The use, re-use, recycling and reclamation of wastes not only helps preserve valuable natural resources and reduces the environmental problems which stem from the exploitation of those resources, but, if properly conducted, may also eliminate or reduce some of the hazards associated with other types of waste management and alleviate the strain on national disposal capacity. For this reason, EPA proposed to regulate only those uses and re-uses which could readily be expected to pose significant health and environmental hazards.

EPA received a substantial number of comments on its proposed construction of the statutory definition of “solid waste” and “other discarded materials.” Virtually all commenters agreed that the terms encompassed materials which were destined for disposal. There was substantially less consensus on EPA’s proposed regulation of used, re-used, recycled or reclaimed wastes. Some commenters argued that EPA had no authority under RCRA to regulate wastes which were used, re-used, recycled or reclaimed. Others contended that the Agency did have such authority and that comprehensive regulation of the use and recycling of hazardous waste was essential to protect public health and the environment and to make the hazardous waste management system workable. Still other commenters claimed that imposing stringent Subtitle C requirements on waste use, re-use, recycling and recovery would discourage such activities, thwarting one of the primary objectives of RCRA and further aggravating hazardous waste management problems.

1. Legal Authority to Regulate Wastes That Are Used, Re-used, Recycled or Recovered. Most commenters who challenged EPA’s authority to regulate the use, re-use, recycling or reclamation of wastes based their contention on the term “other discarded material” in the statutory definition of “solid waste”. The common meaning of this term, they argued, would preclude regulating as “solid waste” wastes which were not intended to be “thrown away” or “abandoned” or which were of “no further use”.

The United States Court of Appeals for the D.C. Circuit has already rejected this argument in United States Brewers’ Association, Inc. v. EPA, 600 F.2d 974 (D.C. Cir. 1979), a lawsuit challenging a beverage container recycling guideline issued by EPA under Section 1008(a)(1) of RCRA. The petitioners in that proceeding contended, inter alia, that beverage containers were not “solid waste” until “discarded” and therefore that EPA had no authority under Section 1008(a)(1) to issue solid waste management guidelines requiring that beverages be sold in returnable containers, or that a minimum deposit be charged on containers (to encourage their return). The Court of Appeals gave short shrift to this contention, noting that it: flies squarely in the face of the explicit definition in the statute. Section 1008(a) directs EPA to publish “suggested guidelines for solid waste management”, which, as defined in Section 1006(30) expressly includes “planning or management respecting resource recovery and resource conservation”... and “utilization of recovered resources” [600 F.2d at 984–985].

We think the Court’s conclusion is applicable to the rest of RCRA as well. It seems highly improbable that Congress would have intended the term “solid waste” to include recycled wastes under Section 1008(a)(1) but not under Subtitle C. Indeed, RCRA and its legislative history evidence a clear Congressional intent that the terms “solid waste” and “hazardous waste” encompass wastes that are used, re-used, recycled or recovered wherever such terms are used in the statute.

For example, Section 1004 of RCRA contains numerous definitions—including the definition of “Hazardous Waste Treatment Management” in Subtitle C—which would be self contradictory if the terms “solid waste” and “hazardous waste” did not include wastes which were used, re-used, recycled or recovered. See, e.g., Sections 1004(7), (10), (21), (24), (29) and (34). The repeated references to resource recovery and conservation in the statute would be similarly meaningless if solid wastes were never recycled, recovered or reclaimed. See, e.g., Sections 1002(2)(c) and (3), 1003(2)(d) and (6), 2003, 4002(c)(10), 4003(5)(d) and (6), 4006(a)(2)(A) and (d), 5001, 5002 and 6002(c)(2)(d).

The legislative history of RCRA further supports this construction of the terms “solid waste” and “discarded material”. The report of the House Committee on Interstate and Foreign Commerce on RCRA, for example, makes it clear that the term “discarded material” is meant to expand, not limit, the common meaning of the term “solid waste” (H.R. Rep. at 2). Other references in the legislative history confirm that the term “discarded material” covers wastes which are being recycled (see, e.g., H.R. Rep. at 3, 10). Several of the damage incidents cited by Congress as justification for establishing a national hazardous waste management system resulted from recycling or re-use activities (H.R. Rep. at 17, 19 and 22). Discussions of resource conservation and recovery activities presume the existence of a solid waste from which valuable resources can be reclaimed.

In short, under RCRA solid wastes do not cease to be solid wastes simply because they are used, re-used, recycled or reclaimed. Rather, use, re-use, recycling, resource recovery and reclamation are ways of managing solid wastes which, if properly conducted, can avoid environmental hazards, protect scarce land supply, and reduce the nation’s reliance on foreign energy and materials (H.R. Rep. at 4).

A number of commenters suggested that Congress could not have intended the term “solid waste” to include hazardous wastes which are used, re-used, recycled or reclaimed because the regulation of such wastes under Subtitle C would thwart RCRA’s broad resource conservation and recovery objectives.

EPA does not agree. Although promoting waste re-use and recovery is certainly one of the goals of RCRA, Subtitle C does not require EPA to consider resource recovery implications in establishing hazardous waste management standards; nor does it suggest that promoting resource recovery should take precedence over assuring proper management of hazardous wastes. Furthermore, EPA does not agree that frustrating resource recovery is an inevitable result of requiring hazardous waste to be properly managed. As discussed below, EPA believes it may be possible to achieve a workable balance between Subtitle C’s mandate that hazardous wastes be handled in an environmentally sound manner and RCRA’s overall objective of encouraging the re-use and recycling of wastes. However, in the event such a balance cannot be achieved, Congress’ “overriding concern” — the safe handling of hazardous wastes (H.R. Rep. at 3) and the elimination of “the last remaining loophole” in environmental regulation (H.R. Rep. at 4) — must prevail.

The comments which EPA received on its proposal to regulate the use, re-use, recycling and recovery of hazardous waste in many ways mirrored the competing objectives which the Agency was trying to achieve in its proposal. Many commenters argued that EPA’s approach would discourage the beneficial use and recycling of hazardous wastes by escalating the cost of using or recycling wastes that could no longer compete with virgin products, by increasing administrative burdens for the waste user or reclamer, and by labeling recycling activities as another form of “hazardous waste” management. These commenters also suggested that the regulation of waste uses and reclamation would pose serious practical problems — e.g., distinguishing between wastes and commodities and intermediates, issuing permits for certain types of re-uses — and that EPA’s proposed Section 3004 standards were not appropriate for many waste use and reclamation activities. Other commenters, citing the types of considerations outlined above, applauded EPA’s regulation of the use and reclamation of hazardous wastes and urged that its proposed list of regulated waste re-uses and recycling operations be expanded to include the reclamation of waste solvents, the burning of spent catalysts and other organic wastes for energy, the use of metal-bearing sludges as fertilizers, the use of waste acids, and the re-use of contaminated drums. Still other commenters suggested that, at a minimum, wastes destined for re-use, or reclamation be properly stored and manifested.

EPA does not agree with the largely unsubstantiated claims of commenters that controlling the use and recycling of hazardous waste will necessarily discourage bona fide, environmentally sound re-use and reclamation activities. The impact of EPA’s regulations on waste use and recovery will, in the Agency’s opinion, hinge almost exclusively on the relative costs of re-use versus disposal. As disposal costs increase, it seems reasonable to expect that it will become profitable or more profitable to recycle or re-use wastes (even if regulated) than to dispose of them. EPA received no data during the comment period to suggest the contrary.

Commenters’ claims about the chilling effect of regulating recycle and re-use activities also seem somewhat exaggerated. In many cases, Federal or State regulation of these activities should legitimize, not stigmatize them in the eyes of the public and increase the flow of wastes to well-operated facilities. Indeed, EPA received comments from several waste recyclers urging the Agency to extend Subtitle C control to their operations for these very reasons.

EPA does agree, however, that its proposed Section 3004 treatment and disposal standards (as well as the standards promulgated today) may not be well-suited for regulating all hazardous waste recovery and reclamation facilities or for regulating all uses and re-uses of hazardous waste. These standards are designed primarily to minimize the health and environmental hazards posed by traditional hazardous waste treatment and disposal facilities — such as incinerators and landfills. In many cases, the health and environmental dangers associated with the use or re-use of hazardous waste or the recycle and reclamation operations are different in nature or degree, and therefore may justify the imposition of different management standards. For example, air emissions generated by the burning of waste oil for energy recovery can probably be effectively controlled without requiring boilers to meet hazardous waste incinerator requirements. Similarly, the leaching of metals from slag used in roadbeds can probably be successfully minimized without requiring compliance with Section 3004 landfill criteria.

At the same time, EPA also concedes that its proposed Section 3001 regulations probably did not go far enough in controlling the re-use and reclamation of hazardous waste. For example, there are a number of waste recycling operations which were not covered by EPA’s proposed regulation — e.g., solvent reclamation — which have been known to cause serious health and environmental hazards and should be subject to Subtitle C regulation. The long-term storage of hazardous wastes prior to recycling is another area where there have been damage incidents (e.g., the incident at the Silvex Chemical Company) and where Subtitle C controls would appear to be essential for environmental protection.

In short, EPA acknowledges that it could have done a better job in its proposed regulations of attempting to balance Subtitle C’s mandate that hazardous wastes be properly managed with RCRA’s overall objective of promoting resource recovery. As we discovered during the comment period, however, this is not an easy task, and given other priorities in developing the regulations promulgated today, we have only been able to complete the first phase of it to date. That first phase, as well as EPA’s long term plans for regulating the use, re-use, recycling and reclamation of hazardous wastes are discussed in sections IV.B.3 and IV.B.4, respectively, of this preamble. As indicated in those sections, we believe this program, when completed, will be responsive to the two major deficiencies in EPA’s proposed regulation identified above.

3. Regulating the Storage and Transportation of Hazardous Wastes Prior to Use, Re-use, Recycling or Reclamation; Defining “Waste”.

As discussed above, EPA generally agrees
that many of its proposed (and final) treatment and disposal standards were not particularly well-suited for hazardous waste recycling and reclamation operations or for uses and re-uses of hazardous wastes. Because of the need to resolve other, more pressing issues in the rule published today, we have not been able to formulate more appropriate standards to date. We are therefore deferring Subtitle C regulation of the actual use and re-use of hazardous wastes and hazardous waste recycling and reclamation activities until such standards can be developed. As noted in section IV.B.4., we hope to begin issuing those standards later this year.

This temporary deferral, it should be noted, is confined to bona fide “legitimate” and “beneficial” uses and recycling of hazardous wastes. Sham uses and recovery or reclamation activities—e.g., “landfilling” or “land reclamation” which is actually disposal and burning of organic wastes that have little or no heat value in industrial boilers under the guise of energy recovery—are not within its scope and, if conducted in violation of Subtitle C requirements, will be subject to enforcement under Section 3008 of RCRA. In enforcing this provision, EPA will be particularly suspicious of use, and reclamation operations which were not conducted prior to the publication of these regulations.

We do not think that the types of criticisms which have been made of EPA’s proposal to apply its treatment and disposal standards to the use, re-use, recycling and reclamation of hazardous waste are applicable to those regulations which govern waste management and “management use, re-use, recycling or reclamation”—i.e., the standards for generators, transporters and owners and operators of storage facilities. During these stages of the waste handling process, wastes present essentially the same hazards, and should therefore require essentially the same management, irrespective of whether they are destined for disposal or for re-use and recycling.

EPA has concluded, therefore, that although we are not now prepared to issue standards regulating the actual use, re-use, recycling and reclamation of hazardous wastes, we can and should begin to control the transportation and storage of wastes prior to use, re-use, recycling and reclamation, and that the general management standards set forth in Parts 262, 264 and 265 are entirely appropriate for that purpose.

The decision to regulate hazardous waste use and recycling necessitates the development of a working definition of “waste” which can appropriately distinguish between “wastes” and other materials (such as products and chemical intermediates) for purposes of determining whether they are subject to RCRA’s jurisdiction. Indeed, many commenters criticized EPA for failing to clearly distinguish between wastes and other materials in its proposed regulations and suggested language or conceptual approaches which they contended would draw that distinction.

We have carefully reviewed these suggestions; most, however, were not very useful. For example, a number of commenters suggested that the line of demarcation between a “waste” and other materials was whether a substance had value. This definition makes no sense in the context of recycle and re-use activities, since a waste which is being re-used or recycled by definition “has value.” See H.R. Rep. at 5. Definitions keyed to whether a waste has a commercial use raise similar problems.

Other commenters contended that the proper inquiry was whether a material was “historically reused” or was “sometimes discarded.” We think this is a much more productive line of analysis and is more consistent with the language and legislative history of RCRA and the purposes of Subtitle C.

A review of both RCRA and its legislative history indicate that Congress intended to regulate four broad categories of materials as solid wastes under RCRA, and particularly Subtitle C, irrespective of their ultimate disposition. The common thread linking all these materials is that they are “sometimes discarded.” Because they are “sometimes discarded,” they not only fall within the general rubric “waste,” but also may become part of the “discarded materials disposal problem” (H.R. Rep. at 2) which Congress sought to remedy under RCRA. Proper tracking and management of these materials under Subtitle C would assure that they did not become part of this problem because they would be either properly disposed of or properly used or reclaimed.

The first category of materials which are regulated as “wastes” under RCRA are “garbage, refuse (and) sludge” (Section 1004(27)). These materials are almost always thrown away, and it is clear from both Section 1004(27) of the statute and its legislative history (H.R. Rep. at 2-4; S. Rep. at 5) that Congress regarded them as “wastes” regardless of their intended end use.

Of those materials which are not garbage, refuse or sludge, it also seems clear that any material which is intended to be or is in fact thrown away, abandoned or destroyed is a “waste.” As noted above, there appears to be no disagreement among commenters on this point and of course it is fully supported by the legislative history of RCRA.

Of those materials which do not fall into either of these two categories—i.e., materials other than garbage, refuse or sludge which are (or are intended to be) used, re-used, recycled or reclaimed—it appears that there are two types of substances which Congress intended to be regulated as “wastes” under RCRA.

The first are materials like solvents, paint wastes, waste acids, used drums and waste oil. These are what Congress referred to in the legislative history as “post-consumer wastes” or wastes which have “served their intended purpose” (H.R. Rep. at 2 and 9). While acknowledging that some of these post-consumer wastes might be recycled (see H.R. Rep. at 3, 10), Congress also recognized that they were often times discarded, and therefore were “wastes” (see H.R. Rep. at 9-10).

The second are tars, residues, slags and other materials which are incidentally generated as part of a manufacturing or mining process. A major concern of Congress in enacting RCRA was to assure regulation of “the waste by-products of the nation’s manufacturing processes” (H.R. Rep. at 2) and “the by-products of the productive process” (H.R. Rep. at 9). There is nothing in the legislative history which suggests that these terms refer only to the by-products of pollution control. Indeed, even the definition of sludge in Section 1004(28A) indicates Congress was not simply concerned about wastewater treatment slurries and storage of solidified sludges, but also materials having “similar characteristics and effects.” The term “similar characteristics” would suggest that such materials not only contain similar types of substances but, like pollution control sludges and dusts, are also incidentally produced as a result of industrial processes; the term “similar . . . effects” implies that such materials, like wastewater and emission control sludges, are also sometimes discarded in ways that pose environmental problems.

EPA has incorporated these concepts into a definition of “solid waste” in § 251.2. This term is defined to include “garbage,” “refuse,” “sludge” and “other waste material” (§ 251.2(a)). “Other waste material” is in turn defined as (i) materials which are discarded (or stored for use but not accumulated for that purpose), (ii) materials which have served their original intended purpose and are sometimes discarded and (iii) materials which are incidentally generated during
EPA intends to begin issuing such standards in the fall of 1980. In some cases, these standards may require full or partial compliance with existing Subtitle C requirements; in others, they may include a special set of requirements (to be established in Part 266) which have been developed for a particular hazardous waste use or recovery operation. Using this regulatory approach, we believe we can not only better tailor Subtitle C management standards to the health and environmental hazards posed by use and recycling activities but also achieve a better balance between RCRA’s dual goals of protecting human health and the environment and promoting resource conservation and recovery.

In the fall of 1980, we expect to start dealing with the following hazardous waste-use and recovery operations:

<table>
<thead>
<tr>
<th>Waste</th>
<th>Use or Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spent solvents listed in Subpart D.</td>
<td>Reclamation</td>
</tr>
<tr>
<td>Radioactive uranium mining and phosphate mining and processing wastes.</td>
<td>Burning as a fuel</td>
</tr>
<tr>
<td>Waste of</td>
<td>Land reclamation</td>
</tr>
<tr>
<td>use in building products.</td>
<td>Use in building products</td>
</tr>
<tr>
<td>Road oiling and use in other land applications</td>
<td>Use as a fuel</td>
</tr>
<tr>
<td>Residues from the production of chlorinated hydrocarbons.</td>
<td>Reclaiming and reusing</td>
</tr>
<tr>
<td></td>
<td>Burning as a fuel</td>
</tr>
</tbody>
</table>

These operations were identified by commenters as being among those which posed the most serious potential health or environmental hazards and/or were the most ubiquitous. EPA agrees, and therefore will begin establishing standards for these activities first.

At a later date, possibly by the fall of 1981, we intend to address the re-use and recycling of other hazardous wastes, including but not limited to the following:

<table>
<thead>
<tr>
<th>Waste</th>
<th>Use or Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residues from the production of burning as a fuel organic chemicals listed in Subpart D (other than chlorinated hydrocarbons):</td>
<td>Organic chemicals listed in Subpart D (other than chlorinated hydrocarbons):</td>
</tr>
<tr>
<td>Activated carbon used to treat Regeneration</td>
<td>Organic chemicals listed in Subpart D (other than chlorinated hydrocarbons):</td>
</tr>
<tr>
<td>Wastewater and air emission Fertilizers and soil</td>
<td>Activated carbon used to treat Regeneration hazardous wastes, Fertilizers and soil</td>
</tr>
<tr>
<td>treatment sludges listed in Subpart D.</td>
<td>treatment sludges listed in Subpart D.</td>
</tr>
</tbody>
</table>
| Other uses on the land. | Other uses on the land.

Eventually, EPA hopes to regulate the use, re-use, recycling and reclamation of all hazardous wastes listed in Subpart D which are known to be used, re-used or recycled. Our plans for extending regulatory coverage to unlisted hazardous wastes are less certain at this time because we do not have a good inventory of these wastes. As data are collected through the Section 3010 notification and annual reporting under Parts 262, 264 and 265, we hope to develop a more specific plan for regulating the use and recycling of these wastes.

EPA is anxious to obtain public comment on this approach. We specifically invite comments on the following questions:

1. Are there any hazardous wastes, particularly wastes listed in Subpart D, that should be placed on the above lists and given priority?
2. Are the above-listed wastes used or recycled in other ways that require regulation? If so, what types of regulatory controls would be appropriate?
3. Is there any reason not to prohibit the land disposal of spent solvents listed in Subpart D and require that they be reclaimed or destroyed? Is it necessary to manifest these wastes to assure that they are delivered to reclamation or treatment facilities? Can such facilities be effectively regulated by rule—i.e., without individual permits?
4. Can the radiation hazards posed by radioactive mining wastes and phosphate mining and processing wastes be adequately controlled by a prohibition of the use of these wastes in residential construction and (b) imposing a few simple requirements on the use of these wastes as fill for land where habitable structures might be built?
5. Can facilities which burn waste oil as a fuel or reclaim or refine waste oil be adequately regulated by rule—i.e., without individual permits? Is there any reason not to prohibit the use of waste oil for road oilling, dust suppression and other land (and water) applications?
6. Should full Subtitle C standards be applied to the use, re-use, recycling and reclamation of residues from the production of chlorinated hydrocarbons? From the production of other organic chemicals? If not, for what residues and uses should special standards be applied and what should those standards be?
7. Should full Subtitle C standards be applied to the regeneration of activated carbon? If not, what standards should be applied?
8. Can sites where waste treatment sludges are used as fertilizers, as soil conditioners or in other land applications be effectively regulated by rule—i.e., without individual permits?

In each of the foregoing areas of inquiry, EPA would appreciate the submission of any relevant facts and data. Unsubstantiated opinions are generally not very helpful to us in coming to grips with these types of issues. On the other hand, information on the quantity of waste which is used
or recycled, management practices, environmental emissions that attend use or recycling, health and environmental effects resulting from use and recycling and other specific data are very useful.

We also invite commenters to submit specific proposed standards or suggestions for how standards might be developed. For example, where wastes might be burned as a supplemental fuel in industrial boilers, proposals on fuel ratios, burning temperatures, emission control requirements and residue disposal requirements would be useful. Obviously, the more specific and constructive the suggestions, the more helpful they will be in our rulemaking.

C. Section 261.3 (Definition of Hazardous Waste)

This section is a new provision which does not have a direct counterpart in the proposed regulations. It has been added for purposes of clarification and in response to questions raised during the comment period concerning waste mixtures and when hazardous wastes become subject to and cease to be subject to theSubtitle C hazardous waste management system.

If a material is a hazardous waste within the meaning of this section it must be managed in accordance with EPA’s Part 262 through 265 standards and its Part 122 through 124 permitting requirements unless covered by one of the exclusions in those regulations or one of the Part 261 special management provisions (§§ 261.5 and 261.6).

1. What is a Hazardous Waste? Paragraph (a) of this section defines what a hazardous waste is. It provides that a solid waste is a hazardous waste if it is excluded under § 261.4(b) and it either (1) is listed as a hazardous waste in Subpart D, (2) is a waste mixture containing one or more hazardous wastes listed in Subpart D or (3) exhibits one or more characteristics of hazardous waste identified in Subpart C. A listed waste or a solid waste mixture containing a listed waste which is generated by a particular facility may be excluded under the rulemaking procedures prescribed in §§ 260.20 and 260.22 (see section VIII.C., below). In that event, it will be considered a hazardous waste only if it exhibits one or more of the characteristics.

Except for waste mixtures, all these provisions were contained in EPA’s December 18, 1978 proposal (see §§ 250.10 (b) and (d)(2), 250.13 and 250.14). The waste mixtures provision is a clarification which has been added in response to inquiries about whether mixtures of hazardous and nonhazardous wastes would be subject to Subtitle C requirements. This is a very real issue in real-world waste management, since many hazardous wastes are mixed with non-hazardous wastes or other hazardous wastes during storage, treatment, or disposal.

Although it was not expressly stated in the proposed regulation, EPA intended waste mixtures containing listed hazardous wastes to be considered a hazardous waste and managed accordingly. Without such a rule, generators could evade Subtitle C requirements simply by commingling listed wastes with nonhazardous solid waste. Most of these waste mixtures would not be caught by the Subpart C characteristics because they would contain wastes which were listed for reasons other than that they exhibit the characteristics (e.g., they contain carcinogens, mutagens or toxic organic materials). Obviously, this would leave a major loophole in the Subtitle C management system and create inconsistencies in how wastes must be managed under that system.

EPA recognizes that designating all waste mixtures containing listed wastes as hazardous wastes under Subtitle C may create some inequities. For example, this approach may result in some waste mixtures which contain only very small amounts of listed hazardous wastes or which commingle waste in a way which renders them nonhazardous (e.g., neutralization) having to be managed under Subtitle C. We have tried to address this problem by establishing provisions for amending this paragraph to exclude waste mixtures produced by individual facilities, if they can show that the mixture (or each constituent listed hazardous waste) is not hazardous, based on the criteria by which the consistent hazardous wastes were listed. Because this is a rulemaking procedure, it will, as a practical matter, only be useful for facilities which routinely mix wastes in relatively constant proportions. With a regulated community potentially numbering in the hundreds of thousands, we simply do not have the resources to process petitions for exempting “one-shot” waste mixtures. Moreover, in most of these one-time cases, it seems likely that the burden of having to manage a waste mixture as a hazardous waste could be easily avoided by carefully segregating hazardous and non-hazardous waste.

We know of no other effective regulatory mechanism for dealing with waste mixtures containing listed hazardous wastes. Because the potential combinations of listed wastes and other wastes are infinite, we have been unable to devise any workable, broadly applicable formula which would distinguish between those waste mixtures which are and are not hazardous. If any members of the public have suggestions for other approaches, we would appreciate having them brought to our attention for future rulemaking.

Waste mixtures containing only wastes which meet the characteristics are treated just like any other solid waste i.e., they will be considered hazardous only if they exhibit the characteristics. EPA recognizes that this may not be an altogether satisfactory regulatory approach. While it would no doubt encourage some desirable mixing of wastes, it would also allow some wastes (principally wastes caught by EPA’s extraction procedure) to escape regulation merely by being mixed with other wastes or other materials. We know of no solution to this problem which does not create major inconsistencies in the way wastes are determined to be hazardous under Subpart C of this regulation. Again, if the public has suggestions for other ways of dealing with this issue, we would like to receive them.

2. When Does a Waste Become a Hazardous Waste? Paragraph (b) provides three simple rules for determining when a solid waste becomes a hazardous waste and therefore must be managed under Subtitle C. It has been provided in response to comment requesting clarification on this issue.

Paragraph (b) states that a solid waste which is a hazardous waste because it is listed in Subpart D must begin to be managed as a hazardous waste when it first meets the Subpart D listing description. Most of the hazardous wastes listed in §§ 261.31 and 261.32 of Subpart D are process residues, emission control sludge and treatment sludge, the point in time when they are created is generally well-defined. For those used materials which are listed as hazardous wastes in those sections or § 261.33 (e.g., spent solvents), the point at which they meet the listing description is somewhat less well-defined, but generally occurs when their intended use has ceased, and they begin to be accumulated or stored for disposal, re-use or reclamation.

In the case of a waste mixture containing a listed hazardous waste, paragraph (b) requires that the waste mixture be managed as a hazardous waste as soon as the listed waste is added to it. The listed waste, of course, must be handled as a hazardous waste prior to that time.

Finally, paragraph (b) provides that a solid waste is a hazardous waste
Paragraph (c) provides that a hazardous waste remains a hazardous waste unless and until (1) it does not exhibit any of the characteristics identified in Subpart C and (2) where the waste is listed in Subpart D (or is a mixture containing a waste listed in Subpart D), the waste (or each of its constituent listed wastes) is also excluded from paragraph (c) under the rulemaking procedures outlined in §§ 260.20 and 260.22. As a practical matter, this means that facilities which store, dispose of or treat hazardous waste must be considered hazardous waste management facilities for as long as they continue to contain hazardous waste and that any wastes removed from such facilities—including spills, discharges or leaks—must be managed as hazardous wastes.

EPA believes this is a very reasonable and rational rule. Wastes are typically stored for relatively short periods of time. Although solids in the waste may settle and the volume of the waste may be reduced by evaporation during this period, major chemical or biological changes affecting the hazardous character of the waste are unlikely to occur. Hazardous wastes which are disposed of in a landfill are more likely to undergo change (principally through leaching and anaerobic degradation), but only very slowly and over a long period of time.

Hazardous wastes placed in treatment facilities (including incinerators, surface impoundments and land treatment facilities) will, by definition, change character. However, treatment does not necessarily “render [a] waste nonhazardous” (Section 1004(34)). It may only make it “amenable for recovery, amenable for storage or reduced in volume”; or it may only eliminate one of several hazardous properties. Moreover, even in those cases where treatment does ultimately render a waste “nonhazardous”, the waste will generally have been hazardous during part or all of the treatment process.

Paragraph (c) establishes a similar rule with respect to solid wastes generated by storage, disposal and treatment—including leachate and treatment residues such as sludges and incinerator ash. Here, too, it is reasonable to assume that these wastes, which are derived from hazardous wastes, are themselves hazardous.

Leachate is produced by the percolation of liquid through wastes; it typically contains solubilized heavy metals and organic materials and is virtually always highly toxic. Treatment residues, by definition, contain waste constituents which were removed during treatment or which were not completely destroyed by treatment. Sludges from wastewater treatment typically contain concentrated amounts of the toxic substances which were in the wastewater. Ash from the incineration of hazardous wastes often contains heavy metals and, if combustion is not complete, undestroyed toxic organic materials.

This is the best regulatory approach we can devise at this time for dealing with solid wastes generated by hazardous waste management facilities. We are not now in a position to prescribe waste-specific treatment standards which would identify those processes which do and do not render facilities or treatment residues nonhazardous. To list treatment residues on case-by-case basis would be an enormous job, and one which we think, given the reasons outlined above, is unnecessary.

This approach obviously is not without deficiencies. For example, one effect of treating wastes containing synthetic organic materials may be to create new hazardous constituents in the waste or treatment residue. This regulation obviously does not deal with those new constituents. It also does not cover run-off from hazardous waste facilities on the theory that the water in precipitation run-off in many cases may not have had sufficient contact with the waste to solublize waste constituents. (Of course if collected, run-off would be a solid waste and, if it exhibited any of the characteristics, would have to be managed as a hazardous waste). For purposes of future rulemaking, we would be interested in any suggestions the public has for dealing with these issues.

D. Section 260.4 (Exclusions)

EPA’s proposed Section 3001 regulations identified a number of wastes which would not be subject to Subtitle C requirements because they were either excluded from the statutory definition of solid waste (§ 250.11(a)(7)), not intended by Congress to be regulated under Subtitle C (§ 250.10(d)(2) (i) and (ii)), or subject to regulation under other EPA statutes (§ 250.10(d)(3)(ii)).

EPA received a number of comments on these proposed exclusions. Some commenters simply urged EPA to clarify which wastes were covered by each of the exclusions. Others challenged EPA’s justification for some of its proposed exclusions. Still others contended that additional wastes should be exempted from regulation based on legislative history or an alleged lack of demonstrated harm to human health or the environment.
The exclusions contained in §261.4 are based on interpretations of the statutory definition of "solid waste" and on those parts of RCRA's legislative history which indicate a Congressional intent that certain waste streams should not be regulated. Some commenters suggested that certain waste streams would never be hazardous and therefore should be excluded from these regulations. Those commenters did not, however, provide sufficient information on which EPA could base such sweeping determinations. Generators of solid wastes that are not hazardous may determine that their wastes are non-hazardous under these regulations. As these regulations are implemented, more information will be developed about specific waste streams. EPA will then be in a better position to make categorical judgments about the lack of risk presented by certain wastes. At this time, however, EPA has limited the exclusions in §261.4 to those which are based on expressed Congressional intent.

The following is a discussion of the specific exclusions contained in §261.4:

1. Domestic Sewage. In defining "solid waste" Section 1004[27] specifically excludes "solid or dissolved material in domestic sewage." The proposed regulation did not specifically define "domestic sewage", but did contain provisions that were based on an interpretation of that term. Section 250.40(f)(3)(ii) of the proposed regulation exempted owners and operators of POTW's from all portions of the Section 3004 standards except those involving the matching system, recordkeeping and reporting with respect to hazardous wastes received by truck or rail. As described in the preamble to the proposed regulation, that decision was based on the idea that the mixing of a hazardous waste with domestic sewage made the entire mixture a domestic sewage excluded under Section 1004(27).

Commenters raised several objections to this approach. First, commenters argued that the only basis for an exclusion under Section 3004 is one based on health or environmental risk rather than public ownership. Second, commenters argued that some POTW's will handle significant quantities of hazardous waste and that such facilities present the same environmental risks as private facilities that treat, store or dispose of hazardous waste. Third, some commenters merely argued that if POTW's are excluded because they handle a significant portion of domestic sewage, other private parties that handle wastes of a similar mix should be excluded also. Fourth, a commenter said that the proposed regulation did not clearly indicate whether a POTW could ever be subject to Subtitle C jurisdiction if it only treated industrial waste.

The term "domestic sewage" generally denotes sanitary wastes that pass through a sewer system. A waste stream comprised entirely of sanitary waste, that passes through a sewer system is "domestic sewage" under any reasonable interpretation of the statutory exemption. This exemption applies regardless of whether the sewer system or the treatment works to which it connects is publicly or privately owned.

A more difficult question is presented when pure sanitary wastes are mixed with other types of wastes in a sewer system. The issue of whether such mixed waste streams are within RCRA's jurisdiction has broad implications and thus it is necessary to carefully consider the Congressional purpose behind the exemption.

The legislative history of RCRA does not specifically address the exemption because it was a carry-over from the Solid Waste Disposal Act, which RCRA amended. The "domestic sewage" exemption first appeared in the definition of "solid waste" found in the Solid Waste Disposal Act of 1965. The legislative history of that act indicates that the exemption was based on a recommendation, made to the Congress by the Administration, that "organic solids in untreated domestic sewage" be excluded from coverage because such wastes were already subject to controls under the Federal Water Pollution Control Act (FWPCA). At that time, the portion of the FWPCA that addressed "untreated sewage" was the Federal construction grant program, which gave money to States and municipalities to construct treatment works and to study combined sewer systems. This legislative history suggests a Congressional intent that the scope of the "domestic sewage" exemption must depend, in part, on the capacity of the Agency's construction grants program to address the environmental problems arising from any exempted waste streams. At the time the exemption was enacted, and under the present Clean Water Act, the Agency has grant programs that assist states and localities in the treatment of sanitary sewage by POTW's.

EPA believes that the Congressional policy reflected in the legislative history of the "domestic sewage" exemption should guide the Agency in its regulation of mixtures of sanitary waste with other waste streams. Mixed waste streams that pass through sewer systems to publicly-owned treatment works [POTW's] will be subject to controls under the Clean Water Act. The Agency's construction grants program provides financial assistance for the proper treatment of these wastes. In addition the Agency's pretreatment program provides a basis for EPA and the local communities to insure that users of sewer and treatment systems do not dump wastes into the system that will present environmental problems. Under these circumstances EPA believes that it is appropriate to include within the "domestic sewage" exemption mixtures of sanitary wastes and other wastes that pass to POTW's. Since the treatment of sewage by privately-owned treatment works is not similarly controlled through the Agency's construction grant and pretreatment program, the exemption would not be available for mixed waste streams going to such treatment works.

The "domestic sewage" exemption is only applicable to non-domestic wastes that mix with sanitary wastes in a sewer system leading to a POTW. An industrial waste stream that never mixes with sanitary wastes in the sewer prior to treatment or storage does not fall within the exemption, regardless of the public or private ownership of the treatment works. Defining the point at which "mixture" occurs may seem to be a relatively straightforward task. Practical problems arise, however, in defining the point at which mixture of sanitary and other wastes occurs in a complex sewer system. Moreover it is particularly difficult to define this point for regulatory purposes in such a way that all parties understand when RCRA obligations begin and end.

EPA has, therefore, decided that a waste falls within the domestic sewage exemption when it first enters a sewer system that will mix it with sanitary wastes prior to storage or treatment by a POTW. EPA recognizes that this interpretation brings various wastes within the exemption before they are actually mixed with sanitary wastes. In light of the fact that the wastes will be mixed prior to treatment and that the mixture will be properly treated by the POTW, EPA believes that the need for administrative clarity in this otherwise complicated regulatory program warrants such an approach.

In response to the comments on the exclusion of POTW's from Section 3004 standards, EPA has changed these regulations to make clear that the statutory exemption is one for "domestic sewage" rather than POTW's. Facilities receiving waste streams that are exclusively made up of sanitary wastes will not be subject to these regulations.
regardless of the public or private ownership of the facility. Likewise a POTW receiving industrial wastes that do not mix with sanitary wastes prior to treatment would be handling a solid waste subject to these regulations.

The exclusion of domestic sewage and mixtures that pass through sewer systems is based on Congressional intent, not an Agency determination about the relative health and environmental risks presented by such waste streams. The Agency acknowledges that some mixtures of domestic sewage with other wastes may present environmental risks and that some non-domestic wastes may have properties similar to these of exempted domestic wastes. In response EPA can only assume that such factors were not determinative in the Congress’ creation of the exclusion.

The proposed regulation did not contain a specific definition of domestic sewage. EPA believes that the definition of domestic sewage, and the provision relating to mixtures of wastes with domestic sewage, contained in these regulations is a reasonable interpretation of RCRA’s statutory language and legislative history. The Agency has decided, however, to promulgate this part of the regulation as interim final in order to gain the benefit of public comment on the concepts involved. The Agency considered several options for defining domestic sewage and classifying mixtures of such sewage with other wastes. Those options included:

(1) Defining “domestic sewage” to include all wastes mixed with sanitary wastes;

(2) Limiting the exemption to only sanitary wastes, treating any mixture of sanitary wastes and other wastes as solid wastes;

(3) Defining “domestic sewage” as any waste made up primarily (i.e., more than 50% by volume) of sanitary waste streams; and

(4) Linking the exemption for mixtures to those that flowed into a “publicly-serving” or “constructed-to-serve-the-public” treatment works, rather than POTW’s.

The Agency is interested in comments on these options and the selected approach, as well as any other suggested interpretations of the provision. Commenters should recognize that the Agency’s selected approach is based on an interpretation of Congressional intent. The Agency is interested generally in comments about the impact of this approach on regulated parties, but it particularly seeks comment on how such effects relate to discharge since most of the environmental hazards posed by wastewaters in treatment and holding facilities—primarily groundwater contamination—cannot be controlled under the Clean Water Act or other EPA statutes.

Had Congress intended to exempt industrial wastewaters in storage and treatment facilities from all RCRA requirements, it seems unlikely that the House Report on RCRA would have cited, as justification for the development of a national hazardous waste management program, numerous damage incidents which appear to have involved leakage or overflow from industrial wastewater impoundments. See, e.g., H.R. Rep. at 21. Nor would Congress have used the term “discharge” in Section 1004(27). This is a term of art under the Clean Water Act (Section 502(12)) and refers only to the “addition of any pollutant to navigable waters”, not to industrial wastewaters prior to and during treatment.

Since the comment period closed on EPA’s regulations, both Houses of Congress have passed amendments to RCRA which are designed to provide EPA with more flexibility under Subtitle C in setting standards for and issuing permits to existing facilities which treat or store hazardous wastewater. See Sections 3(a)(2) of H.R. 3094 and Section 7 of S. 1136. See also S. Rep. No. 96-172, 96th Cong., 1st Sess. 3 (1979); Cong. Rec. S6819, June 4, 1979 (daily ed.); Cong. Rec. H1094–1096, February 20, 1980 (daily ed.). These proposed amendments and the accompanying legislative history should lay to rest any question of whether Congress intended industrial wastewaters in holding or treatment facilities to be regulated as “solid waste” under RCRA.

3. Other Statutory Exclusions. The definition of “solid waste” in Section 1004(27) excludes two other classes of wastes. “Solid or dissolved materials in irrigation return flows” and “source, special nuclear, or byproduct material as defined by the Atomic Energy Act of 1954” are not “solid waste” under RCRA.

In § 250.40(e) of the proposed regulation these two categories of wastes were excluded from regulation under Section 3004. No substantial comment was received on these exclusions. In these final regulations under Section 3001, the Agency has specifically excluded these materials from regulation as solid waste in accord with the statutory definition of “solid waste.”

4. Household Wastes. Under § 250.20(c)(4) of the proposed regulation, a person or Federal agency who
generated only household refuse or household septic tank pumpings was excluded from regulation as a generator of hazardous waste. “Household refuse” was defined as trash or rubbish ordinarily produced by a family at their home. This exclusion, which also was available to apartment houses, condominiums and hotels, was based on the legislative history of RCRA.

The few commenters that addressed this provision made two general points. First they said that the “ordinarily produced” portion of the proposed “household refuse” definition might not include certain materials such as medicinal drugs and ointments, household cleaning agents and solvents, waste oils, paints and pesticides that might be purchased at a grocery, drug or hardware store. Second, a commenter pointed out that a Federal agency could not, by definition, produce household wastes.

The Agency has retained the general concept contained in proposed § 250.20(c)(4) in these regulations. The provision is stated, however, as an exclusion of a waste stream— namely “household wastes”— rather than as an exclusion of a class of generators. This change is more in accord with legislative intent. The exclusion is based on language in the Senate Report which states:

(The hazardous waste program) is not to be used to control the disposal of substances used in households or to extend control over general municipal wastes based on the presence of such substances. (S. Rep. No. 94-688, 94th Cong., 2nd Sess., at 16.)

This indicates Congressional intent to exclude waste streams generated by consumers at the household level. Since the wastes generated at hotels and motels are essentially the same as those generated by consumers in their households, EPA believes that such wastes should be within the exclusion.

The Senate language makes it clear that household waste does not lose the exclusion simply because it has been collected. Since household waste is excluded in all phases of its management, residues remaining after treatment (e.g. incineration, thermal treatment) are not subject to regulation as hazardous waste. Such wastes, however, must be transported, stored, treated and disposed in accord with applicable State and federal requirements concerning management of solid waste (including any requirements specified in regulations under Subtitle D of RCRA.)

When household waste is mixed with other hazardous wastes, however, the mixture will be deemed hazardous in accord with § 261.3(f)(2)(i) of these regulations except when they are mixed with hazardous wastes produced by small quantity generators (see § 261.5). While household waste may not be hazardous per se, it is like any other solid waste. Thus a mixture of household and hazardous (except those just noted) wastes is also regulated as a hazardous waste under these regulations.

Because of comments on this matter, the relationship of this exclusion to refuse-derived fuel (RDF) should also be explained. RDF is a processed material (usually shredded) that is produced from solid waste and used as a fuel. RDF production usually involves the extraction of inorganic components from the waste leaving the combustible organic component for its fuel value. In the same sense that residue from the treatment of household wastes is not subject to regulation as a hazardous waste, as discussed above, neither is RDF subject to such regulation.

Moreover, RDF is not a “solid waste” under § 251.2 because it is not an “other discarded material.” It is or is not intended to be discarded (§ 261.2(b)(1)), it is not a material that has served its original intended purpose (§ 261.2(b)(2)) and it is not a manufacturing or mining by-product (§ 261.2(b)(3)).

EPA agrees with those commenters who suggested that Federal agencies cannot qualify as households. Therefore wastes generated by such agencies are not within the household waste exclusion. In addition EPA believes that medicinal drugs and ointments, household cleaning agents and solvents, waste oils, paints and pesticides purchased at grocery, drug or hardware stores may be disposed of as part of a consumer’s household wastes. If a household disposes of such wastes, the wastes may be subject to the household waste exclusion.

Septic tank pumpings were included in the exclusion contained in § 250.20(c)(4) of the proposed regulation. After further examination of this provision, EPA has concluded that such pumpings should be excluded from regulation as hazardous wastes to the extent that they constitute household waste. Households often use septic tanks to dispose of a portion of their wastes. As with all household wastes, these sanitary wastes in household septic tanks are excluded from regulation as a hazardous waste in all phases of their management. Thus septic tank pumpings drawn from household septic tanks are not regulated as hazardous wastes under these regulations. Any wastes drawn from non-household septic tanks are regulated like any other solid waste under these regulations.

5. Agricultural Waste. Under § 250.10(d)(2)(ii) of the proposed regulation, agricultural wastes (including manures and crop residues) that are returned to the soil as fertilizers or soil conditioners were excluded from regulation as hazardous waste. The exclusion was based on the legislative history of RCRA which specifically calls for such an exclusion. See H. Rep. No. 94–1508, 94th Cong. 2nd Sess. 2 (1976). Commenters generally accepted this exclusion, and EPA has decided to retain it because the need for such an exclusion is so clearly identified in RCRA’s legislative history.

Some commenters asked the Agency, however, to go beyond the specific language of the legislative history and expand the exclusion to include silvicultural wastes. They argued that the foliage and branches left in the forest after trees have been cut are not hazardous and that such wastes help to enrich the soil and control erosion. EPA has decided not to provide a specific exclusion for such wastes because there is no indication in the legislative history of RCRA that the Congress meant to include silvicultural wastes in the exclusion otherwise applicable to agricultural wastes. Moreover EPA has no basis to make a general determination that all silvicultural wastes will not pose environmental problems if mismanaged.

In response to the specific comment about tree branches, it must be recognized that the obligation placed on generators of solid waste is to determine whether their waste is hazardous. Tree branches are not listed as hazardous wastes. Therefore, the only obligation placed on a timber operation is to determine whether its wastes exhibit hazardous characteristics. EPA expects that, in the case of tree branches that are not hazardous, it will be a relatively easy task for the generator to determine that his waste is not hazardous.

6. Mining Waste. Section 250.10(d)(2)(ii) of the proposed regulation excluded overburden intended for return to the mine site from regulation under Subtitle C unless such overburden had been specifically listed as a hazardous waste. This exemption was based on the legislative history of RCRA.

Generally commenters accepted this exemption but sought a clearer specification of what wastes fall within the exclusion. Thus commenters sought a definition of both “overburden” and “mine site.” Commenters also sought a
clearer interpretation of the time within which the "return to the mine site" would have to occur. Finally, several commenters objected to that portion of the proposed regulation which allowed EPA to list and regulate specific overburden materials otherwise covered by the exclusion. EPA had invoked this provision when listing uranium mining overburden and waste rock and phosphate mining overburden in the proposed regulation. These same commenters had also objected to the proposed listing of such wastes.

After review of the comments and further analysis, EPA has decided to retain an exemption for "mining overburden returned to the mine site", defining it as "any material overlying an economic mineral deposit which is removed to gain access to that deposit and is then used for reclamation of a surface mine." In enacting RCRA, the Congress specifically included mining wastes within the Section 100427 definition of "solid waste." Therefore unless the statute or legislative history clearly indicate that mining wastes are to be exempt the presumption is that they are to be regulated like any other solid or hazardous waste. Portions of RCRA's legislative history in both the Senate and House of Representatives suggest, however, that certain kinds of mining overburden are not within the Act's jurisdiction. In discussing RCRA's scope the House Report states:

[O]verburden resulting from mining operations and intended for return to the mine site is not considered to be discarded material within the meaning of this legislation. This however does not preclude any finding by the Administrator that specific mine wastes are hazardous within the scope of this legislation.

In the Senate this issue was discussed during the floor debate when Senator Domenici asked about the effect of RCRA on mining operations, particularly strip mining. As part of his response Senator Randolph stated:

The measure would not affect surface mining activities. Reclamation is not solid waste disposal.

Reclamation of surface mines will commonly involve the return to the mine site of waste overburden that has been removed to gain access to the ore deposit. Since it is assumed that both the Senate and House had similar objectives in passing RCRA, the "returned to the mine site" language in the House Report must be read in light of the Senate's concern that mining wastes used to reclaim surface mines should not be subject to RCRA. EPA believes, therefore, that the most reasonable interpretation of the "return to the mine site" phrase is one that limits the exemption to mining waste used to reclaim surface mines.

Commenters suggested that EPA define overburden as any material removed to gain access to the "economic mineral" or the "mineral being mined for use." While both terms basically convey the same meaning, EPA has decided to use "economic mineral" because it may have a clearer meaning to mining operators. The intent of the term is to identify the material that the mining operator is in the business to extract from the ground.

In keeping with the Congressional intent that this exclusion is designed for overburden used to reclaim surface mines, the definition is limited to overburden "overlying" a mineral deposit. The Department of the Interior makes a similar distinction in the definition of overburden in its regulations under the Surface Mining Control Act. EPA does not intend this definition of overburden to be limited exclusively to the material located directly above a mineral deposit. Some material is removed from the sides of a mining pit to permit safe access to the economic mineral, and such material should be treated as overburden. EPA urges the public to provide suggestions about how the definition may be refined if there appears to be any confusion about the meaning of "overlying" in this context.

Overburden material must be "returned to the mine site" before it is excluded from regulation under RCRA. As indicated earlier, the purpose of the exemption is to assure that mining wastes used to reclaim surface mines are not subject to regulation as solid or hazardous waste. EPA recognizes that reclamation does not necessarily involve replacement of overburden into the portion of the ground from which it was taken. EPA also recognizes that surface mining reclamation may be subject to State or Federal regulation, making it difficult to provide a national definition of what constitutes reclamation. In particular it is difficult to provide a general definition of "mine site" that will fit with the various State and federal requirements for reclamation.

EPA has decided, therefore, not to define what is meant by reclamation of a surface mine. Several commenters indicated that most reclamation activities are subject to State or Federal regulation. EPA expects that any permits or reclamation plans developed to satisfy such regulatory agencies will specify the reclaimed area, and these actions should provide an acceptable and understandable specification of the "mine site" as that term is used in this definition. EPA contemplated limiting the exemption to reclamation that was approved by State or Federal agencies. While such a requirement is not part of this regulation, EPA is considering whether such a requirement should be part of the final definition. EPA seeks public comment on such a modification and is particularly interested to discover the extent to which environmentally sound reclamation activity occurs in the absence of Federal and State regulation.

This approach addresses two specific suggestions made in comments. First it clarifies the time component of the "returned to the mine site" concept because it ties the exemption to reclamation activity. Particularly where the mining operation is subject to State or Federal regulation, it should be reasonably clear what portion of the mine's overburden will be used over what period of time to implement a reclamation plan. Second, as indicated above, it eliminates the need for a specific definition of mine site. In any case, EPA does not believe, as one commenter suggested, that the definition of "mine" used in the Agency's Effluent Limitations Guidelines for the Ore Mining and Dressing Point Source Category (under the Clean Water Act) is appropriate for this definition. The CWA definition is designed to identify a full range of mining and associated activities that should be regulated because they generate pollutants which may potentially discharge into navigable waters. The RCRA definition of "mine site" is to identify a area that may receive a waste material which will thereby be excluded from environmental regulation under RCRA.

Finally the Agency has eliminated the part of the proposed exemption that would allow exempted overburden to be brought within RCRA jurisdiction through specific listing as a hazardous waste. (EPA believes, however, that uranium mining overburden and phosphate mining overburden will be brought back under Subtitle C jurisdiction, as discussed below.) The only overburden exempted is that which is used for reclamation purposes. EPA expects that the State and Federal agencies that regulate such reclamation will consider the overburden's potential to adversely affect public health and the environment.

EPA believes strongly that portions of the overburden from uranium and phosphate mining should be regulated under Subtitle C with respect to their potential emissions of radon gas and gamma radiation. The Agency
recognizes that this is an issue currently before the Congress in amendments to RCRA. One such amendment would provide specific authority for EPA to regulate these overburdens. If this amendment is enacted, the "overburden returned to the mine site" exclusion will be modified accordingly.

Comments also questioned the application of the Subtitle C system to in-situ mining wastes. In-situ mining of oil shale, uranium and other minerals may involve the placement of certain solvent solutions directly to a mineral deposit in the ground. This solvent passes through the earth, solubilizing the economic mineral as it goes. The mineral and solvent mixture leaches down to underground extraction wells which remove the solution.

EPA does not believe that the soil through which these solvent solutions pass is a waste to be regulated under RCRA for two reasons. First the removal of materials from their natural state does not result in all remaining elements of that environment into a waste material. For example, picking an apple from a tree does not transform the tree into a solid waste. Likewise the removal of minerals from the land does not make the earth a solid waste.

Second, the soil from which minerals are extracted by in-situ mining does not need to be managed as solid wastes. As indicated in United States Brewers' Association, Inc. v. EPA, supra., the definition of "solid waste" under RCRA must be read in conjunction with Section 1004(26), the definition of "solid waste management," which sets forth the broad set of activities that RCRA is to regulate. None of the management activities identified in Section 1004(26), including "disposal," are relevant to in-place materials from all hundreds, even thousands of feet below the ground. Only when these materials are actually removed from the ground can it be reasonable to establish regulations governing the management of those materials. Accordingly in-situ mining wastes, not removed from the ground, are not regulated as solid wastes under these regulations.

A final issue raised in the public comments concerns the relationship between these regulations and the study of mining wastes required under Section 8002(f) of RCRA. Commenters argued that all mining wastes should be excluded from coverage under RCRA regulatory programs (including Subtitle C) pending the outcome of that study. While the study will certainly assist the Agency in refining these regulations to address the particular environmental problems presented by mining wastes, the Agency does not believe that mining wastes should be excluded from regulation, any more than any other solid or hazardous waste, until the study is completed. RCRA certainly does not require such a deferral. The fact that the Congress may have perceived a need for further information about mining wastes does not raise the implication that RCRA's regulatory programs should not address the environmental problems presented by such wastes. The definition of "solid waste" in Section 1004(27) specifically includes wastes from mining operations and no other statutory provision otherwise links EPA's jurisdiction over such wastes to completion of the study under Section 8002(f).

It is important to note that pending amendments to RCRA may provide for deferral of regulation of certain mining wastes until completion of the mining waste study. Clearly that indicates a Congressional belief that any deferral of regulation pending the outcome of the study was not contained in RCRA as originally enacted. Certainly if the legislative amendment is passed EPA will modify these regulations accordingly. The Agency has not, however, created such a deferral in anticipation of such an amendment because the amendment is contained in the bill of only one house. Thus the Agency cannot be certain that such an amendment will be part of the final legislation.

7. Sewage Sludge. Unlike the proposed regulation this does not exclude from regulation under Subtitle C sewage sludge from publicly-owned treatment works (POTW's). Several commenters objected to the exclusion contained in the proposed regulation arguing that it was inconsistent to exclude sewage sludge from POTW's and not exclude sewage sludge from privately-owned systems. They urged EPA to exclude sewage sludge from such private systems. Other commenters urged EPA to exclude wastewater treatment sludges from certain industries such as the meat packing and food processing industries because these sludges are very similar to domestic sewage sludge.

Finally, other commenters objected to the proposed exclusion of sewage sludge from POTW's and urged that this exclusion be dropped. They claimed that POTW sludge often is very contaminated and it very well can be a hazardous waste. They urged that it not enjoy an arbitrary exclusion. EPA has thoroughly re-examined this issue in light of the comments and has decided not to exclude POTW sludge and not to add exclusions for any other types of sludge.

The regulation of sewage sludge is necessarily a complex matter because such sludges fall within the jurisdiction of several Federal environmental programs. Under Section 1004(27) of RCRA, the definition of "solid waste" specifically includes "sludge from a waste treatment plant." In defining "sludge," Section 1004(26A) includes wastes from a "municipal wastewater treatment plant."

Because of these very clear statutory expressions, EPA must regulate sewage sludge under RCRA—either under Subtitle D, where it has already promulgated regulations covering sewage sludge (see 44 FR 53438 et seq.), or under Subtitle C where these sludges that are deemed by EPA to be hazardous wastes should be regulated. Under Section 102 of the Marine Protection, Research and Sanitations Act, EPA regulates the ocean dumping of sludge, including sewage sludge. In addition EPA establishes, under Section 405 of the Clean Water Act (CWA), guidelines for the disposal and utilization of sewage sludge. Under Section 405(c), owners and operators of publicly owned treatment works (POTW's) must comply with these guidelines. Sewage sludge often contains valuable organic matter and plant nutrients, and it may be distributed to the public as a soil conditioner or fertilizer. Such distribution of sewage sludge may be regulated under the Consumer Product Safety Act (CPSA) or the Toxic Substances Control Act (TSCA), in addition to Section 405 of the CWA.

Where such overlapping jurisdiction exists, EPA seeks to integrate and coordinate its regulatory actions to the extent feasible. Such efforts give the regulated community a clear picture of its obligations and improve the administrative efficiency of the Agency, both of which advance the environmental objectives contained in EPA's various statutory authorities. Section 1006 of RCRA specifically recognizes the need to integrate the solid and hazardous waste programs with other EPA regulatory programs.

To that end EPA has decided to develop a comprehensive set of regulations to deal with sewage sludge management. Such regulations would be promulgated under RCRA (Subtitles C and D), the Clean Water Act, the Marine Protection, Research and Sanitation Act and possibly the Toxic Substances Control Act and/or the Consumer Product Safety Act. These regulations will address sewage sludge...
from both private and public sources, including septic tank pumpings. In devising such regulations the Agency will, of course, make the distinctions and classifications necessary to ensure that regulations comport with the goals and requirements of each statute. Under such a comprehensive regulation, sewage sludge that would otherwise meet the test for being hazardous under Subtitle C will be subject to requirements providing a level of protection to human health and the environment equivalent to that found in the Subtitle C regulations.

The Agency has issued and is developing regulations which will eventually be part of the comprehensive sewage sludge regulation. For example, the Agency promulgated Criteria for the Classification of Solid Waste Disposal Facilities and Practices (44 FR 58468) on September 15, 1979. These regulations, which apply to sewage sludge, include special provisions for the land application of solid waste to food chain crops and for the prevention of disease from pathogens contained in sewage sludge and septic tank pumpings. EPA issued the Criteria under the authority of Sections 1008(a)(3) and 4004(a) of RCRA as well as Section 405(d) of the CWA. EPA has also published two technical bulletins that provide guidance on sludge management: "Municipal Sludge Management: Environmental Factors" (42 FR 57420) and "Application of Sludges and Wastewater to Agricultural Land: A Planning and Education Guide."

In addition the Agency is in the process of developing regulations on the distribution and marketing of sewage sludge which will focus on the use of such material as a soil conditioner or fertilizer. These regulations will, at a minimum, be promulgated under Section 405(d) of the CWA. The Agency is also examining whether TSCA or CPSA authorities may be used in developing these regulations.

The Agency's strategy for the development of a comprehensive sewage sludge management regulation will eventually result in the establishment of a separate regulation. Once such a regulation is in place, sewage sludge will be exempted from coverage under other sets of regulations. In particular sewage sludge that qualifies as a hazardous waste will be exempted from this Part and Parts 265 through 268 once a separate sewage sludge regulation, which will provide an equivalent level of protection, is issued in final form.

Pending promulgation of this comprehensive sewage sludge regulation, sewage sludge will not be specifically excluded from Subtitle C. Like any other solid waste, sewage sludge that exhibits any of the characteristics of hazardous waste established in this regulation must be managed as a hazardous waste.

Some commenters urge EPA to list sewage sludge as a hazardous waste, contending that it was particularly hazardous when used in the growing of food chain crops because of the potential plant uptake of cadmium, PCB's and other contaminants. The Agency has decided not to specifically list sewage sludge as a hazardous waste at this time.

It is difficult to make general determinations about the hazarousness of sewage sludge, particularly those produced by POTW's, because of the wide variations in sludge quality. The makeup of a given community's sewage sludge, for example, reflects the range of contaminants generated by the industrial and commercial activities in the area. The sludges of two POTW's will differ as much as the communities themselves.

Determinations about the hazardousness of sewage sludge must, therefore, involve the making of some distinctions between types of sludge. EPA anticipates that it may make such distinctions as part of its comprehensive sewage sludge management regulations. Thus, it is reasonable for EPA to determine whether categorical classifications of sewage sludges are appropriate as part of the Agency's effort to develop such regulations.

In addition it should be recognized that the particular hazard identified by the commenters, namely uptake of contaminants in food-chain crops, is being addressed by existing regulations. As mentioned above, EPA has issued the Criteria for the Classification of Solid Waste Disposal Facilities and Practices under Subtitle D of RCRA, which place limits on the application of solid waste (including sewage sludge) to food-chain crops. In addition, it is developing regulations covering the distribution and marketing of sewage sludge, which often is used by consumers in gardens for growing food crops. EPA believes that these regulations address the commenters' particular concern about cadmium and PCB contamination in sludge.

E. Section 261.5 (Special Requirements for Hazardous Waste Produced by Small Quantity Generators)

1. Introduction. In enacting RCRA, Congress was responding to a problem of unknown magnitude and dimension. With specific reference to the generation of hazardous waste, the House Committee stated:

One of the major problems to be addressed in the hazardous waste area is the lack of information concerning the components, volumes and sources of hazardous waste. To date there has been no survey or other wide ranging investigation of the sources of hazardous or potentially hazardous waste generation or disposal. As a result, little is known about the actual volume of hazardous waste being generated, the geographical distribution of the generators or the extent to which hazardous wastes are transported [H.R. Rep. 90th 26].

In the proposed regulation, EPA recognized that the principal focus of the regulatory program should be directed towards effectively controlling the hazardous waste generated by the larger sources of hazardous waste. The Agency was uncertain, however, about the most appropriate manner of regulating generators of small quantities of hazardous waste. The proposed regulations exempted from regulation retailers and any person who generated and disposed of hazardous waste in quantities of less than 100 kilograms in any one month period, provided that these generators disposed of their waste in a waste disposal facility meeting the CRRA Section 4004 criteria or in a facility permitted to manage hazardous waste. In the preamble to the proposal, EPA explained the rationale for this exemption as follows:

The principal element of this issue is how to balance the need to protect human health and the environment from the adverse impact of potential mismanagement of small quantities of hazardous waste with the need to hold the administrative and economic burden of management of these wastes under RCRA within reasonable and practical limits (43 FR 56970).

Since the time of proposal, the Agency has received and developed considerable information on the issue of the appropriate degree and manner of regulating small quantities of hazardous waste. The information obtained in this process indicates that the number of persons generating hazardous wastes is staggering. There are an estimated 760,000 large and small generators of hazardous wastes producing over 60 million tons of hazardous waste a year. The greatest amount of these wastes comes from very large generators, typically large manufacturing facilities. Just over 5 percent, or 40,000, of the total number of generators produce more than 5000 kg/mo of hazardous wastes; yet, these large generators produce 97.7 percent of the total quantity of hazardous waste. Roughly 91 percent, or 695,000, of the generators, produce less than 1000 kg/mo, yet contribute only one
percent, or 900,000 tons per year, of the total hazardous waste generated. At levels of generation below 100 kg/mo, 74 percent, or 563,000, of the generators produce only 0.23 percent, or 138,000 tons per year of hazardous waste.

The types of business activity generating small quantities of hazardous waste differ markedly from those generating large quantities of hazardous waste. In contrast to large quantity generators, which are almost entirely from the manufacturing sector, over 89 percent of the small generators—those producing hazardous waste at rates of less than 1000 kg/mo—are from the non-manufacturing sector. These generators are scattered among such diverse sectors as construction, special trade contractors (e.g., plumbers, electricians), secondary schools, and local transportation systems. Gasoline service stations and automobile repair garages (for wastes other than waste lubricating oil) comprise nearly 30 percent of these non-manufacturing small generators of hazardous waste.

The Agency has determined that the enormous number of small generators, if brought entirely within the Subtitle C regulatory system, would far outstrip the limited Agency resources necessary to achieve effective implementation.

The information developed in the rulemaking process has led EPA to adopt, in the final regulations, a system which incorporates various aspects of the different approaches suggested in the preamble to the proposed rule. The final regulation sets low (1 to 100 kg/mo) quantity exclusion limits for certain extremely hazardous wastes; sets an initial general exclusion limit for generators of less than 1000 kg/mo of all other hazardous wastes; and conditions this general exclusion to assure that excluded wastes are disposed of in either authorized hazardous waste management facilities or facilities approved by a State for municipal or industrial wastes. EPA believes the approach adopted will allow EPA and the States to initially focus implementation and enforcement of the Subtitle C regulatory program on those generators of hazardous waste who are presently producing 98 percent of all hazardous waste. In addition, the Agency will initiate rulemaking within 2 to 5 years to phase-in expanded Subtitle C coverage of small generators down to those generating more than 100 kg/mo quantities.

The final rule does not exempt retailers from coverage as did the proposed regulations. In the preamble to the proposed rule the Agency stated its belief that retailers rarely generate more than 100 kg/mo. However, commentators argued, and the Agency agrees, that some retailers may generate extremely hazardous wastes. Furthermore, some generators, such as large hardware or garden stores may generate substantial quantities of hazardous waste. To the extent that retailers do generate only very small quantities, they will be exempted by the exclusion level provided in the regulations. Thus, in the final regulation, retailers who generate hazardous waste are subject to the same requirements as any other generator.

The background document responds fully to the diverse and numerous comments received on the proposed exemption of generators of small quantities of hazardous waste. This preamble will discuss the issue raised most frequently during the comment period—the consideration of hazard in establishing limits for hazardous wastes—and the rationale for setting an initial quantity exclusion of 1000 kg/mo and for phasing down the exclusion to 100 kg/mo.

2. Consideration of Hazard in Establishing Quantity Limitations. A number of commenters stated that EPA should use consideration of hazard in determining the scope of regulatory coverage. Two methods were suggested: (1) Using quantity to define hazardous waste pursuant to Section 1005(5) of RCRA, i.e., determining the level for each waste below which it does not pose a substantial hazard to human health and the environment when improperly managed; or, (2) considering the degree of hazard presented by a particular waste to establish different levels or types of controls. Although both approaches are attractive, the Agency lacks the ability to use either method in an extensive fashion, and therefore has had to adopt a general exclusion level.

3. Using Quantity to Determine That a Waste is Hazardous. The Agency considered whether the small quantity issue could be addressed through consideration of quantity in the definition of hazardous waste. Specifically, the Agency considered whether small quantity exclusion limits could be established by defining de minimis quantities below which a waste would not be hazardous under the statutory definition in Section 1005(5) of RCRA, i.e., below which no substantial hazard to human health and the environment exists under conditions of improper management. However, the Agency has not been able to find a way of determining de minimis quantities. To do so would require knowledge not only of the intrinsic properties of a waste but also about the possible exposures that attend various small quantities of waste under various plausible scenarios of waste mismanagement. Such exposure assessments require consideration of waste properties, numerous site-specific conditions, and alternative management scenarios. For example, the levels of exposure and hazard which could result from leaching of toxic constituents from a particular hazardous sludge in a landfill would depend on factors such as the persistence of the waste, site hydrogeology, depth to the groundwater, the attenuation of the constituent in the underground environment (including degradation of the constituent and its dilution in the groundwater), and the location of persons using the groundwater. The problem is made more complex by the fact that many wastes may be managed by several alternative ways, such as land disposal, treatment, or incineration, and each of these types of management exhibits different exposure and risk patterns.

Given current knowledge and information, these assessments cannot be made for most wastes with sufficient precision to determine the specific quantities which represent a threshold for finding a waste hazardous. Therefore, the Agency has not been able to establish de minimis quantities for defining hazardous wastes. The Agency must therefore consider all quantities of any waste listed or identified in Part 261 to be hazardous.

4. Inability of the Agency to Use Degree of Hazard. Because the Agency was unable to use quantity in determining whether a waste is hazardous, it considered using degree of hazard in determining the appropriate quantity exclusion level. Commenters heavily supported establishing exclusion limits based on degree of hazard of various wastes. These suggestions were part of a broader set of comments which recommended that the Agency establish a degree of hazard system that placed wastes into two or more levels of hazard depending on the risk that these wastes present to public health and the environment. Commenters argued that such a system could be used as a basis for phasing regulatory coverage, tailoring waste management standards, and establishing small quantity exclusion levels.

The Agency's response to the full scope of the degree of hazard proposals is included in the preamble to the Part 261 and 265 regulations being promulgated today. As explained there, the Agency has not adopted a degree of hazard system in the final regulations. Among other reasons, the Agency
concluded that none of the degree of hazard systems suggested by commenters, nor any it could itself conceive, is capable of comprehensively distinguishing different degrees of hazard among the myriad of hazardous wastes without application of very subjective judgment. This precluded establishing small quantity exemptions based on a hierarchy of hazard levels.

While the Agency has not found it possible to establish a comprehensive hazard ranking system, the Agency has attempted on a limited basis to make hazard distinctions in establishing small quantity cutoffs. The Agency has established very low exclusion limits for certain very acutely toxic or otherwise hazardous chemical products (if discarded), off-specification derivatives of those products, and the product container itself. The Agency may in the future establish specific (low) exclusion limits for other highly hazardous wastes on a case-by-case basis.

5. Limited Administrative Resources Require Setting the Initial Exclusion Level at 1000 kg/mo. EPA has decided to adopt for the present time, a general exclusion level of 1000 kg/mo. The Agency’s basis for this decision is the current lack of sufficient administrative resources to allow the Agency and the States to effectively regulate all hazardous waste. Given that resource constraint, the Agency believes that the overall level of environmental protection which can be provided will be greater if the Agency focuses available resources on fully regulating wastes from large generators during the early years of regulation implementation rather than expanding the scope of regulatory coverage and achieving ineffective implementation of a more ambitious program.

The primary reason for selecting 1000 kg/mo, i.e., the administrative impossibility of implementing at lower levels, deserves some elaboration. As noted earlier, regulation of all generators of hazardous waste would bring 760,000 persons into the regulatory system. Regulating only those persons who produce more than 100 kg/mo would exclude from the program 580,000 generators, 73.9 percent of the total. If the exclusion level were set at 1000 kg/mo, 695,000 generators or 91.2 percent would be excluded from regulation. At a 5000 kg/mo level, 722,000 generators or 94.7 percent would be excluded.

In 1981, the first full year of implementing the Subtitle C controls, analyses of Agency and State workload requirements and available resources to implement the Subtitle C controls indicated that, if all generators were fully regulated, workload requirements would exceed resources available by 1100 to 1200 work years. If generators of less than 100 kg/mo quantities were exempted from full regulation, the shortfall would be much less, but still a substantial 200 to 300 work years. However, if generators of less than 1000 kg/mo quantities are exempted, the shortfall is projected to be less than 100 work years, about 5 percent of the total workload.

The resource constraints and shortfalls have direct significance for the operation of the entire regulatory program. To expand the coverage to smaller generators would require direct sacrifices from other elements of the program, most notably regulation and enforcement of large generators, permitting of treatment, storage and disposal facilities, and enforcement and inspection of these facilities.

Furthermore, with greater resource demands and projected shortfalls, greater difficulties are likely in the ability of States to obtain authorization to administer the program in lieu of the Federal government.

Given the enormity of the implementation task and the limited administrative resources, EPA has been forced to make difficult allocation decisions. Expanding the coverage of generators would entail direct sacrifices from other essential program components. The determination of the proper exclusion level in the final regulation represents a complicated balancing of a variety of factors. This decision reflects a judgment by the Agency that the overall environmental objectives will be best served by selecting a level which promises full and effective implementation of all elements of the program rather than one that promises ineffective implementation of a more ambitious program.

Accordingly, EPA has decided to establish for the present time a conditioned exclusion of hazardous wastes from generators who produce less than 1000 kilograms a month. This level will enable EPA to direct its attention to the effective regulation of 99 percent of the total wastes generated, and will entail only insignificant, if any, sacrifices in the task of issuing permits to hazardous waste management facilities.

In addition, the exclusion is not unqualified; generators of small quantities of hazardous waste must ensure that their wastes go to facilities that are approved by the State to handle municipal or industrial wastes. For most of these facilities the commingling of small quantities of hazardous waste with large quantities of non-hazardous waste is likely to minimize environmental problems attributable to the hazardous waste, particularly since dilution levels at a 1000 kg exclusion are generally at least 100 to 1. Importantly, this approach will give State agencies more flexibility in dealing with small quantity generators. If a State determines that certain types of exempted hazardous waste should not be managed in a particular non-hazardous facility, it can deal with that situation directly.

The Agency considered other types of reduced administrative or technical requirements for exempted generators, including various subsets of the full Subtitle C requirements. A limited number of commenters suggested particular reduced requirements which they felt would provide limited but necessary controls. The Agency’s analysis of various reduced Subtitle C requirements indicated that they would either provide an insignificant level of additional control, or that they would not substantially reduce the administrative burden of the full Subtitle C requirements. Thus, the Agency decided to impose only the condition stated above.

6. Phasing Down the Coverage of Small Quantity Generators. On the basis of information presently available to the Agency, it appears that a general exclusion level of 100 kg/mo would better achieve the environmental protection objectives of Subtitle C. Therefore, EPA intends to initiate rulemaking within 2 to 5 years to expand Subtitle C coverage down to generators of 100 kg/mo. During this process, the Agency will consider the need for any special regulatory requirements to deal with any unique problems associated with these wastes.

A number of commenters argued that phasing regulatory coverage of small generators would significantly benefit the administration of the hazardous waste management program. The Agency believes that because of limited resources, the Agency must phase its regulation of small generators to be able to fully implement the Subtitle C controls on large generators, transporters, and waste management facilities.

7. Environmental Considerations. The information that the Agency was able to develop on the environmental impacts of different quantity cutoff levels was not fully conclusive. However, the data indicate that an exclusion level of 100 kg/mo, coupled with lower exclusions for certain highly hazardous wastes, and disposal of excluded waste in Subtitle C or State approved facilities, will, in most
cases, minimize adverse impacts on human health and the environment. The review of damage cases tends to support a 100 kg/mo exclusion level. First, there were very few damage cases involving quantities below that level. Second, those few cases involved indiscriminate dumping rather than disposal in managed facilities. This suggested that disposal of quantities less than 100 kilograms in a managed facility might provide sufficient environmental protection, even if the managed facility was not authorized to handle hazardous waste. Of the 11 damage incidents involving the disposal of less than 1000 kg quantities of hazardous waste in managed facilities the environmental damage or personal injury occurred in nine of the incidents because of mismanagement of single containers, i.e., 55 gallon drums of ignitable, corrosive or reactive materials. Setting the exclusion level at 100 kg/mo would in most cases ensure that single, full drums would be properly packaged and labeled, manifest and sent to Subtitle C facilities. A higher exclusion level would not provide this assurance.

Wastes generated by small quantity generators at the 100 kg/mo exclusion level comprise only 0.23 percent of all hazardous waste. The environmental analysis showed that these small generator hazardous wastes are typically mixed by the generator with non-hazardous wastes and subsequently disposed of in waste management facilities for municipal waste. If these mixed wastes were evenly distributed to such facilities, the dilution ratio of non-hazardous to hazardous waste would be roughly 900 to 1 at a 100 kg/mo exclusion limit.

Although even distribution will not occur, EPA believes that very large dilution ratios will result in most situations with a 100 kg/mo exclusion level. This is because 92 percent of the small generators (producing less than 100 kg/mo) are in the non-manufacturing sector and are distributed in reasonable proportion to population and, therefore, in reasonable proportion to quantities of diluting non-hazardous municipal wastes. The effect of even distribution and high dilution is to spread and thereby, minimize exposure and risk. Although this effect cannot be assessed with great precision, it is not unreasonable to assume that human health exposure and risk is significantly reduced at dilution ratios of several hundred to 1.

8. Resource Considerations. Projecting administrative resources into the future is inherently speculative, requiring various assumptions and estimates of State and Agency budgets, and available testing protocols. EPA adopted this second criterion in recognition that the primary responsibility for determining whether wastes exhibit the characteristics rests with generators. It believed that unless generators were provided with widely available and uncomplicated test methods for determining whether their wastes exhibited the characteristics, the system would prove unworkable. Largely in reliance on this second criterion, EPA refrained from adding organic toxicity, carcinogenicity, mutagenicity, teratogenicity, bioaccumulation potential and phytotoxicity to the set of proposed characteristics and instead left it to listing mechanism to capture wastes exhibiting these properties. EPA considered the available test protocols for measuring these characteristics to be either insufficiently developed or too complex and too highly dependent on the use of skilled personnel and special equipment. Additionally, given the current state of the knowledge concerning such properties, EPA did not feel that it could define with any confidence the numerical threshold level at which wastes exhibiting these characteristics would present a substantial hazard. Furthermore, it questioned whether these tests sufficiently took into account the multiple factors which bore on the question of the hazardousness of such wastes.

EPA received a few comments on its proposed criteria for identifying characteristics, the most significant of which addressed the appropriate use of the identified characteristics. A number of commenters contended that EPA did not have authority to require generators to assess their wastes in accordance with the characteristics. These commenters were generally concerned about the burden placed on generators by such a requirement and argued that the characteristics should only be used by the Agency in listing hazardous wastes. Other commenters believed that EPA was fully justified in requiring generators to assess their wastes in accordance with the identified characteristics and felt that this would assure the broadest possible coverage for hazardous wastes.

EPA disagrees with those commenters who argue that EPA has no authority to require generators to determine if their wastes exhibit any of the characteristics. Throughout the statute, Congress made reference to two alternative mechanisms for bringing a hazardous waste under the waste system—identification through characteristics, and listing. If Congress
had intended the identified characteristics to be used solely by EPA in listing wastes, then there would have been no point in making a distinction between these two mechanisms. Consequently, since the determination of whether a waste exhibits the characteristics appears to require some action by someone other than EPA, the most reasonable interpretation of the statutory language is that it requires generators to assess their wastes in accordance with the EPA-identified characteristics. This interpretation of the statutory language is substantially reinforced by the provision in Section 3002(a)(4) that generators may be required to furnish information on the general chemical composition of their waste—a requirement which presumes testing.

The final regulation makes a few slight changes in the language of the criteria for identifying characteristics in an attempt to clarify the meaning of the regulatory intent and better reflect EPA's regulatory intent. First, EPA has omitted reference to damage incidents and scientific and technical information as bases for identifying characteristics, out of a conviction that this reference is unnecessary and in partial agreement with those who argued that damage incidents should not be heavily relied on in identifying characteristics. Second, EPA has omitted the redundant phrase "can be defined in terms of specific, physical, chemical, toxic, infectious, or other properties of a solid waste." Third, EPA has expanded the criterion of "measurability" to make clear that any test for measuring characteristics must be within the capability of the generator community and to provide that characteristics such as reactivity need not be accompanied by a testing protocol if the characteristic can be "reasonably detected by generators through their knowledge of the waste."

B. Section 261.11 (Criteria for Listing Hazardous Waste)

In the proposed regulation, EPA specified two criteria for listing hazardous waste. The first criterion was that the waste possess one or more of the identified characteristics. The second criterion was that the waste meet the definition of hazardous waste found in Section 1004(5) of the Act. The first criterion to a large extent reflected EPA's regulatory strategy at the time of the proposal. Under that strategy, EPA planned to identify and quantitatively define all of the characteristics of hazardous waste, including carcinogenicity, mutagenicity, teratogenicity, bioaccumulation potential and phytotoxicity. Generators would be required to assess their wastes in accordance with these characteristics and EPA would list hazardous wastes where it had data indicating the wastes exhibited one of the identified characteristics. Listing would thus play a largely supplementary function and would serve as a device for injecting certainty into the process of hazardous waste determination. As noted above, however, EPA has found it impossible to fully effectuate this strategy because of the lack of suitably uncomplicated test protocols, the difficulty of establishing numerical hazardous threshold levels for these additional characteristics, and the failure of the available test protocols to fully incorporate all of the multiple factors bearing on the hazards presented by such characteristics.

The second criterion was adopted against the backdrop of this inability to capture all hazardous wastes through identified characteristics, and was intended to give the Agency an independent basis for capturing such wastes. Although this proposed criterion was admittedly somewhat general in nature, it implicitly incorporated the more specific criteria embodied in the delisting requirements and the waste codes which accompanied each listing—provisions which made it clear that EPA was specifically concerned with radioactive, mutagenic, bioaccumulative, toxic, organic and infectious wastes. Thus, although EPA appeared to have prescribed for itself a very broad and inexact listing standard in the proposed regulation, in actuality the Agency followed a fairly particularized set of criteria in listing wastes.

EPA received a large number of comments in response to its proposed criteria for listing. None of these commenters objected to EPA's first criterion for listing wastes that exhibit one of the characteristics. A large number of commenters, however, objected to the second criterion. Many of these commenters felt that the mere articulation of the statutory definition as the basis for listing was circular and constituted an abrogation of EPA's statutory duty to establish criteria for listing which expand upon the statutory definition. Others argued that the second criterion was inappropriate because it failed to take into consideration such things as concentration, degradation potential and bioaccumulation potential—factors which are specifically mentioned by the Act.

EPA agrees that the proposed criterion for listing wastes which do not exhibit any of the characteristics was as a general matter, too broad. Accordingly, we have promulgated a considerably expanded and more specific set of criteria to take the place of the proposed criterion. These criteria are broken down into two categories—criteria for listing acutely hazardous waste and criteria for listing toxic waste.

The criteria for listing acutely hazardous waste are intended by EPA to serve as the criteria for identifying wastes which are so hazardous that they can be said to meet part (A) of the statutory definition of hazardous waste—i.e., wastes which may "cause, or significantly contribute to an increase in serious irreversible, or incapacitating reversible, illness", regardless of how they are managed. It is EPA's conviction that most wastes are hazardous only because they "pose a substantial present or potential hazard to human health or the environment when improperly managed" and thus meet part (B) of the statutory definition of hazardous waste. Nevertheless, EPA recognizes that there are wastes which are so acutely hazardous that they can be considered to present a substantial hazard whether improperly managed or not. EPA has defined this category of wastes to include those which have been shown to be fatalities or symptoms in low doses or have been shown in mammalian studies to have an oral LD 50 toxicity of less than 50 milligrams per kilogram, (as determined using rats), an inhalation LC 50 toxicity of less than 2000 milligrams per cubic meter (as determined using rats), or a dermal LD 50 toxicity of less than 200 milligrams per kilogram (as determined using rabbits). Numerous other agencies and private organizations, including the Department of Transportation, the Consumer Product Safety Commission and the National Academy of Sciences, recognize that substances exhibiting these LD 50 and LC 50 toxicities are so potentially lethal as to be considered poisonous or acutely toxic. EPA has also defined this category of wastes to include wastes, such as explosives, which otherwise meet part (A) of the statutory definition of hazardous waste. This has been done in recognition that these wastes may be acutely hazardous even if they are not toxic. Inasmuch as a waste will meet the acutely hazardous criteria only when the whole waste, rather than just its constituents, presents an acute hazard, EPA has employed and intends to employ these criteria primarily to list the discarded pure chemical substances and associated materials specified in § 261.33.
wastes such as wastes containing substantial concentrations of potent carcinogens which meet these criteria even though they are not pure substances.

The criteria for listing toxic wastes are intended by EPA to identify all those wastes which are toxic, carcinogenic, mutagenic, teratogenic, phytotoxic, or toxic to aquatic species. These criteria provide that a waste will be listed where it contains any of a number of designated toxic constituents—unless, after consideration of certain specified factors, EPA concludes that the waste does not meet part (B) of the statutory definition of hazardous waste. As in the proposed regulation, the ultimate requirement to listing a waste as hazardous is whether it meets the definition of hazardous waste found in the Act. Unlike the proposed regulation, however, the final criteria significantly change the route the Agency must follow in determining whether a waste meets the statutory definition. The first inquiry which must be made under the final criteria is whether the waste contains any of the toxic constituents listed in Appendix VIII. These constituents are ones which have been shown in reputable scientific studies to have toxic, carcinogenic, mutagenic or teratogenic effects on humans or other life forms and include such substances as those identified by the Agency's Carcinogen Assessment Group.

Consequently, the presence of any of these constituents in the waste is presumed to be sufficient to list the waste unless after consideration of the designated multiple factors, EPA concludes the waste is not hazardous. These multiple factors include the type of toxic threat posed, the concentrations of the toxic constituents in the waste, the migration potential, persistence and degradation potential of the toxic constituents, the degree to which the toxic constituents bioaccumulate in ecosystems, the plausibility types of improper management to which the waste could be subjected, the quantities of waste generated, and other factors not specifically designated by the Act, including damage incidents involving wastes containing the toxic constituents and actions taken by other governmental agencies with respect to the waste or its toxic constituents.

EPA has adopted this flexible, multiple factor approach to listing rather than the formulaic approach embodied in the characteristics because it considers this approach to be better able to accommodate itself to complex determinations of hazard. EPA further believes that this multiple factor approach was to some extent contemplated by Congress. Most of the factors selected are specifically mentioned in Section 3001 of the Act. Additionally, the report which accompanied the Senate bill provided that if a: minimum the Administrator should designate as hazardous each mixture of solid waste which contained a toxic or hazardous substance listed in section 112 of the Clean Air Act or section 307(a) and section 311(b) of the Clean Water Act unless he determined that the waste did not meet the criteria for identifying hazardous wastes. Senate Report 94-988, 94th Cong., 2d Sess., at 14. Thus the Senate bill, like EPA's final regulations, envisioned a presumption in favor of listing based on the presence of a toxic constituent in the waste which is rebuttable by a consideration of further factors. Although the Senate version of the bill was not adopted, the concept embodied therein was not specifically rejected in the final statute, providing some further basis for concluding that EPA's approach for listing toxic wastes reflects congressional intent.

As can be seen from the above discussion, the final criteria for listing reflect a change in emphasis in the Agency's regulatory strategy. EPA is not fully confident that it can suitably define and construct testing protocols for the characteristics of organic toxicity, carcinogenicity, mutagenicity, teratogenicity, bioaccumulation potential, phytotoxicity, radioactivity and infectiousness, and is consequently relying on the listing mechanism to bring wastes exhibiting these properties into the system. One negative aspect of this change in approach is that it shifts to EPA the primary burden for identifying, analyzing and evaluating these wastes with the result that it may take longer to achieve full regulatory coverage. This negative aspect is substantially offset, however, by the greater flexibility and assurance which the listing approach provides, especially when accompanied by the delisting procedure.

A notable difference between the approach embodied in the characteristics and the approach embodied in the criteria for listing is that EPA attaches less emphasis to waste constituent migration and subsequent environmental fate in the listing mechanism than in the characteristics. This is nowhere better demonstrated than in the listing of wastes which contain primary drinking water standards contaminants. In listing wastes which contain primary drinking water standards contaminants EPA has elected to focus, in the first instance, on the actual presence of the toxic constituent in the waste and to treat other factors such as migration potential as essentially mitigating considerations which might render the waste nonhazardous. EPA feels justified in concentrating primarily on the composition of the waste because the listing mechanism allows for a more individualized consideration of hazard and because the delisting procedure affords generators an opportunity to demonstrate, through reliance on the specified factors, that their waste is not in fact hazardous. In the case of wastes exhibiting the characteristic of EP toxicity, on the other hand, there is no opportunity to make such a demonstration since the test prescribed in the characteristic constitutes a final determination of hazard. Consequently, out of concern that the characteristic not be overinclusive, EPA has placed somewhat greater emphasis on migration potential and has rigorously incorporated this consideration into the EP test.

As noted in section III.A.3. of this preamble, EPA intends to supplement the listing criteria to allow listing of radioactive and infectious wastes. We are deferring promulgation of the criteria for listing radioactive wastes because we want to wait until Congress has spoken on this issue and because deferral will give EPA more time to refine its standards for listing these wastes and to coordinate these standards with the regulations governing used, re-used recovered, and reclaimed wastes. We are similarly deferring promulgation of the criteria for listing infectious wastes because we have not finished developing the treatment standards applicable to such wastes.

A few clarifying changes have been added to the final regulation. First, the regulation provides that EPA may list classes or types of wastes if it has reason to believe that all wastes within the class or type typically or frequently are hazardous. Second, the regulation provides that the criteria for listing will be used to establish the exclusion limits for acutely toxic wastes generated by small generators. These exclusion limits are referred to in § 261.46(c).

VI. Subpart C—Characteristics of Hazardous Waste

A. Section 261.20—General

This section is largely self-explanatory. It states that a solid waste is a hazardous waste if it exhibits any of the characteristics of hazardous waste. It explains the assignment of EPA Hazardous Waste Numbers, and
explains the method for obtaining a representative sample in testing for characteristics. Rather than specifying particular procedures to be used in obtaining representative samples, EPA is simply requiring the regulated community to obtain samples which meet the definition of representative sample found in Part 260 of the regulations. To provide some guidance concerning compliance with this requirement, EPA will consider any sample obtained using the sampling methods indexed in Appendix I to be a representative sample within the meaning of the Part 260 definition. Since, however, these sampling methods are not being officially required by EPA anyone desiring to use a different sampling method may do so without demonstrating the equivalency of that method under the procedures set forth in § 260.21.

B. Section 261.21 (Characteristic of Ignitability)

In the proposed regulation, EPA defined ignitable waste to include the following: (1) Liquids having a flashpoint of less than 140°F (60°C) (2) non-liquids liable to cause fires through friction, absorption of moisture, spontaneous chemical change or retained heat from manufacturing or liable, when ignited, to burn so vigorously and persistently as to create a hazard (3) ignitable compressed gases and (4) oxidizers. EPA’s objective was to identify wastes capable of causing fires during routine transportation, storage and disposal and wastes capable of severely exacerbating a fire once started. Such fires, EPA recognized, pose a particular danger to transportation and disposal personnel and also threaten the general public by generating toxic fumes and creating combustible particulates which transport toxic particulates to the surrounding area. EPA adopted the Department of Transportation’s definitions of ignitable compressed gas and oxidizer and borrowed heavily from the Department of Transportation’s definition of non-liquid ignitable because it believed these definitions adequately reflected routine waste management conditions. At the same time, it chose a flashpoint limit for ignitable liquid wastes different from that specified by the Department of Transportation’s “flammable” liquid category because it believed that the flashpoint limit specified by the Department of Transportation did not fully reflect conditions likely to be encountered during routine waste management.

A large number of commenters argued that EPA should adopt the Department of Transportation’s 100°F flashpoint for flammable liquids. These commenters argued that EPA’s adoption of a different flashpoint limit from the Department of Transportation is not justified by conditions likely to be encountered during waste management and will create undue confusion in the regulated community. The Agency disagrees with these commenters. A number of EPA studies reveal that ambient temperatures of 140°F are regularly encountered during landfill disposal. In such environments, liquid wastes with flashpoints lower than 140°F will readily volatilize and can be easily ignited by the numerous ignition sources to which wastes are exposed during management. The need to regulate such wastes is borne out by an early Department of Transportation study which recommended that the Department of Transportation adopt a flashpoint limit of 140°F for flammable liquids because temperatures of this order can be encountered during transportation. The commenters who argue that EPA’s 140°F flashpoint limit is not justified by waste management conditions forget that, through the creation of its “combustible liquid” category, the Department of Transportation regulates liquids with flashpoints of up to 200°F—a tacit acknowledgement that EPA’s 140°F flashpoint is well within the sphere of potential concern.

EPA does not believe that its ignitable liquids category will create undue confusion in the regulated community. The term “ignitable” was specifically chosen to eliminate confusion between EPA’s “ignitable” liquids category and the Department of Transportation’s “flammable” liquids category. Furthermore, EPA’s ignitable liquids category is one with which the regulated community should already be familiar since it encompasses Class I and Class II liquids in the National Fire Protection Association’s classification scheme. While EPA believes that maintaining consistency between its definitions of hazard and those of the Department of Transportation is a desirable goal, it does not believe that such consistency should be achieved at the expense of human health and environmental protection.

A number of commenters argued that the 140°F flashpoint for liquids improperly included many liquid wastes such as wine and some latex paints which exhibit low flashpoints because of their alcohol content but do not sustain combustion because of the high percentage of water present. EPA agrees that such wastes should not be designated as hazardous, but unfortunately has no data on hand which identifies the correlation between the concentration of alcohol in such wastes and the established flashpoint of 140°F. Accordingly, it has for the time being opted to follow the Department of Transportation’s lead and exclude from its ignitable liquids category aqueous solutions containing less than 24 percent of alcohol by volume. This exclusion will remove from the ignitability characteristic liquid wastes which the Agency knows may flash but not sustain combustion. In the meantime, EPA hopes to undertake further study to determine whether another exclusion limit is more appropriate and to evaluate tests which might be capable of identifying wastes which exhibit this phenomenon.

Many commenters argued that the proposed definition of solid ignitable wastes was too vague and that a testing protocol was needed to provide proper guidance. A number of these commenters took particular issue with the phrase “... or when ignited burns so vigorously and persistently as to create a hazard during its management ...” which they felt could be construed to include such non-hazardous materials as bark, wood chips, wastepaper, sawdust, corrugated boxes, etc. EPA agrees that the proposed definition of solid ignitable wastes was perhaps imprecise and could stand clarification. It has no intention of designating such things as wastepaper and sawdust to be hazardous and is only interested in capturing the small class of thermally unstable solids which are liable to cause fires through friction, absorption of moisture or spontaneous chemical changes. Accordingly, to eliminate any misunderstanding, we have changed the definition of ignitable solid to read “... and when ignited burns so vigorously and persistently that it creates a hazard.”

Although EPA would have preferred providing a test method for identifying ignitable solids, it has determined, after diligent inquiry, that there are no test methods capable of accurately identifying the small class of ignitable solids to which its regulation is directed. EPA is presently working with the Department of Transportation and other organizations to correct this deficiency. In the meantime, the absence of a test should not cause too much of a problem since generators of thermally unstable solids, like generators of reactive wastes, are likely to be aware that their waste exhibits this property.

A number of commenters argued that EPA improperly included in its definition of ignitable solids, wastes such as slags which are liable to cause
fires through "retained heat from manufacturing or processing."

EPA agrees that these wastes should not be designated as hazardous and has accordingly deleted the phrase "or retained heat from manufacturing or processing" from the definition of ignitable solids. EPA was originally concerned that wastes such as slags, if placed in a landfill, could present a hazard by raising the temperature of other wastes to their flashpoints. It is now convinced that the likelihood of such high volume wastes being placed in a landfill is sufficiently small as not to warrant their regulation.

C. Section 261.22 (Characteristic of Corrosivity)

In the proposed regulation, EPA defined corrosive wastes to include (1) aqueous wastes exhibiting a pH of less than or equal to 3 or greater than or equal to 12 and (2) liquid wastes capable or corroding steel at a rate greater than 0.250 inches per year. This definition attempted to address the various hazards presented by corrosive wastes. EPA chose pH as one barometer of corrosivity because wastes exhibiting low or high pH can cause harm to human tissue, promote the migration of toxic contaminants from other wastes, react dangerously with other wastes, and harm aquatic life. EPA chose metal corrosion rate as its other barometer of corrosivity because wastes capable of corroding metal can escape from the containers in which they are segregated and liberate other wastes.

A majority of commenters argued that the proposed pH limits were unduly stringent. These commenters pointed out that the proposed upper pH limit of 12.0 would include many otherwise non-hazardous lime-stabilized wastes and sludges, thereby discouraging use of this valuable treatment technique. They further pointed out that the proposed lower pH limit of 3.0 would include a number of substances generally thought to be innocuous and many industrial wastewaters prior to neutralization. They questioned EPA's assertion that the proposed lower pH limit was needed to protect against tissue damage.

EPA agrees that the proposed pH limits were unnecessarily stringent and has accordingly adjusted the upper pH limit to 12.5 and the lower pH limit to 2.0. In originally establishing the proposed limits, EPA was confronted with the difficulty that while the tendency to promote the solubilization of heavy metal contaminants and to cause harmful reactions generally increases as pH approaches the upper and lower limits of the pH scale, there are no threshold levels for these effects.

Consequently, to a significant extent, EPA based the proposed pH levels on studies demonstrating a correlation between pH and eye tissue damage. Since eye tissue is considered to be more sensitive than other human tissue, the proposed pH levels were unnecessarily conservative and had the unintended effect of inhibiting the use of such beneficial processes as the lime stabilization of wastes. The expanded pH range being adopted today rectifies this problem by excluding such things as lime stabilized wastes from the system. It also addresses the problem of tissue damage more realistically while at the same time providing ample protection against the solubilization of toxic contaminants and dangerous reactions.

A number of commenters commented on the need for addressing percent acidity and alkalinity in the pH provision of the corrosivity characteristic. A few commenters favored adding percent acidity/alkalinity to the pH provision because it would provide useful information for disposal purposes. Most commenters, however, felt that percent acidity/alkalinity should not be addressed because it would not add significantly to the determination of hazard and would require the use of a more complicated measurement technique.

EPA agrees with most commenters that the addition of percent acidity/alkalinity to the pH provision is unnecessary. Percent acidity/alkalinity provides an indication of the capacity of a waste to resist a change in pH and therefore to aid in the assessment of the hazard presented by a waste over the long term. However, it adds little to the assessment of the corrosivity posed by the waste during transportation, storage and initial disposal. Furthermore, because the capacity of a waste to retain low or high pH is as much a function of its disposal or storage environment as of its percent acidity/alkalinity, the Agency knows of no scientifically valid basis upon which to establish hazardous threshold levels of percent acidity/alkalinity. Accordingly, EPA has elected not to address percent acidity/alkalinity in the corrosivity characteristic.

A few comments were received on the need for including corrosive solids in the corrosivity characteristic. All advocated including solids in the corrosivity characteristic but none described situations where the improper disposal of such wastes would be likely to cause damage.

EPA has concluded that, inasmuch as the great majority of wastes are presumed to be in liquid or semi-liquid form, there is no demonstrated need to address corrosive solids at this time.

EPA will, however, continue to seek information on the dangers presented by these wastes and will consider specific regulations when the need for more control becomes apparent.

A number of commenters suggested that the corrosivity characteristic should address tissue damage more directly and employ a skin corrosion test. Several of these commenters pointed to a Consumer Product Safety Commission survey which ostensibly casts doubt on the ability of pH to predict tissue damage.

EPA believes that there is sufficient correlation between pH and tissue damage to justify the use of pH in a regulatory context, especially in view of the fact that it is using pH as a multipurpose measure of many elements of concern. Requiring the regulated community to conduct skin corrosion tests, which necessitate the maintenance of special facilities and skilled personnel, would prove unnecessarily burdensome and would yield little in the way of extra results. Accordingly, EPA is not including a skin corrosion test in the final regulation.

At least one commenter noted that the NACE metal corrosion test specified in the proposed regulations permits variation in a number of test conditions. To correct this problem, EPA has standardized the conditions of the NACE test in its test methods guidance manual and has required generators to utilize this standardized version in running the test.

D. Section 261.23 (Characteristic of Reactivity)

The proposed regulation defined reactive wastes to include wastes which (1) readily undergo violent chemical change (2) react violently or form potentially explosive mixtures with water (3) generate toxic fumes when mixed with water or, in the case of cyanide or sulfide bearing wastes, exposed to mild acidic or basic conditions (4) explode when subjected to a strong initiating force (5) explode at normal temperatures and pressures or (6) fit within the Department of Transportation's forbidden explosives, Class A explosives, or Class B explosives classifications.

This definition was intended to identify wastes which, because of their extreme instability and tendency to react viciously or explode, pose a problem at all stages of the waste management process. The definition was to a large extent a paraphrase of the narrative definition employed by the National Fire Protection Association, although test protocols for measuring thermal and shock instability were
prescribed as a partial aid in assessing reactivity. The Agency chose to rely on a
descriptive, prose definition of reactivity because the available tests for
measuring the variegated class of effects embraced by the reactivity definition
suffered from a number of inadequacies. EPA received a large number of
comments which argued that the prose definition of reactivity employed by EPA
is too indefinite and vague and gives generators inadequate guidance in
assessing the reactivity of their waste. These comments advocated replacing
the prose definition with a numerically quantified definition accompanied by
appropriate testing protocols.

EPA has attempted where possible to define hazardous waste characteristics
in terms of specific, numerically quantified properties measurable by
standardized testing protocols. The available test methods for reactivity, however,
suffer from a number of generic and individual shortcomings that make a numerically quantified
definition with accompanying test protocols inappropriate. First, these
tests are too restrictive in scope and confine themselves to measuring how
one specific aspect of reactivity correlates with a specific initiating
condition or stress. No test is sufficiently general to even begin to
measure the variety of different stresses and reactions found within the reactive
classification. Second, because the reactivity of a waste sample is a
function not just of its intensive properties such as density and
composition but also of its extensive properties such as mass and surface
area, the reactivity of the sample as measured by the tests will not
necessarily correlate with the reactivity of the whole waste. Third, most of the
available tests are not of the "pass-fail" type and require subjective
interpretation of the results.

The unavailability of suitable test methods for measuring reactivity should
not cause problems. Most generators of reactive wastes are aware that their
wastes possess this property and require special handling. This in because such
wastes are dangerous to the generators' own operations and are rarely generated
from unreactive feed stocks. Consequently, the prose definition
should provide generators with sufficient guidance to enable them to
determine whether their wastes are reactive.

A number of commenters argued that the two proposed test methods for
measuring reactivity were, among other things, unreliable and difficult to
interpret. EPA agrees with these commenters that the two proposed test
methods—the Explosion Temperature Test and the Bureau of Explosives shock
instability test suffer from a number of inadequacies and add little to the prose
definition. Although the Explosion Temperature Test was originally thought
to be a suitable method for measuring one aspect of reactivity, field testing
demonstrates that this test requires subjective interpretation of the results.
Re-evaluation of the shock instability test suggests that it too possesses
problems which make its utility as a measure of reactivity questionable—
especially in view of its narrow scope. Accordingly, EPA has stricken these two
tests from the regulations except to the extent the Department of
Transportation's definition of Class A explosives requires use of the shock
instability test.

Several commenters took issue with the inclusion in the reactivity definition
of any waste which "generates toxic gases, vapors or fumes when mixed with
water" which makes cyanide or sulfide
bearing waste which can generate toxic
gases, vapors or fumes when exposed to mild acidic or basic conditions." These
commenters complained that this language lacks specificity. As an
example, they noted that quite a few
things contain sulfides and cyanides in
trace amounts and can generate minute
quantities of hydrogen sulfide or
hydrogen cyanide under acidic or basic
conditions.

EPA agrees that the language in
question could benefit from clarification.
It has accordingly amended the
regulation to include only those wastes
which generate toxic gases, vapors and
fumes in "a quantity sufficient to
present a danger to human health or the
environment". It has also specified that,
by mild acidic or basic conditions, it
means pH conditions of between 2 and
12.5. This pH range was chosen because
only waste inside this pH range can be
managed without regard to the
prohibitions imposed by Subtitle C.
Consequently, these pH conditions are
likely to be the most stringent
countered by cyanide and sulfide
bearing wastes.

E. Section 261.24 (Characteristic of EP
Toxicity)

There is persuasive evidence that the
contamination of groundwater through
the leaching of waste contaminants from
land disposed wastes is one of the most
prevalent pathways by which toxic
waste constituents migrate to the
environment. EPA's damage files
contain numerous incidents of
groundwater pollution resulting from the
indiscriminate dumping and improper
landfilling of wastes. Additionally, the
legislative history of RCRA is replete
with indications that such groundwater
contamination was one of Congress' primary areas of concern. In the
proposed regulation, EPA addressed this problem by developing a test procedure
called the Extraction Procedure (EP) designed to identify wastes likely to
leach hazardous concentrations of
particular toxic constituents into the
groundwater under conditions of
improper management. Under this
procedure, constituents were extracted
from the waste in a manner designed to
simulate the leaching action that occurs
in landfills. This extract was then
analyzed to determine whether it
possessed any of the toxic contaminants
identified in the National Interim
Primary Drinking Water Standards
(NIPDWS). If the extract contained any
of the contaminants in concentrations 10
times greater than that specified in the
National Interim Primary Drinking
Water Standards, the waste was
considered to be hazardous.

Like other test procedures employed to
identify hazardous characteristics, the
EP was intended to serve as a quick test
for identifying wastes which are capable
of posing a substantial present or
potential hazard when improperly
managed. Consequently, in devising the
test, EPA necessarily had to make
certain assumptions about the improper
management to which toxic wastes
capable of contaminating groundwater
are likely to be subjected. In making
such assumptions, EPA believed it
important to employ a reasonably
conservative mismanagement
scenario—in view of the statutory
mandate to protect human health and the
environment, the broad statutory
definition of hazardous waste and also
because the phenomenon of long term
leaching is only incompletely
understood. On the other hand, EPA
considered it important not to utilize a
wholly implausible mismanagement
scenario, since doing so it would end
up regulating as hazardous those wastes
which were quite unlikely to ever cause
a problem.

The result of these deliberations was a
decision to model the EP upon a
mismanagement scenario for toxic
wastes which constitutes a prevalent
form of improper management—namely,
the co-disposal of toxic wastes in an
actively decomposing municipal landfill
which overlies a groundwater aquifer.
EPA realized in making its co-disposal
assumption that actively decomposing
municipal waste landfills generate more
aggressive leachate media than other
landfills and thus, that its assumption
was a relatively conservative one.

nevertheless believed the co-disposal assumption to be reasonable, first, because wastes are customarily landfilled, second, because most categories of waste have the potential to be disposed of in municipal waste landfills, third, because the predicted degree of contaminant concentration in leachate could occur with respect to wastes which are not likely to be disposed of in municipal landfills and fourth, because Congress expressed particular concern about the disposal of toxic wastes in municipal landfills. EPA also realized its assumption that the landfill overlies a groundwater aquifer was a relatively conservative one. It believed, however, that this assumption was consistent with its concern for the disposal of wastes in environmentally sensitive areas and with the fact that a groundwater body, once contaminated, may remain contaminated for a number of years. Furthermore, it believed this assumption to be somewhat mitigated by its further assumption that there would be some attenuation in the concentration of toxicants in the leachate between the point the leachate leaves the disposal site and the point the toxicants reach environmental receptors.

Taking these assumptions as its framework, EPA developed the EP test to simulate the physical processes which would occur in an actual landfill characterized by these assumptions. To simulate the acidic leaching medium which occurs in actively decomposing municipal landfills, EPA chose to employ an acetic acid leaching medium with a pH of 5.0 (±0.2). To simulate the leaching process, EPA specified a procedure requiring mixing of the solid component of the waste with the acidic leaching medium for a period of 24 hours. To duplicate the attenuation in concentration expected to occur between the point of leachate generation and the point of human or environmental exposure, EPA applied a dilution factor of 10 to the concentration of toxic constituents observed in the test extract.

EPA was convinced that the proposed EP represented a valid and acceptable test for identifying wastes likely to leach toxic constituents into groundwater. Because, however, this test was innovative in character and reflected a fair amount of groundbreaking inquiry, it drew the greatest response from the public of all the test protocols utilized in identifying the characteristics. The most important of these comments are discussed below.

A number of commenters expressed disagreement with EPA’s proposed use of a 10-fold dilution factor to calculate the attenuation in toxicant concentration expected to occur between the point at which the leachate leaves the waste and the point of human or environmental exposure. Many commenters thought that the 10-fold dilution factor was too liberal and that no dilution factor would be more appropriate. The majority felt that the 10-fold dilution factor was too conservative and that a higher dilution factor would be more appropriate.

Choosing an attenuation factor which reasonably represents the amount of attenuation likely to occur in the real world was one of the most difficult problems EPA faced in formulating the EP—a problem which reflects in microcosm many of the difficulties of modeling complex physical processes with a short term test. As leachate migrates vertically from the landfill site towards the groundwater strata, a number of attenuation processes can occur—including adsorption, sorption, ion exchange, filtration, and dilution. When the leachate enters the groundwater zone its movement changes from vertical to horizontal and it will tend to form a slug or plume of contaminated water rather than mix generally with the groundwater flow. This plume of contaminants may experience some dilution, depending on the local geology, the groundwater flow, and the nature of the contaminants. Once the plume of contaminated water is drawn into a pumping well, some further dilution tends to take place, depending upon the amount of water withdrawn and the rate at which it is withdrawn. Unfortunately, all these attenuation mechanisms are dependent upon site specific conditions. While some sites may exhibit attenuation of 500-fold, others will exhibit very little attenuation at all. Moreover over time, a site that originally exhibits 500-fold attenuation may become so saturated that the attenuation mechanisms no longer work and the site begins to flush at the same rate at which it is charged.

In order to formulate a reasonable dilution factor, EPA assumed in the proposed regulations that leachate from the landfill passed unattenuated through the soil underlying the landfill to the groundwater zone and that drinking water wells were situated 500 feet down gradient from the landfill site. Relying on projections from a mathematical model which incorporated these assumptions and on empirical data from field analyses, EPA concluded that a dilution factor of 10 was a conservative, but reasonable, factor.

EPA has had an opportunity to carefully re-evaluate its original choice of a dilution factor and is now of the opinion that the 10-fold dilution factor is inappropriate. A number of considerations have prompted it to come to this conclusion. In the first place, EPA is concerned that, while the dilution factor plays a critically important role in determining the scope of coverage of the EP, there is relatively little empirical data upon which to base such an attenuation factor. It is consequently somewhat troubled by its assumption that the soil underlying the landfill is a delay mechanism only and that there is no attenuation in the concentration of toxic contaminants between the point of actual leachate generation and arrival at the groundwater aquifer. Second, in view of this uncertainty, EPA attaches some importance to the fact that there is no variance or “delisting” procedure for wastes which fail the EP. This absence of a variance procedure, while perfectly permissible, tends to magnify the consequences of a wastes being anomalously brought into the system by the EP. Third, EPA believes the EP to be a somewhat less precise instrument than the listing mechanism for determining hazard, inasmuch as the EP fails to take into account factors such as the concentration of toxicants in the waste itself and the quantity of waste generated which could have a bearing on the hazardousness of the waste. EPA consequently prefers to entrust determinations of marginal hazard to the listing mechanism rather than to the EP.

On the basis of these considerations, EPA has decided, pending the completion of further studies, to alter the proposed dilution factor by adopting an attenuation factor of 100. EPA is adopting a 100-fold attenuation factor because it is confident that anything which fails the EP at this factor has the potential to present a substantial hazard regardless of the attenuation mechanisms at play. If forthcoming studies demonstrate that another attenuation factor is more appropriate EPA will adjust the dilution factor accordingly.

EPA does not intend this alteration in the dilution factor to constitute what may be perceived as an unward relaxation of the EP. It is simply electing to exercise a degree of caution in the face of the lack of empirical substantiation for its EP leaching test to ensure that the EP only captures wastes which are certain to present a substantial hazard. Since this alteration of the attenuation factor is based as much on EPA’s desire to engage in
cautionary rulemaking as on an environmental re-evaluation of the attenuative processes which influence concentrations in leachate, EPA has listed and intends to continue to list wastes which have extract concentrations of less than 100-times drinking water standards. This listing will to a significant degree compensate for the alteration in the attenuation factor and will prevent the overall coverage of the Subtitle C regulations from being measurably reduced.

A number of commenters argued that EPA improperly based the EP on a mismanagement scenario which assumed co-disposal in the acidic environment of a met waste landfill. These commenters generally argued that the co-disposal assumption is inapplicable to numerous classes of waste which are never co-disposed with municipal wastes and which do not leach at the aggressive rates characteristic of co-disposal situations. These commenters suggested that EPA employ an alternative leachate medium, such as distilled water, for those wastes which are unlikely to be co-disposed with municipal wastes.

EPA disagrees with these commenters. EPA believes that the level of leachate concentration predicted by the EP is reasonably in keeping with the concentrations which could realistically occur in most waste management situations and that employment of an acidic leaching medium is therefore appropriate for those which are unlikely to be disposed of in a municipal landfill, are likely to come into contact with some form of acidic leaching media during their management histories or could otherwise encounter environments which could cause them to leach comparable levels of toxic constituents. Furthermore, inasmuch as the phenomenon of long term leaching is not well understood and there is no consensus within the scientific community on a short term leaching test, EPA believes it has the power to employ a leaching model which fails to take into account the physical processes affecting particular generators even if this model errs on the side of caution. See, Ethyl Corp. v. EPA, 641 F.2d 1, 24-29 (D.C. Cir. 1979 and banc); Hercules, Inc. v. EPA, 598 F.2d 91, 104-106 (D.C. Cir. 1979).

In any event, the EP is based on an attenuation factor of 100 tars to rest the concerns of those who argued that the acidic leaching medium was too aggressive to apply to them. EPA is quite convinced that any waste which fails the EP at the 100-times standard presents the potential for substantial hazard if improperly managed no matter what leaching media it is actually exposed to.

A number of commenters argued that the EP is not sufficiently reproducible for use in defining hazardous waste. Some commenters, basing their argument on studies which have been conducted on the reproducibility of the EP, argued that these studies demonstrate an unacceptable variability in the results obtained by the EP. Other commenters, who did not base their arguments on these studies, argued simply that EPA has not shown the EP to be reproducible and therefore may not appropriately employ the EP in a regulatory framework.

EPA disagrees. Sensitive throughout the process of developing the EP to the issue of ensuring reproducibility, EPA commissioned a number of studies to evaluate the EP, including a study by the NUS Corporation, a study by the American Electroplaters’ Society, and an ongoing study being conducted by the Oak Ridge National Laboratory. In addition, a study commissioned by the Electric Power Research Institute (EPRI) has been completed. None of these studies present enough data to draw any hard and fast conclusions. However, data from the EPRI report—the only report which was able to separate out the reproducibility of the EP from the reproducibility of the analytical procedures—suggests that the reproducibility of the EP itself is of the same order of magnitude as the analytical procedures used to analyze the toxic constituents in the extract. Since these analytical procedures have proven to be widely acceptable to private industry, EPA believes that the EP should also prove acceptable.

EPA concedes that the preliminary data indicate some variability in the results obtained by the EP. This, however, is true of all analytical procedures and test methods, especially those which are novel in character. Furthermore, variability can be easily corrected by running further replicates of the test to achieve greater certainty in the results. To accommodate any problems with variability, EPA intends to provide guidance with regard to the number of extractions which they can perform if they want to ensure confidence in the result. In addition, EPA has encouraged research studies which will enable it to further isolate and get a handle on the causes of this variability:

A number of commenters argued that extract from the EP should be tested for toxic contaminants other than those specified in the National Interim Primary Drinking Water Standards.

EPA originally intended the extraction procedure to identify toxic contaminants other than those specified in the National Interim Primary Drinking Water Standards. EPA has been unable to do this, however, because no other chronic exposure threshold values relating to drinking water consumption have been established for other contaminants. This should not cause a problem, because EPA is regulating wastes containing non-drinking water standard contaminants through the listing process. EPA will reassess its position on this issue, when thresholds are developed for additional contaminants or when the Clean Water Act Water Quality Criteria are adopted in final form.

The proposed EP required generators to separate the liquid and solid portions of their waste as the first step of the procedure, based on the assumption that the liquid portion of the waste would flow out of the landfill independent of any leaching action. Generators were then required to mix the separated solid portion with the acidic leaching medium and, after a further separation, combine the resulting extract with the originally separated liquid portion for analysis. EPA gave generators the option of using either centrifugation or filtration to perform the initial solid-liquid separation and to perform the subsequent separation of solid from leaching solution. However, information obtained since publication of the proposed regulation indicates that use of centrifugation alone is not as efficient as filtration and can lead to carryover of particles larger than 0.45 um. Since a filter the size of 0.45 um was originally selected because particles larger than 0.45 um are expected to be filtered out by the soil prior to reaching the groundwater, EPA has revised the EP to require filtration of the liquid portion and the extract prior to analysis.

A number of commenters said they encountered severe operational problems when performing the EP on liquids containing very small percentages of solids. To accommodate this problem, EPA is amending the proposed regulation so generators need not perform the EP on liquids containing less than 0.5% solids. Instead, the liquid itself, after filtration, should be considered the extract and directly analyzed for its toxic constituents.

VII. Subpart D
A. Sections 261.31 and 261.32 (Hazardous Wastes From Specific and Non-Specific Sources)

1. Methodology for Listing Hazardous Waste Streams. Detailed justification
for listing each hazardous waste in Subpart D is contained in specific background documents, and so will not be set forth in this preamble. The general methodology used to support listings will, however, briefly be described.

The listing documents are based on the listing criteria contained in § 261.11. The documents are organized in the following sequence: (1) A summary of the Administrator’s basis for listing each identified waste stream; (2) a brief description of the industry (or industries) generating the listed waste stream; (3a) a description of the manufacturing process or other activity which generates the waste, (3b) identification of waste composition, constituent concentrations, and annual quantity generated, and (3c) a description of waste management methods; (4) a discussion of the basis for listing each waste stream (described more fully below); and (5) a summary of the adverse health effects of each of the waste constituents of concern. The documents also contain appendices describing in more detail the adverse health effects of the waste constituents of concern, and—for certain documents—compiling available environmental fate and transport data (including data on waste constituent solubility, volatility, and environmental persistence) for each such waste constituent.

For hazardous wastes listed because they meet the criteria of toxicity, the discussion of the basis for listing identifies the waste constituents of concern, whether these constituents are present in significant concentrations, and the hazards associated with each waste constituent. The discussion then addresses whether waste constituents, if the waste is managed improperly, could migrate from waste management sites, persist in the environment, and reach environmental receptors so as to cause substantial hazard. The analysis generally follows a physical continuum: whether waste constituents are inherently capable of migrating from the matrix of the waste in concentrations sufficient to cause substantial hazard, whether waste mismanagement could lead to environmental release of the migrating waste constituents, and whether waste constituents are mobile and persistent enough to reach environmental receptors and cause substantial hazard upon environmental release. In some cases, actual damage incidents involving the waste constituents demonstrate empirically that waste constituents may migrate, persist, and cause substantial harm if mismanaged.

A word as to the types of mismanagement situations considered. The Agency has limited its discussion to waste management situations which could plausibly occur with regard to the waste at issue. In the Agency’s view, the hazard posed by a waste is not substantial (Section 100q(5)(B)) if hazards could arise only as a result of implausible types of waste mismanagement. Thus, the Agency would not examine possible hazards arising from improper waste incineration if the waste in question is not likely to be incinerated. On the other hand, there may be circumstances where the waste is properly managed by particular generators or particular classes of generators does not make the waste non-hazardous, as the statute requires that EPA determine whether a waste is hazardous if substantial hazard could result when wastes are “improperly treated, stored, transported, or disposed of, or otherwise managed.” The potential of the waste to cause hazard is therefore the key factor. Consequently, if most or all generators of an otherwise hazardous waste dispose of the waste properly, for example in lined lagoons, the Agency may still consider hazards which could result from improper waste lagooning.

It must be emphasized that in making listing determinations, the Agency’s principal focus is on the identity of the waste’s constituents, and on constituent concentrations in the waste and the nature of the toxicity presented by the constituents. Where a waste contains significant concentrations of hazardous waste constituents, the Agency is likely to list the waste as hazardous unless it is evident that the waste constituents are incapable of migrating in significant concentrations even if improperly managed, or that the waste constituents are not mobile or persistent should they migrate. This is particularly true where the waste constituents include suspect or proven carcinogens. As EPA recently stated, “(T)here is no firm basis for estimating ‘safe’ levels of carcinogens. The draft criteria for carcinogens therefore state that the recommended concentration for maximum protection of human health is zero.” (EPA Water Quality Criteria, 44 FR 15926, 15930 [March 15, 1979]). Thus, if suspect or known carcinogens are present, an additional cancer may result should the waste constituent migrate and reach a receptor in any concentration, certainly a sufficient risk to constitute a "substantial present or potential hazard" (Section 100q(5)(B)). In this situation, the Agency would require virtual assurance that waste constituents will migrate and persist if improperly managed to justify a decision not to list the waste.

The Agency therefore does not seek to demonstrate that waste constituents will migrate and persist in sufficient concentrations to cause substantial hazard. Rather, fate and transport information is relevant to show that the potential for harm inherent in the waste (by virtue of its composition) will not eventuate. But, as stated, there must be a very strong likelihood that hazardous constituents are unable to migrate or persist to cause substantial harm before the Agency will decide not to list a waste.

The Agency believes that this methodology is fully in accord with statutory requirements. Thus, this approach accords with the requirement of Section 300(a) that environmental fate be considered in identifying wastes as hazardous. At the same time, the Agency focuses on the inherent potential of waste constituents to cause substantial harm, in accord with the definition of hazardous waste, which requires only that a waste “may pose a substantial present or potential hazard” to be hazardous. (Section 100q(5)(B), emphasis added.)

The Agency anticipates arguments that these toxicity listing determinations are made on the basis of inadequate data, and that listings be deferred until further information is gathered. EPA recognizes that these listing...
determinations are essentially qualitative judgments, generally involving expert assumptions based on available physical data rather than precise field determinations of waste composition or of how the wastes will act under identified conditions. However, the statute requires only that a qualitative judgment be made, namely that the wastes, if mismanaged, pose sufficient potentiality of hazard to warrant careful regulation. The Agency believes that it has compiled sufficient information on which to make this judgment. Nor would the delay necessary to compile in-depth (though quite likely cumulative or redundant) information on potentially hazardous wastes be sufferable in light of the urgent need for rapid implementation of the hazardous waste management program. In any case, opportunity is afforded by means of a new comment period for affected parties to present additional information on the listed waste streams, and such comments are solicited.

b. Basis for Listing Ignitable, Corrosive, Reactive or EP Toxic Wastes

The basis for listing ignitable, corrosive, or reactive wastes is much simpler. These wastes, to be listed, must possess the appropriate characteristic, and the listing discussion is directed toward making this determination.

2. Legal Authority to List Wastes Generically

A number of commenters challenged the Agency’s legal authority to list wastes generically. They stated that under Section 3001(b), the Administrator is to list “particular hazardous wastes,” arguing that this language confines the wastes to be listed individually, rather than as a generic class. These commenters also argued that the statute’s legislative history supports their view, noting that the House report to RCRA states that “the Administrator shall promulgate regulations identifying and specifically listing those hazardous wastes subject to this title.” H.R. Rep. at 86 (emphasis added). The Agency disagrees with this interpretation. Although Congress clearly intended to distinguish the promulgation of hazardous waste characteristics from the listing of hazardous wastes, there is no clear indication that Congress further intended to limit the Administrator’s discretion by precluding listing of classes of wastes. In the Agency’s view, a class of wastes may be listed generically so long as most of the wastes in the class are typically or frequently hazardous, and so long as the listing description is sufficiently specific and particularized for individual generators to determine whether their wastes streams are included within the listing.

Thus, Section 3001(a), far from prohibiting listing of wastes by classes, simply distinguishes the use of criteria to identify hazardous waste characteristics and to identify listed hazardous wastes.

The Administrator shall develop and promulgate criteria for identifying the characteristics of hazardous waste, and for listing hazardous waste.

Section 3001(b) carries forward this distinction:

[The Administrator shall promulgate regulations identifying the characteristics of hazardous waste and listing particular hazardous wastes. Such regulations shall be based on the criteria promulgated under subsection (a).]

To argue that Section 3001(b) was intended to bar any listing of wastes by class consequently reads far too much into the language of that provision. Indeed, Section 3001(a) does not refer to listing of particular wastes. This wording certainly militates against attaching too much importance to the reference to “particular wastes” in Section 3001(b). The legislative history likewise indicates that Congress’ concern was that the identification of wastes through characteristics or through listing be regulatorily distinct mechanisms, and that the listing criteria not be confused with hazardous wastes themselves, not that generic listing be prohibited. The House report to RCRA thus refers to a “bifurcation of developing the criteria for what is a hazardous waste separate from the identification and listing of the hazardous wastes” and cautions that “the criteria for determining what should be considered hazardous should not be confused with an actual hazardous waste.” H.R. Rep. at 25.

Moreover, Congress itself, in the principal report to RCRA, used generic waste descriptions to identify hazardous wastes involved in damage incidents. Examples include identification of “electroplating wastes” (H.R. Rep. at 18), waste “petrochemicals” (id. at 18, 19), and “munitions waste” (id. at 20). This means of identification again suggests strongly that Congress envisioned generic identification as a means of bringing hazardous wastes into the Subtitle C management system.

Some commenters went on to argue that the statutory requirement to take factors such as toxicity, persistence, potential for bioaccumulation, quantity, and concentration into account in making listing determinations (see Sections 3001(a) and 1004(5); see also H.R. Rep. at 25) demonstrates Congressional intent to prohibit generic listings because “[t]hese factors by their very nature are specific to particular hazardous waste rather than to generic categories.” (Comments of Dow Chemical Co., October 10, 1979, p. 10). The Agency again disagrees. A class of wastes may exhibit sufficient uniformity of hazard to warrant listing on a class basis. (The Agency of course, must demonstrate that sufficient uniformity exists or is likely to exist). Furthermore, the commenters’ argument, taken to its logical conclusion, would mean that the Agency could only list wastes on a generator by generator basis, since waste streams will vary to some degree with respect to these factors depending upon the precise composition of the individual waste (although the degree of difference ordinarily will not be of regulatory significance). Yet Congress clearly did not envision site-by-site listing.

The Agency therefore intends to list generically those wastes which demonstrate a reasonable likelihood of hazard as a class. The listing descriptions will be sufficiently specific to allow generators to determine if their wastes are covered, and, as discussed above, the listing of wastes will be distinct from their identification by means of hazardousness characteristics. This approach, we believe, is fully in accord with Congressional intent.

Certain of the waste listing descriptions proposed in December, 1978 have been revised in the lists contained in §§ 261.21 and 261.32. These changes generally were made to clarify where in the process wastes are generated so as to enable generators to determine more easily if their wastes are listed. Since the coverage of these clarified listing descriptions remains identical with the
proposal, the revised descriptions are not being reproposed.

Certain other listed waste streams arise out of waste generation processes listed in the December proposal, but are newly identified. These waste streams are being proposed today, rather than issued in interim final form.

Finally, some of the waste streams initially proposed are not contained in the present list of wastes. The Agency’s reasons for this action are discussed in Section III A.

B. Section 261.33 (Discarded Commercial Chemical Products, Off-Specification Species, Containers, and Spill Residues Thereof)

The proposed regulation contained three appendices listing a variety of materials which the Agency proposed to treat as hazardous waste if discarded. Appendix III listed selected cancelled pesticides or pesticides undergoing RAPAR (Rebuttable presumption against registration) review within the Agency that were not listed elsewhere in the proposed regulation. Appendix IV listed selected substances regulated by the Department of Transportation (DOT) and classified as Poison A, Poison B, or ORM–A that were also not listed elsewhere. Appendix V listed substances which are being regulated as toxic priority pollutants under the Clean Water Act. In addition to the substances themselves, the regulation proposed to regulate (1) off-specification materials, which if they had met specifications, would have been shipped using the names of the substances listed in these appendices; (2) containers, unless triple rinsed, containing the materials listed in the appendices, and (3) spill clean-up residues and debris from spills of materials listed in these appendices. Subsequently, in a supplemental proposed rule, EPA published another appendix (Appendix XII) listing thirty-three chemicals found to be human carcinogens or potential human carcinogens by the International Agency for Research on Cancer. 44 FR 49404 (August 23, 1979). In the proposed regulation, these materials were to be subject to the general exemption level of 100 kg/mo. Quantities of these materials below this level were not subject to full Subtitle C regulation.

In listing these materials in the proposed rule, EPA intended to encompass those chemical products which possessed toxic or other hazardous properties and which, for various reasons, are sometimes thrown away in pure or undiluted form. The reasons for discarding these materials might be that the materials did not meet required specifications, that inventories were being reduced, or that the product line had changed. The regulation was intended to designate chemicals themselves as hazardous wastes, if discarded, not to list all wastes which might contain these chemical constituents. In drawing up these lists, the Agency drew heavily upon previous work by EPA and other organizations identifying substances of particular concern.

On the basis of comments received and also EPA’s own re-examination of the proposed rule, we have substantially revised this regulation. In the final regulations, commercial chemicals are treated in two separate provisions. First, substances listed in § 261.33(f) of the regulations are considered hazardous wastes if they or their off-specification species are thrown away in their pure form. These substances are regulated in the same manner as other hazardous wastes and are subject to the general exclusion level in § 261.5 (a) and (b) for the generation of small quantities of hazardous waste. Second, a number of the substances, which meet the criterion for listing acutely hazardous wastes, are separately listed in § 261.33(e). This section applies to the chemical substances if they or their off-specification species are thrown away in their pure form, containers and inner liners containing these materials, and spill residue and debris created by spills of these listed materials. Section 261.5(c) establishes low quantity exclusion levels for these acutely hazardous materials.

1. Section 261.33(f) (Commercial Chemical Products). A number of commentators stated that, as proposed, the materials listed in the various appendices were not tied to any of the criteria for listing, and, accordingly, the reasons for their listing were unclear. The Agency agrees that the basis for its proposed listings was not adequately specified. A table accompanying the background document on commercial chemical products sets forth the specific basis for including each substance on the list published today.

Commenters also expressed some uncertainty as to whether the proposed regulations made hazardous any waste that contained the listed substance as a constituent of the waste. The intent of the regulation was to encompass only those materials which were being thrown away in their pure form or as an off-specification species of the listed material, as well as the contaminated residues and debris from those materials. The final regulation has been redrafted to limit the application of this section to the commercial chemical product itself, its off-specification species and derived spill residues and debris.

Several commenters argued that the wholesale incorporation of lists developed by EPA or other Federal agencies for other regulatory purposes was not appropriate. In the proposal, EPA had, for example, listed all materials that DOT lists as ORM–A materials pursuant to its authority under the Hazardous Materials Transportation Act. A number of commenters argued that these substances should not be listed by EPA because DOT’s basis for listing used different criteria—the potential for interfering with transportation. DOT’s standard is very broad and somewhat vague; ORM–A material is one that has “anesthetic, irritating, noxious, toxic or similar property which can cause extreme annoyance of discomfort to passengers and are in the event of leakage during transportation.” 49 CFR 173.500(a)(1).

EPA agrees with these comments and, rather than adopting lists of substances on a wholesale basis, has evaluated each against EPA’s criteria for listing. Included in § 261.33(f) are those chemical substances which are toxic and which meet the listing criteria set forth in § 261.11(a)(3). These hazardous properties have been documented in EPA rulemaking, studies and other materials, including health effects documents prepared in support of these regulations materials supporting RAPAR actions background documents supporting National Interim Primary Drinking Water Standards, materials produced by EPA’s Cancer Assessment Group and, in the case of chlorofluorocarbons, documents supporting regulations under TSCA.

This approach has led to certain deletions from the lists of hazardous wastes contained in the proposed rules. A table accompanying the background document sets forth the disposition of all 295 chemicals originally listed in the proposed rules. Eight substances have been deleted from the list because they did not meet any of the criteria for listing hazardous wastes; sixteen were deleted because the listing description was not precise enough to enable generators to determine whether particular materials fell within that description. Examples of these deletions are “medicines N.O.S.” and “motor fuel antiknock compound.” In addition, thirty-one substances are not presently listed because EPA lacks data to assess the propriety of listing them on the basis of the listing. These substances are presently under review by the Agency to
determine whether they should be included on the § 261.33(f) list.

This process has reduced the chemical products listed, to those substances which are demonstrated to pose a substantial threat to human health or the environment. These materials, their off-specification variants, and contaminated residues and debris from the spills of these materials are subject to full regulation under Subtitle C in the same manner as other hazardous wastes.

2. Section 261.33(e) (Commercial Chemical Products). In considering the hazards presented by commercial chemical products, EPA recognized that some substances in their pure form possessed extremely hazardous properties. To account for these substances, EPA has established a new criterion for listing which examines the potentially lethal capacity of chemical substances in very small quantities. The basis for this criterion is explained in section V.B. above.

Applying this criterion to the proposed lists of chemicals products has led the Agency to list 122 substances in § 261.33(e). As with the substances listed in § 261.33(f), the regulatory language has been clarified to restrict the application of this section to chemical products, or their off-specification species, and not to wastes which contain these materials as a constituents. Because of their acutely hazardous nature, however, containers and inner liners which contain these materials and spill cleanup debris and residues resulting from spill of these materials are also included.

At the suggestion of commenters, EPA also reviewed chemical substances on the TSCA inventory list for inclusion on the § 261.33(e) list. A number of those substances do meet the acutely hazardous criterion and accordingly have been added to the list. However, because all interested persons have not had an opportunity to comment on the listing of these materials, the Agency is promulgating them in interim final (together with the remainder of Subpart D).

The final regulations establish stringent quantity cutoff levels for materials listed in § 261.33(e). In the proposed regulation, all hazardous wastes in quantities generated or disposed of at rates greater than 100 kg/mo were subject to full Subtitle C regulation. Although the Agency recognized that many, if not all, of the proposed chemicals listed possessed hazardous characteristics, it did not propose lesser limits for these substances because the general exclusion level—less than 1/2 of a 55

gallon drum—appeared sufficient to regulate most of the chemical products that would be thrown away. For the reasons discussed in section IV.E.

above, the general exclusion level has been raised to 1000 kg/mo. This higher level undercuts the original rationale for proposing a single exclusion level for all hazardous wastes. Many commenters urged that EPA employ a degree of hazard system for determining exclusion levels, for allocating Agency resources and determining priorities, and for establishing management standards.

Although EPA is unable to adopt a degree of hazard system, we agree with the commenters that considerations of hazard are appropriate in establishing quantity exclusion levels for those substances which possess acutely hazardous properties. The criterion used in listing these substances requires that those materials that are listed in § 261.33(e) are those which are lethal in very small quantities.

Accordingly, the Agency has adopted very low exclusion levels for these chemical products and their off-specification variants, containers and inner liners which contained these materials, and spill residues and debris. The selection of these levels reflects the judgment of the Agency that, although even lesser quantities may be hazardous, the levels selected, on the basis of probable exposure scenarios, are sufficient to minimize the threat to human health and the environment while enabling the Agency to implement and enforce these regulations. The one kilogram level for the chemicals will, in the Agency’s judgment, bring under full regulation virtually all of the substances being thrown away. The quantity limit for containers which have not been triple rinsed (20 liters) represents the Agency’s judgment of probable exposure and consequential injury from the use of discarded containers. The Agency has records of damage incidents resulting from improperly disposed containers that occurred when people salvaged large containers for such uses as garbage containers and barbecue pits. The levels chosen for inner liners and spill residue and debris represent the same type of judgment based on probable exposure.

A number of commenters suggested that the proposed rule regarding containers be revised. The proposal had included within its scope all containers which had not been triple-rinsed. Some commenters argued that there were other effective ways of cleaning containers and therefore the rule was unduly restrictive. One commenter pointed out, for example, that the EPA

registered label for certain pesticides requires different rinsing procedures from those specified in the proposed rule. EPA agrees with these comments and has revised the regulation to allow other cleaning methods provided they are equally effective.

The listing of spill residues and debris attracted several comments. One commenter suggested that small quantities of contaminated spill clean-up be excluded. EPA has, in the final regulation, excluded aggregate amounts of less than 100 kilograms. Another commenter felt that EPA should define the term “spill debris” more precisely to avoid including wrecked rail cars or trucks. EPA has chosen not to exclude such debris by definition, if contaminated, these items pose a substantial threat to human health and the environment and should be handled carefully. EPA presumes, however, that in virtually all cases, heavy equipment can be decontaminated and therefore will not become part of the contaminated debris.

C. Delisting

EPA’s proposed regulations contained procedures allowing a person to show that a listed waste generated by an individual facility was not hazardous because of plant-specific variations in raw materials, processes or other factors (§ 250.15). These demonstrations of non-hazardousness were to be based on the results of specific tests for each of the hazardous properties for which the waste was listed (§ 250.15(a)) and submitted and processed in accordance with procedures set forth in § 250.15(c) through (h) of the proposed regulations.

Although virtually all commenters supported the concept of a “delisting” process in principle, most were dissatisfied with the specifics of EPA’s proposal. Many criticized the delisting standards as being too inflexible, too vague, and based on tests which EPA itself was unwilling to propose as characteristics or use as listing criteria; some specifically urged that other factors—including how a waste was managed at an individual facility—be considered in determining whether a waste should be delisted. Other commenters objected to the procedures themselves, urging EPA to provide trial-type hearings on delisting petitions, extensive procedural safeguards and multiple administrative appeals.

After re-examining its proposed regulation and considering public comments, EPA has concluded that its delisting procedures should be revised and simplified in four major respects.

First, EPA has concluded that the delisting of a waste from a particular
facility is really a modification of its original listing determination and therefore should take the form of a regulatory amendment to the lists of wastes in Subpart D. The informational requirements for petitions to amend Subpart D to exclude wastes from a particular generating facility are set forth in §§ 260.20 and 260.22 of this Chapter. EPA will follow the Administrative Procedure Act's informal rulemaking procedures in acting on them (see § 260.20).

Some commenters argued that EPA's delisting regulations should provide for elaborate adjudicatory hearings with administrative law judges. EPA thinks such procedures would be unduly costly, burdensome and time-consuming and that the relevant issues can be adequately addressed and decided in informal rulemaking procedures. EPA is on firm legal ground in this regard, for RCRA requires only informal rulemaking here. The Supreme Court has recently confirmed that an agency need not provide more formal procedures than are specifically required by statute (Vermont Yankee v. NRDC, 435 U.S. 519, 524 (1978)).

The second major change which EPA has made in its delisting procedures pertains to the effect of filing a petition. In its proposal, EPA stated that a requested exclusion would take effect 90 days after submission, but that the Administrator could revoke the effectiveness at any time thereafter simply by disapproving the demonstration (§ 260.13(d)). In the regulations promulgated today, no exclusion will be deemed effective until either (i) EPA has taken final action under § 260.20(e), or (ii) EPA has granted a temporary exclusion on the grounds of substantial likelihood of success under § 260.22(m).

EPA has concluded that it would be inappropriate to consider a delisting petition effective until EPA has taken some affirmative action in response. Once a listing has been established through rulemaking procedures it must be presumed valid, and those seeking to amend any portion of it should have the burden of establishing the correctness of their position. The proposed provision allowing a demonstration to become effective without EPA action improperly shifted the burden. At the same time, new § 260.22(m) will benefit generators because EPA will be able to grant temporary exclusions in appropriate cases before the rulemaking process is complete.

The third major change which EPA has made to its proposed delisting regulations is to key the standards for approving a delisting petition to the criteria which EPA used to list the waste in the first place. This approach not only is consistent with EPA's decision to treat delisting as a rulemaking, but also is responsive to commenters' criticisms that EPA's proposed delisting standards were unrelated to its listing criteria. Moreover, because the listing criteria have been substantially clarified and expanded (see section V.B), it is also responsive to objections that those standards were vague, inflexible and failed to consider the multiple factors which might cause a waste to be hazardous.

Two points concerning the standards for granting a delisting petition are deserving of special comment. First, the fact that a waste is properly managed by an individual facility is not grounds for delisting it, any more than the fact that a waste is generally properly managed by industry is grounds for not listing it (see section VII.A). Second, in the case of a waste which has been listed for acute toxicity, a generator will be required to show not only that the waste does not meet EPA's acute toxicity criterion but also that it does not meet its general toxicity criterion. Although an off-specification acutely toxic waste or a mixture containing an acutely toxic waste may no longer be deadly, it may still continue to pose a substantial hazard to human health and the environment.

The final major revision which EPA has made in its proposed regulations relates to the effect of successful delisting petition. Under the regulations published today, a decision to exclude a waste from the hazardous waste lists in Subpart D is not a decision that the waste is not hazardous. It simply relegates the waste to the same general category as any other unlisted waste — i.e., if the waste exhibits one of the characteristics, it must be regulated as hazardous waste. This approach is necessitated by the fact that wastes from individual facilities may exhibit characteristics not exhibited by waste in general and that, in deciding to list a waste, EPA has not tested it against every one of the characteristics.

VIII. Environmental, Economic and Regulatory Impacts

In accordance with Executive Order 11821, as amended by Executive Order 11949, and Executive Order 12044, EPA has prepared an Environmental Impact Analysis and a Regulatory Analysis of all of its Section 3001 through 3004 regulations. The Agency has also voluntarily prepared an Environmental Impact Statement for these regulations under the National Environmental Policy Act, 42 U.S.C. 4321 et seq.
6. Wastewater treatment sludges from the production of TiO₂ pigment using chromate pigments by the sulfate process [Comment: This listing description was originally proposed on December 18, 1978 (43 FR 58956) as: Chromium bearing wastewater treatment sludges from the production of TiO₂ pigment by the sulfate process.]

7. Arsenic bearing sludges from the purification process in the production of antimony oxide

8. Antimony bearing wastewater treatment sludge from the production of antimony oxide

9. Solvent cleaning wastes from paint manufacturing

10. Water cleaning wastes from paint manufacturing

11. Caustic cleaning wastes from paint manufacturing

12. Wastewater treatment sludges from paint manufacturing

13. Air pollution control sludges from paint manufacturing [Comment: The above five listing descriptions have been changed from those originally proposed on December 18, 1978 (43 FR 58956) as: Wastewater treatment sludges from paint production and Air pollution control sludges from paint production.]

14. Still bottoms from aniline production

15. Sludges, wastes from tub washers (ink formulation)

16. Coking: Decanter tank tar/pitch/sludge [Comment: This listing description includes two wastes which were originally proposed on December 18, 1978 (43 FR 58956) as: Coking: Decanter tank tar and Coking: Decanter tank pitch sludge.]

17. Spent potliners (cathodes) from primary aluminum production

18. Lead bearing wastewater treatment sludges from gray iron foundries

19. Arsenic or organo-arsenic containing wastewater treatment sludges from the production of veterinary pharmaceuticals

20. Distillation residue from the separation of chlorobenzenes in the production of chlorobenzenes [Comment: This listing description was originally proposed on December 16, 1978 (43 FR 58956) as: Distillation residues from fractionating tower for recovery of benzene and chlorobenzenes.]

21. Emission control dust/sludge from ferrochromium-silicon production [Comment: This listing description was originally proposed on December 16, 1978 (43 FR 58956) as: Ferrochromiumsilicon furnace emission control dust or sludge.]

22. Emission control dust/sludge from ferrochrome production [Comment: This listing description was originally proposed on December 16, 1978 (43 FR 58956) as: Ferrochrome emissions control: furnace baghouse dust, and ESP dust.]

23. Emission control dust/sludge from ferromanganese production [Comment: This listing description was originally proposed on December 18, 1978 (43 FR 58956) as: Ferromanganese emission control: baghouse dusts and scrub water solids.]

Appendix B*—Scheduled Fall Promulgation

Generic

1. Reactor clean-up wastes from the chlorination, dehydrochlorination, or oxychlorination of aliphatic hydrocarbons

2. Fractionation bottoms from the separation of chlorination hydrocarbons

3. Distillation bottoms from the separation of chlorinated aliphatic hydrocarbons

4. Washer wastes from the production of chlorinated aliphatic hydrocarbons

5. Spent catalyst from the production of chlorinated aliphatic hydrocarbons

6. Reactor clean-up wastes from the chlorination of cyclic aliphatic hydrocarbons

7. Fractionation bottoms from the separation of chlorinated cyclic aliphatic hydrocarbons

8. Distillation bottoms from the separation of chlorinated cyclic aliphatic hydrocarbons

9. Washer wastes from the production of chlorinated cyclic aliphatic hydrocarbons

10. Spent catalyst from the production of chlorinated cyclic aliphatic hydrocarbons

11. Batch residues from the batch production of chlorinated polymers

12. Solution residues from the production of chlorinated polymers, and reactor clean-up wastes from the chlorination of aromatic hydrocarbons

13. Fractionation bottoms from the separation of chlorinated aromatic hydrocarbons

14. Distillation bottoms from the separation of chlorinated aromatic hydrocarbons

15. Washer wastes from the production of chlorinated aromatic hydrocarbons

16. Waste Oil [Comment: This listing description was originally proposed on December 18, 1978 (43 FR 58957) as: Waste lubricating oil and Waste hydraulic or cutting oil.]

*Since these wastes will not be promulgated until the fall, the listing descriptions for some of these wastes may change as additional information is gathered.

18. Polychlorinated biphenyls (PCB) and PCB items as defined in 40 CFR Part 761 [Comment: The Agency indicated in the preamble to the Section 3004 regulations (43 FR 59993), their intention to integrate the TSCA regulations for the disposal of PCB's, with the RCRA hazardous waste regulations.]

Process Wastes

1. Sub-ore from underground and surface mining of uranium, overburden from surface mining of uranium and waste rock from underground mining of uranium with a radium-226 activity in excess of 5 pCi/gm [Comment: This listing description was originally proposed on December 16, 1978 (43 FR 58956) as: Waste rock and overburden from uranium mining.]

2. Leach zone overburden and discarded phosphate ore from phosphate surface mining and slimes from phosphate ore beneficiation [Comment: This listing description was originally proposed on December 18, 1978 (43 FR 58956) as: Overburden and slimes from surface surface mining.]

3. Waste gypsum from processing phosphate ore to produce phosphoric acid [Comment: This listing description was originally proposed on December 18, 1978 (43 FR 58956) as: Waste gypsum from phosphoric acid production.]

4. Slag and fluid bed prills from processing phosphate ore to produce elemental phosphorous [Comment: This listing description was originally proposed on December 16, 1978 (43 FR 58956) as: Slag and fluid bed prills from elemental phosphorous production.]

5. Washwater/sludges from ink printing equipment clean-up [Comment: This listing description includes three wastes which were originally proposed on August 22, 1979 (44 FR 49403 and 49404) as: Waste from equipment cleaning from flexo printing in the manufacture of paperboard boxes; Waste from press clean-up in newspaper printing and Wash water from printing ink equipment cleaning.]

6. Wastes from photographic processing [Comment: This listing was originally proposed on August 22, 1979 (44 FR 49404) as: Waste Ferricyanide bleach, dichromate bleach, color developer (Agfa), bleach fix (Agfa) and acid solution from photographic processing.]

7. Lead-acid storage battery production wastewater treatment sludges

8. Lead-acid storage battery production clean-up wastes from cathode and anode paste production
10. Lead slag from lead alkyl production.
11. Emission control dust/sludge from reverberatory furnace and converters from primary copper production.

[Comment: This listing description was included in the listing description originally proposed on December 16, 1978 (43 FR 59538) as: Primary copper smelting and refining electric furnace slag, converter dust, acid plant sludge and reverberatory dust.]

Dated: May 2, 1980.

Douglas M. Castle,
Administrator.

Title 40 of the Code of Federal Regulations is amended by adding the following new Part 261:

PART 261—IDENTIFICATION AND LISTING OF HAZARDOUS WASTE

Subpart A—General

Sec. 261.1 Purpose and scope.
261.2 Definition of solid waste.
261.3 Definition of hazardous waste.
261.4 Exclusions.
261.5 Special requirements for hazardous waste produced by small quantity generators.
261.6 Special requirements for hazardous waste which is used, re-used, recycled or reclaimed.

Subpart B—Criteria for Identifying the Characteristics of Hazardous Waste and for Listing Hazardous Wastes

261.10 Criteria for identifying the characteristics of hazardous wastes.
261.11 Criteria for listing hazardous waste.

Subpart C—Characteristics of Hazardous Waste

261.20 General.
261.21 Characteristic of ignitability.
261.22 Characteristic of corrosivity.
261.23 Characteristic of reactivity.
261.24 Characteristic of EP toxicity.

Subpart D—Lists of Hazardous Wastes

261.30 General.
261.31 Hazardous wastes from non-specific sources.
261.32 Hazardous wastes from specific sources.

Appendices

Appendix I—Representative Sampling Methods
Appendix II—EP Toxicity Test Procedures
Appendix III—Chemical Analysis Test Methods
Appendix IV—Reserved for Radioactive Waste Test Methods
Appendix V—Reserved for Infectious Waste Treatment Specifications
Appendix VI—Reserved for Etiologic Agents

Appendix VII—Basis for Listing

Appendix VIII—Hazardous Constituents

Subpart A—General

§ 261.1 Purpose and scope.

(a) This Part identifies those solid wastes which are subject to regulation as hazardous wastes under Parts 262 through 265 and Parts 262 through 265 of this Part and which are subject to the notification requirements of Section 3010 of RCRA. In this Part:

(1) Subpart A defines the terms "solid waste" and "hazardous waste," identifies those wastes which are excluded from regulation under Parts 262 through 265 and 268 through 265 and 268 through 268 and establishes special management requirements for hazardous waste produced by small quantity generators and hazardous waste which is used, re-used, recycled or reclaimed.

(2) Subpart B sets forth the criteria used by EPA to identify characteristics of hazardous waste and to list particular hazardous wastes.

(3) Subpart C identifies characteristics of hazardous waste.

(4) Subpart D lists particular hazardous wastes.

(b) This Part identifies only some of the materials which are hazardous wastes under Sections 3007 and 7003 of RCRA. A material which is not a hazardous waste identified in this part is still a hazardous waste for purposes of those sections if:

(1) In the case of Section 3007, EPA has reason to believe that the material may be a hazardous waste within the meaning of Section 1004(f) of RCRA.

(2) In the case of Section 7003, the statutory elements are established.

§ 261.2 Definition of solid waste.

(a) A solid waste is any garbage, refuse, sludge or any other waste material which is not excluded under § 261.4(a).

(b) An "other waste material" is any solid, liquid, semi-solid or contained gaseous material, resulting from industrial, commercial, mining or agricultural operations, or from community activities which:

(1) Is discarded or is being accumulated, stored or physically, chemically or biologically treated prior to being discarded; or

(2) Has served its original intended use and sometimes is discarded; or

(3) Is a manufacturing or mining by-product and sometimes is discarded.

(c) A material is "discarded" if it is abandoned and not used, re-used, reclaimed or recycled by being:

(1) Disposed of; or

(2) Burned or incinerated, except where the material is being burned as a fuel for the purpose of recovering usable energy; or

(3) Physically, chemically, or biologically treated (other than burned or incinerated) in lieu of or prior to being disposed of.

(d) A material is "disposed of" if it is discharged, deposited, injected, dumped, spilled, leaked or placed into or on any land or water so that such material or any constituent thereof may enter the environment or be emitted into the air or discharged into ground or surface waters.

(e) A "manufacturing or mining by-product" is a material that is not one of the primary products of a particular manufacturing or mining operation, is a secondary and incidental product of the particular operation and would not be solely and separately manufactured or mined by the particular manufacturing or mining operation. The term does not include an intermediate manufacturing or mining product which results from one of the steps in a manufacturing or mining process and is typically processed through the next step of the process within a short time.

§ 261.3 Definition of hazardous waste.

(a) A solid waste, as defined in § 261.2, is a hazardous waste if:

(1) It is not excluded from regulation as a hazardous waste under § 261.4(b); and

(2) It meets any of the following criteria:

(i) It is listed in Subpart D and has not been excluded from the lists in Subpart D under §§ 260.20 and 260.22 of this Chapter.

(ii) It is a mixture of solid waste and one or more hazardous wastes listed in Subpart D and has not been excluded from this paragraph under §§ 260.20 and 260.22 of this Chapter.

(iii) It exhibits any of the characteristics of hazardous waste identified in Subpart C.

(b) A solid waste which is not excluded from regulation under paragraph (a)(1) of this section becomes a hazardous waste when any of the following events occur:

(1) In the case of a waste listed in Subpart D, when the waste first meets the listing description set forth in Subpart D.

(2) In the case of a mixture of solid waste and one or more listed hazardous wastes, when a hazardous waste listed...
in Subpart D is first added to the solid waste.

(3) In the case of any other waste (including a waste mixture), when the waste exhibits any of the characteristics identified in Subpart C.

(c) Unless and until it meets the criteria of paragraph (d):

(1) A hazardous waste will remain a hazardous waste.

(2) Any solid waste generated from the treatment, storage or disposal of a hazardous waste, including any sludge, spill residue, ash, emission control dust or leachate (but not including precipitation run-off), is a hazardous waste.

(d) Any solid waste described in paragraph (c) of this section is not a hazardous waste if it meets the following criteria:

(1) In the case of any solid waste, it does not exhibit any of the characteristics of hazardous waste identified in Subpart C.

(2) In the case of a waste which is a listed waste under Subpart D, contains a waste listed under Subpart D or is derived from a waste listed in Subpart D, it also has been excluded from paragraph (c) under §§ 260.20 and 260.22 of this Chapter.

§ 261.4 Exclusions.

(a) Materials which are not solid wastes. The following materials are not solid wastes for the purpose of this Part:

(i) Domestic sewage; and

(ii) Any mixture of domestic sewage and other wastes that passes through a sewer system to a publicly-owned treatment works for treatment. "Domestic sewage" means untreated sanitary wastes that pass through a sewer system.

(b) Industrial wastewater discharges that are point source discharges subject to regulation under Section 402 of the Clean Water Act, as amended.

[Comment: This exclusion applies only to the actual point source discharge. It does not exclude industrial wastewaters while they are being collected, stored or treated before discharge, nor does it exclude sludges that are generated by industrial wastewater treatment.]

(3) Irrigation return flows.

(4) Source, special nuclear or by-product material as defined by the Atomic Energy Act of 1954, as amended, 42 U.S.C. 2011 et seq.

(5) Materials subjected to in-situ mining techniques which are not removed from the ground as part of the extraction process.

(b) Solid wastes which are not hazardous wastes. The following solid wastes are not hazardous wastes:

(1) Household waste, including household waste that has been collected, transported, stored, treated, disposed, recovered (e.g., refuse-derived fuel) or reused. "Household waste" means any waste material (including garbage, trash and sanitary wastes in septic tanks) derived from households (including single and multiple residences, hotels and motels).

(2) Solid wastes generated by any of the following and which are returned to the soils as fertilizers:

(i) The growing and harvesting of agricultural crops.

(ii) The raising of animals, including animal manures.

(3) Mining overburden returned to the mine site.

(4) Fly ash waste, bottom ash waste, slag waste, and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels.

(5) Drilling fluids, produced waters, and other wastes associated with the exploration, development, or production of crude oil, natural gas or geothermal energy.

§ 261.5 Special requirements for hazardous waste generated by small quantity generators.

(a) Except as otherwise provided in this section, if a person generates, in a calendar month, a total of less than 1000 kilograms of hazardous wastes, those wastes are not subject to regulation under Parts 262 through 265 and Parts 122 through 124 of this Chapter, and the notification requirements of Section 3010 of RCRA.

(b) If a person whose waste has been excluded from regulation under paragraph (a) of this Section accumulates hazardous wastes in quantities greater than 1000 kilograms, those accumulated wastes are subject to regulation under Parts 262 through 265 and Parts 122 through 124 of this Chapter, and the notification requirements of Section 3010 of RCRA.

(c) If a person generates in a calendar month or accumulates at any time any of the following hazardous wastes in quantities greater than set forth below, those wastes are subject to regulation under Parts 262 through 265 and Parts 122 through 124 of this Chapter, and the notification requirements of Section 3010 of RCRA:

(1) One kilogram of any commercial chemical product or manufacturing chemical intermediate having the generic name listed in § 261.33(e).

(2) Two kilograms of any other product or manufacturing chemical intermediate which, if it met specifications, would have the generic name listed in § 261.33(e).

(3) Any containers identified in § 261.33(c) that are larger than 20 liters in capacity.

(4) 20 kilograms of inner liners from containers identified under § 261.33(e).

(5) 100 kilograms of any residue or contaminated soil, water or other debris resulting from the cleanup of a spill, into or on any land or water, of any commercial chemical product or manufacturing chemical intermediate having the generic name listed in § 261.33(c).

(d) In order for hazardous waste to be excluded from regulation under this section, the generator must comply with § 262.11 of this Chapter. He must also either treat or dispose of the waste in an on-site facility, or ensure delivery to an off-site treatment, storage or disposal facility, either of which is:

(1) Permitted by EPA under Part 122 of this Chapter; or

(2) In interim status under Parts 122 and 265 of this Chapter; or

(3) Permitted, licensed, or registered by a State to manage municipal or industrial solid waste.

(e) Hazardous waste subject to the reduced requirements of this section may be mixed with non-hazardous waste and remain subject to these reduced requirements even though the resultant mixture exceeds the quantity limitations identified in this section, unless the mixture meets any of the characteristics of hazardous waste identified in Subpart C.

§ 261.6 Special requirements for hazardous waste which is used, re-used, recycled or reclaimed.

(a) Except as otherwise provided in paragraph (b) of this section, a hazardous waste which meets either of the following criteria is not subject to regulation under Parts 262 through 265 or Parts 122 through 124 of this Chapter and is not subject to the notification requirements of Section 3010 of RCRA until such time as the Administrator promulgates regulations to the contrary:

(1) It is being beneficially used or re-used or legitimately recycled or reclaimed.

(2) It is being accumulated, stored or physically, chemically or biologically treated prior to beneficial use or re-use or legitimate recycling or reclamation.

(b) A hazardous waste which is a sludge, or which is listed in Subpart D, or which contains one or more hazardous wastes listed in Subpart D, and which is transported or stored prior...
to being used, re-used, recycled or reclaimed is subject to the following requirements with respect to such transportation or storage:
(1) Notification requirements under Section 3010 of RCRA.
(2) Subpart C of this Chapter.
(3) Parts 264 and 265 of this Part.
(4) Subparts A, B, C, D and E of Part 264 of this Chapter.
(6) Parts 122 and 124 of this Chapter, with respect to storage facilities.

Subpart B—Criteria for Identifying the Characteristics of Hazardous Waste and for Listing Hazardous Waste

§ 261.10 Criteria for identifying the characteristics of hazardous waste.
(a) The Administrator shall identify and define a characteristic of hazardous waste in Subpart C only upon determining that:
(1) A solid waste that exhibits the characteristic may:
(i) Cause, or significantly contribute to, an increase in mortality or an increase in serious irreversible, or incapacitating reversible, illness; or
(ii) Pose a substantial present or potential hazard to human health or the environment when it is improperly treated, stored, transported, disposed of, or otherwise managed; and
(2) The characteristic can be:
(i) Measured by an available standardized test method which is reasonably within the capability of generators of solid waste or private sector laboratories that are available to serve generators of solid waste; or
(ii) Reasonably detected by generators of solid waste through their knowledge of their waste.

§ 261.11 Criteria for listing hazardous waste.
(a) The Administrator shall list a solid waste as a hazardous waste only upon determining that the solid waste meets one of the following criteria:
(1) It exhibits any of the characteristics of hazardous waste identified in Subpart C.
(2) It has found to be fatal to humans in low doses or, in the absence of data on human toxicity, it has been shown in studies to have an oral LD 50 toxicity (rat) of less than 50 milligrams per kilogram, an inhalation LC 50 toxicity (rat) of less than 2 milligrams per liter, or a dermal LD 50 toxicity (rabbit) of less than 200 milligrams per kilogram or is otherwise capable of causing or significantly contributing to an increase in serious irreversible, or incapacitating reversible, illness. (Waste listed in accordance with these criteria will be designated Acute Hazardous Waste.)
(3) It contains any of the toxic constituents listed in Appendix VIII unless, after considering any of the following factors, the Administrator concludes that the waste is not capable of posing a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported or disposed of, or otherwise managed:
(i) The nature of the toxicity presented by the constituent.
(ii) The concentration of the constituent in the waste.
(iii) The potential of the constituent or any toxic degradation product of the constituent to migrate from the waste into the environment under the types of improper management considered in paragraph (a)(3)(vii) of this section.
(iv) The persistence of the constituent or any toxic degradation product of the constituent.
(v) The potential for the constituent or any toxic degradation product of the constituent to degrade into non-hazardous constituents and the rate of degradation.
(vi) The degree to which the constituent or any degradation product of the constituent bioaccumulates in ecosystems.
(vii) The plausible types of improper management to which the waste could be subjected.
(viii) The quantities of the waste generated at individual generation sites or on a regional or national basis.
(ix) The nature and severity of the human and environmental damage that has occurred as a result of the improper management of wastes containing the constituent.
(x) Action taken by other governmental agencies or regulatory programs based on the health or environmental hazard posed by the waste or waste constituent.
(xii) Such other factors as may be appropriate.
Substances will be listed on Appendix VIII only if they have been shown in scientific studies to have toxic, carcinogenic, mutagenic or teratogenic effects on humans or other life forms.
(Wastes listed in accordance with these criteria will be designated Toxic wastes.)
(b) The Administrator may list classes or types of solid waste as hazardous waste if he has reason to believe that individual wastes, within the class or type of waste, typically or frequently are hazardous under the definition of hazardous waste found in Section 100[45] of the Act.

(c) The Administrator will use the criteria for listing specified in this section to establish the exclusion limits referred to in § 261.5(c).

Subpart C—Characteristics of Hazardous Waste

§ 261.20 General.
(a) A solid waste, as defined in § 261.2, which is not excluded from regulation as a hazardous waste under § 261.4(b), is a hazardous waste if it exhibits any of the characteristics identified in this Subpart.

[Comment: § 262.11 of this Chapter sets forth the generator's responsibility to determine whether his waste exhibits one or more of the characteristics identified in this Subpart.
(b) A hazardous waste which is identified by a characteristic in this subpart, but is not listed as a hazardous waste in Subpart D, is assigned the EPA Hazardous Waste Number set forth in the respective characteristic in this Subpart. This number must be used in complying with the notification requirements of Section 3010 of the Act and certain recordkeeping and reporting requirements under Parts 262 through 265 and Part 122 of this Chapter.
(c) For purposes of this Subpart, the Administrator will consider a sample obtained using any of the applicable sampling methods specified in Appendix I to be a representative sample within the meaning of Part 260 of this Chapter.

[Comment: Since the Appendix I sampling methods are not being formally adopted by the Administrator, a person who desires to employ an alternative sampling method is not required to demonstrate the equivalency of his method under the procedures set forth in §§ 260.20 and 260.21.]

§ 261.21 Characteristic of Ignitability.
(a) A solid waste exhibits the characteristic of ignitability if a representative sample of the waste has any of the following properties:
(i) It is a liquid, other than an aqueous solution containing less than 24 percent alcohol by volume, and has a flash point less than 60°F (140°F), as determined by a Pensky-Martens Closed Cup Tester, using the test method specified in ASTM Standard D-93-79, or a Setaflash Closed Cup Tester, using the test method specified in ASTM standard D-3278-78, or as determined by an equivalent test method approved by the Administrator under the procedures set forth in §§ 260.20 and 260.21.1

1 ASTM Standards are available from ASTM, 1916 Race Street, Philadelphia, PA 19103.
§ 261.23 Characteristic of reactivity.

(a) A solid waste exhibits the characteristic of reactivity if it undergoes violent change without detonating.

(b) It forms potentially explosive mixtures with water.

(c) When mixed with water, it generates toxic gases, vapors or fumes in a quantity sufficient to present a danger to human health or the environment.

(d) It is capable of detonation or explosive reaction if it is subjected to a strong initiating source or if heated under confinement.

(e) It is readily capable of detonation or explosive decomposition or reaction at standard temperature and pressure.

(f) It is a forbidden explosive as defined in 49 CFR 173.51, or a Class A explosive as defined in 49 CFR 173.53 or a Class B explosive as defined in 49 CFR 173.88.

§ 261.24 Characteristic of EP Toxicity.

(a) A solid waste exhibits the characteristic of EP toxicity if, using the test methods described in Appendix II or equivalent methods approved by the Administrator under the procedures set forth in §§ 260.20 and 260.21, the extract from a representative sample of the waste contains any of the contaminants listed in Table I at a concentration equal to or greater than the respective value given in Table I. Where the waste contains less than 0.5 percent filterable solids, the waste itself, after filtering, is considered to be the extract for the purposes of this section.

(b) A solid waste that exhibits the characteristic of EP toxicity, but is not listed as a hazardous waste in Subpart D, has the EPA Hazardous Waste Number specified in Table I which corresponds to the toxic contaminant causing it to be hazardous.

Table I—Maximum Concentration of Contaminants for Characteristic of EP Toxicity—Continued

<table>
<thead>
<tr>
<th>EPA hazardous waste number</th>
<th>Contaminant</th>
<th>Maximum concentration (milligrams per liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D004</td>
<td>Arsenic</td>
<td>5.0</td>
</tr>
<tr>
<td>D005</td>
<td>Barium</td>
<td>100.0</td>
</tr>
<tr>
<td>D006</td>
<td>Cadmium</td>
<td>1.0</td>
</tr>
<tr>
<td>D007</td>
<td>Chromium</td>
<td>5.0</td>
</tr>
<tr>
<td>D008</td>
<td>Lead</td>
<td>5.0</td>
</tr>
<tr>
<td>D009</td>
<td>Mercury</td>
<td>0.2</td>
</tr>
<tr>
<td>D010</td>
<td>Selenium</td>
<td>1.0</td>
</tr>
<tr>
<td>D011</td>
<td>Silver</td>
<td>5.0</td>
</tr>
<tr>
<td>D012</td>
<td>Ethylbenzene, 1,2,4,10,15-</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>hexachlorobenzene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lindane</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Methylenchlor (1,1,1-</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Trichloro-2,2-bis-p-</td>
<td>methoxybenzene)</td>
</tr>
<tr>
<td></td>
<td>Trisopropoxide</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Technical chlorinated</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>camphene, 67-69 percent</td>
<td>chloroform</td>
</tr>
<tr>
<td></td>
<td>2,4-D, (2,4,6)</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Dichlorophenylacetic</td>
<td>acid</td>
</tr>
<tr>
<td></td>
<td>2,4,5-TF, Silico (2,4,5-</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Dichlorophenylpropionic</td>
<td>acid</td>
</tr>
</tbody>
</table>

Subpart D—Lists of Hazardous Wastes

§ 261.30 General.

(a) A solid waste is a hazardous waste if it is listed in this Subpart unless it has been excluded from this list under §§ 260.20 and 260.22.

(b) The Administrator will indicate his basis for listing the classes or types of wastes listed in this Subpart by employing one or more of the following Hazard Codes:

- Ignitible Waste
- Corrosive Waste
- Reactive Waste
- EP Toxic Waste
- Acute Hazardous Waste
- Toxic Waste

Appendix VII identifies the constituent which caused the Administrator to list the waste as an EP Toxic Waste (E) or Toxic Waste (T) in §§ 261.31 and 261.32.

(c) Each hazardous waste listed in this Subpart is assigned an EPA Hazardous Waste Number which precedes the name of the waste. This number must be used in complying with the notification requirements of Section 3010 of the Act and in certain recordkeeping and reporting requirements under Parts 265 through 266 and Part 122 of this Chapter.

(d) Certain hazardous wastes listed in §§ 261.31 or 261.32 have exclusion limits that refer to § 201.5(c)(5).
§ 261.31 Hazardous waste from nonspecific sources.

<table>
<thead>
<tr>
<th>Industry and EPA hazardous waste No.</th>
<th>Hazardous waste</th>
<th>Hazard code</th>
</tr>
</thead>
<tbody>
<tr>
<td>F001</td>
<td>The spent halogenated solvents used in degreasing, tetrachloroethylene, trichloroethylene, methylene chloride, 1,1,1-trichloroethane, carbon tetrachloride, and the chlorinated fluorocarbons; and sludges from the recovery of these solvents in degreasing operations. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>F002</td>
<td>The spent halogenated solvents, tetrachloroethylene, methylene chloride, trichloroethylene, 1,1,1-trichloroethane, chlorobenzene, 1,1,2-trichloro-1,2,2-trifluoroethane, trichlorofluoromethane, and the sludges from the recovery of these solvents. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>F003</td>
<td>The spent non-halogenated solvents, xylene, acetone, ethyl acetate, ethyl benzene, ethyl ether, n-butyl alcohol, cyclohexanone, and the still bottoms from the recovery of these solvents. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>F004</td>
<td>The spent non-halogenated solvents, cresol and creosote, cyclohexane, and the still bottoms from the recovery of these solvents. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>F005</td>
<td>The spent non-halogenated solvents, methanol, toluene, methyl ethyl ketone, methyl isobutyl ketone, carbon disulfide, isobutanol, pyridine and the still bottoms from the recovery of these solvents. (T)</td>
<td>(T, T)</td>
</tr>
<tr>
<td>F006</td>
<td>Wastewater treatment sludges from electroplating operations. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>F007</td>
<td>Spent plating bath solutions from electroplating operations. (T)</td>
<td>(T, T)</td>
</tr>
<tr>
<td>F008</td>
<td>Spent plating bath waters from the bottom of plating baths from electroplating operations. (T)</td>
<td>(T, T)</td>
</tr>
<tr>
<td>F009</td>
<td>Spent stripping and cleaning bath solutions from electroplating operations. (T)</td>
<td>(T, T)</td>
</tr>
<tr>
<td>F010</td>
<td>Quenching bath sludge from oil baths from metal heat treating operations. (T)</td>
<td>(T, T)</td>
</tr>
<tr>
<td>F011</td>
<td>Spent solutions from salt bath pot cleaning from metal heat treating operations. (T)</td>
<td>(T, T)</td>
</tr>
<tr>
<td>F012</td>
<td>Quenching wastewater treatment sludges from metal heat treating operations. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>F013</td>
<td>Filtration tailings from selective flotation from mineral metals recovery operations. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>F014</td>
<td>Cyanidation wastewater treatment tailing pond sludge from mineral metals recovery operations. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>F015</td>
<td>Spent cyanide bath solutions from mineral metals recovery operations. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>F016</td>
<td>Dewatered air pollution control scrubber sludges from coke ovens and blast furnaces. (T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

§ 261.32 Hazardous waste from specific sources.

<table>
<thead>
<tr>
<th>Industry and EPA hazardous waste No.</th>
<th>Hazardous waste</th>
<th>Hazard code</th>
</tr>
</thead>
<tbody>
<tr>
<td>K001</td>
<td>Bottom sediment sludge from the treatment of wastewaters from wood preserving processes that use creosote and/or pentachlorophenol. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K002</td>
<td>Wastewater treatment sludge from the production of chrome yellow and orange pigments. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K003</td>
<td>Wastewater treatment sludge from the production of molybdate orange pigments. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K004</td>
<td>Wastewater treatment sludge from the production of zinc yellow pigments. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K005</td>
<td>Wastewater treatment sludge from the production of chrome green pigments. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K006</td>
<td>Wastewater treatment sludge from the production of chrome oxide green pigments (anhydrous and hydrated). (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K007</td>
<td>Wastewater treatment sludge from the production of iron blue pigments. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K008</td>
<td>Oven residue from the production of chrome oxide green pigments. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K009</td>
<td>Distillation bottoms from the production of acetaldehyde from ethylene. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K010</td>
<td>Distillation side cuts from the production of acetaldehyde from ethylene. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K011</td>
<td>Bottom stream from the wastewater stripper in the production of acrylonitrile. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K012</td>
<td>Still bottoms from the final purification of acrylonitrile in the production of acrylonitrile. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K013</td>
<td>Bottom stream from the acrylonitrile column in the production of acrylonitrile. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K014</td>
<td>Bottoms from the acrylonitrile purification column in the production of acrylonitrile. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K015</td>
<td>Still bottoms from the distillation of butyraldehyde. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K016</td>
<td>Heavy ends or distillation residues from the production of carbon tetrachloride. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K017</td>
<td>Heavy ends (still bottoms) from the purification column in the production of ethylchloroethyl ethyl ether. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K018</td>
<td>Heavy ends from fractionation in ethyl chloride production. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K019</td>
<td>Heavy ends from the distillation of ethylene dichloride in ethylene dichloride production. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K020</td>
<td>Heavy ends from the distillation of vinyl chloride in vinyl chloride monomer production. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K021</td>
<td>Aquous spent antimony catalyst waste from fluoromethanes production. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K022</td>
<td>Distillation bottoms from the production of phenol from acetone. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K023</td>
<td>Distillation bottoms from the production of pthalic anhydride from naphthalene. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K024</td>
<td>Distillation bottoms from the production of dibenzyl ether from ethylbenzene. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K025</td>
<td>Distillation bottoms from the production of dibenzyl ether from ethylbenzene. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K026</td>
<td>Distillation bottoms from the production of dibenzyl ether from ethylbenzene. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K027</td>
<td>Centrifuge residue from toluene (anisole) distillation. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K028</td>
<td>Spent catalyst from the hydrochlorination reactor in the production of 1,1,1-trichloroethane. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K029</td>
<td>Waste from the product stream stripper in the production of 1,1,1-trichloroethane. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K030</td>
<td>Column bottoms or heavy ends from the combined production of trichloroethylene and perchloroethylene. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K031</td>
<td>By-products salts generated in the production of MUSA and cacoacetic acid. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K032</td>
<td>Wastewater treatment sludge from the production of chlorane. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K033</td>
<td>Wastewater and scrub water from the chlorination of cyclohexadiene in the production of chlorane. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K034</td>
<td>Filter solids from the filtration of hexachlorocyclopentadiene in the production of chlorane. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K035</td>
<td>Wastewater treatment sludges generated in the production of creosote. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K036</td>
<td>Still bottoms from toluene reclamation distillation in the production of toulene. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K037</td>
<td>Wastewater treatment sludges from the production of dichloroethane. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K038</td>
<td>Wastewater treatment sludges from the production of diethyl ether. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K039</td>
<td>Filter cake from the filtration of diethylhexachloroethane in the production of phosgene (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K040</td>
<td>Wastewater treatment sludge from the production of phosgene. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K041</td>
<td>Heavy ends or distillation residues from the distillation of trichloroethylene in the production of 2,4,5-T. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K042</td>
<td>2,6-Dichlorophenol waste from the production of 2,4-D. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K044</td>
<td>Wastewater treatment sludges from the manufacturing and processing of explosives. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K045</td>
<td>Spent carbon from the treatment of wastewater containing explosives. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K046</td>
<td>Wastewater treatment sludges from the manufacturing, formulation and loading of lead-based inorganics compounds. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K047</td>
<td>Pink/red water from TNT operations. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K048</td>
<td>Dissolved air flotation (DAF) float from the petroleum refining industry. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K049</td>
<td>Slag oil emulsion solids from the petroleum refining industry. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K050</td>
<td>Heat exchanger bundle cleaning sludge from the petroleum refining industry. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K051</td>
<td>API separator sludge from the petroleum refining industry. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K052</td>
<td>Tank bottoms (loaded) from the petroleum refining industry. (T)</td>
<td>(T)</td>
</tr>
<tr>
<td>K053</td>
<td>Chrome (blue) trimmings generated by the following subcategories of the leather tanning and finishing industry: hair pulp/chrome tan/retan/ wet finish; hair save/chrome tan/retan/ wet finish; melan/retan finish; no beamhouse; through-the-blue; and shearing. (T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>
§ 261.32 Hazardous waste from specific sources.—Continued

<table>
<thead>
<tr>
<th>Industry and EPA hazardous waste No.</th>
<th>Hazardous waste</th>
<th>Hazard code</th>
</tr>
</thead>
<tbody>
<tr>
<td>K054</td>
<td>Chrome (blue) shavings generated by the following subcategories of the leather tanning and finishing industry: hair pulp/chrome tan/retan/wet finish; hair saw/chrome tan/retan/wet finish; retan/wet finish; no beamhouse; through-the-blue; and shearing.</td>
<td>(T)</td>
</tr>
<tr>
<td>K055</td>
<td>Buffering dust generated by the following subcategories of the leather tanning and finishing industry: hair pulp/chrome tan/retan/wet finish; hair saw/chrome tan/retan/wet finish; retan/wet finish; no beamhouse; through-the-blue; and shearing.</td>
<td>(T)</td>
</tr>
<tr>
<td>K056</td>
<td>Wastewater treatment sludges generated by the following subcategories of the leather tanning and finishing industry: hair pulp/chrome tan/retan/wet finish; hair saw/chrome tan/retan/wet finish; retan/wet finish; no beamhouse; through-the-blue; and shearing.</td>
<td>(T)</td>
</tr>
<tr>
<td>K057</td>
<td>Wastewater treatment sludges generated by the following subcategories of the leather tanning and finishing industry: hair pulp/chrome tan/retan/wet finish; hair saw/chrome tan/retan/wet finish; retan/wet finish; no beamhouse; through-the-blue and shearing.</td>
<td>(T)</td>
</tr>
<tr>
<td>K059</td>
<td>Wastewater treatment sludges generated by the following subcategories of the leather tanning and finishing industry: hair pulp/chrome tan/retan/wet finish; hair saw/chrome tan/retan/wet finish; retan/wet finish; no beamhouse; through-the-blue and shearing.</td>
<td>(T)</td>
</tr>
<tr>
<td>K060</td>
<td>Ammonium still line sludge from cooking operations.</td>
<td>(T)</td>
</tr>
<tr>
<td>K061</td>
<td>Emission control dust/sludge from the electric furnace production of steel.</td>
<td>(T)</td>
</tr>
<tr>
<td>K062</td>
<td>Spent pickle liquor from steel finishing operations.</td>
<td>(T)</td>
</tr>
<tr>
<td>K063</td>
<td>Sludge from time treatment of spent pickle liquor from steel finishing operations.</td>
<td>(T)</td>
</tr>
<tr>
<td>K064</td>
<td>Add plant blowdown slurry/sludge resulting from the thickening of blowdown slurry from primary coker production.</td>
<td>(T)</td>
</tr>
<tr>
<td>K065</td>
<td>Primary Lead: Surface impoundment sludges contained in and dredged from surface impoundments at primary lead smelting facilities.</td>
<td>(T)</td>
</tr>
<tr>
<td>K066</td>
<td>Primary Zinc: Sludge from treatment of process wastewater and/or acid plant blowdown from primary zinc production.</td>
<td>(T)</td>
</tr>
<tr>
<td>K067</td>
<td>Electrolytic anode slimes/sludges from primary zinc production.</td>
<td>(T)</td>
</tr>
<tr>
<td>K068</td>
<td>Cadmium plant leach residue (iron oxide) from primary zinc production.</td>
<td>(T)</td>
</tr>
</tbody>
</table>

§ 261.33 Discarded Commercial Chemical Products, Off-Specification Species, Containers, and Spill Residues Thereof.

The following materials or items are hazardous wastes if and when they are discarded or intended to be discarded:

(a) Any commercial chemical product, or manufacturing chemical intermediate having the generic name listed in paragraphs (e) or (f) of this section.

(b) Any off-specification commercial chemical product or manufacturing chemical intermediate which, if it met specifications, would have the generic name listed in paragraphs (e) or (f) of this section.

(c) Any container or inner liner removed from a container that has been used to hold any commercial chemical product or manufacturing chemical intermediate having the generic name listed in paragraph (e) of this section, unless:

(1) The container or inner liner has been triple rinsed using a solvent capable of removing the commercial chemical product or manufacturing chemical intermediate;

(2) The container or inner liner has been cleaned by another method that has been shown in the scientific literature, or by tests conducted by the generator, to achieve equivalent removal; or

(3) In the case of a container, the inner liner that prevented contact of the commercial chemical product or manufacturing chemical intermediate with the container, has been removed.

(d) Any residue or contaminated soil, water or other debris resulting from the cleanup of a spill, into or on any land or water, of any commercial chemical product or manufacturing chemical intermediate having the generic name listed in paragraphs (e) or (f) of this section.

[Comment: The phrase "commercial chemical product or manufacturing chemical intermediate having the generic name listed in . . ." refers to a chemical substance which is manufactured or formulated for commercial or manufacturing use. It does not refer to a material, such as a manufacturing process waste, that contains any of the substances listed in paragraphs (e) or (f). Where a manufacturing process waste is deemed to be a hazardous waste because it contains a substance listed in paragraphs (e) or (f), such waste will be listed in either §§ 261.31 or 261.32 or will be identified as a hazardous waste by the characteristics set forth in Subpart C of this Part.]

(e) The commercial chemical products or manufacturing chemical intermediates, referred to in paragraphs (a) through (d) of this section, are identified as acute hazardous wastes (H) and are subject to the small quantity exclusion defined in § 261.5(c). These wastes and their corresponding EPA Hazardous Waste Numbers are:

<table>
<thead>
<tr>
<th>Hazardous waste No.</th>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>P004</td>
<td>Algin</td>
</tr>
<tr>
<td>P005</td>
<td>Allyl alcohol</td>
</tr>
<tr>
<td>P006</td>
<td>Aluminum phosphite (P)</td>
</tr>
<tr>
<td>P007</td>
<td>Antimonytungstate oxide</td>
</tr>
</tbody>
</table>
| P008 | 4-Anisomethyl-3,5-tetrafloro-
| | benzenoic acid |
| P009 | Ammonium metavanadate |
| P010 | Arsenic acid |
| P011 | Arsenic pentoxide |
| P012 | Arsenic trichloride |
| P013 | Arsenic trinitride |
| P014 | Benzaldehyde |
| P015 | Benzene |
| P016 | Bis(chloromethyl)ether |
| P017 | Bisphenol-A |
| P018 | Butane |
| P019 | Butylate permanganate |
| P020 | Calcium cyanide |
| P023 | Carbon disulfide |
| P025 | Chloroform |
| P024 | Chloropicrin |
| P025 | 1-Phenyl-2-chloro-1-benzyl-3-phenylsulfonyl-1-propanone |
| P026 | Copper cyanide |

Continued
<table>
<thead>
<tr>
<th>Hazardous waste No.</th>
<th>Substance</th>
<th>Hazardous waste No.</th>
<th>Substance</th>
<th>Hazardous waste No.</th>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>P031</td>
<td>Cygnesan</td>
<td>P032</td>
<td>2-Propen-1-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P033</td>
<td>Cyanogen brendine</td>
<td>P034</td>
<td>2-Furoyl-4,6-dinitrophenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P035</td>
<td>Cygnesan chlortole</td>
<td>P036</td>
<td>D-D-CON see P031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P037</td>
<td>Cyclohexyl see P050</td>
<td>P038</td>
<td>DETHINOL see P001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P039</td>
<td>D-D-Chlorphenol</td>
<td>P040</td>
<td>DETHEL see P001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P041</td>
<td>D-D-Disphenol</td>
<td>P042</td>
<td>DEPOL see P004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P043</td>
<td>D-Dichlorophenylcarbodiimide</td>
<td>P044</td>
<td>DETROD see P037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P045</td>
<td>D-Dicyanomethylenenitromethane</td>
<td>P046</td>
<td>D-Dichlorophenylcarbodiimide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P047</td>
<td>D-Dimethylenenitromethane</td>
<td>P048</td>
<td>D-Dimethylphosphonic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P049</td>
<td>D-Dinitrophenol</td>
<td>P050</td>
<td>D-Dinitrophenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P051</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P052</td>
<td>D-Dinitrobenzenaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P053</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P054</td>
<td>D-Dinitrobenzenaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P055</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P056</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P057</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P058</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P059</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P060</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P061</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P062</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P063</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P064</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P065</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P066</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P067</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P068</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P069</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P070</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P071</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P072</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P073</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P074</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P075</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P076</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P077</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P078</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P079</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P080</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P081</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P082</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P083</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P084</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P085</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P086</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P087</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P088</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P089</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P090</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P091</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P092</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P093</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P094</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P095</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P096</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P097</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P098</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P099</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P100</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P101</td>
<td>D-Dinitrobenzaldehyde</td>
<td>P102</td>
<td>D-Dinitrobenzaldehyde</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Agency included those trade names of which it was aware; an omission of a trade name does not imply that the omitted material is hazardous. The material is hazardous if it is listed under its generic name.
<table>
<thead>
<tr>
<th>Hazardous Waste No.</th>
<th>Substance 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U006</td>
<td>DDT</td>
</tr>
<tr>
<td>U008</td>
<td>Di(2-ethylhexyl) phthalate</td>
</tr>
<tr>
<td>U009</td>
<td>Di-n-butyl phthalate</td>
</tr>
<tr>
<td>U010</td>
<td>Di(2-ethylhexyl) terephthalate</td>
</tr>
<tr>
<td>U011</td>
<td>Dibromodichloromethane</td>
</tr>
<tr>
<td>U012</td>
<td>Dibromochloromethane</td>
</tr>
<tr>
<td>U013</td>
<td>Dibromochloroethane</td>
</tr>
<tr>
<td>U014</td>
<td>Di-o-toluyl phosphate</td>
</tr>
<tr>
<td>U015</td>
<td>Dicyandiamide</td>
</tr>
<tr>
<td>U016</td>
<td>Dicyclohexyl phthalate</td>
</tr>
<tr>
<td>U017</td>
<td>Dicyclopentadiene</td>
</tr>
<tr>
<td>U018</td>
<td>Dibenzyl phthalate</td>
</tr>
<tr>
<td>U019</td>
<td>Dibutyl phthalate</td>
</tr>
<tr>
<td>U020</td>
<td>Dibutylphthalate (CR)</td>
</tr>
<tr>
<td>U021</td>
<td>Dibutylphthalate (KR)</td>
</tr>
<tr>
<td>U022</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U023</td>
<td>Dibutylphthalate (OL)</td>
</tr>
<tr>
<td>U024</td>
<td>Dibutylphthalate (OL)</td>
</tr>
<tr>
<td>U025</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U026</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U027</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U028</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U029</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U030</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U031</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U032</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U033</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U034</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U035</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U036</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U037</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U038</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U039</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U040</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U041</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U042</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U043</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U044</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U045</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U046</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U047</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U048</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U049</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U050</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U051</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U052</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U053</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U054</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U055</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U056</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U057</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U058</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U059</td>
<td>Dibutylphthalate (OR)</td>
</tr>
<tr>
<td>U060</td>
<td>Dibutylphthalate (OR)</td>
</tr>
</tbody>
</table>

1. The commercial chemical products or manufacturing chemical intermediates, referred to in paragraphs (a), (b), and (d) of this section, are identified as toxic wastes (T) unless otherwise designated and are subject to the small quantity exclusion defined in § 261.5 (a) and (b). These wastes and their corresponding EPA Hazardous Waste Numbers are:
Appendix II—EP Toxicity Test Procedure

A. Extraction Procedure (EP)

1. A representative sample of the waste to be tested (minimum size 100 grams) should be obtained using the methods specified in Appendix I or any other methods capable of yielding a representative sample within the meaning of Part 260. [For detailed guidance on conducting the various aspects of the EP see “Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods,” SW-846, U.S. Environmental Protection Agency Office of Solid Waste, Washington, D.C. 20460.]

2. The sample should be separated into its component liquid and solid phases using the method described in “Separation Procedure” below. If the solid residue is obtained using this method totals less than 0.5% of the original weight of the waste, the residue can be discarded and the operator should treat the liquid phase as the extract and proceed immediately to Step 8.

3. The solid material obtained from the Separation Procedure should be evaluated for its particle size. If the solid material has a surface area per gram of material equal to, or greater than, 3.1 cm² or passes through a 9.5 mm (0.375 inch) standard sieve, the operator should proceed to Step 4. If the surface area is smaller or the particle size larger than specified above, the solid material should be prepared for extraction by crushing, cutting or grinding the material so that it passes through a 9.5 mm (0.375 inch) sieve or, if the material is in a single piece, by subjecting the material to the “Structural Integrity Procedure” described below.

4. The solid material obtained in Step 3 should be weighed and placed in an extractor with 16 times its weight of deionized water. Do not allow the material to dry prior to weighing. For purposes of this test, an acceptable extractor is one which will impart sufficient agitation to the mixture to not only prevent stratification of the sample and extraction fluid but also insure that all sample surfaces are continuously brought into contact with well mixed extraction fluid.

5. After the solid material and deionized water are placed in the extractor, the operator should begin agitation and measure the pH of the solution in the extractor. If the pH is greater than 5.0, the pH of the solution should be decreased to 5.0 ± 0.2 by adding 0.5 N acetic acid. If the pH is equal to or less than 5.0, no acetic acid should be added. The pH of the solution should be monitored, as described below, during the course of the extraction and if the pH rises above 5.2, 0.5N acetic acid should be added to bring the pH down to 5.0 ± 0.2.

However, in no event shall the aggregate amount of acid added to the solution exceed 4 ml of acid per gram of solid. The mixture should be agitated for 24 hours and maintained at 20°-40°C (68°-104°F) during this time. It is recommended that the operator monitor and adjust the pH during the course of the extraction with a device such as the Type 45-A pH Controller manufactured by Chemtrix, Inc., Hillsboro, Oregon 97123 or its equivalent, in conjunction with a metering pump and reservoir of 0.5N acetic acid. If such a system is not available, the following manual procedure shall be employed:

(a) A pH meter should be calibrated in accordance with the manufacturer’s specifications.

(b) The pH of the solution should be checked and, if necessary, 0.5N acetic acid should be manually added to the extractor until the pH reaches 5.0 ± 0.2. The pH of the solution should be adjusted at 15, 30 and 60 minute intervals, moving to the next longer interval if the pH does not have to be adjusted more than 0.5 pH units.

(c) The adjustment procedure should be continued for at least 6 hours.

(d) If at the end of the 24-hour extraction period, the pH of the solution is not below 5.2 and the maximum amount of acid (5 ml per gram of solids) has not been added, the pH should be adjusted to 5.0 ± 0.2 and the extraction continued for an additional four hours, during which the pH should be adjusted at one hour intervals.

6. At the end of the 24 hour extraction period, deionized water should be added to the extractor in an amount determined by the following equation:

\[V = \frac{20}{W} - 16 \]

where:

- \(V \) = ml deionized water to be added
- \(W \) = weight in grams of solid charged to extractor

7. The material in the extractor should be separated into its component liquid and solid phases as described under “Separation Procedure.”

8. The liquids resulting from Steps 2 and 7 should be combined. This

1. These methods are also described in “Sampling and Sampling Procedures for Hazardous Waste Streams,” EPA 600/2-80-018, January 1980.
combined liquid (or the waste itself if it has less than 1/2 percent solids, as noted in Step 2) is the extract and should be analyzed for the presence of any of the contaminants specified in Table I of § 261.24 using the Analytical Procedures designated below.

Separation Procedure

Equipment: A filter holder, designed for filtration media having a nominal pore size of 0.45 micrometers and capable of applying a 5.3 kg/cm² (75 psi) hydrostatic pressure to the solution being filtered shall be used. For mixtures containing nonabsorbent solids, where separation can be affected without imposing a 5.3 kg/cm² pressure differential, vacuum filters employing a 0.45 micrometers filter media can be used. (For further guidance on filtration equipment or procedures see "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.")

Procedure:

(i) Following manufacturer's directions, the filter unit should be assembled with a filter bed consisting of a 0.45 micrometer filter membrane. For difficult or slow to filter mixtures a prefiltter bed consisting of the following prefilters in increasing pore size (0.65 micrometer membrane, fine glass fiber prefiltter, and coarse glass fiber prefiltter) can be used.

(ii) The waste should be poured into the filtration unit.

(iii) The reservoir should be slowly pressurized until liquid begins to flow from the filtrate outlet at which point the pressure in the filter should be immediately lowered to 10-15 psig. Filtration should be continued until liquid flow ceases.

(iv) The pressure should be increased stepwise in 10 psig increments to 75 psig and filtration continued until flow ceases or the pressurizing gas begins to exit from the filtrate outlet.

(v) The filter unit should be depressurized, the solid material removed and weighed and then transferred to the extraction apparatus, or, in the case of final filtration prior to analysis, discarded. Do not allow the material retained on the filter pad to dry prior to weighing.

(vi) The liquid phase should be stored at 4°C for subsequent use in Step 6.

B. Structural Integrity Procedure

Equipment: A Structural Integrity Tester having a 3.18 cm (1.25 in.) diameter hammer weighing 0.33 kg (0.73 lbs.) and having a free fall of 15.24 cm (6 in.) shall be used. This device is available from Associated Design and Manufacturing Company, Alexandria, VA, 22314, as Part No. 125, or it may be fabricated to meet the specifications shown in Figure 1.

Procedure:

1. The sample holder should be filled with the material to be tested. If the sample of waste is a large monolithic block, a portion should be cut from the block having the dimensions of a 3.3 cm (1.3 in.) diameter x 7.1 cm (2.8 in.) cylinder. For a fixed waste, samples may be cast in the form of a 3.3 cm (1.3 in.) diameter x 7.1 cm (2.8 in.) cylinder for purposes of conducting this test. In such cases, the waste may be allowed to cure for 30 days prior to further testing.

2. The sample holder should be placed into the Structural Integrity Tester, then the hammer should be raised to its maximum height and dropped. This should be repeated fifteen times.

3. The material should be removed from the sample holder, weighed, and transferred to the extraction apparatus for extraction.

Analytical Procedures for Analyzing Extract Contaminants

The test methods for analyzing the extract are as follows:

2. For Endrin; Lindane; Methoxychlor; Toxaphene; 2,4-D; 2,4,5-TP Silver: in "Methods for Benzidine, Chlorinated Organic Compounds, Pesticides and Pesticides in Water and Wastewater," September 1978, U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268, as standardized in "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods."

For all analyses, the method of standard addition shall be used for the quantification of species concentration.
Figure 1

COMPACCTION TESTER

*ELASTOMERIC SAMPLE HOLDER FABRICATED OF MATERIAL FIRM ENOUGH TO SUPPORT THE SAMPLE
Appendix III—Chemical Analysis Test Methods

Tables 1, 2 and 3 specify the appropriate analytical procedures, described in “Test Methods for Evaluating Solid Waste” (SW-846), which should be used in determining whether the waste in question contains a given toxic constituent. Table 1 identifies the analytical class and the approved measurement techniques for each organic chemical listed in Appendix VII. Table 2 identifies the corresponding methods for the inorganic species. Table 3 identifies the specific sample preparation and measurement instrument introduction techniques which may be suitable for both the organic and inorganic species as well as the matrices of concern.

Prior to final selection of the analytical method the operator should consult the specific method descriptions in SW-846 for additional guidance on which of the approved methods should be employed for a specific waste analysis situation.

Table 1.—Analytical Characteristics of Organic Chemicals

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sample handling class/fraction</th>
<th>Non-GC methods</th>
<th>GC/MS</th>
<th>Conventional Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.00</td>
<td>NSD</td>
</tr>
<tr>
<td>Acrolein</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.00</td>
<td>NSD</td>
</tr>
<tr>
<td>Acrylamide</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.01</td>
<td>FID</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.03</td>
<td>NSD</td>
</tr>
<tr>
<td>Benzene</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.02</td>
<td>FID</td>
</tr>
<tr>
<td>Biphenyl</td>
<td>Extractable/BN</td>
<td>8.10 (HPLC)</td>
<td>8.25</td>
<td>1.00 FID</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>Extractable/BN</td>
<td>8.10 (HPLC)</td>
<td>8.25</td>
<td>1.00 FID</td>
</tr>
<tr>
<td>Benzaldehyde chloride</td>
<td>Extractable/BN</td>
<td>8.10 (HPLC)</td>
<td>8.25</td>
<td>1.00 FID</td>
</tr>
<tr>
<td>Benzaldehyde cyanhydrin</td>
<td>Extractable/BN</td>
<td>8.10 (HPLC)</td>
<td>8.25</td>
<td>1.00 FID</td>
</tr>
<tr>
<td>Chloroform</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.11</td>
<td>NSD</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.11</td>
<td>NSD</td>
</tr>
<tr>
<td>2-Chloropropane</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.04</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Chrysene</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.10</td>
<td>FID</td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.04</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Cresol(s)</td>
<td>Extractable/A</td>
<td>8.25</td>
<td>0.04</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Cycloal kene (s)</td>
<td>Extractable/A</td>
<td>8.25</td>
<td>0.04</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Dichloropropene (s)</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.01</td>
<td>NSD</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.01</td>
<td>NSD</td>
</tr>
<tr>
<td>Dichloroaceticic acid</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.40</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Dichloropropanol</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>1.12</td>
<td>ECD</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>Extractable/A</td>
<td>8.25</td>
<td>0.04</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Dichlorobenzene</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.09</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Dichlorobenzene cyanhydrin</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.09</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Dichloroacetic acid</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.09</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Ethyl ether</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.01</td>
<td>NSD</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.02</td>
<td>FID</td>
</tr>
<tr>
<td>Formaldehyde cyanhydrin</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.06</td>
<td>FID</td>
</tr>
<tr>
<td>Haptlsarizom</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>1.12</td>
<td>ECD</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.06</td>
<td>FID</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.12</td>
<td>ECD</td>
</tr>
<tr>
<td>Hexachloromethane</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.12</td>
<td>ECD</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.12</td>
<td>ECD</td>
</tr>
<tr>
<td>Lindane</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.08</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Maleic anhydride</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.06</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Methanol</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.01</td>
<td>FID</td>
</tr>
<tr>
<td>Methoxyfluributnone</td>
<td>Extractable/BN</td>
<td>8.22 (HPLC)</td>
<td>8.25</td>
<td>0.01 FID</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>Volatile</td>
<td>8.25</td>
<td>0.01</td>
<td>FID</td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td>Volatile</td>
<td>8.25</td>
<td>0.02</td>
<td>FID</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.10</td>
<td>FID</td>
</tr>
<tr>
<td>Naphthoquinone</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.06</td>
<td>FID, ECD</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>Extractable/BN</td>
<td>8.25</td>
<td>0.09</td>
<td>ECD, FID</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>Extractable/A</td>
<td>8.24</td>
<td>0.04</td>
<td>ECD, FID</td>
</tr>
<tr>
<td>Parathion (trimmer of acetoaldehyde)</td>
<td>Volatile</td>
<td>8.24</td>
<td>0.01</td>
<td>FID</td>
</tr>
</tbody>
</table>
Table 1—Analytical Characteristics of Organic Chemicals—Continued

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sample handling class/fraction</th>
<th>Non-GC methods</th>
<th>Measurement techniques</th>
<th>Conventional GC Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachlorophenol</td>
<td>Extractable/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>Extractable/B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phorate</td>
<td>Extractable/BN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorothioic acid esters</td>
<td>Extractable/BN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phthalic anhydride</td>
<td>Extractable/BN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Picoline</td>
<td>Extractable/BN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyridine</td>
<td>Extractable/BN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachlorobenzene(s)</td>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachlorothrene</td>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachlorophenol</td>
<td>Extractable/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene dicarboxylic</td>
<td>Extractable/BN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tosylenepoxide(s)</td>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloromethane</td>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorophenol</td>
<td>Extractable/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinylidene chloride</td>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>Volatile</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Analyze for phenanthrene and carbazole; if these are present in a ratio between 1.4:1 and 5:1, cresol will also be considered present.

ECD = Electron capture detector; FID = Flame ionization detector; FPD = Flame photometric detector; HPLC = High performance liquid chromatography; NSD = Nitrogen-specific detector; PID = Photoionization detector.

Table 2—Analytical Characteristics of Inorganic Species

<table>
<thead>
<tr>
<th>Species</th>
<th>Sample collection</th>
<th>Measurement technique</th>
<th>Method number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsonic</td>
<td>Powder</td>
<td>Atomic absorption</td>
<td>5.50</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Powder</td>
<td>Atomic absorption</td>
<td>5.51</td>
</tr>
<tr>
<td>Bismuth</td>
<td>Powder</td>
<td>Atomic absorption</td>
<td>5.52</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Powder</td>
<td>Atomic absorption</td>
<td>5.53</td>
</tr>
<tr>
<td>Chromium</td>
<td>Powder</td>
<td>Atomic absorption</td>
<td>5.54</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>Powder</td>
<td>Atomic absorption</td>
<td>5.55</td>
</tr>
<tr>
<td>Lead</td>
<td>Powder</td>
<td>Atomic absorption</td>
<td>5.55</td>
</tr>
<tr>
<td>Mercury</td>
<td>Powder</td>
<td>Atomic absorption</td>
<td>5.57</td>
</tr>
<tr>
<td>Nickel</td>
<td>Powder</td>
<td>Atomic absorption</td>
<td>5.58</td>
</tr>
<tr>
<td>Selenium</td>
<td>Powder</td>
<td>Hydrogen digestion</td>
<td>5.59</td>
</tr>
<tr>
<td>Silver</td>
<td>Powder</td>
<td>Hydrogen digestion</td>
<td>5.90</td>
</tr>
</tbody>
</table>

Table 3—Sample Preparation/Sample Introduction Techniques

<table>
<thead>
<tr>
<th>Sample handling class</th>
<th>Physical characteristics of waste</th>
<th>Digestion</th>
<th>Direct injection</th>
<th>Purge & Trap</th>
<th>Shake out</th>
<th>Sonication</th>
<th>Soxhlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid</td>
<td></td>
<td></td>
<td></td>
<td>8.80</td>
<td>8.82</td>
<td>8.84</td>
<td>8.80</td>
</tr>
<tr>
<td>Paste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. For purposes of this Table, fluid refers to readily pourable liquids, which may or may not contain suspended particles. Paste-like materials, while fluid in the sense of fluidity, can be thought of as being thixotropic or plastic in nature, e.g., pastes. Solid materials are those wastes which can be handled without a container (i.e., can be pled up without appreciable sagging).

Procedure and Method Number(s)

Digestion—See appropriate procedure for element of interest.
Direct injection—8.80
Headspace—8.82
Hydride—See appropriate procedure for element of interest.

Purge & Trap—8.83
Shake out—8.84
Sonication—8.85
Soxhlet—8.86
Aldrin
Allyl alcohol
Aluminum phosphate
4-Aminobiphenyl
6-Amino-1,1,2-trichloro-2,2,3,3,3-heptahydro-8-hydroxy-5-methoxy-5-methylcarbamate azirino(2',3',4')pyrrolo[1,2-a]indole-4,7-dione (ester)
[Mitoricin C]
5-Aminomethyl-3-isoxazolol
Aminopyridine
Anitrole
Antimony and compounds, N.O.S.¹
Aramite
Arsenic and compounds, N.O.S.
Arsenic acid
Arsenic pentoxide
Arsenic trioxide
Auramine
Azaserine
Barium and compounds, N.O.S.
Barium cyanide
Benz[a]acridine
Benzene
Benzene associative acid
Benzenethiol
Benzo[a]anthracene
Benzo[b]fluoranthene
Benzo[k]fluoranthene
Benzo[a]pyrene
Benzo[c]chlordirole
Benzyl chloride
Beryllium and compounds, N.O.S.
Bis(2-chloroethoxy)anethane
Bis(2-chloroethyl) ether
N,N-Bis(2-chloroethyl)-2-naphthylamine
Bis(2-chloroisopropyl) ether
Bis[chloromethyl] ether
Bis(2-ethylhexyl) phthalate
Bromocacetone
Bromomethane
4-Bromophenyl phenyl ether
Bromine
2-Butanone peroxide
Butyl benzyl phthalate
2-sec-Butyl-4,6-dinitrophenol (DNBP)
Cadmium and compounds, N.O.S.
Calcium chromate
Carbon disulfide
Chlorambucil
Chlorodane (alpha and gamma isomers)
Chlorinated benzenes, N.O.S.
Chlorinated ethane, N.O.S.
Chlorinated naphthalene, N.O.S.
Chlorinated phenol, N.O.S.
Chloroacetaldehyde
Chloroalkyl ethers
p-Chloroaniline
Chlorobenzene
Chlorobenzene
Chlorobenzene
1-(p-Chlorobenzyl)-5-methoxy-2-methylindole-3-acetic acid
p-Chloro-m-cresol
1-Chloro-2,3-epoxybutane
2-Chloroethyl vinyl ether
Chlorofuran
Chloromethane
Chloromethyl methyl ether
2-Chlorophenyl
2-Chlorophenylthiole
1-(o-Chlorophenyl)thioure
3-Chloropropionitrile
alpha-Chlorotoluene
Chlorotoluene, N.O.S.
Chromium and compounds, N.O.S.
Chryseme
Cirrus red No. 2
Copper cyanide
Crotone
Crotonaldehyde
Cyanides (soluble salts and complexes), N.O.S.
Cyagen
Cyagen bromide
Cyagen chloride
Cycain
2-Cyclohexyl-1,4-dinitrophenol
Cyclophosphamide
Dauromycin
DDD
DDE
DDT
Diequat
Dibenzo[a,j]acridine
Dibenzo[a,j]acridine
Dibenzo[a,h]anthracene
Dibenzo[a,j]acridine
Dibenzo[a,h]anthracene, N.O.S.
1,2-Dibromo-3-chloropropane
1,3-Dibromochloroethane
Dibromomethane
Di-n-butyl phthalate
Dichlorobenzene, N.O.S.
3,3'-Dichlorobenzidine
1,1-Dichloroethane
1,5-Dichloroethane
trans-1,2-Dichloroethane
Dichloromethane, N.O.S.
1,1-Dichloroethylene
Dichloromethane
2,4-Dichlorophenol
2,4-Dichlorophenol
2,4-Dichlorophenolacetic acid (2,4-D)
Dichloropropene
Dichlorophenylarsine
1,2-Dichloropropane
Dichloropropeno, N.O.S.
Dichloropropeno, N.S.
1,3-Dichloropropene
Dieldrin
Dipropoxobutane
Diethylnitrite
Diethylnitrite
0,0-Diethyl-S-(2-ethylthio)ethyl ester of phosphorothioc acid
1,2-Diethyldihydrane
0,0-Diethyl-S-methyl ester phosphorothiolate acid
0,0-Diethylphosphonic acid, N-p-nitrophenyl ester
Diethyl phthalate
0,0-Diethyl-S-(2-pyrazinyl)phosphorothioate
Diethylthiobis(dichloromethylphosphate)
Dihydrosaffrole
3,4-Dihydroxy-alpha-(methylamino)-methyl benzyl alcohol
Di-isopropylfluorophosphate (DFP)
Dimethoate
3,3'-Dimethoxybenzidine
p-Dimethylaminobenzene
7,12-Dimethylbenz[a]anthracene
3,3'-Dimethylenzidine
Dimethylcarbamoyl chloride

¹The abbreviation N.O.S. signifies those members of the general class "not otherwise specified" by name in this listing.
Part IV

Environmental Protection Agency

Hazardous Waste Management System

Proposal To Modify 40 CFR Part 261—Hazardous Waste Lists
ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 261

Identification and Listing of Hazardous Wastes

AGENCY: Environmental Protection Agency.

ACTION: Proposed rule.

SUMMARY: The Environmental Protection Agency (EPA) is proposing to add eleven wastes to the interim final list of hazardous wastes which it is promulgating today under Section 3001 of the Resource Conservation and Recovery Act of 1976, as amended (RCRA). The effect of adding these wastes to the hazardous waste list will be to make them subject to the management standards issued by EPA under Sections 3002 through 3006 and 3010 of RCRA (Parts 262 through 265, 122 through 124 of this Chapter and 45 FR 12746).

DATES: EPA will accept public comments on the proposed listings until July 18, 1980. Any person may request a hearing on this proposal by filing a request with John P. Lehman, whose address appears below, by June 9, 1980. The request must contain the information prescribed in § 260.20(d) of this chapter.

ADDRESSES: Comments and requests for hearings should be addressed to John P. Lehman, Director, Hazardous and Industrial Waste Division, Office of Solid Waste [WH–565], U.S. Environmental Protection Agency, Washington, D.C. 20460.

Communications should identify the regulatory docket number “Section 3001.”

The public docket for this proposed rulemaking is located in Room 2711, U.S. Environmental Protection Agency, 401 M Street, S.W., Washington, D.C. 20460 and is available for viewing from 9:00 a.m. to 4:00 p.m., Monday through Friday, excluding holidays.

SUPPLEMENTARY INFORMATION: Section 3001 of RCRA requires EPA to publish criteria for listing hazardous waste and to list particular hazardous wastes. In today’s Federal Register EPA is promulgating interim final criteria for listing hazardous wastes (§ 261.11) along with an interim final list of hazardous wastes (Part 261, Subpart D). The Agency is now proposing to expand this list of hazardous wastes to add eleven wastes which EPA has determined meet its interim final listing criteria.

Included in this proposed supplemental listing are five wastes generated in the organic chemicals industry, four wastes from the manufacture of pesticides, one waste stream from the wood preserving industry and one waste stream from the non-ferrous metals industry. All eleven of these wastes were identified by the Agency in the course of developing the necessary technical data to support the interim final hazardous waste list promulgated today. These wastes and the hazards they pose to health or the environment are:

1. Distillation bottoms and heavy ends from the production of 1,1,1-trichloroethane. These two wastes contain carcinogens, many of which are soluble in water or are volatile. If the waste is improperly managed, the carcinogens may contaminate surface water, groundwater, or air.

2. Vacuum stripper discharge from chlorobenzene chlorinator in the production of chlorobenzene. This waste contains dissolved or suspended highly toxic constituents which are soluble and may migrate through leaching from the waste if the waste is improperly managed.

3. Untreated wastewater from the production of 2,4-D. This waste contains carcinogens and mutagens which are soluble in water. If the waste is improperly managed, these constituents can contaminate surface water or groundwater.

4. Wastewater from the production of methylnitro. This waste contains toxic compounds, a carcinogen and mutagenic substances. If this waste is improperly managed, these compounds could migrate from the waste and contaminate groundwater and surface water.

5. Distillation residues both light ends and bottoms from the production of phthalic anhydride from ortho-xylene. These two wastes contain toxic compounds, a known carcinogen, and a suspected carcinogen. Some of these compounds are soluble in water, and, if the waste is improperly managed, these compounds can contaminate surface water and groundwater. If the residues are improperly incinerated, these compounds (or equally or more toxic degradation products) may be emitted into the air.

6. Wastewater from wood preserving processes that use creosote and/or pentachlorophenol. This waste contains carcinogens, mutagens and toxic compounds, many of which are soluble in water or are volatile. If the waste is improperly managed, these compounds can contaminate surface water, groundwater, or air.

7. Untreated process wastewater from the production of toxaphene. This waste contains toxaphene, a carcinogenic and extremely toxic compound. If the waste is improperly managed, this compound could migrate from the waste and contaminate groundwater and surface water.

8. Process wastewater from creosote production. This waste contains a number of known carcinogens. If this waste is improperly managed, these compounds are capable of migrating and persisting in the environment and could contaminate surface water and groundwater.

9. Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. This waste contains toxic heavy metals which, when solubilized, can contaminate surface water and groundwater if the waste is improperly managed.

When surface water, groundwater, or air is contaminated, human health or the environment can be adversely affected.

BACKGROUND DOCUMENT: Background documents have been prepared in support of this proposed rule. Copies are available for review in all EPA Regional office libraries, in the EPA headquarters (Public Information Reference Unit) Room 2404, Waterside Mall, 401 M Street, S.W., Washington, D.C. and in the docket located in Room 2711, Waterside Mall, 401 M Street, S.W., Washington, D.C.

ECONOMIC, ENVIRONMENTAL AND REGULATORY IMPACTS: In accordance with Executive Order 12291, as amended by Executive Order 12286, and OMB Circular A–107, EPA policy as stipulated in 30 FR 37419, October 21, 1974, and Executive Order 12044, analyses of the economic, environmental, and regulatory impacts were performed for the entirety of Subtitle C. EPA does not believe that amending Part 261 to add these additional wastes is a major action for the purposes of Executive Order 12044, in part because the wastes are generated by processes which produce other listed wastes and because the cost of managing those other listed wastes has already been accounted for in the final Regulatory Analysis which was prepared for the entirety of Subtitle C. However, EPA requests that any data commenters have on the generation rates of the wastes listed in the proposal, current management costs and practices for these wastes or on the cost or economic impacts of the proposed...
regulations be sent to John P. Lehman at the address listed above.

Dated: May 2, 1980.

Douglas M. Costle,
Administrator.

It is proposed to amend Title 40 CFR, Part 261, by revising 40 CFR, Part 261, as follows:

§ 261.32 [Amended]
1. In § 261.32, add the following waste streams:

<table>
<thead>
<tr>
<th>Industry</th>
<th>EPA hazardous waste No.*</th>
<th>Hazardous waste</th>
<th>Hazardous code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood preservation.</td>
<td>Wastewater from wood</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td></td>
<td>preserving processes that</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>use creosote or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pentachlorophenol.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic</td>
<td>Distillation bottoms from</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td>chemicals</td>
<td>the production of 1,1,1-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trichloroethane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heavy ends from the heavy</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td></td>
<td>ends column from the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>production of 1,1,1-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trichloroethane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vacuum stripper discharge</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td></td>
<td>from chloroform chloride</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the production of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chlorodane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distillation light ends</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td></td>
<td>from the production of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phthalic anhydride from</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ortho-xylene.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distillation bottoms from</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td></td>
<td>the production of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phthalic anhydride from</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ortho-xylene.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesticides</td>
<td>Untreated process</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td></td>
<td>wastewater from the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>production of toxaphene.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Untreated wastewater from</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td></td>
<td>the production of 2,4-D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wastewater from the</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td></td>
<td>production of meclofenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process wastewater from</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td></td>
<td>cresol production.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary lead.</td>
<td>Waste leaching solution</td>
<td></td>
<td>(T).</td>
</tr>
<tr>
<td></td>
<td>from acid leaching of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>emission control dust/slag</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from secondary lead</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The EPA Hazardous Waste Number will not be assigned until the listed waste is promulgated.

[FR Doc. 80-14388 Filed 5-16-80; 8:45 am]
BILLING CODE 6560-01-M