ξ_{s}孚

How to Calculate a Chloride Equivalent for the Total Chlorine Standard

The hydrogen chloride (HCl) and chlorine gas $\left(\mathrm{Cl}_{2}\right)$ standard - also known as the total chlorine standard - of $\S \S 63.1203,63.1204$, and 63.1205 is expressed in terms of "parts per million by volume, combined emissions, expressed as hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen." This document shows how to calculate a chloride $\left(\mathrm{Cl}^{(-)}\right)$equivalent for the total chlorine standard.

Analytical results using the Method 26 sampling train are often reported in $\mathrm{mg} / \mathrm{dscm} \mathrm{HCl}$ and Cl_{2}. Steps 1 and 2 can be used to convert stack gas concentrations from $\mathrm{mg} / \mathrm{dscm}$ to a $\mathrm{Cl}^{(-)}$ equivalent in ppmv assuming the species behaves as an ideal gas.

Step 1: Convert Method 26 Results from $\mathbf{m g} /$ dscm to ppmv

Separately convert the HCl and Cl_{2} results to ppmv using either Equation 1 or the summary table.

Assumptions:

- Gas at standard conditions (temperature of $20^{\circ} \mathrm{C}$, and pressure of 1 atm)
- Ideal gas molecular volume is $22.4 \mathrm{~L} / \mathrm{mol}$ at $0^{\circ} \mathrm{C}$ and 1 atm
- Stack gas concentration of species being corrected to 7\% oxygen

Equation 1:
$(A$ ppmv $)=\frac{\left(\mathrm{B} \frac{\mathrm{mg}}{\mathrm{dscm}}\right) \times\left(22.4 \frac{\mathrm{~L}}{\mathrm{~mol}}\right) \times\left(\frac{293 \mathrm{~K}}{273 \mathrm{~K}}\right) \times\left(1 \times 10^{6} \mathrm{ppmv}\right)}{\left(\mathrm{M} \frac{\mathrm{g}}{\mathrm{mol}}\right) \times\left(1000 \frac{\mathrm{~L}}{\mathrm{dscm}}\right) \times\left(1000 \frac{\mathrm{mg}}{\mathrm{g}}\right)}$

Where:
$\mathrm{M}=$ molecular weight of species. For example, the molecular weight of HCl is 36.5 $\mathrm{g} / \mathrm{mol} ; \mathrm{Cl}_{2}$ is $70.9 \mathrm{~g} / \mathrm{mol}$; and $\mathrm{Cl}^{(-)}$is $35.5 \mathrm{~g} / \mathrm{mol}$.
$\mathrm{A}=$ concentration in ppmv (at 7\% oxygen)
$B=$ concentration in $\mathrm{mg} / \mathrm{dscm}$ (at 7\% oxygen)
Summary Table of Conversion Factors (using Equation 1):

Species $(\mathrm{mg} / \mathrm{dscm})$	To Convert from mg/dscm to ppmv, Multiply		
by		\quad	HCl
:---			

Step 2: Calculate Total Chlorine Emissions as a Chloride Equivalent
Convert the HCl and Cl_{2} results from Step 1 to a $\mathrm{Cl}^{(-)}$equivalent using Equation 2

Equation 2:
$\mathrm{Cl}^{(-)}$Equivalent $(\mathrm{ppmv})=\mathrm{HCl}(\mathrm{ppmv})+\left[2 \mathrm{x} \mathrm{Cl}_{2}(\mathrm{ppmv})\right]$

Alternative Calculation of a $\mathrm{Cl}^{(-1)}$ Equivalent

Convert Method 26 analytical results from $\mathrm{mg} / \mathrm{dscm}$ to a $\mathrm{Cl}^{(-)}$equivalent in ppmv using Equation 3.

Equation 3:
$\mathrm{Cl}^{(-)}$Equivalent $(\mathrm{ppmv})=\quad\left[[\mathrm{HCl}(\mathrm{mg} / \mathrm{dscm}) \times(35.5 / 36.5)]+\mathrm{Cl}_{2}(\mathrm{mg} / \mathrm{dscm})\right] \times(0.677$ ppmv / mg/dscm)

Sample Calculation

What is the total chlorine emissions on a $\mathrm{Cl}^{(-)}$equivalent basis if HCl is $100 \mathrm{mg} / \mathrm{dscm}$ and Cl_{2} is $10 \mathrm{mg} / \mathrm{dscm}$? Both measurements are at 7% oxygen.

Step 1: Convert to ppmv
$\mathrm{HCl}(\mathrm{ppmv})=(100 \mathrm{mg} / \mathrm{dscm}) \times(0.659 \mathrm{ppmv} / \mathrm{mg} / \mathrm{dscm})=65.9 \mathrm{ppmv}$
$\mathrm{Cl}_{2}(\mathrm{ppmv})=(10 \mathrm{mg} / \mathrm{dscm}) \times(0.339 \mathrm{ppmv} / \mathrm{mg} / \mathrm{dscm})=3.4 \mathrm{ppmv}$
Step 2: Convert to a $\mathrm{Cl}^{(-)}$equivalent
$\mathrm{Cl}^{(-)}$Equivalent $(\mathrm{ppmv})=65.9 \mathrm{ppmv}+(2) \times(3.4 \mathrm{ppmv})=73 \mathrm{ppmv}$
Or, alternatively, using Equation 3:
$\mathrm{Cl}^{(-)}$Equivalent $(\mathrm{ppmv})=[[(100 \mathrm{mg} / \mathrm{dscm}) \times(35.5 \mathrm{~g} / \mathrm{mol} / 36.5 \mathrm{~g} / \mathrm{mol})]+10 \mathrm{mg} / \mathrm{dscm}] \times$ $(0.677 \mathrm{ppmv} / \mathrm{mg} / \mathrm{dscm})=73 \mathrm{ppmv}$

