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Notice

The U.S. Environmental Protection Agency through its Office of Research and
Development partially funded and collaborated in the research described here under
Cooperative Agreement # CR 816572-010 with Imperial College of Science, Technology
and Medicine, London, UK. It has been subjected to the Agency's peer and administrative
review and has been approved for publication as an EPA document.

Abstract

Priorities must be determined for the ways in which limited resources can be deployed in
the most cost-effective manner. In the case of potential contamination of groundwater by
leachates from facilities for storing hazardous materials, there are many more sites where
action might be taken to reduce risks of exposure than there are funds to support all such
actions. There is a need to rank the sites of potential action in terms of achieving the
greatest reduction in the risk of exposure for a given sum of money. In situations such as
this, which are characterised by gross uncertainty, assessing the reliability of a model in
performing the task of a screening analysis is especially important. The risks of ranking the
sites for remedial action in an erroneous order are significant. The paper explores three
groups of tests that might be formulated to determine model reliability. The first of these
is concerned with establishing whether the uncertainties surrounding the parameterisation
of the model render it impotent in discriminating between which of two sites, say, gives the
significantly higher predicted receptor concentration of contaminant, in conditions where
this result would generally be expected. The second test is a straightforward form of
regionalised sensitivity analysis designed to identify which of the model's parameters are
critical to the task of predicting exceedance, or otherwise, of prescribed (regulatory)
receptor-site concentrations. The third test is designed to achieve a more global form of
sensitivity analysis in which the dependence of selected statistical properties of the
distributions of predicted concentrations (mean, variance, and 95th-percentile) on specific
model parameters can be investigated. The results of these tests suggest that it may be
possible to develop a novel form of statistic for assisting in judging the trustworthiness of
a candidate model for performing predictive exposure assessments.
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FOREWORD

As environmental controls become more costly to implement and the penalties of
judgment errors become more severe, environmental quality management relies
increasingly on the use of predictive models to estimate the impact of contaminant
releases to the environment. Further, as the questions of exposure and risk become more
comprehensive the tools necessarily become more complex.  This, in turn, puts increased
pressure on appreciating and quantifying the uncertainties associated with model
predictions.  As part of this Division’s research on the occurrence, movement,
transformation, impact, and control of environmental contaminants, the Regulatory Support
Branch develops engineering tools to help pollution control officials address environmental
problems.  

The first step in addressing the potential impact of environmental releases of
contaminants is the selection of an appropriate predictive tool (i.e., model).  The model
must satisfy various criteria including relevance, reliability, and validity.  Using EPAMMM,
a multimedia model for simulating the fate and transport of contaminants, this report
explores three groups of tests, that combined, formulate a measure of reliability, or
trustworthiness of a model.  The results of these tests suggest that it may be possible to
develop a novel form of statistic for assisting in judging the trustworthiness of a candidate
model for performing predictive exposure assessments.

Rosemarie C. Russo, Ph.D.
Director
Ecosystems Research Division
Athens, Georgia
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1 Introduction

Contamination of the subsurface land environment as a result of leakage from sites used
to contain and store hazardous materials has been a predominant feature in the
development of mathematical models of soil and groundwater systems over the past fifteen
years or so (Onishi et al, 1990; National Research Council, 1990; Gee et al, 1991;
McLaughlin et al, 1993). At a strategic level, the key questions to be answered are: what
are the direction, rate of movement, and attenuation of contaminants in the plume; what
level of contaminant concentration will result at a particular receptor site; and, when
contamination is forecast to be unacceptable, at which repositories will the greatest
reduction in the risk of adverse exposure be achieved through expenditures on control and
remediation measures?

Given the large number of storage sites and a debilitating lack of in situ field observations
-- that is, given conditions of gross uncertainty -- this last question is extremely difficult to
answer. Yet answered it must be, in spite of such difficulties, if decision-making is to be
guided by the support of the best possible information and quantitative analysis. To this
end, the United States Environmental Protection Agency (EPA) has developed a Multi-
Media model, which is in principle capable of predicting the propagation of a contaminant
via several pathways through multiple compartments of the environment (subsurface water,
surface water, atmosphere) from source to receptor (Salhotra et al, 1990; Sharp-Hansen
et al, 1990). In this paper, we explore the suitability of this Multi-Media model (abbreviated
as EPAMMM herein) for performing the various tasks of a screening-level analysis, where,
according to the EPA's guidelines on exposure assessment, such an analysis is defined
in the following terms (EPA, 1991):

A primary concern in selecting a model is whether to perform a screening study or to perform a
detailed study.

The value of the screening-level analysis is that it is simple to perform and may indicate that no
significant contamination problem exists. Screening-level models are frequently used to get a first
approximation of the concentrations that may be present. Often these models use very
conservative assumptions; that is, they tend to over-predict concentrations or exposures. If the
results of a conservative screening procedure indicate that predicted concentrations or
exposures are less than some predetermined "no concern" level, then a more detailed analysis
is probably not necessary. If the screening estimates are above that level, refinement of the
assumptions or a more sophisticated model are necessary in further iterations for a more realistic
estimate.

While EPAMMM is not what would normally be described as the simple form of model best
suited to a screening-level analysis (such as that of, say, Schanz and Salhotra (1990)), it
is nevertheless nowhere nearly as complex as some of the contemporary alternatives for
simulating subsurface contaminant transport (e.g., Ewen, 1995). Even so, 



     1 As noted elsewhere (Beck et al, 1997), it seems the intractability of the problem of model validation has given
rise to many labels for the process yet few entirely satisfactory procedures for its resolution.
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despite its relative simplicity, there is still a need to establish the relevance (or "legitimacy",
"validity", or "trustworthiness") of EPAMMM for performing a screening-level analysis1.
Issues of model validation are of very considerable topical interest, not least in the present
subject area of contamination of the subsurface environment (Konikow and Bredehoeft,
1992; Dougherty and Bagtzoglou, 1993; Oreskes et al, 1994; Beck et al, 1995; Armstrong
et al, 1995). Our purposes herein are, therefore, several: to present key elements in a
protocol for validating models for predictive exposure assessment (Beck et al, 1997); to
illustrate the application of these in the specific case of EPAMMM; and thence to examine
the process of coming to a judgement on the trustworthiness of EPAMMM in fulfilling its
designated task of identifying sites that would be prime candidates for risk reduction.

The paper begins by summarising the properties and assumptions of EPAMMM. We then
set out the kinds of questions to be answered in order to assure the quality, or establish
the trustworthiness, of this model as a tool designed for performing the tasks of a
screening-level analysis. In particular, these questions are discussed in relation to what is
normally understood as an analysis of sensitivity and model uncertainty (Beck, 1987).
Computational results illustrating the performance of the model for a generic form of a
Subtitle D storage facility are presented. It may be helpful to view this analysis as rather
like the testing of prototype air-frame designs in a laboratory wind tunnel prior to
construction of the airplane that is actually to perform the task of achieving flight. Our
central concern is to illustrate how the potential "flight-worthiness" of the model might be
established prior to its use in a practical decision-making context. In closing the paper, we
shall discuss our results and the form of the analysis in the light of the ideas expressed
elsewhere with regard to quality assurance and the development of a protocol for model
validation in predictive exposure assessments (Beck et al, 1995, 1997). At issue here is
what we see as the pressing need to broaden the procedure of validation in two important
directions: first, in developing quantitative measures of the trustworthiness of a model when
there are no historical data to be matched by its simulated responses; and, second, in
augmenting and buttressing the process of peer review, which may be critical in such
contexts where extrapolation into the utterly unknown is the essential part of the problem
definition (as it is in predictive exposure assessments; Beck et al, 1997).

It is important to emphasise that this analysis is of a general nature. It is applicable, in
principle, to any form of simulation model, not merely EPAMMM in the assessment of the
risks associated with sub-surface contamination. Further, we make no specific statements
about the suitability of a particular disposal facility with given surrounding soils and
hydrological regime for attenuating the off-site mobility of a given contaminant. 
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This was not our purpose; site-specific data were not available to us for evaluation of the
model; and, in any case, a screening-level analysis is by definition a generic, non-specific
problem.

2 The Model

EPAMMM, as we have already noted, is a tool for predicting the transport and fate of
contaminants released from a waste disposal facility into an environment composed of
several media. Releases may be to the air or subsurface environment, the latter including
both unsaturated and saturated zones, with the possibility of interception of the subsurface
contaminant plume by a surface water system. The model contains seven modules: the
landfill unit; the flow field in the unsaturated zone; the transport of solutes in the
unsaturated zone; the transport of solutes in the saturated zone; the surface water system;
an air emissions module; and the advective transport and dispersion of the contaminant
in the atmospheric environment. Parallel developments on other forms of multi-media
models are reviewed in Onishi et al (1990), Smith (1992), and Davis et al (1993). In
general, analytical and semi-analytical techniques are used to solve the basic partial
differential equations of fluid flow and solute transport. As a consequence of the associated
simplifications, the model cannot account explicitly for the following: spatial variability of
either soil or hydrological properties, such as, for example, porosity and hydraulic
conductivity; specific geometries of the landfill site (other than rectangular); site-specific
boundary conditions, i.e., inter alia, the spatial variability of both the infiltration rate and the
depth of the unsaturated zone; multiple aquifer bodies; or wells at which pumping
operations may take place. Further, flow through fractured media and chemical interactions
among multiple contaminants cannot formally be simulated by the model.

As applied herein, that is, to the characterisation of a Subtitle D facility, only three of the
above seven modules of EPAMMM will be used: flow in the unsaturated zone; transport
of solute in the unsaturated zone; and transport of the solute in the saturated zone. Thus,
the following generic situation is simulated (Figure 2-1). A storage facility of rectangular
shape (L × W, in plan view in Figure 2-1(a)) is sited above the unsaturated zone. The
contaminated leachate from the facility infiltrates the ground uniformly from this area
(alone), passing into the underlying unsaturated zone in the vertical direction only. When
the leachate reaches the saturated zone it enters a horizontal flow of water driven by input,
laterally-oriented recharge (Figure 2-1(b)). Mixing of the two flows is such that the
contaminant in the leachate is assumed to penetrate the saturated zone to a maximum
depth (H, the source penetration depth) at the rightward boundary of the source area in
Figure 2-1(b). This rightward (downstream) boundary of the storage area, i.e., vertical
section A-A in Figure 2-1(b), is given as the leftward (upstream) boundary of flow in the
saturated zone in Figure 2-2, in which the contaminant from the leachate can be seen to
occupy the shaded portion (H × W) of the aquifer cross-section. 
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(2-1)

However, the concentration of the contaminant is not uniform across this area, but is
instead assumed to be distributed in a Gaussian sense in the horizontal (in the y direction
in Figure 2-2). It is from this location, with this boundary condition, that the contaminant is
subsequently transported with flow in the saturated zone to the downstream receptor site.
The lateral input recharge is uniform spatially and invariant with time, so that a steady,
uniform flow field exists throughout the saturated zone.

As the contaminated leachate passes through the unsaturated zone, its solute (considered
simply as a single contaminant) undergoes attenuation and redistribution through
dispersion, biodegradation (according to linear first-order kinetics), hydrolysis, and
adsorption, this last being prescribed as a function of the organic matter content of the
unsaturated zone. Dispersion in the unsaturated zone, i.e., the dispersion coefficient, is
computed as a function of the dispersivities and (vertical) seepage velocity. The former
may be specified as a given, or derived from other attributes, such as the specified
thickness of the unsaturated zone. The latter (seepage velocity) is calculated as a function
of the infiltration rate, the porosity, and the water content (% saturation) of the unsaturated
zone, which itself is a function of the specified saturated hydraulic conductivity. In other
words, seepage velocity is derived from Darcy's law, as is customary. Hydrolysis in the
unsaturated zone is computed as a function of the bulk density and the distribution
coefficient of the contaminant between the dissolved and sorbed phases; it is assumed to
occur in both phases with first-order kinetics that are a function of both temperature and
pH. In the saturated zone, the solute undergoes the same processes of attenuation.

The source term for the infiltration of contaminated leachate into the unsaturated zone is
invariant with time, both in respect to its volumetric rate of flow and its composition. It is
also invariant in space, so that from the upper surface of the unsaturated zone down to the
upper surface of the saturated zone it is similarly uniform in the horizontal plane, as the
leachate moves vertically downward. The receptor site is assumed to be at a "worst-case"
location, being directly downstream of the source, on the centre-line of the plume, and at
the top of the saturated zone. The relationship between relative hydraulic conductivity and
water saturation and the water moisture curve of the unsaturated zone is assumed to have
the form first proposed by van Genuchten (1976).

In general, the structure of a model may be defined by the following equation for the
dynamics of the state vector x,

in which, in principle, x denotes the field of contaminant concentrations in the subsurface
environment, u is a vector of inputs to the system (here the infiltration rate from the 



7

(2-2)

storage facility or the rate of recharge to the aquifer), "" is a vector of model parameters,
such as a rate constant of contaminant degradation, and the dot notation in x00  denotes
differentiation with respect to time t. Strictly speaking, however, since EPAMMM is based
ultimately on a distributed-parameter, partial-differential equation set, such differentiation
is of a partial (as opposed to a total) nature and f {@ } may contain partial derivatives of the
state x with respect to distance. It is also noted that even this simple model requires the
specification of more than 30 parameters ("") for its application to a Subtitle D facility.

More specifically, the inputs u are assumed for the present analysis to be invariant with
time, so that computational results are concerned merely with the steady-state solution of
equation (2-1) and, more specifically, with the value of the residual contaminant
concentration at the receptor site, i.e., y, where y is given by

and now x, u, and y are invariant with time. In the computational exercises that follow,
equation (2-2) will be solved in the context of a Monte Carlo simulation, thus generating
distributions for y as a function of the assumed uncertainty associated with "" and u. The
possibility of any structural, i.e., conceptual, error in the forms of f in equation (2-1) and g
in equation (2-2) will not be considered herein, although we acknowledge that errors of this
kind are currently of some interest (Beck, 1987, 1994; Beck et al, 1993; Konikow and
Bredehoeft, 1992). All models, by definition, will suffer from structural errors, in the sense
that all models are approximations of the truth, and as such one can immediately recognise
the impossibility of quantifying them. In the specific case of EPAMMM, a portion of these
errors will be attributable to the errors in classifying a facility under Subtitle D when its
features do not conform all that well to the idealised properties of this category, for
example, when the facility does not have a rectangular source area, or the flow in the
underlying saturated zone is not strictly in the horizontal plane alone.

A more complete description of EPAMMM can be found in Sharp-Hansen et al (1990) and
Salhotra et al (1990).

3 Tests for the Assurance of Quality
in a Model's Predictive Performance

In order to be effective as a tool for determining whether contamination arising from a
storage facility will be significant and, in that event, what may be done to remedy such an
unacceptable situation, EPAMMM must be able to demonstrate that uncertainty about the
value of y, as a result of the substantial uncertainties in u and "", does not undermine the
basis of decision-making. In the extreme, for example, the outcome that more or less 
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any value of y is equally probable under any given combination of soil, contaminant and
hydrological regimes is hardly a secure basis on which to construct a decision. There are
several issues to be addressed in assuring the quality of the model's predictive
performance. We provide computational results for three such issues and indicate a fourth
promising line of analysis.

Output Uncertainty as a Function of Different Site Characteristics

Let us suppose that the same contaminant is stored at several sites, with each site having
a different underlying soil, aquifer and hydrological regime. From the perspective of making
a decision relating to the performance of each such facility, interest would focus on the
capacity to predict the residual contaminant concentrations y at the respective receptor
sites in order to establish which facility is the most or least effective in containing the
particular contaminant. Formally, it is necessary to determine whether the model is able
to separate the respective distributions of y, let us say yA and yB, for two sites A and B
respectively parameterised in soil and hydrological terms through ""A and ""B in equation
(2-2) (much the same problem, albeit in a slightly different setting, is addressed in Beck
and Halfon (1991)). By "separation", we mean that the probability of identical values of y
being generated under the two (storage site) scenarios is less than some threshold, such
as 0.01, 0.05, or 0.10 (as illustrated in Figure 3-1). Alternatively, it may be desirable to
explore the scope of the model in discriminating (for a single site) between the residual
concentrations of two (or more) contaminants with differing degradabilities, likewise
parameterised through different ranges of values for "".

From the practical perspective of making a decision -- for example, to rectify inadequate
performance at site A or B -- such an analysis could be used to quantify the risk of taking
the (wrong) action, say, at site A, when in reality site B is the more poorly performing
storage system (see also Skiles et al, 1991; Goodrich and McCord, 1995).

Here our concern is primarily with what this kind of analysis may illuminate with respect to
the power of the given model, in this case EPAMMM, to discriminate the predicted
behaviour of one site from that of another. Given that there are strong prior beliefs that site
or contaminant characteristics ought to generate distinctly different receptor site
concentrations under reasonable model parameter uncertainty, the result that this is so (or
not so) is revealing of the discriminating power, or relevance, of the model in performing
the stated task. Indeed, some formal manipulation of the probability of coincident, i.e.,
indistinct, values of y might be used as a quantitative measure of this power.
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Key and Redundant Parameters in Predicting a Percentile Concentration

The latter analysis can be viewed as follows. A screening-level assessment of the risk of
adverse exposure at the receptor site is concerned with knowledge of the probability that
a particular contaminant concentration, say y), will be exceeded. The choice of specific
values for some of the parameters in the model, within the range of values they might
assume, may be key to governing whether the resulting prediction of y falls above or below
y). For other parameters, the choice of a specific value may be immaterial to such
discrimination in terms of y being above or below y). The quality of the model in performing
this screening task might, therefore, be related to the relative numbers of key and
redundant model parameters, {""K} and {""R} respectively, that are so found (as outlined in
the protocol of Beck et al (1995, 1997)).

In general, then, our interest lies in determining which are the key parameters {""K(p)}, their
uncertainty notwithstanding, that govern the ability of the model to discriminate the
prediction of y # y)(p) from the prediction of y > y)(p), where (1-p) is the probability of y
exceeding the given value y). In other words, for which of the model's parameters would the
best possible knowledge be required in order to determine a particular percentile of the
distribution of the contaminant concentration at the receptor site? Also, do the same
parameters in the model appear to be key (or redundant) in discriminating among the
predictions of y in the vicinities of a range of percentiles (p), such as 99%, 95%, 90%, 80%,
50%, and so on? In sum, we would like to know whether EPAMMM is a good (reliable)
model for predicting the entire range of exposures, or just the high-end exposures, or
merely the mean exposures. If it is not judged to be reliable for fulfilling any of these tasks,
we would like to know further which of its parts are the least secure.

In order to answer these questions, we shall use the algorithm of Hornberger, Spear, and
Young (HSY), often referred to as regionalised sensitivity analysis (Young et al, 1978;
Hornberger and Spear, 1980; and Spear and Hornberger, 1980), further brief details of
which are given in Section 5. Indeed, the same form of analysis has been extended in a
recent application to the model MMSOILS, a close relative of EPAMMM, in which the goal
was to identify and explore how particular clusters (or aggregate assemblies) of
parameters, as opposed to individual parameters, might be key or redundant in the above
discriminating function (Spear et al, 1994). In the present study, we shall use merely the
"basic" form of the regionalised sensitivity analysis, but note that any interpretations of its
results will be subject to the limiting qualifications illuminated by Spear et al (1994).

Towards a Global Form of Sensitivity Analysis

A local analysis of a model's sensitivity seeks to compute the extent to which the output
of the model may change, say )yi, as a function of a change, )"i, in the value of this 
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model parameter about its nominal (or "best") point estimate, "e
i . In such a test, all other

values of the parameters and properties of the model are specified as those of their
respective single, nominal, best estimates; the output deviation, )yi, is, therefore, a change
from the accompanying single, nominal, best estimate of the output ye. For each parameter
"i in the model, a measure of the sensitivity of the model's output -- as gauged by, say,
()yi /)"i) -- can be computed, for small deviations from the nominal parameterisation of
the model. This analysis, as is well known, is valid only within the local neighbourhood of
the nominal parameterisation, and the domain of this validity will be narrower the more
nonlinear the relationship between "i and y in the vicinity of "e

i . Nevertheless, our
judgement about the validity of the model would differ significantly according to whether
poorly known or well known parameters dominate behaviour in this neighbourhood. That
is, we assert that most users would view a model with unease if its performance is critically
dependent on the precise value of a parameter subject to great uncertainty and not easily
identifiable from past observations of performance (Beck et al, 1995, 1997).

A regional analysis of sensitivity, as proposed by Hornberger and colleagues, can be
thought of as an attempt to answer a similar question, but more generally over a larger
domain of feasible values for the model's parameters and, significantly, with respect to a
particular task expressed as some form of constraint on, or categorisation of, the output
performance (y) of the model. Nonlinearities in the model are not, in principle, a problem,
but the conclusions from the analysis are inevitably task-specific.

Herein, we introduce and illustrate yet a third form of sensitivity analysis. For each
individual parameter "i in EPAMMM, we explore to what extent the statistical properties
of the predicted distribution of the residual contaminant concentration, y, i.e., its mean :y

and standard deviation Fy, vary as a function of the point estimates assumed for "i across
the range of its feasible values. All the remaining parameters of the model, other than the
parameter i under examination, are treated as random variables within the framework of
a Monte Carlo simulation. Unlike the regional analysis of Hornberger, Spear and Young,
yet in line with a classical, local sensitivity analysis, no reference is made to a particular
predictive task that the model must perform (as expressed in terms of y). Again,
nonlinearity in the model structure is, in principle, not a problem. In particular, our extension
permits quantification of that proportion of the uncertainty attached to the output (y) that
derives from uncertainty in the knowledge of a given parameter "i. Previous approaches
to this familiar problem of ranking the sources of uncertainty have been restricted to a
ranking either of the local sensitivity coefficients, with all the restrictive assumptions thereby
entailed, or of the coefficients estimated from an approximate relationship between the
output (y) regressed upon the set of parameters "i (Beck, 1987; Janssen, 1994). To the
extent that the regression relationship of the latter is a good or a bad approximation of the
underlying (more complex) model from which it is derived, the resulting ranking will be
more or less reliable. Our new approach to this problem is relatively free of any such
restriction on the interpretation of its results.
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Key and Redundant Controls in Achieving a Given Level of Site Performance

The problem of predicting a percentile concentration of the residual contaminant at the
receptor site is akin to the problem of designing a system to achieve some "target" (or
desired, or "optimal") category of performance, denoted T, for example. As discussed
previously, we have considered the question of what choices of model parameter values
will make such pre-specified performance achievable, not what values of the controls (u)
associated with the system might be successful in this regard. This latter question is much
more readily recognised, not as a matter of sensitivity analysis, but as the classical
problem of control system design: of choosing a particular set, or sequence, of values for
the input variables in order to bring about some desired output response. The distinctive
feature of the present problem setting, however, is that our interest lies in achieving a
broad band of target performance (T), namely a residual contaminant concentration y #
y), as distinct from inducing the complement "not-target performance" (T) ), i.e., y > y), and
to do so in the face of gross uncertainty about the site's conditions as reflected in the
model's parameters "".

In just the same way as the HSY algorithm enables discrimination between key and
redundant parameters, so discrimination can be made between key {uK} and redundant
{uR} controls in achieving/not achieving the target performance. One might further explore
-- through the Monte Carlo framework of the HSY algorithm, as now seems more feasible
than previously (Spear et al, 1994) -- what sets of values {u(T)} yield the target behaviour
(T) and whether, through induced correlation with some of the model's parameters, i.e.,
{""(T)}, successful control is critically dependent upon site characteristics such as
hydrological regime, soil type, contaminant degradability, etc.

We do not, however, investigate this particular issue herein.

Closing Remarks

Subjecting the model to the described battery of tests is designed to establish its validity,
trustworthiness, and relevance in performing a prospective task of prediction. These are
tests designed to ensure -- to the maximum extent possible -- that when the model is used
to fulfil this predictive task it will, so to speak, "achieve flight". The terms of these tests
contain nowhere the classical notion of "matching history" (of evaluating the model's
quality and performance with respect to observations of past behaviour; Konikow and
Bredehoeft, 1992). We ask not whether flight has been achieved in the past under an
observed set of flight conditions (although we are by no means disinterested in the
answers to such questions, for they too are part of the basis of our judgement on the
quality of the model). The purpose of our tests is to expose weaknesses and limitations in
the model relative to whether flight is likely to be achievable under some other 
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(imagined, or required) set of flight conditions in the future. This does not ignore past
experience, all of which may be thought of as being incorporated into the prior beliefs
(expectations) surrounding the model, i.e., its prior validation status. Success (failure) of
the model when subjected to our tests, while clearly not a matter of the matching of a
particular, observed history, will accordingly increase (decrease) the validation status of the
model. If we were working with a new model, many of our conditions may well reflect those
observed in the past. But when working with projection of the model into novel situations --
as is of critical interest in predictive exposure assessment for the movement of novel
substances into the environment (Beck et al, 1997) -- the power of our tests will derive from
the richness we can bring to bear in imagining what conditions might occur in the future
(and these may be derived in large part from manipulating (subjective) belief networks;
Varis, 1995).

The purpose of our battery of tests is to expose, and possibly to rectify, these weaknesses
before a specific prediction is made on which a decision, with costs of actions and risks of
failure and subsequent damages, is made. Yet when so applied the model may still be
shown in the event to have failed to predict specifically what may come to pass in the
future. Indeed, this is almost inevitable: seen from the present, some, if not much, of the
future is unknowable. As in the design of an aircraft, the previously described battery of
tests is intended to minimise the damage of such failure and, perhaps, to maximise the
ease of subsequently adapting the model in the light of what will be learned from the
experience.

If the task of prediction is not richly specified, if only weak prior beliefs about expected site
performance are held, and if there is great uncertainty attached to the model's constituent
parameters, judgements about the legitimacy of using this model to fulfil the task will be
equally bland. Similarly, if the cost of action, the risk of failure, and the magnitude of the
ensuing damage, are minimal, then only minimal effort might need to be expended in
carrying out such tests of the model. If the converses of all these conditions are true, very
great effort might be justified: in assessing the model, in collecting more appropriate field
data, and in changing the model to meet better the terms of the task specification. This is,
of course, merely a juxtaposition of qualitatively quite different problem contexts, with no
intention -- at this stage -- of seeking to quantify how much effort should be invested in re-
designing the model as a function of (a) the richness of the task specification, (b) the
uncertainty of our prior knowledge, or (c) the costs of action and failure. However, it is our
purpose to project the discussion of model validity into a broader domain in which there is
a concern for assuring the quality of a tool being designed against some (predictive) task
specification.

4 Output Uncertainty and Discriminating Power

The question of central interest here is: does a reasonable range of model parameter 
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uncertainty render ineffective the power of the model to discriminate between the
performance of containment facilities under quite different subsurface soil, hydrological,
and contaminant-degradability regimes? For it is, we should note, our collective, strong,
prior belief that such different regimes, as characterised by the model's parameters, should
lead to significant differences in a facility's behaviour. The siting of a storage facility should,
itself, be strongly conditioned upon finding a hydrogeological regime that is maximally
resistant to the possibility of leakage and rupture.

In conducting a computational analysis in order to respond to this question, let us recall first
that EPAMMM contains over 30 parameters ("") (for a Subtitle D facility). Our immediate
need is to restrict the ranges of values these parameters may assume, in accordance with
certain "distinct" categories of soil types and contaminant degradability properties.

Discrimination Among Different Soil Types

There is a substantial body of literature dealing with the textural and hydraulic
characteristics of the various soil types (such as, for example, Jury (1982) or Carsel and
Parrish (1988)). For present purposes, the textural classifications of the US Soil
Conservation Service (SCS) will be used (Soil Conservation Service, 1972), i.e., clay, clay-
loam, loam, loamy sand, silt, silt-loam, silty clay, silty clay-loam, sand, sandy clay, sandy
clay-loam, and sandy loam. Only five of these categories, representing a supposedly wide
array of characteristics, have been selected for this illustrative analysis: clay, loam, silt,
sand, and sandy clay-loam.

Within each soil type the values that might be assigned to EPAMMM's parameters exhibit
strong correlations and it is, therefore, important to account for this by restricting the ranges
of values permitted for the sampling of the Monte Carlo simulation. In other words, the
"signature" of a particular soil type is reflected in the choice of upper and lower bounds for
the model's parameters. Thereafter, no further correlation structure will be imposed through
the sampling procedure of the simulation; parameter values may be chosen independently
from their respective ranges. Such restrictions are relevant for the following subset of 11
(out of the total of more than 30) parameters: saturated conductivity, porosity, residual
water content, bulk density, and percent organic matter of the unsaturated zone; the two
parameters of van Genuchten's expression; and particle diameter, bulk density, hydraulic
conductivity, and organic carbon content of the saturated zone. More specifically, the
numerical bounds placed on these parameters are drawn from the data bases of Sharp-
Hansen et al (1990) and Carsel and Parrish (1988). For example, those used herein for the
sandy clay-loam soil are given in Table 4-1.

The other parameters will be sampled from ranges that are independent of the soil type
(but the same for each test), representing what might, therefore, be termed average 
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Table 4-1. Statistical Distributions of Inputs/Parameters
for Sensitivity Analysis

Parameter Unit Distribution Mean Standard Minimum Maximum

Aquifer Parameters

Aquifer thickness m normal 12.0 3.5 5.0 19.0

Particle diameter m normal 0.0125 0.01 0.001 0.05

Bulk density normal 1.4 0.25 0.94 1.76

Hydraulic conductivity m/yr lognormal 115 240 10 390

Hydraulic gradient uniform 0.001 0.002

Temperature °C uniform 15 20

pH uniform 6.0 8.5

Organic carbon content % uniform 0.001 0.01

Receptor from site m uniform 50.0 100.0

Source-Specific Parameters

Recharge rate m/yr normal 0.015 0.01 0 0.03

Infiltration rate m/yr normal 0.25 0.07 0.13 0.38

Waste disposal area m2 fixed 100

Initial concentration mg/l fixed 1.0

Chemical Parameters

Acid-catalysis rate 1/mole-yr fixed 0.0

Neutral-catalysis rate 1/mole-yr fixed 0.0

Base-catalysis rate 1/mole-yr fixed 0.0

Reference temperature °C fixed 25

Bio-degradation rate 1/yr fixed 0.0

Normal distribution coefficient cc/g uniform 71 178

UZ Parameters

Saturated conductivity cm/h lognormal 1.31 2.74 0.02 4.42

Porosity normal 0.40 0.05 0.30 0.50

Residual water content normal 0.1 0.006 0.088 0.112

Depth of UZ m uniform 5 10.0

Alpha coefficient " normal 0.059 0.038 0.005 0.124

Beta coefficient ß normal 1.48 0.13 1.09 1.87

Air entry pressure m fixed 0.0

Percent organic matter % normal 0.26 0.25 0.01 1.5

Biodegradation in UZ 1/yr fixed 0.0

Bulk density g/cc normal 1.40 0.2 1.0 1.6
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ranges for all but two of these parameters. Recharge of the saturated zone at its upstream
boundary is given a low range of permissible values, reflecting a "worst-case" scenario in
which there is a below-average flow of water for dilution of any contaminant reaching the
saturated zone. The presumption here is that the site may well have been chosen for the
storage of materials precisely because of the limited scope for widespread propagation of
the contaminants in the event of leakage. Similarly, under the assumption that the majority
of facilities will already have some form of lining installed, the rate of infiltration of the
leachate into the unsaturated zone is assigned a relatively low range of permissible values.
We acknowledge that assuming the recharge and infiltration rates to be independent of soil
type is somewhat contentious, the role of the facility lining notwithstanding. These water
fluxes, however, will also be a function of variations in site-specific precipitation,
evapotranspiration, and soil moisture content, such that the local soil types may appear to
have little bearing on their magnitudes.

One further salient feature of the test formulation is the assumption of a conservative, non-
degradable contaminant in the leachate, such as benzene, whose rates of hydrolysis and
bio-degradation have been found to be very small (Schnoor et al, 1987). Again, we
recognise that this may appear to some to be a strong assumption. The issue is rather one
of the period of time over which the absence of significant degradation can reasonably be
assumed to occur (for given sufficient time virtually all chemical species might be deemed
to be "degradable"). For our present purposes, benzene is used as the archetype of a very
slowly degradable, volatile contaminant.

In this test, then, our prior expectation -- conditioned on all that has gone before -- is that
(radically) different soil types should be an important feature in discriminating between the
extent to which the contaminant is leached from the disposal facility. Furthermore, the
implication is that, if EPAMMM is to be credible in a screening-level analysis, such
discrimination should be apparent against a background of a reasonable level of
uncertainty in site characterisation.

Results

The computed distributions for y at the receptor site, as a function of the five soil types, are
shown in Figure 4-1. It appears that only the distribution for the sand can be distinguished
from  the  other  four  soil  types, which rather confounds our prior beliefs. Moreover, the

predicted exposure concentration for the sand is significantly lower than the other
responses, which again is at variance with prior expectations. However, according to the
formulation of the model, the low adsorption capacity and high hydraulic conductivity of the
sand are such that a large dispersion coefficient is computed and used in the equations
for contaminant transport. The expression for the dispersion coefficient is nonlinearly
related to the soil properties, and notably so towards the sand end of the spectrum. The
consequence is a relatively low exposure concentration, even 
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at the relatively very closely located receptor site, just some 50-100m distant from the
source. In the case of the sand regime, the contaminant plume will be dilute, but extensive,
implying that at many  other locations the associated exposure concentration will exceed
those in the less dilute, but less extensive plumes in the other soil types. Figure 4-2 shows
that the lack of power in discriminating among the responses of the different soils is not
altered when the receptor is further away from the source, at a (fixed, i.e., certain) distance
of 1000m.

This low discriminating power of the model, which confounds our prior beliefs, may have
several origins. First, in view of the relative simplicity of the features incorporated in
EPAMMM, it may be that the true richness, diversity, and distinctive features of the soil
types cannot be properly reflected in the model's limited set of parameters. Second, the
soils are classified essentially in terms of characteristics strictly relevant to soil science
(such as particle size) and not to the description of a hydrological regime. Consequently,
the hydrological features associated with the soil types may not be all that strongly
distinguished, and it could be argued that our results are unsurprising. However, we should
not overlook the fact that a systematic means of mapping soil properties into hydrological
properties has long been the subject of intensive study (for example, Carsel and Parrish,
1988). For some, therefore, the prior belief that a storage facility located in one type of soil
will perform significantly better than another located in a significantly different soil type
could be quite strong indeed. Third, what has been considered a reasonable level of
uncertainty attached to the model's parameters may simply not be sufficiently small to
permit the expected separation of the distributions of exposure concentrations. Fourth, the
model may, in fact, be a reasonable representation, but the test under steady-state
conditions of saturated flow and input leachate rate may not be a sufficiently exciting (or
discriminating) test. In other words, certain transient modes of behaviour that are especially
sensitive to some of the model's parameters, and which would lead to distinctly different
responses among the soil types, are not being sufficiently exercised.

If, therefore, we have no reason to overturn our prior beliefs, if the steady-state condition
is the most relevant style of test, and if no better (less uncertain) information can be made
available for implementing the model, which may well be the case at the level of a
screening analysis, EPAMMM may not be appropriate for this predictive task. We argue,
however, that this would be a premature conclusion and that the model should undergo
more extensive testing, as follows in Sections 5 and 6.

Discrimination Among Different Contaminant Types

In the preceding assessment, the properties of benzene were used to illustrate a category
of conservative contaminant types. In a parallel effort, the predicted off-site movement of
four other chemicals, DDT (as a representative pesticide), Aroclor 1248 (as 



19



20

a representative PCB), chloroform (as a halogenated aliphatic hydrocarbon) and 2,4-
dimethylphenol (as a monocyclic aromatic compound), was compared to that of benzene.
The chemical properties of these four substances are given in Table 4-2. In terms of
biodegradability they span a diversity of values, with benzene being effectively zero, DDT,

Aroclor 1248, and chloroform being low, while that of 2,4-dimethylphenol can be regarded
as relatively high. The uncertainty attached to the rate of decay also varies significantly
among the five chemicals. The range of values permitted for 2,4-dimethylphenol is high;
that for DDT is medium; and those for Aroclor 1248 and chloroform are low. In fact, the
range of degradation rates for DDT covers the total range occupied by Arochlor 1248 and
chloroform. Similar ranges of values are assigned to the rates of hydrolysis and adsorption
capacities of the five contaminants. In short, the substances chosen for analysis should
reflect a wide range of chemical behaviours.

Results

The predicted distributions of residual contaminant concentrations at the receptor site (for
an identical input leachate concentration) are shown in Figure 4-3. In this test, there is a
more distinctive separation among the responses, except for the cases of DDT and
Arochlor 1248, which are so low as to be aggregated into a single category of the plot in
Figure 4-3(a).

There are several salient points to note in respect of these results. First, we might conclude
that the model is, in this instance, appropriate for performing the given task, because of
its greater power -- relative to the test with the different soil types -- in generating
responses that are (and are expected to be) distinct. However, in situ field estimates of the
parameters associated with biodegradation, hydrolysis, and adsorption are not well known
and may deviate substantially from those determined under laboratory conditions
(Blackburn, 1989). If, therefore, the performance of the model is more sensitive to a group
of parameters believed a priori not to be known relatively well, this is disquieting, as we
have observed previously. One is likely to feel less comfortable about the validity of a
model in performing a given task, when that performance is dominated by features of the
model in which there is less confidence and for which appropriate parameter estimates are
hard to obtain (Beck et al, 1995, 1997). The model may still be a useful model in principle;
our point, however, is that it may not be well suited to the given, specific predictive task.
A better conclusion is that further experimental effort would be most profitably allocated to
narrowing the ranges of values for the parameters of contaminant removal mechanisms.
The trustworthiness of using  the  model  for  predictive  exposure  assessments  at  the
screening level would, thereby, be relatively more significantly enhanced.

In addition, we note that there is substantial separation, of the order of 105 to 1012 times
magnification, between the predicted exposure concentrations of conservative and non-
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Table 4-2. The Uncertainty of Chemical Parameters for Several Typical Chemicals

Chemicals Biodegrad-
ation rate  
(1/yr)

Acid-
catalysis
rate 
(1/mole-yr)

Neutral-
catalysis
rate
(1/mole-yr)

Base-
catalysis
rate 
(1/mole-yr)

Normal
distribution
coefficient 
(cc/g)

Benzene 0.0 0.0 0.0 0.0 71-178

Pesticide
(DDT)

0.0-0.10 0.06 0.0 31186-
311856

47863-5011872

PCB
(Aroclor 1248)

0.0-0.007 0.0 0.0 0.0 346737-794328

Halogenated
Aliphatic
Hydrocarbon
(Chloroform)

0.09-0.10 4.3 0.5 1892 49-58

Monocyclic
Aromatic
(2,4-
Dimethylphenol)

0.24-0.66 0.0 0.0 0.0 123-195
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conservative contaminants. If, therefore, an unacceptable prediction of exposure
concentration is obtained with respect to the (safe) assumption of a conservative
substance, the implication is that the acquisition of reliable information about the
degradability of the substance is likely to be highly cost-effective, especially when set
against the otherwise potentially very large costs of remedial action.

Another observation is that the predicted exposure concentrations are rather uncertain, to
say the least. Except for the special case of DDT (whose concentration is categorised in
an undifferentiated manner, as below 10-15g/m3), predicted concentrations range over 6-9
orders of magnitude. Once again, the uncertainty attached to the parameters of the
removal mechanisms may be unreasonably high. On the other hand, the range of values
permitted for the biodegradation of chloroform is small, so that the uncertainty in the
predicted residual concentration at the receptor site may not stem directly from this
particular parameter. Rather, it may be dominated by other factors, such as a highly
uncertain "residence time" for the contaminant (between source and receptor), over which
this relatively well known rate of degradation is acting.

We note that each of the mechanisms of contaminant removal from the aqueous phase,
i.e., biodegradation, hydrolysis, and adsorption, is represented in the model in a different
functional form. The aggregate rate of removal of each contaminant is dominated by a
different mechanism: hydroloysis in the case of chloroform; biodegradation for 2,4-
dimethylphenol; and adsorption for Aroclor 1248. Not only, then, is such removal in the
aggregate important, vis à vis the background uncertainty in the facility's soil and
hydrological characterisation, but the discriminating power of EPAMMM is dependent upon
the inclusion of such "richness" in the constituent mechanisms of overall removal. In other
words, this richness should not be subsumed under the umbrella of a single attenuating
factor. For while it may not be vital in assessing which sites are most in need of remedial
action, it may be essential in determining what particular form this action should then
assume, given that quite different costs may attach to different engineering controls.

To summarise, the model possesses some discriminating power, particularly in regard to
the attenuation of contaminant migration through mechanisms other than advection and
dispersion in the flow of groundwater. However, this conclusion must be qualified by noting
that the variety of hydrological regimes simulated by the model may be restricted as a
result of the limited scope for properly parameterising the diversity of soil properties
(although many parameters in the model are devoted to an adequate characterisation of
soil properties).

Yet this conclusion is also strongly conditioned upon a set of prior beliefs about how such
facilities for waste disposal ought to behave. It is also strongly conditioned upon what is
believed to be a reasonable measure of uncertainty attached to EPAMMM's parameters.
Furthermore, this is a conclusion drawn largely independently of any 
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(5-1)

specific, predictive task that the model must perform. The purpose of the analysis that
follows in Section 5 is to examine the discriminating power of the model when its
performance is made task-specific.

5 Key and Redundant Model Parameters

In the preceding analysis, Monte Carlo simulation was implemented through the repeated
sampling of values for the model's parameters between upper ("u

i ) and lower ("l
i) bounds

for each parameter i. What was of interest was the resulting distribution of y, the residual
contaminant concentration at the receptor site, irrespective of any constraint attached to
the output. Decisions, however, are based on some desired level of performance from the
system. In the present case, the desired performance is simply that the residual
contaminant concentration should not exceed a pre-specified value, y), with probability p.
What we want to know is: for which (key) constituent parameters of the model would we
most want to have good knowledge readily available? What is it, in other words, that is
most critical in the design of the model with respect to successful achievement of this
particular task?

We can, in part, answer such questions through the algorithm of Hornberger, Spear and
Young (Young et al, 1978; Hornberger and Spear, 1980; Spear and Hornberger, 1980), in
which it is necessary to discriminate between two classes of behaviour from the model, that
which would be "acceptable", i.e.,

and its complement, "unacceptable" behaviour, being classified as y > y). We might also
speak of the "acceptable" as the "target" behaviour, as earlier. For each random realisation
(j) of a candidate parameterisation of the model, i.e., "" j, y j is obtained and, according to
equation (5-1), is associated with either giving, or not giving, the target behaviour. For a
sufficiently large sample of realisations, two sets of candidate parameterisations of the
model can be distinguished: those m samples {""(T)} that give the target behaviour and
those n samples that do not, i.e., {""(T) )}. For each constituent parameter, "i, the maximum
separation distance, dmax, between the respective cumulative distributions of {"i(T)} and
{"i(T) )} may be determined and the Kolmogorov-Smirnov statistic, dm,n, used to discriminate
between significant and insignificant separations for a chosen level of confidence (Kendall
and Stuart, 1961; Spear and Hornberger, 1980). Relatively large separation implies that
assigning a particular value to the given parameter is key to discriminating whether the
model does, or does not, generate the target behaviour. Relatively small separation of the
two distributions implies that evaluation of the associated parameter is redundant in
discriminating the performances 
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of the model. For the latter, it matters not, in effect, what value is given to the parameter;
the giving or not giving of the target performance is more or less equally probable whatever
value of the parameter is assigned. We have already referred to the sets of key and
redundant model parameters as {""K} and {""R}, respectively.

Put simply, our approach combines a Monte Carlo simulation with an analysis of the
(posterior) parameter distributions resulting from the classification of equation (5-1). We
employed a computationally more efficient version of the approach due to Chen (1993) in
this study. Moreover, since our interest lies in how the identification of key and redundant
parameters varies as a function of the exposure concentration y)(p) not to be exceeded with
probability p, the total sample of realisations {"" j} associated with {y j} must be stored for
subsequent classification according to equation (5-1) as y) varies as a function of the
chosen percentile values of the overall distribution of y. In this way it should be possible
to assess whether the same constituent parameters of the model are key to the task of
predicting high-end, mean, or low-end exposure concentrations, for example. It is, of
course, the high-end exposure concentrations that are of particular interest to decision-
making.

For illustration, a conservative (i.e., non-biodegradable) contaminant (again, benzene)
associated with a facility located in a sandy clay-loam soil, where the 95th-percentile
exposure concentration is deemed to be the upper bound on a tolerable high-end
exposure, is assumed for the task description. The ranges of EPAMMM parameter values
to be sampled for the Monte Carlo simulation were those of Table 4-1. In order to obtain
a better understanding of the mechanisms that govern the model's performance across the
spectrum of exposures, classification into key and redundant parameters was also
undertaken for the 10th-, 30th-, 50th-, 70th-, and 90th-percentile concentrations of the
contaminant at the receptor site.

Tables 5-1(a) through 5-1(f) summarise the resulting rankings of the parameters, according
to their significance in discriminating target from non-target performance. Three categories
of parameters are identified: "key", "important", and "redundant".

Results: High-end Exposure Concentration

Five parameters were found to be key for the 95th-percentile (Table 5-1(a)): the
coefficients of dispersion in all three directions in the saturated zone; the distance of the
receptor from the site; and the rate of leachate infiltration. For a conservative contaminant
this result is unsurprising. However, it was somewhat unexpected that the hydraulic
gradient and rate of recharge of the saturated zone were not found to be key parameters
(a point to which our discussion will return later).

Exploring the details of these results, it is pertinent to observe first that the coefficients 
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Table 5-1 (a).  Classification of Model Sensitivity at 95 Percentile

Key Parameters (significance level=0.001, dm,n=0.1864): dmax=
Transverse dispersivity in aquifer 0.8905

Receptor from site (distance) 0.8874

Longitudinal dispersivity in aquifer 0.8874

Vertical dispersivity in aquifer 0.8695

Infiltration rate  0.2253

Important Parameters (significance level=0.1, dm,n=0.1170):

Recharge rate 0.1747

Seepage velocity 0.1632

Bulk density in aquifer 0.1590

Source penetration depth in aquifer 0.1484

Hydraulic conductivity in aquifer  0.1347

Redundant Parameters (significance level>0.1):  

Aquifer porosity 0.1168

Organic carbon content in aquifer 0.1032

Bulk density in UZ 0.0968

Temperature in aquifer 0.0947

Longitudinal dispersivity in UZ 0.0937

Retardation coefficient in aquifer 0.0905

Percent organic matter in UZ 0.0895

Normal distribution coefficient 0.0768

Distributed coefficient 0.0758

Particle diameter in aquifer 0.0758

pH in aquifer 0.0737

Depth of UZ 0.0737

Aquifer thickness 0.0621

Beta 0.0558

Porosity in UZ 0.0547

Hydraulic gradient 0.0505

Saturated conductivity in UZ 0.0379

Residual water content  0.0368

Alpha 0.0190
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Table 5-1 (b).  Classification of Model Sensitivity at 90 Percentile

Key Parameters (significance level=0.001, dm,n=0.1354): dmax=

Transverse dispersivity in aquifer 0.76222

Receptor from site (distance) 0.75889

Longitudinal dispersivity in aquifer 0.75889

Vertical dispersivity in aquifer 0.75111

Seepage velocity 0.16111

Important Parameters (significance level=0.1, dm,n=0.0850):

Infiltration rate 0.12667

Recharge rate 0.11778

Hydraulic conductivity in aquifer  0.10889

Source penetration depth in aquifer 0.10444

Beta 0.08778

Redundant Parameters (significance level>0.1):  

Porosity in UZ 0.08000

Saturated conductivity in UZ 0.07111

Bulk density in UZ 0.06889

Organic carbon content in aquifer 0.06000

Retardation coefficient in aquifer 0.05667

Aquifer porosity 0.05667

Temperature in aquifer 0.05556

Normal distribution coefficient 0.05222

Hydraulic gradient 0.05222

Percent organic matter in UZ 0.05000

Longitudinal dispersivity in UZ 0.04667

Residual water content 0.04667

Bulk density in aquifer 0.04556

pH in aquifer 0.04445

Distributed coefficient 0.04222

Particle diameter in aquifer 0.03556

Aquifer thickness 0.03222

Depth of UZ 0.02667

Alpha 0.00222
Table 5-1 (c).  Classification of Model Sensitivity at 70 Percentile
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Key Parameters (significance level=0.001, dm,n=0.08865): dmax=

Transverse dispersivity in aquifer 0.35857

Receptor from site (distance) 0.34857

Longitudinal dispersivity in aquifer 0.34857

Vertical dispersivity in aquifer 0.34857

Infiltration rate 0.10095

Important Parameters (significance level=0.1, dm,n=0.05566):

Recharge rate 0.08095

Particle diameter in aquifer 0.07381

Hydraulic conductivity in aquifer  0.06714

Aquifer porosity 0.06429

Seepage velocity 0.05952

Redundant Parameters (significance level>0.1):  

Porosity in UZ 0.05524

Source penetration depth in aquifer 0.04857

Hydraulic gradient 0.04476

Saturated conductivity in UZ 0.03429

Bulk density in UZ 0.03429

Organic carbon content in aquifer 0.03381

Beta 0.03191

Distributed coefficient 0.03048

pH in aquifer 0.02905

Aquifer thickness 0.02857

Normal distribution coefficient 0.02810

Temperature in aquifer 0.02762

Longitudinal dispersivity in UZ 0.02714

Residual water content 0.02667

Retardation coefficient in aquifer 0.02429

Percent organic matter in UZ 0.02143

Bulk density in aquifer 0.01476

Depth of UZ 0.01238

Alpha 0.00667

Table 5-1 (d).  Classification of Model Sensitivity at 50 Percentile
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Key Parameters (significance level=0.001, dm,n=0.08125): dmax=

Transverse dispersivity in aquifer 0.22600

Receptor from site (distance) 0.22000

Longitudinal dispersivity in aquifer 0.22000

Vertical dispersivity in aquifer 0.22000

Recharge rate 0.08800

Important Parameters (significance level=0.1, dm,n=0.05101):

Infiltration rate 0.08000

Source penetration depth in aquifer 0.06400

Hydraulic conductivity in aquifer 0.05800

Redundant Parameters (significance level>0.1):  

Seepage velocity 0.05000

Depth of UZ 0.04800

Normal distribution coefficient 0.04600

Aquifer porosity 0.04400

Distributed coefficient 0.04000

Particle diameter in aquifer 0.03800

Hydraulic gradient 0.03600

Bulk density in UZ 0.03600

Longitudinal dispersivity in UZ 0.03600

Saturated conductivity in UZ 0.03400

Porosity in UZ 0.03200

Temperature in aquifer 0.03000

Residual water content 0.03000

Percent organic matter in UZ 0.03000

Organic carbon content in aquifer 0.02600

Bulk density in aquifer 0.02200

Beta 0.01800

Aquifer thickness 0.01800

Retardation coefficient in aquifer 0.01800

pH in aquifer 0.01400

Alpha 0.00200

Table 5-1 (e).  Classification of Model Sensitivity at 30 Percentile
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Key Parameters (significance level=0.001, dm,n=0.08865): dmax=

Transverse dispersivity in aquifer 0.30238

Receptor from site (distance) 0.30238

Longitudinal dispersivity in aquifer 0.30238

Vertical dispersivity in aquifer 0.30238

Important Parameters (significance level=0.1, dm,n=0.05566):

Recharge rate 0.08095

Source penetration depth in aquifer 0.07667

Seepage velocity 0.07000

Infiltration rate 0.06857

Depth of UZ 0.06238

Redundant Parameters (significance level>0.1):  

Hydraulic conductivity in aquifer 0.05191

Aquifer porosity 0.05143

Organic carbon content in aquifer 0.04714

Bulk density in aquifer 0.04619

Distributed coefficient 0.04191

Bulk density in UZ 0.04048

Normal distribution coefficient 0.03857

Porosity in UZ 0.03571

pH in aquifer 0.03571

Temperature in aquifer 0.03476

Aquifer thickness 0.03286

Hydraulic gradient 0.03143

Retardation coefficient in aquifer 0.03143

Particle diameter in aquifer 0.03095

Beta 0.03048

Residual water content 0.02905

Longitudinal dispersivity in UZ 0.02762

Percent organic matter in UZ 0.02619

Saturated conductivity in UZ 0.02429

Alpha 0.00191

Table 5-1 (f).  Classification of Model Sensitivity at 10 Percentile
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Key Parameters (significance level=0.001, dm,n=0.1354): dmax=

Transverse dispersivity in aquifer 0.37222

Receptor from site (distance) 0.37222

Longitudinal dispersivity in aquifer 0.37222

Vertical dispersivity in aquifer 0.37222

Source penetration depth in aquifer 0.19667

Infiltration rate 0.18667

Important Parameters (significance level=0.1, dm,n=0.08502):

Percent organic matter in UZ 0.11111

Hydraulic conductivity in aquifer 0.10333

Seepage velocity 0.10111

Redundant Parameters (significance level>0.1):  

Hydraulic gradient 0.08111

Porosity in UZ 0.07556

Normal distribution coefficient 0.07444

Aquifer porosity 0.07333

Temperature in aquifer 0.07111

Aquifer thickness 0.06556

Bulk density in UZ 0.06111

Retardation coefficient in aquifer 0.05667

pH in aquifer 0.05556

Bulk density in aquifer 0.05445

Distributed coefficient 0.05111

Recharge rate 0.04889

Organic carbon content in aquifer 0.04889

Saturated conductivity in UZ 0.04889

Depth of UZ 0.04444

Particle diameter in aquifer 0.04222

Residual water content 0.03889

Longitudinal dispersivity in UZ 0.03556

Beta 0.03222

Alpha 0.00222

of dispersion in the saturated zone are dependent upon the distance to the receptor site,
so that the importance of the latter may be merely an artifact of this relationship. When the
dispersivities are assumed known with certainty, i.e., fixed, the corresponding results of
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Table 5-2 are obtained (those relating to the parameters of the unsaturated zone have
been omitted from the Table, since they play no apparently vital role in the model for this
particular test). Identification of the distance to the receptor site as the sole, key parameter
confirms its crucial importance in predicting high-end exposure concentrations. It also
indicates the relatively high trustworthiness of the model in predicting high-end exposure
concentrations, since the distance to the receptor site, above all the other model
parameters, ought to be a relatively well known quantity.

Taking stock of the results of Table 5-1(a) it is apparent that: (i) all the parameters
identified as key and important are associated with either the properties of the saturated
zone (the aquifer) or the source of the leachate; (ii) all the parameters associated with the
unsaturated zone are found to be redundant; and (iii) parameters associated with the
adsorption of the contaminant are likewise redundant. The second observation is notably
inconsistent with our expectations, quite possibly as a consequence of the steady-state
form of the test conditions. If this is so, then the subsequent analysis of performance over
the range of percentile exposure concentrations should likewise result in the redundancy
of this group of parameters (which is not necessarily the same as confirming the test
conditions to be the cause of this counter-intuitive result). The third concluding observation
suggests that, as opposed to being entirely redundant, the effects of adsorption of the
contaminant are, in fact, dominated by the effects of dispersion. In this respect, it is
significant that when the coefficients of dispersion are removed from the analysis, the
organic carbon content of the aquifer -- upon which the capacity for contaminant adsorption
depends -- is identified as an important parameter (compare the results of Table 5-2 with
those of Table 5-1(a)).

It is possible to detect a more subtle feature in the comparative results of Tables 5-1(a) and
5-2. Exclusion of the effects of dispersion from the analysis (as in Table 5-2), which leaves
adsorption as the only mechanism of contaminant attenuation under investigation (other
than dilution), gives rise to quite different rankings of the parameters in the important and
redundant classes. It would appear that the form of the contaminant attenuation
mechanism, i.e., other than simple dilution, may play a crucial role in the model's
achievement of its task (a conclusion already foreshadowed in the preceding analysis of
Section 4). When Aroclor 1248, a slowly biodegradable contaminant with a substantially
higher capacity for adsorption, was substituted for benzene in the analysis, the results of
Table 5-3 were obtained. Again, the rankings of the parameters (relative to both Tables 5-
1(a) and 5-2) have changed materially, including those now identified within the key
category. Here, the parameters associated with the unsaturated zone are seen to play a
key role in achieving the predictive task, since it is predominantly in this zone that
biodegradation and adsorption occur. It also followed that evaluation of the parameters of
the saturated zone ceased to be of significance, since so little of the 
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Table 5-2.  Classification of Model Sensitivity 
at 95 Percentile with the Dispersivity in Aquifer Fixed 

Key Parameters (significance level=0.001, dm,n=0.2636): dmax=

Receptor from site (distance) 0.7874

Important Parameters (significance level=0.1, dm,n=0.1655):

Hydraulic gradient 0.2168

Aquifer porosity 0.1895

Seepage velocity 0.1768

Organic carbon content in aquifer 0.1684

Redundant Parameters (significance level>0.1):  

Aquifer thickness 0.1516

Source penetration depth in aquifer 0.1474

Hydraulic conductivity in aquifer 0.1368

Temperature in aquifer 0.1200

Recharge rate 0.1116

Normal distribution coefficient 0.1095

Retardation coefficient in aquifer 0.1011

Bulk density in aquifer 0.0968

pH in aquifer 0.0926

Infiltration rate  0.0695

Distributed coefficient 0.0842

Particle diameter in aquifer 0.0632
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Table 5-3.  Classification of Model Sensitivity 
at 95 Percentile  with  Consideration of Biodegradation 

Key Parameters (significance level=0.001, dm,n=0.1864): dmax=

Biodegradation rate in UZ 0.8094

Percent organic matter in UZ 0.1958

Important Parameters (significance level=0.1, dm,n=0.1170):

Residual water content 0.1432

Hydraulic gradient  0.1200

Source penetration depth in aquifer 0.1179

Redundant Parameters (significance level>0.1):  

Recharge rate 0.1105

Retardation coefficient in aquifer 0.1084

Organic carbon content in aquifer 0.1021

Infiltration rate 0.0937

Distributed coefficient 0.0873

Normal distribution coefficient 0.0853

Seepage velocity 0.0779

Bulk density in UZ 0.0768

Depth of UZ 0.0758

Hydraulic conductivity in aquifer 0.0747

Longitudinal dispersivity in aquifer 0.0737

Particle diameter in aquifer 0.0726

Temperature in aquifer 0.0726

Aquifer porosity 0.0716

Vertical dispersivity in aquifer 0.0695

Receptor from site (distance) 0.0684

Aquifer thickness 0.0684

Bulk density in aquifer 0.0674

Transverse dispersivity in aquifer 0.0653

Beta 0.0590

Biodegradation rate in aquifer 0.0579

Saturated conductivity in UZ 0.0558

Alpha 0.0558

pH in aquifer 0.0495

Porosity in UZ 0.0484
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contaminant ever penetrated to that sector of the subsurface environment. Were the
leachate infiltration rate to be very high, however, the same conclusion may not be tenable.

For the task of predicting high-end exposure concentrations in a screening-level analysis,
knowledge of how to parameterise the contaminant attenuation mechanisms -- other than
dilution -- is the most significant item of quantitative information for site characterisation
(and thus a priority for the allocation of funds to any further fact-finding).

Results: Performance Over the Entire Distribution

In general, the relative degrees of significance of the model's parameters in discriminating
between target and non-target performances at various other percentile contaminant
concentrations do not differ greatly from those at the high-end exposure. This is easily
seen from Figure 5-1, where the numbering of each significance "path" denotes the
parameters as so numbered, i.e., ranked, in Table 5-1(f) for the 10th-percentile analysis.
A natural means of grouping the parameters of EPAMMM is apparent from Figure 5-1, as
follows:

Group I: The three coefficients of longitudinal, transversal and vertical
dispersion in the saturated zone, and the distance from the source
to the receptor site (upper "bundle" of paths in Figure 5-1(a)).

Group II: The source penetration depth (H); the rate of leachate infiltration;
the hydraulic conductivity of the saturated zone; the seepage
velocity, i.e., the rate of vertical movement of water downwards
through the unsaturated zone; and the rate of recharge of the
saturated zone (lower "bundle" of paths in Figure 5-1(a)).

Group III: All remaining parameters (Figure 5-1(b)).

Bearing in mind the fact that the following comments refer strictly to the case of
contaminants that are non-biodegradable and have a low adsorption capacity, the Group
I parameters are clearly key parameters whatever the percentile concentration, including
the high-end (95th-percentile) exposure. These parameters are important in determining
not only the overall degree of contaminant attenuation along its flow-path, but also the
uncertainty attached to the resulting residual exposure concentration. For example, a
comparison of the central tendencies of the distributions of Figures 4-1 and 4-2 shows that
increasing the distance to the receptor site from 50-100m to 1000m decreases the
exposure concentration from about 0.0500 to 0.0010 g/m3 (for the loam soil), and from
about 0.0650 to 0.0015 g/m3 (for the sandy clay-loam). Further, Figure 5-2 shows that 
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Figure 5-1 (a) Ranking of parameter sensitivity; numbers
identifying parameters reflect the ordering of
parameters in table 5-1 (f).
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Figure 5-1 (b) Ranking of parameter sensitivity; numbers
identifying parameters reflect the ordering of
parameters in Table 5-1 (f).
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when the coefficients of dispersion are assumed known with certainty, a significantly
narrower band of exposure concentrations results. We will resume this form of analysis in
the following section. Reflection on how well the elements of the Group I parameters might
be known bears both encouraging and discouraging insights: whereas the distance to the
receptor site might be well known, the same is not true for the coefficients of dispersion 
which, still less encouragingly, may be scale-dependent properties.

The significance of the Group II parameters is much less than that of the Group I
parameters; in fact, it is more akin to that of the Group III (redundant) parameters. This is
true even for parameter (5), the source penetration depth, which is a key parameter at the
lowest percentile, but declines in significance towards the higher percentiles, parallel with
the trend in the coefficient of vertical dispersion (parameter (4) in Figure 5-1(a)). The two
are, indeed, related, source penetration being a function of the square-root of the
coefficient of vertical dispersion, so that when the latter is assumed known with certainty,
the significance of the source penetration depth disappears (as in the results of Table 5-2).
The dramatic, yet opposite, differences in significance of parameters (7) and (21), i.e.,
between the 10th-percentile and all other percentiles, are a salient feature of Figures 5-1(a)
and 5-1(b). These parameters are, respectively, the percentage of organic matter in the
unsaturated zone and the rate of recharge of the saturated zone. If mechanisms of
attenuation in the unsaturated zone are important at the lowest residual contaminant
concentrations -- such as adsorption, which is a function of the organic matter content --
further dilution, as afforded by the rate of recharge of the saturated zone, is unlikely to play
a key role. The results, then, have a measure of self-consistency, in the sense that a
plausible explanation drawn from prior beliefs can be advanced to explain them.

Since the Group III parameters are largely redundant, a discussion thereof might likewise
seem redundant. However, the significance of many of the parameters associated with the
unsaturated zone fall into this third category, a result foreshadowed in the analysis of
discriminating power in Section 4.1. Therefore, it is natural to enquire whether inclusion of
the unsaturated zone module in EPAMMM is really essential, when the model is to be
applied to a Subtitle D facility with respect to a conservative contaminant. Figure 5-3
shows the results of a test in which the module for the unsaturated zone has been
excluded altogether. Under these specific conditions, the conclusion must be that the
unsaturated zone plays no significant role and the associated module of software might be
omitted, with significant consequential computational savings.

Taking stock of these results as a whole, let us recall that the trustworthiness of the model
has been assessed with respect to a number of minor variations on the basic task of
predicting a particular percentile value of the residual exposure concentration of the
contaminant. Is it, therefore, especially well suited to one or the other of these minor task
variations? Does this form of "wind-tunnel" testing of the current design of the model
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indicate that it would be relatively more appropriate for achieving one form of "eventual
flight" as opposed to another? Is there any summary, quantitative means of making such
a judgement?

It has been argued elsewhere (Beck et al (1995; 1997)) that some numerical function of
the key and redundant parameters, for example, simply the ratio of (key/total) numbers of
parameters, might offer a means of judging the validity of a candidate model design. Or,
where just a single model is being considered for several predictive tasks (as here), it could
be suggested that the model will be more relevant (better suited) to performing one task
than another when the maximum number of its constituent parameters are key to the
performance of the given task. From Tables 5-1(a) through 5-1(f), however, we find that
the number of key parameters varies between 4 and 6, out of a total of 29 parameters (in
this particular application of the model). This small variation hardly seems a promisingly
sensitive discriminant of whether a model should (or should not) be used for the given
predictive task. Alternatively, a good model design for performing a predictive task might

be one in which all the constituent parameters have an important role to play with few
redundant elements, a measure that might be constructed as some function of the
Kolmogorov-Smirnov statistic (dmax) in Tables 5-1(a) through 5-1(f). This is a highly
speculative assertion and we shall defer further discussion of it until Section 7.

6 Towards a Global Form of Sensitivity Analysis

The identification of which (key) constituent model parameters we would most want to have
good knowledge of, as in the foregoing, is clearly important, but perhaps not sufficient.
There may also be a need to determine just how well the key parameters should be known
in order to perform the given task. This latter -- in fact, an inverted form of it -- is the
question to which we now turn. In this last section of the present analysis our concern is
to establish which of the key parameters identified above, if known better, would be of the
greatest significance in reducing the uncertainty of the model's predictions? To be still
more precise: to what extent would perfect knowledge of a key parameter induce a shift
in the central tendency and/or the spread of the distribution of the predicted exposure
concentrations?

In order to answer this question, a number of comparative sets of Monte Carlo simulation
may be undertaken as follows, for each key parameter identified. The first set is generated
in a manner identical with that already used in Section 4, i.e., with all the parameters of the
model ("") sampled from within their respective ranges of plausible values (as given in
Table 4-1). This will be denoted as the reference case and the cumulative distribution
function so obtained for the residual concentration (y) will be denoted as F. The other sets
of simulations, for each (key) parameter, "i, are then generated according to the following
procedure:
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(i) n discrete values of the parameter "i are selected, uniformly spaced over the
range of plausible values allowed for this parameter, i.e., "i1, "i2, ..., "in;

(ii) a Monte Carlo simulation is conducted for each "ik (k = 1, 2, ..., n), in which
 all other parameters are assumed not to be known with certainty and are

sampled across ranges identical with those of the reference case, thus
yielding an accompanying cumulative distribution function Fik for the
exposure concentration (y).

The means, standard deviations and 95th-percentile values of F and Fik are then
compared. In practice n is chosen as five or six. Of the various key parameters previously
identified, four were selected for this analysis: the distance between the source and
receptor sites; the rate of leachate infiltration into the unsaturated zone; the hydraulic
conductivity of the saturated zone; and the rate of recharge of the saturated zone.

Results

From Figure 6-1 we conclude that perfect knowledge of the hydraulic conductivity of the
saturated zone is of marginal value: in sum, it has hardly any bearing on the properties of
the distribution of the exposure concentration.

Quite the opposite is the conclusion in the case of the distance between the source and
receptor sites. The distributions Fik are entirely altered in the light of perfect knowledge of
this parameter (Figure 6-2). Whether the distance is 50m or 100m has a significant bearing
on the mean of the predicted exposure concentration (Figure 6-2(a)). Moreover, across the
range of its values ("ik) the spread of the predicted distribution is substantially narrowed
(according to both the 95th-percentile relative to the mean (Figure 6-2(a)) and the standard
deviation of Figure 6-2(b)). In other words, providing the source-receptor distance is well
known, and irrespective of its actual value, the residual exposure concentrations can be
relatively "tightly" predicted.

Perfect knowledge of the rate of recharge of the saturated zone also has significant
consequences, in the sense of shifting the whole of the distribution of exposure
concentration as a function of the particular value assigned to this parameter (Figure 6-
3(a)). The effect of dilution with increasing recharge rate is clearly evident in reducing the
exposure concentration. However, any investment in acquiring perfect knowledge of this
parameter would not bring benefits -- in terms of reducing the spread of the predicted
distribution -- that are comparable with those deriving from perfect knowledge of the
source-receptor distance, since there was hardly any diminution in the standard deviation
of the Fik relative to that of F (Figure 6-3(b)).
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The results for the rate of infiltration of the leachate into the unsaturated zone are similar
in significance to those of the rate of recharge of the saturated zone, although opposite in
sense (Figure 6-4(a)). There is also evidence of a nonlinearity in the relationship between
the infiltration rate parameter and the predicted exposure concentration. Above 0.3my-1 the
predicted exposure concentration may exhibit a threshold effect (Figure 6-4(a)).
Furthermore, this threshold value is predicted with notably less uncertainty than for the
remainder of the ranges of prediction (as gauged by the decline in the standard deviation
of the distribution in Figure 6-4(b)).

If further field observations were thought desirable, our results allow us to specify some
priorities: one should seek first to improve knowledge of the source-receptor distance, then
of either the recharge rate or leachate infiltration rate and, last of all, of the hydraulic
conductivity (which is so often the primary target of aquifer characterisation). If one were
to define the conditions most conducive to the making of relatively "reliable" predictions
from EPAMMM for a Subtitle D facility, the site should have a relatively high hydraulic
conductivity, a high infiltration rate, a high recharge rate, and a source-receptor distance
that can be measured accurately. These conclusions, however, are conditional upon the
particular nature of the task specification of Section 5, which relates to a non-
biodegradable contaminant with low adsorption capacity.

7 Coming to a Judgement on the Trustworthiness of a Model

Our analysis has addressed the issue of establishing how well the Environmental
Protection Agency's Multi-Media Model (EPAMMM) performs as a tool for discriminating
between sites that are of concern, and those that are of no concern, with respect to the risk
of contamination of the sub-surface environment. Throughout, we have sought to project
the terms of the debate on model validation into a domain somewhat broader than the
classical notion of demonstrating the match of the model with observed history (Konikow
and Bredehoeft, 1992; Beck et al, 1997). In particular, in Section 5, we introduced the idea
of judging the trustworthiness of the model according to a task specification -- prediction
of a high-end or low-end exposure level -- and as a function of the internal attributes of the
model (numbers of key and redundant parameters), as opposed to features associated
with its output responses. In the conventional terms of matching history, quantification of
the goodness of a model's performance is well known and straightforward: it is epitomised
by the residual errors of mismatch between observed and simulated behaviour.
Furthermore, the distinction between good and poor performance is obvious; it resides in
the difference between the smallness or largeness of the residual errors. It is not nearly as
immediately obvious how one would judge the quality of a model designed to fulfil a
predictive task, since there are no histories of observed behaviour. In this section, we
conjecture on the terms in which such a judgement might be developed. Our purpose is
strictly to provide a framework within which to open a debate.
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6-4 (a) Behaviour of infiltration rate under global sensitivity analysis......missing, from
available electronic records used to create this reprint.
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6-4 (b) Behaviour of infiltration rate under global sensitivity analysis......missing, from
available electronic records used to create this reprint..
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In the present analysis "goodness of performance" has been described somewhat
informally in the following three ways:

(i) A well-performing model should generate predicted receptor site
concentrations of contaminants that are distinctly different (in a statistical
sense) for distinctly different site, field, and contaminant characteristics. If
our prior (subjective) expectations are consistent with the predicted result --
in the sense that what we believe to be quite different sites are associated
with quite different predictions of contaminant concentrations -- this has a 

self-reinforcing effect. We are comfortable with the model and our prior expectations have
been confirmed. If the expectation and outcome are inconsistent, either further
investigation will be necessary in order to reconcile the two (by a change of expectation or
model or both), or one could accept the expectation and the model as conditionally valid,
but merely served by "insufficiently certain" knowledge of the model's parameters and
inputs.

(ii) Given a specified task of prediction, such as the task of predicting a high-end
exposure concentration at the receptor site, a well-performing model will
contain a relatively large proportion of key parameters, i.e., parameters for
which the choice of a particular value (from within the range of possibilities)
is critical to discriminating between whether any given exposure
concentration is predicted or not. Moreover, there will be greater confidence
in the model the better these key parameters are believed to be known (or
identifiable from some prior exercise in model calibration). The result that all
(or a majority of) the model's key parameters are believed to be the least well
quantified, for example, would be most disquieting for any judgement about
the reliability of such a model in performing a predictive task. This outcome
of the analysis will be all the more disconcerting if these key parameters can
only be better quantified as a consequence of further highly costly
experimentation and field monitoring.

(iii) An ill-performing model may be capable of being improved, as the foregoing
suggests (and as widely appreciated, e.g., Beck, 1987; Janssen, 1994),
providing the uncertainty attached to the knowledge of the model's key
parameters can be reduced. A good model is, therefore, one in which perfect
knowledge of the values of key parameters would permit (in principle)
substantial reductions in the uncertainty attached to the model's predictions.

In none of these three elements is there a presumption of the availability of actually 
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observed (past) performance, i.e., measured contaminant concentrations at the receptor
site against which to evaluate the trustworthiness of the model. In a screening-level
analysis, the predominant concern lies not so much in demonstrating that history has been
matched (Konikow and Bredehoeft, 1992) but in calibrating the performance of the model
with reference to some predictive task (Beck et al, 1997). A good design of the model for
the purpose of performing this task is what is sought. In the above, element (ii), in
particular, is oriented towards an assessment of this feature and we now explore what
might be revealed through an analysis of the dmax statistics of Tables 5-1.

An Indicator of the Quality of the Model's Design

For illustrative purposes in presenting the potential power of a novel way of assessing
whether a model is (relatively) better or worse suited to performing a given predictive task,
we focus on Tables 5-1(a) and 5-1(d), which give values of dmax for the tasks, respectively,
of predicting the 95th- and 50th-percentiles of the exposure concentration at the receptor
site.

Figure 7-1 shows the (normalised) frequency distributions of a statistic, [(dmax(i )/d
* )-1],

we have developed for comparing the performances of the model against the two
predictive task specifications. As before, for any parameter "i, dmax(i ) is the maximum
separation of the cumulative distributions of the "target behaviour-giving" values {"i(T)} and
the "not-target behaviour-giving" values {"i(T) )}. d* is a value of the Kolmogorov-Smirnov
statistic chosen to discriminate with a given degree of confidence between significant and
insignificant maximum separations of these two cumulative distributions. d* has, therefore,
the same role as dm,n previously, yet unlike dm,n will be invariant and independent of the
differing magnitudes of m and n arising from tests against the various task specifications.
The dm,n values for a given level of confidence can be seen to vary somewhat in Tables 5-
1(a) through 5-1(f), for example, as a function of the varying m and n associated with
varying numbers of random candidate parameterisations classified as behaviour- and not-
behaviour-giving for the different task specifications. To summarise, d* has here the
function of a normalising parameter, allowing different distributions of the model's
"parametric significances" -- with respect to discriminating whether the task specification
is matched or not -- to be compared on a consistent basis, irrespective of the given task.
In principle, our statistic may be used to compare either the performance of the same
model against different tasks (as herein) or the performances of different models, with
different numbers of parameters, against the same task specification. Once normalised as
a plot of the relative frequency distributions for [(dmax(i )/d* )-1] (the parametric
significances), the number of parameters in any model (indexed here through i ) can to
some extent be abstracted from the judgement on the quality of model performance. The
effect of d* is to scale the plot of the distribution of parametric significances so that 0.0
separates insignificance (redundancy) from significance (the results of Figure 7-1 are
based on a value of d* reflecting a level of 
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     2 Note that this is not a statement of an absolute property but rather one of a more "relativistic" character.
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confidence of 0.001). In general, if the distribution of the parametric significances were
skewed towards the right, this would suggest the model contains a relatively large number
of parameters that are key in the performance of the specified task. If the distribution were
skewed towards the left, the model might be said to be suffering from a preponderance of
redundant parameters, relative to the task at hand.

Figure 7-1 shows that in performing predictive tasks, a majority of the constituent
parameters of EPAMMM appear to be redundant, especially so in the case of predictions
required to discriminate exposures above and below the 50th-percentile. At the same time,
a small number of the model's parameters (13%) are critical to the performance of the two
tasks, notably more so in the case of the 95th-percentile task. In very general terms we
might be tempted to conclude from Figure 7-1 that EPAMMM is better suited to performing
the task of predicting high-end exposures relative to the prediction of mean exposure
concentrations2. Put in more familiar terms, we might say that EPAMMM is a better-
designed tool for predicting high-end as opposed to mean exposure concentrations. This
conclusion would be subject, of course, to the qualifying statement that the parameters
associated with the highly positive values for the statistic in Figure 7-1 are relatively well
known.

Having been tempted to draw such conclusions, however, it must be noted that the validity
of computing and using the distribution of our proposed statistic (or index) has yet to be
fully evaluated by much more extensive analyses. For instance, the legitimacy of using a
single value for d*, when dm,n varies significantly as a function of small magnitudes for either
m or n for some of the assessments of the model's performance against the various task
specifications, has to be established. Similarly, judgements about the character of the
relative frequency distribution of our statistic may be compromised in cases where the
number of parameters in the model is very small. We also note that use of the Kolmogorov-
Smirnov statistic may have its limitations and that assessment of the model as a function
of attributes of its individual parameters, as opposed to key and redundant clusters of
parameters, should be interpreted with great care (Spear et al, 1994). Nevertheless, here --
in Figure 7-1 -- is a quantitative measure of the quality of a model conditioned upon how
that model performs a task of prediction, including projection into utterly novel conditions,
not upon how the model matches observed past behaviour. This measure is cast in terms
of the internal features of the model itself. Further, we might imagine that a particular
shape of the distribution of [(dmax(i )/d

* )-1] could be attached to the concept of a well-
designed model. For example, this might be a distribution in which there are not too many
redundant parameters (associated with the left tail of the distribution) nor a few excessively
key parameters, affecting the distribution towards its right tail. In these respects, we argue
that our new statistic and its associated analysis have, in principle, great appeal. This
appeal, 
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moreover, is tied closely to the practical purpose of decision-making for which the model
was designed and developed.

Complexity in the Type and Weight of Evidence

Put briefly, given a predictive task, should we use a given model? If the answer is in the
affirmative, according to what evidence have we arrived at this judgement? If the answer
is in the negative, why should this be so, which parts of the model are defective, and what
do we need to know in order to remedy these defects?

What, then, can we say of the performance of EPAMMM as a result of its being subjected
to the above battery of tests relative to its intended application in screening a large number
of storage (Subtitle D) facilities for the potential off-site exposures and risks due to
contamination arising therefrom?

EPAMMM does not discriminate strongly among predictions of receptor-site contaminant
concentrations for different soil types, a result inconsistent with prior expectation. If we wish
to leave this expectation unchallenged, we could ascribe poor model performance to the
use of easily available soil characteristics as surrogates for the not-so-easily available, but
more vitally important, hydrological characteristics of the sites. For a given site and soil
type, however, the model discriminates well among different residual concentrations arising
from contaminants differing strongly in their migration and attenuation mechanisms
(biodegradation, hydrolysis, and adsorption). This seems at first site an attractive property.
Yet, upon brief reflection, it indicates that the discriminating power of the model is a
function of parameters that are notoriously difficult to quantify under field conditions.

When given the task of predicting high-end exposure concentrations, knowledge of how
to parameterise the contaminant attenuation mechanisms -- other than attenuation by
dilution -- is the most significant item of quantitative information needed for good
performance. This conclusion seems obvious, until one recalls the crucial role that "dilution
as the solution to pollution" has played in so much of our decision-making in the past. The
same conclusion is robust across a range of other tasks, i.e., across the prediction of other
(low, moderate) exposure concentrations, but the quality of the model's performance
shows diverging features. According to the distributions of our proposed measure of the
quality of a candidate model (a manipulation of the Kolmogorov-Smirnov test statistic),
EPAMMM appears to be well suited to the task of predicting the 95th-percentile
concentration yet ill suited to that of predicting the 50th-percentile concentration.

If further field observation and site characterisation were thought desirable, one should
seek first to improve knowledge of the source-receptor distance, then of either the 
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recharge rate or leachate infiltration rate and, last of all, of the hydraulic conductivity (which
is so often the primary target of aquifer characterisation). In this sense -- of a capacity to
perform well when given appropriately good knowledge of the system under investigation --
EPAMMM shows much promise as a model of quality.

All of these conclusions, however, are based on a complex assembly of evidence, in which
there is a danger of overlooking some of the subtleties of the way in which the battery of
tests has been constructed and applied in order to arrive at such judgements on the quality
of the model. Interpretation of the results of the tests, moreover, is far from straightforward
and in fact requires a fairly intimate knowledge of the inner workings of the model. This is
troubling, for EPAMMM is not a notably complex, high-order model. It is also troubling
because one is seeking to distil all of the complexity and subtlety down to the essential
simplicity of a choice between just two alternatives: to trust or not to trust the use of the
model in performing a predictive task.

8 Conclusions

Discriminating which might be the more problematic sites for the storage of hazardous
materials from those that are unlikely to be problematic -- in order to set priorities for
allocating the scarce resources for remediation -- is a task of considerable current interest.
It is beset with great uncertainty. There are many such sites whose performance has not
been well monitored; and the liquid contaminants from most of these sites are likely to
have their greatest impact on the subsurface aquatic environment, whose properties are
intrinsically more difficult to characterise than those of the surface water environment. If
a model is to be used to support the decisions on what is, and what is not, to be a site
requiring remediation, it is highly pertinent to ask whether the performance of the model
in fulfilling this task is rendered ineffective by the uncertainty and, more broadly, for what
predictive tasks would the model be well or ill suited. Both avenues of enquiry have been
the subject of this paper, in the specific context of using the US Environmental Protection
Agency's Multi-Media model (EPAMMM) for Subtitle D storage facilities.

Our first conclusion is that, for the conditions of the tests constructed herein,
characterisation of a site's subsurface hydrological behaviour on the basis of the more
readily available soil-type parameters and knowledge of the often-sought hydraulic
conductivity of the saturated zone are, in general, not critical to the discriminating power
of EPAMMM. In fact, for the predictive power of the model to rise above the obscuring
effects of all the uncertainties, good knowledge of the source-receptor distance and
chemical and biological (as opposed to physical) mechanisms of contaminant attenuation
would appear to be most vital. Such a conclusion has an element of counter-intuition in it,
an element of promise (successful application of the model may depend on something that
should be easily quantifiable), but also the detraction of that successful application 
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being reliant upon properties that are notoriously difficult to estimate in the field. In order
to arrive at this kind of conclusion, which -- in the absence of the many qualifying
conditions of the model tests -- is clearly much simplified, we have introduced a more
globally applicable form of senstivity analysis than the now well known regionalised
sensitivity analysis of Hornberger, Spear and Young.

Our second conclusion is the speculation that EPAMMM is better suited to the prediction
of high-end exposure concentrations (95%-ile) than average exposure concentrations
(50%-ile) at the defined receptor site. Such a statement is speculative because it is based
on but a preliminary analysis using a novel measure of the quality of a model in performing
a predictive task, without recourse to any quantification of the extent to which the model
can match an observed historical record. This is therefore directly in line with recent
statements on a means of escape from the conventional impasse of procedures for model
validation (Beck et al, 1995; 1997): of having to assess the trustworthiness of a model for
projection into the unknown as a function solely of its consistency with past observed (and
possibly irrelevant) conditions. The index is based on a manipulation of the Kolmogorov-
Smirnov statistic for comparing sample distributions of the model's parameters, a feature
which also lies at the core of a regionalised sensitivity analysis. This index therefore
gauges the quality of the model (in performing a predictive task) in terms of attributes of
its parameters, i.e., in terms of its internal structure, as opposed to attributes of its outputs.

Last, the battery of tests applied to EPAMMM in this paper, together with the results of
others of a more conventional nature (when applicable), could form the basis of a
systematic protocol for model validation. However, the experience of this prototypical case
study gives us cause for concern, on the following account. Interpretation of the test results
is not at all straightforward. It demands very careful attention to the precise details of the
conditions assumed for the tests and a rather comprehensive mental model of the inner
workings of the mathematical model. Quite apart from the fact that this mental model may
actually be defective, it is not hard to imagine that the outcome of applying the mooted
protocol would be a statement circumscribed by so many restrictive qualifications as to
render the judgement "this model is valid for its given task" almost without import.
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