

Final Technical Support Document for HWC MACT Standards

Volume VI

Development of Comparable Fuels Specifications

U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response (5305) 401 M Street, SW Washington, D.C. 20460

MAY 1998

ACKNOWLEDGEMENTS

This document was prepared by the U.S. EPA's Office of Solid Waste, Waste Management Division. Energy and Environmental Research Corporation (EER) provided technical support under EPA contract No. 68-D2-0164. Paradigm Laboratories Incorporated performed all of the analyses on the fuel oils as a subcontractor to EER under EPA contract No. 68-D2-0164.

ABSTRACT

This report provides detailed tests results for the analysis of eight (8) gasoline samples, eleven (11) No. 2 fuel oil samples, one (1) No. 4 fuel oil sample, and seven (7) No. 6 fuel oil samples from various geographic regions around the country. The combustion fuel samples collected for the program were characterized for the chemical and physical properties and the presence of the hazardous constituents listed in 40 CFR Part 260 Appendix VIII. Then statistical analyses, to estimated percentiles from the distribution of concentrations and from each chemical compound within each fuel type, was performed by Science Applications International Corporation (SAIC). For each individual fuel type, the 90th percentile was estimated for each chemical compound. For the composite fuel types, estimates of the 90th and 99th percentiles were calculated for each chemical compound.

TABLE OF CONTENTS

1.0	INTRO	DUCTION 1-	-1
	1.1	Benchmark Fuel Selection Basis 1	-6
	1.2	Parameters and Rationale for Comparable Fuels Specifications	
		1.2.1 Heating Value	
		1.2.2 Kinematic Viscosity 1	-10
		1.2.3 Flash Point	
		1.2.4 Total Halogens 1-	-11
		1.2.5 Total Nitrogen 1	-13
		1.2.6 Metals	
		1.2.7 Organics	-14
	1.3	Parameters and Rationale for Synthesis Gas Fuel Specifications 1-	
		1.3.1 Heating Value	-15
		1.3.2 Hydrogen Sulfide 1-	-17
		1.3.3 Nitrogen (other than N_2) 1.	
	1.4	Collection of Liquid Fossil Fuel Samples Used for Analysis	
		to Determine Benchmark 1	-18
		References 1-	-20
2.0		LING AND ANALYSIS 2-	
	2.1	Analysis of Samples 2-	
	2.2	GC/MS Volatiles 2-	
		2.2.1 Method Summary 2-	
		2.2.2 Sample Preparation 2-	
		2.2.3 Instrumental Analysis 2-	
		2.2.4 Quality Control 2.	
		2.2.5 Analytical Difficulties 2	
	2.3	GC/MS Semi-Volatiles 2-	
		2.3.1 Method Summary 2-	
		2.3.2 Sample Preparation 2-	
		2.3.3 Instrumental Analysis 2	
		2.3.4 Quality Control 2.	
		2.3.5 Analytical Difficulties 2-	
	2.4	High Pressure Liquid Chromatography (HPLC) 2-	
		2.4.1 Method Summary 2-	
		2.4.2 Sample Preparation 2-	-13
		2.4.3 Instrumental Analysis 2-	-13
		2.4.4 Quality Control 2-	-13
		2.4.5 Analytical Difficulties and Recommendations 24	-14

Section

Page

TABLE OF CONTENTS (Cont.)

Section

2.5	Dioxin	s and Dibenzofurans	2-15
	2.5.1	Method Summary	2-15
	2.5.2	Sample Preparation	2-17
	2.5.3	Instrumental Analysis	2-17
	2.5.4	Quality Control	2-17
	2.5.5	Analytical Difficulties and Recommendations	2-17
2.6	Herbici	ides	2-18
	2.6.1	Method Summary	2-18
	2.6.2	Sample Preparation	2-18
	2.6.3	Instrumental Analysis	2-18
	2.6.4	Quality Control	2-18
	2.6.5	Analytical Difficulties and Recommendations	2-19
2.7	Metals		2-19
	2.7.1	Method Summary	2-19
	2.7.2	Sample Preparation	2-19
	2.7.3	Instrumental Analysis	2-19
	2.7.4	Quality Control	2-20
	2.7.5	Analytical Difficulties and Recommendatiions	2-21
2.8	Pesticio	des and PCBs	2-21
	2.8.1	Method Summary	2-21
	2.8.2	Sample Preparation	2-21
	2.8.3	Instrumental Analysis	2-22
	2.8.4	Quality Control	2-22
	2.8.5	Analytical Difficulties and Recommendations	2-22
2.9	Heating	g Value	2-23
	2.9.1	Method Summary	2-23
	2.9.2	Quality Control	2-23
2.10	Specifi	c Gravity	2-23
	2.10.1	Method Summary	2-23
	2.10.2	Quality Control	2-23
	2.10.3	Analytical Difficulties and Recommendations	2-24
2.11	Flash F	Point	2-24
	2.11.1	Method Summary	2-24
	2.11.2	Quality Control	2-24
2.12	Total H	Halogens	2-24
	2.12.1	Method Summary	2-24
	2.12.2	Quality Control	2-25
	2.12.3	Analytical Difficulties and Recommendations	2-25
2.13	Total N	Nitrogen	2-26

TABLE OF CONTENTS (Cont.)

Section

	2.14	2.13.1Method Summary2-262.13.2Quality Control2-26General Matrix Spike and Laboratory Control Sample Recovery2-27
	2.15	Analysis for Total Aromatic Hydrocarbons and
		Total Polynuclear Aromatic Hydrocarbons 2-27
3.0	RESU	LTS
	3.1	Statistical Analysis Results (SAIC) 3-1
		3.1.1 Estimates for Each Individual Fuel 3-4
		3.1.2 Estimates from Composite 246 3-6
		3.1.3 Estimates from Composite of All Fuel Types 3-7
		3.1.4 Estimates from Additional Halogen Data 3-9

Appendices

APPENDIX A - LABORATORY DATA	
APPENDIX B - CONSTITUENT LEVELS	
APPENDIX C - SAIC - STATISTICAL ANALYSIS RESULTS	
APPENDIX D - MDL LEVELS	
APPENDIX E - QUALITY ASSURANCE RESULTS	
APPENDIX F - CONSTITUENTS NOT IN FINAL RULE	

LIST OF TABLES

SectionPageTable 1-1Analytical Parameters and Constituents
for Comparable Fuel Study1-5Table 1-2Comparison of the Metal and Halogen Content of Coal, Gasoline,
and Fuel Oils1-8Table 1-3Geographic Regions where Fuel Samples were Collected1-19Table 2-1Analytes from Appendix VIII Not Determined During Study2-6Table 2-2Comparable Fuels Procedure - Organics2-8

1.0 INTRODUCTION

This document provides technical background for the comparable fuel exclusion that is being considered for the final rule. As part of an April 19, 1996 proposed (60 FR 17459) rulemaking, EPA has developed a comparable fuel exclusion. A comparable fuel would be an ignitable waste or coproduct production stream, both of which are currently defined as a hazardous waste, which meet the specifications of the exclusion. Comparable fuels are burned for energy recovery, in lieu of fossil fuels, due to their high BTU value. Benefits derived from this procedure include decreased use of fossil fuels and reduced operational costs. Under this provision, a comparable fuel would be excluded from the Research Conservation and Recovery Act (RCRA), Subtitle C Regulation, as long as it meets the comparable fuel exclusion and is burned. Industry contends these waste streams are cleaner than the fuels displaced and that burning these waste streams provides an overall environmental benefit. EPA's goal is to provide a comparable fuel exclusion that is both useful to the regulated community and assures that comparable fuel poses no greater risk than what otherwise would be associated with the burning of fossil fuels.

The Agency's current approach is to base a comparable fuel exclusion on constituent concentrations normally found in fossil fuels. For this "benchmark" approach, the concept is to permit hazardous constituents in the comparable fuel which are no greater in concentration than those of the same constituents naturally occurring in commercially available fossil fuels. Additionally, the current approach will not allow detectable levels of toxic synthetic chemicals, such as pesticides, in the comparable fuels. This approach will assure EPA that the comparable fuel, when burned, will pose no greater risk than a fossil fuel. This document contains data on as many toxic organics from 40 CFR, Part 261, Appendix VIII as could be quantitated for each fuel sample collected during this study. The EPA developed a series of constituent specifications based on the following parameters: kinematic viscosity, total nitrogen, total halogens, individual metals, Appendix VIII organics, and BTU content of each fuel. EPA is proposing that these specifications apply to all hazardous gaseous and liquid fuels, with the exception of viscosity, which is not relevant

for gaseous fuels. Table 1-1 gives the units of measure for each of these constituents and the individual metals analyzed.

In the proposed rule for comparable fuels, EPA presented several options to establish a benchmark specification. This document presents the data used to develop the initial specification for the proposed rule and the specifications for the final rule. This document summarizes the rationale of the ?benchmark" approach used to set the specifications and discusses, with some detail, the analytical approach used to characterize the constituents of concern.

1.1 Benchmark Fuel Selection Basis

Potential benchmark fuels (on which to base the comparable fuel specifications) that were considered include the commercially available fossil fuels of: (1) gases (such as natural gas and propane); (2) liquids (such as gasoline and fuel oils); and (3) solids (such as coal, coke, and peat). However, the benchmark fuels have been limited to liquid fossil fuels, including gasoline and Nos. 2, 4, and 6 fuel oils. This is because, as discussed below, solid fuels tend to have higher levels of hazardous constituents that are not destroyed in the incineration process, while gases tend to have hazardous constituent levels that are sufficiently low to make the specification of limited practical use.

Solid fuels (such as coal, wood, and biomass) will not be used to base the comparable fuels specification. Solid fuels are used widely throughout the U.S. as legitimate energy sources. However, the comparable fuel specification, which would exclude a hazardous waste fuel from RCRA Subtitle C regulation, will not be based on solid fossil fuels (in particular, coal) since they can have high levels of toxic constituents that will not be destroyed or detoxified by burning (e.g., metals and halogens). It is generally desired to minimize the feed rate of metals and halogens into waste incineration systems because these constituents are not destroyed in the incineration process (unlike organics which are destroyed; inorganics are found in the bottom ash, air pollution control system residues, or stack gas emissions). It is not the intent of the comparable fuels exclusion to set

TABLE 1-1.ANALYTICAL PARAMETERS AND CONSTITUENTSFOR COMPARABLE FUEL STUDY

<u>Property of Interest</u>	<u>Units</u>	Described As
Heating Value	BTU/lb	min. or range
Kinematic Viscosity	cSt at 100°F	min. or range
Specific Gravity	at 15°C	range and average
Flash Point	°F	minimum
Total Nitrogen	weight %	maximum
Total Halogens:	ppm _w as Cl ⁻	maximum
Fluorine		maximum
Chlorine		maximum
Bromine		maximum
Iodine		maximum
Metals:		
Antimony	ppm_w^{-1}	maximum
Arsenic	ppm_w^{-1}	maximum
Barium	ppm_w^{-1}	maximum
Beryllium	ppm_w^{-1}	maximum
Cadmium	ppm_w^{-1}	maximum
Chromium	ppm_w^{-1}	maximum
Cobalt	$\mathrm{ppm}_{\mathrm{w}}^{-1}$	maximum
Lead	ppm_w^{-1}	maximum
Manganese	ppm_w^{-1}	maximum
Mercury	ppm_w^{-1}	maximum
Nickel	ppm_w^{-1}	maximum
Selenium	ppm_w^{-1}	maximum
Silver	ppm_w^{-1}	maximum
Thallium	ppm_w^{-1}	maximum
Appendix VIII Organics	ppm_w^{-1}	maximum
Total Aromatics	wt. %	maximum
Total PNAs	Wt. %	maximum

 1 ppm_w = mg/kg

specifications based on the ?dirtiest" fossil fuels. Comparison with these solid fuels could result in a least common denominator approach whereby a hazardous waste-derived fuel would be ?comparable" if it was no more dangerous to burn than the most contaminated fossil fuels. Such ?comparability" is not congruent with the overall objective of RCRA in order to protect human health and the environment. It is also inconsistent with the specific directive to regulate combustion of hazardous waste-derived fuels where necessary to protect human health and the environment (RCRA Section 3004(q)). Thus, although a benchmark approach is used rather than a risk-based approach, the benchmark fossil fuels that are selected, in general, have lower contaminant levels for constituents that are not destroyed in the incineration process.

Metals and halogen concentrations in coal are compared with that of gasoline and fuel oils (Nos. 2, 4, and 6) in Table 1-2. For coal, median, maximum, and minimum levels are shown, based on data from a recent IEA Coal Research report (Clarke and Sloss, 1992) and the Electric Power Research Institute (EPRI) PISCES database (Wetherold et al., 1995). Data for the liquid fossil fuels are given from three sources: (1) 90th percentile levels based on the recent EPA-sponsored testing specifically for developing the comparable fuels specifications; (2) for No. 2, 4, and 6 fuel oil, average levels based on that from the EPRI Pisces database (Wetherold et al., 1995); and (3) for fuel oil, levels from the EPA/OSW database on hazardous waste burning combustors (including boilers and incinerators).

None of the Clean Air Act metals were detected in the gasoline samples. Pb, Ni, Sb, and Se are the only metals typically found in the fuel oil samples (with the metals levels generally increasing with the fuel oil number). Metals levels in coal can vary tremendously, depending on the origin of the fossil fuels. The No. 6 fuel oil high-end 90th percentile levels for Pb and Ni are comparable to the average coal levels. The average coal levels for As, Ba, Co, Cr, Mn, and Pb are typically 10 to 100 times higher than that of the liquid fossil fuels. Levels of Hg and Be in fuel oils are also typically much less than that of coal. The chlorine content of coal and fuel oils can range widely from less than 50 to greater than 2,000 ppmw. Typically though, coal has a chlorine level that can be 2 to 10 times higher than that of fuel oils.

Constituent					Cor	centration (opmw)				
		Coal	a	Gasoline	Fuel Oil	Fuel Oil	Fuel Oil	Fuel Oil	F	uel Oil	S _e
	Avg.	Min.	Max.	90th %₀	No. 2 90th % _b	No. 4 90th % _⊳	No. 6 90th % _b	No. 2, 4, 6 Average _c	Avg.	Min.	Max.
Antimony	1	0.05	10	< 7	< 6	< 11	6.5	0.2			
Arsenic	10	0.5	80	< 0.14	< 0.12	< 0.2	< 0.2	0.3	0.1		
Barium	200	20	1000	< 14	< 12	< 23	< 20	NA	0.3		
Beryllium	2	0.1	15	< 0.7	< 0.6	< 1.2	< 1	0.2	0.1		
Cadmium	0.5	0.1	3	< 0.7	< 0.6	< 1.2	< 1	0.3	0.5		
Chromium	20	0.5	60	< 1.4	< 1.2	< 2.3	< 2	0.7	0.5		
Cobalt	5	0.5	30	< 2.8	< 2.4	< 4.6	< 4.1	2			
Lead	40	2	80	< 7	6.6	9.9	30	2.6			
Manganese	70	5	300	< 0.7	< 0.6	< 1.2	< 1	0.2			
Mercury	0.1	0.02	1	< 0.1	< 0.1	< 0.2	< 0.2	0.03	< 0.1		
Nickel	20	0.5	50	< 2.8	< 2.4	16	36	31			
Selenium	1	0.2	10	< 0.14	0.07	0.13	0.12	0.2			
Silver	0.1	0.02	2	< 1.4	< 1.2	< 2.3	< 2	NA			
Thallium	< 1			< 14	< 12	< 23	< 20	NA			
Chlorine	1000	50	2000	< 25d	< 25d	< 0d	< 10d	36	500	50	3000
Fluorine	150	20	500	NM	NM	NM	NM	NA			

TABLE 1-2:COMPARISON OF THE METAL AND HALOGEN CONTENT OF COAL,
GASOLINE, AND FUEL OILS

a Source: Clarke and Sloss (1992) b Source: EPA (1996) c Source: Wetherold et al. (1995) e From hazardous waste burning combustors NM: Not measured NA: Not reported Gases are also not selected as benchmark fuels. Generally, basing the comparable fuel specification on a gaseous fuel would be overly conservative and have no practical use to the regulated industry (i.e., it is unlikely that many hazardous wastes would meet a fuel specification based on natural gas). Note that separate benchmark specifications are defined for a hazardous waste-derived fuel synthesis gas (syn-gas), as discussed below.

Additionally, non-petroleum liquid based fuels, including turpentine and tall oil, are not considered as benchmark fuels:

- <u>Turpentine</u> -- Turpentine has a very high energy content and is used as a fuel (and a manufacturing feedstock) both within and outside the forest products industry. However, turpentine has not been selected since: (1) turpentine is not a widely used commercial fuel; and (2) there are no ASTM standards for turpentine fuel which specify the minimum properties. This must be met for the product to be considered as a commercial fuel.
 - <u>Tall oil</u> -- Tall oil is a traditional fuel source, and EPA has acknowledged that tall oil is a legitimate non-waste fuel under the BIF rule low risk waiver exemption (LRWE) and DRE trial burn exemptions (see 56 <u>FR</u> 7193, February 21, 1991). However, tall oil is not used because of lack of quality constituent data.

Liquid fossil fuels of Nos. 2 and 6 fuel oils, and gasoline, have been selected as the benchmark fuels. Liquid fuels are widely used by industry, readily combusted, and do not have the inconsistencies of solid or gaseous fuels. Gasoline has been included even though it is not typically utilized in industrial boilers and furnaces. Gasoline is a highly used, commercially available, liquid fuel, for which complete hazardous constituent analysis is available (allowing for a more complete and useable benchmark specification).

US EPA ARCHIVE DOCUMENT

1.2 Parameters and Rationale for Comparable Fuels Specifications

Benchmark fuel specifications are being set for: (1) physical specifications, including energy content (heating value) and kinematic viscosity; (2) general constituent specifications for total nitrogen and total halogens; and (3) individual hazardous constituents, including individual metals (including Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mn, Hg, Ni, Se, Ag, and Tl), and Appendix VIII organics. Rationale for the selection of these parameters is discussed in the following.

Since most comparable fuels are expected to have a lower BTU content than fossil fuels, more comparable fuel will be needed to produce the same heating value. This situation will potentially increase the environmental loading of hazardous constituent emissions from the comparable fuel. More comparable fuel would be burned to achieve the same heat input leading to greater environmental loading of potentially toxic substances than if fossil fuel was burned. This would not follow the intent of the comparable fuel exclusion. To address environmental loading, a minimum heating value specification comparable to the BTU content of the benchmark fossil fuels is used. Constituent levels have been corrected from the fuel's heating value (approximately 20,000 Btu/lb) to 10,000 Btu/lb.

1.2.1 Heating Value

A benchmark specification limit on minimum waste energy content is set. This is to ensure that the comparable fuel has a legitimate use as a fuel (note that the comparable fuels exclusion only applies to waste fuels that are ultimately burned). For solid and liquid wastes, a level of 5,000 Btu/lb (11,500 J/g) has been selected. This level has been traditionally used as a reasonable cutoff for determining if a waste is being burned for energy recovery. Note that it is based on the typical heating value of wood.

1.2.2 Kinematic Viscosity

Liquid waste viscosity affects the efficiency of combustion by influencing the atomization characteristics of the liquid waste. Note that viscosity is an important design specification for liquid

burners. Thus the purpose of a viscosity specification is used to ensure that a comparable fuel is as burnable as the benchmark fuel.

The viscosity specification is based on that of No. 6 residual fuel oil (the heaviest, most viscous, liquid fossil fuel) at normal firing conditions. The comparable fuel viscosity specification is set at 50 cSt, as-fired. This is based on the ASTM standard for No. 6 fuel of 50 cSt (at 100 °C, which is a common firing temperature for No. 6 oil). Note that No. 6 residual oil must be heated (from 30 to $50 \,^{\circ}$ C) for handling and pumping purposes due to high viscosity at normal ambient temperatures. For atomization and burning, it must be heated further to reduce the viscosity needed for efficient atomization and combustion, usually to temperatures in the range of 70 to 130 °C (160 to $270 \,^{\circ}$ F). The exact temperature (and corresponding viscosity) requirement depends on factors including the burner design, atomization method (steam assisted, mechanical pressure, etc.), and viscosity characteristics of the No. 6 fuel oil (note that there is no one No. 6 oil; different No. 6 oils can have significantly different viscosities at the same temperature). Typically, mechanical pressure atomization nozzles require that the oil have a viscosity of 15 to 30 cSt (70 to 150 SSU), while steam assisted burner nozzles can handle higher viscosities ranging from 30 to 70 cSt (150 to 300 SSU). The 50 cSt ASTM value is an upper limit on what can be expected for No. 6 fuel oils at a typical firing temperature of 100 °C (Perry and Green, 1994; Reed, 1986).

Additionally, the viscosity specification only applies to liquid waste fuels (not gaseous fuels, which are inherently less viscous than liquids, and not solids, for which viscosity is not applicable).

1.2.3 Flash Point

A specification on flash point is not being used since: (1) DOT and OSHA have regulations that control the hazards of flash point explosions; (2) it would preclude the inclusion of materials that are normally fuels such as methanol.

A comparable fuel specification for total halogens is used, generally in-lieu of meeting the individual specifications of chlorinated Appendix VIII compounds (expect PCBs for the most part). Limitation of the chlorine feed to the combustor is desired from an environmental protection perspective to: (1) reduce the emissions of the hazardous air pollutants of HCl and Cl₂, both of whose formation is directly related to the chlorine content of the waste feed; and (2) prevent the formation of chlorinated products of incomplete combustion (PICs), which includes PCDD/PCDF as well as chlorinated benzenes, biphenyls, phenols, etc. Limiting the waste feed chlorine level reduces the potential for the formation of chlorinated PICs through (Dellinger et al., 1990):

- Limiting the release from the combustion zone of undestroyed and/or partially fragmented chlorinated precursors contained in the waste feed. Note that kinetic theory and experimental work indicate the chlorination of unchlorinated hydrocarbons is very unlikely at combustion temperatures (i.e., chlorinated PICs are not formed from unchlorinated hydrocarbons in the combustion zone). Thus, the emissions of chlorinated PICs from the combustion zone is related directly to the chlorinated organic constituents in the waste feed. It is highly desired to minimize the level of chlorinated precursors in the combustion gases since the major route to formation of high molecular weight chlorinated PICs is through reactions of already chlorinated precursors.
- Limiting the potential for the formation of chlorinated PICs due to radical-radical association reactions as the combustion gas is cooled -- in particular organic radical reactions with Cl radicals formed in the combustion zone.
- Ensuring adequate flame stability (and corresponding combustion efficiency) and reducing flame sooting. Increasing levels of chlorine are known to increase flame sooting and decrease flame stability and efficiency. Cl atoms scavenge H atoms,

depleting the flame radical pool that drives the combustion reactions.

Note that a total halogen limit may have only a secondary effect on controlling PCDD/PCDF emissions. Analysis of PCDD/PCDF data from full-scale waste combustion systems indicates that the waste feed chlorine level does not have a dominant impact on PCDD/PCDF emissions (generally of primary importance is the PM air pollution control device temperature). However, the waste feed chlorine level may have a secondary influence. Certain well-controlled pilot-scale experimental studies indicate there can be a strong relationship between HCl and Cl₂ levels in the flue gas and PCDD/PCDF emissions (e.g., Gullett et al., 1994).

Additionally, a limit on total halogens, including both organic and inorganic forms, is appropriate since both forms in the waste fuel can contribute to halogenated PIC emissions. For example, PCDD/PCDF and other chlorinated PICs have been detected from sources burning both inorganic (e.g., salts) and/or organic chloride (e.g., plastics) containing wastes (e.g., Wikstrom et al., 1994; Fangmark et al., 1991; Christiansen, 1990; Nielsen, 1989). Inorganic chlorine salts have also been shown to act as a direct chlorine source for PCDD/PCDF formation at low de-novo synthesis temperatures (Addink and Olie, 1995).

Note that under well-controlled combustion conditions, the vast majority of organic halogens in the waste fuel feed will leave the combustor gas as HCl, HF, etc. Smaller levels will be in the combustion gas in the form of Cl_2 , F_2 , and halogenated organics, and some may also be present in the solid bottom and fly ash as salts. Inorganic halogen salts will also decompose to a lesser degree as HCl, HF, Cl_2 , F_2 , and PICs in the combustion gas; with the remainder as salts in the bottom and fly ash. Inorganic halogen salts are sometimes believed not to react at combustion temperatures due to high melting temperatures. However, work by Uchida et al., (1988) have shown that inorganic salts can directly contribute to HCl combustion gas levels (water vapor and zeolites participate in a reaction transforming chlorine salts to HCl). Thus, for halogenated hydrocarbon waste fuels, containing either inorganic or organic halogens, there is potential that under less optimum combustion conditions (higher CO, insufficient oxygen and mixing, etc.) halogenated PIC emissions may form. A specification on total nitrogen is used, in addition to those on nitrogenated Appendix VIII compounds. Under oxidative conditions of typical hazardous waste combustors, the majority of waste nitrogen will be emitted as N_2 (not of environmental concern) or NO_x (a criteria air pollutant whose emissions levels are covered under the Clean Air Act ambient air quality standards for ozone control). However, under starved air (reducing) conditions, nitrogen will primarily form the HAPs HCN and NH₃. Starved air transient **?**puffs" can occur in hazardous waste combustors due to chamber overcharging (possibly due to unexpected surges in waste volatile composition), poor waste/air mixing, and poor liquid atomization. Additionally, nitrile radicals (CN⁻) can form nitrogenated PICs (such as HAPs including hydrogen cyanide, acetonitrile, acrylonitrile, nitrophenols, nitrotoluenes, nitrobenzenes, aniline, acetamide, acrylamide, etc.) through radical-radical and radical-molecule reactions which occur as the combustion gas is cooled (Dellinger et al., 1990).

1.2.6 Metals

Benchmark specifications are set for the individual metals of Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mn, Hg, Ni, Se, Ag, and Tl (which include both Clean Air Act Title III and RCRA Appendix VIII metals). Limitation of the metals feed to the incinerator results in a direct reduction of metals emissions since, like chlorine, metals are not destroyed in the combustion process.

1.2.7 Organics

Specifications are set for RCRA Appendix VIII organics. Note that specifications are not set for some of the compounds on the Appendix VIII list because a routine analytical method is not available.

Specifications are set for oxygenates (at non-detect levels determined by the benchmark fuel analytical results). Oxygenates generally burn well and contribute to the combustion of other

constituents in the fuel (organically bound oxygen provides a source of oxygen for the combustion process). Oxygenates are added intentionally to clean-burning ?reformulated" gasoline to enhance the completeness of combustion in internal combustion engines. However, under poor combustion conditions, breakdown of the oxygenate at the oxygen bond can lead to the production of free radicals (Weitzman, 1991). These radicals can recombine with other radicals or compounds to form higher molecular weight chlorinated PICs. Thus, a comparable fuel specification for oxygenates is used.

1.3 Parameters and Rationale for Synthesis Gas Fuel Specifications

Comparable fuel specifications are set for **?**synthesis" gas (syn-gas) separately from solid and liquid hazardous wastes. The combustion of syn-gases meeting these specifications would be excluded from regulation as a hazardous waste. Syn-gas is generated by the gasification of hazardous wastes. Syn-gas is a mixture of primarily H_2 and CO, as well as the inerts of N_2 , CO_2 , Cl_2 , S, etc. The syn-gas characteristics depend primarily on: (1) the composition of the material that is being gasified (to date, mostly natural gas, oil, or coal, although systems for wood, plastics, sludges, and other types of wastes are more recently being developed); (2) the use of oxygen vs. air for the gasification process; and (3) the amount of steam utilized for the gasification process (which affects the CO/H ₂ ratio). Syn-gas has uses as:

- Feedstock in the chemical industry for making products such as ammonia, alcohols, acetic acid, MTBE, etc., as well as other hydrocarbons. Also, it is used as a source of hydrogen in the petrochemical industry for hydrogenation processes. For this, a well defined and homogeneous material (usually some fossil fuel) is generally used for the syn-gas generation; and
- Fuel for power generation, heating, etc.

To ensure that the combustion of syn-gas is comparable to that of fossil fuels, specifications are set on: (1) heating control; (2) general constituents for total chlorine, total nitrogen, and hydrogen

sulfide; and (3) individual Appendix VIII constituents. Rationale for the selection and determination of these specifications is discussed in the following.

1.3.1 *Heating Value*

A minimum heating value limit of 100 Btu/scf is set for syn-gas. The minimum specification of 100 Btu/scf is based on syn-gas from the gasification of coal with oxygen. It is commonly required for gas turbine energy production.

For fuel usage related purposes, syn-gases are classified as either medium or low-BTU gases (medium generally being produced with pure oxygen, low-BTU generally with air). Medium BTU syngases generated from the gasification of fuels (including coal, fuel oil, biomass, municipal solid wastes, plastics, etc.) with pure oxygen can have heating values from 250-400 Btu/scf (Stultz and Kitto, 1992). Low-BTU syn-gases generated from the gasification of fuels with air can have heating values from about 100-200 Btu/scf. The heating value of the syn-gas depends primarily of the diluent content (nitrogen, carbon dioxide, chlorine, sulfur, moisture, etc.), which is a strong function of the syn-gas feed material composition and gasification process (particularly if air or pure oxygen is used for the gasification process). The heating value is not a strong function of the H $_2$ /CO ratio since both gases have similar heating values on a Btu/scf basis (although a low H $_2$ /CO ratio can adversely affect flame stability).

Syn-gas used as a fuel for power production in gas turbines typically requires a heat content from 250-450 Btu/scf, with a lower limit of around 200 Btu/scf. Intentionally manufactured syn-gases can have heating content levels as low as 100 Btu/scf (e.g., coal gasifiers with air). However, this gas by itself, although it may be quite burnable, does not achieve temperature and expansion ratios needed for thermodynamically efficient power generation. Thus, it is usually mixed with higher energy sources, and is not generally desired for most applications. Note that there are certain specially designed gas turbines (with very large ?silo" combustion chambers) that can handle very low-BTU (100 Btu/scf) syngases for power generation (for example, see Geiling (1992) and Gas Turbine World (1990)).

Additionally, other low-BTU by-product gases are also used effectively for their fuel value (e.g., the blast furnace byproduct gas from steel manufacturing, with a heating level of about 50 Btu/scf and enhanced with gas and oil, is used in the furnace heating stoves).

Because syn-gas is sometimes used as a chemical feedstock, an absolute lower limit on heating value for comparable fuel classification may not be appropriate or needed because the syn-gas is not being used for energy recovery or supplementary purposes, making its heat content irrelevant. However, as a practical matter, whether or not syn-gas is being used as a chemical feedstock or fuel, the syn-gas is always being produced for its CO and/or H_2 content -- thus all gasification related syn-gases will have some appreciable heat content.

It is important to note that the heating value specification is expressed on a volumetric basis of Btu/scf (as opposed to Btu/lb for solid and liquids) because: (1) is it not appropriate to compare the heating value of different gases expressed in units of Btu/lb since the ratio of the weight-to-volume differs between different gases (particularly H_2 and CO); and (2) industry standard practice is to classify syn-gases based on the energy content per unit volume of gas.

1.3.2 Hydrogen Sulfide

A hydrogen sulfide (H_2S) specification of 200 ppmv is set. The sulfur content of the material used to produce the syn-gas is converted almost entirely into H_2S in the gasification process, with smaller amounts of COS. Thus, syn-gases produced from low sulfur content material such as wood, biomass, natural gas, and low sulfur fuel oil and coal, do not contain any appreciable H_2S . Once the syn-gas is burned under oxidizing conditions, the H_2S , if not removed prior to completing combustion,

is converted to SO_x (primarily SO_2). SO_x emissions are regulated through the issuance of local air permits and the Clean Air Act national ambient air quality standards.

The H₂S content of high sulfur coal-based syn-gases can be over 1,000 ppmv (Stultz and Kitto,

1992). However, in these cases, H_2S removal processes such as those based on the Claus process or regenerable metal sorbents are almost always used to reduce H_2S to well below 10 ppmv prior to syngas usage as a feedstock or for fuel value (for two technical reasons: (1) H_2S is much more easily removed than SO_x which are formed from syn-gas combustion, and (2) the syn-gas has a much lower flue gas volume than the gas produced from syn-gas full combustion). For use as a fuel, the technical limitation on the H_2S content of syn-gas is due to corrosion of downstream gas handling equipment, such as turbine blades, fans, etc. Generally levels below 200 ppmv can be tolerated. Note that for use as a feedstock, levels under 1 ppmv are usually required.

1.3.3 Nitrogen (other than N_2)

A nitrogen compound level (NH₃+HCN, other than N₂) of 300 ppmv is set. This is based on the typical nitrogen compound levels (NH₃+HCN) from syn-gases manufactured by coal from 100 to 300 ppmv (Stultz and Kitto, 1992). Nitrogen compounds in syn-gases are mostly in the form of NH₃, with smaller amounts of HCN and other nitrogenated organics. When syn-gases are burned, the nitrogen is converted primarily to NO_x, which is regulated through the issuance of local air permits and the Clean Air Act national ambient air quality standards. However, due to the increased potential to form nitrogenated PICs (as discussed previously for the comparable fuel specification for total nitrogen in solid and liquid wastes), especially from incomplete combustion conditions associated with inefficient incinerators, a specification on total nitrogen (other than N₂) is set.

1.3.4 Total Halogens

A total halogen specification for syn-gas of 1 ppmv is set. For use as a feedstock, a total halogen level of under 1 ppmv is usually required. For use as a fuel, lower concentrations of total halogens are desired to prevent corrosion in the downstream syn-gas burning equipment. In typical gasification processes, the majority of the halogens contained in the feedstreams are converted to syn-gas as gaseous halides and/or halogens. (Note that in some cases where the feedstream also contains alkali constituents such as sodium or lime, halogens may also be found in the bottom or entrained ash

as solid salts). The raw halogen content of the syn-gas is thus a direct function of the halogen content of the material used to generate the syn-gas. For low halogen content materials, such as natural gas, and some fuel oils, coal, wood, and biomass streams, the syn-gas will not contain appreciable halogen levels. Alternatively, for some higher halogen content materials, such as certain coals with halogen contents of greater than 1000 ppmv, the concentration of halogen in the resulting syn-gas may be greater than 50 ppmv. However, as discussed above for hydrogen sulfide, when the syn-gas halogen content is high, halogen removal processes are used prior to syn-gas use as a fuel or feedstock. Halogen removal efficiencies are usually very high, i.e., greater than 99%. Thus, a level of 1 ppmv is reasonably achievable even for high halogen content syn-gas materials.

1.4 <u>Collection of Liquid Fossil Fuel Samples Used for Analysis to Determine Benchmark</u>

Commercially available fossil fuels are very diverse. The constituents in fuels can vary, depending on where fuels are refined, the condition of the catalysts used, and the origin of the raw material. Typically, fuels found on the East Coast are refined from Venezuelan and Middle East crude. Fuels on the West Coast are refined from domestic crude, although they can contain Venezuelan crude. This makes it almost impossible to determine the source of a given fuel. All fossil fuels are prepared to meet a series of American Standards for Testing Materials (ASTM) specifications, which were adopted as commercial standards by the National Bureau of Standards. These standards have been revised many times to meet changes in supply, so it is likely that they will continue to change as supplies change. The specifications focus on the physical parameters of the fuels, such as distillation temperatures, specific gravity, and viscosity.

To set the preliminary specification for comparable fuels, the EPA needed data on the concentrations of hazardous constituents in these fuels, as well as data on the physical parameters (viscosity, heating value, etc). Since this data is not readily available, EPA collected, from various geographic locations around the country (Table 1-3), representative samples from the end uses of conventional liquid fuels. This approach was designed to ensure a representative sampling, since constituents can vary, depending on the point of origin.

TABLE 1-3. GEOGRAPHIC REGIONS WHERE FUEL SAMPLES WERE COLLECTED

LOCATION	SAMPLES COLLECTED
Irvine, California	Gasoline and Nos. 2, 4, and 6 fuel oils
North West New Jersey	Gasoline and No. 2 fuel oil
North East Connecticut	Gasoline and Nos. 2 and 6 fuel oils
Coffeyville, Kansas	Gasoline and No. 2 fuel oil
Fredonia, Kansas	Gasoline and No. 2 fuel oil
Norco, Louisiana	Gasoline and Nos. 2 and 6 fuel oils
Hopewell, Virginia	Gasoline and Nos. 2 and 6 fuel oils
Research Triangle Park, North Carolina	Gasoline and No. 2 fuel oil

A database comparing emissions using comparable fuels and fossil fuels does not exist. Since a comparison cannot be made between these fuels, a database on the toxic constituents of fuels being burned needs to be developed. This study analyzed each fossil fuel for all 40 CFR, Part 261, Appendix VIII toxic organic constituents for which a reasonable approach exists under SW-846 methodologies. The study also covered physical parameters, using ASTM protocols.

Based on the results of this study, a specification can be derived for comparable fuels that ensures they contain no more toxic constituents than the ?benchmark" fuel(s). In addition, method detection limits (MDLs) were determined for each SW-846 Method used, in accordance with 40 CFR, Part 136, Appendix B. Section 2 of this document discusses the process used for determining the MDLs in more detail.

References:

ASME (American Society of Mechanical Engineers), **?**The Relationship Between Chlorine in Waste Streams and Dioxin Emissions from Waste Combustor Stacks," American Society of Mechanical Engineers, 1996.

Clarke, L.B. and L.L. Sloss, *Trace Elements - Emissions From Coal Combustion and Gasification*, IEA Coal Research, London, England, IEACR/49, July 1992.

Dellinger, B., P. Taylor, and D. Tirey, ?Minimization and Control of Hazardous Combustion Byproducts," EPA/600/S2-90/039, August 1990.

Gas Turbine World, ?Kellogg's PFB-Hybrid Combined Cycle Concept Based on UTC/KWU V84.4 Turbines," *Gas Turbine World*, pp. 20-23, Nov/Dec 1990.

Geiling, D. (editor), *Proceedings of the 9th Annual Coal-Fueled Heat Engines, Advanced Pressurized Fluidized-Bed Combustion, and Gas Stream Cleanup Systems Contractors Review Meeting*, U.S. DOE Office of Fossil Energy, DOE/METC-93/6129, October 1992.

Gullett, B.K., P.M. Lemieux, and J.E. Dunn, ?Role of Combustion and Sorbent Parameters in Prevention of Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Formation during Waste Combustion," *Environmental Science and Technology*, Vol. 28, pp. 107-118, 1994.

Lanier, S., et al., ?Dioxin Compliance Strategies for the HWC MACT Standards," *1996 Incineration Conference*, pp. 587-593, Savannah, Georgia, May 1996.

Perry R.H. and D. Green (editors), *Perry's Chemical Engineering Handbook*, 6th Edition, McGraw Hill, pp. 9-13, 1994.

Reed, R.J., *North American Combustion Handbook*, Third Edition, North American Manufacturing Company, Cleveland, OH, p. 30, 1986.

Stultz, S.C. and J.B. Kitto (editors), *Steam: Its Generation and Use*, 40th Edition, Babcock and Wilcox, 1992.

Weitzman, L., ?Engineering Handbook for Hazardous Waste Incineration," Draft No. 3, Prepared for the EPA Center for Environmental Research Information under Contract No. 68-08-0011, Work Assignments 1-30, January 31, 1991.

Wetherold, R.G., D.A. Orr, J.M. Leonard, and B. Toole O'Neil, **?**The EPRI Pisces Database: Summary of Fuels Information," *EPRI/DOE International Conference on Managing Hazardous and Particulate Air Pollutants*, Toronto, Ontario, Book 2, August 15-17, 1995.

Addink, R. and K. Olie, ?Mechanisms of Formation and Destruction of Polychlorinated Dibenzo-pdioxins and Dibenzofurans in Heterogeneous Systems," *Environmental Science and Technology*, Vol. 29, No. 6, pp. 1425-1435, 1995.

Christiansen, K., A. Grove, et al., *Environmental Assessment of PVC and Selected Alternative Materials*, Danish National Agency of Environmental Protection, 1990.

Fangmark, I., S. Marklund, and C. Rappe, **?**Use of Synthetic Refuse in a Pilot Combustion System for Optimizing Dioxin Emission, Part II," *Chemosphere*, Vol. 23, pp. 1233-1243, 1991.

Nielsen, P., ?Significance of Operating Conditions and Chlorine Sources on Dioxin Formation: Experience of the Danish Incinerator Study," *Proceedings of the 1989 International Conference on Municipal Waste Combustion*, Hollywood, FL, April 11, 1989. Uchida, S., H. Kamo, and H. Kubota, ?The Source of HCl Emissions from Municipal Refuse Incinerators," Ind. Eng. Chem. Res., Vol. 27, No. 11, pp. 2188-2190, 1988.

Wikstrom, E., G. Lofvenius, S. Marklund, and C. Rappe, *The Role of Organic Chlorine (PVC), Inorganic Chlorine (CaCl2), Total Chlorine, and Copper in the Formation of Dioxin and Chlorobenzenes During Combustion of a Synthetic Fuel in a Pilot Reactor*, Report from the Institute of Environmental Chemistry, Umea University, December 1994.

2.0 SAMPLING AND ANALYSIS

As stated previously, EPA collected and characterized samples of gasoline and Nos. 2, 4, and 6 fuel oils in order to provide data on which to base a **?**benchmark" fuel. Altogether, EPA collected ten (10) gasoline samples, eleven (11) No. 2 fuel oil samples, one (1) No. 4 fuel oil sample, and seven (7) No. 6 fuel oil samples from various geographic regions around the country.

EPA worked with the Chemical Manufacturers Association (CMA) and its member organizations in obtaining fuel samples. CMA supplied a list of members to contact, as well as a letter endorsing EPA's efforts in this area. Contact was initiated with each company by telephone. They were questioned as to the nature of the fuels they burned in their boiler systems and, if one or more was a fuel of concern, whether they would they be willing to supply EPA with a one-liter sample for characterization and quantification.

Many industrial users were either skeptical about participation in a program of this type or had converted their units to natural gas. However, approximately 10% of those contacted were willing to cooperate. A number of industries had switched from No. 6 fuel oil to No. 2 fuel oil and/or natural gas, due to the difficulties and energy required to handle No. 6 fuel oil, especially in colder weather. Also, a very limited number of companies in the United States use No. 4 fuel oil. With narrow time constraints for this program, the limited use of Nos. 4 and 6 fuel oil by U.S. industries, and the corporate restraints on participating in these type of programs, EPA was limited in the number of Nos. 4 and 6 fuel oil samples it could obtain.

2.1 Analysis of Samples

This aspect of the program focused on the analysis of the combustion fuel samples (gasoline and Nos. 2, 4, and 6 fuel oils) collected for the program in order to characterize the chemical and physical properties and the presence of the hazardous constituents listed in 40 CFR, Part 261, Appendix VIII. From a historical perspective, 40 CFR, Part 261, Appendix VIII is the reference list

of potential hazardous constituents which need to be quantitated in the fossil fuels in order to set a specification. From a practical perspective, however, the essence of such a list and testing for the substances in the list present significant problems. The problems and some of the difficulties they impose are as follows:

- The chemicals listed in 40 CFR, Part 261, Appendix VIII, are listed as they would exist in a pure state, as opposed to the forms they would take after being dispersed into the environment;
- 2. In developing 40 CFR, Part 261, Appendix VIII, no consideration was given to factors such as the environmental fate or the level of production of a given chemical. The list contains both prevalent, mobile, and toxic chemicals, that present major risks, and some chemicals that present a lesser risk due to low prevalence or instability in a matrix such as fuel oil or water; and
- 3. Analysis of many constituents from 40 CFR, Part 261, Appendix VIII would be impossible and/or impractical for the matrix being considered in this study for a variety of reasons: there are indefinitely large classes of compounds, many of which would not exist in fossil fuels; and standards do not exist for many other compounds.

The fundamental concern for EPA in developing the comparable fuel exclusion is to create a database by quantitating as many of the constituents from 40 CFR, Part 261, Appendix VIII as could readily and reliably be identified in the fossil fuels. However, the development and validation of new methodologies was not within the scope of this program. Thus, it was necessary to take an approach that used existing methodologies to quanitate as many of the constituents in 40 CFR, Part 261, Appendix VIII as possible.

To quanitate each fossil fuel sample, EPA chose to use the methodologies defined for the constituents from 40 CFR, Part 261, Appendix VIII subject to the following criteria:

US EPA ARCHIVE DOCUMENT

1) It must be practical to analyze fossil fuels for the constituent under consideration.

The chemistry of fossil fuels, the processes involved in their production, and the availability of practical and reliable analytical methodologies and standards were used to identify whether constituents fit the later consideration.

SW-846, **?**Testing Methods for Evaluating Solid Waste," presents the methods most commonly used for quantitating organic and metal constituents in various matrices. Since matrices vary in waste streams, the methods have some flexibility. The analyst is then allowed to adjust the sample preparation procedures for the matrix being analyzed. The following information pertains to all analytical data generated to date for the Appendix VIII analytes.

In all cases the laboratory attempted to use approved and published methodologies. There was not time to determine what procedures were under development for fuel oil analysis by EPA or other agencies/laboratories at the time the analyzes took place.

Many of these analytes presented special analytical challenges since methods for their analysis were not available in SW-846 or CLP methods. Additionally, the gasoline and fuel oil matrices compounded the difficulties experienced in these analyses. Consequently, data for all the targets are not presented in this report. Table 2-1 details analytes for which data is not provided and why these data points were not generated.

It is important to note that compounds marked as not detected by VOA, semi-VOA, or HPLC were not detected using instrument conditions attempted to date. These compounds may be detectable at concentrations greater than 200 ppm by different instrument conditions than those attempted. Compound by compound research would be required to determine an approach for their analysis.

Many metallic compounds appearing in the target lists were not specifically analyzed. Samples were analyzed for metallic elements, not organo-metallic compounds. Direct analysis for organo-metallic compounds would have been preferable, however, to the best of our knowledge, methods are not available to measure organo-metallics in these types of matrices. For example, thallium (1) acetate was reported as total thallium or lead phosphate reported as total lead.

Due to time constraints for this project, other categories were too broad for complete analysis. There are cases where the number of compounds, categories such as chlorinated fluorocarbons, are too great to analyze for every possible isomer. In situations like these, three of the more common chlorinated freons, dichlorodifluoromethane, trichlorofluoromethane, and 1,1,2-trichloro-1,2,2-trifluoroethane have been analyzed during the analytical phases of the clean fuels initiative. Results for chlorinated freons can be expressed as the sum of these compounds. Some of these reported compounds are listed by a synonym of the name found in Appendix VIII.

In all the analyses performed, the hydrocarbon matrix presented analytical difficulties. Most notable were the VOA and semi-VOA analyses performed by mass spectrometry. In most cases, the analyst had to manually integrate internal standards, surrogates, and targets, especially targets in the matrix spikes. These manual integrations were subjective, but were never done to intentionally misrepresent the data. In every manual integration, an honest attempt was made to isolate only the areas of interest. It must be noted that other analysts or data reviewers may have made the manual integrations differently.

For this study, each sample was collected in a pre-cleaned, 1-liter amber glass sample bottle with a Teflon[®]-lined cap. This type of sample bottle is available commercially with a certificate of analysis. All sample bottles were pre-cleaned according to EPA protocol. Samples were collected through purge valves, located on the main system feed lines prior to the burner. The fuel was allowed to purge through the valve and into a waste container, ensuring the collection of a fresh sample and removing any debris which may have collected in the line or valve.

The following discussion summarizes the sample preparation, instrumental analysis and quality control procedures used to generate the data collected for each of these samples. Each section also briefly discusses any analytical difficulties encountered by the laboratory.

2.2 <u>GC/MS Volatiles</u>

2.2.1 Method Summary

A method for analyzing the volatile compounds was developed based on SW-846, Method 8240. A gas chromatograph with a fused silica capillary column and mass spectrometer was used to separate, identify, and quantitate the target analytes. Standards containing the target analytes in methanol were prepared at five levels. One microliter of each of these standards was used to calibrate the analytical system. Samples were treated as if they were at high concentrations and diluted weight to volume prior to analysis. This preparation was then injected into a heated injection port thereby transferring the sample to the analytical system. The direct injection technique was chosen over purge and trap because of the high volatile organic background in the matrix.

2.2.2 Sample Preparation

Method 8240 calls for a 2.5x weight to volume sample dilution/extraction with methanol. The methanol is the analyzed portion. To provide the lowest detection limits, a 2x dilution/extraction was performed. Actual sample weights were recorded and used to calculate the true dilution factor. Surrogate compounds were prepared in a methanol solution. The sample was diluted with methanol and surrogates were added. For gasoline, 1 g was diluted with 10 mls of methanol. In the case of No. 2, 4, and 6 fuel oils, 4 g was extracted with 10 mls of methanol, since the fuel oils were not miscible with methanol.

Analyte	Reason Data Could Not be Generated.
Azaserine	Compound toxicity too great to safely handle
Epinephrine	A solvent compatible with analysis not found
Ethylenedithiocarbamic acid	Standard not available
Mitomycin C	A solvent compatible with analysis not found
alpha-naphthylthiourea	A solvent compatible with analysis not found
Reserpine	A solvent compatible with analysis not found
Selenourea	Too reactive in air and water
Streptozoticin	A solvent compatible with analysis not found
Thiosemicarbizide	A solvent compatible with analysis not found
Cyanogen	Standard not available
Nitrogen mustard	Standard not available
Methyl hydrazine	Not detected by voa, semi-voa, or HPLC analysis
Trypan blue	Not detected by voa, semi-voa, or HPLC analysis
Warfarin	Not detected by voa, semi-voa, or HPLC analysis
Chloromethoxy methane	Not detected by voa, semi-voa, or HPLC analysis
Chloroacetaldehyde	Not detected by voa, semi-voa, or HPLC analysis
Formic acid	Not detected by voa, semi-voa, or HPLC analysis
2-Methyl azidrine	Not detected by voa, semi-voa, or HPLC analysis
Dimethyl sulfate	Not detected by voa, semi-voa, or HPLC analysis
Tetranitromethane	Not detected by voa, semi-voa, or HPLC analysis
Aldicarb	Not detected by voa, semi-voa, or HPLC analysis
3,4-Diaminotoluene	Not detected by voa, semi-voa, or HPLC analysis
Methylthiouracil	Not detected by voa, semi-voa, or HPLC analysis
Ethyl carbamate	Not detected by voa, semi-voa, or HPLC analysis
Maleic anhydride	Not detected by voa, semi-voa, or HPLC analysis
Tetraethyl pyrophosphate	Not detected by voa, semi-voa, or HPLC analysis
Chloromethyl methyl ether	Not detected by voa, semi-voa, or HPLC analysis
Creosote	Chromatographically identical to and inseparable from fuel oil
Coal tar creosote	Chromatographically identical to and inseparable from fuel oil
Nitroglycerine	Not detected by voa, semi-voa, or HPLC analysis
N-nitrosodiisopropylamine	Standard could not be procured in time for analysis
N-Nitrosodiethanolamine	Standard could not be procured in time for analysis
1,1-dichloropropane	Standard could not be procured in time for analysis
N-nitroso-N-ethylurea	Not detected by voa, semi-voa, or HPLC analysis
N-nitroso-N-methylurea	Not detected by voa, semi-voa, or HPLC analysis
Dithiobiuret	Not detected by voa, semi-voa, or HPLC analysis
Ethylene glycol monoethyl ether	Not detected by voa, semi-voa, or HPLC analysis
Methanol	Not detected by voa, semi-voa, or HPLC analysis
Phosphoric dithioic acid, Trimethyl Ester	Standard not available

 Table 2-1
 Analytes from Appendix VIII Not Determined During Study

2.2.3 Instrumental Analysis

SW-846, Method 8240 was employed for the instrumental analysis. A gas chromatograph with a fused silica capillary column and mass spectrometer was used to separate, identify, and quantitate the target analytes. One microliter of each methanol extract was injected into a heated injection port thereby transferring the sample to the analytical system.

2.2.4 Quality Control

Method 8240 was followed as closely as the analyte target list and sample matrix would allow. See Table 2-2 for additional information regarding specific procedures utilized on this project. A method blank was analyzed for each matrix. Section 2.14 of this report presents a discussion of surrogate spiking compound results for each sample and matrix spike as well as laboratory control sample (LCS) results for each analysis type. The QC results for surrogates are in Appendix D. The following specific criteria were used for this project:

- 50 ng of bromofluorobenzene (BFB) was analyzed at least every twelve hours with the tuning fragmentation pattern meeting the criteria specified in 8240;
- A five-point initial calibration curve with each volatile target was analyzed prior to sample analysis. However, since documentation on the behavior of these compounds could not be found, arbitrary limits were not set for the initial calibration. This data should be used as a first attempt to determine practical limits for these compounds;
- A continuing calibration was analyzed after each 12-hour BFB tune. Again, arbitrary limits were not set until practical recovery limits can be established; and
- The following Internal Standards and surrogates were used during the analysis.

Internal Standards	Concentration	<u>Surrogates</u>	Concentration
Bromochloromethane	50 mg/kg	1,2-Dichloroethane-d ₄	50 mg/kg
1,4-Difluorobenzene	50 mg/kg	Toluene-d ₈	50 mg/kg
Chlorobenzene-d ₅	50 mg/kg	Bromofluorobenzene	50 mg/kg

Table 2-2

Comparable Fuels Procedures - Organics

	V	olatiles Analyses	
	Gasoline	No. 4 & 6 Fuel Oil	No. 2 Fuel Oil
Sample Prep	Diluted with Methanol	Methanol Solvent	Methanol Solvent
	Matrix soluble in Methanol	Matrix <u>not</u> soluble in	Matrix <u>not</u> soluble in
		Methanol	Methanol
LCS	Standards Spiked into	Standards Spiked into	Standards Spiked into
	Methanol	Methanol	Methanol
Matrix	Gasoline diluted with	Methanolic Standards Spiked	Methanolic Standards
Spiking	Methanol then MS Standards	into Fuel Oil, then extracted	Spiked into Fuel Oil, then
& Surrogates	& Surrogates Added	with Methanol	extracted with Methanol
Comments	None	See Section 2.1.5 for related	See Section 2.1.5 for relate
		comments.	comments.
	Sem	i-Volatiles Analyses	
Sample Prep	Diluted with MeCl	Diluted with MeCl	Diluted with MeCl
	Matrix soluble in MeCl.	Matrix soluble in MeCl	Matrix soluble in MeCl
	T 1 1 1		
	Extract was solvent	GPC Cleanup	GPC Cleanup
	Extract was solvent exchanged to facilitate	GPC Cleanup	GPC Cleanup
		GPC Cleanup	GPC Cleanup
	exchanged to facilitate	GPC Cleanup	GPC Cleanup
LCS	exchanged to facilitate evaporation of interfering	GPC Cleanup Standards Spiked into MeCl	
LCS Matrix	exchanged to facilitate evaporation of interfering compounds such as xylenes.		Standards Spiked into MeC
	exchanged to facilitate evaporation of interfering compounds such as xylenes. Standards Spiked into MeCl	Standards Spiked into MeCl	Standards Spiked into MeC Standards Spiked into Fue
Matrix	exchanged to facilitate evaporation of interfering compounds such as xylenes. Standards Spiked into MeCl Standards Spiked into	Standards Spiked into MeCl Standards Spiked into Fuel	GPC Cleanup Standards Spiked into MeC Standards Spiked into Fue Oil, then diluted with MeC

HPLC Analyses				
Sample Prep	Extracted with TCLP	Extracted with TCLP	Extracted with TCLP	
	Extraction Fluid	Extraction Fluid	Extraction Fluid	
LCS	Standards Spiked into	Standards Spiked into Hexane	Standards Spiked into	
	Hexane then extracted	then extracted	Hexane then extracted	
Matrix	Standards Spiked into	Standards Spiked into	Standards Spiked into	
Spiking	Gasoline/TCLP fluid	Fuel Oil/TCLP fluid mixture,	Fuel Oil/TCLP fluid	
& Surrogates	mixture, then extracted	then extracted	mixture, then extracted	
Comments	Mixed equal volume of	Mixed equal volume of Fuel	Mixed equal volume of Fuel	
	gasoline and TCLP	Oil and TCLP extraction	Oil and TCLP extraction	
	extraction fluid, rotated 18	fluid, rotated 18 hrs.	fluid, rotated 18 hrs.	
	hrs. Analyzed TCLP fluid.	Analyzed TCLP fluid.	Analyzed TCLP fluid.	

2.2.5 Analytical Difficulties

The oily matrix of these samples posed the largest problem. Gasoline samples were miscible with methanol, but the fuel oil samples were not. Since the fuel oil samples were not miscible with methanol, results are likely to be biased low since the entire sample was not analyzed. As stated above, surrogate compounds were prepared in a methanol solution. This surrogate solution was then added directly to the specific matrix. For gasoline, which was soluble with methanol, the surrogates and matrix spike results may not be truly indicative of analyte recovery from the actual matrix. Headspace analysis may be a viable alternative to SW-846 8240, methanol dilution for future work. Another significant problem was the high frequency of instrument maintenance required to maintain analytical reliability. Also, several target analytes showed non-linear or inconsistent responses. Although exceeding 50% RSD, epichlorohydrin and benzenethiol were all present in each initial calibration point.

2.3 GC/MS Semi-Volatiles

2.3.1 Method Summary

SW-846, Method 8270A was followed as closely as possible for the on-instrument analysis and Method 3520 was used to clean-up samples by gel permeation chromatography to allow their analysis at the lowest possible dilutions.

2.3.2 Sample Preparation

The gasoline samples were prepared by solvent exchange into methylene chloride. This procedure removed some of the volatile hydrocarbon background allowing analysis at lower dilutions than untreated gasoline. Surrogates were added prior to the solvent exchange to monitor analyte recovery. Based on the results from the MDL study (Appendix C) the solvent exchange procedure had no apparent impact on the semi-volatile results.

No. 2, 4, and 6 fuel oils were prepared by weighing 1 gram of sample, adding surrogate spiking compounds, then diluting to 10 mls with methylene chloride. The resulting solution was run through a gel permeation chromatography clean-up prior to analysis.

2.3.3 Instrumental Analysis

SW-846, Method 8270A was employed for the instrumental analysis. A gas chromatograph with a fused silica capillary column and mass spectrometer was used to separate, identify, and quantitate the target analytes. One microliter of each methylene chloride extract was injected into a heated injection port thereby transferring the sample to the analytical system.

2.3.4 Quality Control

Method 8270A was followed and included the following QC procedures. See Table 2-2 for additional information regarding specific procedures utilized on this project. A method blank was

analyzed for each matrix. The following specific criteria were used for this project:

- A 50 ng DFTPP tune was run every twelve hours and met the criteria found on page 8270-9 of SW-846, Method 8270A before any other analyses were run.
- A five-point initial calibration containing each additional analyte was analyzed and average response factors for each compound calculated. Since no documentation on the behavior of these compounds could be found, arbitrary limits were not set for the initial calibration.
- Every twelve hours, immediately following the DFTPP tune, a continuing calibration was analyzed. However, for reasons listed above, arbitrary acceptance limits were not set. All samples were quantitated against the associated batch continuing calibration.
- Samples were run as undiluted as possible. Dilutions were made to prevent detector saturation by non-target peaks.
- Six (6) surrogate compounds, three (3) acid and three (3) base neutral extractable compounds, were spiked into each sample prior to the sample's preparation for analysis as follows:

<u>Surrogates</u>	Concentration	Surrogates	Concentration
Phenol-d ₆	100 ppm on-column	2-Fluorobiphenyl	100 ppm on-column
2-Fluorophenol	100 ppm on-column	Nitrobenzene-d ₅	100 ppm on-column
2,4,6-Trichlorophenol	100 ppm on-column	4-Terphenyl-d ₁₄	100 ppm on-column

Six (6) internal standards were used for target quantitation. All six (6) internal standards met +/- 50% recovery in each sample as compared to the associated continuing calibration for the sample analysis to be considered valid.

Internal Standards	Concentration	Internal Standards	Concentration
1,4-Dichlorobenzene- d_4	40 ppm final dilution	Phenanthrene- d_{10}	40 ppm final dilution
Naphthalene- d_8	40 ppm final dilution	Chrysene- d_{12}	40 ppm final dilution
Acenaphthene- d_{10}	40 ppm final dilution	Perylene- d_{12}	40 ppm final dilution

2.3.5 Analytical Difficulties

Most problems involved contamination of the analytical instrumentation by the fuel oil matrix which caused occasional peak broadening, baseline elevation, and reduced sensitivity of easily degraded analytes. However, routine maintenance to the injection port inlet after each batch of fuel oil analysis kept the GC/MS system within acceptable operating parameters.

Most analytes performed linearly in the initial calibration. However, endothall, 6-propyl-2thiouracil, and strychnine, while present in all calibration points, were greater than 50% RSD. Several other compounds exhibited poor response factors which contributed to the inability to detect them in matrix spikes.

The matrix spikes presented the greatest analytical problems. To yield meaningful recovery data, No. 2 fuel oil was diluted 10:1 with methylene chloride and spiked with compounds in a methanol solution. The resulting solution was cleaned up by GPC, then diluted 4:1 in methylene chloride for analysis. This solution minimized fuel oil interferences. All spiked compounds recovered within the calibration range except 4-aminopyridine, *m*-phenylenediamine, 3,3'-dimethoxybenzidine, and 6-propyl-2-thiouracil.

The gasoline matrix spike was solvent exchanged into methylene chloride to reduce as much of the aromatic background as possible. No further dilution was made prior to analysis. In this mix, the following compounds, if recovered, were masked by the matrix background and reported as not detected; 2,3-dichlorophenol, 2,5-dichlorophenol, 3,4-dichlorophenol, 3,5-dichlorophenol, 3-chlorophenol, 4-chlorophenol, acetone cyanohydrin, 2,3,4-trichlorophenol, 2,3,5-trichlorophenol, 2,3,6-trichlorophenol, thiofanox, and 4-aminopyridine. Due to the time restraints of this project, a matrix spike for fuel oils No.4 and No. 6 was not prepared and analyzed.

2.4 <u>High Pressure Liquid Chromatography (HPLC)</u>

2.4.1 *Method Summary*

A method for analyzing fuel oils was developed modeling similar HPLC methods such as SW-846, Method 8310 as closely as possible. A modified TCLP type extraction was performed and a diode array HPLC detector was used to measure analyte concentration.

2.4.2 Sample Preparation

Fuel oils were extracted with a Toxicity Characteristic Leaching Procedure (TCLP) extraction fluid by adding equal volumes of gasoline or No. 2 fuel oil with the TCLP fluid in a 22 ml vial. No. 4 and 6 fuel oils were first diluted 10:1 with hexane due to their viscous properties which allowed thorough mixing of sample and extraction fluid. The 22 ml vial was sealed and agitated on a TCLP extraction apparatus for a minimum of 12 hours. Additional cleanup of the TCLP extract was not required.

2.4.3 Instrumental Analysis

A 10 microliter aliquot of extraction fluid was analyzed by HPLC using a 25 cm x 4.6 mm, 5 micron particle, reverse phase ABZ+Plus column. A diode array detector was used to measure analyte concentration.

2.4.4 Quality Control

Method 8310 was followed as closely as the sample matrix would allow. See Table 2-2 for additional information regarding specific procedures utilized on this project. A method blank was analyzed for each matrix. Section 2.14 of this report presents a discussion of surrogate spiking compound results for each sample and matrix spike as well as laboratory control sample (LCS) results for each analysis type. The QC results for surrogates are in Appendix D. The following specific criteria were utilized.

- Internal standards were not used. External calibration procedures were used to measure analyte concentration.
- Acetophenone was used as a surrogate to evaluate extraction performance. The surrogate was added to the 22 ml vial just prior to the agitation process. Surrogate was added to produce a concentration of 20 mg/kg on-column.
- A five-point calibration curve was analyzed for quantitation of analytes. However, since documentation on the behavior of these analytes could not be found, arbitrary limits on the correlation coefficients of the analytes were not set. Instead, the curves were analyzed and processed to the best ability of the analyst. This data should be used as a first attempt in determining acceptable calibration curve limits.
- A QC check was analyzed at least every twelve hours during sample analysis. An arbitrary limit of +/- 30% recovery for each analyte was adopted for the QC check. The acceptance limit may be reduced when more data about the behavior of these analytes is collected and evaluated.
- No recovery limits for surrogate recovery were arbitrarily set. However, the recovery had to be at least to the compound's detection limit.

2.4.5 Analytical Difficulties and Recommendations

Since each fraction was prepared and analyzed separately, the spiking concentrations ranged from 20 ppm in the gasoline to 100 ppm in the fuel oils. While the gasoline spikes showed recovery for all analytes, some of the recoveries were close to the lower calibration limit. For this reason, subsequent spiking concentrations were increased.

The analytes spiked into the fuels are not readily soluble in a non-polar matrix. For this reason, the spiking solutions were prepared in methanol to get them into a liquid matrix and the methanol solution was added to the extraction vessel with sample and extraction fluid. Under these conditions,

the spiked compounds probably did not dissolve into the fuel oils matrix prior to extraction and therefore, the generated data may only provide very limited information.

Not all spiked compounds recovered ideally. In gasoline, thioacetamide only recovered at 10% and the diamines at about 50%. MNNG and ethylene thiourea were at nearly 200% recovery even though these compounds were not detected in the unspiked sample. Only thioacetamide recovered unusually in No. 2 fuel oil at nearly 300% with no detection of this compound in the unspiked sample. Thioacetamide also recovered high in the No. 6 fuel oil. Additionally, neither MNNG nor ethylene thiourea was detected in the matrix spike of No. 6 fuel oil.

The following are offered as suggestions for possible future studies. Due to the time constraints for this project, these possibilities were not tested. Different analytical columns may improve analyte recovery and chromatographic quality. Also, a much larger range of analytes may be analyzed by HPLC with different columns.

A better way of spiking fuel oils with polar analytes may be possible. However, these procedures may have to be researched and tested on a compound-by-compound basis. Entire classes of analytes were attempted for this project to analyze the largest number of analytes possible. In addition, other extraction techniques such as solid phase extraction may improve recovery and increase the number of analytes seen by HPLC.

2.5 Dioxins and Dibenzofurans

2.5.1 Method Summary

Due to the large number of individual isomers, analyte toxicity, and the high cost of standards, the dioxins (PCDD) and dibenzofurans (PCDF) were not analyzed by a published method, but as follows.

A standard was procured and calibrated for one select isomer of each group. For example, there are seven (7) isomers of tetrachlorodibenzo-p-dioxins, but only 2,3,7,8-PCDD was analyzed.

The remaining isomers were searched for as 2,3,7,8-PCDD. The following listing provides specific isomer information.

Tetrachlorodibenzo-p-dioxins (Searched as 2,3,7,8-PCDD)

2,3,7,8-PCDD	1,2,3,4-PCDD
1,3,6,8-PCDD	1,3,7,9-PCDD
1,3,7,8-PCDD	1,2,7,8-PCDD
1.2.8.9-PCDD	

Pentachlorodibenzo-p-dioxins (Searched as 1,2,3,7,8-PCDD)

1,2,3,7,8-PCDD 1,2,3,4,7-PCDD

Hexachlorodibenzo-p-dioxin (Searched as 1,2,3,6,7,8-PCDD)

1,2,3,4,7,8-PCDD	1,2,3,6,7,8-PCDD
1,2,3,7,8,9-PCDD	

1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (only hepta isomer)

Octachlorodibenzo-p-dioxin (only octa isomer)

Tetrachlorodibenzofurans (Searched as 2,3,7,8-PCDF)

2,3,7,8-PCDF	1,2,3,4-PCDF
1,3,6,8-PCDF	1,3,7,9-PCDF
1,3,7,8-PCDF	1,2,7,8-PCDF
1,2,8,9-PCDF	

Pentachlorodibenzofurans (Searched as 1,2,3,7,8-PCDF)

1,2,3,7,8-PCDF 1,2,3,4,7-PCDF

Hexachlorodibenzofurans (Searched as 1,2,3,6,7,8-PCDF)

1,2,3,4,7,8-PCDF 1,2,3,6,7,8-PCDF 1,2,3,7,8,9-PCDF

1,2,3,4,6,7,8-Heptachlorodibenzofuran (only hepta isomer)

Octachlorodibenzofuran (only octa isomer)

A curve was not analyzed for these compounds. Instead, a one-point calibration was run after each 12- hour DFTPP tune. The analytical instrument was calibrated to look for PCDDs and PCDFs in samples in a present or not present mode rather than a quantitative mode.

2.5.2 Sample Preparation

For gasoline, PCDDs and PCDFs were searched concurrently with the semi-volatile analyses. See the semi-volatile sample preparation for details.

For the No. 2, 4, and 6 fuel oil samples, the GPC extracts could not be used for PCDD and PCDF analysis. The No. 2 fuel oil spiked with these compounds had no recovery. It was assumed that the GPC process removed these analytes from the spike.

Instead, No. 2 fuel oil was spiked with PCDDs and PCDFs in a 10:1 dilution then cleaned up with sulfuric acid. The remaining organic layer was analyzed with no further dilution. To minimize waste product with PCDDs and PCDFs, only No. 2 fuel oil was spiked. The remaining unspiked fuel oils were prepared in the same way prior to analysis.

2.5.3 Instrumental Analysis

See the semi-volatile instrumental analysis for details.

2.5.4 Quality Control

A method blank was analyzed for each matrix.

2.5.5 Analytical Difficulties and Recommendations

The sample clean-up used for this analysis effectively removed most of the hydrocarbon background. If this clean-up procedure was used with SIM mode mass spectrometry or high resolution mass spectrometry, much lower detection limits may be possible for PCDDs and PCDFs.

Also, calibration for each isomer in a five-point curve is possible. However, the cost of the

standards and waste disposal would be significant.

2.6 <u>Herbicides</u>

2.6.1 *Method Summary*

SW-846, Method 8150 was followed for the on-instrument analysis and Method 3580 (Waste Dilution) was used in the initial sample preparation.

2.6.2 Sample Preparation

Samples were prepared in hexane as per Method 3580. A 1.0 ml aliquot was taken from the 3580 fraction, added to 0.2 ml methanol and brought to a volume of 5.0 ml with diethyl ether. Samples were then derivitized by the diazomethane bubbler procedure as per Method 8150. Samples were then analyzed by gas chromatography.

2.6.3 Instrumental Analysis

Instrumental analysis was conducted by injecting one (1) μ l of extract on dual capillary columns equipped with electron capture detectors (ECD). The capillary columns employed were a DB-608 and a DB-1701.

2.6.4 *Quality Control*

A five-point external standard calibration procedure was used, with a 12-hour window for valid sample analyses. 2,4-Dichlorophenylacetic acid was used as a surrogate. No limits for surrogate recovery were set. A method blank was analyzed for each matrix.

2.6.5 Analytical Difficulties and Recommendations

The hydrocarbon matrix did not seem to cause interference in the derivitization of the acid

herbicides.

2.7 Metals

2.7.1 *Method Summary*

EPA SW-846, Method 3040 was used for the preparation of all samples in this study. The method is a dissolution procedure. All dissolved samples were then analyzed by the appropriate SW-846 flame method, with the exception of arsenic and selenium, where the appropriate graphite furnace atomic absorption method was used. Mercury was analyzed by cold vapor atomic absorption.

2.7.2 Sample Preparation

All samples were prepared using EPA SW-846, Method 3040. All of the samples were diluted 1:10 with xylene. Final results were reported as mg/kg from the original weight.

2.7.3 Instrumental Analysis

Diluted samples were analyzed by the appropriate flame atomic absorption methodology, with the exception of arsenic and selenium, where the graphite furnace atomic absorption was chosen, and mercury, which was analyzed by cold vapor atomic absorption. The analysis of all of the diluted samples proceeded normally.

2.7.4 Quality Control

In general, a blank and three standards were used to perform initial calibration. Correlation coefficients were calculated for each curve, a QC check sample was analyzed after each curve, with the exception of osmium. An initial calibration verification and an initial blank verification were then performed. After every ten samples or between matrices, a calibration verification and a blank verification were performed. A duplicate sample and a matrix spike were performed on each matrix along with a method blank.

For each metal analyte, a standard curve was performed. In all cases, the source for the stock standard was SPEX. The QC check sample was obtained from Conostan. All curves were linear and most correlation coefficients were better than 0.995. At the beginning and during each run, standard calibration checks and blank calibration checks were performed. All initial and continuing calibration blanks were less than the established PQL. All initial and continuing calibration verification results were between 90-110% with the following exceptions: Lead stayed at about 111% for the duration of the run and did not deviate more than 1-2%; and arsenic was variable, although most of the values were 90-110%. Due to its volatile nature, the osmium results were 80-120%.

Sample matrix QC consisted of preparing and analyzing one duplicate and spike for each matrix. For values significantly above the PQL, the results for relative percent differences were less than 20%. The No. 4 fuel oil's selenium result at the PQL showed some variability in the duplicate result. This may be due to the matrix. Most of the spike results were very good and fell within the 75-125% limit with the following exceptions: The barium spike for the No. 6 fuel oil returned a value of 72%. This could be attributed to the matrix; the silver spike results were unusual in that they were all high. This may be due to some stabilizing effect in the fuel versus xylene solvent; all selenium results were good, except for the No. 4 fuel oil mentioned above. Spike results for mercury were exceptional, relative to the method used. This round of results gave 36-47% recovery for mercury spike across the matrices.

2.7.5 Analytical Difficulties and Recommendations

The analysis of all of the diluted samples proceeded normally. Most of the spike results were very good and fell within the 75-125% recovery limit with the following exceptions. Osmium in the gasoline matrix was 59% and tin in the No. 4 and 6 fuel oil was low. While it is unknown why the osmium result was so low, the tin results could be attributed to the matrix.

The mercury method is not as well suited to the matrices encountered in this study. The spike results were the best that could be obtained under these conditions. In the time allowed, we could not find a second standard source for thallium and manganese. Silver displayed some unusual variability in the results for the QC check and the spike. Silver may be more susceptible to certain

kinds of matrix enhancements that were not well documented. The furnace methods used to analyze arsenic and selenium needed some extra effort to set up properly, although once the furnace method was set, the results were very good.

2.8 Pesticides and PCBs

2.8.1 Method Summary

SW-846, Method 8080 was followed for the on-instrument analysis and Method 3580 (Waste Dilution) was used in the initial sample preparation. Method 3665 (sulfuric acid) was used to cleanup the samples prior to analysis for the Aroclor PCBs. No clean-up procedure was used for preparation of the extracts for pesticide analysis.

2.8.2 Sample Preparation

The samples were prepared using Method 3580. One (1) gram of sample was diluted to 10 mls. with Hexane.

2.8.3 Instrumental Analysis

Instrumental analysis was conducted by injecting one (1) μ l of extract on dual capillary columns equipped with electron capture detectors (ECD). The capillary columns employed were a DB-608 and a DB-1701.

2.8.4 Quality Control

A method blank was analyzed for each matrix and an Endrin/DDT standard was analyzed prior to calibration and sample analysis, to ensure a <20% breakdown of the pesticides.

A five-point initial external calibration containing each single-response pesticide generated prior to sample analysis. A single-point external calibration standard was analyzed for all multi- response pesticides and PCBs for qualitative identification. A five-point initial external calibration curve was generated for one of the multi-response compounds (Aroclor 1260), for quantitative analysis.

Two surrogates, dibutylchlorendate and tetrachloro-m-xylene were used to monitor the integrity of the sample preparation and analytical system. The surrogates were added to produce a concentration of 10 μ g/kg on-column. No limits were set for surrogate recovery, however, both surrogates were required to be present to validate each analysis.

2.8.5 Analytical Difficulties and Recommendations

The higher molecular weight components of the fuel oils No. 4 and No. 6 caused some interference with the analyses. The primary problem was difficulty eluting these heavy compounds from the GC column. This problem was absent from samples for PCB analysis that underwent Method 3665 clean-up. Perhaps a clean-up method suitable for pesticides, such as alumina or florisil column clean-up or Gel-permeation clean-up would produce better results.

2.9 Heating Value

2.9.1 Method Summary

Heat of combustion was determined using ASTM Standard D 240. In this test method, heat of combustion was determined by combusting a weighed sample in an Oxygen Bomb Calorimeter under controlled conditions. The rate of combustion was computed from temperature readings before and after combustion.

2.9.2 Quality Control

QC procedures consisted of one duplicate determination per every ten (10) samples and an analysis of a certified standard benzoic acid pellet per every ten (10) samples. Method precision and reproducibility were within the ranges specified in the method. Gross heat of combustion was reported. No adjustments were made for the heat of combustion of nitrogen and sulfur in the sample.

Values were reported as Btu/lb rather than in the SI units of MJ/kg, as stated in the method.

2.10 Specific Gravity

2.10.1 Method Summary

Specific gravity was determined by using ASTM Standard D 1298. This method uses a hydrometer to determine specific gravity after the sample and apparatus were brought to a stable temperature of 60°F. The appropriate hydrometer was lowered into the sample cylinder and allowed to settle. At positional equilibrium, the hydrometer was read and the temperature of the sample noted.

2.10.2 Quality Control

The hydrometers used were calibrated in accordance with National Institute of Standards and Technology (NIST) Circular 555, and ASTM specification E 100. All sample temperatures were brought to 60°F for a period of five (5) hours prior to hydrometer readings. Duplicate determinations were performed per every ten (10) samples. All duplicates were within 5% RSD.

2.10.3 Analytical Difficulties and Recommendations

All specific gravity readings were made at 60°C as per ASTM D 1298. Highly viscous opaque samples presented problems in the accurate readings of the hydrometer. Air bubbles trapped in the more viscous samples may have had a minor influence on the reported results.

2.11 Flash Point

2.11.1 Method Summary

Flash point was determined by EPA SW-846, Method 1010, which is similar to ASTM Standard D 93, using a Pensky-Martens closed-cup Flash Tester. The sample was heated at a slow constant

rate with continual stirring. A small flame was directed into the cup at regular intervals with simultaneous interruption of stirring. The flash point was the lowest temperature at which application of the test flame ignited the vapor above the sample.

2.11.2 Quality Control

Duplicate determinations were made on each of the ten (10) samples. All duplicates were within 2°C of the original result. Gasoline flash points were below the range attainable by the Pensky-Martens Method. These values were reported as less than 0°C.

2.12 Total Halogens

2.12.1 Method Summary

EPA Method 325.3/PARR and ASTM Standard D 4929 were used to analyze the samples for total halogens. The sample was ignited in a PARR bomb as part of the determination of gross heat of combustion. After combustion of two previously weighed samples, the resulting inorganic residue solution was washed from the inside surfaces of the PARR bomb. The wash water was brought to a total volume of 10 milliliters and titrated per EPA Method 325.3. Bromine, chlorine, and iodine are all reported as total chloride. Fluorine does not react with the titrant of EPA Method 325.3 and is not included in the reported values.

2.12.2 Quality Control

In the PARR bomb combustion process, a weighed sample is placed in the PARR bomb under 35 atmospheres of oxygen, approximately 515 psi. Combustion is rapid and complete with no traces of organic material remaining in the bomb. In order to assure the conversion of organic halide to inorganic halogen ion, samples were spiked with known amounts of methylene chloride prior to combustion in the bomb. Recovery of spiked halogen was in the range of 87% to 92% for all gasoline and No. 2 fuel oil samples. For Nos. 4 and 6 fuel oil samples, recovery was in the range of 20% to 45%, which was unacceptable. It is probable that the higher nitrogen content of the Nos. 4

and 6 fuel oils resulted in the production of significant amounts of nitric acid during the PARR bomb combustion process. The nitric acid resulted in unacceptably high levels of ferric and chromate ions from the reaction with the stainless steel PARR bomb. Ferric and chromate ions are an interferant in the EPA Method 325.3 titration process.

2.12.3 Analytical Difficulties and Recommendations

In order to obtain reliable halogen values for the Nos. 4 and 6 fuel oils, these samples were analyzed by ASTM Standard D 4929, a method for determining the organic chloride content in crude oil. This method lists a rinse step to remove inorganic halides from the petroleum product. This step was omitted so that a total halide value would be determined for these samples. The method involves oxidation of a known weight sample in an oxygen stream at 800 °C. The oxygen stream was then led to a microcoulometric cell, where the halide ions react with coulometrically-generated silver ion. The microequivalents of silver ion consumed in the titration was equal to the microequivalents of titratable halide ion in the oxidized sample. Bromine and iodine titrate as chloride equivalents. Fluorine does not respond and is not included.

In the oxygen combustion process, approximately 50% of the bromine and iodine form oxyhalides (HOBr and HOI) which do not react in the titration. Bromine and iodine, therefore, provide an approximate 50% response factor. Calibration curves, replicate analyses, and checks using 2,4,6 trichlorophenol were performed on the sample daily.

2.13 Total Nitrogen

2.13.1 Method Summary

ASTM Standard D 4629 was used to analyze the samples for total nitrogen. The sample of liquid petroleum hydrocarbon was injected into a stream of inert gas. The sample was vaporized and carried to a high temperature zone where oxygen was introduced converting organic bound nitrogen nitric oxide (NO). The NO contacts ozone and emits light, through a process of chemiluminescence, which was detected by a photo multiplier as a measure of the nitrogen contained in the sample.

2 - 25

2.13.2 Quality Control

The instrument was calibrated using nitrogen standards of pyridine or carbazole. Pyridine is used for samples with mid-range boiling points less than 430 °F. Carbazole was used for samples of higher boiling ranges. Method blanks were performed using toluene for gasoline samples and cetane for the higher boiling No. 2, 4, and 6 fuel oil samples.

Reproducibility values were within the specifications stated in ASTM Standard D 4629. All samples were run as replicate analyses. A calibration curve and a known check sample were run daily.

2.14 General Matrix Spike and Laboratory Control Sample Recovery

Every sample, blank, matrix spiked samples, and laboratory control samples were spiked with surrogate spiking compounds prior to the sample preparation. Recovery criteria for petroleum products is not established in the methodology. Therefore, acceptance limits were not used by the laboratory as a means of rejecting an analysis.

Matrix spikes and LCS samples were analyzed concurrently with the fuel oil samples. Due to the unknown analytical characteristics of the analytes in fuel oil and the unknown affect the sample preparation procedures may have had on these quality control samples, acceptance limits were not used by the laboratory as a means of rejecting an analysis. These data should be viewed as a first attempt to set acceptance limit criteria. Overall the recoveries calculated from the MDL study, which also represents some of the spike results, meet the method criteria except were it has been noted in the individual method discussions in this section.

Table 2-2 lists the specific procedures utilized for matrix spiking and the laboratory control samples. It is recommended that the description associated with each analytical fraction be reviewed for additional details.

2.15 Analysis for Total Aromatic Hydrocarbons and Total Polynuclear Aromatic Hydrocarbons

The analysis for total aromatic hydrocarbons and total polynuclear aromatic hydrocarbons yielded results much lower than expected. A small number of specific analytes in these categories were analyzed and summed into totals. There were numerous analytes and isomers that should have been included in this total, but due to the huge number of compounds, they could not be individually calibrated and quantitated. The majority of these compounds are not listed in Appendix VIII and do not have validated methods for analysis. Other methods more suited to this type of analysis, other than identification and quantitation of individual compounds, should be considered for these total numbers.

3.0 RESULTS

3.1 Laboratory Results

Appendix A lists the laboratory results for the semi-volatile, volatile, metals, inorganic parameters, physical parameters, and total aromatic hydrocarbons. These results were submitted to SAIC for statistical analysis which are presented in Appendix B. Appendix C lists the laboratory derived Method Detection Limit (MDL) Study results for each analyte. Appendix D lists the QA data results. The QA data includes surrogate spiking compound recovery for semi-volatile and volatile methods and duplicate and spike recoveries for metals. As stated in Section 2, the results for polynuclear aromatic hydrocarbons and total aromatic hydrocarbons are much lower than expected. The method used to generate these concentrations was to sum the results of the semi-volatile analysis. The constituents listed in 40 CFR, Part 261, Appendix VIII that could be quantitated only included a small number of the aromatic hydrocarbons which are normally present in fossil fuels.

3.2 Constituents Levels

Appendix B lists the comparable fuel constituent specifications for the final rule. The comparable fuels consist of four fuel types – gasoline and Nos. 2, 4, 6 fuel oils. The available data contain chemical compound concentrations from eight (8) samples from gasoline, 11 samples from No. 2 fuel oil, one (1) sample from No. 4 fuel oil and seven (7) samples from No. 6 fuel oil. The final constituent levels were calculated using the composite at the largest value.

For chemical in which at least one sample was measured above the minimum level of detection, the composite was based on the measured concentrations from the detected samples and on the quantitation limits from the non-detect samples. The composite values are presented in the table under the column heading "Concentration Limit." For chemicals in which none of the samples were measured above the minimum level of detection, the composite value was based on the reported quantitation limits and are presented in the table under the column heading "Minimum Required

Detection Limit." However, the final rule allows metals, hydrocarbons, and oxygenates to be present at any concentration less than or equal to the detection limits. For these compounds, all composite value are reported as a concentration limit, using the reported quantitation limits as concentration limit in the case where none of the samples were measured above the minimum detection limit.

For constituents with at least one detected sample, concentration limits have been corrected from the fuel's heating value to 10,000 BTU/lb. For constituents with no detected samples, the concentration limits (in the case of metals, hydrocarbons, or oxygenates) or minimum required detection limits are not corrected to 10,000 BTU/lb.

3.3 Estimates from Additional Halogen Data

Additional analysis was performed to calculate the highest value composite for total halogens. Because the analysis for No. 4 and No. 6 fuel oils was based on analytical methods measuring only total organic and inorganic halogens, additional data was gathered from EPA's database (i.e., Certificates of Compliance required by the BIF rule) and data submitted by one commenter. The additional Total Chlorine data is presented in Table 3-1. The total halogen value has been normalized for the fuel's heating value to 10,000 BTU/lb. This additional data was composited with the gasoline and No.2 fuel oil data contained in this report.

3.4 <u>Statistical Analysis Results (SAIC) (Proposal)</u>

This section presents the results from statistical analyses, performed by Science Applications International Corporation (SAIC), of chemical compound concentrations measured in comparable fuels for the proposed rule. As discussed previously, the comparable fuels consist of four fuel types — gasoline and Nos. 2, 4, and 6 fuel oils. Statistical analyses also were conducted on two (2) combinations of these fuel types: a composite of the three (3) fuel oils (Composite 246); and a composite of all four (4) fuel types. The available data contain chemical compound concentrations from eight (8) samples from gasoline, 11 samples from No. 2 fuel oil, one (1) sample from No. 4 fuel oil, and seven (7) samples from No. 6 fuel oil.

This statistical analyses estimated percentiles from the distribution of concentrations of each chemical compound within each fuel type. For each individual fuel type, the 90th percentile was estimated for every chemical compound. For the composite fuel types, estimates of the 50th and 90th percentiles were calculated for each chemical compound. Section 3.4.1 of this report presents the statistical analysis of the individual fuel types. Section 3.4.2 documents the statistical methodology for estimating percentiles from the composite of Nos. 2, 4, and 6 fuel oils. The analysis of the composite of all four fuel types is presented in Section 3.4.3.

The results from the statistical analyses of these fuel types are presented in Appendix C in the following tables:

- Table 1: Estimated 90th percentiles from gasoline;
- Table 2: Estimated 90th percentiles from No. 2 fuel oil;
- Table 3: Estimated 90th percentiles from No. 4 fuel oil;
- Table 4: Estimated 90th percentiles from No. 6 fuel oil;
- Table 5: Estimated 50th percentiles from the composite of Nos. 2, 4, and 6 fuel oils;
- Table 6: Estimated 90th percentiles from the composite of Nos. 2, 4, and 6 fuel oils;
- Table 7: Estimated 50th percentiles from the composite of all four fuel types;
- Table 8: Estimated 90th percentiles from the composite of all four fuel types; and

As stated earlier, the samples were analyzed in two rounds based on the availability of clearly defined analytical protocols. For the additional compounds that were found during the second round of analyses the following tables, in Appendix C, represent the results from the statistical analyses of these fuel types. The methodology and discussion of the analysis conducted on the original set of data still applies to the information displayed in these tables as well.

- Table 1A: Estimated 90th percentiles from gasoline;
- Table 2A: Estimated 90th percentiles from No. 2 fuel oil;
- Table 3A: Estimated 90th percentiles from No. 4 fuel oil;
- Table 4A: Estimated 90th percentiles from No. 6 fuel oil;
- Table 5A: Estimated 50th percentiles from the composite of Nos. 2, 4, and 6 fuel oils;
- Table 6A: Estimated 90th percentiles from the composite of Nos. 2, 4, and 6 fuel oils;
- Table 7A: Estimated 50th percentiles from the composite of all four fuel types;
- Table 8A: Estimated 90th percentiles from the composite of all four fuel types; and

Within each table, two (2) sets of estimates are presented. For chemicals in which at least one (1) sample was measured above the minimum level of detection, the estimated percentiles were based on the measured concentrations from the detected samples and on the quantitation limits from the non-detect samples. These estimates are presented in the tables under the column heading "Concentration Limit." For chemicals in which none of the samples were measured above the minimum level of detection, the estimated percentiles were based on the reported quantitation limits and are presented in the tables under the column heading "Minimum Detection Limit."

All chemical concentrations were originally reported in the database with units equal to mg/kg. For the chemicals with at least one (1) detected sample, these concentrations were converted to mg/J using the reported heating values (Btu/lb) and the following conversion formula:

$$Concentration\left[\frac{mg}{J}\right] = \frac{Concentration\left[\frac{mg}{kg}\right]}{2326.11\left[\left(\frac{lb}{kg}\right)\left(\frac{J}{BTU}\right)\right] * Heating Value\left[\frac{BTU}{lb}\right]}$$

The estimated percentiles were generated from the mg/J concentrations and were converted back to mg/kg, for presentation in the tables, based on a heating value of 10,000 Btu/lb. For the

US EPA ARCHIVE DOCUMENT

chemicals with no detected samples, the percentiles were calculated from reported quantitation limits in the original units of mg/kg. All results are presented with two (2) significant figures.

3.4.1 Estimates for Each Individual Fuel

Estimated percentiles for the chemical compounds from each individual fuel type (i.e., gasoline and Nos. 2, 4, and 6 fuel oils) are presented in Appendix B, Tables 1 through 4 and Tables 1A through 4A, respectively. Only the chemicals that are contained in the 40 CFR, Part 261, Appendix VIII list are presented in these tables. Each of these tables presents the estimated 90th percentile for chemicals with at least one (1) detected concentration and undetected chemicals above the quantitation limit. The percentile estimates from the detected chemicals are presented under the column heading "Concentration Limit," and the percentiles for the non-detected (non-detect) chemicals are presented under the column heading "Minimum Detection Limit." For the chemicals with at least one (1) detected sample, the percentile estimates were based on the measured value for the detected samples and on the reported quantitation limits for the non-detect samples. For the chemicals with no samples measured above the minimum level of detection, the percentile estimates were based on the reported quantitation limits.

When calculating the quantitation limit for volatile organic compounds (VOCs) in gasoline, in the analytical methods, there are matrix interferences that cause the calculated quantitation limits to be unreliable. Therefore, for the VOCs that were not detected in any of the gasoline samples, the estimated 90th percentile is not presented in Appendix B, Table 1. For these chemicals, the 90th percentile estimate from the composite of the Nos. 2, 4, and 6 fuel oils is presented in Appendix C, Table 1 as a surrogate for the 90th percentile for gasoline.

The estimated percentiles presented in Appendix C, Tables 1 through 4 and Tables 1A through 4A, were generated nonparametrically. That is, the percentiles are based on the rank order statistics of the sample concentrations. Distributional assumptions were not used in the calculation of the percentile estimates because of the sparse sample sizes. For gasoline, at least one of the eight

(8) samples was measured above the minimum level of detection for only nine (9) of the 151 chemical compounds found in 40 CFR Part 261 Appendix VIII. For No. 2 fuel oil, at least one (1) of the 11 samples was measured above the minimum level of detection for only 11 of the 151 chemicals. Only one (1) sample was measured for each chemical compound from No. 4 fuel oil, and only 13 of the chemical compounds were measured above the minimum level of detection in this sample. For No. 6 fuel oil, at least one (1) of the seven (7) samples was measured above of the minimum level of detection for only 16 of the chemicals.

All of the chemicals originally were reported in units of mg/kg. The 90th percentile estimates for non-detect chemicals, under the column heading "Minimum Detection Limit," are presented in the original units of mg/kg. The percentile estimates for chemicals with at least one (1) detected sample, under the column heading "Concentration Limit," were calculated from concentrations that were converted from mg/kg to mg/J based on the report heating values (Btu/lb) for each sample. Then, the percentile estimates were converted from mg/J back to mg/kg based on 10,000 Btu/lb.

The nonparametric procedure for calculating the percentile estimates was based on standard procedures, namely PROC UNIVARIATE (Def. 5), in the SAS statistical software package. This standard nonparametric procedure is outlined in the following steps.

- Let x₁, x₂, x₃, ..., x_n represent the chemical concentrations from the n-samples, ranked from lowest to highest, where n equals the total number of samples.
- 2. To calculate the 90th percentile, let 0.90*n = j + g, where j is the integer part of 0.90*n and g is the fractional part of 0.90*n.
- 3. The estimated 90th percentile is calculated as:

(xj + xj+1)/2, if g = 0; and (xj + 1), if g > 0. **Example:** In No. 6 fuel oil, data were available from seven (7) samples. Therefore, n=7 and 0.90*n=6.3. The integer part (j) is equal to 6, and the fractional part (g) is equal to 3/10. Because the fractional part (g) is not equal to zero, the 90th percentile is equal to the interpolated values of the concentrations between the 6th and 7th samples. That is, the 90th percentile is the average of the largest concentration and the second largest concentration.

The estimated percentiles from this methodology are presented under the column heading "Concentration Limit" in Appendix C, Tables 1 through 4.

3.4.2 Estimates from Composite 246

In addition to the percentile estimates from each individual fuel type, percentile estimates are presented for a combination of Nos. 2, 4, and 6 fuel oils. This combination of fuel oils is labeled "Composite 246." The estimated percentiles presented under combination of fuel oils are weighted estimates from the chemical concentrations from the three (3) fuel oils. Estimates were generated from all reported samples of these fuel oils, using the measured concentrations from the detect samples and the reported quantitation limits from the non-detect samples.

Appendix C, Table 5 presents estimated 50th percentiles from the composite of Nos. 2, 4, and 6 fuel oils. Estimated 90th percentiles are presented in Appendix C, Table 6. For chemicals with at least one (1) detected concentration, the percentile estimates are presented under the heading "Concentration Limit". The percentile estimates for the chemicals with no detected concentrations are presented under the heading "Minimum Detection Limit."

The estimated percentiles were generated by weighting each sample according to the number of samples available from each fuel type. This adjustment provides equal contribution from each sample to the composite estimate. That is, each fuel type should represent one-third of the population. Therefore, each sample from No. 2 fuel oil, which contained 11 samples, was assigned a weight of 1/33; the sample from No. 4 fuel oil was assigned a weight of 1/3; and each sample from No. 6 fuel oil, which contained seven (7) samples, was assigned a weight of 1/21. The chemical concentrations were then ranked from lowest to highest and the weights were summed across samples until the total weight was equal to 0.50. The corresponding chemical concentration was used as the estimated 50th percentile. That is, the 50th percentile is the concentration corresponding to the ranked sample for which 50% of the weights were accounted. If the sum of the weights does not equal 0.50 exactly, then the 50th percentile is the interpolated value of the two (2) reported concentrations surrounding the 50th percentile point. Similarly, the 90th percentile was estimated by the corresponding concentration when the sum of the weights was equal to 0.90.

As in the calculation of the percentiles for each individual fuel type, the percentiles for the detected chemicals are presented in units of mg/kg at 10,000 Btu/lb, and the percentiles for the non-detect chemicals are presented in the original units of mg/kg. All of the chemicals originally were reported in the database with units of mg/kg. The percentile estimates for chemicals with at least one (1) detected sample, under the column heading "Concentration Limit," were calculated from concentrations converted from mg/kg to mg/J, based on the reported heating values (Btu/lb) for each sample. The percentile estimates then were converted from mg/J back to mg/kg based on 10,000 Btu/lb. For the chemicals with no samples measured above the minimum level of detection, the percentile estimates were based on the reported quantitation limits in the original units of mg/kg.

3.4.3 Estimates from Composite of All Fuel Types

Appendix C, Tables 7, 7A, 8, and 8A present percentile estimates for a combination of all four (4) fuel types (i.e., gasoline and Nos. 2, 4, and 6 fuel oils), labeled "Composite All." The estimated percentiles presented under this combination of fuel types are weighted estimates from the chemical concentrations from the four fuel types. Estimates were generated from all reported samples of these fuel types, using the measured concentrations from the detected analytes in the samples and the reported quantitation limits from the non-detect analytes in the samples.

Appendix C, Table 7 and Table 7A presents estimated 50th percentiles from the composite of all fuel types. Estimated 90th percentiles are presented in Appendix C, Table 8, and Table 8A. For chemicals with at least one (1) detected concentration, the percentile estimates are presented under the heading "Concentration Limit." The percentile estimates for the chemicals with no detected concentrations are presented under the heading "Minimum Detection Limit."

The estimated percentiles were generated by weighing each sample according to the number of samples available from each fuel type, so that each fuel type provided equal contribution to the estimated percentiles. That is, each fuel type should represent one-quarter of the population. Therefore, the samples from gasoline and Nos. 2, 4, and 6 fuel oils were assigned weights of 1/32, 1/44, 1/4, and 1/28, respectively, based on the number of samples from each fuel type. The chemical concentrations were then ranked from lowest to highest, and the weights were summed across samples until the total weight was equal to 0.50. The corresponding chemical concentration was used as the estimated 50th percentile. That is, the 50th percentile is the concentration corresponding to the ranked sample for which 50% of the weights were accounted. If the sum of the weights does not equal 0.50 exactly, then the 50th percentile is an average of the two (2) reported concentrations that surround the 50th percentile point. Similarly, the 90th percentiles were estimated by the corresponding concentration when the sum of the weights was equal to 0.90.

In the analytical methods for calculating the quantitation limit for VOCs in gasoline, there are matrix interferences that cause the calculated quantitation limits to be unreliable. Therefore, for the VOCs not detected in any of the gasoline samples, the estimated percentiles for the composite of all fuel types, which includes gasoline, were not presented. For these chemicals, the estimates from the composite of the Nos. 2, 4, and 6 fuel oils (i.e., without gasoline) are presented in Appendix C, Tables 5, 5A, 6, and 6A as surrogates for the percentile estimates from the composite of all four (4) fuel types.

The percentiles for the detected chemicals are presented in units of mg/kg at 10,000 Btu/lb and the percentiles for the non-detect chemicals are presented in the original units of mg/kg. All of

the chemicals originally were reported in the database with units of mg/kg. The percentile estimates for chemicals with at least one (1) detected sample (i.e., concentration limit) were calculated from concentrations converted from mg/kg to mg/J, based on the reported heating values (Btu/lb) for each sample. The percentile estimates then were converted from mg/J back to mg/kg based on 10,000 Btu/lb. For the chemicals with no samples measured above the minimum level of detection, the percentile estimates were based on the reported quantitation limits in the original units of mg/kg.

Table 3-1

Chlorine Content of Fuel Oils Used in Hazardous Waste Burning Boilers and Incinerators (as Reported in CoC Test Reports)

Facility Name and Location	Fuel Oil No.	Cl ⁻ Content (ppm _w) Ind. Measurements	No. Of Measur.	Measurement Method	Comments
Amer. Cyan., Kalamazoo, MI	6	< 45	1	ASTM D3120	Sulfur method, not used
Huntsman Poly., Woodbury, NJ	6	< 100	6	SW-846 9020	Organic chlorine, not used
Rohm and Haas, Phil., PA	6	108, 110, 171	3	ASTM D 808/D 4327	Below method DL
Rohm and Haas, Bristol, PA	6	180	1	ASTM D 808/D 4327	Below method DL
Rohm and Haas	6	590, 660, 1000	3	EPA 9020	Below/near method DL
Rohm and Haas	6	840, 840	3	EPA 9020	
Dow Chem., Gales Ferry, CT	2	83, 93, 137	3	ASTM D 808	Below method DL, not used
Du Pont, Wilmington, DE	2	16, 429, 461, 470, 490, 523	5	ASTM D 808/D 4327	

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L itation Code D.F. Q.L itation Code D.F. 8835-001 ,2,4,5-Tetrachlorobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 1,2,4-Trichlorobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 117 U 8835-001 1,2-Dichlorobenzene U 26. <1200 U <200 U 19.8 <99 9.90 8835-001 <270 U U 117 <200 U <99 U 1.3.5-Trinitrobenzene 26. <1200 19.8 9.90 8835-001 1.3-Dichlorobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 1.4-Dichlorobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 1,4-Naphthoquinone <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 1-Naphthylamine <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol <270 U 26. U 117 <200 U 19.8 <99 U 8835-001 <1200 9.90 U U 117 U U 8835-001 2,4,6-Trichlorophenol <270 26.1 <1200 <200 19.8 <99 9.90 8835-001 2,4-Dichlorophenol <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 117 U U 8835-001 2,4-Dimethylphenol <270 U 26.1 <1200 U <200 19.8 <99 9.90 8835-001 2,4-Dinitrophenol <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 2,4-Dinitrotoluene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 U 8835-001 6-Dichlorophenol <270 U 26. <1200 U 117 <200 U 19.8 <99 9.90 8835-001 2.6-Dinitrotoluene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 2-Acetvlaminofluorene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 117 2-Chloronaphthalene <270 U 26. <1200 U <200 U 19.8 <99 U 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 2-Chlorophenol <270 U U 117 U U 8835-001 2-Methylphenol 26. <1200 <200 19.8 <99 9.90 <270 U 117 U U 8835-001 2-Naphthylamine 26.1 <1200 U <200 19.8 <99 9.90 8835-001 2-Nitroaniline <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 U 117 U U 8835-001 2-Nitrophenol <270 26.1 <1200 U <200 19.8 <99 9.90 8835-001 2-Picoline <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 3.3'-Dichlorobenzidine <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 U U 117 <200 U U 8835-001 3-3'-Dimethylbenzidine 26.1 <1200 19.8 <99 9.90 8835-001 3-Methylcholanthrene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 4,6-Dinitro-2-methylphenol <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 117 U 8835-001 <270 U 26. <1200 U <200 U 19.8 <99 9.90 4-Aminobiphenyl 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 4-Bromophenyl phenyl ether <270 U 117 <200 U U 8835-001 4-Chloro-3-methylphenol 26. <1200 U 19.8 <99 9.90 8835-001 4-Chloroaniline <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 117 U U 8835-001 4-Methylphenol U 26. <1200 U <200 19.8 <99 9.90 U U U 8835-001 4-Nitroaniline <270 26.1 <1200 U 117 <200 19.8 <99 9.90 8835-001 4-Nitrophenol <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 5-Nitro-o-toluidine 8835-001 <270 U U 117 <200 U U 7,12-Dimethylbenz[a]anthracene 26.1 <1200 19.8 <99 9.90 8835-001 α, α -Dimethylphenethylamine <270 U 26.1 <1200 U 117 <200 U 19.8 <99 U 9.90 U 117 U U 8835-001 Acetophenone <270 26.1 <1200 U <200 19.8 <99 9.90 8835-001 Aniline <270 U 26.7 <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U 26.7 <1200 U 117 <200 U 19.8 <99 U 9.90 Aramite

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-001 Benzidine <270 U 26. <1200 117 <200 U 19.8 <99 U 9.90 U 117 8835-001 Benzo[a]anthracene <270 U 26. <1200 U <200 U 19.8 <99 U 9.90 <270 U 26. U 117 <200 U 19.8 <99 U 9.90 8835-001 Benzo[a]pyrene <1200 U 8835-001 Benzo[b]fluoranthene <270 U 26. <1200 U 117 <200 U 19.8 <99 9.90 8835-001 117 <200 19.8 <99 U Benzo[k]fluoranthene <270 U 26. <1200 U U 9.90 8835-001 Bis(2-chloroisopropyl)ether <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 Butyl benzyl phthalate 8835-001 <270 U 26.7 <1200 U 117 <200 U <99 U 9.90 Chlorobenzilate 19.8 <270 117 <200 U U 8835-001 Chrysene U 26. <1200 U 19.8 <99 9.90 <270 U 26. U 117 <200 U 19.8 <99 U 8835-001 Di-n-butyl phthalate <1200 9.90 8835-001 Di-n-octyl phthalate <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 Diallate <270 U U 117 <200 U U 9.90 8835-001 26.1 <1200 19.8 <99 8835-001 Dibenzo[a,h]anthracene <270 U 26.7 <1200 U 117 <200 U 19.8 <99 U 9.90 U 8835-001 Dibenz[a,j]acridine <270 U 26. <1200 U 117 <200 U <99 19.8 9.90 117 U U <99 U 8835-001 Diethyl phthalate <270 26.1 <1200 U <200 19.8 9.90 U U 117 <200 U U 8835-001 Dimethoate <270 26. <1200 19.8 <99 9.90 U 8835-001 Dimethyl phthalate <270 U 26. <1200 U 117 <200 U 19.8 <99 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 Dinoseb 8835-001 Diphenylamine <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 117 U <99 U 8835-001 Disulfoton U 26. <1200 U <200 19.8 9.90 8835-001 <270 117 <200 U U Ethyl methanesulfonate U 26. <1200 U 19.8 <99 9.90 117 8835-001 Famphur <270 U 26. <1200 U <200 U 19.8 <99 U 9.90 <270 U 26. U 117 <200 U 19.8 <99 U 9.90 8835-001 Fluoranthene <1200 8835-001 Fluorene <270 U 26. <1200 U 117 <200 220 19.8 <99 U 9.90 117 U 8835-001 Hexachlorobenzene <270 U 26.1 <1200 U <200 U 19.8 <99 9.90 U U 117 <200 U U 8835-001 Hexachlorobutadiene <270 26.1 <1200 19.8 <99 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 Hexachlorocyclopentadiene U U 117 U <99 U 8835-001 Hexachloroethane <270 26.1 <1200 <200 19.8 9.90 8835-001 <6700 U 26. <29000 U 117 <5000 U 19.8 <2500 U 9.90 Hexachlorophene 8835-001 Hexachloropropene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U U U U 26. <1200 117 <200 19.8 <99 9.90 Indeno(1,2,3-c,d)pyrene 117 <200 U 8835-001 Isodrin <270 U 26. <1200 U U 19.8 <99 9.90 117 8835-001 Isosafrole <270 U 26. <1200 U <200 U 19.8 <99 U 9.90 8835-001 <530 U 26. <2300 U 117 <400 U 19.8 <200 U 9.90 Kepone 8835-001 Methapyrilene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 U U 117 <200 U U 8835-001 Methyl parathion 26.1 <1200 19.8 <99 9.90 117 U <270 U U <200 U 19.8 < 99 8835-001 Methyl methanesulfonate 26.1 <1200 9.90 8835-001 N-Nitroso-di-n-butylamine <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 U 117 U 19.8 <99 U 8835-001 N-Nitrosodi-n-propylamine <270 26.1 <1200 U <200 9.90 8835-001 N-Nitrosodiethylamine <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 N-Nitrosomethylethylamine <270 U 26.1 <1200 U 117 <200 U 19.8 <99 U 9.90 U 117 U 19.8 < 99 U 8835-001 N-Nitrosomorpholine <270 26.7 <1200 U <200 9.90

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. <270 26. <1200 117 <200 U 19.8 <99 U 9.90 8835-001 N-Nitrosopiperidine U U U 117 U U 8835-001 N-Nitrosopyrrolidine <270 26. <1200 U <200 19.8 <99 9.90 <270 2500 26. 2000 117 <200 660 19.8 <99 170 8835-001 Naphthalene <1200 9.90 8835-001 Nitrobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 117 19.8 <99 U O,O,O-Triethylphosphorothioate <270 U 26. <1200 U <200 U 9.90 8835-001 o-Toluidine <270 U 26. <1200 U 117 <200 U 19.8 <2000 U 9.90 8835-001 o-Dimethylaminoazobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U 26.7 <1200 U 117 <200 U <99 U 9.90 p-Phenylenediamine 19.8 <270 117 <200 U U 8835-001 Parathion U 26. <1200 U 19.8 <99 9.90 <270 U 26. U 117 <200 U 19.8 <99 U 8835-001 Pentachlorobenzene <1200 9.90 8835-001 Pentachloronitrobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 U U 117 <200 U U 9.90 8835-001 Pentachlorophenol 26.1 <1200 19.8 <99 8835-001 Phenacetin <270 U 26.1 <1200 U 117 <200 U 19.8 <99 U 9.90 U 8835-001 Phenol <270 U 26. <1200 U 117 <200 U <99 19.8 9.90 U 117 U <99 U 8835-001 Phorate <270 26.1 <1200 U <200 19.8 9.90 U U 117 <200 U U 8835-001 Pronamide <270 26. <1200 19.8 <99 9.90 U 8835-001 Pyridine <270 U 26. <1200 U 117 <200 U 19.8 <99 9.90 8835-001 Safrole <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 Sulfotepp <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 117 U <99 U 8835-001 Thionzin U 26. <1200 U <200 19.8 9.90 8835-002 <270 U <1200 U 117 <200 U 1.2.4.5-Tetrachlorobenzene 26.0 19.6 117 8835-002 1,2,4-Trichlorobenzene <270 U 26.6 <1200 U <200 U 19.6 1,2-Dichlorobenzene <270 U U 117 <200 U 8835-002 26.6 <1200 19.6 8835-002 1,3,5-Trinitrobenzene <270 U 26.0 <1200 U 117 <200 U 19.6 1,3-Dichlorobenzene 117 <200 U 8835-002 <270 U 26.6 <1200 U 19.6 U U U 117 <200 8835-002 1,4-Dichlorobenzene <270 26.6 <1200 19.6 8835-002 1,4-Naphthoquinone <270 U 26.6 <1200 U 117 <200 U 19.6 U U 117 <200 U 8835-002 1-Naphthylamine <270 26.0 <1200 19.6 8835-002 2,3,4,6-Tetrachlorophenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 2,4,5-Trichlorophenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 <270 U U <200 U <1200 117 19.6 2,4,6-Trichlorophenol 26.0 117 <200 U 8835-002 2.4-Dichlorophenol <270 U 26.6 <1200 U 19.6 8835-002 2,4-Dimethylphenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 2,4-Dinitrophenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 2,4-Dinitrotoluene <270 U 26.6 <1200 U 117 <200 U 19.6 U U 117 <200 U 8835-002 2,6-Dichlorophenol <270 26.6 <1200 19.6 U <270 U U 117 <200 8835-002 2,6-Dinitrotoluene 26.6 <1200 19.6 8835-002 2-Acetylaminofluorene <270 U 26.6 <1200 U 117 <200 U 19.6 2-Chloronaphthalene U 117 <200 U 8835-002 <270 26.6 <1200 U 19.6 <270 U U 117 <200 U 8835-002 2-Chlorophenol 26.6 <1200 19.6 8835-002 2-Methylphenol <270 U 26.6 <1200 U 117 <200 U 19.6 U 117 U 8835-002 2-Naphthylamine <270 26.6 <1200 U <200 19.6

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-002 <270 U 26.6 <1200 U 117 <200 U 19.6 2-Nitroaniline 117 <200 8835-002 2-Nitrophenol <270 U 26.0 <1200 U U 19.6 2-Picoline <270 U 26.6 U 117 <200 U 19.6 8835-002 <1200 <200 U 8835-002 3,3'-Dichlorobenzidine <270 U 26.6 <1200 U 117 19.6 8835-002 <270 U 117 <200 U 19.6 3-3'-Dimethylbenzidine 26.0 <1200 U 8835-002 3-Methylcholanthrene <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 4,6-Dinitro-2-methylphenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 <270 U 26.6 <1200 U 117 <200 U 19.6 4-Aminobiphenyl <270 117 <200 U 8835-002 4-Bromophenyl phenyl ether U 26.6 <1200 U 19.6 <270 U 26.6 U 117 <200 U 19.6 8835-002 4-Chloro-3-methylphenol <1200 8835-002 4-Chloroaniline <270 U 26.6 <1200 U 117 <200 U 19.6 <270 U U 117 <200 U 19.6 8835-002 4-Methylphenol 26.6 <1200 8835-002 4-Nitroaniline <270 U 26.6 <1200 U 117 <200 U 19.6 U 8835-002 4-Nitrophenol <270 U 26.0 <1200 U 117 <200 19.6 117 U <270 U <200 8835-002 5-Nitro-o-toluidine 26.6 <1200 U 19.6 <270 U U 117 <200 U 8835-002 7,12-Dimethylbenz[a]anthracene 26.0 <1200 19.6 <200 U 8835-002 α, α -Dimethylphenethylamine <270 U 26.0 <1200 U 117 19.6 8835-002 Acetophenone <270 U 26.6 <1200 U 117 <200 U 19.6 <270 117 8835-002 Aniline U 26.6 <1200 U <200 U 19.6 <270 U 117 <200 U 8835-002 Aramite 26.6 <1200 U 19.6 8835-002 <270 U U 117 <200 U Benzidine 26.6 <1200 19.6 117 8835-002 Benzo[a]anthracene <270 U 26.6 <1200 U <200 760 19.6 <270 U U 117 <200 450 19.6 8835-002 Benzo[a]pyrene 26.6 <1200 8835-002 Benzo[b]fluoranthene <270 U 26.0 <1200 U 117 <200 210 19.6 Benzo[k]fluoranthene U 117 <200 8835-002 <270 26.6 <1200 U U 19.6 U U 117 <200 U 8835-002 Bis(2-chloroisopropyl)ether <270 26.6 <1200 19.6 8835-002 Butyl benzyl phthalate <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 U U 117 <200 U Chlorobenzilate <270 26.0 <1200 19.6 8835-002 Chrysene <270 U 26.6 <1200 U 117 <200 700 19.6 8835-002 Di-n-butyl phthalate <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 <270 U U <200 U Di-n-octyl phthalate 26.0 <1200 117 19.6 8835-002 117 <200 U Diallate <270 U 26.6 <1200 U 19.6 8835-002 Dibenzo[a,h]anthracene <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 Dibenz[a,j]acridine <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 Diethyl phthalate <270 U 26.6 <1200 U 117 <200 U 19.6 <270 U U 117 <200 U 8835-002 Dimethoate 26.6 <1200 19.6 117 U <270 U U <200 8835-002 Dimethyl phthalate 26.6 <1200 19.6 <270 117 <200 U 8835-002 Dinoseb U 26.6 <1200 U 19.6 <270 117 <200 U 8835-002 Diphenylamine U 26.6 <1200 U 19.6 <270 U U 117 <200 U 8835-002 Disulfoton 26.6 <1200 19.6 8835-002 Ethyl methanesulfonate <270 U 26.6 <1200 U 117 <200 U 19.6 U 117 <200 U 8835-002 Famphur <270 26.6 <1200 U 19.6

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-002 <270 U 26.6 <1200 117 <200 U Fluoranthene U 19.6 117 220 8835-002 Fluorene <270 U 26.0 <1200 U <200 19.6 <270 U 26.6 U 117 <200 U 19.6 8835-002 Hexachlorobenzene <1200 <200 8835-002 Hexachlorobutadiene <270 U 26.6 <1200 U 117 U 19.6 8835-002 U 117 <200 U 19.6 Hexachlorocyclopentadiene <270 26.0 <1200 U 8835-002 Hexachloroethane <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 <6600 U 26.6 <29000 U 117 <4900 U 19.6 Hexachlorophene 8835-002 <270 U 26.6 U 117 <200 U 19.6 Hexachloropropene <1200 <270 117 <200 U 8835-002 Indeno(1,2,3-c,d)pyrene U 26.6 <1200 U 19.6 <270 U 26.6 U 117 <200 U 19.6 8835-002 Isodrin <1200 8835-002 Isosafrole <270 U 26.6 <1200 U 117 <200 U 19.6 <530 U <2300 U 117 <390 U 19.6 8835-002 Kepone 26.6 8835-002 Methapyrilene <270 U 26.6 <1200 U 117 <200 U 19.6 U 8835-002 <270 U 26.0 <1200 U 117 <200 19.6 Methyl parathion U 117 <200 U 8835-002 Methyl methanesulfonate <270 26.6 <1200 U 19.6 U U 117 <200 U 8835-002 N-Nitroso-di-n-butylamine <270 26.0 <1200 19.6 N-Nitrosodi-n-propylamine <200 U 8835-002 <270 U 26.0 <1200 U 117 19.6 8835-002 N-Nitrosodiethylamine <270 U 26.6 <1200 U 117 <200 U 19.6 N-Nitrosomethylethylamine 117 8835-002 <270 U 26.6 <1200 U <200 U 19.6 <270 117 <200 U 8835-002 N-Nitrosomorpholine U 26.6 <1200 U 19.6 8835-002 <270 117 <200 U N-Nitrosopiperidine U 26.0 <1200 U 19.6 N-Nitrosopyrrolidine 8835-002 <270 U 26.6 <1200 U 117 <200 U 19.6 <270 2600 26.6 2300 117 <200 550 8835-002 Naphthalene <1200 19.6 8835-002 Nitrobenzene <270 U 26.0 <1200 U 117 <200 U 19.6 O,O,O-Triethylphosphorothioate 117 <200 U 8835-002 <270 U 26.6 <1200 U 19.6 <270 U U 117 <200 U 8835-002 o-Toluidine 26.6 <1200 19.6 8835-002 o-Dimethylaminoazobenzene <270 U 26.6 <1200 U 117 <200 U 19.6 U U 117 <200 U 8835-002 p-Phenylenediamine <270 26.0 <1200 19.6 8835-002 Parathion <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 Pentachlorobenzene <270 U 26.6 <1200 U 117 <200 U 19.6 υ 8835-002 <270 U U <200 <1200 117 19.6 Pentachloronitrobenzene 26.0 117 <200 U 8835-002 Pentachlorophenol <270 U 26.6 <1200 U 19.6 8835-002 Phenacetin <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 Phenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 Phorate <270 U 26.6 <1200 U 117 <200 U 19.6 U U 117 <200 U 8835-002 Pronamide <270 26.0 <1200 19.6 <270 U U 117 <200 U 8835-002 Pyridine 26.6 <1200 19.6 8835-002 Safrole <270 U <1200 U <200 U 26.6 117 19.6 117 <200 8835-002 Sulfotepp <270 U 26.6 <1200 U U 19.6 <270 U 117 <200 U 8835-002 Thionzin 26.6 <1200 U 19.6 8835-003 1.2.4.5-Tetrachlorobenzene <670 U 66.8 <590 U 59.4 <190 U 19.2 U 59.4 U 8835-003 1,2,4-Trichlorobenzene <670 66.8 <590 U <190 19.2

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-003 ,2-Dichlorobenzene <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 1,3,5-Trinitrobenzene <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 1,3-Dichlorobenzene U 8835-003 1.4-Dichlorobenzene <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 <670 U <590 59.4 <190 U 19.2 1,4-Naphthoquinone 66.8 U 8835-003 1-Naphthylamine <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 2,3,4,6-Tetrachlorophenol <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 2,4,5-Trichlorophenol <670 U 8835-003 2,4,6-Trichlorophenol U 66.8 <590 U 59.4 <190 19.2 2,4-Dichloropheno <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 8835-003 2,4-Dimethylphenol <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 <670 U U <190 U 19.2 2,4-Dinitrophenol 66.8 <590 59.4 8835-003 2,4-Dinitrotoluene <670 U 66.8 <590 U 59.4 <190 U 19.2 U 8835-003 <670 U <590 U 59.4 <190 19.2 2,6-Dichlorophenol 66.8 U U 59.4 <190 8835-003 2,6-Dinitrotoluene <670 66.8 <590 U 19.2 <670 U <590 U <190 U 19.2 8835-003 2-Acetylaminofluorene 66.8 59.4 U 8835-003 2-Chloronaphthalene <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 2-Chlorophenol <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 2-Methylphenol <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 <590 <190 U 8835-003 2-Naphthylamine U 66.8 U 59.4 19.2 8835-003 <670 <590 59.4 <190 U 2-Nitroaniline U 66.8 U 19.2 2-Nitrophenol 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 2-Picoline 8835-003 3,3'-Dichlorobenzidine <670 U 66.8 <590 U 59.4 <190 U 19.2 59.4 U 8835-003 3-3'-Dimethylbenzidine <670 U 66.8 <590 U <190 19.2 U U U <190 8835-003 3-Methylcholanthrene <670 66.8 <590 59.4 19.2 8835-003 4,6-Dinitro-2-methylphenol <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 U <590 U 59.4 <190 U 4-Aminobiphenyl <670 66.8 19.2 8835-003 4-Bromophenyl phenyl ether <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 4-Chloro-3-methylphenol <670 U 66.8 <590 U 59.4 <190 U 19.2 υ 8835-003 <670 U U <190 4-Chloroaniline <590 59.4 19.2 66.8 8835-003 <670 <590 59.4 <190 U 4-Methylphenol U 66.8 U 19.2 8835-003 4-Nitroaniline <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 4-Nitrophenol <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 5-Nitro-o-toluidine <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U <190 U 8835-003 66.8 <590 U 59.4 19.2 7,12-Dimethylbenz[a]anthracene <190 U 8835-003 α, α -Dimethylphenethylamine <670 U 66.8 <590 U 59.4 19.2 8835-003 <670 U <590 U 59.4 <190 U Acetophenone 66.8 19.2 8835-003 Aniline <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U 59.4 <190 U 8835-003 Aramite 66.8 <590 U 19.2 8835-003 Benzidine <670 U 66.8 <590 U 59.4 <190 U 19.2 U 8835-003 Benzo[a]anthracene <670 66.8 <590 U 59.4 <190 660 19.2

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-003 Benzo[a]pyrene <670 U 66.8 <590 59.4 <190 450 19.2 U 8835-003 Benzo[b]fluoranthene <670 U 66.8 <590 U 59.4 <190 220 19.2 Benzo[k]fluoranthene <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 8835-003 Bis(2-chloroisopropyl)ether <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 U <590 59.4 U 19.2 Butyl benzyl phthalate <670 66.8 U <190 U 8835-003 Chlorobenzilate <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 Chrysene <670 U 66.8 <590 U 59.4 <190 740 19.2 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 Di-n-butyl phthalate <670 U 8835-003 Di-n-octyl phthalate U 66.8 <590 U 59.4 <190 19.2 <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Diallate 8835-003 Dibenzo[a,h]anthracene <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U U <190 U 19.2 8835-003 Dibenz[a,j]acridine 66.8 <590 59.4 8835-003 Diethyl phthalate <670 U 66.8 <590 U 59.4 <190 U 19.2 U 8835-003 Dimethoate <670 U <590 U 59.4 <190 19.2 66.8 U 59.4 <190 U 8835-003 Dimethyl phthalate <670 66.8 <590 U 19.2 U <590 U <190 U 19.2 8835-003 Dinoseb <670 66.8 59.4 U 8835-003 Diphenylamine <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 Disulfoton <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Ethyl methanesulfonate <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 <590 <190 U 8835-003 Famphur U 66.8 U 59.4 19.2 8835-003 <670 <590 59.4 <190 U Fluoranthene U 66.8 U 19.2 8835-003 Fluorene <670 U 66.8 <590 U 59.4 <190 210 19.2 <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Hexachlorobenzene 8835-003 Hexachlorobutadiene <670 U 66.8 <590 U 59.4 <190 U 19.2 59.4 U 8835-003 Hexachlorocyclopentadiene <670 U 66.8 <590 U <190 19.2 U U U <190 8835-003 Hexachloroethane <670 66.8 <590 59.4 19.2 8835-003 Hexachlorophene <17000 U 66.8 <15000 U 59.4 <4800 U 19.2 8835-003 U U <190 U Hexachloropropene <670 66.8 <590 59.4 19.2 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 Indeno(1,2,3-c,d)pyrene 8835-003 Isodrin <670 U 66.8 <590 U 59.4 <190 U 19.2 υ 8835-003 <670 U U <190 <590 59.4 19.2 Isosafrole 66.8 59.4 <380 U 8835-003 Kepone <1300 U 66.8 <1200 U 19.2 8835-003 Methapyrilene <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Methyl parathion <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Methyl methanesulfonate <670 U 66.8 <590 U 59.4 <190 U 19.2 U 8835-003 N-Nitroso-di-n-butvlamine <670 U 66.8 <590 U 59.4 <190 19.2 U 8835-003 N-Nitrosodi-n-propylamine <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 <670 U <590 U 59.4 <190 U N-Nitrosodiethylamine 66.8 19.2 N-Nitrosomethylethylamine 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U 59.4 <190 U 8835-003 N-Nitrosomorpholine 66.8 <590 U 19.2 8835-003 N-Nitrosopiperidine <670 U 66.8 <590 U 59.4 <190 U 19.2 U U 8835-003 N-Nitrosopyrrolidine <670 66.8 <590 U 59.4 <190 19.2

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-003 Naphthalene <670 5400 66.8 <590 1300 59.4 <190 550 19.2 8835-003 Nitrobenzene <670 U 66.8 <590 U 59.4 <190 U 19.2 O,O,O-Triethylphosphorothioate <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 U 8835-003 o-Toluidine <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 <670 <590 59.4 U 19.2 o-Dimethylaminoazobenzene U 66.8 U <190 8835-003 p-Phenylenediamine <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Parathion <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 Pentachlorobenzene U 8835-003 Pentachloronitrobenzene <670 U 66.8 <590 U 59.4 <190 19.2 <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Pentachlorophenol 8835-003 Phenacetin <670 U 66.8 <590 U 59.4 <190 U 19.2 Phenol <670 U U <190 U 19.2 8835-003 66.8 <590 59.4 8835-003 Phorate <670 U 66.8 <590 U 59.4 <190 U 19.2 U 8835-003 Pronamide <670 U <590 U 59.4 <190 19.2 66.8 U 59.4 <190 U 8835-003 Pyridine <670 66.8 <590 U 19.2 <670 U <590 U <190 U 19.2 8835-003 Safrole 66.8 59.4 U 8835-003 Sulfotepp <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 Thionzin <670 U U <500 U 50.0 8835-004 1.2.4.5-Tetrachlorobenzene 66. <600 59.6 <670 <600 <500 U 8835-004 1.2.4-Trichlorobenzene U 66. U 59.6 50.0 8835-004 <670 <600 59.6 <500 U 1.2-Dichlorobenzene U 66. U 50.0 8835-004 1.3.5-Trinitrobenzene <670 U 66. <600 U 59.6 <500 U 50.0 <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 1,3-Dichlorobenzene 8835-004 1,4-Dichlorobenzene <670 U 66. <600 U 59.6 <500 U 50.0 59.6 <500 U 8835-004 1,4-Naphthoguinone <670 U 66.1 <600 U 50.0 U U U <500 8835-004 1-Naphthylamine <670 66.1 <600 59.6 50.0 8835-004 2,3,4,6-Tetrachlorophenol <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 U U 59.6 <500 U 2,4,5-Trichlorophenol <670 66. <600 50.0 8835-004 2,4,6-Trichlorophenol <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 2,4-Dichlorophenol <670 U 66. <600 U 59.6 <500 U 50.0 υ 8835-004 <670 U U <500 66. <600 59.6 50.0 2,4-Dimethylphenol <600 59.6 <500 U 8835-004 2,4-Dinitrophenol <670 U 66. U 50.0 8835-004 2.4-Dinitrotoluene <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 2,6-Dichlorophenol <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 2,6-Dinitrotoluene <670 U 66. <600 U 59.6 <500 U 50.0 U 8835-004 2-Acetvlaminofluorene <670 U 66. <600 U 59.6 <500 50.0 <500 U 8835-004 2-Chloronaphthalene <670 U 66. <600 U 59.6 50.0 8835-004 2-Chlorophenol <670 U <600 U 59.6 <500 U 50.0 66. 8835-004 2-Methylphenol <670 U 66. <600 U 59.6 <500 U 50.0 <670 U <600 59.6 <500 U 8835-004 2-Naphthylamine 66. U 50.0 8835-004 2-Nitroaniline <670 U 66.1 <600 U 59.6 <500 U 50.0 U U 8835-004 2-Nitrophenol <670 66.7 <600 U 59.6 <500 50.0

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-004 2-Picoline <670 U 66. <600 U 59.6 <500 U 50.0 <500 8835-004 3,3'-Dichlorobenzidine <670 U 66. <600 U 59.6 U 50.0 8835-004 3-3'-Dimethylbenzidine <670 U 66. <600 U 59.6 <500 U 50.0 <500 U 8835-004 3-Methylcholanthrene <670 U 66. <600 U 59.6 50.0 8835-004 <670 U 66. <600 59.6 <500 U 50.0 4,6-Dinitro-2-methylphenol U U 8835-004 4-Aminobiphenyl <670 U 66. <600 U 59.6 <500 50.0 8835-004 4-Bromophenyl phenyl ether <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 4-Chloro-3-methylphenol <670 U 66. <600 U 59.6 <500 U 50.0 <670 <500 U 50.0 8835-004 4-Chloroaniline U 66. <600 U 59.6 8835-004 4-Methylphenol <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 4-Nitroaniline <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 <670 U <600 U <500 U 50.0 4-Nitrophenol 66.1 59.6 8835-004 5-Nitro-o-toluidine <670 U 66. <600 U 59.6 <500 U 50.0 U 8835-004 <670 U 66. <600 U 59.6 <500 50.0 7,12-Dimethylbenz[a]anthracene U U <600 59.6 <500 8835-004 α, α -Dimethylphenethylamine <670 66. U 50.0 <670 U <600 U 59.6 <500 U 50.0 8835-004 Acetophenone 66. <500 U 8835-004 Aniline <670 U 66. <600 U 59.6 50.0 8835-004 Aramite <670 U 66. <600 U 59.6 <500 U 50.0 U 8835-004 Benzidine <670 U 66. <600 U 59.6 <500 50.0 <670 U <600 59.6 <500 1900 8835-004 Benzo[a]anthracene 66. U 50.0 8835-004 <670 U <600 U 59.6 <500 770 50.0 Benzo[a]pyrene 66. 8835-004 Benzo[b]fluoranthene <670 U 66. <600 U 59.6 <500 540 50.0 Benzo[k]fluoranthene <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 8835-004 Bis(2-chloroisopropyl)ether <670 U 66. <600 U 59.6 <500 U 50.0 59.6 <500 U 8835-004 Butyl benzyl phthalate <670 U 66.1 <600 U 50.0 U U U <500 8835-004 Chlorobenzilate <670 66.1 <600 59.6 50.0 8835-004 <670 U 66. <600 U 59.6 <500 2700 50.0 Chrysene 8835-004 U <600 U 59.6 <500 U Di-n-butyl phthalate <670 66. 50.0 8835-004 Di-n-octyl phthalate <670 U 66. <600 U 59.6 <500 U 50.0 <500 8835-004 Diallate <670 U 66. <600 U 59.6 U 50.0 υ 8835-004 <670 U U <500 66. <600 59.6 50.0 Dibenzo[a,h]anthracene 8835-004 <600 59.6 <500 U 50.0 Dibenz[a,j]acridine <670 U 66. U 8835-004 Diethyl phthalate <670 U 66. <600 U 59.6 <500 U 50.0 <670 U U <500 U 50.0 8835-004 Dimethoate 66. <600 59.6 8835-004 Dimethyl phthalate <670 U 66. <600 U 59.6 <500 U 50.0 U 8835-004 Dinoseb <670 U 66. <600 U 59.6 <500 50.0 59.6 <500 U 8835-004 Diphenylamine <670 U 66. <600 U 50.0 8835-004 Disulfoton <670 U <600 U 59.6 <500 U 50.0 66. <500 8835-004 Ethyl methanesulfonate <670 U 66. <600 U 59.6 U 50.0 <670 U <600 U 59.6 <500 U 8835-004 Famphur 66. 50.0 8835-004 Fluoranthene <670 U 66.1 <600 U 59.6 <500 U 50.0 U 59.6 U 8835-004 Fluorene <670 66.7 <600 U <500 50.0

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-004 <670 U 66. <600 U 59.6 <500 U 50.0 Hexachlorobenzene <500 8835-004 Hexachlorobutadiene <670 U 66. <600 U 59.6 U 50.0 <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 Hexachlorocyclopentadiene <500 U 8835-004 Hexachloroethane <670 U 66. <600 U 59.6 50.0 8835-004 <17000 U 66. <15000 59.6 <12000 U 50.0 Hexachlorophene U U 8835-004 Hexachloropropene <670 U 66. <600 U 59.6 <500 50.0 8835-004 Indeno(1,2,3-c,d)pyrene <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 <670 U 66. <600 U 59.6 <500 U 50.0 Isodrin <670 <500 U 50.0 8835-004 Isosafrole U 66. <600 U 59.6 <1300 U 66. <1200 U 59.6 <1000 U 50.0 8835-004 Kepone 8835-004 Methapyrilene <670 U 66. <600 U 59.6 <500 U 50.0 <670 U 66. <600 U <500 U 50.0 8835-004 Methyl parathion 59.6 8835-004 Methyl methanesulfonate <670 U 66. <600 U 59.6 <500 U 50.0 U 8835-004 N-Nitroso-di-n-butylamine <670 U 66. <600 U 59.6 <500 50.0 U U <600 59.6 <500 8835-004 N-Nitrosodi-n-propylamine <670 66.1 U 50.0 <670 U <600 U 59.6 <500 U 50.0 8835-004 N-Nitrosodiethylamine 66. N-Nitrosomethylethylamine <500 U 8835-004 <670 U 66. <600 U 59.6 50.0 8835-004 N-Nitrosomorpholine <670 U 66. <600 U 59.6 <500 U 50.0 N-Nitrosopiperidine <500 8835-004 <670 U 66. <600 U 59.6 U 50.0 <670 U <600 59.6 <500 U 8835-004 N-Nitrosopyrrolidine 66. U 50.0 8835-004 <670 <600 59.6 <500 U Naphthalene 6200 66. 1700 50.0 8835-004 Nitrobenzene <670 U 66. <600 U 59.6 <500 U 50.0 O,O,O-Triethylphosphorothioate <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 8835-004 o-Toluidine <670 U 66. <600 U 59.6 <500 U 50.0 59.6 <500 U 8835-004 p-Dimethylaminoazobenzene <670 U 66.1 <600 U 50.0 U U U <500 8835-004 p-Phenylenediamine <670 66.1 <600 59.6 50.0 8835-004 Parathion <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 U <600 U 59.6 <500 U Pentachlorobenzene <670 66. 50.0 8835-004 Pentachloronitrobenzene <670 U 66. <600 U 59.6 <500 U 50.0 <500 8835-004 Pentachlorophenol <670 U 66. <600 U 59.6 U 50.0 υ 8835-004 <670 U U <500 Phenacetin 66. <600 59.6 50.0 8835-004 Phenol <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 <670 U 66. <600 U 59.6 <500 U 50.0 Phorate <670 U U <500 U 8835-004 Pronamide 66. <600 59.6 50.0 8835-004 <670 U 66. <600 U 59.6 <500 U 50.0 Pyridine U 8835-004 Safrole <670 U 66. <600 U 59.6 <500 50.0 59.6 <500 U 8835-004 Sulfotepp <670 U 66. <600 U 50.0 8835-004 <670 U 66. <600 U 59.6 <500 U 50.0 Thionzin <590 <200 U 8835-005 1,2,4,5-Tetrachlorobenzene <130 U 13.4 U 59.5 19.8 <130 U <590 59.5 <200 U 8835-005 1,2,4-Trichlorobenzene 13.4 U 19.8 8835-005 1,2-Dichlorobenzene <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U 59.5 <200 U 8835-005 1,3,5-Trinitrobenzene 13.4 <590 U 19.8

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-005 .3-Dichlorobenzene <130 U 13.4 <590 U 59.5 <200 U 19.8 <200 8835-005 ,4-Dichlorobenzene <130 U 13.4 <590 U 59.5 U 19.8 <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 1,4-Naphthoquinone <200 U 8835-005 1-Naphthylamine <130 U 13.4 <590 U 59.5 19.8 8835-005 U 13.4 <590 59.5 <200 U 19.8 2,3,4,6-Tetrachlorophenol <130 U 8835-005 2,4,5-Trichlorophenol <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 2,4,6-Trichlorophenol <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 2.4-Dichlorophenol <130 U 13.4 <590 U 59.5 <200 U 19.8 U <200 U 8835-005 2,4-Dimethylphenol <130 13.4 <590 U 59.5 19.8 <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 2,4-Dinitrophenol 8835-005 2,4-Dinitrotoluene <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U U <200 U 19.8 8835-005 2,6-Dichlorophenol 13.4 <590 59.5 8835-005 2,6-Dinitrotoluene <130 U 13.4 <590 U 59.5 <200 U 19.8 U 8835-005 <130 U 13.4 <590 U 59.5 <200 19.8 2-Acetylaminofluorene U 2-Chloronaphthalene U <590 59.5 <200 8835-005 <130 13.4 U 19.8 U <590 U 59.5 <200 U 8835-005 2-Chlorophenol <130 13.4 19.8 2-Methylphenol <200 U 8835-005 <130 U 13.4 <590 U 59.5 19.8 8835-005 2-Naphthylamine <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 2-Nitroaniline <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U <590 59.5 <200 U 8835-005 2-Nitrophenol 13.4 U 19.8 8835-005 U <590 U 59.5 <200 U 2-Picoline <130 13.4 19.8 8835-005 3,3'-Dichlorobenzidine <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U <590 U 59.5 <200 U 19.8 8835-005 3-3'-Dimethylbenzidine 13.4 8835-005 3-Methylcholanthrene <130 U 13.4 <590 U 59.5 <200 U 19.8 U 59.5 <200 U 8835-005 4,6-Dinitro-2-methylphenol <130 13.4 <590 U 19.8 U <130 U U <200 8835-005 4-Aminobiphenyl 13.4 <590 59.5 19.8 8835-005 4-Bromophenyl phenyl ether <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 U <590 U 59.5 <200 U 4-Chloro-3-methylphenol <130 13.4 19.8 8835-005 4-Chloroaniline <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 4-Methylphenol <130 U 13.4 <590 U 59.5 <200 U 19.8 U U <200 U 8835-005 <130 <590 59.5 4-Nitroaniline 13.4 19.8 8835-005 4-Nitrophenol <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 <130 U 13.4 <590 U 59.5 <200 U 19.8 5-Nitro-o-toluidine U U <200 U 8835-005 7,12-Dimethylbenz[a]anthracene <130 13.4 <590 59.5 19.8 8835-005 <130 U 13.4 <590 U 59.5 <200 U 19.8 α, α -Dimethylphenethylamine U 8835-005 Acetophenone <130 U 13.4 <590 U 59.5 <200 19.8 59.5 <200 U 8835-005 Aniline <130 U 13.4 <590 U 19.8 8835-005 <130 U <590 U 59.5 <200 U Aramite 13.4 19.8 <200 U 8835-005 Benzidine <130 U 13.4 <590 U 59.5 19.8 <130 U <590 U 59.5 <200 8835-005 Benzo[a]anthracene 13.4 1600 19.8 8835-005 Benzo[a]pyrene <130 U 13.4 <590 U 59.5 <200 960 19.8 U <200 8835-005 Benzo[b]fluoranthene <130 13.4 <590 U 59.5 670 19.8

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-005 Benzo[k]fluoranthene <130 U 13.4 <590 U 59.5 <200 U 19.8 <200 8835-005 Bis(2-chloroisopropyl)ether <130 U 13.4 <590 U 59.5 U 19.8 <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Butyl benzyl phthalate <200 U 8835-005 Chlorobenzilate <130 U 13.4 <590 U 59.5 19.8 8835-005 U 13.4 <590 59.5 <200 2200 19.8 Chrysene <130 U 8835-005 Di-n-butyl phthalate <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Di-n-octyl phthalate <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Diallate <130 U 13.4 <590 U 59.5 <200 U 19.8 <200 250 8835-005 Dibenzo[a,h]anthracene <130 U 13.4 <590 U 59.5 19.8 <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Dibenz[a,j]acridine 8835-005 Diethyl phthalate <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U U <200 U 19.8 8835-005 Dimethoate 13.4 <590 59.5 8835-005 Dimethyl phthalate <130 U 13.4 <590 U 59.5 <200 U 19.8 U 8835-005 <130 U 13.4 <590 U 59.5 <200 19.8 Dinoseb U U <590 59.5 <200 8835-005 Diphenylamine <130 13.4 U 19.8 U <590 U 59.5 <200 U 19.8 8835-005 Disulfoton <130 13.4 <200 U 8835-005 Ethyl methanesulfonate <130 U 13.4 <590 U 59.5 19.8 8835-005 Famphur <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Fluoranthene <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U <590 59.5 <200 U 8835-005 Fluorene 13.4 U 19.8 8835-005 <130 U <590 U 59.5 <200 U Hexachlorobenzene 13.4 19.8 8835-005 Hexachlorobutadiene <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U <590 U 59.5 <200 U 19.8 8835-005 Hexachlorocyclopentadiene 13.4 8835-005 Hexachloroethane <130 U 13.4 <590 U 59.5 <200 U 19.8 U 59.5 U 8835-005 Hexachlorophene <3400 13.4 <15000 U <5000 19.8 U <130 U U <200 8835-005 Hexachloropropene 13.4 <590 59.5 19.8 8835-005 <130 U 13.4 <590 U 59.5 <200 290 19.8 Indeno(1,2,3-c,d)pyrene 8835-005 U <590 U 59.5 <200 U Isodrin <130 13.4 19.8 8835-005 Isosafrole <130 U 13.4 <590 U 59.5 <200 U 19.8 U U 59.5 <400 U 8835-005 Kepone <270 13.4 <1200 19.8 U U U <200 8835-005 Methapyrilene <130 13.4 <590 59.5 19.8 8835-005 <130 U 13.4 <590 59.5 <200 U 19.8 Methyl parathion U 8835-005 <130 U 13.4 <590 U 59.5 <200 U 19.8 Methyl methanesulfonate U U <200 U 8835-005 N-Nitroso-di-n-butylamine <130 13.4 <590 59.5 19.8 8835-005 N-Nitrosodi-n-propylamine <130 U 13.4 <590 U 59.5 <200 U 19.8 U 8835-005 N-Nitrosodiethvlamine <130 U 13.4 <590 U 59.5 <200 19.8 59.5 <200 U 8835-005 N-Nitrosomethylethylamine <130 U 13.4 <590 U 19.8 8835-005 N-Nitrosomorpholine <130 U <590 U 59.5 <200 U 13.4 19.8 8835-005 N-Nitrosopiperidine <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U <590 U 59.5 <200 U 8835-005 N-Nitrosopyrrolidine 13.4 19.8 8835-005 Naphthalene <130 1300 13.4 <590 1700 59.5 <200 260 19.8 <200 8835-005 Nitrobenzene <130 U 13.4 <590 U 59.5 U 19.8

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-005 O,O,O-Triethylphosphorothioate <130 U 13.4 <590 U 59.5 <200 U 19.8 <200 8835-005 o-Toluidine <130 U 13.4 <590 U 59.5 U 19.8 p-Dimethylaminoazobenzene <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 <200 U 8835-005 p-Phenylenediamine <130 U 13.4 <590 U 59.5 19.8 8835-005 U 13.4 <590 59.5 <200 U 19.8 Parathion <130 U 8835-005 Pentachlorobenzene <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 <130 U 13.4 <590 U 59.5 <200 U 19.8 Pentachloronitrobenzene 8835-005 <130 U 13.4 <590 U 59.5 <200 U 19.8 Pentachlorophenol <200 U 8835-005 Phenacetin <130 U 13.4 <590 U 59.5 19.8 <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Phenol 8835-005 Phorate <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U U <200 U 19.8 8835-005 Pronamide 13.4 <590 59.5 8835-005 Pyridine <130 U 13.4 <590 U 59.5 <200 U 19.8 U 8835-005 Safrole <130 U 13.4 <590 U 59.5 <200 19.8 U U 59.5 <200 8835-005 Sulfotepp <130 13.4 <590 U 19.8 U <590 U 59.5 <200 U 19.8 8835-005 Thionzin <130 13.4 U U <980 U 8835-006 1.2.4.5-Tetrachlorobenzene <140 14. <290 29.3 98.0 8835-006 1.2.4-Trichlorobenzene <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 1.2-Dichlorobenzene <140 U 14. <290 U 29.3 <980 U 98.0 <140 <290 29.3 <980 U 8835-006 1,3,5-Trinitrobenzene U 14. U 98.0 8835-006 29.3 <980 U 1.3-Dichlorobenzene <140 U 14. <290 U 98.0 8835-006 1,4-Dichlorobenzene <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 98.0 8835-006 1,4-Naphthoquinone 14. 8835-006 1-Naphthylamine <140 U 14. <290 U 29.3 <980 U 98.0 29.3 U 8835-006 2,3,4,6-Tetrachlorophenol <140 U 14. <290 U <980 98.0 U U U <980 8835-006 2,4,5-Trichlorophenol <140 14. <290 29.3 98.0 8835-006 2,4,6-Trichlorophenol <140 U 14. <290 U 29.3 <980 U 98.0 <140 U U 29.3 <980 U 8835-006 2,4-Dichlorophenol 14. <290 98.0 8835-006 2,4-Dimethylphenol <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 2,4-Dinitrophenol <140 U 14. <290 U 29.3 <980 U 98.0 U <980 U 8835-006 2,4-Dinitrotoluene <140 14. <290 U 29.3 98.0 8835-006 2,6-Dichlorophenol <140 U 14. <290 29.3 <980 U 98.0 U 8835-006 <140 U <290 U 29.3 <980 U 98.0 2,6-Dinitrotoluene 14. U U <980 U 8835-006 2-Acetylaminofluorene <140 14. <290 29.3 98.0 8835-006 2-Chloronaphthalene <140 U 14. <290 U 29.3 <980 U 98.0 U 8835-006 2-Chlorophenol <140 U 14. <290 U 29.3 <980 98.0 29.3 U 8835-006 2-Methylphenol <140 U 14. <290 U <980 98.0 8835-006 <140 U <290 U 29.3 <980 U 98.0 2-Naphthylamine 14. 8835-006 2-Nitroaniline <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 8835-006 2-Nitrophenol 14. 98.0 8835-006 2-Picoline <140 U 14. <290 U 29.3 <980 U 98.0 <140 U U 8835-006 3,3'-Dichlorobenzidine 14.1 <290 U 29.3 <980 98.0

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. <980 8835-006 3-3'-Dimethylbenzidine <140 U 14. <290 U 29.3 U 98.0 29.3 8835-006 3-Methylcholanthrene <140 U 14. <290 U <980 U 98.0 4,6-Dinitro-2-methylphenol <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 U 8835-006 4-Aminobiphenyl <140 U 14. <290 U 29.3 <980 98.0 8835-006 <140 U <290 29.3 <980 U 98.0 4-Bromophenyl phenyl ether 14. U 8835-006 4-Chloro-3-methylphenol <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 4-Chloroaniline <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 4-Methylphenol <140 U <290 U 29.3 <980 U 98.0 14.1 <980 U 98.0 8835-006 4-Nitroaniline <140 U 14. <290 U 29.3 <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 4-Nitrophenol 8835-006 5-Nitro-o-toluidine <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 98.0 8835-006 7,12-Dimethylbenz[a]anthracene 14. 8835-006 α, α -Dimethylphenethylamine <140 U 14. <290 U 29.3 <980 U 98.0 U 8835-006 <140 U 14. <290 U 29.3 <980 98.0 Acetophenone U Aniline <140 U 14. <290 29.3 <980 98.0 8835-006 U <140 U <290 U 29.3 <980 U 98.0 8835-006 Aramite 14. U 8835-006 Benzidine <140 U 14. <290 U 29.3 <980 98.0 8835-006 Benzo[a]anthracene <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 Benzo[a]pyrene <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 29.3 <980 U 8835-006 Benzo[b]fluoranthene 14. U 98.0 8835-006 U <290 U 29.3 <980 U Benzo[k]fluoranthene <140 14. 98.0 8835-006 Bis(2-chloroisopropyl)ether <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 98.0 8835-006 Butyl benzyl phthalate 14. 8835-006 Chlorobenzilate <140 U 14. <290 U 29.3 <980 U 98.0 U 29.3 <980 U 8835-006 Chrysene <140 14. <290 U 98.0 U U U <980 8835-006 Di-n-butyl phthalate <140 14. <290 29.3 98.0 8835-006 Di-n-octyl phthalate <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 <140 U <290 U 29.3 <980 U Diallate 14. 98.0 U U 29.3 <980 U 98.0 8835-006 Dibenzo[a,h]anthracene <140 14. <290 8835-006 Dibenz[a,j]acridine <140 U 14. <290 U 29.3 <980 U 98.0 U U U <980 8835-006 Diethyl phthalate <140 14. <290 29.3 98.0 8835-006 Dimethoate <140 U 14. <290 29.3 <980 U 98.0 U 8835-006 <140 U <290 U 29.3 <980 U 98.0 Dimethyl phthalate 14. U U <980 U 8835-006 Dinoseb <140 14. <290 29.3 98.0 8835-006 <140 U 14. <290 U 29.3 <980 U 98.0 Diphenylamine U 8835-006 Disulfoton <140 U 14. <290 U 29.3 <980 98.0 29.3 <980 U 8835-006 Ethyl methanesulfonate <140 U 14. <290 U 98.0 8835-006 <140 U <290 U 29.3 <980 U 98.0 Famphur 14. Fluoranthene 8835-006 <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 8835-006 Fluorene 14. 98.0 8835-006 Hexachlorobenzene <140 U 14. <290 U 29.3 <980 U 98.0 <140 U 29.3 U 98.0 8835-006 Hexachlorobutadiene 14.1 <290 U <980

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-006 <140 U 14. <290 29.3 <980 U 98.0 Hexachlorocyclopentadiene U 8835-006 Hexachloroethane <140 U 14. <290 U 29.3 <980 U 98.0 <3500 U 14. <7300 U 29.3 <980 U 98.0 8835-006 Hexachlorophene U 8835-006 Hexachloropropene <140 U 14. <290 U 29.3 <980 98.0 8835-006 U 29.3 <980 U 98.0 Indeno(1,2,3-c,d)pyrene <140 14. <290 U 8835-006 Isodrin <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 Isosafrole <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 <280 U <580 U 29.3 <2000 U 98.0 Kepone 14. <980 U 8835-006 Methapyrilene <140 U 14. <290 U 29.3 98.0 <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 Methyl parathion 8835-006 <140 U 14. <290 U 29.3 <980 U 98.0 Methyl methanesulfonate <140 U U 29.3 <980 U 98.0 8835-006 N-Nitroso-di-n-butylamine 14. <290 8835-006 N-Nitrosodi-n-propylamine <140 U 14. <290 U 29.3 <980 U 98.0 U 8835-006 N-Nitrosodiethylamine <140 U 14. <290 U 29.3 <980 98.0 <140 U 14. 29.3 <980 U 8835-006 N-Nitrosomethylethylamine <290 U 98.0 U <290 U 29.3 <980 U 98.0 8835-006 N-Nitrosomorpholine <140 14. N-Nitrosopiperidine U 8835-006 <140 U 14. <290 U 29.3 <980 98.0 8835-006 N-Nitrosopyrrolidine <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 Naphthalene <140 1100 14. <290 U 29.3 <980 1900 98.0 <140 <290 29.3 <980 8835-006 Nitrobenzene U 14. U U 98.0 8835-006 29.3 <980 U O,O,O-Triethylphosphorothioate <140 U 14. <290 U 98.0 8835-006 o-Toluidine <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 98.0 8835-006 p-Dimethylaminoazobenzene 14. 8835-006 p-Phenylenediamine <140 U 14. <290 U 29.3 <980 U 98.0 29.3 U 8835-006 Parathion <140 U 14. <290 U <980 98.0 U U U <980 8835-006 Pentachlorobenzene <140 14. <290 29.3 98.0 8835-006 Pentachloronitrobenzene <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 <140 U 14. <290 U 29.3 <980 U 98.0 Pentachlorophenol U U U 98.0 8835-006 Phenacetin <140 14. <290 29.3 <980 8835-006 Phenol <140 U 14. <290 U 29.3 <980 U 98.0 U U U 8835-006 Phorate <140 14. <290 29.3 <980 98.0 8835-006 <140 U 14. <290 29.3 <980 U 98.0 Pronamide U 8835-006 <140 U <290 U 29.3 <980 U 98.0 Pyridine 14. U U <980 U 8835-006 Safrole <140 14. <290 29.3 98.0 8835-006 <140 U 14. <290 U 29.3 <980 U 98.0 Sulfotepp U 8835-006 Thionzin <140 U 14. <290 U 29.3 <980 98.0 235 <200 U 8835-007 1,2,4,5-Tetrachlorobenzene <270 U 27.4 <2400 U 19.6 8835-007 <270 U <2400 U 235 <200 U 1.2.4-Trichlorobenzene 27.4 19.6 235 8835-007 1,2-Dichlorobenzene <270 U 27.4 <2400 U <200 U 19.6 <270 U 27.4 U 235 <200 U 8835-007 1,3,5-Trinitrobenzene <2400 19.6 8835-007 1,3-Dichlorobenzene <270 U 27.4 <2400 U 235 <200 U 19.6 U 235 U 8835-007 1,4-Dichlorobenzene <270 27.4 <2400 U <200 19.6

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-007 ,4-Naphthoguinone <270 U 27. <2400 235 <200 U 19.6 U 27. 235 8835-007 1-Naphthylamine <270 U <2400 U <200 U 19.6 <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol <200 U 8835-007 <270 U 27.4 <2400 U 235 19.6 8835-007 <270 U 235 <200 U 19.6 2,4,6-Trichlorophenol 27.4 <2400 U 8835-007 2,4-Dichlorophenol <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 2,4-Dimethylphenol <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 2.4-Dinitrophenol <270 U 27.4 <2400 U 235 <200 U 19.6 <270 235 <200 U 8835-007 2,4-Dinitrotoluene U 27. <2400 U 19.6 <270 U <2400 U 235 <200 U 19.6 8835-007 2,6-Dichlorophenol 27.4 8835-007 2,6-Dinitrotoluene <270 U 27. <2400 U 235 <200 U 19.6 <270 U 27. U 235 <200 U 19.6 8835-007 2-Acetylaminofluorene <2400 8835-007 2-Chloronaphthalene <270 U 27.4 <2400 U 235 <200 U 19.6 U 8835-007 2-Chlorophenol <270 U 27. <2400 U 235 <200 19.6 U 235 <200 U 8835-007 2-Methylphenol <270 27.4 <2400 U 19.6 U U 235 <200 U 8835-007 2-Naphthylamine <270 27.4 <2400 19.6 2-Nitroaniline <200 U 8835-007 <270 U 27.4 <2400 U 235 19.6 8835-007 <270 U 27. <2400 U 235 <200 U 19.6 2-Nitrophenol <270 8835-007 2-Picoline U 27.4 <2400 U 235 <200 U 19.6 <270 U 235 <200 U 8835-007 3,3'-Dichlorobenzidine 27.4 <2400 U 19.6 8835-007 <270 U U 235 <200 U 3-3'-Dimethvlbenzidine 27. <2400 19.6 235 8835-007 3-Methylcholanthrene <270 U 27.4 <2400 U <200 U 19.6 <270 U 27. <2400 U 235 <200 U 8835-007 4,6-Dinitro-2-methylphenol 19.6 8835-007 4-Aminobiphenyl <270 U 27. <2400 U 235 <200 U 19.6 4-Bromophenyl phenyl ether 235 <200 U 8835-007 <270 U 27.4 <2400 U 19.6 <270 U U 235 <200 U 8835-007 4-Chloro-3-methylphenol 27. <2400 19.6 U 8835-007 4-Chloroaniline <270 U 27. <2400 U 235 <200 19.6 8835-007 4-Methylphenol <270 U 27.4 <2400 U 235 <200 U 19.6 <270 U U 235 <200 U 8835-007 4-Nitroaniline 27. <2400 19.6 8835-007 4-Nitrophenol <270 U 27.4 <2400 U 235 <200 U 19.6 U U <200 U 8835-007 5-Nitro-o-toluidine <270 27.4 <2400 235 19.6 8835-007 U 27.4 <2400 U 235 <200 U 19.6 7,12-Dimethylbenz[a]anthracene <270 8835-007 <270 U 27. U 235 <200 U 19.6 α, α -Dimethylphenethylamine <2400 <270 U U 235 <200 U 8835-007 Acetophenone 27. <2400 19.6 8835-007 Aniline <270 U 27.4 <2400 U 235 <200 U 19.6 U 8835-007 Aramite <270 U 27. <2400 U 235 <200 19.6 235 <200 U 8835-007 Benzidine <270 U 27.4 <2400 U 19.6 8835-007 <270 U <2400 U 235 <200 U Benzo[a]anthracene 27.4 19.6 235 <200 8835-007 Benzo[a]pyrene <270 U 27.4 <2400 U U 19.6 <270 U 27.4 U 235 <200 U 8835-007 Benzo[b]fluoranthene <2400 19.6 8835-007 Benzo[k]fluoranthene <270 U 27.4 <2400 U 235 <200 U 19.6 U 235 U 8835-007 Bis(2-chloroisopropyl)ether <270 27.4 <2400 U <200 19.6

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-007 <270 U 27. <2400 235 <200 U Butyl benzyl phthalate U 19.6 27. 235 8835-007 Chlorobenzilate <270 U <2400 U <200 U 19.6 <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 Chrysene <200 U 8835-007 Di-n-butyl phthalate <270 U 27.4 <2400 U 235 19.6 8835-007 U 235 <200 U 19.6 Di-n-octyl phthalate <270 27.4 <2400 U 8835-007 Diallate <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 Dibenzo[a,h]anthracene <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 <270 U 27.4 <2400 U 235 <200 U 19.6 Dibenz[a,j]acridine <270 235 <200 U 8835-007 Diethyl phthalate U 27. <2400 U 19.6 <270 U <2400 U 235 <200 U 19.6 8835-007 Dimethoate 27.4 8835-007 Dimethyl phthalate <270 U 27. <2400 U 235 <200 U 19.6 <270 U 27. U 235 <200 U 19.6 8835-007 Dinoseb <2400 8835-007 Diphenylamine <270 U 27.4 <2400 U 235 <200 U 19.6 U 8835-007 Disulfoton <270 U 27. <2400 U 235 <200 19.6 U 235 <200 U 8835-007 Ethyl methanesulfonate <270 27.4 <2400 U 19.6 U U 235 <200 U 8835-007 Famphur <270 27.4 <2400 19.6 <200 U 8835-007 Fluoranthene <270 U 27.4 <2400 U 235 19.6 8835-007 <270 U 27.4 <2400 U 235 <200 U 19.6 Fluorene <270 8835-007 Hexachlorobenzene U 27.4 <2400 U 235 <200 U 19.6 <270 235 <200 U 8835-007 Hexachlorobutadiene U 27.4 <2400 U 19.6 8835-007 <270 U 235 <200 U Hexachlorocyclopentadiene U 27.4 <2400 19.6 235 8835-007 Hexachloroethane <270 U 27.4 <2400 U <200 U 19.6 <6800 U 27. U 235 <4900 U 8835-007 Hexachlorophene <59000.0 19.6 8835-007 Hexachloropropene <270 U 27. <2400 U 235 <200 U 19.6 <270 U 27.4 U 235 <200 U 19.6 8835-007 <2400 Indeno(1,2,3-c,d)pyrene 235 U 8835-007 Isodrin <270 U 27.4 <2400 U <200 19.6 U 8835-007 <270 U 27. <2400 U 235 <200 19.6 Isosafrole <550 U 27.4 <4700 U 235 <390 U 19.6 8835-007 Kepone <270 U U 235 <200 U 8835-007 Methapyrilene 27. <2400 19.6 8835-007 Methyl parathion <270 U 27.4 <2400 U 235 <200 U 19.6 U U <200 U 8835-007 Methyl methanesulfonate <270 27.4 <2400 235 19.6 8835-007 U <2400 235 <200 U 19.6 N-Nitroso-di-n-butylamine <270 27.4 U 8835-007 <270 U 27. U 235 <200 U 19.6 N-Nitrosodi-n-propylamine <2400 <270 U U 235 <200 U 8835-007 N-Nitrosodiethylamine 27. <2400 19.6 8835-007 N-Nitrosomethylethylamine <270 U 27.4 <2400 U 235 <200 U 19.6 U 8835-007 N-Nitrosomorpholine <270 U 27.4 <2400 U 235 <200 19.6 235 U 8835-007 N-Nitrosopiperidine <270 U 27.4 <2400 U <200 19.6 8835-007 <270 <2400 235 <200 U N-Nitrosopyrrolidine U 27.4 U 19.6 2300 3500 235 <200 8835-007 Naphthalene <270 27.4 <2400 690 19.6 Nitrobenzene <270 27.4 235 <200 8835-007 U <2400 U U 19.6 8835-007 O,O,O-Triethylphosphorothioate <270 U 27.4 <2400 U 235 <200 U 19.6 U 235 U 8835-007 o-Toluidine <270 27.4 <2400 U <200 19.6

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-007 p-Dimethylaminoazobenzene <270 U 27. <2400 235 <200 U 19.6 U 27. 235 <200 8835-007 o-Phenylenediamine <270 U <2400 U U 19.6 <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 Parathion <200 U 8835-007 Pentachlorobenzene <270 U 27.4 <2400 U 235 19.6 8835-007 <270 U 27.4 235 <200 U 19.6 Pentachloronitrobenzene <2400 U 235 8835-007 Pentachlorophenol <270 U 27.4 <2400 U <200 U 19.6 8835-007 Phenacetin <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 <270 U 27.4 <2400 U 235 <200 U 19.6 Phenol <270 235 <200 U 8835-007 Phorate U 27. <2400 U 19.6 <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 Pronamide 8835-007 Pyridine <270 U 27. <2400 U 235 <200 U 19.6 Safrole <270 U 27. U 235 <200 U 19.6 8835-007 <2400 8835-007 Sulfotepp <270 U 27.4 <2400 U 235 <200 U 19.6 U 8835-007 Thionzin <270 U 27.4 <2400 U 235 <200 19.6 U 27. 59.7 8835-008 1,2,4,5-Tetrachlorobenzene <280 <600 U U <600 U 59.7 8835-008 1.2.4-Trichlorobenzene <280 27. 8835-008 1.2-Dichlorobenzene <280 U 27. <600 U 59.7 8835-008 1,3,5-Trinitrobenzene <280 U 27. <600 U 59.7 8835-008 1.3-Dichlorobenzene <280 U 27.7 <600 U 59.7 <280 27. <600 59.7 8835-008 1,4-Dichlorobenzene U U 8835-008 <280 <600 59.7 1,4-Naphthoquinone U 27. U 8835-008 1-Naphthylamine <280 U 27.7 <600 U 59.7 <280 U 27. <600 U 59.7 8835-008 2,3,4,6-Tetrachlorophenol 8835-008 2,4,5-Trichlorophenol <280 U 27. <600 U 59.7 2,4,6-Trichlorophenol 27. 8835-008 <280 U <600 U 59.7 8835-008 2,4-Dichlorophenol <280 U 27.7 <600 U 59.7 8835-008 2,4-Dimethylphenol <280 U 27. <600 U 59.7 8835-008 2,4-Dinitrophenol <280 U 27.7 <600 U 59.7 <280 U 27. U 8835-008 2,4-Dinitrotoluene <600 59. 8835-008 2,6-Dichlorophenol <280 U 27.7 <600 U 59.7 U U 8835-008 2,6-Dinitrotoluene <280 27.7 <600 59.7 2-Acetylaminofluorene 8835-008 U 27.7 <600 59.7 <280 U 8835-008 <280 U 27. <600 U 59.7 2-Chloronaphthalene 2-Chlorophenol U 27. U 8835-008 <280 <600 59.7 8835-008 2-Methylphenol <280 U 27.7 <600 U 59.7 8835-008 2-Naphthylamine <280 U 27. <600 U 59. 59.7 8835-008 2-Nitroaniline <280 U 27.7 <600 U 8835-008 <280 U 27.7 <600 U 59.7 2-Nitrophenol 8835-008 2-Picoline <280 U 27. <600 U 59.7 <280 U 27.7 <600 59.7 8835-008 3,3'-Dichlorobenzidine U 8835-008 3-3'-Dimethylbenzidine <280 U 27.7 <600 U 59.7 U 8835-008 3-Methylcholanthrene <280 27.7 <600 U 59.7

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. 8835-008 4,6-Dinitro-2-methylphenol <280 U 27. <600 U 59.7 27. 8835-008 4-Aminobiphenyl <280 U <600 U 59.7 4-Bromophenyl phenyl ether <280 U 27.7 <600 U 59.7 8835-008 8835-008 4-Chloro-3-methylphenol <280 U 27.7 <600 U 59.7 8835-008 <280 U 27.7 <600 59.7 4-Chloroaniline U 8835-008 4-Methylphenol <280 U 27. <600 U 59.7 8835-008 4-Nitroaniline <280 U 27. <600 U 59.7 8835-008 <280 U 27.7 <600 U 59.7 4-Nitrophenol <280 8835-008 5-Nitro-o-toluidine U 27. <600 U 59.7 <280 U 27.7 <600 U 59.7 8835-008 7,12-Dimethylbenz[a]anthracene 8835-008 α, α -Dimethylphenethylamine <280 U 27. <600 U 59.7 8835-008 <280 U 27. <600 U Acetophenone 59.7 8835-008 Aniline <280 U 27.7 <600 U 59.7 8835-008 <280 U 27. <600 U 59.7 Aramite U <600 59.7 8835-008 Benzidine <280 27.7 U U 27.7 <600 U 59.7 8835-008 Benzo[a]anthracene <280 8835-008 Benzo[a]pyrene <280 U 27. <600 U 59.7 8835-008 Benzo[b]fluoranthene <280 U 27. <600 U 59.7 8835-008 Benzo[k]fluoranthene <280 U 27.7 <600 U 59.7 <280 U 27.7 <600 59.7 8835-008 Bis(2-chloroisopropyl)ether U 8835-008 <280 U 27.7 <600 U 59.7 Butyl benzyl phthalate 8835-008 Chlorobenzilate <280 U 27.7 <600 U 59.7 8835-008 Chrysene <280 U 27.7 <600 U 59.7 8835-008 Di-n-butyl phthalate <280 U 27. <600 U 59.7 59.7 8835-008 Di-n-octyl phthalate <280 U 27. <600 U 8835-008 Diallate <280 U 27.7 <600 U 59.7 8835-008 <280 U 27. <600 U 59.7 Dibenzo[a,h]anthracene 8835-008 <280 U 27.7 <600 U 59.7 Dibenz[a,j]acridine <280 U 27. U 8835-008 Diethyl phthalate <600 59. 8835-008 Dimethoate <280 U 27.7 <600 U 59.7 U U 8835-008 Dimethyl phthalate <280 27.7 <600 59.7 8835-008 U 27.7 <600 U 59.7 Dinoseb <280 8835-008 <280 U 27. <600 U 59.7 Diphenylamine U 27. U 8835-008 Disulfoton <280 <600 59.7 8835-008 Ethyl methanesulfonate <280 U 27.7 <600 U 59.7 8835-008 Famphur <280 U 27. <600 U 59.7 59.7 8835-008 Fluoranthene <280 U 27.7 <600 U 8835-008 <280 U 27.7 <600 U 59.7 Fluorene 8835-008 Hexachlorobenzene <280 U 27. <600 U 59.7 <280 U 27.7 <600 U 59.7 8835-008 Hexachlorobutadiene 8835-008 Hexachlorocyclopentadiene <280 U 27.7 <600 U 59.7 U 59.7 8835-008 Hexachloroethane <280 27.7 <600 U

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. 8835-008 <6900 U 27. <15000 59.7 Hexachlorophene U 27. 8835-008 Hexachloropropene <280 U <600 U 59.7 <280 U 27.7 <600 U 59.7 8835-008 Indeno(1,2,3-c,d)pyrene 8835-008 lsodrin <280 U 27.7 <600 U 59.7 8835-008 <280 U 27.7 <600 59.7 Isosafrole U 8835-008 Kepone <550 U 27. <1200 U 59.7 8835-008 <280 U 27. <600 U 59.7 Methapyrilene 8835-008 <280 U 27.7 <600 U 59.7 Methyl parathion <280 8835-008 Methyl methanesulfonate U 27. <600 U 59.7 <280 U 27.7 <600 U 59.7 8835-008 N-Nitroso-di-n-butylamine 8835-008 N-Nitrosodi-n-propylamine <280 U 27. <600 U 59.7 8835-008 <280 U 27. <600 U N-Nitrosodiethylamine 59.7 8835-008 N-Nitrosomethylethylamine <280 U 27.7 <600 U 59.7 8835-008 N-Nitrosomorpholine <280 U 27. <600 U 59.7 U 59.7 8835-008 N-Nitrosopiperidine <280 27.7 <600 U U 27.7 <600 U 59.7 8835-008 N-Nitrosopyrrolidine <280 8835-008 Naphthalene <280 2100 27. <600 1800 59.7 8835-008 Nitrobenzene <280 U 27. <600 U 59.7 8835-008 O,O,O-Triethylphosphorothioate <280 U 27.7 <600 U 59.7 <280 27.7 <600 59.7 8835-008 o-Toluidine U U 8835-008 <280 U 27.7 <600 U 59.7 p-Dimethylaminoazobenzene 8835-008 p-Phenylenediamine <280 U 27.7 <600 U 59.7 8835-008 Parathion <280 U 27.7 <600 U 59.7 U 27.7 <600 8835-008 Pentachlorobenzene <280 U 59.7 8835-008 <280 U 27. <600 U 59.7 Pentachloronitrobenzene 8835-008 Pentachlorophenol <280 U 27. <600 U 59.7 <280 U 27.7 <600 59.7 8835-008 Phenacetin U 8835-008 Phenol <280 U 27.7 <600 U 59.7 Phorate 8835-008 <280 U 27.7 <600 U 59.7 8835-008 Pronamide <280 U 27. <600 U 59.7 8835-008 Pyridine <280 U 27. <600 U 59.7 8835-008 <280 U 27. <600 59.7 Safrole U 8835-008 Sulfotepp <280 U 27. <600 U 59.7 <280 U 27.7 <600 59.7 8835-008 Thionzin U 8835-009 1,2,4,5-Tetrachlorobenzene <600 U 60.1 8835-009 1,2,4-Trichlorobenzene <600 U 60. 8835-009 1,2-Dichlorobenzene <600 U 60. 8835-009 <600 U 60. 1,3,5-Trinitrobenzene 8835-009 1,3-Dichlorobenzene <600 U 60. 8835-009 1,4-Dichlorobenzene <600 U 60. <600 60. 8835-009 1,4-Naphthoquinone U 8835-009 1-Naphthylamine <600 U 60.1

			Fuel = Gas	soline		F	uel = No.2	2		F	uel = No.4				Fuel = No	. 6	
Sample	Analyte	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.
8835-009	2,3,4,6-Tetrachlorophenol					<600		U	60.1	-				-			
8835-009	2,4,5-Trichlorophenol					<600		U	60.1								
8835-009	2,4,6-Trichlorophenol					<600		U	60.1								
8835-009	2,4-Dichlorophenol					<600		U	60.1								
8835-009	2,4-Dimethylphenol					<600		U	60.1								
8835-009	2,4-Dinitrophenol					<600		U	60.1								
8835-009	2,4-Dinitrotoluene					<600		U	60.1								
8835-009	2,6-Dichlorophenol					<600		U	60.1								
8835-009	2,6-Dinitrotoluene					<600		U	60.1								
8835-009	2-Acetylaminofluorene					<600		U	60.1								
8835-009	2-Chloronaphthalene					<600		U	60.1								
8835-009	2-Chlorophenol					<600		U	60.1								
8835-009	2-Methylphenol					<600		U	60.1								
8835-009	2-Naphthylamine					<600		U	60.1								
8835-009	2-Nitroaniline					<600		U	60.1								
8835-009	2-Nitrophenol					<600		U	60.1								
8835-009	2-Picoline					<600		U	60.1								
8835-009	3,3'-Dichlorobenzidine					<600		U	60.1								
8835-009	3-3'-Dimethylbenzidine					<600		U	60.1								
8835-009	3-Methylcholanthrene					<600		U	60.1								
8835-009	4,6-Dinitro-2-methylphenol					<600		U	60.1								
8835-009	4-Aminobiphenyl					<600		U	60.1								
8835-009	4-Bromophenyl phenyl ether					<600		U	60.1								
8835-009	4-Chloro-3-methylphenol					<600		U	60.1								
8835-009	4-Chloroaniline					<600		U	60.1								
8835-009	4-Methylphenol					<600		U	60.1								
8835-009	4-Nitroaniline					<600		U	60.1								
8835-009	4-Nitrophenol					<600		U	60.1								
8835-009	5-Nitro-o-toluidine					<600		U	60.1								
8835-009	7,12-Dimethylbenz[a]anthracene					<600		U	60.1								
8835-009	α, α -Dimethylphenethylamine					<600		U	60.1								
8835-009	Acetophenone					<600		U	60.1								
8835-009	Aniline					<600		U	60.1								
8835-009	Aramite					<600		U	60.1								
8835-009	Benzidine					<600		U	60.1								
8835-009	Benzo[a]anthracene					<600		U	60.1								
8835-009	Benzo[a]pyrene					<600		U	60.1								
8835-009	Benzo[b]fluoranthene					<600		U	60.1								
8835-009	Benzo[k]fluoranthene					<600		U	60.1								
8835-009	Bis(2-chloroisopropyl)ether					<600		U	60.1								
8835-009	Butyl benzyl phthalate					<600		U	60.1								
8835-009	Chlorobenzilate					<600		U	60.1								

			- uel = Gas	soline		F	uel = No.2	2		F	uel = No.4				Fuel = No	.6	
Sample	Analyte	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.
8835-009	Chrysene					<600		U	60.1								
8835-009	Di-n-butyl phthalate					<600		U	60.1								
8835-009	Di-n-octyl phthalate					<600		U	60.1								
8835-009	Diallate					<600		U	60.1								
8835-009	Dibenzo[a,h]anthracene					<600		U	60.1								
8835-009	Dibenz[a,j]acridine					<600		U	60.1								
8835-009	Diethyl phthalate					<600		U	60.1								
8835-009	Dimethoate					<600		U	60.1								
8835-009	Dimethyl phthalate					<600		U	60.1								
8835-009	Dinoseb					<600		U	60.1								
8835-009	Diphenylamine					<600		U	60.1								
8835-009	Disulfoton					<600		U	60.1								
8835-009	Ethyl methanesulfonate					<600		U	60.1								
8835-009	Famphur					<600		U	60.1								
8835-009	Fluoranthene					<600		U	60.1								
8835-009	Fluorene					<600		U	60.1								
8835-009	Hexachlorobenzene					<600		U	60.1								
8835-009	Hexachlorobutadiene					<600		U	60.1								
8835-009	Hexachlorocyclopentadiene					<600		U	60.1								
8835-009	Hexachloroethane					<600		U	60.1								
8835-009	Hexachlorophene					<15000		U	60.1								
8835-009	Hexachloropropene					<600		U	60.1								
8835-009	Indeno(1,2,3-c,d)pyrene					<600		U	60.1								
8835-009	Isodrin					<600		U	60.1								
8835-009	Isosafrole					<600		U	60.1								
8835-009	Kepone					<1200		U	60.1								
8835-009	Methapyrilene					<600		U	60.1								
8835-009	Methyl parathion					<600		U	60.1								
8835-009	Methyl methanesulfonate					<600		U	60.1								
8835-009	N-Nitroso-di-n-butylamine					<600		U	60.1								
8835-009	N-Nitrosodi-n-propylamine					<600		U	60.1								
8835-009	N-Nitrosodiethylamine					<600		U	60.1								
8835-009	N-Nitrosomethylethylamine					<600		U	60.1								
8835-009	N-Nitrosomorpholine					<600		U	60.1								
8835-009	N-Nitrosopiperidine					<600		U	60.1								
8835-009	N-Nitrosopyrrolidine					<600		U	60.1								
8835-009	Naphthalene					<600	650	-	60.1								
8835-009	Nitrobenzene					<600	000	U	60.1								
8835-009	O,O,O-Triethylphosphorothioate					<600		U	60.1								
8835-009 8835-009						<600 <600		U	60.1								
	o-Toluidine							-									
8835-009	p-Dimethylaminoazobenzene					<600		U U	60.1								
8835-009	p-Phenylenediamine					<600		U	60.1								

			Fuel = Gas	soline		F	uel = No.2	?		F	uel = No.4				Fuel = No	.6	
Sample	Analyte		Quant-				Quant-				Quant-				Quant-		
		Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-009	Parathion					<600		U	60.1								
8835-009	Pentachlorobenzene					<600		U	60.1								
8835-009	Pentachloronitrobenzene					<600		U	60.1								
8835-009	Pentachlorophenol					<600		U	60.1								
8835-009	Phenacetin					<600		U	60.1								
8835-009	Phenol					<600		U	60.1								
8835-009	Phorate					<600		U	60.1								
8835-009	Pronamide					<600		U	60.1								
8835-009	Pyridine					<600		U	60.1								
8835-009	Safrole					<600		U	60.1								
8835-009	Sulfotepp					<600		U	60.1								
8835-009	Thionzin					<600		U	60.1								
8835-010	1,2,4,5-Tetrachlorobenzene					<600		U	59.8								
8835-010	1,2,4-Trichlorobenzene					<600		U	59.8								
8835-010	1,2-Dichlorobenzene					<600		U	59.8								
8835-010	1,3,5-Trinitrobenzene					<600		U	59.8								
8835-010	1,3-Dichlorobenzene					<600		U	59.8								
8835-010	1,4-Dichlorobenzene					<600		U	59.8								
8835-010	1,4-Naphthoquinone					<600		U	59.8								
8835-010	1-Naphthylamine					<600		U	59.8								
8835-010	2,3,4,6-Tetrachlorophenol					<600		U	59.8								
8835-010	2,4,5-Trichlorophenol					<600		U	59.8								
8835-010	2,4,6-Trichlorophenol					<600		U	59.8								
8835-010	2,4-Dichlorophenol					<600		U	59.8								
8835-010	2,4-Dimethylphenol					<600		U	59.8								
8835-010	2,4-Dinitrophenol					<600		U	59.8								
8835-010	2,4-Dinitrotoluene					<600		U	59.8								
8835-010	2,6-Dichlorophenol					<600		U	59.8								
8835-010	2,6-Dinitrotoluene					<600		U	59.8								
8835-010	2-Acetylaminofluorene					<600		U	59.8								
8835-010	2-Chloronaphthalene					<600		U	59.8								
8835-010	2-Chlorophenol					<600		U	59.8								
8835-010	2-Methylphenol					<600		U	59.8								
8835-010	2-Naphthylamine					<600		U	59.8								
8835-010	2-Nitroaniline					<600		U	59.8								
8835-010	2-Nitrophenol					<600		U	59.8								
8835-010	2-Picoline					<600		U	59.8								
8835-010	3,3'-Dichlorobenzidine					<600		U	59.8								
8835-010	3-3'-Dimethylbenzidine					<600		U	59.8								
8835-010	3-Methylcholanthrene					<600		U	59.8								
8835-010	4,6-Dinitro-2-methylphenol					<600		U	59.8								
8835-010	4-Aminobiphenyl					<600		U	59.8								

			Fuel = Gas	soline		F	uel = No.2	?		F	uel = No.4				Fuel = No	.6	
Sample	Analyte		Quant-				Quant-				Quant-				Quant-		
		Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-010	4-Bromophenyl phenyl ether					<600		U	59.8								
8835-010	4-Chloro-3-methylphenol					<600		U	59.8								
8835-010	4-Chloroaniline					<600		U	59.8								
8835-010	4-Methylphenol					<600		U	59.8								
8835-010	4-Nitroaniline					<600		U	59.8								
8835-010	4-Nitrophenol					<600		U	59.8								
8835-010	5-Nitro-o-toluidine					<600		U	59.8								
8835-010	7,12-Dimethylbenz[a]anthracene					<600		U	59.8								
8835-010	α, α -Dimethylphenethylamine					<600		U	59.8								
8835-010	Acetophenone					<600		U	59.8								
8835-010	Aniline					<600		U	59.8								
8835-010	Aramite					<600		U	59.8								
8835-010	Benzidine					<600		U	59.8								
8835-010	Benzo[a]anthracene					<600		U	59.8								
8835-010	Benzo[a]pyrene					<600		U	59.8								
8835-010	Benzo[b]fluoranthene					<600		U	59.8								
8835-010	Benzo[k]fluoranthene					<600		U	59.8								
8835-010	Bis(2-chloroisopropyl)ether					<600		U	59.8								
8835-010	Butyl benzyl phthalate					<600		U	59.8								
8835-010	Chlorobenzilate					<600		U	59.8								
8835-010	Chrysene					<600		U	59.8								
8835-010	Di-n-butyl phthalate					<600		U	59.8								
8835-010	Di-n-octyl phthalate					<600		U	59.8								
8835-010	Diallate					<600		U	59.8								
8835-010	Dibenzo[a,h]anthracene					<600		U	59.8								
8835-010	Dibenz[a,j]acridine					<600		U	59.8								
8835-010	Diethyl phthalate					<600		U	59.8								
8835-010	Dimethoate					<600		U	59.8								
8835-010	Dimethyl phthalate					<600		U	59.8								
8835-010	Dinoseb					<600		U	59.8								
8835-010	Diphenylamine					<600		U	59.8								
8835-010	Disulfoton					<600		U	59.8								
8835-010	Ethyl methanesulfonate					<600		U	59.8								
8835-010	Famphur					<600		U	59.8								
8835-010	Fluoranthene					<600		U	59.8								
8835-010	Fluorene					<600		U	59.8								
8835-010	Hexachlorobenzene					<600		U	59.8								
8835-010	Hexachlorobutadiene					<600		U	59.8								
8835-010	Hexachlorocyclopentadiene					<600		U	59.8								
8835-010	Hexachloroethane					<600		U	59.8								
8835-010	Hexachlorophene					<15000		U	59.8								
8835-010	Hexachloropropene					<600		U	59.8								

			Fuel = Gas	soline		F	uel = No.2			F	uel = No.4				Fuel = No	.6	
Sample	Analyte		Quant-				Quant-				Quant-				Quant-		
		Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-010	Indeno(1,2,3-c,d)pyrene					<600		U	59.8								
8835-010	Isodrin					<600		U	59.8								
8835-010	Isosafrole					<600		U	59.8								
8835-010	Kepone					<1200		U	59.8								
8835-010	Methapyrilene					<600		U	59.8								
8835-010	Methyl parathion					<600		U	59.8								
8835-010	Methyl methanesulfonate					<600		U	59.8								
8835-010	N-Nitroso-di-n-butylamine					<600		U	59.8								
8835-010	N-Nitrosodi-n-propylamine					<600		U	59.8								
8835-010	N-Nitrosodiethylamine					<600		U	59.8								
8835-010	N-Nitrosomethylethylamine					<600		U	59.8								
8835-010	N-Nitrosomorpholine					<600		U	59.8								
8835-010	N-Nitrosopiperidine					<600		U	59.8								
8835-010	N-Nitrosopyrrolidine					<600		U	59.8								
8835-010	Naphthalene					<600	710		59.8								
8835-010	Nitrobenzene					<600		U	59.8								
8835-010	O,O,O-Triethylphosphorothioate					<600		U	59.8								
8835-010	o-Toluidine					<600		U	59.8								
8835-010	p-Dimethylaminoazobenzene					<600		U	59.8								
8835-010	p-Phenylenediamine					<600		U	59.8								
8835-010	Parathion					<600		U	59.8								
8835-010	Pentachlorobenzene					<600		U	59.8								
8835-010	Pentachloronitrobenzene					<600		U	59.8								
8835-010	Pentachlorophenol					<600		U	59.8								
8835-010	Phenacetin					<600		U	59.8								
8835-010	Phenol					<600		U	59.8								
8835-010	Phorate					<600		U	59.8								
8835-010	Pronamide					<600		U	59.8								
8835-010	Pyridine					<600		U	59.8								
8835-010	Safrole					<600		U	59.8								
8835-010	Sulfotepp					<600		U	59.8								
8835-010	Thionzin					<600		U	59.8								
8835-011	1,2,4,5-Tetrachlorobenzene					<580		U	58.3								
8835-011	1,2,4-Trichlorobenzene					<580		U	58.3								
8835-011	1,2-Dichlorobenzene					<580		U	58.3								
8835-011	1,3,5-Trinitrobenzene					<580		U	58.3								
8835-011	1,3-Dichlorobenzene					<580		U	58.3								
8835-011	1,4-Dichlorobenzene					<580		U	58.3								
8835-011	1,4-Naphthoquinone					<580		U	58.3								
8835-011	1-Naphthylamine					<580		U	58.3								
8835-011	2,3,4,6-Tetrachlorophenol					<580		U	58.3								
8835-011	2,4,5-Trichlorophenol					<580		U	58.3								

			Fuel = Gas	soline		F	uel = No.2	?		F	uel = No.4				Fuel = No	.6	
Sample	Analyte		Quant-			<u> </u>	Quant-			<u>.</u>	Quant-			<u>.</u>	Quant-	<u>.</u>	
		Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-011	2,4,6-Trichlorophenol					<580		U	58.3								<u> </u>
8835-011	2,4-Dichlorophenol					<580		U	58.3								<u> </u>
8835-011	2,4-Dimethylphenol					<580		U	58.3								<u> </u>
8835-011	2,4-Dinitrophenol					<580		U	58.3								<u> </u>
8835-011	2,4-Dinitrotoluene					<580		U	58.3								
8835-011	2,6-Dichlorophenol					<580		U	58.3								
8835-011	2,6-Dinitrotoluene					<580		U	58.3								L
8835-011	2-Acetylaminofluorene					<580		U	58.3								L
8835-011	2-Chloronaphthalene					<580		U	58.3								<u> </u>
8835-011	2-Chlorophenol					<580		U	58.3								<u> </u>
8835-011	2-Methylphenol					<580		U	58.3								
8835-011	2-Naphthylamine					<580		U	58.3								
8835-011	2-Nitroaniline					<580		U	58.3								
8835-011	2-Nitrophenol					<580		U	58.3								
8835-011	2-Picoline					<580		U	58.3								
8835-011	3,3'-Dichlorobenzidine					<580		U	58.3								
8835-011	3-3'-Dimethylbenzidine					<580		U	58.3								
8835-011	3-Methylcholanthrene					<580		U	58.3								
8835-011	4,6-Dinitro-2-methylphenol					<580		U	58.3								
8835-011	4-Aminobiphenyl					<580		U	58.3								
8835-011	4-Bromophenyl phenyl ether					<580		U	58.3								
8835-011	4-Chloro-3-methylphenol					<580		U	58.3								
8835-011	4-Chloroaniline					<580		U	58.3								
8835-011	4-Methylphenol					<580		U	58.3								
8835-011	4-Nitroaniline					<580		U	58.3								
8835-011	4-Nitrophenol					<580		U	58.3								
8835-011	5-Nitro-o-toluidine					<580		U	58.3								
8835-011	7,12-Dimethylbenz[a]anthracene					<580		U	58.3								
8835-011	α, α -Dimethylphenethylamine					<580		U	58.3								
8835-011	Acetophenone					<580		U	58.3								
8835-011	Aniline					<580		U	58.3								
8835-011	Aramite					<580		U	58.3								
8835-011	Benzidine					<580		U	58.3								
8835-011	Benzo[a]anthracene					<580		U	58.3								
8835-011	Benzo[a]pyrene					<580		U	58.3								
8835-011	Benzo[b]fluoranthene					<580		U	58.3								
8835-011	Benzo[k]fluoranthene					<580		U	58.3								
8835-011	Bis(2-chloroisopropyl)ether					<580		U	58.3								
8835-011	Butyl benzyl phthalate					<580		U	58.3								
8835-011	Chlorobenzilate					<580		U	58.3								
8835-011	Chrysene					<580		U	58.3								
8835-011	Di-n-butyl phthalate					<580		U	58.3								

			Fuel = Ga	soline		F	uel = No.2	2		F	uel = No.4				Fuel = No	.6	
Sample	Analyte	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.
8835-011	Di-n-octyl phthalate					<580		U	58.3								
8835-011	Diallate					<580		U	58.3								
8835-011	Dibenzo[a,h]anthracene					<580		U	58.3								
8835-011	Dibenz[a,j]acridine					<580		U	58.3								
8835-011	Diethyl phthalate					<580		U	58.3								
8835-011	Dimethoate					<580		U	58.3								
8835-011	Dimethyl phthalate					<580		U	58.3								
8835-011	Dinoseb					<580		U	58.3								
8835-011	Diphenylamine					<580		U	58.3								
8835-011	Disulfoton					<580		U	58.3								
8835-011	Ethyl methanesulfonate					<580		U	58.3								
8835-011	Famphur					<580		U	58.3								
8835-011	Fluoranthene					<580		U	58.3								
8835-011	Fluorene					<580		U	58.3								1
8835-011	Hexachlorobenzene					<580		U	58.3								
8835-011	Hexachlorobutadiene					<580		U	58.3								
8835-011	Hexachlorocyclopentadiene					<580		U	58.3								
8835-011	Hexachloroethane					<580		U	58.3								
8835-011	Hexachlorophene					<14000		U	58.3								
8835-011	Hexachloropropene					<580		U	58.3								
8835-011	Indeno(1,2,3-c,d)pyrene					<580		U	58.3								
8835-011 8835-011	Isodrin					<580		U	58.3								
8835-011	Isosafrole					<580		U	58.3								
8835-011						<1200		U	58.3								
8835-011	Kepone					<580		U	58.3								
	Methapyrilene					<580		U	58.3								
8835-011	Methyl parathion							U									
8835-011	Methyl methanesulfonate					<580		U	58.3								
8835-011 8835-011	N-Nitroso-di-n-butylamine					<580 <580		U	58.3 58.3								
8835-011	N-Nitrosodi-n-propylamine N-Nitrosodiethylamine					<580		U	58.3								
	,					<580		U	58.3								
8835-011	N-Nitrosomethylethylamine					-		U									
8835-011	N-Nitrosomorpholine					<580		-	58.3								
8835-011	N-Nitrosopiperidine					<580		U	58.3								
8835-011	N-Nitrosopyrrolidine					<580		U	58.3								
8835-011	Naphthalene					<580	810		58.3								
8835-011						<580		U	58.3								
8835-011	O,O,O-Triethylphosphorothioate					<580		U	58.3								
8835-011	o-Toluidine				_	<580		U	58.3								
8835-011	p-Dimethylaminoazobenzene					<580		U	58.3								
8835-011	p-Phenylenediamine					<580		U	58.3								
8835-011	Parathion					<580		U	58.3								
8835-011	Pentachlorobenzene					<580		U	58.3								

			Fuel = Gas	oline		F	uel = No.2	2		Fi	uel = No.4				Fuel = No	.6	
Sample	Analyte		Quant-				Quant-				Quant-				Quant-		
		Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-011	Pentachloronitrobenzene					<580		U	58.3								
8835-011	Pentachlorophenol					<580		U	58.3								
8835-011	Phenacetin					<580		U	58.3								
8835-011	Phenol					<580		U	58.3								
8835-011	Phorate					<580		U	58.3								
8835-011	Pronamide					<580		U	58.3								
8835-011	Pyridine					<580		U	58.3								
8835-011	Safrole					<580		U	58.3								
8835-011	Sulfotepp					<580		U	58.3								
8835-011	Thionzin					<580		U	58.3								

1.0 INTRODUCTION

This document provides technical background for the comparable fuel exclusion that is being considered for the final rule. As part of an April 19, 1996 proposed (60 FR 17459) rulemaking, EPA has developed a comparable fuel exclusion. A comparable fuel would be an ignitable waste or coproduct production stream, both of which are currently defined as a hazardous waste, which meet the specifications of the exclusion. Comparable fuels are burned for energy recovery, in lieu of fossil fuels, due to their high BTU value. Benefits derived from this procedure include decreased use of fossil fuels and reduced operational costs. Under this provision, a comparable fuel would be excluded from the Research Conservation and Recovery Act (RCRA), Subtitle C Regulation, as long as it meets the comparable fuel exclusion and is burned. Industry contends these waste streams are cleaner than the fuels displaced and that burning these waste streams provides an overall environmental benefit. EPA's goal is to provide a comparable fuel exclusion that is both useful to the regulated community and assures that comparable fuel poses no greater risk than what otherwise would be associated with the burning of fossil fuels.

The Agency's current approach is to base a comparable fuel exclusion on constituent concentrations normally found in fossil fuels. For this "benchmark" approach, the concept is to permit hazardous constituents in the comparable fuel which are no greater in concentration than those of the same constituents naturally occurring in commercially available fossil fuels. Additionally, the current approach will not allow detectable levels of toxic synthetic chemicals, such as pesticides, in the comparable fuels. This approach will assure EPA that the comparable fuel, when burned, will pose no greater risk than a fossil fuel. This document contains data on as many toxic organics from 40 CFR, Part 261, Appendix VIII as could be quantitated for each fuel sample collected during this study. The EPA developed a series of constituent specifications based on the following parameters: kinematic viscosity, total nitrogen, total halogens, individual metals, Appendix VIII organics, and BTU content of each fuel. EPA is proposing that these specifications apply to all hazardous gaseous and liquid fuels, with the exception of viscosity, which is not relevant

for gaseous fuels. Table 1-1 gives the units of measure for each of these constituents and the individual metals analyzed.

In the proposed rule for comparable fuels, EPA presented several options to establish a benchmark specification. This document presents the data used to develop the initial specification for the proposed rule and the specifications for the final rule. This document summarizes the rationale of the ?benchmark" approach used to set the specifications and discusses, with some detail, the analytical approach used to characterize the constituents of concern.

1.1 Benchmark Fuel Selection Basis

Potential benchmark fuels (on which to base the comparable fuel specifications) that were considered include the commercially available fossil fuels of: (1) gases (such as natural gas and propane); (2) liquids (such as gasoline and fuel oils); and (3) solids (such as coal, coke, and peat). However, the benchmark fuels have been limited to liquid fossil fuels, including gasoline and Nos. 2, 4, and 6 fuel oils. This is because, as discussed below, solid fuels tend to have higher levels of hazardous constituents that are not destroyed in the incineration process, while gases tend to have hazardous constituent levels that are sufficiently low to make the specification of limited practical use.

Solid fuels (such as coal, wood, and biomass) will not be used to base the comparable fuels specification. Solid fuels are used widely throughout the U.S. as legitimate energy sources. However, the comparable fuel specification, which would exclude a hazardous waste fuel from RCRA Subtitle C regulation, will not be based on solid fossil fuels (in particular, coal) since they can have high levels of toxic constituents that will not be destroyed or detoxified by burning (e.g., metals and halogens). It is generally desired to minimize the feed rate of metals and halogens into waste incineration systems because these constituents are not destroyed in the incineration process (unlike organics which are destroyed; inorganics are found in the bottom ash, air pollution control system residues, or stack gas emissions). It is not the intent of the comparable fuels exclusion to set

TABLE 1-1.ANALYTICAL PARAMETERS AND CONSTITUENTSFOR COMPARABLE FUEL STUDY

<u>Property of Interest</u>	<u>Units</u>	Described As
Heating Value	BTU/lb	min. or range
Kinematic Viscosity	cSt at 100°F	min. or range
Specific Gravity	at 15°C	range and average
Flash Point	°F	minimum
Total Nitrogen	weight %	maximum
Total Halogens:	ppm _w as Cl ⁻	maximum
Fluorine		maximum
Chlorine		maximum
Bromine		maximum
Iodine		maximum
Metals:		
Antimony	ppm_w^{-1}	maximum
Arsenic	ppm_w^{-1}	maximum
Barium	ppm_w^{-1}	maximum
Beryllium	ppm_w^{-1}	maximum
Cadmium	ppm_w^{-1}	maximum
Chromium	ppm_w^{-1}	maximum
Cobalt	$\mathrm{ppm}_{\mathrm{w}}^{-1}$	maximum
Lead	ppm_w^{-1}	maximum
Manganese	ppm_w^{-1}	maximum
Mercury	ppm_w^{-1}	maximum
Nickel	ppm_w^{-1}	maximum
Selenium	ppm_w^{-1}	maximum
Silver	ppm_w^{-1}	maximum
Thallium	ppm_w^{-1}	maximum
Appendix VIII Organics	ppm_w^{-1}	maximum
Total Aromatics	wt. %	maximum
Total PNAs	Wt. %	maximum

 1 ppm_w = mg/kg

specifications based on the ?dirtiest" fossil fuels. Comparison with these solid fuels could result in a least common denominator approach whereby a hazardous waste-derived fuel would be ?comparable" if it was no more dangerous to burn than the most contaminated fossil fuels. Such ?comparability" is not congruent with the overall objective of RCRA in order to protect human health and the environment. It is also inconsistent with the specific directive to regulate combustion of hazardous waste-derived fuels where necessary to protect human health and the environment (RCRA Section 3004(q)). Thus, although a benchmark approach is used rather than a risk-based approach, the benchmark fossil fuels that are selected, in general, have lower contaminant levels for constituents that are not destroyed in the incineration process.

Metals and halogen concentrations in coal are compared with that of gasoline and fuel oils (Nos. 2, 4, and 6) in Table 1-2. For coal, median, maximum, and minimum levels are shown, based on data from a recent IEA Coal Research report (Clarke and Sloss, 1992) and the Electric Power Research Institute (EPRI) PISCES database (Wetherold et al., 1995). Data for the liquid fossil fuels are given from three sources: (1) 90th percentile levels based on the recent EPA-sponsored testing specifically for developing the comparable fuels specifications; (2) for No. 2, 4, and 6 fuel oil, average levels based on that from the EPRI Pisces database (Wetherold et al., 1995); and (3) for fuel oil, levels from the EPA/OSW database on hazardous waste burning combustors (including boilers and incinerators).

None of the Clean Air Act metals were detected in the gasoline samples. Pb, Ni, Sb, and Se are the only metals typically found in the fuel oil samples (with the metals levels generally increasing with the fuel oil number). Metals levels in coal can vary tremendously, depending on the origin of the fossil fuels. The No. 6 fuel oil high-end 90th percentile levels for Pb and Ni are comparable to the average coal levels. The average coal levels for As, Ba, Co, Cr, Mn, and Pb are typically 10 to 100 times higher than that of the liquid fossil fuels. Levels of Hg and Be in fuel oils are also typically much less than that of coal. The chlorine content of coal and fuel oils can range widely from less than 50 to greater than 2,000 ppmw. Typically though, coal has a chlorine level that can be 2 to 10 times higher than that of fuel oils.

Constituent					Cor	centration (opmw)				
		Coal	a	Gasoline	Fuel Oil	Fuel Oil	Fuel Oil	Fuel Oil	F	uel Oil	S _e
	Avg.	Min.	Max.	90th %₀	No. 2 90th % _b	No. 4 90th % _⊳	No. 6 90th % _b	No. 2, 4, 6 Average _c	Avg.	Min.	Max.
Antimony	1	0.05	10	< 7	< 6	< 11	6.5	0.2			
Arsenic	10	0.5	80	< 0.14	< 0.12	< 0.2	< 0.2	0.3	0.1		
Barium	200	20	1000	< 14	< 12	< 23	< 20	NA	0.3		
Beryllium	2	0.1	15	< 0.7	< 0.6	< 1.2	< 1	0.2	0.1		
Cadmium	0.5	0.1	3	< 0.7	< 0.6	< 1.2	< 1	0.3	0.5		
Chromium	20	0.5	60	< 1.4	< 1.2	< 2.3	< 2	0.7	0.5		
Cobalt	5	0.5	30	< 2.8	< 2.4	< 4.6	< 4.1	2			
Lead	40	2	80	< 7	6.6	9.9	30	2.6			
Manganese	70	5	300	< 0.7	< 0.6	< 1.2	< 1	0.2			
Mercury	0.1	0.02	1	< 0.1	< 0.1	< 0.2	< 0.2	0.03	< 0.1		
Nickel	20	0.5	50	< 2.8	< 2.4	16	36	31			
Selenium	1	0.2	10	< 0.14	0.07	0.13	0.12	0.2			
Silver	0.1	0.02	2	< 1.4	< 1.2	< 2.3	< 2	NA			
Thallium	< 1			< 14	< 12	< 23	< 20	NA			
Chlorine	1000	50	2000	< 25d	< 25d	< 0d	< 10d	36	500	50	3000
Fluorine	150	20	500	NM	NM	NM	NM	NA			

TABLE 1-2:COMPARISON OF THE METAL AND HALOGEN CONTENT OF COAL,
GASOLINE, AND FUEL OILS

a Source: Clarke and Sloss (1992) b Source: EPA (1996) c Source: Wetherold et al. (1995) e From hazardous waste burning combustors NM: Not measured NA: Not reported Gases are also not selected as benchmark fuels. Generally, basing the comparable fuel specification on a gaseous fuel would be overly conservative and have no practical use to the regulated industry (i.e., it is unlikely that many hazardous wastes would meet a fuel specification based on natural gas). Note that separate benchmark specifications are defined for a hazardous waste-derived fuel synthesis gas (syn-gas), as discussed below.

Additionally, non-petroleum liquid based fuels, including turpentine and tall oil, are not considered as benchmark fuels:

- <u>Turpentine</u> -- Turpentine has a very high energy content and is used as a fuel (and a manufacturing feedstock) both within and outside the forest products industry. However, turpentine has not been selected since: (1) turpentine is not a widely used commercial fuel; and (2) there are no ASTM standards for turpentine fuel which specify the minimum properties. This must be met for the product to be considered as a commercial fuel.
 - <u>Tall oil</u> -- Tall oil is a traditional fuel source, and EPA has acknowledged that tall oil is a legitimate non-waste fuel under the BIF rule low risk waiver exemption (LRWE) and DRE trial burn exemptions (see 56 <u>FR</u> 7193, February 21, 1991). However, tall oil is not used because of lack of quality constituent data.

Liquid fossil fuels of Nos. 2 and 6 fuel oils, and gasoline, have been selected as the benchmark fuels. Liquid fuels are widely used by industry, readily combusted, and do not have the inconsistencies of solid or gaseous fuels. Gasoline has been included even though it is not typically utilized in industrial boilers and furnaces. Gasoline is a highly used, commercially available, liquid fuel, for which complete hazardous constituent analysis is available (allowing for a more complete and useable benchmark specification).

US EPA ARCHIVE DOCUMENT

1.2 Parameters and Rationale for Comparable Fuels Specifications

Benchmark fuel specifications are being set for: (1) physical specifications, including energy content (heating value) and kinematic viscosity; (2) general constituent specifications for total nitrogen and total halogens; and (3) individual hazardous constituents, including individual metals (including Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mn, Hg, Ni, Se, Ag, and Tl), and Appendix VIII organics. Rationale for the selection of these parameters is discussed in the following.

Since most comparable fuels are expected to have a lower BTU content than fossil fuels, more comparable fuel will be needed to produce the same heating value. This situation will potentially increase the environmental loading of hazardous constituent emissions from the comparable fuel. More comparable fuel would be burned to achieve the same heat input leading to greater environmental loading of potentially toxic substances than if fossil fuel was burned. This would not follow the intent of the comparable fuel exclusion. To address environmental loading, a minimum heating value specification comparable to the BTU content of the benchmark fossil fuels is used. Constituent levels have been corrected from the fuel's heating value (approximately 20,000 Btu/lb) to 10,000 Btu/lb.

1.2.1 Heating Value

A benchmark specification limit on minimum waste energy content is set. This is to ensure that the comparable fuel has a legitimate use as a fuel (note that the comparable fuels exclusion only applies to waste fuels that are ultimately burned). For solid and liquid wastes, a level of 5,000 Btu/lb (11,500 J/g) has been selected. This level has been traditionally used as a reasonable cutoff for determining if a waste is being burned for energy recovery. Note that it is based on the typical heating value of wood.

1.2.2 Kinematic Viscosity

Liquid waste viscosity affects the efficiency of combustion by influencing the atomization characteristics of the liquid waste. Note that viscosity is an important design specification for liquid

burners. Thus the purpose of a viscosity specification is used to ensure that a comparable fuel is as burnable as the benchmark fuel.

The viscosity specification is based on that of No. 6 residual fuel oil (the heaviest, most viscous, liquid fossil fuel) at normal firing conditions. The comparable fuel viscosity specification is set at 50 cSt, as-fired. This is based on the ASTM standard for No. 6 fuel of 50 cSt (at 100 °C, which is a common firing temperature for No. 6 oil). Note that No. 6 residual oil must be heated (from 30 to $50 \,^{\circ}$ C) for handling and pumping purposes due to high viscosity at normal ambient temperatures. For atomization and burning, it must be heated further to reduce the viscosity needed for efficient atomization and combustion, usually to temperatures in the range of 70 to 130 °C (160 to $270 \,^{\circ}$ F). The exact temperature (and corresponding viscosity) requirement depends on factors including the burner design, atomization method (steam assisted, mechanical pressure, etc.), and viscosity characteristics of the No. 6 fuel oil (note that there is no one No. 6 oil; different No. 6 oils can have significantly different viscosities at the same temperature). Typically, mechanical pressure atomization nozzles require that the oil have a viscosity of 15 to 30 cSt (70 to 150 SSU), while steam assisted burner nozzles can handle higher viscosities ranging from 30 to 70 cSt (150 to 300 SSU). The 50 cSt ASTM value is an upper limit on what can be expected for No. 6 fuel oils at a typical firing temperature of 100 °C (Perry and Green, 1994; Reed, 1986).

Additionally, the viscosity specification only applies to liquid waste fuels (not gaseous fuels, which are inherently less viscous than liquids, and not solids, for which viscosity is not applicable).

1.2.3 Flash Point

A specification on flash point is not being used since: (1) DOT and OSHA have regulations that control the hazards of flash point explosions; (2) it would preclude the inclusion of materials that are normally fuels such as methanol.

A comparable fuel specification for total halogens is used, generally in-lieu of meeting the individual specifications of chlorinated Appendix VIII compounds (expect PCBs for the most part). Limitation of the chlorine feed to the combustor is desired from an environmental protection perspective to: (1) reduce the emissions of the hazardous air pollutants of HCl and Cl₂, both of whose formation is directly related to the chlorine content of the waste feed; and (2) prevent the formation of chlorinated products of incomplete combustion (PICs), which includes PCDD/PCDF as well as chlorinated benzenes, biphenyls, phenols, etc. Limiting the waste feed chlorine level reduces the potential for the formation of chlorinated PICs through (Dellinger et al., 1990):

- Limiting the release from the combustion zone of undestroyed and/or partially fragmented chlorinated precursors contained in the waste feed. Note that kinetic theory and experimental work indicate the chlorination of unchlorinated hydrocarbons is very unlikely at combustion temperatures (i.e., chlorinated PICs are not formed from unchlorinated hydrocarbons in the combustion zone). Thus, the emissions of chlorinated PICs from the combustion zone is related directly to the chlorinated organic constituents in the waste feed. It is highly desired to minimize the level of chlorinated precursors in the combustion gases since the major route to formation of high molecular weight chlorinated PICs is through reactions of already chlorinated precursors.
- Limiting the potential for the formation of chlorinated PICs due to radical-radical association reactions as the combustion gas is cooled -- in particular organic radical reactions with Cl radicals formed in the combustion zone.
- Ensuring adequate flame stability (and corresponding combustion efficiency) and reducing flame sooting. Increasing levels of chlorine are known to increase flame sooting and decrease flame stability and efficiency. Cl atoms scavenge H atoms,

depleting the flame radical pool that drives the combustion reactions.

Note that a total halogen limit may have only a secondary effect on controlling PCDD/PCDF emissions. Analysis of PCDD/PCDF data from full-scale waste combustion systems indicates that the waste feed chlorine level does not have a dominant impact on PCDD/PCDF emissions (generally of primary importance is the PM air pollution control device temperature). However, the waste feed chlorine level may have a secondary influence. Certain well-controlled pilot-scale experimental studies indicate there can be a strong relationship between HCl and Cl₂ levels in the flue gas and PCDD/PCDF emissions (e.g., Gullett et al., 1994).

Additionally, a limit on total halogens, including both organic and inorganic forms, is appropriate since both forms in the waste fuel can contribute to halogenated PIC emissions. For example, PCDD/PCDF and other chlorinated PICs have been detected from sources burning both inorganic (e.g., salts) and/or organic chloride (e.g., plastics) containing wastes (e.g., Wikstrom et al., 1994; Fangmark et al., 1991; Christiansen, 1990; Nielsen, 1989). Inorganic chlorine salts have also been shown to act as a direct chlorine source for PCDD/PCDF formation at low de-novo synthesis temperatures (Addink and Olie, 1995).

Note that under well-controlled combustion conditions, the vast majority of organic halogens in the waste fuel feed will leave the combustor gas as HCl, HF, etc. Smaller levels will be in the combustion gas in the form of Cl_2 , F_2 , and halogenated organics, and some may also be present in the solid bottom and fly ash as salts. Inorganic halogen salts will also decompose to a lesser degree as HCl, HF, Cl_2 , F_2 , and PICs in the combustion gas; with the remainder as salts in the bottom and fly ash. Inorganic halogen salts are sometimes believed not to react at combustion temperatures due to high melting temperatures. However, work by Uchida et al., (1988) have shown that inorganic salts can directly contribute to HCl combustion gas levels (water vapor and zeolites participate in a reaction transforming chlorine salts to HCl). Thus, for halogenated hydrocarbon waste fuels, containing either inorganic or organic halogens, there is potential that under less optimum combustion conditions (higher CO, insufficient oxygen and mixing, etc.) halogenated PIC emissions may form. A specification on total nitrogen is used, in addition to those on nitrogenated Appendix VIII compounds. Under oxidative conditions of typical hazardous waste combustors, the majority of waste nitrogen will be emitted as N_2 (not of environmental concern) or NO_x (a criteria air pollutant whose emissions levels are covered under the Clean Air Act ambient air quality standards for ozone control). However, under starved air (reducing) conditions, nitrogen will primarily form the HAPs HCN and NH₃. Starved air transient **?**puffs" can occur in hazardous waste combustors due to chamber overcharging (possibly due to unexpected surges in waste volatile composition), poor waste/air mixing, and poor liquid atomization. Additionally, nitrile radicals (CN⁻) can form nitrogenated PICs (such as HAPs including hydrogen cyanide, acetonitrile, acrylonitrile, nitrophenols, nitrotoluenes, nitrobenzenes, aniline, acetamide, acrylamide, etc.) through radical-radical and radical-molecule reactions which occur as the combustion gas is cooled (Dellinger et al., 1990).

1.2.6 Metals

Benchmark specifications are set for the individual metals of Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mn, Hg, Ni, Se, Ag, and Tl (which include both Clean Air Act Title III and RCRA Appendix VIII metals). Limitation of the metals feed to the incinerator results in a direct reduction of metals emissions since, like chlorine, metals are not destroyed in the combustion process.

1.2.7 Organics

Specifications are set for RCRA Appendix VIII organics. Note that specifications are not set for some of the compounds on the Appendix VIII list because a routine analytical method is not available.

Specifications are set for oxygenates (at non-detect levels determined by the benchmark fuel analytical results). Oxygenates generally burn well and contribute to the combustion of other

constituents in the fuel (organically bound oxygen provides a source of oxygen for the combustion process). Oxygenates are added intentionally to clean-burning ?reformulated" gasoline to enhance the completeness of combustion in internal combustion engines. However, under poor combustion conditions, breakdown of the oxygenate at the oxygen bond can lead to the production of free radicals (Weitzman, 1991). These radicals can recombine with other radicals or compounds to form higher molecular weight chlorinated PICs. Thus, a comparable fuel specification for oxygenates is used.

1.3 Parameters and Rationale for Synthesis Gas Fuel Specifications

Comparable fuel specifications are set for **?**synthesis" gas (syn-gas) separately from solid and liquid hazardous wastes. The combustion of syn-gases meeting these specifications would be excluded from regulation as a hazardous waste. Syn-gas is generated by the gasification of hazardous wastes. Syn-gas is a mixture of primarily H_2 and CO, as well as the inerts of N_2 , CO_2 , Cl_2 , S, etc. The syn-gas characteristics depend primarily on: (1) the composition of the material that is being gasified (to date, mostly natural gas, oil, or coal, although systems for wood, plastics, sludges, and other types of wastes are more recently being developed); (2) the use of oxygen vs. air for the gasification process; and (3) the amount of steam utilized for the gasification process (which affects the CO/H ₂ ratio). Syn-gas has uses as:

- Feedstock in the chemical industry for making products such as ammonia, alcohols, acetic acid, MTBE, etc., as well as other hydrocarbons. Also, it is used as a source of hydrogen in the petrochemical industry for hydrogenation processes. For this, a well defined and homogeneous material (usually some fossil fuel) is generally used for the syn-gas generation; and
- Fuel for power generation, heating, etc.

To ensure that the combustion of syn-gas is comparable to that of fossil fuels, specifications are set on: (1) heating control; (2) general constituents for total chlorine, total nitrogen, and hydrogen

sulfide; and (3) individual Appendix VIII constituents. Rationale for the selection and determination of these specifications is discussed in the following.

1.3.1 *Heating Value*

A minimum heating value limit of 100 Btu/scf is set for syn-gas. The minimum specification of 100 Btu/scf is based on syn-gas from the gasification of coal with oxygen. It is commonly required for gas turbine energy production.

For fuel usage related purposes, syn-gases are classified as either medium or low-BTU gases (medium generally being produced with pure oxygen, low-BTU generally with air). Medium BTU syngases generated from the gasification of fuels (including coal, fuel oil, biomass, municipal solid wastes, plastics, etc.) with pure oxygen can have heating values from 250-400 Btu/scf (Stultz and Kitto, 1992). Low-BTU syn-gases generated from the gasification of fuels with air can have heating values from about 100-200 Btu/scf. The heating value of the syn-gas depends primarily of the diluent content (nitrogen, carbon dioxide, chlorine, sulfur, moisture, etc.), which is a strong function of the syn-gas feed material composition and gasification process (particularly if air or pure oxygen is used for the gasification process). The heating value is not a strong function of the H $_2$ /CO ratio since both gases have similar heating values on a Btu/scf basis (although a low H $_2$ /CO ratio can adversely affect flame stability).

Syn-gas used as a fuel for power production in gas turbines typically requires a heat content from 250-450 Btu/scf, with a lower limit of around 200 Btu/scf. Intentionally manufactured syn-gases can have heating content levels as low as 100 Btu/scf (e.g., coal gasifiers with air). However, this gas by itself, although it may be quite burnable, does not achieve temperature and expansion ratios needed for thermodynamically efficient power generation. Thus, it is usually mixed with higher energy sources, and is not generally desired for most applications. Note that there are certain specially designed gas turbines (with very large ?silo" combustion chambers) that can handle very low-BTU (100 Btu/scf) syngases for power generation (for example, see Geiling (1992) and Gas Turbine World (1990)).

Additionally, other low-BTU by-product gases are also used effectively for their fuel value (e.g., the blast furnace byproduct gas from steel manufacturing, with a heating level of about 50 Btu/scf and enhanced with gas and oil, is used in the furnace heating stoves).

Because syn-gas is sometimes used as a chemical feedstock, an absolute lower limit on heating value for comparable fuel classification may not be appropriate or needed because the syn-gas is not being used for energy recovery or supplementary purposes, making its heat content irrelevant. However, as a practical matter, whether or not syn-gas is being used as a chemical feedstock or fuel, the syn-gas is always being produced for its CO and/or H_2 content -- thus all gasification related syn-gases will have some appreciable heat content.

It is important to note that the heating value specification is expressed on a volumetric basis of Btu/scf (as opposed to Btu/lb for solid and liquids) because: (1) is it not appropriate to compare the heating value of different gases expressed in units of Btu/lb since the ratio of the weight-to-volume differs between different gases (particularly H_2 and CO); and (2) industry standard practice is to classify syn-gases based on the energy content per unit volume of gas.

1.3.2 Hydrogen Sulfide

A hydrogen sulfide (H_2S) specification of 200 ppmv is set. The sulfur content of the material used to produce the syn-gas is converted almost entirely into H_2S in the gasification process, with smaller amounts of COS. Thus, syn-gases produced from low sulfur content material such as wood, biomass, natural gas, and low sulfur fuel oil and coal, do not contain any appreciable H_2S . Once the syn-gas is burned under oxidizing conditions, the H_2S , if not removed prior to completing combustion,

is converted to SO_x (primarily SO_2). SO_x emissions are regulated through the issuance of local air permits and the Clean Air Act national ambient air quality standards.

The H₂S content of high sulfur coal-based syn-gases can be over 1,000 ppmv (Stultz and Kitto,

1992). However, in these cases, H_2S removal processes such as those based on the Claus process or regenerable metal sorbents are almost always used to reduce H_2S to well below 10 ppmv prior to syngas usage as a feedstock or for fuel value (for two technical reasons: (1) H_2S is much more easily removed than SO_x which are formed from syn-gas combustion, and (2) the syn-gas has a much lower flue gas volume than the gas produced from syn-gas full combustion). For use as a fuel, the technical limitation on the H_2S content of syn-gas is due to corrosion of downstream gas handling equipment, such as turbine blades, fans, etc. Generally levels below 200 ppmv can be tolerated. Note that for use as a feedstock, levels under 1 ppmv are usually required.

1.3.3 Nitrogen (other than N_2)

A nitrogen compound level (NH₃+HCN, other than N₂) of 300 ppmv is set. This is based on the typical nitrogen compound levels (NH₃+HCN) from syn-gases manufactured by coal from 100 to 300 ppmv (Stultz and Kitto, 1992). Nitrogen compounds in syn-gases are mostly in the form of NH₃, with smaller amounts of HCN and other nitrogenated organics. When syn-gases are burned, the nitrogen is converted primarily to NO_x, which is regulated through the issuance of local air permits and the Clean Air Act national ambient air quality standards. However, due to the increased potential to form nitrogenated PICs (as discussed previously for the comparable fuel specification for total nitrogen in solid and liquid wastes), especially from incomplete combustion conditions associated with inefficient incinerators, a specification on total nitrogen (other than N₂) is set.

1.3.4 Total Halogens

A total halogen specification for syn-gas of 1 ppmv is set. For use as a feedstock, a total halogen level of under 1 ppmv is usually required. For use as a fuel, lower concentrations of total halogens are desired to prevent corrosion in the downstream syn-gas burning equipment. In typical gasification processes, the majority of the halogens contained in the feedstreams are converted to syn-gas as gaseous halides and/or halogens. (Note that in some cases where the feedstream also contains alkali constituents such as sodium or lime, halogens may also be found in the bottom or entrained ash

as solid salts). The raw halogen content of the syn-gas is thus a direct function of the halogen content of the material used to generate the syn-gas. For low halogen content materials, such as natural gas, and some fuel oils, coal, wood, and biomass streams, the syn-gas will not contain appreciable halogen levels. Alternatively, for some higher halogen content materials, such as certain coals with halogen contents of greater than 1000 ppmv, the concentration of halogen in the resulting syn-gas may be greater than 50 ppmv. However, as discussed above for hydrogen sulfide, when the syn-gas halogen content is high, halogen removal processes are used prior to syn-gas use as a fuel or feedstock. Halogen removal efficiencies are usually very high, i.e., greater than 99%. Thus, a level of 1 ppmv is reasonably achievable even for high halogen content syn-gas materials.

1.4 <u>Collection of Liquid Fossil Fuel Samples Used for Analysis to Determine Benchmark</u>

Commercially available fossil fuels are very diverse. The constituents in fuels can vary, depending on where fuels are refined, the condition of the catalysts used, and the origin of the raw material. Typically, fuels found on the East Coast are refined from Venezuelan and Middle East crude. Fuels on the West Coast are refined from domestic crude, although they can contain Venezuelan crude. This makes it almost impossible to determine the source of a given fuel. All fossil fuels are prepared to meet a series of American Standards for Testing Materials (ASTM) specifications, which were adopted as commercial standards by the National Bureau of Standards. These standards have been revised many times to meet changes in supply, so it is likely that they will continue to change as supplies change. The specifications focus on the physical parameters of the fuels, such as distillation temperatures, specific gravity, and viscosity.

To set the preliminary specification for comparable fuels, the EPA needed data on the concentrations of hazardous constituents in these fuels, as well as data on the physical parameters (viscosity, heating value, etc). Since this data is not readily available, EPA collected, from various geographic locations around the country (Table 1-3), representative samples from the end uses of conventional liquid fuels. This approach was designed to ensure a representative sampling, since constituents can vary, depending on the point of origin.

TABLE 1-3. GEOGRAPHIC REGIONS WHERE FUEL SAMPLES WERE COLLECTED

LOCATION	SAMPLES COLLECTED
Irvine, California	Gasoline and Nos. 2, 4, and 6 fuel oils
North West New Jersey	Gasoline and No. 2 fuel oil
North East Connecticut	Gasoline and Nos. 2 and 6 fuel oils
Coffeyville, Kansas	Gasoline and No. 2 fuel oil
Fredonia, Kansas	Gasoline and No. 2 fuel oil
Norco, Louisiana	Gasoline and Nos. 2 and 6 fuel oils
Hopewell, Virginia	Gasoline and Nos. 2 and 6 fuel oils
Research Triangle Park, North Carolina	Gasoline and No. 2 fuel oil

A database comparing emissions using comparable fuels and fossil fuels does not exist. Since a comparison cannot be made between these fuels, a database on the toxic constituents of fuels being burned needs to be developed. This study analyzed each fossil fuel for all 40 CFR, Part 261, Appendix VIII toxic organic constituents for which a reasonable approach exists under SW-846 methodologies. The study also covered physical parameters, using ASTM protocols.

Based on the results of this study, a specification can be derived for comparable fuels that ensures they contain no more toxic constituents than the ?benchmark" fuel(s). In addition, method detection limits (MDLs) were determined for each SW-846 Method used, in accordance with 40 CFR, Part 136, Appendix B. Section 2 of this document discusses the process used for determining the MDLs in more detail.

References:

ASME (American Society of Mechanical Engineers), **?**The Relationship Between Chlorine in Waste Streams and Dioxin Emissions from Waste Combustor Stacks," American Society of Mechanical Engineers, 1996.

Clarke, L.B. and L.L. Sloss, *Trace Elements - Emissions From Coal Combustion and Gasification*, IEA Coal Research, London, England, IEACR/49, July 1992.

Dellinger, B., P. Taylor, and D. Tirey, ?Minimization and Control of Hazardous Combustion Byproducts," EPA/600/S2-90/039, August 1990.

Gas Turbine World, ?Kellogg's PFB-Hybrid Combined Cycle Concept Based on UTC/KWU V84.4 Turbines," *Gas Turbine World*, pp. 20-23, Nov/Dec 1990.

Geiling, D. (editor), *Proceedings of the 9th Annual Coal-Fueled Heat Engines, Advanced Pressurized Fluidized-Bed Combustion, and Gas Stream Cleanup Systems Contractors Review Meeting*, U.S. DOE Office of Fossil Energy, DOE/METC-93/6129, October 1992.

Gullett, B.K., P.M. Lemieux, and J.E. Dunn, ?Role of Combustion and Sorbent Parameters in Prevention of Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Formation during Waste Combustion," *Environmental Science and Technology*, Vol. 28, pp. 107-118, 1994.

Lanier, S., et al., ?Dioxin Compliance Strategies for the HWC MACT Standards," *1996 Incineration Conference*, pp. 587-593, Savannah, Georgia, May 1996.

Perry R.H. and D. Green (editors), *Perry's Chemical Engineering Handbook*, 6th Edition, McGraw Hill, pp. 9-13, 1994.

Reed, R.J., *North American Combustion Handbook*, Third Edition, North American Manufacturing Company, Cleveland, OH, p. 30, 1986.

Stultz, S.C. and J.B. Kitto (editors), *Steam: Its Generation and Use*, 40th Edition, Babcock and Wilcox, 1992.

Weitzman, L., ?Engineering Handbook for Hazardous Waste Incineration," Draft No. 3, Prepared for the EPA Center for Environmental Research Information under Contract No. 68-08-0011, Work Assignments 1-30, January 31, 1991.

Wetherold, R.G., D.A. Orr, J.M. Leonard, and B. Toole O'Neil, **?**The EPRI Pisces Database: Summary of Fuels Information," *EPRI/DOE International Conference on Managing Hazardous and Particulate Air Pollutants*, Toronto, Ontario, Book 2, August 15-17, 1995.

Addink, R. and K. Olie, ?Mechanisms of Formation and Destruction of Polychlorinated Dibenzo-pdioxins and Dibenzofurans in Heterogeneous Systems," *Environmental Science and Technology*, Vol. 29, No. 6, pp. 1425-1435, 1995.

Christiansen, K., A. Grove, et al., *Environmental Assessment of PVC and Selected Alternative Materials*, Danish National Agency of Environmental Protection, 1990.

Fangmark, I., S. Marklund, and C. Rappe, **?**Use of Synthetic Refuse in a Pilot Combustion System for Optimizing Dioxin Emission, Part II," *Chemosphere*, Vol. 23, pp. 1233-1243, 1991.

Nielsen, P., ?Significance of Operating Conditions and Chlorine Sources on Dioxin Formation: Experience of the Danish Incinerator Study," *Proceedings of the 1989 International Conference on Municipal Waste Combustion*, Hollywood, FL, April 11, 1989. Uchida, S., H. Kamo, and H. Kubota, ?The Source of HCl Emissions from Municipal Refuse Incinerators," Ind. Eng. Chem. Res., Vol. 27, No. 11, pp. 2188-2190, 1988.

Wikstrom, E., G. Lofvenius, S. Marklund, and C. Rappe, *The Role of Organic Chlorine (PVC), Inorganic Chlorine (CaCl2), Total Chlorine, and Copper in the Formation of Dioxin and Chlorobenzenes During Combustion of a Synthetic Fuel in a Pilot Reactor*, Report from the Institute of Environmental Chemistry, Umea University, December 1994.

2.0 SAMPLING AND ANALYSIS

As stated previously, EPA collected and characterized samples of gasoline and Nos. 2, 4, and 6 fuel oils in order to provide data on which to base a **?**benchmark" fuel. Altogether, EPA collected ten (10) gasoline samples, eleven (11) No. 2 fuel oil samples, one (1) No. 4 fuel oil sample, and seven (7) No. 6 fuel oil samples from various geographic regions around the country.

EPA worked with the Chemical Manufacturers Association (CMA) and its member organizations in obtaining fuel samples. CMA supplied a list of members to contact, as well as a letter endorsing EPA's efforts in this area. Contact was initiated with each company by telephone. They were questioned as to the nature of the fuels they burned in their boiler systems and, if one or more was a fuel of concern, whether they would they be willing to supply EPA with a one-liter sample for characterization and quantification.

Many industrial users were either skeptical about participation in a program of this type or had converted their units to natural gas. However, approximately 10% of those contacted were willing to cooperate. A number of industries had switched from No. 6 fuel oil to No. 2 fuel oil and/or natural gas, due to the difficulties and energy required to handle No. 6 fuel oil, especially in colder weather. Also, a very limited number of companies in the United States use No. 4 fuel oil. With narrow time constraints for this program, the limited use of Nos. 4 and 6 fuel oil by U.S. industries, and the corporate restraints on participating in these type of programs, EPA was limited in the number of Nos. 4 and 6 fuel oil samples it could obtain.

2.1 Analysis of Samples

This aspect of the program focused on the analysis of the combustion fuel samples (gasoline and Nos. 2, 4, and 6 fuel oils) collected for the program in order to characterize the chemical and physical properties and the presence of the hazardous constituents listed in 40 CFR, Part 261, Appendix VIII. From a historical perspective, 40 CFR, Part 261, Appendix VIII is the reference list

of potential hazardous constituents which need to be quantitated in the fossil fuels in order to set a specification. From a practical perspective, however, the essence of such a list and testing for the substances in the list present significant problems. The problems and some of the difficulties they impose are as follows:

- The chemicals listed in 40 CFR, Part 261, Appendix VIII, are listed as they would exist in a pure state, as opposed to the forms they would take after being dispersed into the environment;
- 2. In developing 40 CFR, Part 261, Appendix VIII, no consideration was given to factors such as the environmental fate or the level of production of a given chemical. The list contains both prevalent, mobile, and toxic chemicals, that present major risks, and some chemicals that present a lesser risk due to low prevalence or instability in a matrix such as fuel oil or water; and
- 3. Analysis of many constituents from 40 CFR, Part 261, Appendix VIII would be impossible and/or impractical for the matrix being considered in this study for a variety of reasons: there are indefinitely large classes of compounds, many of which would not exist in fossil fuels; and standards do not exist for many other compounds.

The fundamental concern for EPA in developing the comparable fuel exclusion is to create a database by quantitating as many of the constituents from 40 CFR, Part 261, Appendix VIII as could readily and reliably be identified in the fossil fuels. However, the development and validation of new methodologies was not within the scope of this program. Thus, it was necessary to take an approach that used existing methodologies to quanitate as many of the constituents in 40 CFR, Part 261, Appendix VIII as possible.

To quanitate each fossil fuel sample, EPA chose to use the methodologies defined for the constituents from 40 CFR, Part 261, Appendix VIII subject to the following criteria:

US EPA ARCHIVE DOCUMENT

1) It must be practical to analyze fossil fuels for the constituent under consideration.

The chemistry of fossil fuels, the processes involved in their production, and the availability of practical and reliable analytical methodologies and standards were used to identify whether constituents fit the later consideration.

SW-846, **?**Testing Methods for Evaluating Solid Waste," presents the methods most commonly used for quantitating organic and metal constituents in various matrices. Since matrices vary in waste streams, the methods have some flexibility. The analyst is then allowed to adjust the sample preparation procedures for the matrix being analyzed. The following information pertains to all analytical data generated to date for the Appendix VIII analytes.

In all cases the laboratory attempted to use approved and published methodologies. There was not time to determine what procedures were under development for fuel oil analysis by EPA or other agencies/laboratories at the time the analyzes took place.

Many of these analytes presented special analytical challenges since methods for their analysis were not available in SW-846 or CLP methods. Additionally, the gasoline and fuel oil matrices compounded the difficulties experienced in these analyses. Consequently, data for all the targets are not presented in this report. Table 2-1 details analytes for which data is not provided and why these data points were not generated.

It is important to note that compounds marked as not detected by VOA, semi-VOA, or HPLC were not detected using instrument conditions attempted to date. These compounds may be detectable at concentrations greater than 200 ppm by different instrument conditions than those attempted. Compound by compound research would be required to determine an approach for their analysis.

Many metallic compounds appearing in the target lists were not specifically analyzed. Samples were analyzed for metallic elements, not organo-metallic compounds. Direct analysis for organo-metallic compounds would have been preferable, however, to the best of our knowledge, methods are not available to measure organo-metallics in these types of matrices. For example, thallium (1) acetate was reported as total thallium or lead phosphate reported as total lead.

Due to time constraints for this project, other categories were too broad for complete analysis. There are cases where the number of compounds, categories such as chlorinated fluorocarbons, are too great to analyze for every possible isomer. In situations like these, three of the more common chlorinated freons, dichlorodifluoromethane, trichlorofluoromethane, and 1,1,2-trichloro-1,2,2-trifluoroethane have been analyzed during the analytical phases of the clean fuels initiative. Results for chlorinated freons can be expressed as the sum of these compounds. Some of these reported compounds are listed by a synonym of the name found in Appendix VIII.

In all the analyses performed, the hydrocarbon matrix presented analytical difficulties. Most notable were the VOA and semi-VOA analyses performed by mass spectrometry. In most cases, the analyst had to manually integrate internal standards, surrogates, and targets, especially targets in the matrix spikes. These manual integrations were subjective, but were never done to intentionally misrepresent the data. In every manual integration, an honest attempt was made to isolate only the areas of interest. It must be noted that other analysts or data reviewers may have made the manual integrations differently.

For this study, each sample was collected in a pre-cleaned, 1-liter amber glass sample bottle with a Teflon[®]-lined cap. This type of sample bottle is available commercially with a certificate of analysis. All sample bottles were pre-cleaned according to EPA protocol. Samples were collected through purge valves, located on the main system feed lines prior to the burner. The fuel was allowed to purge through the valve and into a waste container, ensuring the collection of a fresh sample and removing any debris which may have collected in the line or valve.

The following discussion summarizes the sample preparation, instrumental analysis and quality control procedures used to generate the data collected for each of these samples. Each section also briefly discusses any analytical difficulties encountered by the laboratory.

2.2 <u>GC/MS Volatiles</u>

2.2.1 Method Summary

A method for analyzing the volatile compounds was developed based on SW-846, Method 8240. A gas chromatograph with a fused silica capillary column and mass spectrometer was used to separate, identify, and quantitate the target analytes. Standards containing the target analytes in methanol were prepared at five levels. One microliter of each of these standards was used to calibrate the analytical system. Samples were treated as if they were at high concentrations and diluted weight to volume prior to analysis. This preparation was then injected into a heated injection port thereby transferring the sample to the analytical system. The direct injection technique was chosen over purge and trap because of the high volatile organic background in the matrix.

2.2.2 Sample Preparation

Method 8240 calls for a 2.5x weight to volume sample dilution/extraction with methanol. The methanol is the analyzed portion. To provide the lowest detection limits, a 2x dilution/extraction was performed. Actual sample weights were recorded and used to calculate the true dilution factor. Surrogate compounds were prepared in a methanol solution. The sample was diluted with methanol and surrogates were added. For gasoline, 1 g was diluted with 10 mls of methanol. In the case of No. 2, 4, and 6 fuel oils, 4 g was extracted with 10 mls of methanol, since the fuel oils were not miscible with methanol.

Analyte	Reason Data Could Not be Generated.
Azaserine	Compound toxicity too great to safely handle
Epinephrine	A solvent compatible with analysis not found
Ethylenedithiocarbamic acid	Standard not available
Mitomycin C	A solvent compatible with analysis not found
alpha-naphthylthiourea	A solvent compatible with analysis not found
Reserpine	A solvent compatible with analysis not found
Selenourea	Too reactive in air and water
Streptozoticin	A solvent compatible with analysis not found
Thiosemicarbizide	A solvent compatible with analysis not found
Cyanogen	Standard not available
Nitrogen mustard	Standard not available
Methyl hydrazine	Not detected by voa, semi-voa, or HPLC analysis
Trypan blue	Not detected by voa, semi-voa, or HPLC analysis
Warfarin	Not detected by voa, semi-voa, or HPLC analysis
Chloromethoxy methane	Not detected by voa, semi-voa, or HPLC analysis
Chloroacetaldehyde	Not detected by voa, semi-voa, or HPLC analysis
Formic acid	Not detected by voa, semi-voa, or HPLC analysis
2-Methyl azidrine	Not detected by voa, semi-voa, or HPLC analysis
Dimethyl sulfate	Not detected by voa, semi-voa, or HPLC analysis
Tetranitromethane	Not detected by voa, semi-voa, or HPLC analysis
Aldicarb	Not detected by voa, semi-voa, or HPLC analysis
3,4-Diaminotoluene	Not detected by voa, semi-voa, or HPLC analysis
Methylthiouracil	Not detected by voa, semi-voa, or HPLC analysis
Ethyl carbamate	Not detected by voa, semi-voa, or HPLC analysis
Maleic anhydride	Not detected by voa, semi-voa, or HPLC analysis
Tetraethyl pyrophosphate	Not detected by voa, semi-voa, or HPLC analysis
Chloromethyl methyl ether	Not detected by voa, semi-voa, or HPLC analysis
Creosote	Chromatographically identical to and inseparable from fuel oil
Coal tar creosote	Chromatographically identical to and inseparable from fuel oil
Nitroglycerine	Not detected by voa, semi-voa, or HPLC analysis
N-nitrosodiisopropylamine	Standard could not be procured in time for analysis
N-Nitrosodiethanolamine	Standard could not be procured in time for analysis
1,1-dichloropropane	Standard could not be procured in time for analysis
N-nitroso-N-ethylurea	Not detected by voa, semi-voa, or HPLC analysis
N-nitroso-N-methylurea	Not detected by voa, semi-voa, or HPLC analysis
Dithiobiuret	Not detected by voa, semi-voa, or HPLC analysis
Ethylene glycol monoethyl ether	Not detected by voa, semi-voa, or HPLC analysis
Methanol	Not detected by voa, semi-voa, or HPLC analysis
Phosphoric dithioic acid, Trimethyl Ester	Standard not available

 Table 2-1
 Analytes from Appendix VIII Not Determined During Study

2.2.3 Instrumental Analysis

SW-846, Method 8240 was employed for the instrumental analysis. A gas chromatograph with a fused silica capillary column and mass spectrometer was used to separate, identify, and quantitate the target analytes. One microliter of each methanol extract was injected into a heated injection port thereby transferring the sample to the analytical system.

2.2.4 Quality Control

Method 8240 was followed as closely as the analyte target list and sample matrix would allow. See Table 2-2 for additional information regarding specific procedures utilized on this project. A method blank was analyzed for each matrix. Section 2.14 of this report presents a discussion of surrogate spiking compound results for each sample and matrix spike as well as laboratory control sample (LCS) results for each analysis type. The QC results for surrogates are in Appendix D. The following specific criteria were used for this project:

- 50 ng of bromofluorobenzene (BFB) was analyzed at least every twelve hours with the tuning fragmentation pattern meeting the criteria specified in 8240;
- A five-point initial calibration curve with each volatile target was analyzed prior to sample analysis. However, since documentation on the behavior of these compounds could not be found, arbitrary limits were not set for the initial calibration. This data should be used as a first attempt to determine practical limits for these compounds;
- A continuing calibration was analyzed after each 12-hour BFB tune. Again, arbitrary limits were not set until practical recovery limits can be established; and
- The following Internal Standards and surrogates were used during the analysis.

Internal Standards	Concentration	<u>Surrogates</u>	Concentration
Bromochloromethane	50 mg/kg	1,2-Dichloroethane-d ₄	50 mg/kg
1,4-Difluorobenzene	50 mg/kg	Toluene-d ₈	50 mg/kg
Chlorobenzene-d ₅	50 mg/kg	Bromofluorobenzene	50 mg/kg

Table 2-2

Comparable Fuels Procedures - Organics

Volatiles Analyses			
	Gasoline	No. 4 & 6 Fuel Oil	No. 2 Fuel Oil
Sample Prep	Diluted with Methanol	Methanol Solvent	Methanol Solvent
	Matrix soluble in Methanol	Matrix <u>not</u> soluble in	Matrix <u>not</u> soluble in
		Methanol	Methanol
LCS	Standards Spiked into	Standards Spiked into	Standards Spiked into
	Methanol	Methanol	Methanol
Matrix	Gasoline diluted with	Methanolic Standards Spiked	Methanolic Standards
Spiking	Methanol then MS Standards	into Fuel Oil, then extracted	Spiked into Fuel Oil, then
& Surrogates	& Surrogates Added	with Methanol	extracted with Methanol
Comments	None	See Section 2.1.5 for related	See Section 2.1.5 for relate
		comments.	comments.
	Sem	i-Volatiles Analyses	
Sample Prep	Diluted with MeCl	Diluted with MeCl	Diluted with MeCl
	Matrix soluble in MeCl.	Matrix soluble in MeCl	Matrix soluble in MeCl
	T 1 1 1		
	Extract was solvent	GPC Cleanup	GPC Cleanup
	Extract was solvent exchanged to facilitate	GPC Cleanup	GPC Cleanup
		GPC Cleanup	GPC Cleanup
	exchanged to facilitate	GPC Cleanup	GPC Cleanup
LCS	exchanged to facilitate evaporation of interfering	GPC Cleanup Standards Spiked into MeCl	
LCS Matrix	exchanged to facilitate evaporation of interfering compounds such as xylenes.		Standards Spiked into MeC
	exchanged to facilitate evaporation of interfering compounds such as xylenes. Standards Spiked into MeCl	Standards Spiked into MeCl	Standards Spiked into MeC Standards Spiked into Fue
Matrix	exchanged to facilitate evaporation of interfering compounds such as xylenes. Standards Spiked into MeCl Standards Spiked into	Standards Spiked into MeCl Standards Spiked into Fuel	GPC Cleanup Standards Spiked into MeC Standards Spiked into Fue Oil, then diluted with MeC

HPLC Analyses			
Sample Prep	Extracted with TCLP	Extracted with TCLP	Extracted with TCLP
	Extraction Fluid	Extraction Fluid	Extraction Fluid
LCS	Standards Spiked into	Standards Spiked into Hexane	Standards Spiked into
	Hexane then extracted	then extracted	Hexane then extracted
Matrix	Standards Spiked into	Standards Spiked into	Standards Spiked into
Spiking	Gasoline/TCLP fluid	Fuel Oil/TCLP fluid mixture,	Fuel Oil/TCLP fluid
& Surrogates	mixture, then extracted	then extracted	mixture, then extracted
Comments	Mixed equal volume of	Mixed equal volume of Fuel	Mixed equal volume of Fuel
	gasoline and TCLP	Oil and TCLP extraction	Oil and TCLP extraction
	extraction fluid, rotated 18	fluid, rotated 18 hrs.	fluid, rotated 18 hrs.
	hrs. Analyzed TCLP fluid.	Analyzed TCLP fluid.	Analyzed TCLP fluid.

2.2.5 Analytical Difficulties

The oily matrix of these samples posed the largest problem. Gasoline samples were miscible with methanol, but the fuel oil samples were not. Since the fuel oil samples were not miscible with methanol, results are likely to be biased low since the entire sample was not analyzed. As stated above, surrogate compounds were prepared in a methanol solution. This surrogate solution was then added directly to the specific matrix. For gasoline, which was soluble with methanol, the surrogates and matrix spike results may not be truly indicative of analyte recovery from the actual matrix. Headspace analysis may be a viable alternative to SW-846 8240, methanol dilution for future work. Another significant problem was the high frequency of instrument maintenance required to maintain analytical reliability. Also, several target analytes showed non-linear or inconsistent responses. Although exceeding 50% RSD, epichlorohydrin and benzenethiol were all present in each initial calibration point.

2.3 GC/MS Semi-Volatiles

2.3.1 Method Summary

SW-846, Method 8270A was followed as closely as possible for the on-instrument analysis and Method 3520 was used to clean-up samples by gel permeation chromatography to allow their analysis at the lowest possible dilutions.

2.3.2 Sample Preparation

The gasoline samples were prepared by solvent exchange into methylene chloride. This procedure removed some of the volatile hydrocarbon background allowing analysis at lower dilutions than untreated gasoline. Surrogates were added prior to the solvent exchange to monitor analyte recovery. Based on the results from the MDL study (Appendix C) the solvent exchange procedure had no apparent impact on the semi-volatile results.

No. 2, 4, and 6 fuel oils were prepared by weighing 1 gram of sample, adding surrogate spiking compounds, then diluting to 10 mls with methylene chloride. The resulting solution was run through a gel permeation chromatography clean-up prior to analysis.

2.3.3 Instrumental Analysis

SW-846, Method 8270A was employed for the instrumental analysis. A gas chromatograph with a fused silica capillary column and mass spectrometer was used to separate, identify, and quantitate the target analytes. One microliter of each methylene chloride extract was injected into a heated injection port thereby transferring the sample to the analytical system.

2.3.4 Quality Control

Method 8270A was followed and included the following QC procedures. See Table 2-2 for additional information regarding specific procedures utilized on this project. A method blank was

analyzed for each matrix. The following specific criteria were used for this project:

- A 50 ng DFTPP tune was run every twelve hours and met the criteria found on page 8270-9 of SW-846, Method 8270A before any other analyses were run.
- A five-point initial calibration containing each additional analyte was analyzed and average response factors for each compound calculated. Since no documentation on the behavior of these compounds could be found, arbitrary limits were not set for the initial calibration.
- Every twelve hours, immediately following the DFTPP tune, a continuing calibration was analyzed. However, for reasons listed above, arbitrary acceptance limits were not set. All samples were quantitated against the associated batch continuing calibration.
- Samples were run as undiluted as possible. Dilutions were made to prevent detector saturation by non-target peaks.
- Six (6) surrogate compounds, three (3) acid and three (3) base neutral extractable compounds, were spiked into each sample prior to the sample's preparation for analysis as follows:

<u>Surrogates</u>	Concentration	Surrogates	Concentration
Phenol-d ₆	100 ppm on-column	2-Fluorobiphenyl	100 ppm on-column
2-Fluorophenol	100 ppm on-column	Nitrobenzene-d ₅	100 ppm on-column
2,4,6-Trichlorophenol	100 ppm on-column	4-Terphenyl-d ₁₄	100 ppm on-column

Six (6) internal standards were used for target quantitation. All six (6) internal standards met +/- 50% recovery in each sample as compared to the associated continuing calibration for the sample analysis to be considered valid.

Internal Standards	Concentration	Internal Standards	Concentration
1,4-Dichlorobenzene- d_4	40 ppm final dilution	Phenanthrene- d_{10}	40 ppm final dilution
Naphthalene- d_8	40 ppm final dilution	Chrysene- d_{12}	40 ppm final dilution
Acenaphthene- d_{10}	40 ppm final dilution	Perylene- d_{12}	40 ppm final dilution

2.3.5 Analytical Difficulties

Most problems involved contamination of the analytical instrumentation by the fuel oil matrix which caused occasional peak broadening, baseline elevation, and reduced sensitivity of easily degraded analytes. However, routine maintenance to the injection port inlet after each batch of fuel oil analysis kept the GC/MS system within acceptable operating parameters.

Most analytes performed linearly in the initial calibration. However, endothall, 6-propyl-2thiouracil, and strychnine, while present in all calibration points, were greater than 50% RSD. Several other compounds exhibited poor response factors which contributed to the inability to detect them in matrix spikes.

The matrix spikes presented the greatest analytical problems. To yield meaningful recovery data, No. 2 fuel oil was diluted 10:1 with methylene chloride and spiked with compounds in a methanol solution. The resulting solution was cleaned up by GPC, then diluted 4:1 in methylene chloride for analysis. This solution minimized fuel oil interferences. All spiked compounds recovered within the calibration range except 4-aminopyridine, *m*-phenylenediamine, 3,3'-dimethoxybenzidine, and 6-propyl-2-thiouracil.

The gasoline matrix spike was solvent exchanged into methylene chloride to reduce as much of the aromatic background as possible. No further dilution was made prior to analysis. In this mix, the following compounds, if recovered, were masked by the matrix background and reported as not detected; 2,3-dichlorophenol, 2,5-dichlorophenol, 3,4-dichlorophenol, 3,5-dichlorophenol, 3-chlorophenol, 4-chlorophenol, acetone cyanohydrin, 2,3,4-trichlorophenol, 2,3,5-trichlorophenol, 2,3,6-trichlorophenol, thiofanox, and 4-aminopyridine. Due to the time restraints of this project, a matrix spike for fuel oils No.4 and No. 6 was not prepared and analyzed.

2.4 <u>High Pressure Liquid Chromatography (HPLC)</u>

2.4.1 *Method Summary*

A method for analyzing fuel oils was developed modeling similar HPLC methods such as SW-846, Method 8310 as closely as possible. A modified TCLP type extraction was performed and a diode array HPLC detector was used to measure analyte concentration.

2.4.2 Sample Preparation

Fuel oils were extracted with a Toxicity Characteristic Leaching Procedure (TCLP) extraction fluid by adding equal volumes of gasoline or No. 2 fuel oil with the TCLP fluid in a 22 ml vial. No. 4 and 6 fuel oils were first diluted 10:1 with hexane due to their viscous properties which allowed thorough mixing of sample and extraction fluid. The 22 ml vial was sealed and agitated on a TCLP extraction apparatus for a minimum of 12 hours. Additional cleanup of the TCLP extract was not required.

2.4.3 Instrumental Analysis

A 10 microliter aliquot of extraction fluid was analyzed by HPLC using a 25 cm x 4.6 mm, 5 micron particle, reverse phase ABZ+Plus column. A diode array detector was used to measure analyte concentration.

2.4.4 Quality Control

Method 8310 was followed as closely as the sample matrix would allow. See Table 2-2 for additional information regarding specific procedures utilized on this project. A method blank was analyzed for each matrix. Section 2.14 of this report presents a discussion of surrogate spiking compound results for each sample and matrix spike as well as laboratory control sample (LCS) results for each analysis type. The QC results for surrogates are in Appendix D. The following specific criteria were utilized.

- Internal standards were not used. External calibration procedures were used to measure analyte concentration.
- Acetophenone was used as a surrogate to evaluate extraction performance. The surrogate was added to the 22 ml vial just prior to the agitation process. Surrogate was added to produce a concentration of 20 mg/kg on-column.
- A five-point calibration curve was analyzed for quantitation of analytes. However, since documentation on the behavior of these analytes could not be found, arbitrary limits on the correlation coefficients of the analytes were not set. Instead, the curves were analyzed and processed to the best ability of the analyst. This data should be used as a first attempt in determining acceptable calibration curve limits.
- A QC check was analyzed at least every twelve hours during sample analysis. An arbitrary limit of +/- 30% recovery for each analyte was adopted for the QC check. The acceptance limit may be reduced when more data about the behavior of these analytes is collected and evaluated.
- No recovery limits for surrogate recovery were arbitrarily set. However, the recovery had to be at least to the compound's detection limit.

2.4.5 Analytical Difficulties and Recommendations

Since each fraction was prepared and analyzed separately, the spiking concentrations ranged from 20 ppm in the gasoline to 100 ppm in the fuel oils. While the gasoline spikes showed recovery for all analytes, some of the recoveries were close to the lower calibration limit. For this reason, subsequent spiking concentrations were increased.

The analytes spiked into the fuels are not readily soluble in a non-polar matrix. For this reason, the spiking solutions were prepared in methanol to get them into a liquid matrix and the methanol solution was added to the extraction vessel with sample and extraction fluid. Under these conditions,

the spiked compounds probably did not dissolve into the fuel oils matrix prior to extraction and therefore, the generated data may only provide very limited information.

Not all spiked compounds recovered ideally. In gasoline, thioacetamide only recovered at 10% and the diamines at about 50%. MNNG and ethylene thiourea were at nearly 200% recovery even though these compounds were not detected in the unspiked sample. Only thioacetamide recovered unusually in No. 2 fuel oil at nearly 300% with no detection of this compound in the unspiked sample. Thioacetamide also recovered high in the No. 6 fuel oil. Additionally, neither MNNG nor ethylene thiourea was detected in the matrix spike of No. 6 fuel oil.

The following are offered as suggestions for possible future studies. Due to the time constraints for this project, these possibilities were not tested. Different analytical columns may improve analyte recovery and chromatographic quality. Also, a much larger range of analytes may be analyzed by HPLC with different columns.

A better way of spiking fuel oils with polar analytes may be possible. However, these procedures may have to be researched and tested on a compound-by-compound basis. Entire classes of analytes were attempted for this project to analyze the largest number of analytes possible. In addition, other extraction techniques such as solid phase extraction may improve recovery and increase the number of analytes seen by HPLC.

2.5 Dioxins and Dibenzofurans

2.5.1 Method Summary

Due to the large number of individual isomers, analyte toxicity, and the high cost of standards, the dioxins (PCDD) and dibenzofurans (PCDF) were not analyzed by a published method, but as follows.

A standard was procured and calibrated for one select isomer of each group. For example, there are seven (7) isomers of tetrachlorodibenzo-p-dioxins, but only 2,3,7,8-PCDD was analyzed.

The remaining isomers were searched for as 2,3,7,8-PCDD. The following listing provides specific isomer information.

Tetrachlorodibenzo-p-dioxins (Searched as 2,3,7,8-PCDD)

2,3,7,8-PCDD	1,2,3,4-PCDD
1,3,6,8-PCDD	1,3,7,9-PCDD
1,3,7,8-PCDD	1,2,7,8-PCDD
1.2.8.9-PCDD	

Pentachlorodibenzo-p-dioxins (Searched as 1,2,3,7,8-PCDD)

1,2,3,7,8-PCDD 1,2,3,4,7-PCDD

Hexachlorodibenzo-p-dioxin (Searched as 1,2,3,6,7,8-PCDD)

1,2,3,4,7,8-PCDD	1,2,3,6,7,8-PCDD
1,2,3,7,8,9-PCDD	

1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (only hepta isomer)

Octachlorodibenzo-p-dioxin (only octa isomer)

Tetrachlorodibenzofurans (Searched as 2,3,7,8-PCDF)

2,3,7,8-PCDF	1,2,3,4-PCDF
1,3,6,8-PCDF	1,3,7,9-PCDF
1,3,7,8-PCDF	1,2,7,8-PCDF
1,2,8,9-PCDF	

Pentachlorodibenzofurans (Searched as 1,2,3,7,8-PCDF)

1,2,3,7,8-PCDF 1,2,3,4,7-PCDF

Hexachlorodibenzofurans (Searched as 1,2,3,6,7,8-PCDF)

1,2,3,4,7,8-PCDF 1,2,3,6,7,8-PCDF 1,2,3,7,8,9-PCDF

1,2,3,4,6,7,8-Heptachlorodibenzofuran (only hepta isomer)

Octachlorodibenzofuran (only octa isomer)

A curve was not analyzed for these compounds. Instead, a one-point calibration was run after each 12- hour DFTPP tune. The analytical instrument was calibrated to look for PCDDs and PCDFs in samples in a present or not present mode rather than a quantitative mode.

2.5.2 Sample Preparation

For gasoline, PCDDs and PCDFs were searched concurrently with the semi-volatile analyses. See the semi-volatile sample preparation for details.

For the No. 2, 4, and 6 fuel oil samples, the GPC extracts could not be used for PCDD and PCDF analysis. The No. 2 fuel oil spiked with these compounds had no recovery. It was assumed that the GPC process removed these analytes from the spike.

Instead, No. 2 fuel oil was spiked with PCDDs and PCDFs in a 10:1 dilution then cleaned up with sulfuric acid. The remaining organic layer was analyzed with no further dilution. To minimize waste product with PCDDs and PCDFs, only No. 2 fuel oil was spiked. The remaining unspiked fuel oils were prepared in the same way prior to analysis.

2.5.3 Instrumental Analysis

See the semi-volatile instrumental analysis for details.

2.5.4 Quality Control

A method blank was analyzed for each matrix.

2.5.5 Analytical Difficulties and Recommendations

The sample clean-up used for this analysis effectively removed most of the hydrocarbon background. If this clean-up procedure was used with SIM mode mass spectrometry or high resolution mass spectrometry, much lower detection limits may be possible for PCDDs and PCDFs.

Also, calibration for each isomer in a five-point curve is possible. However, the cost of the

standards and waste disposal would be significant.

2.6 <u>Herbicides</u>

2.6.1 *Method Summary*

SW-846, Method 8150 was followed for the on-instrument analysis and Method 3580 (Waste Dilution) was used in the initial sample preparation.

2.6.2 Sample Preparation

Samples were prepared in hexane as per Method 3580. A 1.0 ml aliquot was taken from the 3580 fraction, added to 0.2 ml methanol and brought to a volume of 5.0 ml with diethyl ether. Samples were then derivitized by the diazomethane bubbler procedure as per Method 8150. Samples were then analyzed by gas chromatography.

2.6.3 Instrumental Analysis

Instrumental analysis was conducted by injecting one (1) μ l of extract on dual capillary columns equipped with electron capture detectors (ECD). The capillary columns employed were a DB-608 and a DB-1701.

2.6.4 *Quality Control*

A five-point external standard calibration procedure was used, with a 12-hour window for valid sample analyses. 2,4-Dichlorophenylacetic acid was used as a surrogate. No limits for surrogate recovery were set. A method blank was analyzed for each matrix.

2.6.5 Analytical Difficulties and Recommendations

The hydrocarbon matrix did not seem to cause interference in the derivitization of the acid

herbicides.

2.7 Metals

2.7.1 *Method Summary*

EPA SW-846, Method 3040 was used for the preparation of all samples in this study. The method is a dissolution procedure. All dissolved samples were then analyzed by the appropriate SW-846 flame method, with the exception of arsenic and selenium, where the appropriate graphite furnace atomic absorption method was used. Mercury was analyzed by cold vapor atomic absorption.

2.7.2 Sample Preparation

All samples were prepared using EPA SW-846, Method 3040. All of the samples were diluted 1:10 with xylene. Final results were reported as mg/kg from the original weight.

2.7.3 Instrumental Analysis

Diluted samples were analyzed by the appropriate flame atomic absorption methodology, with the exception of arsenic and selenium, where the graphite furnace atomic absorption was chosen, and mercury, which was analyzed by cold vapor atomic absorption. The analysis of all of the diluted samples proceeded normally.

2.7.4 Quality Control

In general, a blank and three standards were used to perform initial calibration. Correlation coefficients were calculated for each curve, a QC check sample was analyzed after each curve, with the exception of osmium. An initial calibration verification and an initial blank verification were then performed. After every ten samples or between matrices, a calibration verification and a blank verification were performed. A duplicate sample and a matrix spike were performed on each matrix along with a method blank.

For each metal analyte, a standard curve was performed. In all cases, the source for the stock standard was SPEX. The QC check sample was obtained from Conostan. All curves were linear and most correlation coefficients were better than 0.995. At the beginning and during each run, standard calibration checks and blank calibration checks were performed. All initial and continuing calibration blanks were less than the established PQL. All initial and continuing calibration verification results were between 90-110% with the following exceptions: Lead stayed at about 111% for the duration of the run and did not deviate more than 1-2%; and arsenic was variable, although most of the values were 90-110%. Due to its volatile nature, the osmium results were 80-120%.

Sample matrix QC consisted of preparing and analyzing one duplicate and spike for each matrix. For values significantly above the PQL, the results for relative percent differences were less than 20%. The No. 4 fuel oil's selenium result at the PQL showed some variability in the duplicate result. This may be due to the matrix. Most of the spike results were very good and fell within the 75-125% limit with the following exceptions: The barium spike for the No. 6 fuel oil returned a value of 72%. This could be attributed to the matrix; the silver spike results were unusual in that they were all high. This may be due to some stabilizing effect in the fuel versus xylene solvent; all selenium results were good, except for the No. 4 fuel oil mentioned above. Spike results for mercury were exceptional, relative to the method used. This round of results gave 36-47% recovery for mercury spike across the matrices.

2.7.5 Analytical Difficulties and Recommendations

The analysis of all of the diluted samples proceeded normally. Most of the spike results were very good and fell within the 75-125% recovery limit with the following exceptions. Osmium in the gasoline matrix was 59% and tin in the No. 4 and 6 fuel oil was low. While it is unknown why the osmium result was so low, the tin results could be attributed to the matrix.

The mercury method is not as well suited to the matrices encountered in this study. The spike results were the best that could be obtained under these conditions. In the time allowed, we could not find a second standard source for thallium and manganese. Silver displayed some unusual variability in the results for the QC check and the spike. Silver may be more susceptible to certain

kinds of matrix enhancements that were not well documented. The furnace methods used to analyze arsenic and selenium needed some extra effort to set up properly, although once the furnace method was set, the results were very good.

2.8 Pesticides and PCBs

2.8.1 Method Summary

SW-846, Method 8080 was followed for the on-instrument analysis and Method 3580 (Waste Dilution) was used in the initial sample preparation. Method 3665 (sulfuric acid) was used to clean-up the samples prior to analysis for the Aroclor PCBs. No clean-up procedure was used for preparation of the extracts for pesticide analysis.

2.8.2 Sample Preparation

The samples were prepared using Method 3580. One (1) gram of sample was diluted to 10 mls. with Hexane.

2.8.3 Instrumental Analysis

Instrumental analysis was conducted by injecting one (1) μ l of extract on dual capillary columns equipped with electron capture detectors (ECD). The capillary columns employed were a DB-608 and a DB-1701.

2.8.4 Quality Control

A method blank was analyzed for each matrix and an Endrin/DDT standard was analyzed prior to calibration and sample analysis, to ensure a <20% breakdown of the pesticides.

A five-point initial external calibration containing each single-response pesticide generated prior to sample analysis. A single-point external calibration standard was analyzed for all multi- response pesticides and PCBs for qualitative identification. A five-point initial external calibration curve was generated for one of the multi-response compounds (Aroclor 1260), for quantitative analysis.

Two surrogates, dibutylchlorendate and tetrachloro-m-xylene were used to monitor the integrity of the sample preparation and analytical system. The surrogates were added to produce a concentration of 10 μ g/kg on-column. No limits were set for surrogate recovery, however, both surrogates were required to be present to validate each analysis.

2.8.5 Analytical Difficulties and Recommendations

The higher molecular weight components of the fuel oils No. 4 and No. 6 caused some interference with the analyses. The primary problem was difficulty eluting these heavy compounds from the GC column. This problem was absent from samples for PCB analysis that underwent Method 3665 clean-up. Perhaps a clean-up method suitable for pesticides, such as alumina or florisil column clean-up or Gel-permeation clean-up would produce better results.

2.9 Heating Value

2.9.1 Method Summary

Heat of combustion was determined using ASTM Standard D 240. In this test method, heat of combustion was determined by combusting a weighed sample in an Oxygen Bomb Calorimeter under controlled conditions. The rate of combustion was computed from temperature readings before and after combustion.

2.9.2 Quality Control

QC procedures consisted of one duplicate determination per every ten (10) samples and an analysis of a certified standard benzoic acid pellet per every ten (10) samples. Method precision and reproducibility were within the ranges specified in the method. Gross heat of combustion was reported. No adjustments were made for the heat of combustion of nitrogen and sulfur in the sample.

Values were reported as Btu/lb rather than in the SI units of MJ/kg, as stated in the method.

2.10 Specific Gravity

2.10.1 Method Summary

Specific gravity was determined by using ASTM Standard D 1298. This method uses a hydrometer to determine specific gravity after the sample and apparatus were brought to a stable temperature of 60°F. The appropriate hydrometer was lowered into the sample cylinder and allowed to settle. At positional equilibrium, the hydrometer was read and the temperature of the sample noted.

2.10.2 Quality Control

The hydrometers used were calibrated in accordance with National Institute of Standards and Technology (NIST) Circular 555, and ASTM specification E 100. All sample temperatures were brought to 60°F for a period of five (5) hours prior to hydrometer readings. Duplicate determinations were performed per every ten (10) samples. All duplicates were within 5% RSD.

2.10.3 Analytical Difficulties and Recommendations

All specific gravity readings were made at 60°C as per ASTM D 1298. Highly viscous opaque samples presented problems in the accurate readings of the hydrometer. Air bubbles trapped in the more viscous samples may have had a minor influence on the reported results.

2.11 Flash Point

2.11.1 Method Summary

Flash point was determined by EPA SW-846, Method 1010, which is similar to ASTM Standard D 93, using a Pensky-Martens closed-cup Flash Tester. The sample was heated at a slow constant

rate with continual stirring. A small flame was directed into the cup at regular intervals with simultaneous interruption of stirring. The flash point was the lowest temperature at which application of the test flame ignited the vapor above the sample.

2.11.2 Quality Control

Duplicate determinations were made on each of the ten (10) samples. All duplicates were within 2°C of the original result. Gasoline flash points were below the range attainable by the Pensky-Martens Method. These values were reported as less than 0°C.

2.12 Total Halogens

2.12.1 Method Summary

EPA Method 325.3/PARR and ASTM Standard D 4929 were used to analyze the samples for total halogens. The sample was ignited in a PARR bomb as part of the determination of gross heat of combustion. After combustion of two previously weighed samples, the resulting inorganic residue solution was washed from the inside surfaces of the PARR bomb. The wash water was brought to a total volume of 10 milliliters and titrated per EPA Method 325.3. Bromine, chlorine, and iodine are all reported as total chloride. Fluorine does not react with the titrant of EPA Method 325.3 and is not included in the reported values.

2.12.2 Quality Control

In the PARR bomb combustion process, a weighed sample is placed in the PARR bomb under 35 atmospheres of oxygen, approximately 515 psi. Combustion is rapid and complete with no traces of organic material remaining in the bomb. In order to assure the conversion of organic halide to inorganic halogen ion, samples were spiked with known amounts of methylene chloride prior to combustion in the bomb. Recovery of spiked halogen was in the range of 87% to 92% for all gasoline and No. 2 fuel oil samples. For Nos. 4 and 6 fuel oil samples, recovery was in the range of 20% to 45%, which was unacceptable. It is probable that the higher nitrogen content of the Nos. 4

and 6 fuel oils resulted in the production of significant amounts of nitric acid during the PARR bomb combustion process. The nitric acid resulted in unacceptably high levels of ferric and chromate ions from the reaction with the stainless steel PARR bomb. Ferric and chromate ions are an interferant in the EPA Method 325.3 titration process.

2.12.3 Analytical Difficulties and Recommendations

In order to obtain reliable halogen values for the Nos. 4 and 6 fuel oils, these samples were analyzed by ASTM Standard D 4929, a method for determining the organic chloride content in crude oil. This method lists a rinse step to remove inorganic halides from the petroleum product. This step was omitted so that a total halide value would be determined for these samples. The method involves oxidation of a known weight sample in an oxygen stream at 800 °C. The oxygen stream was then led to a microcoulometric cell, where the halide ions react with coulometrically-generated silver ion. The microequivalents of silver ion consumed in the titration was equal to the microequivalents of titratable halide ion in the oxidized sample. Bromine and iodine titrate as chloride equivalents. Fluorine does not respond and is not included.

In the oxygen combustion process, approximately 50% of the bromine and iodine form oxyhalides (HOBr and HOI) which do not react in the titration. Bromine and iodine, therefore, provide an approximate 50% response factor. Calibration curves, replicate analyses, and checks using 2,4,6 trichlorophenol were performed on the sample daily.

2.13 Total Nitrogen

2.13.1 Method Summary

ASTM Standard D 4629 was used to analyze the samples for total nitrogen. The sample of liquid petroleum hydrocarbon was injected into a stream of inert gas. The sample was vaporized and carried to a high temperature zone where oxygen was introduced converting organic bound nitrogen nitric oxide (NO). The NO contacts ozone and emits light, through a process of chemiluminescence, which was detected by a photo multiplier as a measure of the nitrogen contained in the sample.

2 - 25

2.13.2 Quality Control

The instrument was calibrated using nitrogen standards of pyridine or carbazole. Pyridine is used for samples with mid-range boiling points less than 430 °F. Carbazole was used for samples of higher boiling ranges. Method blanks were performed using toluene for gasoline samples and cetane for the higher boiling No. 2, 4, and 6 fuel oil samples.

Reproducibility values were within the specifications stated in ASTM Standard D 4629. All samples were run as replicate analyses. A calibration curve and a known check sample were run daily.

2.14 General Matrix Spike and Laboratory Control Sample Recovery

Every sample, blank, matrix spiked samples, and laboratory control samples were spiked with surrogate spiking compounds prior to the sample preparation. Recovery criteria for petroleum products is not established in the methodology. Therefore, acceptance limits were not used by the laboratory as a means of rejecting an analysis.

Matrix spikes and LCS samples were analyzed concurrently with the fuel oil samples. Due to the unknown analytical characteristics of the analytes in fuel oil and the unknown affect the sample preparation procedures may have had on these quality control samples, acceptance limits were not used by the laboratory as a means of rejecting an analysis. These data should be viewed as a first attempt to set acceptance limit criteria. Overall the recoveries calculated from the MDL study, which also represents some of the spike results, meet the method criteria except were it has been noted in the individual method discussions in this section.

Table 2-2 lists the specific procedures utilized for matrix spiking and the laboratory control samples. It is recommended that the description associated with each analytical fraction be reviewed for additional details.

2.15 Analysis for Total Aromatic Hydrocarbons and Total Polynuclear Aromatic Hydrocarbons

The analysis for total aromatic hydrocarbons and total polynuclear aromatic hydrocarbons yielded results much lower than expected. A small number of specific analytes in these categories were analyzed and summed into totals. There were numerous analytes and isomers that should have been included in this total, but due to the huge number of compounds, they could not be individually calibrated and quantitated. The majority of these compounds are not listed in Appendix VIII and do not have validated methods for analysis. Other methods more suited to this type of analysis, other than identification and quantitation of individual compounds, should be considered for these total numbers.

3.0 RESULTS

3.1 Laboratory Results

Appendix A lists the laboratory results for the semi-volatile, volatile, metals, inorganic parameters, physical parameters, and total aromatic hydrocarbons. These results were submitted to SAIC for statistical analysis which are presented in Appendix B. Appendix C lists the laboratory derived Method Detection Limit (MDL) Study results for each analyte. Appendix D lists the QA data results. The QA data includes surrogate spiking compound recovery for semi-volatile and volatile methods and duplicate and spike recoveries for metals. As stated in Section 2, the results for polynuclear aromatic hydrocarbons and total aromatic hydrocarbons are much lower than expected. The method used to generate these concentrations was to sum the results of the semi-volatile analysis. The constituents listed in 40 CFR, Part 261, Appendix VIII that could be quantitated only included a small number of the aromatic hydrocarbons which are normally present in fossil fuels.

3.2 Constituents Levels

Appendix B lists the comparable fuel constituent specifications for the final rule. The comparable fuels consist of four fuel types – gasoline and Nos. 2, 4, 6 fuel oils. The available data contain chemical compound concentrations from eight (8) samples from gasoline, 11 samples from No. 2 fuel oil, one (1) sample from No. 4 fuel oil and seven (7) samples from No. 6 fuel oil. The final constituent levels were calculated using the composite at the largest value.

For chemical in which at least one sample was measured above the minimum level of detection, the composite was based on the measured concentrations from the detected samples and on the quantitation limits from the non-detect samples. The composite values are presented in the table under the column heading "Concentration Limit." For chemicals in which none of the samples were measured above the minimum level of detection, the composite value was based on the reported quantitation limits and are presented in the table under the column heading "Minimum Required

Detection Limit." However, the final rule allows metals, hydrocarbons, and oxygenates to be present at any concentration less than or equal to the detection limits. For these compounds, all composite value are reported as a concentration limit, using the reported quantitation limits as concentration limit in the case where none of the samples were measured above the minimum detection limit.

For constituents with at least one detected sample, concentration limits have been corrected from the fuel's heating value to 10,000 BTU/lb. For constituents with no detected samples, the concentration limits (in the case of metals, hydrocarbons, or oxygenates) or minimum required detection limits are not corrected to 10,000 BTU/lb.

3.3 Estimates from Additional Halogen Data

Additional analysis was performed to calculate the highest value composite for total halogens. Because the analysis for No. 4 and No. 6 fuel oils was based on analytical methods measuring only total organic and inorganic halogens, additional data was gathered from EPA's database (i.e., Certificates of Compliance required by the BIF rule) and data submitted by one commenter. The additional Total Chlorine data is presented in Table 3-1. The total halogen value has been normalized for the fuel's heating value to 10,000 BTU/lb. This additional data was composited with the gasoline and No.2 fuel oil data contained in this report.

3.4 <u>Statistical Analysis Results (SAIC) (Proposal)</u>

This section presents the results from statistical analyses, performed by Science Applications International Corporation (SAIC), of chemical compound concentrations measured in comparable fuels for the proposed rule. As discussed previously, the comparable fuels consist of four fuel types — gasoline and Nos. 2, 4, and 6 fuel oils. Statistical analyses also were conducted on two (2) combinations of these fuel types: a composite of the three (3) fuel oils (Composite 246); and a composite of all four (4) fuel types. The available data contain chemical compound concentrations from eight (8) samples from gasoline, 11 samples from No. 2 fuel oil, one (1) sample from No. 4 fuel oil, and seven (7) samples from No. 6 fuel oil.

This statistical analyses estimated percentiles from the distribution of concentrations of each chemical compound within each fuel type. For each individual fuel type, the 90th percentile was estimated for every chemical compound. For the composite fuel types, estimates of the 50th and 90th percentiles were calculated for each chemical compound. Section 3.4.1 of this report presents the statistical analysis of the individual fuel types. Section 3.4.2 documents the statistical methodology for estimating percentiles from the composite of Nos. 2, 4, and 6 fuel oils. The analysis of the composite of all four fuel types is presented in Section 3.4.3.

The results from the statistical analyses of these fuel types are presented in Appendix C in the following tables:

- Table 1: Estimated 90th percentiles from gasoline;
- Table 2: Estimated 90th percentiles from No. 2 fuel oil;
- Table 3: Estimated 90th percentiles from No. 4 fuel oil;
- Table 4: Estimated 90th percentiles from No. 6 fuel oil;
- Table 5: Estimated 50th percentiles from the composite of Nos. 2, 4, and 6 fuel oils;
- Table 6: Estimated 90th percentiles from the composite of Nos. 2, 4, and 6 fuel oils;
- Table 7: Estimated 50th percentiles from the composite of all four fuel types;
- Table 8: Estimated 90th percentiles from the composite of all four fuel types; and

As stated earlier, the samples were analyzed in two rounds based on the availability of clearly defined analytical protocols. For the additional compounds that were found during the second round of analyses the following tables, in Appendix C, represent the results from the statistical analyses of these fuel types. The methodology and discussion of the analysis conducted on the original set of data still applies to the information displayed in these tables as well.

- Table 1A: Estimated 90th percentiles from gasoline;
- Table 2A: Estimated 90th percentiles from No. 2 fuel oil;
- Table 3A: Estimated 90th percentiles from No. 4 fuel oil;
- Table 4A: Estimated 90th percentiles from No. 6 fuel oil;
- Table 5A: Estimated 50th percentiles from the composite of Nos. 2, 4, and 6 fuel oils;
- Table 6A: Estimated 90th percentiles from the composite of Nos. 2, 4, and 6 fuel oils;
- Table 7A: Estimated 50th percentiles from the composite of all four fuel types;
- Table 8A: Estimated 90th percentiles from the composite of all four fuel types; and

Within each table, two (2) sets of estimates are presented. For chemicals in which at least one (1) sample was measured above the minimum level of detection, the estimated percentiles were based on the measured concentrations from the detected samples and on the quantitation limits from the non-detect samples. These estimates are presented in the tables under the column heading "Concentration Limit." For chemicals in which none of the samples were measured above the minimum level of detection, the estimated percentiles were based on the reported quantitation limits and are presented in the tables under the column heading "Minimum Detection Limit."

All chemical concentrations were originally reported in the database with units equal to mg/kg. For the chemicals with at least one (1) detected sample, these concentrations were converted to mg/J using the reported heating values (Btu/lb) and the following conversion formula:

$$Concentration\left[\frac{mg}{J}\right] = \frac{Concentration\left[\frac{mg}{kg}\right]}{2326.11\left[\left(\frac{lb}{kg}\right)\left(\frac{J}{BTU}\right)\right] * Heating Value\left[\frac{BTU}{lb}\right]}$$

The estimated percentiles were generated from the mg/J concentrations and were converted back to mg/kg, for presentation in the tables, based on a heating value of 10,000 Btu/lb. For the

US EPA ARCHIVE DOCUMENT

chemicals with no detected samples, the percentiles were calculated from reported quantitation limits in the original units of mg/kg. All results are presented with two (2) significant figures.

3.4.1 Estimates for Each Individual Fuel

Estimated percentiles for the chemical compounds from each individual fuel type (i.e., gasoline and Nos. 2, 4, and 6 fuel oils) are presented in Appendix B, Tables 1 through 4 and Tables 1A through 4A, respectively. Only the chemicals that are contained in the 40 CFR, Part 261, Appendix VIII list are presented in these tables. Each of these tables presents the estimated 90th percentile for chemicals with at least one (1) detected concentration and undetected chemicals above the quantitation limit. The percentile estimates from the detected chemicals are presented under the column heading "Concentration Limit," and the percentiles for the non-detected (non-detect) chemicals are presented under the column heading "Minimum Detection Limit." For the chemicals with at least one (1) detected sample, the percentile estimates were based on the measured value for the detected samples and on the reported quantitation limits for the non-detect samples. For the chemicals with no samples measured above the minimum level of detection, the percentile estimates were based on the reported quantitation limits.

When calculating the quantitation limit for volatile organic compounds (VOCs) in gasoline, in the analytical methods, there are matrix interferences that cause the calculated quantitation limits to be unreliable. Therefore, for the VOCs that were not detected in any of the gasoline samples, the estimated 90th percentile is not presented in Appendix B, Table 1. For these chemicals, the 90th percentile estimate from the composite of the Nos. 2, 4, and 6 fuel oils is presented in Appendix C, Table 1 as a surrogate for the 90th percentile for gasoline.

The estimated percentiles presented in Appendix C, Tables 1 through 4 and Tables 1A through 4A, were generated nonparametrically. That is, the percentiles are based on the rank order statistics of the sample concentrations. Distributional assumptions were not used in the calculation of the percentile estimates because of the sparse sample sizes. For gasoline, at least one of the eight

(8) samples was measured above the minimum level of detection for only nine (9) of the 151 chemical compounds found in 40 CFR Part 261 Appendix VIII. For No. 2 fuel oil, at least one (1) of the 11 samples was measured above the minimum level of detection for only 11 of the 151 chemicals. Only one (1) sample was measured for each chemical compound from No. 4 fuel oil, and only 13 of the chemical compounds were measured above the minimum level of detection in this sample. For No. 6 fuel oil, at least one (1) of the seven (7) samples was measured above of the minimum level of detection for only 16 of the chemicals.

All of the chemicals originally were reported in units of mg/kg. The 90th percentile estimates for non-detect chemicals, under the column heading "Minimum Detection Limit," are presented in the original units of mg/kg. The percentile estimates for chemicals with at least one (1) detected sample, under the column heading "Concentration Limit," were calculated from concentrations that were converted from mg/kg to mg/J based on the report heating values (Btu/lb) for each sample. Then, the percentile estimates were converted from mg/J back to mg/kg based on 10,000 Btu/lb.

The nonparametric procedure for calculating the percentile estimates was based on standard procedures, namely PROC UNIVARIATE (Def. 5), in the SAS statistical software package. This standard nonparametric procedure is outlined in the following steps.

- Let x₁, x₂, x₃, ..., x_n represent the chemical concentrations from the n-samples, ranked from lowest to highest, where n equals the total number of samples.
- 2. To calculate the 90th percentile, let 0.90*n = j + g, where j is the integer part of 0.90*n and g is the fractional part of 0.90*n.
- 3. The estimated 90th percentile is calculated as:

(xj + xj+1)/2, if g = 0; and (xj + 1), if g > 0. **Example:** In No. 6 fuel oil, data were available from seven (7) samples. Therefore, n=7 and 0.90*n=6.3. The integer part (j) is equal to 6, and the fractional part (g) is equal to 3/10. Because the fractional part (g) is not equal to zero, the 90th percentile is equal to the interpolated values of the concentrations between the 6th and 7th samples. That is, the 90th percentile is the average of the largest concentration and the second largest concentration.

The estimated percentiles from this methodology are presented under the column heading "Concentration Limit" in Appendix C, Tables 1 through 4.

3.4.2 Estimates from Composite 246

In addition to the percentile estimates from each individual fuel type, percentile estimates are presented for a combination of Nos. 2, 4, and 6 fuel oils. This combination of fuel oils is labeled "Composite 246." The estimated percentiles presented under combination of fuel oils are weighted estimates from the chemical concentrations from the three (3) fuel oils. Estimates were generated from all reported samples of these fuel oils, using the measured concentrations from the detect samples and the reported quantitation limits from the non-detect samples.

Appendix C, Table 5 presents estimated 50th percentiles from the composite of Nos. 2, 4, and 6 fuel oils. Estimated 90th percentiles are presented in Appendix C, Table 6. For chemicals with at least one (1) detected concentration, the percentile estimates are presented under the heading "Concentration Limit". The percentile estimates for the chemicals with no detected concentrations are presented under the heading "Minimum Detection Limit."

The estimated percentiles were generated by weighting each sample according to the number of samples available from each fuel type. This adjustment provides equal contribution from each sample to the composite estimate. That is, each fuel type should represent one-third of the population. Therefore, each sample from No. 2 fuel oil, which contained 11 samples, was assigned a weight of 1/33; the sample from No. 4 fuel oil was assigned a weight of 1/3; and each sample from No. 6 fuel oil, which contained seven (7) samples, was assigned a weight of 1/21. The chemical concentrations were then ranked from lowest to highest and the weights were summed across samples until the total weight was equal to 0.50. The corresponding chemical concentration was used as the estimated 50th percentile. That is, the 50th percentile is the concentration corresponding to the ranked sample for which 50% of the weights were accounted. If the sum of the weights does not equal 0.50 exactly, then the 50th percentile is the interpolated value of the two (2) reported concentrations surrounding the 50th percentile point. Similarly, the 90th percentile was estimated by the corresponding concentration when the sum of the weights was equal to 0.90.

As in the calculation of the percentiles for each individual fuel type, the percentiles for the detected chemicals are presented in units of mg/kg at 10,000 Btu/lb, and the percentiles for the non-detect chemicals are presented in the original units of mg/kg. All of the chemicals originally were reported in the database with units of mg/kg. The percentile estimates for chemicals with at least one (1) detected sample, under the column heading "Concentration Limit," were calculated from concentrations converted from mg/kg to mg/J, based on the reported heating values (Btu/lb) for each sample. The percentile estimates then were converted from mg/J back to mg/kg based on 10,000 Btu/lb. For the chemicals with no samples measured above the minimum level of detection, the percentile estimates were based on the reported quantitation limits in the original units of mg/kg.

3.4.3 Estimates from Composite of All Fuel Types

Appendix C, Tables 7, 7A, 8, and 8A present percentile estimates for a combination of all four (4) fuel types (i.e., gasoline and Nos. 2, 4, and 6 fuel oils), labeled "Composite All." The estimated percentiles presented under this combination of fuel types are weighted estimates from the chemical concentrations from the four fuel types. Estimates were generated from all reported samples of these fuel types, using the measured concentrations from the detected analytes in the samples and the reported quantitation limits from the non-detect analytes in the samples.

Appendix C, Table 7 and Table 7A presents estimated 50th percentiles from the composite of all fuel types. Estimated 90th percentiles are presented in Appendix C, Table 8, and Table 8A. For chemicals with at least one (1) detected concentration, the percentile estimates are presented under the heading "Concentration Limit." The percentile estimates for the chemicals with no detected concentrations are presented under the heading "Minimum Detection Limit."

The estimated percentiles were generated by weighing each sample according to the number of samples available from each fuel type, so that each fuel type provided equal contribution to the estimated percentiles. That is, each fuel type should represent one-quarter of the population. Therefore, the samples from gasoline and Nos. 2, 4, and 6 fuel oils were assigned weights of 1/32, 1/44, 1/4, and 1/28, respectively, based on the number of samples from each fuel type. The chemical concentrations were then ranked from lowest to highest, and the weights were summed across samples until the total weight was equal to 0.50. The corresponding chemical concentration was used as the estimated 50th percentile. That is, the 50th percentile is the concentration corresponding to the ranked sample for which 50% of the weights were accounted. If the sum of the weights does not equal 0.50 exactly, then the 50th percentile is an average of the two (2) reported concentrations that surround the 50th percentile point. Similarly, the 90th percentiles were estimated by the corresponding concentration when the sum of the weights was equal to 0.90.

In the analytical methods for calculating the quantitation limit for VOCs in gasoline, there are matrix interferences that cause the calculated quantitation limits to be unreliable. Therefore, for the VOCs not detected in any of the gasoline samples, the estimated percentiles for the composite of all fuel types, which includes gasoline, were not presented. For these chemicals, the estimates from the composite of the Nos. 2, 4, and 6 fuel oils (i.e., without gasoline) are presented in Appendix C, Tables 5, 5A, 6, and 6A as surrogates for the percentile estimates from the composite of all four (4) fuel types.

The percentiles for the detected chemicals are presented in units of mg/kg at 10,000 Btu/lb and the percentiles for the non-detect chemicals are presented in the original units of mg/kg. All of

the chemicals originally were reported in the database with units of mg/kg. The percentile estimates for chemicals with at least one (1) detected sample (i.e., concentration limit) were calculated from concentrations converted from mg/kg to mg/J, based on the reported heating values (Btu/lb) for each sample. The percentile estimates then were converted from mg/J back to mg/kg based on 10,000 Btu/lb. For the chemicals with no samples measured above the minimum level of detection, the percentile estimates were based on the reported quantitation limits in the original units of mg/kg.

Table 3-1

Chlorine Content of Fuel Oils Used in Hazardous Waste Burning Boilers and Incinerators (as Reported in CoC Test Reports)

Facility Name and Location	Fuel Oil No.	Cl ⁻ Content (ppm _w) Ind. Measurements	No. Of Measur.	Measurement Method	Comments
Amer. Cyan., Kalamazoo, MI	6	< 45	1	ASTM D3120	Sulfur method, not used
Huntsman Poly., Woodbury, NJ	6	< 100	6	SW-846 9020	Organic chlorine, not used
Rohm and Haas, Phil., PA	6	108, 110, 171	3	ASTM D 808/D 4327	Below method DL
Rohm and Haas, Bristol, PA	6	180	1	ASTM D 808/D 4327	Below method DL
Rohm and Haas	6	590, 660, 1000	3	EPA 9020	Below/near method DL
Rohm and Haas	6	840, 840	3	EPA 9020	
Dow Chem., Gales Ferry, CT	2	83, 93, 137	3	ASTM D 808	Below method DL, not used
Du Pont, Wilmington, DE	2	16, 429, 461, 470, 490, 523	5	ASTM D 808/D 4327	

Appendix A Laboratory Data

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L itation Code D.F. Q.L itation Code D.F. 8835-001 ,2,4,5-Tetrachlorobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 1,2,4-Trichlorobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 117 U 8835-001 1,2-Dichlorobenzene U 26. <1200 U <200 U 19.8 <99 9.90 8835-001 <270 U U 117 <200 U <99 U 1.3.5-Trinitrobenzene 26. <1200 19.8 9.90 8835-001 1.3-Dichlorobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 1.4-Dichlorobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 1,4-Naphthoquinone <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 1-Naphthylamine <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol <270 U 26. U 117 <200 U 19.8 <99 U 8835-001 <1200 9.90 U U 117 U U 8835-001 2,4,6-Trichlorophenol <270 26.1 <1200 <200 19.8 <99 9.90 8835-001 2,4-Dichlorophenol <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 117 U U 8835-001 2,4-Dimethylphenol <270 U 26.1 <1200 U <200 19.8 <99 9.90 8835-001 2,4-Dinitrophenol <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 2,4-Dinitrotoluene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 U 8835-001 6-Dichlorophenol <270 U 26. <1200 U 117 <200 U 19.8 <99 9.90 8835-001 2.6-Dinitrotoluene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 2-Acetvlaminofluorene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 117 2-Chloronaphthalene <270 U 26. <1200 U <200 U 19.8 <99 U 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 2-Chlorophenol <270 U U 117 U U 8835-001 2-Methylphenol 26. <1200 <200 19.8 <99 9.90 <270 U 117 U U 8835-001 2-Naphthylamine 26.1 <1200 U <200 19.8 <99 9.90 8835-001 2-Nitroaniline <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 U 117 U U 8835-001 2-Nitrophenol <270 26.1 <1200 U <200 19.8 <99 9.90 8835-001 2-Picoline <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 3.3'-Dichlorobenzidine <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 U U 117 <200 U U 8835-001 3-3'-Dimethylbenzidine 26.1 <1200 19.8 <99 9.90 8835-001 3-Methylcholanthrene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 4,6-Dinitro-2-methylphenol <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 117 U 8835-001 <270 U 26. <1200 U <200 U 19.8 <99 9.90 4-Aminobiphenyl 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 4-Bromophenyl phenyl ether <270 U 117 <200 U U 8835-001 4-Chloro-3-methylphenol 26. <1200 U 19.8 <99 9.90 8835-001 4-Chloroaniline <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 117 U U 8835-001 4-Methylphenol U 26. <1200 U <200 19.8 <99 9.90 U U U 8835-001 4-Nitroaniline <270 26.1 <1200 U 117 <200 19.8 <99 9.90 8835-001 4-Nitrophenol <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 5-Nitro-o-toluidine 8835-001 <270 U U 117 <200 U U 7,12-Dimethylbenz[a]anthracene 26.1 <1200 19.8 <99 9.90 8835-001 α, α -Dimethylphenethylamine <270 U 26.1 <1200 U 117 <200 U 19.8 <99 U 9.90 U 117 U U 8835-001 Acetophenone <270 26.1 <1200 U <200 19.8 <99 9.90 8835-001 Aniline <270 U 26.7 <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U 26.7 <1200 U 117 <200 U 19.8 <99 U 9.90 Aramite

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-001 Benzidine <270 U 26. <1200 117 <200 U 19.8 <99 U 9.90 U 117 8835-001 Benzo[a]anthracene <270 U 26. <1200 U <200 U 19.8 <99 U 9.90 <270 U 26. U 117 <200 U 19.8 <99 U 9.90 8835-001 Benzo[a]pyrene <1200 U 8835-001 Benzo[b]fluoranthene <270 U 26. <1200 U 117 <200 U 19.8 <99 9.90 8835-001 117 <200 19.8 <99 U Benzo[k]fluoranthene <270 U 26. <1200 U U 9.90 8835-001 Bis(2-chloroisopropyl)ether <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 Butyl benzyl phthalate 8835-001 <270 U 26.7 <1200 U 117 <200 U <99 U 9.90 Chlorobenzilate 19.8 <270 117 <200 U U 8835-001 Chrysene U 26. <1200 U 19.8 <99 9.90 <270 U 26. U 117 <200 U 19.8 <99 U 8835-001 Di-n-butyl phthalate <1200 9.90 8835-001 Di-n-octyl phthalate <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 Diallate <270 U U 117 <200 U U 9.90 8835-001 26.1 <1200 19.8 <99 8835-001 Dibenzo[a,h]anthracene <270 U 26.7 <1200 U 117 <200 U 19.8 <99 U 9.90 U 8835-001 Dibenz[a,j]acridine <270 U 26. <1200 U 117 <200 U <99 19.8 9.90 117 U U <99 U 8835-001 Diethyl phthalate <270 26.1 <1200 U <200 19.8 9.90 U U 117 <200 U U 8835-001 Dimethoate <270 26. <1200 19.8 <99 9.90 U 8835-001 Dimethyl phthalate <270 U 26. <1200 U 117 <200 U 19.8 <99 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 Dinoseb 8835-001 Diphenylamine <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 117 U <99 U 8835-001 Disulfoton U 26. <1200 U <200 19.8 9.90 8835-001 <270 117 <200 U U Ethyl methanesulfonate U 26. <1200 U 19.8 <99 9.90 117 8835-001 Famphur <270 U 26. <1200 U <200 U 19.8 <99 U 9.90 <270 U 26. U 117 <200 U 19.8 <99 U 9.90 8835-001 Fluoranthene <1200 8835-001 Fluorene <270 U 26. <1200 U 117 <200 220 19.8 <99 U 9.90 117 U 8835-001 Hexachlorobenzene <270 U 26.1 <1200 U <200 U 19.8 <99 9.90 U U 117 <200 U U 8835-001 Hexachlorobutadiene <270 26.1 <1200 19.8 <99 9.90 8835-001 <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 Hexachlorocyclopentadiene U U 117 U <99 U 8835-001 Hexachloroethane <270 26.1 <1200 <200 19.8 9.90 8835-001 <6700 U 26. <29000 U 117 <5000 U 19.8 <2500 U 9.90 Hexachlorophene 8835-001 Hexachloropropene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U U U U 26. <1200 117 <200 19.8 <99 9.90 Indeno(1,2,3-c,d)pyrene 117 <200 U 8835-001 Isodrin <270 U 26. <1200 U U 19.8 <99 9.90 117 8835-001 Isosafrole <270 U 26. <1200 U <200 U 19.8 <99 U 9.90 8835-001 <530 U 26. <2300 U 117 <400 U 19.8 <200 U 9.90 Kepone 8835-001 Methapyrilene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 U U 117 <200 U U 8835-001 Methyl parathion 26.1 <1200 19.8 <99 9.90 117 U <270 U U <200 U 19.8 < 99 8835-001 Methyl methanesulfonate 26.1 <1200 9.90 8835-001 N-Nitroso-di-n-butylamine <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 U 117 U 19.8 <99 U 8835-001 N-Nitrosodi-n-propylamine <270 26.1 <1200 U <200 9.90 8835-001 N-Nitrosodiethylamine <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 N-Nitrosomethylethylamine <270 U 26.1 <1200 U 117 <200 U 19.8 <99 U 9.90 U 117 U 19.8 < 99 U 8835-001 N-Nitrosomorpholine <270 26.7 <1200 U <200 9.90

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. <270 26. <1200 117 <200 U 19.8 <99 U 9.90 8835-001 N-Nitrosopiperidine U U U 117 U U 8835-001 N-Nitrosopyrrolidine <270 26. <1200 U <200 19.8 <99 9.90 <270 2500 26. 2000 117 <200 660 19.8 <99 170 8835-001 Naphthalene <1200 9.90 8835-001 Nitrobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 117 19.8 <99 U O,O,O-Triethylphosphorothioate <270 U 26. <1200 U <200 U 9.90 8835-001 o-Toluidine <270 U 26. <1200 U 117 <200 U 19.8 <2000 U 9.90 8835-001 o-Dimethylaminoazobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 <270 U 26.7 <1200 U 117 <200 U <99 U 9.90 p-Phenylenediamine 19.8 <270 117 <200 U U 8835-001 Parathion U 26. <1200 U 19.8 <99 9.90 <270 U 26. U 117 <200 U 19.8 <99 U 8835-001 Pentachlorobenzene <1200 9.90 8835-001 Pentachloronitrobenzene <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 U U 117 <200 U U 9.90 8835-001 Pentachlorophenol 26.1 <1200 19.8 <99 8835-001 Phenacetin <270 U 26.1 <1200 U 117 <200 U 19.8 <99 U 9.90 U 8835-001 Phenol <270 U 26. <1200 U 117 <200 U <99 19.8 9.90 U 117 U <99 U 8835-001 Phorate <270 26.1 <1200 U <200 19.8 9.90 U U 117 <200 U U 8835-001 Pronamide <270 26. <1200 19.8 <99 9.90 U 8835-001 Pyridine <270 U 26. <1200 U 117 <200 U 19.8 <99 9.90 8835-001 Safrole <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 8835-001 Sulfotepp <270 U 26. <1200 U 117 <200 U 19.8 <99 U 9.90 <270 117 U <99 U 8835-001 Thionzin U 26. <1200 U <200 19.8 9.90 8835-002 <270 U <1200 U 117 <200 U 1.2.4.5-Tetrachlorobenzene 26.0 19.6 117 8835-002 1,2,4-Trichlorobenzene <270 U 26.6 <1200 U <200 U 19.6 1,2-Dichlorobenzene <270 U U 117 <200 U 8835-002 26.6 <1200 19.6 8835-002 1,3,5-Trinitrobenzene <270 U 26.0 <1200 U 117 <200 U 19.6 1,3-Dichlorobenzene 117 <200 U 8835-002 <270 U 26.6 <1200 U 19.6 U U U 117 <200 8835-002 1,4-Dichlorobenzene <270 26.6 <1200 19.6 8835-002 1,4-Naphthoquinone <270 U 26.6 <1200 U 117 <200 U 19.6 U U 117 <200 U 8835-002 1-Naphthylamine <270 26.0 <1200 19.6 8835-002 2,3,4,6-Tetrachlorophenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 2,4,5-Trichlorophenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 <270 U U <200 U <1200 117 19.6 2,4,6-Trichlorophenol 26.0 117 <200 U 8835-002 2.4-Dichlorophenol <270 U 26.6 <1200 U 19.6 8835-002 2,4-Dimethylphenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 2,4-Dinitrophenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 2,4-Dinitrotoluene <270 U 26.6 <1200 U 117 <200 U 19.6 U U 117 <200 U 8835-002 2,6-Dichlorophenol <270 26.6 <1200 19.6 U <270 U U 117 <200 8835-002 2,6-Dinitrotoluene 26.6 <1200 19.6 8835-002 2-Acetylaminofluorene <270 U 26.6 <1200 U 117 <200 U 19.6 2-Chloronaphthalene U 117 <200 U 8835-002 <270 26.6 <1200 U 19.6 <270 U U 117 <200 U 8835-002 2-Chlorophenol 26.6 <1200 19.6 8835-002 2-Methylphenol <270 U 26.6 <1200 U 117 <200 U 19.6 U 117 U 8835-002 2-Naphthylamine <270 26.6 <1200 U <200 19.6

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-002 <270 U 26.6 <1200 U 117 <200 U 19.6 2-Nitroaniline 117 <200 8835-002 2-Nitrophenol <270 U 26.0 <1200 U U 19.6 2-Picoline <270 U 26.6 U 117 <200 U 19.6 8835-002 <1200 <200 U 8835-002 3,3'-Dichlorobenzidine <270 U 26.6 <1200 U 117 19.6 8835-002 <270 U 117 <200 U 19.6 3-3'-Dimethylbenzidine 26.0 <1200 U 8835-002 3-Methylcholanthrene <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 4,6-Dinitro-2-methylphenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 <270 U 26.6 <1200 U 117 <200 U 19.6 4-Aminobiphenyl <270 117 <200 U 8835-002 4-Bromophenyl phenyl ether U 26.6 <1200 U 19.6 <270 U 26.6 U 117 <200 U 19.6 8835-002 4-Chloro-3-methylphenol <1200 8835-002 4-Chloroaniline <270 U 26.6 <1200 U 117 <200 U 19.6 <270 U U 117 <200 U 19.6 8835-002 4-Methylphenol 26.6 <1200 8835-002 4-Nitroaniline <270 U 26.6 <1200 U 117 <200 U 19.6 U 8835-002 4-Nitrophenol <270 U 26.0 <1200 U 117 <200 19.6 117 U <270 U <200 8835-002 5-Nitro-o-toluidine 26.6 <1200 U 19.6 <270 U U 117 <200 U 8835-002 7,12-Dimethylbenz[a]anthracene 26.0 <1200 19.6 <200 U 8835-002 α, α -Dimethylphenethylamine <270 U 26.0 <1200 U 117 19.6 8835-002 Acetophenone <270 U 26.6 <1200 U 117 <200 U 19.6 <270 117 8835-002 Aniline U 26.6 <1200 U <200 U 19.6 <270 U 117 <200 U 8835-002 Aramite 26.6 <1200 U 19.6 8835-002 <270 U U 117 <200 U Benzidine 26.6 <1200 19.6 117 8835-002 Benzo[a]anthracene <270 U 26.6 <1200 U <200 760 19.6 <270 U U 117 <200 450 19.6 8835-002 Benzo[a]pyrene 26.6 <1200 8835-002 Benzo[b]fluoranthene <270 U 26.0 <1200 U 117 <200 210 19.6 Benzo[k]fluoranthene U 117 <200 8835-002 <270 26.6 <1200 U U 19.6 U U 117 <200 U 8835-002 Bis(2-chloroisopropyl)ether <270 26.6 <1200 19.6 8835-002 Butyl benzyl phthalate <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 U U 117 <200 U Chlorobenzilate <270 26.0 <1200 19.6 8835-002 Chrysene <270 U 26.6 <1200 U 117 <200 700 19.6 8835-002 Di-n-butyl phthalate <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 <270 U U <200 U Di-n-octyl phthalate 26.0 <1200 117 19.6 8835-002 117 <200 U Diallate <270 U 26.6 <1200 U 19.6 8835-002 Dibenzo[a,h]anthracene <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 Dibenz[a,j]acridine <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 Diethyl phthalate <270 U 26.6 <1200 U 117 <200 U 19.6 <270 U U 117 <200 U 8835-002 Dimethoate 26.6 <1200 19.6 117 U <270 U U <200 8835-002 Dimethyl phthalate 26.6 <1200 19.6 <270 117 <200 U 8835-002 Dinoseb U 26.6 <1200 U 19.6 <270 117 <200 U 8835-002 Diphenylamine U 26.6 <1200 U 19.6 <270 U U 117 <200 U 8835-002 Disulfoton 26.6 <1200 19.6 8835-002 Ethyl methanesulfonate <270 U 26.6 <1200 U 117 <200 U 19.6 U 117 <200 U 8835-002 Famphur <270 26.6 <1200 U 19.6

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-002 <270 U 26.6 <1200 117 <200 U Fluoranthene U 19.6 117 220 8835-002 Fluorene <270 U 26.0 <1200 U <200 19.6 <270 U 26.6 U 117 <200 U 19.6 8835-002 Hexachlorobenzene <1200 <200 8835-002 Hexachlorobutadiene <270 U 26.6 <1200 U 117 U 19.6 8835-002 U 117 <200 U 19.6 Hexachlorocyclopentadiene <270 26.0 <1200 U 8835-002 Hexachloroethane <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 <6600 U 26.6 <29000 U 117 <4900 U 19.6 Hexachlorophene 8835-002 <270 U 26.6 U 117 <200 U 19.6 Hexachloropropene <1200 <270 117 <200 U 8835-002 Indeno(1,2,3-c,d)pyrene U 26.6 <1200 U 19.6 <270 U 26.6 U 117 <200 U 19.6 8835-002 Isodrin <1200 8835-002 Isosafrole <270 U 26.6 <1200 U 117 <200 U 19.6 <530 U <2300 U 117 <390 U 19.6 8835-002 Kepone 26.6 8835-002 Methapyrilene <270 U 26.6 <1200 U 117 <200 U 19.6 U 8835-002 <270 U 26.0 <1200 U 117 <200 19.6 Methyl parathion U 117 <200 U 8835-002 Methyl methanesulfonate <270 26.6 <1200 U 19.6 U U 117 <200 U 8835-002 N-Nitroso-di-n-butylamine <270 26.0 <1200 19.6 N-Nitrosodi-n-propylamine <200 U 8835-002 <270 U 26.0 <1200 U 117 19.6 8835-002 N-Nitrosodiethylamine <270 U 26.6 <1200 U 117 <200 U 19.6 N-Nitrosomethylethylamine 117 8835-002 <270 U 26.6 <1200 U <200 U 19.6 <270 117 <200 U 8835-002 N-Nitrosomorpholine U 26.6 <1200 U 19.6 8835-002 <270 117 <200 U N-Nitrosopiperidine U 26.0 <1200 U 19.6 N-Nitrosopyrrolidine 8835-002 <270 U 26.6 <1200 U 117 <200 U 19.6 <270 2600 26.6 2300 117 <200 550 8835-002 Naphthalene <1200 19.6 8835-002 Nitrobenzene <270 U 26.0 <1200 U 117 <200 U 19.6 O,O,O-Triethylphosphorothioate 117 <200 U 8835-002 <270 U 26.6 <1200 U 19.6 <270 U U 117 <200 U 8835-002 o-Toluidine 26.6 <1200 19.6 8835-002 o-Dimethylaminoazobenzene <270 U 26.6 <1200 U 117 <200 U 19.6 U U 117 <200 U 8835-002 p-Phenylenediamine <270 26.0 <1200 19.6 8835-002 Parathion <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 Pentachlorobenzene <270 U 26.6 <1200 U 117 <200 U 19.6 υ 8835-002 <270 U U <200 <1200 117 19.6 Pentachloronitrobenzene 26.0 117 <200 U 8835-002 Pentachlorophenol <270 U 26.6 <1200 U 19.6 8835-002 Phenacetin <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 Phenol <270 U 26.6 <1200 U 117 <200 U 19.6 8835-002 Phorate <270 U 26.6 <1200 U 117 <200 U 19.6 U U 117 <200 U 8835-002 Pronamide <270 26.0 <1200 19.6 <270 U U 117 <200 U 8835-002 Pyridine 26.6 <1200 19.6 8835-002 Safrole <270 U <1200 U <200 U 26.6 117 19.6 117 <200 8835-002 Sulfotepp <270 U 26.6 <1200 U U 19.6 <270 U 117 <200 U 8835-002 Thionzin 26.6 <1200 U 19.6 8835-003 1.2.4.5-Tetrachlorobenzene <670 U 66.8 <590 U 59.4 <190 U 19.2 U 59.4 U 8835-003 1,2,4-Trichlorobenzene <670 66.8 <590 U <190 19.2

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-003 ,2-Dichlorobenzene <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 1,3,5-Trinitrobenzene <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 1,3-Dichlorobenzene U 8835-003 1.4-Dichlorobenzene <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 <670 U <590 59.4 <190 U 19.2 1,4-Naphthoquinone 66.8 U 8835-003 1-Naphthylamine <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 2,3,4,6-Tetrachlorophenol <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 2,4,5-Trichlorophenol <670 U 8835-003 2,4,6-Trichlorophenol U 66.8 <590 U 59.4 <190 19.2 2,4-Dichloropheno <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 8835-003 2,4-Dimethylphenol <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 <670 U U <190 U 19.2 2,4-Dinitrophenol 66.8 <590 59.4 8835-003 2,4-Dinitrotoluene <670 U 66.8 <590 U 59.4 <190 U 19.2 U 8835-003 <670 U <590 U 59.4 <190 19.2 2,6-Dichlorophenol 66.8 U U 59.4 <190 8835-003 2,6-Dinitrotoluene <670 66.8 <590 U 19.2 <670 U <590 U <190 U 19.2 8835-003 2-Acetylaminofluorene 66.8 59.4 U 8835-003 2-Chloronaphthalene <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 2-Chlorophenol <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 2-Methylphenol <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 <590 <190 U 8835-003 2-Naphthylamine U 66.8 U 59.4 19.2 8835-003 <670 <590 59.4 <190 U 2-Nitroaniline U 66.8 U 19.2 2-Nitrophenol 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 2-Picoline 8835-003 3,3'-Dichlorobenzidine <670 U 66.8 <590 U 59.4 <190 U 19.2 59.4 U 8835-003 3-3'-Dimethylbenzidine <670 U 66.8 <590 U <190 19.2 U U U <190 8835-003 3-Methylcholanthrene <670 66.8 <590 59.4 19.2 8835-003 4,6-Dinitro-2-methylphenol <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 U <590 U 59.4 <190 U 4-Aminobiphenyl <670 66.8 19.2 8835-003 4-Bromophenyl phenyl ether <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 4-Chloro-3-methylphenol <670 U 66.8 <590 U 59.4 <190 U 19.2 υ 8835-003 <670 U U <190 4-Chloroaniline <590 59.4 19.2 66.8 8835-003 <670 <590 59.4 <190 U 4-Methylphenol U 66.8 U 19.2 8835-003 4-Nitroaniline <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 4-Nitrophenol <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 5-Nitro-o-toluidine <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U <190 U 8835-003 66.8 <590 U 59.4 19.2 7,12-Dimethylbenz[a]anthracene <190 U 8835-003 α, α -Dimethylphenethylamine <670 U 66.8 <590 U 59.4 19.2 8835-003 <670 U <590 U 59.4 <190 U Acetophenone 66.8 19.2 8835-003 Aniline <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U 59.4 <190 U 8835-003 Aramite 66.8 <590 U 19.2 8835-003 Benzidine <670 U 66.8 <590 U 59.4 <190 U 19.2 U 8835-003 Benzo[a]anthracene <670 66.8 <590 U 59.4 <190 660 19.2

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-003 Benzo[a]pyrene <670 U 66.8 <590 59.4 <190 450 19.2 U 8835-003 Benzo[b]fluoranthene <670 U 66.8 <590 U 59.4 <190 220 19.2 Benzo[k]fluoranthene <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 8835-003 Bis(2-chloroisopropyl)ether <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 U <590 59.4 U 19.2 Butyl benzyl phthalate <670 66.8 U <190 U 8835-003 Chlorobenzilate <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 Chrysene <670 U 66.8 <590 U 59.4 <190 740 19.2 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 Di-n-butyl phthalate <670 U 8835-003 Di-n-octyl phthalate U 66.8 <590 U 59.4 <190 19.2 <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Diallate 8835-003 Dibenzo[a,h]anthracene <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U U <190 U 19.2 8835-003 Dibenz[a,j]acridine 66.8 <590 59.4 8835-003 Diethyl phthalate <670 U 66.8 <590 U 59.4 <190 U 19.2 U 8835-003 Dimethoate <670 U <590 U 59.4 <190 19.2 66.8 U 59.4 <190 U 8835-003 Dimethyl phthalate <670 66.8 <590 U 19.2 U <590 U <190 U 19.2 8835-003 Dinoseb <670 66.8 59.4 U 8835-003 Diphenylamine <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 Disulfoton <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Ethyl methanesulfonate <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 <590 <190 U 8835-003 Famphur U 66.8 U 59.4 19.2 8835-003 <670 <590 59.4 <190 U Fluoranthene U 66.8 U 19.2 8835-003 Fluorene <670 U 66.8 <590 U 59.4 <190 210 19.2 <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Hexachlorobenzene 8835-003 Hexachlorobutadiene <670 U 66.8 <590 U 59.4 <190 U 19.2 59.4 U 8835-003 Hexachlorocyclopentadiene <670 U 66.8 <590 U <190 19.2 U U U <190 8835-003 Hexachloroethane <670 66.8 <590 59.4 19.2 8835-003 Hexachlorophene <17000 U 66.8 <15000 U 59.4 <4800 U 19.2 8835-003 U U <190 U Hexachloropropene <670 66.8 <590 59.4 19.2 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 Indeno(1,2,3-c,d)pyrene 8835-003 Isodrin <670 U 66.8 <590 U 59.4 <190 U 19.2 υ 8835-003 <670 U U <190 <590 59.4 19.2 Isosafrole 66.8 59.4 <380 U 8835-003 Kepone <1300 U 66.8 <1200 U 19.2 8835-003 Methapyrilene <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Methyl parathion <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Methyl methanesulfonate <670 U 66.8 <590 U 59.4 <190 U 19.2 U 8835-003 N-Nitroso-di-n-butvlamine <670 U 66.8 <590 U 59.4 <190 19.2 U 8835-003 N-Nitrosodi-n-propylamine <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 <670 U <590 U 59.4 <190 U N-Nitrosodiethylamine 66.8 19.2 N-Nitrosomethylethylamine 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 <670 U 59.4 <190 U 8835-003 N-Nitrosomorpholine 66.8 <590 U 19.2 8835-003 N-Nitrosopiperidine <670 U 66.8 <590 U 59.4 <190 U 19.2 U U 8835-003 N-Nitrosopyrrolidine <670 66.8 <590 U 59.4 <190 19.2

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-003 Naphthalene <670 5400 66.8 <590 1300 59.4 <190 550 19.2 8835-003 Nitrobenzene <670 U 66.8 <590 U 59.4 <190 U 19.2 O,O,O-Triethylphosphorothioate <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 U 8835-003 o-Toluidine <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 <670 <590 59.4 U 19.2 o-Dimethylaminoazobenzene U 66.8 U <190 8835-003 p-Phenylenediamine <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Parathion <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 Pentachlorobenzene U 8835-003 Pentachloronitrobenzene <670 U 66.8 <590 U 59.4 <190 19.2 <670 U 66.8 <590 U 59.4 <190 U 19.2 8835-003 Pentachlorophenol 8835-003 Phenacetin <670 U 66.8 <590 U 59.4 <190 U 19.2 Phenol <670 U U <190 U 19.2 8835-003 66.8 <590 59.4 8835-003 Phorate <670 U 66.8 <590 U 59.4 <190 U 19.2 U 8835-003 Pronamide <670 U <590 U 59.4 <190 19.2 66.8 U 59.4 <190 U 8835-003 Pyridine <670 66.8 <590 U 19.2 <670 U <590 U <190 U 19.2 8835-003 Safrole 66.8 59.4 U 8835-003 Sulfotepp <670 U 66.8 <590 U 59.4 <190 19.2 8835-003 <670 U 66.8 <590 U 59.4 <190 U 19.2 Thionzin <670 U U <500 U 50.0 8835-004 1.2.4.5-Tetrachlorobenzene 66. <600 59.6 <670 <600 <500 U 8835-004 1.2.4-Trichlorobenzene U 66. U 59.6 50.0 8835-004 <670 <600 59.6 <500 U 1.2-Dichlorobenzene U 66. U 50.0 8835-004 1.3.5-Trinitrobenzene <670 U 66. <600 U 59.6 <500 U 50.0 <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 1,3-Dichlorobenzene 8835-004 1,4-Dichlorobenzene <670 U 66. <600 U 59.6 <500 U 50.0 59.6 <500 U 8835-004 1,4-Naphthoguinone <670 U 66.1 <600 U 50.0 U U U <500 8835-004 1-Naphthylamine <670 66.1 <600 59.6 50.0 8835-004 2,3,4,6-Tetrachlorophenol <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 U U 59.6 <500 U 2,4,5-Trichlorophenol <670 66. <600 50.0 8835-004 2,4,6-Trichlorophenol <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 2,4-Dichlorophenol <670 U 66. <600 U 59.6 <500 U 50.0 υ 8835-004 <670 U U <500 66. <600 59.6 50.0 2,4-Dimethylphenol <600 59.6 <500 U 8835-004 2,4-Dinitrophenol <670 U 66. U 50.0 8835-004 2.4-Dinitrotoluene <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 2,6-Dichlorophenol <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 2,6-Dinitrotoluene <670 U 66. <600 U 59.6 <500 U 50.0 U 8835-004 2-Acetvlaminofluorene <670 U 66. <600 U 59.6 <500 50.0 <500 U 8835-004 2-Chloronaphthalene <670 U 66. <600 U 59.6 50.0 8835-004 2-Chlorophenol <670 U <600 U 59.6 <500 U 50.0 66. 8835-004 2-Methylphenol <670 U 66. <600 U 59.6 <500 U 50.0 <670 U <600 59.6 <500 U 8835-004 2-Naphthylamine 66. U 50.0 8835-004 2-Nitroaniline <670 U 66.1 <600 U 59.6 <500 U 50.0 U U 8835-004 2-Nitrophenol <670 66.7 <600 U 59.6 <500 50.0

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-004 2-Picoline <670 U 66. <600 U 59.6 <500 U 50.0 <500 8835-004 3,3'-Dichlorobenzidine <670 U 66. <600 U 59.6 U 50.0 8835-004 3-3'-Dimethylbenzidine <670 U 66. <600 U 59.6 <500 U 50.0 <500 U 8835-004 3-Methylcholanthrene <670 U 66. <600 U 59.6 50.0 8835-004 <670 U 66. <600 59.6 <500 U 50.0 4,6-Dinitro-2-methylphenol U U 8835-004 4-Aminobiphenyl <670 U 66. <600 U 59.6 <500 50.0 8835-004 4-Bromophenyl phenyl ether <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 4-Chloro-3-methylphenol <670 U 66. <600 U 59.6 <500 U 50.0 <670 <500 U 50.0 8835-004 4-Chloroaniline U 66. <600 U 59.6 8835-004 4-Methylphenol <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 4-Nitroaniline <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 <670 U <600 U <500 U 50.0 4-Nitrophenol 66.1 59.6 8835-004 5-Nitro-o-toluidine <670 U 66. <600 U 59.6 <500 U 50.0 U 8835-004 <670 U 66. <600 U 59.6 <500 50.0 7,12-Dimethylbenz[a]anthracene U U <600 59.6 <500 8835-004 α, α -Dimethylphenethylamine <670 66. U 50.0 <670 U <600 U 59.6 <500 U 50.0 8835-004 Acetophenone 66. <500 U 8835-004 Aniline <670 U 66. <600 U 59.6 50.0 8835-004 Aramite <670 U 66. <600 U 59.6 <500 U 50.0 U 8835-004 Benzidine <670 U 66. <600 U 59.6 <500 50.0 <670 U <600 59.6 <500 1900 8835-004 Benzo[a]anthracene 66. U 50.0 8835-004 <670 U <600 U 59.6 <500 770 50.0 Benzo[a]pyrene 66. 8835-004 Benzo[b]fluoranthene <670 U 66. <600 U 59.6 <500 540 50.0 Benzo[k]fluoranthene <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 8835-004 Bis(2-chloroisopropyl)ether <670 U 66. <600 U 59.6 <500 U 50.0 59.6 <500 U 8835-004 Butyl benzyl phthalate <670 U 66.1 <600 U 50.0 U U U <500 8835-004 Chlorobenzilate <670 66.1 <600 59.6 50.0 8835-004 <670 U 66. <600 U 59.6 <500 2700 50.0 Chrysene 8835-004 U <600 U 59.6 <500 U Di-n-butyl phthalate <670 66. 50.0 8835-004 Di-n-octyl phthalate <670 U 66. <600 U 59.6 <500 U 50.0 <500 8835-004 Diallate <670 U 66. <600 U 59.6 U 50.0 υ 8835-004 <670 U U <500 66. <600 59.6 50.0 Dibenzo[a,h]anthracene 8835-004 <600 59.6 <500 U 50.0 Dibenz[a,j]acridine <670 U 66. U 8835-004 Diethyl phthalate <670 U 66. <600 U 59.6 <500 U 50.0 <670 U U <500 U 50.0 8835-004 Dimethoate 66. <600 59.6 8835-004 Dimethyl phthalate <670 U 66. <600 U 59.6 <500 U 50.0 U 8835-004 Dinoseb <670 U 66. <600 U 59.6 <500 50.0 59.6 <500 U 8835-004 Diphenylamine <670 U 66. <600 U 50.0 8835-004 Disulfoton <670 U <600 U 59.6 <500 U 50.0 66. <500 8835-004 Ethyl methanesulfonate <670 U 66. <600 U 59.6 U 50.0 <670 U <600 U 59.6 <500 U 8835-004 Famphur 66. 50.0 8835-004 Fluoranthene <670 U 66.1 <600 U 59.6 <500 U 50.0 U 59.6 U 8835-004 Fluorene <670 66.7 <600 U <500 50.0

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-004 <670 U 66. <600 U 59.6 <500 U 50.0 Hexachlorobenzene <500 8835-004 Hexachlorobutadiene <670 U 66. <600 U 59.6 U 50.0 <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 Hexachlorocyclopentadiene <500 U 8835-004 Hexachloroethane <670 U 66. <600 U 59.6 50.0 8835-004 <17000 U 66. <15000 59.6 <12000 U 50.0 Hexachlorophene U U 8835-004 Hexachloropropene <670 U 66. <600 U 59.6 <500 50.0 8835-004 Indeno(1,2,3-c,d)pyrene <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 <670 U 66. <600 U 59.6 <500 U 50.0 Isodrin <670 <500 U 50.0 8835-004 Isosafrole U 66. <600 U 59.6 <1300 U 66. <1200 U 59.6 <1000 U 50.0 8835-004 Kepone 8835-004 Methapyrilene <670 U 66. <600 U 59.6 <500 U 50.0 <670 U 66. <600 U <500 U 50.0 8835-004 Methyl parathion 59.6 8835-004 Methyl methanesulfonate <670 U 66. <600 U 59.6 <500 U 50.0 U 8835-004 N-Nitroso-di-n-butylamine <670 U 66. <600 U 59.6 <500 50.0 U U <600 59.6 <500 8835-004 N-Nitrosodi-n-propylamine <670 66.1 U 50.0 <670 U <600 U 59.6 <500 U 50.0 8835-004 N-Nitrosodiethylamine 66. N-Nitrosomethylethylamine <500 U 8835-004 <670 U 66. <600 U 59.6 50.0 8835-004 N-Nitrosomorpholine <670 U 66. <600 U 59.6 <500 U 50.0 N-Nitrosopiperidine <500 8835-004 <670 U 66. <600 U 59.6 U 50.0 <670 U <600 59.6 <500 U 8835-004 N-Nitrosopyrrolidine 66. U 50.0 8835-004 <670 <600 59.6 <500 U Naphthalene 6200 66. 1700 50.0 8835-004 Nitrobenzene <670 U 66. <600 U 59.6 <500 U 50.0 O,O,O-Triethylphosphorothioate <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 8835-004 o-Toluidine <670 U 66. <600 U 59.6 <500 U 50.0 59.6 <500 U 8835-004 p-Dimethylaminoazobenzene <670 U 66.1 <600 U 50.0 U U U <500 8835-004 p-Phenylenediamine <670 66.1 <600 59.6 50.0 8835-004 Parathion <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 U <600 U 59.6 <500 U Pentachlorobenzene <670 66. 50.0 8835-004 Pentachloronitrobenzene <670 U 66. <600 U 59.6 <500 U 50.0 <500 8835-004 Pentachlorophenol <670 U 66. <600 U 59.6 U 50.0 υ 8835-004 <670 U U <500 Phenacetin 66. <600 59.6 50.0 8835-004 Phenol <670 U 66. <600 U 59.6 <500 U 50.0 8835-004 <670 U 66. <600 U 59.6 <500 U 50.0 Phorate <670 U U <500 U 8835-004 Pronamide 66. <600 59.6 50.0 8835-004 <670 U 66. <600 U 59.6 <500 U 50.0 Pyridine U 8835-004 Safrole <670 U 66. <600 U 59.6 <500 50.0 59.6 <500 U 8835-004 Sulfotepp <670 U 66. <600 U 50.0 8835-004 <670 U 66. <600 U 59.6 <500 U 50.0 Thionzin <590 <200 U 8835-005 1,2,4,5-Tetrachlorobenzene <130 U 13.4 U 59.5 19.8 <130 U <590 59.5 <200 U 8835-005 1,2,4-Trichlorobenzene 13.4 U 19.8 8835-005 1,2-Dichlorobenzene <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U 59.5 <200 U 8835-005 1,3,5-Trinitrobenzene 13.4 <590 U 19.8

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-005 .3-Dichlorobenzene <130 U 13.4 <590 U 59.5 <200 U 19.8 <200 8835-005 ,4-Dichlorobenzene <130 U 13.4 <590 U 59.5 U 19.8 <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 1,4-Naphthoquinone <200 U 8835-005 1-Naphthylamine <130 U 13.4 <590 U 59.5 19.8 8835-005 U 13.4 <590 59.5 <200 U 19.8 2,3,4,6-Tetrachlorophenol <130 U 8835-005 2,4,5-Trichlorophenol <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 2,4,6-Trichlorophenol <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 2.4-Dichlorophenol <130 U 13.4 <590 U 59.5 <200 U 19.8 U <200 U 8835-005 2,4-Dimethylphenol <130 13.4 <590 U 59.5 19.8 <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 2,4-Dinitrophenol 8835-005 2,4-Dinitrotoluene <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U U <200 U 19.8 8835-005 2,6-Dichlorophenol 13.4 <590 59.5 8835-005 2,6-Dinitrotoluene <130 U 13.4 <590 U 59.5 <200 U 19.8 U 8835-005 <130 U 13.4 <590 U 59.5 <200 19.8 2-Acetylaminofluorene U 2-Chloronaphthalene U <590 59.5 <200 8835-005 <130 13.4 U 19.8 U <590 U 59.5 <200 U 8835-005 2-Chlorophenol <130 13.4 19.8 2-Methylphenol <200 U 8835-005 <130 U 13.4 <590 U 59.5 19.8 8835-005 2-Naphthylamine <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 2-Nitroaniline <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U <590 59.5 <200 U 8835-005 2-Nitrophenol 13.4 U 19.8 8835-005 U <590 U 59.5 <200 U 2-Picoline <130 13.4 19.8 8835-005 3,3'-Dichlorobenzidine <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U <590 U 59.5 <200 U 19.8 8835-005 3-3'-Dimethylbenzidine 13.4 8835-005 3-Methylcholanthrene <130 U 13.4 <590 U 59.5 <200 U 19.8 U 59.5 <200 U 8835-005 4,6-Dinitro-2-methylphenol <130 13.4 <590 U 19.8 U <130 U U <200 8835-005 4-Aminobiphenyl 13.4 <590 59.5 19.8 8835-005 4-Bromophenyl phenyl ether <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 U <590 U 59.5 <200 U 4-Chloro-3-methylphenol <130 13.4 19.8 8835-005 4-Chloroaniline <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 4-Methylphenol <130 U 13.4 <590 U 59.5 <200 U 19.8 U U <200 U 8835-005 <130 <590 59.5 4-Nitroaniline 13.4 19.8 8835-005 4-Nitrophenol <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 <130 U 13.4 <590 U 59.5 <200 U 19.8 5-Nitro-o-toluidine U U <200 U 8835-005 7,12-Dimethylbenz[a]anthracene <130 13.4 <590 59.5 19.8 8835-005 <130 U 13.4 <590 U 59.5 <200 U 19.8 α, α -Dimethylphenethylamine U 8835-005 Acetophenone <130 U 13.4 <590 U 59.5 <200 19.8 59.5 <200 U 8835-005 Aniline <130 U 13.4 <590 U 19.8 8835-005 <130 U <590 U 59.5 <200 U Aramite 13.4 19.8 <200 U 8835-005 Benzidine <130 U 13.4 <590 U 59.5 19.8 <130 U <590 U 59.5 <200 8835-005 Benzo[a]anthracene 13.4 1600 19.8 8835-005 Benzo[a]pyrene <130 U 13.4 <590 U 59.5 <200 960 19.8 U <200 8835-005 Benzo[b]fluoranthene <130 13.4 <590 U 59.5 670 19.8

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-005 Benzo[k]fluoranthene <130 U 13.4 <590 U 59.5 <200 U 19.8 <200 8835-005 Bis(2-chloroisopropyl)ether <130 U 13.4 <590 U 59.5 U 19.8 <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Butyl benzyl phthalate <200 U 8835-005 Chlorobenzilate <130 U 13.4 <590 U 59.5 19.8 8835-005 U 13.4 <590 59.5 <200 2200 19.8 Chrysene <130 U 8835-005 Di-n-butyl phthalate <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Di-n-octyl phthalate <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Diallate <130 U 13.4 <590 U 59.5 <200 U 19.8 <200 250 8835-005 Dibenzo[a,h]anthracene <130 U 13.4 <590 U 59.5 19.8 <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Dibenz[a,j]acridine 8835-005 Diethyl phthalate <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U U <200 U 19.8 8835-005 Dimethoate 13.4 <590 59.5 8835-005 Dimethyl phthalate <130 U 13.4 <590 U 59.5 <200 U 19.8 U 8835-005 <130 U 13.4 <590 U 59.5 <200 19.8 Dinoseb U U <590 59.5 <200 8835-005 Diphenylamine <130 13.4 U 19.8 U <590 U 59.5 <200 U 19.8 8835-005 Disulfoton <130 13.4 <200 U 8835-005 Ethyl methanesulfonate <130 U 13.4 <590 U 59.5 19.8 8835-005 Famphur <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Fluoranthene <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U <590 59.5 <200 U 8835-005 Fluorene 13.4 U 19.8 8835-005 <130 U <590 U 59.5 <200 U Hexachlorobenzene 13.4 19.8 8835-005 Hexachlorobutadiene <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U <590 U 59.5 <200 U 19.8 8835-005 Hexachlorocyclopentadiene 13.4 8835-005 Hexachloroethane <130 U 13.4 <590 U 59.5 <200 U 19.8 U 59.5 U 8835-005 Hexachlorophene <3400 13.4 <15000 U <5000 19.8 U <130 U U <200 8835-005 Hexachloropropene 13.4 <590 59.5 19.8 8835-005 <130 U 13.4 <590 U 59.5 <200 290 19.8 Indeno(1,2,3-c,d)pyrene 8835-005 U <590 U 59.5 <200 U Isodrin <130 13.4 19.8 8835-005 Isosafrole <130 U 13.4 <590 U 59.5 <200 U 19.8 U U 59.5 <400 U 8835-005 Kepone <270 13.4 <1200 19.8 U U U <200 8835-005 Methapyrilene <130 13.4 <590 59.5 19.8 8835-005 <130 U 13.4 <590 59.5 <200 U 19.8 Methyl parathion U 8835-005 <130 U 13.4 <590 U 59.5 <200 U 19.8 Methyl methanesulfonate U U <200 U 8835-005 N-Nitroso-di-n-butylamine <130 13.4 <590 59.5 19.8 8835-005 N-Nitrosodi-n-propylamine <130 U 13.4 <590 U 59.5 <200 U 19.8 U 8835-005 N-Nitrosodiethvlamine <130 U 13.4 <590 U 59.5 <200 19.8 59.5 <200 U 8835-005 N-Nitrosomethylethylamine <130 U 13.4 <590 U 19.8 8835-005 N-Nitrosomorpholine <130 U <590 U 59.5 <200 U 13.4 19.8 8835-005 N-Nitrosopiperidine <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U <590 U 59.5 <200 U 8835-005 N-Nitrosopyrrolidine 13.4 19.8 8835-005 Naphthalene <130 1300 13.4 <590 1700 59.5 <200 260 19.8 <200 8835-005 Nitrobenzene <130 U 13.4 <590 U 59.5 U 19.8

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-005 O,O,O-Triethylphosphorothioate <130 U 13.4 <590 U 59.5 <200 U 19.8 <200 8835-005 o-Toluidine <130 U 13.4 <590 U 59.5 U 19.8 p-Dimethylaminoazobenzene <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 <200 U 8835-005 p-Phenylenediamine <130 U 13.4 <590 U 59.5 19.8 8835-005 U 13.4 <590 59.5 <200 U 19.8 Parathion <130 U 8835-005 Pentachlorobenzene <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 <130 U 13.4 <590 U 59.5 <200 U 19.8 Pentachloronitrobenzene 8835-005 <130 U 13.4 <590 U 59.5 <200 U 19.8 Pentachlorophenol <200 U 8835-005 Phenacetin <130 U 13.4 <590 U 59.5 19.8 <130 U 13.4 <590 U 59.5 <200 U 19.8 8835-005 Phenol 8835-005 Phorate <130 U 13.4 <590 U 59.5 <200 U 19.8 <130 U U <200 U 19.8 8835-005 Pronamide 13.4 <590 59.5 8835-005 Pyridine <130 U 13.4 <590 U 59.5 <200 U 19.8 U 8835-005 Safrole <130 U 13.4 <590 U 59.5 <200 19.8 U U 59.5 <200 8835-005 Sulfotepp <130 13.4 <590 U 19.8 U <590 U 59.5 <200 U 19.8 8835-005 Thionzin <130 13.4 U U <980 U 8835-006 1.2.4.5-Tetrachlorobenzene <140 14. <290 29.3 98.0 8835-006 1.2.4-Trichlorobenzene <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 1.2-Dichlorobenzene <140 U 14. <290 U 29.3 <980 U 98.0 <140 <290 29.3 <980 U 8835-006 1,3,5-Trinitrobenzene U 14. U 98.0 8835-006 29.3 <980 U 1.3-Dichlorobenzene <140 U 14. <290 U 98.0 8835-006 1,4-Dichlorobenzene <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 98.0 8835-006 1,4-Naphthoquinone 14. 8835-006 1-Naphthylamine <140 U 14. <290 U 29.3 <980 U 98.0 29.3 U 8835-006 2,3,4,6-Tetrachlorophenol <140 U 14. <290 U <980 98.0 U U U <980 8835-006 2,4,5-Trichlorophenol <140 14. <290 29.3 98.0 8835-006 2,4,6-Trichlorophenol <140 U 14. <290 U 29.3 <980 U 98.0 <140 U U 29.3 <980 U 8835-006 2,4-Dichlorophenol 14. <290 98.0 8835-006 2,4-Dimethylphenol <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 2,4-Dinitrophenol <140 U 14. <290 U 29.3 <980 U 98.0 U <980 U 8835-006 2,4-Dinitrotoluene <140 14. <290 U 29.3 98.0 8835-006 2,6-Dichlorophenol <140 U 14. <290 29.3 <980 U 98.0 U 8835-006 <140 U <290 U 29.3 <980 U 98.0 2,6-Dinitrotoluene 14. U U <980 U 8835-006 2-Acetylaminofluorene <140 14. <290 29.3 98.0 8835-006 2-Chloronaphthalene <140 U 14. <290 U 29.3 <980 U 98.0 U 8835-006 2-Chlorophenol <140 U 14. <290 U 29.3 <980 98.0 29.3 U 8835-006 2-Methylphenol <140 U 14. <290 U <980 98.0 8835-006 <140 U <290 U 29.3 <980 U 98.0 2-Naphthylamine 14. 8835-006 2-Nitroaniline <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 8835-006 2-Nitrophenol 14. 98.0 8835-006 2-Picoline <140 U 14. <290 U 29.3 <980 U 98.0 <140 U U 8835-006 3,3'-Dichlorobenzidine 14.1 <290 U 29.3 <980 98.0

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. <980 8835-006 3-3'-Dimethylbenzidine <140 U 14. <290 U 29.3 U 98.0 29.3 8835-006 3-Methylcholanthrene <140 U 14. <290 U <980 U 98.0 4,6-Dinitro-2-methylphenol <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 U 8835-006 4-Aminobiphenyl <140 U 14. <290 U 29.3 <980 98.0 8835-006 <140 U <290 29.3 <980 U 98.0 4-Bromophenyl phenyl ether 14. U 8835-006 4-Chloro-3-methylphenol <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 4-Chloroaniline <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 4-Methylphenol <140 U <290 U 29.3 <980 U 98.0 14.1 <980 U 98.0 8835-006 4-Nitroaniline <140 U 14. <290 U 29.3 <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 4-Nitrophenol 8835-006 5-Nitro-o-toluidine <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 98.0 8835-006 7,12-Dimethylbenz[a]anthracene 14. 8835-006 α, α -Dimethylphenethylamine <140 U 14. <290 U 29.3 <980 U 98.0 U 8835-006 <140 U 14. <290 U 29.3 <980 98.0 Acetophenone U Aniline <140 U 14. <290 29.3 <980 98.0 8835-006 U <140 U <290 U 29.3 <980 U 98.0 8835-006 Aramite 14. U 8835-006 Benzidine <140 U 14. <290 U 29.3 <980 98.0 8835-006 Benzo[a]anthracene <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 Benzo[a]pyrene <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 29.3 <980 U 8835-006 Benzo[b]fluoranthene 14. U 98.0 8835-006 U <290 U 29.3 <980 U Benzo[k]fluoranthene <140 14. 98.0 8835-006 Bis(2-chloroisopropyl)ether <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 98.0 8835-006 Butyl benzyl phthalate 14. 8835-006 Chlorobenzilate <140 U 14. <290 U 29.3 <980 U 98.0 U 29.3 <980 U 8835-006 Chrysene <140 14. <290 U 98.0 U U U <980 8835-006 Di-n-butyl phthalate <140 14. <290 29.3 98.0 8835-006 Di-n-octyl phthalate <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 <140 U <290 U 29.3 <980 U Diallate 14. 98.0 U U 29.3 <980 U 98.0 8835-006 Dibenzo[a,h]anthracene <140 14. <290 8835-006 Dibenz[a,j]acridine <140 U 14. <290 U 29.3 <980 U 98.0 U U U <980 8835-006 Diethyl phthalate <140 14. <290 29.3 98.0 8835-006 Dimethoate <140 U 14. <290 29.3 <980 U 98.0 U 8835-006 <140 U <290 U 29.3 <980 U 98.0 Dimethyl phthalate 14. U U <980 U 8835-006 Dinoseb <140 14. <290 29.3 98.0 8835-006 <140 U 14. <290 U 29.3 <980 U 98.0 Diphenylamine U 8835-006 Disulfoton <140 U 14. <290 U 29.3 <980 98.0 29.3 <980 U 8835-006 Ethyl methanesulfonate <140 U 14. <290 U 98.0 8835-006 <140 U <290 U 29.3 <980 U 98.0 Famphur 14. Fluoranthene 8835-006 <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 8835-006 Fluorene 14. 98.0 8835-006 Hexachlorobenzene <140 U 14. <290 U 29.3 <980 U 98.0 <140 U 29.3 U 98.0 8835-006 Hexachlorobutadiene 14.1 <290 U <980

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-006 <140 U 14. <290 29.3 <980 U 98.0 Hexachlorocyclopentadiene U 8835-006 Hexachloroethane <140 U 14. <290 U 29.3 <980 U 98.0 <3500 U 14. <7300 U 29.3 <980 U 98.0 8835-006 Hexachlorophene U 8835-006 Hexachloropropene <140 U 14. <290 U 29.3 <980 98.0 8835-006 U 29.3 <980 U 98.0 Indeno(1,2,3-c,d)pyrene <140 14. <290 U 8835-006 Isodrin <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 Isosafrole <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 <280 U <580 U 29.3 <2000 U 98.0 Kepone 14. <980 U 8835-006 Methapyrilene <140 U 14. <290 U 29.3 98.0 <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 Methyl parathion 8835-006 <140 U 14. <290 U 29.3 <980 U 98.0 Methyl methanesulfonate <140 U U 29.3 <980 U 98.0 8835-006 N-Nitroso-di-n-butylamine 14. <290 8835-006 N-Nitrosodi-n-propylamine <140 U 14. <290 U 29.3 <980 U 98.0 U 8835-006 N-Nitrosodiethylamine <140 U 14. <290 U 29.3 <980 98.0 <140 U 14. 29.3 <980 U 8835-006 N-Nitrosomethylethylamine <290 U 98.0 U <290 U 29.3 <980 U 98.0 8835-006 N-Nitrosomorpholine <140 14. N-Nitrosopiperidine U 8835-006 <140 U 14. <290 U 29.3 <980 98.0 8835-006 N-Nitrosopyrrolidine <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 Naphthalene <140 1100 14. <290 U 29.3 <980 1900 98.0 <140 <290 29.3 <980 8835-006 Nitrobenzene U 14. U U 98.0 8835-006 29.3 <980 U O,O,O-Triethylphosphorothioate <140 U 14. <290 U 98.0 8835-006 o-Toluidine <140 U 14. <290 U 29.3 <980 U 98.0 <140 U <290 U 29.3 <980 U 98.0 8835-006 p-Dimethylaminoazobenzene 14. 8835-006 p-Phenylenediamine <140 U 14. <290 U 29.3 <980 U 98.0 29.3 U 8835-006 Parathion <140 U 14. <290 U <980 98.0 U U U <980 8835-006 Pentachlorobenzene <140 14. <290 29.3 98.0 8835-006 Pentachloronitrobenzene <140 U 14. <290 U 29.3 <980 U 98.0 8835-006 <140 U 14. <290 U 29.3 <980 U 98.0 Pentachlorophenol U U U 98.0 8835-006 Phenacetin <140 14. <290 29.3 <980 8835-006 Phenol <140 U 14. <290 U 29.3 <980 U 98.0 U U U 8835-006 Phorate <140 14. <290 29.3 <980 98.0 8835-006 <140 U 14. <290 29.3 <980 U 98.0 Pronamide U 8835-006 <140 U <290 U 29.3 <980 U 98.0 Pyridine 14. U U <980 U 8835-006 Safrole <140 14. <290 29.3 98.0 8835-006 <140 U 14. <290 U 29.3 <980 U 98.0 Sulfotepp U 8835-006 Thionzin <140 U 14. <290 U 29.3 <980 98.0 235 <200 U 8835-007 1,2,4,5-Tetrachlorobenzene <270 U 27.4 <2400 U 19.6 8835-007 <270 U <2400 U 235 <200 U 1.2.4-Trichlorobenzene 27.4 19.6 235 8835-007 1,2-Dichlorobenzene <270 U 27.4 <2400 U <200 U 19.6 <270 U 27.4 U 235 <200 U 8835-007 1,3,5-Trinitrobenzene <2400 19.6 8835-007 1,3-Dichlorobenzene <270 U 27.4 <2400 U 235 <200 U 19.6 U 235 U 8835-007 1,4-Dichlorobenzene <270 27.4 <2400 U <200 19.6

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-007 ,4-Naphthoguinone <270 U 27. <2400 235 <200 U 19.6 U 27. 235 8835-007 1-Naphthylamine <270 U <2400 U <200 U 19.6 <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol <200 U 8835-007 <270 U 27.4 <2400 U 235 19.6 8835-007 <270 U 235 <200 U 19.6 2,4,6-Trichlorophenol 27.4 <2400 U 8835-007 2,4-Dichlorophenol <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 2,4-Dimethylphenol <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 2.4-Dinitrophenol <270 U 27.4 <2400 U 235 <200 U 19.6 <270 235 <200 U 8835-007 2,4-Dinitrotoluene U 27. <2400 U 19.6 <270 U <2400 U 235 <200 U 19.6 8835-007 2,6-Dichlorophenol 27.4 8835-007 2,6-Dinitrotoluene <270 U 27. <2400 U 235 <200 U 19.6 <270 U 27. U 235 <200 U 19.6 8835-007 2-Acetylaminofluorene <2400 8835-007 2-Chloronaphthalene <270 U 27.4 <2400 U 235 <200 U 19.6 U 8835-007 2-Chlorophenol <270 U 27. <2400 U 235 <200 19.6 U 235 <200 U 8835-007 2-Methylphenol <270 27.4 <2400 U 19.6 U U 235 <200 U 8835-007 2-Naphthylamine <270 27.4 <2400 19.6 2-Nitroaniline <200 U 8835-007 <270 U 27.4 <2400 U 235 19.6 8835-007 <270 U 27. <2400 U 235 <200 U 19.6 2-Nitrophenol <270 8835-007 2-Picoline U 27.4 <2400 U 235 <200 U 19.6 <270 U 235 <200 U 8835-007 3,3'-Dichlorobenzidine 27.4 <2400 U 19.6 8835-007 <270 U U 235 <200 U 3-3'-Dimethvlbenzidine 27. <2400 19.6 235 8835-007 3-Methylcholanthrene <270 U 27.4 <2400 U <200 U 19.6 <270 U 27. <2400 U 235 <200 U 8835-007 4,6-Dinitro-2-methylphenol 19.6 8835-007 4-Aminobiphenyl <270 U 27. <2400 U 235 <200 U 19.6 4-Bromophenyl phenyl ether 235 <200 U 8835-007 <270 U 27.4 <2400 U 19.6 <270 U U 235 <200 U 8835-007 4-Chloro-3-methylphenol 27. <2400 19.6 U 8835-007 4-Chloroaniline <270 U 27. <2400 U 235 <200 19.6 8835-007 4-Methylphenol <270 U 27.4 <2400 U 235 <200 U 19.6 <270 U U 235 <200 U 8835-007 4-Nitroaniline 27. <2400 19.6 8835-007 4-Nitrophenol <270 U 27.4 <2400 U 235 <200 U 19.6 U U <200 U 8835-007 5-Nitro-o-toluidine <270 27.4 <2400 235 19.6 8835-007 U 27.4 <2400 U 235 <200 U 19.6 7,12-Dimethylbenz[a]anthracene <270 8835-007 <270 U 27. U 235 <200 U 19.6 α, α -Dimethylphenethylamine <2400 <270 U U 235 <200 U 8835-007 Acetophenone 27. <2400 19.6 8835-007 Aniline <270 U 27.4 <2400 U 235 <200 U 19.6 U 8835-007 Aramite <270 U 27. <2400 U 235 <200 19.6 235 <200 U 8835-007 Benzidine <270 U 27.4 <2400 U 19.6 8835-007 <270 U <2400 U 235 <200 U Benzo[a]anthracene 27.4 19.6 235 <200 8835-007 Benzo[a]pyrene <270 U 27.4 <2400 U U 19.6 <270 U 27.4 U 235 <200 U 8835-007 Benzo[b]fluoranthene <2400 19.6 8835-007 Benzo[k]fluoranthene <270 U 27.4 <2400 U 235 <200 U 19.6 U 235 U 8835-007 Bis(2-chloroisopropyl)ether <270 27.4 <2400 U <200 19.6

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-007 <270 U 27. <2400 235 <200 U Butyl benzyl phthalate U 19.6 27. 235 8835-007 Chlorobenzilate <270 U <2400 U <200 U 19.6 <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 Chrysene <200 U 8835-007 Di-n-butyl phthalate <270 U 27.4 <2400 U 235 19.6 8835-007 U 235 <200 U 19.6 Di-n-octyl phthalate <270 27.4 <2400 U 8835-007 Diallate <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 Dibenzo[a,h]anthracene <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 <270 U 27.4 <2400 U 235 <200 U 19.6 Dibenz[a,j]acridine <270 235 <200 U 8835-007 Diethyl phthalate U 27. <2400 U 19.6 <270 U <2400 U 235 <200 U 19.6 8835-007 Dimethoate 27.4 8835-007 Dimethyl phthalate <270 U 27. <2400 U 235 <200 U 19.6 <270 U 27. U 235 <200 U 19.6 8835-007 Dinoseb <2400 8835-007 Diphenylamine <270 U 27.4 <2400 U 235 <200 U 19.6 U 8835-007 Disulfoton <270 U 27. <2400 U 235 <200 19.6 U 235 <200 U 8835-007 Ethyl methanesulfonate <270 27.4 <2400 U 19.6 U U 235 <200 U 8835-007 Famphur <270 27.4 <2400 19.6 <200 U 8835-007 Fluoranthene <270 U 27.4 <2400 U 235 19.6 8835-007 <270 U 27.4 <2400 U 235 <200 U 19.6 Fluorene <270 8835-007 Hexachlorobenzene U 27.4 <2400 U 235 <200 U 19.6 <270 235 <200 U 8835-007 Hexachlorobutadiene U 27.4 <2400 U 19.6 8835-007 <270 U 235 <200 U Hexachlorocyclopentadiene U 27.4 <2400 19.6 235 8835-007 Hexachloroethane <270 U 27.4 <2400 U <200 U 19.6 <6800 U 27. U 235 <4900 U 8835-007 Hexachlorophene <59000.0 19.6 8835-007 Hexachloropropene <270 U 27. <2400 U 235 <200 U 19.6 <270 U 27.4 U 235 <200 U 19.6 8835-007 <2400 Indeno(1,2,3-c,d)pyrene 235 U 8835-007 Isodrin <270 U 27.4 <2400 U <200 19.6 U 8835-007 <270 U 27. <2400 U 235 <200 19.6 Isosafrole <550 U 27.4 <4700 U 235 <390 U 19.6 8835-007 Kepone <270 U U 235 <200 U 8835-007 Methapyrilene 27. <2400 19.6 8835-007 Methyl parathion <270 U 27.4 <2400 U 235 <200 U 19.6 U U <200 U 8835-007 Methyl methanesulfonate <270 27.4 <2400 235 19.6 8835-007 U <2400 235 <200 U 19.6 N-Nitroso-di-n-butylamine <270 27.4 U 8835-007 <270 U 27. U 235 <200 U 19.6 N-Nitrosodi-n-propylamine <2400 <270 U U 235 <200 U 8835-007 N-Nitrosodiethylamine 27. <2400 19.6 8835-007 N-Nitrosomethylethylamine <270 U 27.4 <2400 U 235 <200 U 19.6 U 8835-007 N-Nitrosomorpholine <270 U 27.4 <2400 U 235 <200 19.6 235 U 8835-007 N-Nitrosopiperidine <270 U 27.4 <2400 U <200 19.6 8835-007 <270 <2400 235 <200 U N-Nitrosopyrrolidine U 27.4 U 19.6 2300 3500 235 <200 8835-007 Naphthalene <270 27.4 <2400 690 19.6 Nitrobenzene <270 27.4 235 <200 8835-007 U <2400 U U 19.6 8835-007 O,O,O-Triethylphosphorothioate <270 U 27.4 <2400 U 235 <200 U 19.6 U 235 U 8835-007 o-Toluidine <270 27.4 <2400 U <200 19.6

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L itation Code D.F. 8835-007 p-Dimethylaminoazobenzene <270 U 27. <2400 235 <200 U 19.6 U 27. 235 <200 8835-007 o-Phenylenediamine <270 U <2400 U U 19.6 <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 Parathion <200 U 8835-007 Pentachlorobenzene <270 U 27.4 <2400 U 235 19.6 8835-007 <270 U 27.4 235 <200 U 19.6 Pentachloronitrobenzene <2400 U 235 8835-007 Pentachlorophenol <270 U 27.4 <2400 U <200 U 19.6 8835-007 Phenacetin <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 <270 U 27.4 <2400 U 235 <200 U 19.6 Phenol <270 235 <200 U 8835-007 Phorate U 27. <2400 U 19.6 <270 U 27.4 <2400 U 235 <200 U 19.6 8835-007 Pronamide 8835-007 Pyridine <270 U 27. <2400 U 235 <200 U 19.6 Safrole <270 U 27. U 235 <200 U 19.6 8835-007 <2400 8835-007 Sulfotepp <270 U 27.4 <2400 U 235 <200 U 19.6 U 8835-007 Thionzin <270 U 27.4 <2400 U 235 <200 19.6 U 27. 59.7 8835-008 1,2,4,5-Tetrachlorobenzene <280 <600 U U <600 U 59.7 8835-008 1.2.4-Trichlorobenzene <280 27. 8835-008 1.2-Dichlorobenzene <280 U 27. <600 U 59.7 8835-008 1,3,5-Trinitrobenzene <280 U 27. <600 U 59.7 8835-008 1.3-Dichlorobenzene <280 U 27.7 <600 U 59.7 <280 27. <600 59.7 8835-008 1,4-Dichlorobenzene U U 8835-008 <280 <600 59.7 1,4-Naphthoquinone U 27. U 8835-008 1-Naphthylamine <280 U 27.7 <600 U 59.7 <280 U 27. <600 U 59.7 8835-008 2,3,4,6-Tetrachlorophenol 8835-008 2,4,5-Trichlorophenol <280 U 27. <600 U 59.7 2,4,6-Trichlorophenol 27. 8835-008 <280 U <600 U 59.7 8835-008 2,4-Dichlorophenol <280 U 27.7 <600 U 59.7 8835-008 2,4-Dimethylphenol <280 U 27. <600 U 59.7 8835-008 2,4-Dinitrophenol <280 U 27.7 <600 U 59.7 <280 U 27. U 8835-008 2,4-Dinitrotoluene <600 59. 8835-008 2,6-Dichlorophenol <280 U 27.7 <600 U 59.7 U U 8835-008 2,6-Dinitrotoluene <280 27.7 <600 59.7 2-Acetylaminofluorene 8835-008 U 27.7 <600 59.7 <280 U 8835-008 <280 U 27. <600 U 59.7 2-Chloronaphthalene 2-Chlorophenol U 27. U 8835-008 <280 <600 59.7 8835-008 2-Methylphenol <280 U 27.7 <600 U 59.7 8835-008 2-Naphthylamine <280 U 27. <600 U 59. 59.7 8835-008 2-Nitroaniline <280 U 27.7 <600 U 8835-008 <280 U 27.7 <600 U 59.7 2-Nitrophenol 8835-008 2-Picoline <280 U 27. <600 U 59.7 <280 U 27.7 <600 59.7 8835-008 3,3'-Dichlorobenzidine U 8835-008 3-3'-Dimethylbenzidine <280 U 27.7 <600 U 59.7 U 8835-008 3-Methylcholanthrene <280 27.7 <600 U 59.7

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. 8835-008 4,6-Dinitro-2-methylphenol <280 U 27. <600 U 59.7 27. 8835-008 4-Aminobiphenyl <280 U <600 U 59.7 4-Bromophenyl phenyl ether <280 U 27.7 <600 U 59.7 8835-008 8835-008 4-Chloro-3-methylphenol <280 U 27.7 <600 U 59.7 8835-008 <280 U 27.7 <600 59.7 4-Chloroaniline U 8835-008 4-Methylphenol <280 U 27. <600 U 59.7 8835-008 4-Nitroaniline <280 U 27. <600 U 59.7 8835-008 <280 U 27.7 <600 U 59.7 4-Nitrophenol <280 8835-008 5-Nitro-o-toluidine U 27. <600 U 59.7 <280 U 27.7 <600 U 59.7 8835-008 7,12-Dimethylbenz[a]anthracene 8835-008 α, α -Dimethylphenethylamine <280 U 27. <600 U 59.7 8835-008 <280 U 27. <600 U Acetophenone 59.7 8835-008 Aniline <280 U 27.7 <600 U 59.7 8835-008 <280 U 27. <600 U 59.7 Aramite U <600 59.7 8835-008 Benzidine <280 27.7 U U 27.7 <600 U 59.7 8835-008 Benzo[a]anthracene <280 8835-008 Benzo[a]pyrene <280 U 27. <600 U 59.7 8835-008 Benzo[b]fluoranthene <280 U 27. <600 U 59.7 8835-008 Benzo[k]fluoranthene <280 U 27.7 <600 U 59.7 <280 U 27.7 <600 59.7 8835-008 Bis(2-chloroisopropyl)ether U 8835-008 <280 U 27.7 <600 U 59.7 Butyl benzyl phthalate 8835-008 Chlorobenzilate <280 U 27.7 <600 U 59.7 8835-008 Chrysene <280 U 27.7 <600 U 59.7 8835-008 Di-n-butyl phthalate <280 U 27. <600 U 59.7 59.7 8835-008 Di-n-octyl phthalate <280 U 27. <600 U 8835-008 Diallate <280 U 27.7 <600 U 59.7 8835-008 <280 U 27. <600 U 59.7 Dibenzo[a,h]anthracene 8835-008 <280 U 27.7 <600 U 59.7 Dibenz[a,j]acridine <280 U 27. U 8835-008 Diethyl phthalate <600 59. 8835-008 Dimethoate <280 U 27.7 <600 U 59.7 U U 8835-008 Dimethyl phthalate <280 27.7 <600 59.7 8835-008 U 27.7 <600 U 59.7 Dinoseb <280 8835-008 <280 U 27. <600 U 59.7 Diphenylamine U 27. U 8835-008 Disulfoton <280 <600 59.7 8835-008 Ethyl methanesulfonate <280 U 27.7 <600 U 59.7 8835-008 Famphur <280 U 27. <600 U 59.7 59.7 8835-008 Fluoranthene <280 U 27.7 <600 U 8835-008 <280 U 27.7 <600 U 59.7 Fluorene 8835-008 Hexachlorobenzene <280 U 27. <600 U 59.7 <280 U 27.7 <600 U 59.7 8835-008 Hexachlorobutadiene 8835-008 Hexachlorocyclopentadiene <280 U 27.7 <600 U 59.7 U 59.7 8835-008 Hexachloroethane <280 27.7 <600 U

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. 8835-008 <6900 U 27. <15000 59.7 Hexachlorophene U 27. 8835-008 Hexachloropropene <280 U <600 U 59.7 <280 U 27.7 <600 U 59.7 8835-008 Indeno(1,2,3-c,d)pyrene 8835-008 lsodrin <280 U 27.7 <600 U 59.7 8835-008 <280 U 27.7 <600 59.7 Isosafrole U 8835-008 Kepone <550 U 27. <1200 U 59.7 8835-008 <280 U 27. <600 U 59.7 Methapyrilene 8835-008 <280 U 27.7 <600 U 59.7 Methyl parathion <280 8835-008 Methyl methanesulfonate U 27. <600 U 59.7 <280 U 27.7 <600 U 59.7 8835-008 N-Nitroso-di-n-butylamine 8835-008 N-Nitrosodi-n-propylamine <280 U 27. <600 U 59.7 8835-008 <280 U 27. <600 U N-Nitrosodiethylamine 59.7 8835-008 N-Nitrosomethylethylamine <280 U 27.7 <600 U 59.7 8835-008 N-Nitrosomorpholine <280 U 27. <600 U 59.7 U 59.7 8835-008 N-Nitrosopiperidine <280 27.7 <600 U U 27.7 <600 U 59.7 8835-008 N-Nitrosopyrrolidine <280 8835-008 Naphthalene <280 2100 27. <600 1800 59.7 8835-008 Nitrobenzene <280 U 27. <600 U 59.7 8835-008 O,O,O-Triethylphosphorothioate <280 U 27.7 <600 U 59.7 <280 27.7 <600 59.7 8835-008 o-Toluidine U U 8835-008 <280 U 27.7 <600 U 59.7 p-Dimethylaminoazobenzene 8835-008 p-Phenylenediamine <280 U 27.7 <600 U 59.7 8835-008 Parathion <280 U 27.7 <600 U 59.7 U 27.7 <600 8835-008 Pentachlorobenzene <280 U 59.7 8835-008 <280 U 27. <600 U 59.7 Pentachloronitrobenzene 8835-008 Pentachlorophenol <280 U 27. <600 U 59.7 <280 U 27.7 <600 59.7 8835-008 Phenacetin U 8835-008 Phenol <280 U 27.7 <600 U 59.7 Phorate 8835-008 <280 U 27.7 <600 U 59.7 8835-008 Pronamide <280 U 27. <600 U 59.7 8835-008 Pyridine <280 U 27. <600 U 59.7 8835-008 <280 U 27. <600 59.7 Safrole U 8835-008 Sulfotepp <280 U 27. <600 U 59.7 <280 U 27.7 <600 59.7 8835-008 Thionzin U 8835-009 1,2,4,5-Tetrachlorobenzene <600 U 60.1 8835-009 1,2,4-Trichlorobenzene <600 U 60. 8835-009 1,2-Dichlorobenzene <600 U 60. 8835-009 <600 U 60. 1,3,5-Trinitrobenzene 8835-009 1,3-Dichlorobenzene <600 U 60. 8835-009 1,4-Dichlorobenzene <600 U 60. <600 60. 8835-009 1,4-Naphthoquinone U 8835-009 1-Naphthylamine <600 U 60.1

			Fuel = Gas	soline		F	uel = No.2	2		F	uel = No.4				Fuel = No	. 6	
Sample	Analyte	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.
8835-009	2,3,4,6-Tetrachlorophenol					<600		U	60.1	-				-			
8835-009	2,4,5-Trichlorophenol					<600		U	60.1								
8835-009	2,4,6-Trichlorophenol					<600		U	60.1								
8835-009	2,4-Dichlorophenol					<600		U	60.1								
8835-009	2,4-Dimethylphenol					<600		U	60.1								
8835-009	2,4-Dinitrophenol					<600		U	60.1								
8835-009	2,4-Dinitrotoluene					<600		U	60.1								
8835-009	2,6-Dichlorophenol					<600		U	60.1								
8835-009	2,6-Dinitrotoluene					<600		U	60.1								
8835-009	2-Acetylaminofluorene					<600		U	60.1								
8835-009	2-Chloronaphthalene					<600		U	60.1								
8835-009	2-Chlorophenol					<600		U	60.1								
8835-009	2-Methylphenol					<600		U	60.1								
8835-009	2-Naphthylamine					<600		U	60.1								
8835-009	2-Nitroaniline					<600		U	60.1								
8835-009	2-Nitrophenol					<600		U	60.1								
8835-009	2-Picoline					<600		U	60.1								
8835-009	3,3'-Dichlorobenzidine					<600		U	60.1								
8835-009	3-3'-Dimethylbenzidine					<600		U	60.1								
8835-009	3-Methylcholanthrene					<600		U	60.1								
8835-009	4,6-Dinitro-2-methylphenol					<600		U	60.1								
8835-009	4-Aminobiphenyl					<600		U	60.1								
8835-009	4-Bromophenyl phenyl ether					<600		U	60.1								
8835-009	4-Chloro-3-methylphenol					<600		U	60.1								
8835-009	4-Chloroaniline					<600		U	60.1								
8835-009	4-Methylphenol					<600		U	60.1								
8835-009	4-Nitroaniline					<600		U	60.1								
8835-009	4-Nitrophenol					<600		U	60.1								
8835-009	5-Nitro-o-toluidine					<600		U	60.1								
8835-009	7,12-Dimethylbenz[a]anthracene					<600		U	60.1								
8835-009	α, α -Dimethylphenethylamine					<600		U	60.1								
8835-009	Acetophenone					<600		U	60.1								
8835-009	Aniline					<600		U	60.1								
8835-009	Aramite					<600		U	60.1								
8835-009	Benzidine					<600		U	60.1								
8835-009	Benzo[a]anthracene					<600		U	60.1								
8835-009	Benzo[a]pyrene					<600		U	60.1								
8835-009	Benzo[b]fluoranthene					<600		U	60.1								
8835-009	Benzo[k]fluoranthene					<600		U	60.1								
8835-009	Bis(2-chloroisopropyl)ether					<600		U	60.1								
8835-009	Butyl benzyl phthalate					<600		U	60.1								
8835-009	Chlorobenzilate					<600		U	60.1								

			- uel = Gas	soline		F	uel = No.2	2		F	uel = No.4				Fuel = No	.6	
Sample	Analyte	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.
8835-009	Chrysene					<600		U	60.1								
8835-009	Di-n-butyl phthalate					<600		U	60.1								
8835-009	Di-n-octyl phthalate					<600		U	60.1								
8835-009	Diallate					<600		U	60.1								
8835-009	Dibenzo[a,h]anthracene					<600		U	60.1								
8835-009	Dibenz[a,j]acridine					<600		U	60.1								
8835-009	Diethyl phthalate					<600		U	60.1								
8835-009	Dimethoate					<600		U	60.1								
8835-009	Dimethyl phthalate					<600		U	60.1								
8835-009	Dinoseb					<600		U	60.1								
8835-009	Diphenylamine					<600		U	60.1								
8835-009	Disulfoton					<600		U	60.1								
8835-009	Ethyl methanesulfonate					<600		U	60.1								
8835-009	Famphur					<600		U	60.1								
8835-009	Fluoranthene					<600		U	60.1								
8835-009	Fluorene					<600		U	60.1								
8835-009	Hexachlorobenzene					<600		U	60.1								
8835-009	Hexachlorobutadiene					<600		U	60.1								
8835-009	Hexachlorocyclopentadiene					<600		U	60.1								
8835-009	Hexachloroethane					<600		U	60.1								
8835-009	Hexachlorophene					<15000		U	60.1								
8835-009	Hexachloropropene					<600		U	60.1								
8835-009	Indeno(1,2,3-c,d)pyrene					<600		U	60.1								
8835-009	Isodrin					<600		U	60.1								
8835-009	Isosafrole					<600		U	60.1								
8835-009	Kepone					<1200		U	60.1								
8835-009	Methapyrilene					<600		U	60.1								
8835-009	Methyl parathion					<600		U	60.1								
8835-009	Methyl methanesulfonate					<600		U	60.1								
8835-009	N-Nitroso-di-n-butylamine					<600		U	60.1								
8835-009	N-Nitrosodi-n-propylamine					<600		U	60.1								
8835-009	N-Nitrosodiethylamine					<600		U	60.1								
8835-009	N-Nitrosomethylethylamine					<600		U	60.1								
8835-009	N-Nitrosomorpholine					<600		U	60.1								
8835-009	N-Nitrosopiperidine					<600		U	60.1								
8835-009	N-Nitrosopyrrolidine					<600		U	60.1								
8835-009	Naphthalene					<600	650	-	60.1								
8835-009	Nitrobenzene					<600	000	U	60.1								
8835-009	O,O,O-Triethylphosphorothioate					<600		U	60.1								
8835-009 8835-009						<600 <600		U	60.1								
	o-Toluidine							-									
8835-009	p-Dimethylaminoazobenzene					<600		U U	60.1								
8835-009	p-Phenylenediamine					<600		U	60.1								

								?		F	uel = No.4			Fuel = No.6				
Sample	Analyte						Quant-				Quant-				Quant-			
		Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	
8835-009	Parathion					<600		U	60.1									
8835-009	Pentachlorobenzene					<600		U	60.1									
8835-009	Pentachloronitrobenzene					<600		U	60.1									
8835-009	Pentachlorophenol					<600		U	60.1									
8835-009	Phenacetin					<600		U	60.1									
8835-009	Phenol					<600		U	60.1									
8835-009	Phorate					<600		U	60.1									
8835-009	Pronamide					<600		U	60.1									
8835-009	Pyridine					<600		U	60.1									
8835-009	Safrole					<600		U	60.1									
8835-009	Sulfotepp					<600		U	60.1									
8835-009	Thionzin					<600		U	60.1									
8835-010	1,2,4,5-Tetrachlorobenzene					<600		U	59.8									
8835-010	1,2,4-Trichlorobenzene					<600		U	59.8									
8835-010	1,2-Dichlorobenzene					<600		U	59.8									
8835-010	1,3,5-Trinitrobenzene					<600		U	59.8									
8835-010	1,3-Dichlorobenzene					<600		U	59.8									
8835-010	1,4-Dichlorobenzene					<600		U	59.8									
8835-010	1,4-Naphthoquinone					<600		U	59.8									
8835-010	1-Naphthylamine					<600		U	59.8									
8835-010	2,3,4,6-Tetrachlorophenol					<600		U	59.8									
8835-010	2,4,5-Trichlorophenol					<600		U	59.8									
8835-010	2,4,6-Trichlorophenol					<600		U	59.8									
8835-010	2,4-Dichlorophenol					<600		U	59.8									
8835-010	2,4-Dimethylphenol					<600		U	59.8									
8835-010	2,4-Dinitrophenol					<600		U	59.8									
8835-010	2,4-Dinitrotoluene					<600		U	59.8									
8835-010	2,6-Dichlorophenol					<600		U	59.8									
8835-010	2,6-Dinitrotoluene					<600		U	59.8									
8835-010	2-Acetylaminofluorene					<600		U	59.8									
8835-010	2-Chloronaphthalene					<600		U	59.8									
8835-010	2-Chlorophenol					<600		U	59.8									
8835-010	2-Methylphenol					<600		U	59.8									
8835-010	2-Naphthylamine					<600		U	59.8									
8835-010	2-Nitroaniline					<600		U	59.8									
8835-010	2-Nitrophenol					<600		U	59.8									
8835-010	2-Picoline					<600		U	59.8									
8835-010	3,3'-Dichlorobenzidine					<600		U	59.8									
8835-010	3-3'-Dimethylbenzidine					<600		U	59.8									
8835-010	3-Methylcholanthrene					<600		U	59.8									
8835-010	4,6-Dinitro-2-methylphenol					<600		U	59.8									
8835-010	4-Aminobiphenyl					<600		U	59.8									

			Fuel = Gas	soline		F	uel = No.2	?		F	uel = No.4				Fuel = No	.6	
Sample	Analyte		Quant-				Quant-				Quant-				Quant-		
		Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-010	4-Bromophenyl phenyl ether					<600		U	59.8								
8835-010	4-Chloro-3-methylphenol					<600		U	59.8								
8835-010	4-Chloroaniline					<600		U	59.8								
8835-010	4-Methylphenol					<600		U	59.8								
8835-010	4-Nitroaniline					<600		U	59.8								
8835-010	4-Nitrophenol					<600		U	59.8								
8835-010	5-Nitro-o-toluidine					<600		U	59.8								
8835-010	7,12-Dimethylbenz[a]anthracene					<600		U	59.8								
8835-010	α, α -Dimethylphenethylamine					<600		U	59.8								
8835-010	Acetophenone					<600		U	59.8								
8835-010	Aniline					<600		U	59.8								
8835-010	Aramite					<600		U	59.8								
8835-010	Benzidine					<600		U	59.8								
8835-010	Benzo[a]anthracene					<600		U	59.8								
8835-010	Benzo[a]pyrene					<600		U	59.8								
8835-010	Benzo[b]fluoranthene					<600		U	59.8								
8835-010	Benzo[k]fluoranthene					<600		U	59.8								
8835-010	Bis(2-chloroisopropyl)ether					<600		U	59.8								
8835-010	Butyl benzyl phthalate					<600		U	59.8								
8835-010	Chlorobenzilate					<600		U	59.8								
8835-010	Chrysene					<600		U	59.8								
8835-010	Di-n-butyl phthalate					<600		U	59.8								
8835-010	Di-n-octyl phthalate					<600		U	59.8								
8835-010	Diallate					<600		U	59.8								
8835-010	Dibenzo[a,h]anthracene					<600		U	59.8								
8835-010	Dibenz[a,j]acridine					<600		U	59.8								
8835-010	Diethyl phthalate					<600		U	59.8								
8835-010	Dimethoate					<600		U	59.8								
8835-010	Dimethyl phthalate					<600		U	59.8								
8835-010	Dinoseb					<600		U	59.8								
8835-010	Diphenylamine					<600		U	59.8								
8835-010	Disulfoton					<600		U	59.8								
8835-010	Ethyl methanesulfonate					<600		U	59.8								
8835-010	Famphur					<600		U	59.8								
8835-010	Fluoranthene					<600		U	59.8								
8835-010	Fluorene					<600		U	59.8								
8835-010	Hexachlorobenzene					<600		U	59.8								
8835-010	Hexachlorobutadiene					<600		U	59.8								
8835-010	Hexachlorocyclopentadiene					<600		U	59.8								
8835-010	Hexachloroethane					<600		U	59.8								
8835-010	Hexachlorophene					<15000		U	59.8								
8835-010	Hexachloropropene					<600		U	59.8								

			Fuel = Gas	soline		F	uel = No.2			F	uel = No.4				Fuel = No	.6	
Sample	Analyte		Quant-				Quant-				Quant-				Quant-		
		Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-010	Indeno(1,2,3-c,d)pyrene					<600		U	59.8								
8835-010	Isodrin					<600		U	59.8								
8835-010	Isosafrole					<600		U	59.8								
8835-010	Kepone					<1200		U	59.8								
8835-010	Methapyrilene					<600		U	59.8								
8835-010	Methyl parathion					<600		U	59.8								
8835-010	Methyl methanesulfonate					<600		U	59.8								
8835-010	N-Nitroso-di-n-butylamine					<600		U	59.8								
8835-010	N-Nitrosodi-n-propylamine					<600		U	59.8								
8835-010	N-Nitrosodiethylamine					<600		U	59.8								
8835-010	N-Nitrosomethylethylamine					<600		U	59.8								
8835-010	N-Nitrosomorpholine					<600		U	59.8								
8835-010	N-Nitrosopiperidine					<600		U	59.8								
8835-010	N-Nitrosopyrrolidine					<600		U	59.8								
8835-010	Naphthalene					<600	710		59.8								
8835-010	Nitrobenzene					<600		U	59.8								
8835-010	O,O,O-Triethylphosphorothioate					<600		U	59.8								
8835-010	o-Toluidine					<600		U	59.8								
8835-010	p-Dimethylaminoazobenzene					<600		U	59.8								
8835-010	p-Phenylenediamine					<600		U	59.8								
8835-010	Parathion					<600		U	59.8								
8835-010	Pentachlorobenzene					<600		U	59.8								
8835-010	Pentachloronitrobenzene					<600		U	59.8								
8835-010	Pentachlorophenol					<600		U	59.8								
8835-010	Phenacetin					<600		U	59.8								
8835-010	Phenol					<600		U	59.8								
8835-010	Phorate					<600		U	59.8								
8835-010	Pronamide					<600		U	59.8								
8835-010	Pyridine					<600		U	59.8								
8835-010	Safrole					<600		U	59.8								
8835-010	Sulfotepp					<600		U	59.8								
8835-010	Thionzin					<600		U	59.8								
8835-011	1,2,4,5-Tetrachlorobenzene					<580		U	58.3								
8835-011	1,2,4-Trichlorobenzene					<580		U	58.3								
8835-011	1,2-Dichlorobenzene					<580		U	58.3								
8835-011	1,3,5-Trinitrobenzene					<580		U	58.3								
8835-011	1,3-Dichlorobenzene					<580		U	58.3								
8835-011	1,4-Dichlorobenzene					<580		U	58.3								
8835-011	1,4-Naphthoquinone					<580		U	58.3								
8835-011	1-Naphthylamine					<580		U	58.3								
8835-011	2,3,4,6-Tetrachlorophenol					<580		U	58.3								
8835-011	2,4,5-Trichlorophenol					<580		U	58.3								

			Fuel = Gas	soline		F	uel = No.2	?		F	uel = No.4				Fuel = No	.6	
Sample	Analyte		Quant-			<u> </u>	Quant-			<u>.</u>	Quant-			<u>.</u>	Quant-	<u>.</u>	
		Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-011	2,4,6-Trichlorophenol					<580		U	58.3								<u> </u>
8835-011	2,4-Dichlorophenol					<580		U	58.3								<u> </u>
8835-011	2,4-Dimethylphenol					<580		U	58.3								<u> </u>
8835-011	2,4-Dinitrophenol					<580		U	58.3								<u> </u>
8835-011	2,4-Dinitrotoluene					<580		U	58.3								
8835-011	2,6-Dichlorophenol					<580		U	58.3								
8835-011	2,6-Dinitrotoluene					<580		U	58.3								L
8835-011	2-Acetylaminofluorene					<580		U	58.3								L
8835-011	2-Chloronaphthalene					<580		U	58.3								<u> </u>
8835-011	2-Chlorophenol					<580		U	58.3								<u> </u>
8835-011	2-Methylphenol					<580		U	58.3								
8835-011	2-Naphthylamine					<580		U	58.3								
8835-011	2-Nitroaniline					<580		U	58.3								
8835-011	2-Nitrophenol					<580		U	58.3								
8835-011	2-Picoline					<580		U	58.3								
8835-011	3,3'-Dichlorobenzidine					<580		U	58.3								
8835-011	3-3'-Dimethylbenzidine					<580		U	58.3								
8835-011	3-Methylcholanthrene					<580		U	58.3								
8835-011	4,6-Dinitro-2-methylphenol					<580		U	58.3								
8835-011	4-Aminobiphenyl					<580		U	58.3								
8835-011	4-Bromophenyl phenyl ether					<580		U	58.3								
8835-011	4-Chloro-3-methylphenol					<580		U	58.3								
8835-011	4-Chloroaniline					<580		U	58.3								
8835-011	4-Methylphenol					<580		U	58.3								
8835-011	4-Nitroaniline					<580		U	58.3								
8835-011	4-Nitrophenol					<580		U	58.3								
8835-011	5-Nitro-o-toluidine					<580		U	58.3								
8835-011	7,12-Dimethylbenz[a]anthracene					<580		U	58.3								
8835-011	α, α -Dimethylphenethylamine					<580		U	58.3								
8835-011	Acetophenone					<580		U	58.3								
8835-011	Aniline					<580		U	58.3								
8835-011	Aramite					<580		U	58.3								
8835-011	Benzidine					<580		U	58.3								
8835-011	Benzo[a]anthracene					<580		U	58.3								
8835-011	Benzo[a]pyrene					<580		U	58.3								
8835-011	Benzo[b]fluoranthene					<580		U	58.3								
8835-011	Benzo[k]fluoranthene					<580		U	58.3								
8835-011	Bis(2-chloroisopropyl)ether					<580		U	58.3								
8835-011	Butyl benzyl phthalate					<580		U	58.3								
8835-011	Chlorobenzilate					<580		U	58.3								
8835-011	Chrysene					<580		U	58.3								
8835-011	Di-n-butyl phthalate					<580		U	58.3								

			Fuel = Ga	soline		F	uel = No.2	2		F	uel = No.4				Fuel = No	.6	
Sample	Analyte	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.
8835-011	Di-n-octyl phthalate					<580		U	58.3								
8835-011	Diallate					<580		U	58.3								
8835-011	Dibenzo[a,h]anthracene					<580		U	58.3								
8835-011	Dibenz[a,j]acridine					<580		U	58.3								
8835-011	Diethyl phthalate					<580		U	58.3								
8835-011	Dimethoate					<580		U	58.3								
8835-011	Dimethyl phthalate					<580		U	58.3								
8835-011	Dinoseb					<580		U	58.3								
8835-011	Diphenylamine					<580		U	58.3								
8835-011	Disulfoton					<580		U	58.3								
8835-011	Ethyl methanesulfonate					<580		U	58.3								
8835-011	Famphur					<580		U	58.3								
8835-011	Fluoranthene					<580		U	58.3								
8835-011	Fluorene					<580		U	58.3								1
8835-011	Hexachlorobenzene					<580		U	58.3								
8835-011	Hexachlorobutadiene					<580		U	58.3								
8835-011	Hexachlorocyclopentadiene					<580		U	58.3								
8835-011	Hexachloroethane					<580		U	58.3								
8835-011	Hexachlorophene					<14000		U	58.3								
8835-011	Hexachloropropene					<580		U	58.3								
8835-011	Indeno(1,2,3-c,d)pyrene					<580		U	58.3								
8835-011 8835-011	Isodrin					<580		U	58.3								
8835-011	Isosafrole					<580		U	58.3								
8835-011						<1200		U	58.3								
8835-011	Kepone					<580		U	58.3								
	Methapyrilene					<580		U	58.3								
8835-011	Methyl parathion							U									
8835-011	Methyl methanesulfonate					<580		U	58.3								
8835-011 8835-011	N-Nitroso-di-n-butylamine					<580 <580		U	58.3 58.3								
8835-011	N-Nitrosodi-n-propylamine N-Nitrosodiethylamine					<580		U	58.3								
	,					<580		U	58.3								
8835-011	N-Nitrosomethylethylamine					-		U									
8835-011	N-Nitrosomorpholine					<580		-	58.3								
8835-011	N-Nitrosopiperidine					<580		U	58.3								
8835-011	N-Nitrosopyrrolidine					<580		U	58.3								
8835-011	Naphthalene					<580	810		58.3								
8835-011						<580		U	58.3								
8835-011	O,O,O-Triethylphosphorothioate					<580		U	58.3								
8835-011	o-Toluidine				_	<580		U	58.3								
8835-011	p-Dimethylaminoazobenzene					<580		U	58.3								
8835-011	p-Phenylenediamine					<580		U	58.3								
8835-011	Parathion					<580		U	58.3								
8835-011	Pentachlorobenzene					<580		U	58.3								

			Fuel = Gas	oline		F	uel = No.2	2		Fi	uel = No.4				Fuel = No	.6	
Sample	Analyte		Quant-				Quant-				Quant-				Quant-		
		Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-011	Pentachloronitrobenzene					<580		U	58.3								
8835-011	Pentachlorophenol					<580		U	58.3								
8835-011	Phenacetin					<580		U	58.3								
8835-011	Phenol					<580		U	58.3								
8835-011	Phorate					<580		U	58.3								
8835-011	Pronamide					<580		U	58.3								
8835-011	Pyridine					<580		U	58.3								
8835-011	Safrole					<580		U	58.3								
8835-011	Sulfotepp					<580		U	58.3								
8835-011	Thionzin					<580		U	58.3								

		F	uel = Gaso	line			Fuel = No.	2		F	uel = No.4	!		ŀ	Fuel = No.6	5
			Quant-				Quant-				Quant-				Quant-	
Sample	Analyte	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code
8835-001	1,1,2,2-Tetrachloroethane	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	1,1,2-Trichloroethane	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	1,1-Dichloroethene	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	1,2,3,-Trichloropropane	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	1,2,4-Trichlorobenzene	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	1,2-Dibromo-3-chloropropane	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	1,2-Dibromoethane	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	1,2-Dichlorobenzene	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	1,3-Dichlorobenzene	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	1,4-Dichlorobenzene	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	2-Butanone	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	2-Chloroethylvinyl ether	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	Acetonitrile	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U
8835-001	Acrolein	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Acrylonitrile	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Allyl chloride	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Benzene	<3300	6400	-	333	<32	38	-	3.23		42	-	1.72	<16		Ŭ
8835-001	Bromoform	<3300	0.00	U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Bromomethane	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Carbon disulfide	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Carbon tetrachloride	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Chlorobenzene	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Chloroform	<3300		U	333			U	3.23			U	1.72	<16		U
8835-001	Chloromethane	<3300		U	333			U	3.23			U	1.72	<16		U
8835-001	Chloroprene	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	cis-1,2-Dichloroethene	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	cis-1,3-Dichloropropene	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	cis-1,4-Dichloro-2-butene	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Dibromomethane	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Dichlorodifluoromethane	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Ethyl methacrylate	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	lodomethane	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Isobutanol	<3300		U	333			U	3.23			U	1.72			U
8835-001	m,p-Xylene	<6700	44000	0	333		1200	•	3.23		560	-	1.72	<33	60	•
8835-001	Methacrylonitrile	<3300	44000	U	333		1200	U	3.23		500	U	1.72	<16	00	, U
8835-001	Methyl methacrylate	<3300		U	333	<32 <32		U	3.23			U	1.72	<16		U
				U		-		U				U	1.72	-		-
8835-001	Methylene chloride	<3300	47000	U	333	-	000	•	3.23		400	•		<16		U
8835-001	o-Xylene	<3300	17000		333	-	290		3.23		130	U	1.72	<16		UU
8835-001	p-Dioxane	<3300		U	333	-		U	3.23			-	1.72	<16		-
8835-001	Pentachloroethane	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001		<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Tetrachloroethene	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Toluene	<3300	50000		333	<32	280		3.23		220		1.72	<16		U
8835-001	trans-1,2-Dichloroethene	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	trans-1,4-Dichloro-2-butene	<3300		U	333	<32		U	3.23			U	1.72	<16		U
8835-001	Trichloroethene	<3300		U	333			U	3.23			U	1.72	-		U
8835-001	Trichlorofluoromethane	<3300		U	333	<32		U	3.23	<17		U	1.72	<16		U

		F	uel = Gasoline			Fuel = No.	2		ŀ	Fuel = No.4	4		F	Fuel = No.6	5
			Quant-			Quant-				Quant-				Quant-	
Sample	Analyte	Q.L.	itation Co	de D.F	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code
8835-001	Vinyl Chloride	<3300	U	33	3 <32		U	3.23	<17		U	1.72	<16		U
8835-002	1,1,2,2-Tetrachloroethane	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	1,1,2-Trichloroethane	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	1,1-Dichloroethene	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	1,2,3,-Trichloropropane	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	1,2,4-Trichlorobenzene	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	1,2-Dibromo-3-chloropropane	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	1,2-Dibromoethane	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	1,2-Dichlorobenzene	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	1,3-Dichlorobenzene	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	1,4-Dichlorobenzene	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	2-Butanone	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	2-Chloroethylvinyl ether	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Acetonitrile	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Acrolein	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Acrylonitrile	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Allyl chloride	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Benzene	<3200	6200	32	5 <34	39)	3.43					<17		U
8835-002	Bromoform	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Bromomethane	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Carbon disulfide	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Carbon tetrachloride	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Chlorobenzene	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Chloroform	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Chloromethane	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Chloroprene	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	cis-1,2-Dichloroethene	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	cis-1,3-Dichloropropene	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	cis-1,4-Dichloro-2-butene	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Dibromomethane	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Dichlorodifluoromethane	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Ethyl methacrylate	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	lodomethane	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	Isobutanol	<3200	U	32	5 <34		U	3.43					<17		U
8835-002	m,p-Xylene	<6500	43000	32	5 <69	1200	1	3.43					<33	320)
8835-002	Methacrylonitrile	<3200	U	32			U	3.43					<17		U
8835-002	Methyl methacrylate	<3200	U	32			U	3.43					<17		U
8835-002	Methylene chloride	<3200	U	32			U	3.43					<17		U
8835-002	o-Xylene	<3200	17000	32	-	300		3.43					<17	67	7
8835-002	p-Dioxane	<3200	U	32			U	3.43					<17		U
8835-002	Pentachloroethane	<3200	U	32			U	3.43					<17	1	U
8835-002	Propionitrile	<3200	U	32			U	3.43					<17	1	U
8835-002	Tetrachloroethene	<3200	U	32	-		U	3.43					<17	1	U
8835-002	Toluene	<3200	49000	32		290	-	3.43					<17	76	-
8835-002	trans-1.2-Dichloroethene	<3200		32			U	3.43					<17		U
8835-002	trans-1,4-Dichloro-2-butene	<3200	U	32			U	3.43					<17		U
8835-002	Trichloroethene	<3200	U	-	5 <34		U	3.43					<17	+	U

		Fi	uel = Gasc	line			Fuel = No.	2		F	uel = No.4	1		F	uel = No.6	3
			Quant-				Quant-				Quant-				Quant-	
Sample	Analyte	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code
8835-002	Trichlorofluoromethane	<3200		U	325	<34		U	3.43					<17		U
8835-002	Vinyl Chloride	<3200		U	325	<34		U	3.43					<17		U
8835-003	1,1,2,2-Tetrachloroethane	<3400		U	339	<33		U	3.29					<16		U
8835-003	1,1,2-Trichloroethane	<3400		U	339	<33		U	3.29					<16		U
8835-003	1,1-Dichloroethene	<3400		U	339	<33		U	3.29					<16		U
8835-003	1,2,3,-Trichloropropane	<3400		U	339	<33		U	3.29					<16		U
8835-003	1,2,4-Trichlorobenzene	<3400		U	339	<33		U	3.29					<16		U
8835-003	1,2-Dibromo-3-chloropropane	<3400		U	339	<33		U	3.29					<16		U
8835-003	1,2-Dibromoethane	<3400		U	339	<33		U	3.29					<16		U
8835-003	1,2-Dichlorobenzene	<3400		U	339	<33		U	3.29					<16		U
8835-003	1.3-Dichlorobenzene	<3400		U	339	<33		U	3.29					<16		U
8835-003	1,4-Dichlorobenzene	<3400		U	339			U	3.29					<16		U
8835-003	2-Butanone	<3400		U	339			U	3.29					<16		Ŭ
8835-003	2-Chloroethylvinyl ether	<3400		U	339			U	3.29					<16		Ŭ
8835-003	Acetonitrile	<3400		U	339			U	3.29					<16		U
8835-003	Acrolein	<3400		U	339			U	3.29					<16		U
8835-003	Acrylonitrile	<3400		U	339			U	3.29					<16		U
8835-003	Allyl chloride	<3400		U	339	<33		U	3.29					<16		U
8835-003	Benzene	<3400	6600	Ŭ	339			U	3.29					<16		U
8835-003	Bromoform	<3400	0000	U	339	<33		U	3.29					<16		U
8835-003	Bromomethane	<3400		U	339			U	3.29					<16		U
8835-003	Carbon disulfide	<3400		U	339			U	3.29					<16		U
8835-003	Carbon tetrachloride	<3400		U	339			U	3.29					<16		U
8835-003	Chlorobenzene	<3400		U	339			U	3.29					<16		U
8835-003	Chloroform	<3400		U	339			U	3.29					<16		U
8835-003	Chloromethane	<3400		U	339			U	3.29					<16		U
8835-003	Chloroprene	<3400		U	339	<33		U	3.29					<16		U
8835-003	cis-1,2-Dichloroethene	<3400		U	339	<33		U	3.29					<16		U
8835-003	,	<3400		U	339	<33		U	3.29					<16		U
8835-003	cis-1,3-Dichloropropene cis-1,4-Dichloro-2-butene	<3400		U	339			U	3.29					<16 <16		U
8835-003	Dibromomethane	<3400		U	339			U	3.29					<16 <16		U
8835-003		<3400		U	339			U	3.29					<16 <16		U
	Dichlorodifluoromethane			U				U								U
8835-003 8835-003	Ethyl methacrylate	<3400 <3400		U	339 339	<33 <33		U	3.29 3.29					<16		U
	Iodomethane			U				U						<16		U
8835-003	Isobutanol	<3400	00000	U	339		500	-	3.29					<16	000	-
8835-003	m,p-Xylene	<6800	36000		339	<66	500		3.29					<32	300	
8835-003	Methacrylonitrile	<3400		UU	339			U	3.29					<16		U
8835-003	Methyl methacrylate	<3400		•	339	<33		U	3.29					<16		U
8835-003	Methylene chloride	<3400		U	339	<33		U	3.29					<16		U
8835-003	o-Xylene	<3400	13000		339	<33	270		3.29					<16	63	
8835-003	p-Dioxane	<3400		U	339			U	3.29					<16		U
8835-003	Pentachloroethane	<3400		U	339			U	3.29					<16		U
8835-003	Propionitrile	<3400		U	339			U	3.29					<16		U
8835-003	Tetrachloroethene	<3400		U	339			U	3.29					<16		U
8835-003	Toluene	<3400	68000		339		160	-	3.29					<16	76	
8835-003	trans-1,2-Dichloroethene	<3400		U		<33		U	3.29					<16		U
8835-003	trans-1,4-Dichloro-2-butene	<3400		U	339	<33		U	3.29					<16		U

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code <3400 8835-003 U 339 <33 U 3.29 <16 U Trichloroethene 339 U 8835-003 Trichlorofluoromethane <3400 U <33 3.29 <16 U 8835-003 339 <33 U 3.29 Vinyl Chloride <3400 U <16 U U 337 <33 U 3.33 8835-004 1.1.2.2-Tetrachloroethane <3400 <16 U 8835-004 1,1,2-Trichloroethane <3400 U 337 <33 U 3.33 <16 U 8835-004 1,1-Dichloroethene <3400 U 337 <33 U 3.33 <16 U 8835-004 1,2,3,-Trichloropropane <3400 U 337 <33 U 3.33 <16 U U 337 U 3.33 8835-004 1,2,4-Trichlorobenzene <3400 <33 <16 U 8835-004 1,2-Dibromo-3-chloropropane <3400 U 337 <33 U 3.33 <16 U 8835-004 U 337 <33 U 3.33 U 1,2-Dibromoethane <3400 <16 8835-004 1,2-Dichlorobenzene <3400 U 337 <33 U 3.33 <16 U <33 8835-004 1.3-Dichlorobenzene <3400 U 337 U 3.33 <16 U 8835-004 1,4-Dichlorobenzene <3400 U 337 <33 U 3.33 <16 U 3.33 8835-004 2-Butanone <3400 U 337 <33 U <16 U 8835-004 2-Chloroethylvinyl ether <3400 U 337 <33 U 3.33 <16 U 8835-004 Acetonitrile <3400 U 337 <33 U 3.33 <16 U 8835-004 Acrolein <3400 U 337 <33 U 3.33 <16 U U 337 <33 U 3.33 8835-004 Acrylonitrile <3400 <16 U 8835-004 Allvl chloride <3400 U 337 <33 U 3.33 <16 U 6600 337 <33 U 8835-004 Benzene <3400 3.33 <16 U 3.33 8835-004 Bromoform <3400 U 337 <33 U <16 U <3400 U 337 <33 U 3.33 <16 U 8835-004 Bromomethane 8835-004 Carbon disulfide <3400 U 337 <33 U 3.33 <16 U 8835-004 <3400 U 337 <33 U 3.33 <16 U Carbon tetrachloride U 337 <33 U 3.33 8835-004 Chlorobenzene <3400 <16 U 8835-004 <3400 337 <33 U 3.33 <16 Chloroform U U 8835-004 Chloromethane <3400 U 337 < 33 U 3.33 <16 U 8835-004 Chloroprene <3400 U 337 <33 U 3.33 <16 U <33 8835-004 cis-1,2-Dichloroethene <3400 U 337 U 3.33 <16 U 337 <33 U 8835-004 cis-1,3-Dichloropropene <3400 U 3.33 <16 U <33 U 3.33 8835-004 cis-1,4-Dichloro-2-butene <3400 U 337 <16 U 8835-004 <3400 U 337 <33 U 3.33 <16 U Dibromomethane 337 <33 8835-004 Dichlorodifluoromethane <3400 U U 3.33 <16 U 8835-004 <3400 U 337 <33 U 3.33 <16 U Ethyl methacrylate 8835-004 Iodomethane <3400 U 337 <33 U 3.33 <16 U 8835-004 Isobutanol <3400 337 <33 U 3.33 <16 U U 36000 8835-004 m,p-Xylene <6700 337 <66 1000 3.33 <32 34 3.33 8835-004 Methacrylonitrile <3400 U 337 <33 U <16 U U 337 <33 U 3.33 8835-004 Methyl methacrylate <3400 <16 U 8835-004 <3400 U 337 <33 U 3.33 Methylene chloride <16 U 8835-004 <3400 13000 337 <33 290 3.33 <16 o-Xylene U 8835-004 p-Dioxane <3400 337 <33 U 3.33 <16 U U 337 <33 8835-004 Pentachloroethane <3400 U U 3.33 <16 U 8835-004 Propionitrile <3400 U 337 <33 U 3.33 <16 U U 3.33 8835-004 Tetrachloroethene <3400 U 337 <33 <16 U <3400 69000 337 <33 3.33 <16 8835-004 Toluene 170 U 8835-004 trans-1,2-Dichloroethene <3400 337 <33 U 3.33 <16 U U

		F	uel = Gasc	line			Fuel = No.:	2		F	uel = No.4	1		F	⁻ uel = No.6	5
			Quant-				Quant-				Quant-				Quant-	
Sample	Analyte	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code
8835-004	trans-1,4-Dichloro-2-butene	<3400		U	337	<33		U	3.33					<16		U
8835-004	Trichloroethene	<3400		U	337	<33		U	3.33					<16		U
8835-004	Trichlorofluoromethane	<3400		U	337	<33		U	3.33					<16		U
8835-004	Vinyl Chloride	<3400		U	337	<33		U	3.33					<16		U
8835-005	1,1,2,2-Tetrachloroethane	<3200		U	326	<32		U	3.25					<16		U
8835-005	1,1,2-Trichloroethane	<3200		U	326	<32		U	3.25					<16		U
8835-005	1,1-Dichloroethene	<3200		U	326	<32		U	3.25					<16		U
8835-005	1,2,3,-Trichloropropane	<3200		U	326	<32		U	3.25					<16		U
8835-005	1,2,4-Trichlorobenzene	<3200		U	326	<32		U	3.25					<16		U
8835-005	1,2-Dibromo-3-chloropropane	<3200		U	326	<32		U	3.25					<16		U
8835-005	1,2-Dibromoethane	<3200		U	326	<32		U	3.25					<16		U
8835-005	1,2-Dichlorobenzene	<3200		U	326			U	3.25					<16		U
8835-005	1,3-Dichlorobenzene	<3200		U	326			U	3.25					<16		U
8835-005	1.4-Dichlorobenzene	<3200		U	326			U	3.25					<16		U
8835-005	2-Butanone	<3200		U	326	-		U	3.25					<16		U
8835-005	2-Chloroethylvinyl ether	<3200		U	326	-		U	3.25					<16		U
8835-005	Acetonitrile	<3200		U	326	-		U	3.25					<16		U
8835-005	Acrolein	<3200		U	326			U	3.25					<16		U
8835-005	Acrylonitrile	<3200		U		<32		U	3.25					<16		U
8835-005	Allyl chloride	<3200		U	326			U	3.25					<16		U
8835-005	Benzene	<3200	5400	0	326			U	3.25					<16		U
8835-005	Bromoform	<3200	5400	U	326			U	3.25					<16		U
8835-005	Bromomethane	<3200		U		<32		U	3.25					<16		U
8835-005	Carbon disulfide	<3200		U	326	-		U	3.25					<16		U
8835-005	Carbon tetrachloride	<3200		U	326	-		U	3.25					<16		U
8835-005	Chlorobenzene	<3200		U	326	-		U	3.25					<16		U
8835-005	Chloroform	<3200		U	326	-		U	3.25					<16		U
8835-005	Chloromethane	<3200		U	326	-		U	3.25					<16		U
8835-005		<3200		U	326			U	3.25					<16		U
8835-005	Chloroprene cis-1.2-Dichloroethene	<3200		U		<32 <32		U	3.25					<16		U
	,	<3200		U		-		U	3.25					<16		U
8835-005	cis-1,3-Dichloropropene			U	326			U						-		-
8835-005	cis-1,4-Dichloro-2-butene	<3200		U	326			-	3.25					<16		U
8835-005	Dibromomethane	<3200		U	326	<32 <32		UU	3.25 3.25					<16 <16		UU
8835-005	Dichlorodifluoromethane	<3200		-		-		-						-		-
8835-005	Ethyl methacrylate	<3200		U	326	-		U	3.25					<16		U
8835-005	Iodomethane	<3200		U	326	-		U	3.25					<16		U
8835-005	Isobutanol	<3200		U	326			U	3.25					<16		U
8835-005	m,p-Xylene	<6500	39000		326		360		3.25					<31		U
8835-005	Methacrylonitrile	<3200		U	326			U	3.25					<16		U
8835-005	Methyl methacrylate	<3200		U	326	-		U	3.25					<16		U
8835-005	Methylene chloride	<3200		U		<32		U	3.25					<16		U
8835-005	o-Xylene	<3200	14000		326		170		3.25					<16		U
8835-005	p-Dioxane	<3200		U		<32		U	3.25					<16		U
8835-005	Pentachloroethane	<3200		U		<32		U	3.25					<16		U
8835-005	Propionitrile	<3200		U	326	-		U	3.25					<16		U
8835-005	Tetrachloroethene	<3200		U	326			U	3.25					<16		U
8835-005	Toluene	<3200	42000		326	<32	130		3.25					<16		U

		F	uel = Gasc	oline			Fuel = No.	2		F	uel = No.4	ı		ŀ	Fuel = No.	6
			Quant-				Quant-				Quant-				Quant-	
Sample	Analyte	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code
8835-005	trans-1,2-Dichloroethene	<3200		U	326	<32		U	3.25					<16		U
8835-005	trans-1,4-Dichloro-2-butene	<3200		U	326	<32		U	3.25					<16		U
8835-005	Trichloroethene	<3200		U	326	<32		U	3.25					<16		U
8835-005	Trichlorofluoromethane	<3200		U	326	<32		U	3.25					<16		U
8835-005	Vinyl Chloride	<3200		U	326	<32		U	3.25					<16		U
8835-006	1,1,2,2-Tetrachloroethane	<1600		U	161	<34		U	3.44					<21		U
8835-006	1,1,2-Trichloroethane	<1600		U	161	<34		U	3.44					<21		U
8835-006	1,1-Dichloroethene	<1600		U	161	<34		U	3.44					<21		U
8835-006	1,2,3,-Trichloropropane	<1600		U	161	<34		U	3.44					<21		U
8835-006	1,2,4-Trichlorobenzene	<1600		U	161	<34		U	3.44					<21		U
8835-006	1,2-Dibromo-3-chloropropane	<1600		U	161	<34		U	3.44					<21		U
8835-006	1,2-Dibromoethane	<1600		U	161	<34		U	3.44					<21		U
8835-006	1,2-Dichlorobenzene	<1600		U	161	<34		U	3.44					<21		U
8835-006	1,3-Dichlorobenzene	<1600		U	161	<34		U	3.44					<21		U
8835-006	1,4-Dichlorobenzene	<1600		U	161	<34		U	3.44					<21		U
8835-006	2-Butanone	<1600		U	161	<34		U	3.44					<21		U
8835-006	2-Chloroethylvinyl ether	<1600		U	161	<34		U	3.44					<21		U
8835-006	Acetonitrile	<1600		U	161	<34		U	3.44					<21		U
8835-006	Acrolein	<1600		U	161	<34		U	3.44					<21		U
8835-006	Acrylonitrile	<1600		U	161	<34		U	3.44					<21		U
8835-006	Allyl chloride	<1600		U	161	<34		U	3.44					<21		U
8835-006	Benzene	<1600	6200		161	<34		U	3.44					<21		U
8835-006	Bromoform	<1600		U	161	<34		U	3.44					<21		U
8835-006	Bromomethane	<1600		U	161	<34		U	3.44					<21		U
8835-006	Carbon disulfide	<1600		U	161	<34		U	3.44					<21		U
8835-006	Carbon tetrachloride	<1600		U	161	<34		U	3.44					<21		U
8835-006	Chlorobenzene	<1600		U	161	<34		U	3.44					<21		U
8835-006	Chloroform	<1600		U	161	<34		U	3.44					<21		U
8835-006	Chloromethane	<1600		U	161	<34		U	3.44					<21		U
8835-006	Chloroprene	<1600		U	161	<34		U	3.44					<21		U
8835-006	cis-1.2-Dichloroethene	<1600		U	161	<34		U	3.44					<21		U
8835-006	cis-1,3-Dichloropropene	<1600		U	161	<34		U	3.44					<21		U
8835-006	cis-1.4-Dichloro-2-butene	<1600		U	161	<34		U	3.44					<21		U
8835-006	Dibromomethane	<1600		U	161	<34		U	3.44					<21		U
8835-006	Dichlorodifluoromethane	<1600		U	161	<34		U	3.44					<21		U
8835-006	Ethyl methacrylate	<1600		U	161	<34		U	3.44					<21		U
8835-006	lodomethane	<1600		U	161	<34		U	3.44					<21		U
8835-006	Isobutanol	<1600		U	161	<34		U	3.44					<21		U
8835-006	m,p-Xylene	<3200	22000	-	161	<69	130	-	3.44					<42	150	-
8835-006	Methacrylonitrile	<1600		U	161	<34		U	3.44					<21		U
8835-006	Methyl methacrylate	<1600		U	161	<34		U	3.44					<21		U
8835-006	Methylene chloride	<1600		U	161	<34		U	3.44					<21		U
8835-006	o-Xylene	<1600	8300	-	161	<34	61	-	3.44					<21	70	-
8835-006	p-Dioxane	<1600		U	161	<34		U	3.44					<21		U
8835-006	Pentachloroethane	<1600		U	161	<34		U	3.44					<21		U
8835-006	Propionitrile	<1600		U	161	<34		U	3.44					<21		U
8835-006	Tetrachloroethene	<1600		U	-	<34		U	3.44					<21		U

		F	uel = Gaso	line			Fuel = No.2	2		F	uel = No.4	1		F	Fuel = No.6	3
			Quant-				Quant-				Quant-				Quant-	
Sample	Analyte	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code
8835-006	Toluene	<1600	29000		161	<34	96		3.44					<21	60	,
8835-006	trans-1,2-Dichloroethene	<1600		U	161	<34		U	3.44					<21		U
8835-006	trans-1,4-Dichloro-2-butene	<1600		U	161	<34		U	3.44					<21		U
8835-006	Trichloroethene	<1600		U	161	<34		U	3.44					<21		U
8835-006	Trichlorofluoromethane	<1600		U	161	<34		U	3.44					<21		U
8835-006	Vinyl Chloride	<1600		U	161	<34		U	3.44					<21		U
8835-007	1,1,2,2-Tetrachloroethane	<1700		U	169	<33		U	3.35					<20		U
8835-007	1,1,2-Trichloroethane	<1700		U	169	<33		U	3.35					<20		U
8835-007	1,1-Dichloroethene	<1700		U	169	<33		U	3.35					<20		U
8835-007	1,2,3,-Trichloropropane	<1700		U	169	<33		U	3.35					<20		U
8835-007	1,2,4-Trichlorobenzene	<1700		U	169	<33		U	3.35					<20		U
8835-007	1,2-Dibromo-3-chloropropane	<1700		U	169	<33		U	3.35					<20		U
8835-007	1,2-Dibromoethane	<1700		U	169	<33		U	3.35					<20		U
8835-007	1,2-Dichlorobenzene	<1700		U	169	<33		U	3.35					<20		U
8835-007	1,3-Dichlorobenzene	<1700		U	169	<33		U	3.35					<20		U
8835-007	1,4-Dichlorobenzene	<1700		U	169	<33		U	3.35					<20		U
8835-007	2-Butanone	<1700		U	169	<33		U	3.35					<20		U
8835-007	2-Chloroethylvinyl ether	<1700		U	169	<33		U	3.35					<20		U
8835-007	Acetonitrile	<1700		U	169	<33		U	3.35					<20		U
8835-007	Acrolein	<1700		U	169	<33		U	3.35					<20		U
8835-007	Acrylonitrile	<1700		U	169	<33		U	3.35					<20		U
8835-007	Allyl chloride	<1700		U	169	<33		U	3.35					<20		U
8835-007	Benzene	<1700	4500		169	<33		U	3.35					<20		U
8835-007	Bromoform	<1700		U	169	<33		U	3.35					<20		U
8835-007	Bromomethane	<1700		U	169	<33		U	3.35					<20		U
8835-007	Carbon disulfide	<1700		U	169	<33		U	3.35					<20		U
8835-007	Carbon tetrachloride	<1700		U	169	<33		U	3.35					<20		U
8835-007	Chlorobenzene	<1700		U	169	<33		U	3.35					<20		U
8835-007	Chloroform	<1700		U	169	<33		U	3.35					<20		U
8835-007	Chloromethane	<1700		U	169	<33		U	3.35					<20		U
8835-007	Chloroprene	<1700		U	169	<33		U	3.35					<20		U
8835-007	cis-1,2-Dichloroethene	<1700		U	169	<33		U	3.35					<20		U
8835-007	cis-1,3-Dichloropropene	<1700		U	169	<33		U	3.35					<20		U
8835-007	cis-1,4-Dichloro-2-butene	<1700		U	169	<33		U	3.35					<20		U
8835-007	Dibromomethane	<1700		U	169			U	3.35					<20		U
8835-007	Dichlorodifluoromethane	<1700		U	169	<33		U	3.35					<20		U
8835-007	Ethyl methacrylate	<1700		U	169	<33		U	3.35					<20		U
8835-007	lodomethane	<1700		U	169	<33		U	3.35					<20		U
8835-007	Isobutanol	<1700		U	169	<33		U	3.35					<20		U
8835-007	m,p-Xylene	<3400	56000		169	-	670		3.35					<39	73	
8835-007	Methacrylonitrile	<1700		U	169	<33		U	3.35					<20		U
8835-007	Methyl methacrylate	<1700		U	169	<33		U	3.35					<20		U
8835-007	Methylene chloride	<1700		U	169	<33		U	3.35					<20		U
8835-007	o-Xylene	<1700	12000		169	<33	320		3.35					<20	33	
8835-007	p-Dioxane	<1700		U	169	<33		U	3.35					<20		U
8835-007	Pentachloroethane	<1700		U	169			U	3.35					<20		U
8835-007	Propionitrile	<1700		U	169	<33		U	3.35					<20		U

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Sample Analyte Q.L itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code <1700 8835-007 Tetrachloroethene U 169 <33 U 3.35 <20 U 32000 169 240 29 8835-007 Toluene <1700 <33 3.35 <20 8835-007 169 <33 3.35 <20 trans-1,2-Dichloroethene <1700 U U U 8835-007 trans-1,4-Dichloro-2-butene <1700 U 169 <33 U 3.35 <20 U 8835-007 <1700 U 169 <33 U 3.35 <20 U Trichloroethene 8835-007 Trichlorofluoromethane <1700 U 169 <33 U 3.35 <20 U 8835-007 Vinyl chloride <1700 U 169 <33 U 3.35 <20 U 8835-008 1.1.2.2-Tetrachloroethane <1700 U 170 < 33 U 3.35 8835-008 1,1,2-Trichloroethane <1700 U 170 <33 U 3.35 8835-008 1,1-Dichloroethene <1700 U 170 <33 U 3.35 U 170 <33 U 3.35 8835-008 1,2,3,-Trichloropropane <1700 U 170 <33 U 3.35 8835-008 1,2,4-Trichlorobenzene <1700 8835-008 170 <33 U 3.35 1,2-Dibromo-3-chloropropane <1700 U 8835-008 <1700 U 170 <33 U 3.35 1,2-Dibromoethane 8835-008 1,2-Dichlorobenzene <1700 U 170 < 33 U 3.35 8835-008 1.3-Dichlorobenzene <1700 U 170 < 33 U 3.35 8835-008 1,4-Dichlorobenzene <1700 U 170 <33 U 3.35 8835-008 2-Butanone <1700 U 170 <33 U 3.35 <1700 U 170 <33 U 3.35 8835-008 2-Chloroethylvinyl ether 8835-008 Acetonitrile <1700 U 170 < 33 U 3.35 8835-008 <1700 U 170 <33 U 3.35 Acrolein 8835-008 Acrylonitrile <1700 U 170 < 33 U 3.35 Allvl chloride 170 <33 8835-008 <1700 U U 3.35 8835-008 Benzene <1700 8000 170 <33 42 3.35 U 3.35 8835-008 Bromoform <1700 U 170 <33 <1700 U 170 <33 U 3.35 8835-008 Bromomethane 8835-008 Carbon disulfide <1700 U 170 < 33 U 3.35 8835-008 <1700 U 170 <33 U 3.35 Carbon tetrachloride U 170 <33 U 3.35 8835-008 Chlorobenzene <1700 8835-008 Chloroform <1700 170 <33 U 3.35 U U 170 <33 U 3.35 8835-008 Chloromethane <1700 8835-008 <1700 U 170 <33 U 3.35 Chloroprene 170 <33 8835-008 cis-1,2-Dichloroethene <1700 U U 3.35 8835-008 <1700 U 170 <33 U 3.35 cis-1,3-Dichloropropene 8835-008 cis-1.4-Dichloro-2-butene <1700 U 170 < 33 U 3.35 8835-008 Dibromomethane <1700 U 170 <33 U 3.35 8835-008 Dichlorodifluoromethane <1700 U 170 <33 U 3.35 U U 3.35 8835-008 Ethyl methacrylate <1700 170 <33 <1700 U 170 <33 U 3.35 8835-008 lodomethane 8835-008 <1700 U 170 <33 U 3.35 Isobutanol 8835-008 <3400 28000 170 <67 630 3.35 m,p-Xylene 8835-008 Methacrylonitrile <1700 U 170 <33 U 3.35 170 <33 3.35 8835-008 Methyl methacrylate <1700 U U 8835-008 Methylene chloride <1700 U 170 <33 U 3.35 170 <33 3.35 8835-008 o-Xylene <1700 10000 280 <1700 170 <33 3.35 8835-008 p-Dioxane U U 8835-008 Pentachloroethane <1700 U 170 <33 U 3.35

		F	uel = Gasc	line			Fuel = No.2	2		F	uel = No.4	ļ		F	uel = No.	6
			Quant-				Quant-				Quant-				Quant-	
Sample	Analyte	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code
8835-008	Propionitrile	<1700		U	170	<33		U	3.35							
8835-008	Tetrachloroethene	<1700		U	170	<33		U	3.35							
8835-008	Toluene	<1700	34000		170	<33	300		3.35							
8835-008	trans-1,2-Dichloroethene	<1700		U	170	<33		U	3.35							
8835-008	trans-1,4-Dichloro-2-butene	<1700		U	170	<33		U	3.35							
8835-008	Trichloroethene	<1700		U		<33		U	3.35							
8835-008	Trichlorofluoromethane	<1700		U	170	<33		U	3.35							
8835-008	Vinyl chloride	<1700		U	170	<33		U	3.35							
8835-009	1,1,2,2-Tetrachloroethane					<34		U	3.37							
8835-009	1.1.2-Trichloroethane					<34		U	3.37							
8835-009	1,1-Dichloroethene					<34		U	3.37							
8835-009	1,2,3,-Trichloropropane					<34		U	3.37							
8835-009	1,2,4-Trichlorobenzene					<34		U	3.37							
8835-009	1,2-Dibromo-3-chloropropane					<34		U	3.37							
8835-009	1,2-Dibromoethane					<34		U	3.37							
8835-009	1,2-Dichlorobenzene					<34		U	3.37							
8835-009	1,3-Dichlorobenzene					<34		U	3.37							
8835-009	1,4-Dichlorobenzene					<34		U	3.37							
8835-009	2-Butanone					<34		U	3.37							
8835-009	2-Chloroethylvinyl ether					<34		U	3.37							
8835-009	Acetonitrile					<34		U	3.37							
8835-009	Acrolein					<34		U	3.37							
8835-009	Acrylonitrile					<34		U	3.37							
8835-009	Allyl chloride					<34		U	3.37							
8835-009	Benzene					<34 <34		U	3.37							
8835-009	Bromoform					<34 <34		U	3.37							
8835-009	Bromomethane					<34 <34		U	3.37							
8835-009	Carbon disulfide					<34 <34		U	3.37							
8835-009	Carbon tetrachloride					<34 <34		U	3.37							
8835-009	Chlorobenzene					<34 <34		U	3.37							
8835-009	Chloroform					<34 <34		U	3.37							
8835-009						<34 <34		U	3.37							
8835-009	Chloromethane Chloroprene					<34 <34		U	3.37							
								U								
8835-009	cis-1,2-Dichloroethene					<34		U	3.37							
8835-009	cis-1,3-Dichloropropene					<34		U	3.37							
8835-009	cis-1,4-Dichloro-2-butene					<34		-	3.37							
8835-009	Dibromomethane					<34		U	3.37							
8835-009	Dichlorodifluoromethane					<34		U	3.37							
8835-009	Ethyl methacrylate					<34		U	3.37							
8835-009	Iodomethane					<34		U	3.37							
8835-009	Isobutanol					<34		U	3.37							
8835-009	m,p-Xylene					<67	420		3.37							
8835-009	Methacrylonitrile					<34		U	3.37							
8835-009	Methyl methacrylate					<34		U	3.37							
8835-009	Methylene chloride					<34		U	3.37							
8835-009	o-Xylene					<34	180		3.37							
8835-009	p-Dioxane					<34		U	3.37							

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Code D.F. itation Code D.F. Sample Analvte Q.L. itation Q.L. itation Code D.F. Q.L. Q.L. itation Code 8835-009 <34 Pentachloroethane U 3.37 <34 U 3.37 8835-009 Propionitrile <34 8835-009 Tetrachloroethene U 3.37 8835-009 Toluene <34 220 3.37 8835-009 trans-1,2-Dichloroethene <34 U 3.37 8835-009 trans-1,4-Dichloro-2-butene <34 U 3.37 8835-009 Trichloroethene <34 U 3.37 3.37 8835-009 Trichlorofluoromethane <34 U 8835-009 Vinyl Chloride <34 U 3.37 8835-010 1,1,2,2-Tetrachloroethane <32 U 3.23 <32 8835-010 U 3.23 1,1,2-Trichloroethane 8835-010 <32 U 3.23 1,1-Dichloroethene <32 8835-010 U 3.23 1,2,3,-Trichloropropane 8835-010 <32 U 3.23 1,2,4-Trichlorobenzene 8835-010 1,2-Dibromo-3-chloropropane <32 U 3.23 <32 3.23 8835-010 1.2-Dibromoethane U 3.23 8835-010 1,2-Dichlorobenzene <32 U <32 U 3.23 8835-010 1,3-Dichlorobenzene 1,4-Dichlorobenzene 8835-010 <32 U 3.23 <32 3.23 8835-010 2-Butanone U 8835-010 2-Chloroethylvinyl ether <32 U 3.23 8835-010 Acetonitrile <32 U 3.23 <32 3.23 8835-010 Acrolein U 8835-010 Acrylonitrile <32 U 3.23 <32 3.23 8835-010 Allyl chloride U 8835-010 Benzene <32 U 3.23 <32 3.23 8835-010 Bromoform U 8835-010 Bromomethane <32 U 3.23 8835-010 <32 U 3.23 Carbon disulfide 8835-010 Carbon tetrachloride <32 U 3.23 8835-010 Chlorobenzene <32 U 3.23 8835-010 Chloroform <32 U 3.23 8835-010 <32 U 3.23 Chloromethane 8835-010 <32 U 3.23 Chloroprene <32 3.23 8835-010 U cis-1,2-Dichloroethene 8835-010 <32 U 3.23 cis-1,3-Dichloropropene 8835-010 <32 3.23 cis-1.4-Dichloro-2-butene U 8835-010 Dibromomethane <32 U 3.23 8835-010 Dichlorodifluoromethane <32 U 3.23 8835-010 Ethyl methacrylate <32 U 3.23 <32 U 3.23 8835-010 lodomethane 8835-010 <32 U 3.23 Isobutanol <65 410 3.23 8835-010 m,p-Xylene 8835-010 Methacrylonitrile <32 U 3.23 8835-010 Methyl methacrylate <32 U 3.23 8835-010 Methylene chloride <32 U 3.23 <32 8835-010 o-Xylene 180 3.23

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Code D.F. Sample Analyte Q.L itation Q.L. itation Code D.F. Q.L. itation Code D.F. Q.L. itation Code 8835-010 p-Dioxane <32 U 3.23 <32 U 3.23 8835-010 Pentachloroethane <32 8835-010 Propionitrile U 3.23 8835-010 Tetrachloroethene <32 U 3.23 8835-010 <32 170 3.23 Toluene 8835-010 trans-1.2-Dichloroethene <32 U 3.23 8835-010 trans-1,4-Dichloro-2-butene <32 U 3.23 <32 3.23 8835-010 Trichloroethene U 8835-010 Trichlorofluoromethane <32 U 3.23 <32 8835-010 Vinyl chloride U 3.23 <39 U 8835-011 1,1,2,2-Tetrachloroethane 3.92 8835-011 <39 U 3.92 1,1,2-Trichloroethane <39 8835-011 U 3.92 1,1-Dichloroethene 8835-011 <39 U 3.92 1,2,3,-Trichloropropane 8835-011 1,2,4-Trichlorobenzene <39 U 3.92 1,2-Dibromo-3-chloropropane <39 3.92 8835-011 U 3.92 8835-011 1,2-Dibromoethane <39 U U 3.92 8835-011 1,2-Dichlorobenzene <39 8835-011 <39 U 3.92 1,3-Dichlorobenzene <39 8835-011 1,4-Dichlorobenzene U 3.92 8835-011 <39 U 3.92 2-Butanone 8835-011 2-Chloroethylvinyl ether <39 U 3.92 3.92 8835-011 Acetonitrile <39 U 8835-011 Acrolein <39 U 3.92 U 3.92 8835-011 Acrylonitrile <39 8835-011 Allyl chloride <39 U 3.92 8835-011 Benzene <39 75 3.92 8835-011 Bromoform <39 U 3.92 8835-011 <39 U 3.92 Bromomethane 8835-011 Carbon disulfide <39 U 3.92 8835-011 Carbon tetrachloride <39 U 3.92 8835-011 Chlorobenzene <39 U 3.92 8835-011 <39 U 3.92 Chloroform 8835-011 Chloromethane <39 U 3.92 8835-011 <39 U 3.92 Chloroprene 8835-011 cis-1,2-Dichloroethene <39 U 3.92 8835-011 <39 3.92 cis-1,3-Dichloropropene U 8835-011 cis-1,4-Dichloro-2-butene <39 U 3.92 8835-011 Dibromomethane <39 U 3.92 8835-011 Dichlorodifluoromethane <39 U 3.92 U 3.92 8835-011 Ethyl methacrylate <39 8835-011 Iodomethane <39 U 3.92 8835-011 <39 U 3.92 Isobutanol 8835-011 <78 900 3.92 m,p-Xylene 8835-011 <39 U 3.92 Methacrylonitrile 8835-011 Methyl methacrylate <39 U 3.92 <39 8835-011 Methylene chloride U 3.92

		F	uel = Gasc	oline			Fuel = No.2	2		F	uel = No.4	ļ		F	uel = No.6	6
Sample	Analyte	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	Code	D.F.	Q.L.	Quant- itation	
8835-011	o-Xylene					<39	460		3.92							
8835-011	p-Dioxane					<39		U	3.92							
8835-011	Pentachloroethane					<39		U	3.92							
8835-011	Propionitrile					<39		U	3.92							
8835-011	Tetrachloroethene					<39		U	3.92							
8835-011	Toluene					<39	380		3.92							
8835-011	trans-1,2-Dichloroethene					<39		U	3.92							
8835-011	trans-1,4-Dichloro-2-butene					<39		U	3.92							
8835-011	Trichloroethene					<39		U	3.92							
8835-011	Trichlorofluoromethane					<39		U	3.92							
8835-011	Vinyl Chloride					<39		U	3.92							

D.F. 1.64

D.F. 1.64 1.66

D.F. 1.66 1.66 1.61

D.F. 1.61 1.61 1.61 1.62

D.F. 1.62 1.62 1.62 1.62 1.57

D.F. 1.57 1.57 1.57 1.57 1.57 2.08

D.F. 2.08 2.08 2.08 2.08 2.08 2.08 1.95

D.F. 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95

D.F.

D.F.

US EPA ARCHIVE DOCUMENT

COMPARATIVE FUELS RESULTS - METALS (mg/L)

			F	uel = Gas	soline			Fuel = l	No.2			Fuel =	No.4			Fuel = I	No.6	
Sample	Method	Analyte		Quant-				Quant-				Quant-				Quant-		
		-	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-001	7040	Antimony	<6.67	BQL	U	13.35	<5.84	BQL	U	11.68	<11.47	BQL	U	22.94	<10.19	BQL	U	20.39
8835-001	7060	Arsenic	<0.13	BQL	U	13.35	<0.12	BQL	U	11.68	<0.23	BQL	U	22.94	<0.20	BQL	U	20.39
8835-001	7080	Barium	<13.35	BQL	U	13.35	<11.68	BQL	U	11.68	<22.94	BQL	U	22.94	<20.39	BQL	U	20.39
8835-001	7090	Beryllium	<0.67	BQL	U	13.35	<0.58	BQL	U	11.68	<1.15	BQL	U	22.94	<1.02	BQL	U	20.39
8835-001	7130	Cadmium	<0.67	BQL	U	13.35	<0.58	BQL	U	11.68	<1.15	BQL	U	22.94	<1.02	BQL	U	20.39
8835-001	7190	Chromium	<1.34	BQL	U	13.35	<1.17	BQL	U	11.68	<2.29	BQL	U	22.94	<2.04	BQL	U	20.39
8835-001	7420	Lead	<6.67	BQL	U	13.35	<5.84	13.1		11.68	<11.47	19.2		22.94	<10.19	31.4		20.39
8835-001	7460	Manganese	<0.67	BQL	U	13.35	<0.58	BQL	U	11.68	<1.15	BQL	U	22.94	<1.02	BQL	U	20.39
8835-001	7470	Mercury	<0.10	BQL	U	1.00	<0.10	BQL	U	1.00	<0.18	BQL	U	1.00	<0.17	BQL	U	1.00
8835-001	7520	Nickel	<2.67	BQL	U	13.35	<2.34	BQL	U	11.68	<4.59	31.9		22.94	<4.08	106		20.39
8835-001	7740	Selenium	<0.13	BQL	U	13.35	<0.12	BQL	U	11.68	<0.23	0.25		22.94	<0.20	0.28		20.39
8835-001	7760	Silver	<1.33	BQL	U	13.35	<1.17	BQL	U	11.68	<2.29	BQL	U	22.94	<2.04	BQL	U	20.39
8835-001	7840	Thallium	<13.35	BQL	U	13.35	<11.68	BQL	U	11.68	<22.94	BQL	U	22.94	<20.39	BQL	U	20.39
8835-002	7040	Antimony	<6.66	BQL	U	13.32	<5.83	BQL	U	11.67					<10.14	BQL	U	20.28
8835-002	7060	Arsenic	<0.13	BQL	U	13.32	<0.12	BQL	U	11.67					<0.20	BQL	U	20.28
8835-002	7080	Barium	<13.32	BQL	U	13.32	<11.67	BQL	U	11.67					<20.28	BQL	U	20.28
8835-002	7090	Beryllium	<0.66	BQL	U	13.32	<0.58	BQL	U	11.67					<1.01	BQL	U	20.28
8835-002	7130	Cadmium	<0.66	BQL	U	13.32	<0.58	BQL	U	11.67					<1.01	BQL	U	20.28
8835-002	7190	Chromium	<1.33	BQL	U	13.32	<1.17	BQL	U	11.67					<2.03	BQL	U	20.28
8835-002	7420	Lead	<6.66	BQL	U	13.32	<5.83	10.4		11.67					<10.14	40.4		20.28
8835-002	7460	Manganese	<0.66	BQL	U	13.32	<0.59	BQL	U	11.67					<1.01	BQL	U	20.28
8835-002	7470	Mercury	<0.10	BQL	U	1.00	<0.10	BQL	U	1.00					<0.17	BQL	U	1.00
8835-002	7520	Nickel	<2.66	BQL	U	13.32	<2.33	BQL	U	11.67					<4.06	6.8		20.28
8835-002	7740	Selenium	<0.13	BQL	U	13.32	<0.12	0.18		11.67					<0.20	BQL	U	20.28
8835-002	7760	Silver	<1.33	BQL	U	13.32	<1.17	BQL	U	11.67					<2.03	BQL	U	20.28
8835-002	7840	Thallium	<13.32	BQL	U	13.32	<11.67	BQL	U	11.67					<20.28	BQL	U	20.28
8835-003	7040	Antimony	<6.67	BQL	U	13.35	<5.94	BQL	U	11.88					<10.10	BQL	U	20.20
8835-003	7060	Arsenic	<0.13	BQL	U	13.35	<0.12	BQL	U	11.88					<0.20	BQL	U	20.20
8835-003	7080	Barium	<13.35	BQL	U	13.35	<11.88	BQL	U	11.88					<20.20	BQL	U	20.20
8835-003	7090	Beryllium	<0.67	BQL	U	13.35	<0.59	BQL	U	11.88					<1.01	BQL	U	20.20
8835-003	7130	Cadmium	<0.67	BQL	U	13.35	<0.59	BQL	U	11.88					<1.01	BQL	U	20.20
8835-003	7190	Chromium	<1.33	BQL	U	13.35	<1.19	BQL	U	11.88					<2.02	BQL	U	20.20
8835-003	7420	Lead	<6.67	BQL	U	13.35	<5.94	9.26		11.88					<10.10	40.5		20.20
8835-003	7460	Manganese	<0.67	BQL	U	13.35	<0.59	BQL	U	11.88					<1.01	BQL	U	20.20
8835-003	7470	Mercury	<0.10	BQL	U	1.00	<0.11	BQL	U	1.00					<0.17	BQL	U	1.00
8835-003	7520	Nickel	<2.67	BQL	U	13.35	<2.38	BQL	U	11.88					<4.04	6.81		20.20
8835-003	7740	Selenium	<0.134	BQL	U	13.35	<0.12	BQL	U	11.88					<0.20	BQL	U	20.20
8835-003	7760	Silver	<1.34	BQL	U	13.35	<1.19	BQL	U	11.88					<2.02	BQL	U	20.20
8835-003	7840	Thallium	<13.35	BQL	U	13.35	<11.88	BQL	U	11.88					<20.20	BQL	U	20.20
8835-004	7040	Antimony	<6.67	BQL	U	13.33	<5.96	BQL	U	11.92					<10.11	BQL	U	20.22
8835-004	7060	Arsenic	<0.13	BQL	U	13.33	<0.12	BQL	U	11.92					<0.20	BQL	U	20.22
8835-004	7080	Barium	<13.33	BQL	U	13.33	<11.92	BQL	U	11.92					<20.22	BQL	U	20.22

			F	uel = Ga	soline			Fuel =	No.2			Fuel = I	No.4			Fuel = l	No.6	
Sample	Method	Analyte		Quant-				Quant-				Quant-				Quant-		
-		-	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-004	7090	Beryllium	<0.67	BQL	U	13.33	<0.60	BQL	U	11.92					<1.01	BQL	U	20.22
8835-004	7130	Cadmium	<0.67	BQL	U	13.33	<0.60	BQL	U	11.92					<1.01	BQL	U	20.22
8835-004	7190	Chromium	<1.33	BQL	U	13.33	<1.19	BQL	U	11.92					<2.02	BQL	U	20.22
8835-004	7420	Lead	<6.67	BQL	U	13.33	<5.96	6.73		11.92					<10.11	54.2		20.22
8835-004	7460	Manganese	<0.66	BQL	U	13.33	<0.60	BQL	U	11.92					<1.01	BQL	U	20.22
8835-004	7470	Mercury	<0.10	BQL	U	1.00	<0.10	BQL	U	1.00					<0.14	BQL	U	1.00
8835-004	7520	Nickel	<2.67	BQL	U	13.33	<2.38	BQL	U	11.92					<4.04	5.86		20.22
8835-004	7740	Selenium	<0.13	BQL	U	13.33	<0.12	BQL	U	11.92					<0.20	BQL	U	20.22
8835-004	7760	Silver	<1.33	BQL	U	13.33	<1.19	BQL	U	11.92					<2.02	BQL	U	20.22
8835-004	7840	Thallium	<13.33	BQL	U	13.33	<11.92	BQL	U	11.92					<20.22	BQL	U	20.22
8835-005	7040	Antimony	<6.71	BQL	U	13.42	<5.94	BQL	U	11.89					<10.06	15.7		20.12
8835-005	7060	Arsenic	<0.13	BQL	U	13.42	<0.12	BQL	U	11.89					<0.20	BQL	U	20.12
8835-005	7080	Barium	<13.42	BQL	U	13.42	<11.89	BQL	U	11.89					<20.12	BQL	U	20.12
8835-005	7090	Beryllium	<0.67	BQL	U	13.42	<0.59	BQL	U	11.89					<1.01	BQL	U	20.12
8835-005	7130	Cadmium	<0.67	BQL	U	13.42	<0.59	BQL	U	11.89					<1.01	BQL	U	20.12
8835-005	7190	Chromium	<1.34	BQL	U	13.42	<1.19	BQL	U	11.89					<2.01	BQL	U	20.12
8835-005	7420	Lead	<6.71	BQL	U	13.42	<5.94	10.1		11.89					<10.06	56.8		20.12
8835-005	7460	Manganese	<0.67	BQL	U	13.42	<0.59	BQL	U	11.89					<1.01	BQL	U	20.12
8835-005	7470	Mercury	<0.10	BQL	U	1.00	<0.09	BQL	U	1.00					<0.20	BQL	U	1.00
8835-005	7520	Nickel	<2.68	BQL	U	13.42	<2.38	BQL	U	11.89					<4.02	6.1		20.12
8835-005	7740	Selenium	<0.13	BQL	U	13.42	<1.19	BQL	U	11.89					<2.01	BQL	U	20.12
8835-005	7760	Silver	<1.34	BQL	U	13.42	<0.12	BQL	U	11.89					<0.20	BQL	U	20.12
8835-005	7840	Thallium	<13.42	BQL	U	13.42	<11.89	BQL	U	11.89					<20.12	BQL	U	20.12
8835-006	7040	Antimony	<7.05	BQL	U	14.10	<5.85	BQL	U	11.71					<10.20	BQL	U	20.41
8835-006	7060	Arsenic	<0.14	BQL	U	14.10	<0.12	BQL	U	11.71					<0.20	BQL	U	20.41
8835-006	7080	Barium	<14.10	BQL	U	14.10	<11.71	BQL	U	11.71					<20.41	BQL	U	20.41
8835-006	7090	Beryllium	<0.70	BQL	U	14.10	<0.58	BQL	U	11.71					<1.02	BQL	U	20.41
8835-006	7130	Cadmium	<0.70	BQL	U	14.10	<0.58	BQL	U	11.71					<1.02	BQL	U	20.41
8835-006	7190	Chromium	<1.41	BQL	U	14.10	<1.17	BQL	U	11.71					<2.04	BQL	U	20.41
8835-006	7420	Lead	<7.05	BQL	U	14.10	<5.85	8.47		11.71					<10.20	35.4		20.41
8835-006	7460	Manganese	<0.70	BQL	U	14.10	<0.58	BQL	U	11.71					<1.02	BQL	U	20.41
8835-006	7470	Mercury	<0.10	BQL	U	1.00	<0.10	BQL	U	1.00					<0.25	BQL	U	1.00
8835-006	7520	Nickel	<2.82	BQL	U	14.10	<2.34	BQL	U	11.71					<4.08	50.2		20.41
8835-006	7740	Selenium	<0.14	BQL	U	14.10	<0.12	0.15		11.71					<0.20	BQL	U	20.41
8835-006	7760	Silver	<1.41	BQL	U	14.10	<1.17	BQL	U	11.71					<2.04	BQL	U	20.41
8835-006	7840	Thallium	<14.10	BQL	U	14.10	<11.71	BQL	U	11.71					<20.41	BQL	U	20.41
8835-007	7040	Antimony	<6.84	BQL	U	13.68	<0.05	BQL	U	0.10					<10.11	BQL	U	20.22
8835-007	7060	Arsenic	<0.14	BQL	U	13.68	<0.12	BQL	U	11.76					<0.20	BQL	U	20.22
8835-007	7080	Barium	<13.68	BQL	U	13.68	<0.10	BQL	U	0.10					<20.22	BQL	U	20.22
8835-007	7090	Beryllium	<0.68	BQL	U	13.68	<0.005	BQL	U	0.10					<1.01	BQL	U	20.22
8835-007	7130	Cadmium	<0.68	BQL	U	13.68	<0.005	BQL	U	0.10					<1.01	BQL	U	20.22
8835-007	7190	Chromium	<1.37	BQL	U	13.68	<0.010	BQL	U	0.10					<2.02	BQL	U	20.22

COMPARATIVE FUELS RESULTS - METALS (mg/L)

				Fuel = Gas	soline			Fuel =	No.2			Fuel =	No.4			Fuel =	No.6	
Sample	Method	Analyte		Quant-				Quant-				Quant-				Quant-		
-		•	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.	Q.L.	itation	Code	D.F.
8835-007	7420	Lead	<6.84	BQL	U	13.68	<0.051	0.1		0.10					<10.11	36.1		20.22
8835-007	7460	Manganese	<0.68	BQL	U	13.68	<0.005	BQL	U	0.10					<1.011	BQL	U	20.22
8835-007	7470	Mercury	<0.10	BQL	U	1.00	<0.10	BQL	U	1.00					<0.13	BQL	U	1.00
8835-007	7520	Nickel	<2.74	BQL	U	13.68	<0.020	BQL	U	0.10					<4.04	49.5		20.22
8835-007	7740	Selenium	<0.14	BQL	U	13.68	<0.12	BQL	U	11.76					<0.20	BQL	U	20.22
8835-007	7760	Silver	<1.37	BQL	U	13.68	<0.010	BQL	U	0.10					<2.02	BQL	U	20.22
8835-007	7840	Thallium	<13.68	BQL	U	13.68	<0.10	BQL	U	0.10					<20.22	BQL	U	20.22
8835-008	7040	Antimony	<6.92	BQL	U	13.85	<5.97	BQL	U	11.95								
8835-008	7060	Arsenic	<0.14	BQL	U	13.85	<0.12	BQL	U	11.95								
8835-008	7080	Barium	<13.85	BQL	U	13.85	<11.95	BQL	U	11.95								
8835-008	7090	Beryllium	<0.69	BQL	U	13.85	<0.60	BQL	U	11.95								
8835-008	7130	Cadmium	<0.69	BQL	U	13.85	<060	BQL	U	11.95								
8835-008	7190	Chromium	<1.38	BQL	U	13.85	<1.19	BQL	U	11.95								
8835-008	7420	Lead	<6.92	BQL	U	13.85	<5.97	8.12		11.95								
8835-008	7460	Manganese	<0.69	BQL	U	13.85	<0.60	BQL	U	11.95								
8835-008	7470	Mercury	<0.10	BQL	U	1.00	<0.10	BQL	U	1.00								
8835-008	7520	Nickel	<2.77	BQL	U	13.85	<2.39	BQL	U	11.95								
8835-008	7740	Selenium	<0.14	BQL	U	13.85	<0.12	BQL	U	11.95								
8835-008	7760	Silver	<1.38	BQL	U	13.85	<1.19	BQL	U	11.95								
8835-008	7840	Thallium	<13.85	BQL	U	13.85	<11.95	BQL	U	11.95								
8835-009	7040	Antimony					<6.01	BQL	U	12.02								
8835-009	7060	Arsenic					<0.12	BQL	U	12.02								
8835-009	7080	Barium					<12.02	BQL	U	12.02								
8835-009	7090	Beryllium					<0.60	BQL	U	12.02								
8835-009	7130	Cadmium					<0.60	BQL	U	12.02								
8835-009	7190	Chromium					<1.20	BQL	U	12.02								
8835-009	7420	Lead					<6.01	7.6		12.02								
8835-009	7460	Manganese					<0.60	BQL	U	12.02								
8835-009	7470	Mercury					<0.11	BQL	U	1.00								
8835-009	7520	Nickel					<2.40	BQL	U	12.02								
8835-009	7740	Selenium					<0.12	BQL	U	12.02								
8835-009	7760	Silver					<1.20	BQL	U	12.02								
8835-009	7840	Thallium					<12.02	BQL	U	12.02								
8835-010	7040	Antimony					<5.98	BQL	U	11.96								
8835-010	7060	Arsenic					<0.12	BQL	U	11.96								
8835-010		Barium					<11.96	BQL	U	11.96								
8835-010		Beryllium					<0.60	BQL	U	11.96								
8835-010		Cadmium					< 0.60	BQL	U	11.96								
8835-010		Chromium					<1.20	BQL	U	11.96								
8835-010		Lead					<5.98	7.79	-	11.96								
8835-010		Manganese					<0.60	BQL	U	11.96								
8835-010		Mercury					<0.00	BQL	U	1.00								

Fuel = Gasoline Fuel = No.2 Fuel = No.4 Fuel = No.6 Quant-Quant-Quant-Quant-Analyte Sample Method Q.L. itation Code D.F. Q.L. itation D.F. itation D.F. itation Code Q.L. Code Q.L. Code D.F. 8835-010 7520 Nickel <2.39 BQL U 11.96 8835-010 7740 Selenium <0.12 BQL U 11.96 7760 U 8835-010 Silver <1.20 BQL 11.96 <11.96 U 8835-010 7840 Thallium BQL 11.96 <11.67 8835-011 7040 Antimony BQL U 23.34 8835-011 7060 Arsenic <0.12 BQL U 11.67 8835-011 7080 Barium <23.34 BQL U 23.34 8835-011 7090 Beryllium <1.17 BQL U 23.34 7130 Cadmium <1.17 U 23.34 8835-011 BQL 7190 Chromium <2.33 U 8835-011 BQL 23.34 8835-011 7420 Lead <11.67 19.7 23.34 8835-011 7460 Manganese <1.17 U 23.34 BQL 8835-011 7470 Mercury <0.10 BQL U 1.00 8835-011 7520 Nickel <4.67 BQL U 23.34 8835-011 7740 Selenium <0.12 U BQL 11.67 8835-011 7760 Silver <2.33 BQL U 23.34 8835-011 7840 Thallium <23.34 BQL U 23.34

COMPARATIVE FUELS RESULTS - METALS (mg/L)

COMPARATIVE FUELS RESULTS - PHYSICAL PARAMETERS

	Fuel = Gasoline		soline	Fuel = No.2		Fuel = No.4		Fuel = No.6		
1			Quant-		Quant-		Quant-		Quant-	1
Sample	Method	Analyte	itation	D.F.	itation	D.F.	itation	D.F.	itation	D.F.
8835-001	EPA 325.3/Parr	Total Halogens as CI- (ppmw)	< 25	1	< 25	1	< 10	1	< 10	1
8835-001	ASTM D240	Heating Value* (BTU/lb)	19506	1	19583	1	19425	1	18354	1
8835-001	ASTM D1298	Specific Gravity (@ 60 F)	0.759	1	0.864	1	0.892	1	0.988	1
8835-001	ASTM D4629	Total Nitrogen as N	8	1	203	1	2930	1	8950	1
8835-001	SW-846 1010	Flash Point (F)	< 0	1	54	1	66	1	81	1
8835-001	ASTM D445	Kinematic Viscosity (cSt @ 100 F)	N/A		2.91	1	6.4	1	531	1
8835-002	EPA 325.3/Parr	Total Halogens as CI- (ppmw)	< 25	1	< 25	1			< 10	1
8835-002	ASTM D240	Heating Value* (BTU/lb)	19394	1	19610	1			18715	1
8835-002	ASTM D1298	Specific Gravity (@ 60 F)	0.761	1	0.864	1			0.995	1
8835-002	ASTM D4629	Total Nitrogen as N	8	1	213	1			1860	1
8835-002	SW-846 1010	Flash Point (F)	< 0	1	53.5	1			68.5	1
8835-002	ASTM D445	Kinematic Viscosity (cSt @ 100 F)	N/A		2.87	1			98	1
8835-003	EPA 325.3/Parr	Total Halogens as CI- (ppmw)	< 25	1	< 25	1			< 10	1
8835-003	ASTM D240	Heating Value* (BTU/lb)	19682	1	19823	1			18410	1
8835-003	ASTM D1298	Specific Gravity (@ 60 F)	0.761	1	0.85	1			0.995	1
8835-003	ASTM D4629	Total Nitrogen as N	6	1	110	1			1820	1
8835-003	SW-846 1010	Flash Point (F)	< 0	1	48	1			73	1
8835-003	ASTM D445	Kinematic Viscosity (cSt @ 100 F)	N/A		2.66	1			98	1
8835-004	EPA 325.3/Parr	Total Halogens as CI- (ppmw)	< 25	1	< 25	1			< 10	1
8835-004	ASTM D240	Heating Value* (BTU/lb)	19420	1	19755	1			18219	1
8835-004	ASTM D1298	Specific Gravity (@ 60 F)	0.762	1	0.85	1			1.04	1
8835-004	ASTM D4629	Total Nitrogen as N	6	1	104	1			2210	1
8835-004	SW-846 1010	Flash Point (F)	< 0	1	44.5	1			117	1
8835-004	ASTM D445	Kinematic Viscosity (cSt @ 100 F)	N/A		2.73	1			322	1
8835-005	EPA 325.3/Parr	Total Halogens as CI- (ppmw)	< 25	1	< 25	1			< 10	1
8835-005	ASTM D240	Heating Value* (BTU/lb)	19189	1	19763	1			18138	1
8835-005	ASTM D1298	Specific Gravity (@ 60 F)	0.758	1	0.851	1			1.04	1
8835-005	ASTM D4629	Total Nitrogen as N	22	1	186	1			2150	1
8835-005	SW-846 1010	Flash Point (F)	< 0	1	47.5	1			112	1
8835-005	ASTM D445	Kinematic Viscosity (cSt @ 100 F)	N/A		3.5	1			331	1
8835-006	EPA 325.3/Parr	Total Halogens as CI- (ppmw)	< 25	1	< 25	1			< 10	1
8835-006	ASTM D240	Specific Gravity (@ 60 F)	19924	1	19891	1			18622	1
8835-006	ASTM D1298	Specific Gravity (@ 60 F)	0.721	1	0.862	1			0.991	1
8835-006	ASTM D4629	Total Nitrogen as N	11	1	341	1			5260	1
8835-006	SW-846 1010	Flash Point (F)	< 0	1	77	1			82	1
8835-006	ASTM D445	Kinematic Viscosity (cSt @ 100 F)	N/A		4.36	1			656	1

COMPARATIVE FUELS RESULTS - PHYSICAL PARAMETERS

			Fuel = Ga	soline	Fuel = No.2		Fuel = No.4		Fuel = N	<i>lo.6</i>
			Quant-		Quant-		Quant-		Quant-	
Sample	Method	Analyte	itation	D.F.	itation	D.F.	itation	D.F.	itation	D.F.
8835-007	EPA 325.3/Parr	Total Halogens as CI- (ppmw)	< 25	1	< 25	1			< 10	1
8835-007	ASTM D240	Heating Value* (BTU/lb)	19373	1	19570	1			18559	1
8835-007	ASTM D1298	Specific Gravity (@ 60 F)	0.744	1	0.859	1			0.99	1
8835-007	ASTM D4629	Total Nitrogen as N	12	1	165	1			5310	1
8835-007	SW-846 1010	Flash Point (F)	< 0	1	60	1			92.5	1
8835-007	ASTM D445	Kinematic Viscosity (cSt @ 100 F)	N/A		2.34	1			668	1
8835-008	EPA 325.3/Parr	Total Halogens as CI- (ppmw)	< 25	1	< 25	1				
8835-008	ASTM D240	Heating Value* (BTU/lb)	19552	1	19865	1				
8835-008	ASTM D1298	Specific Gravity (@ 60 F)	0.733	1	0.846	1				
8835-008	ASTM D4629	Total Nitrogen as N	17	1	98	1				
8835-008	SW-846 1010	Flash Point (F)	< 0	1	61.5	1				
8835-008	ASTM D445	Kinematic Viscosity (cSt @ 100 F)	N/A		2.6	1				
8835-009	EPA 325.3/Parr	Total Halogens as CI- (ppmw)			< 25	1				
8835-009	ASTM D240	Heating Value* (BTU/lb)			19942	1				
8835-009	ASTM D1298	Specific Gravity (@ 60 F)			0.851	1				
8835-009	ASTM D4629	Total Nitrogen as N			43	1				
8835-009	SW-846 1010	Flash Point (F)			72	1				
8835-009	ASTM D445	Kinematic Viscosity (cSt @ 100 F)			3.49	1				
8835-010	EPA 325.3/Parr	Total Halogens as CI- (ppmw)			< 25	1				
8835-010	ASTM D240	Heating Value* (BTU/lb)			20000	1				
8835-010	ASTM D1298	Specific Gravity (@ 60 F)			0.853	1				
8835-010	ASTM D4629	Total Nitrogen as N			42	1				
8835-010	SW-846 1010	Flash Point (F)			71	1				
8835-010	ASTM D445	Kinematic Viscosity (cSt @ 100 F)			3.71	1				
8835-011	EPA 325.3/Parr	Total Halogens as CI- (ppmw)			< 25	1				
8835-011	ASTM D240	Heating Value* (BTU/lb)			19745	1				
8835-011	ASTM D1298	Specific Gravity (@ 60 F)			0.86	1				
8835-011	ASTM D4629	Total Nitrogen as N			219	1				
8835-011	SW-846 1010	Flash Point (F)			58	1				
8835-011	ASTM D445	Kinematic Viscosity (cSt @ 100 F)			2.87	1				

N/A - Not Applicable

		Fuel = Gasoline		Fuel = N	lo.2	2 Fuel = No.4		Fuel = No.6	
		Quant-		Quant-		Quant-		Quant-	
Sample	Analyte	itation	DF	itation	DF	itation	DF	itation	DF
8835-001	Total Aromatic Hydrocarbons (Weight Percent)	15.6	1.0	2.78	1.0	0.97	1.0	0.37	1.0
8835-002	Total Aromatic Hydrocarbons (Weight Percent)	15.5	1.0	2.95	1.0			1.4	1.0
8835-003	Total Aromatic Hydrocarbons (Weight Percent)	16.9	1.0	1.53	1.0			1.42	1.0
8835-004	Total Aromatic Hydrocarbons (Weight Percent)	17.2	1.0	2.06	1.0			0.36	1.0
8835-005	Total Aromatic Hydrocarbons (Weight Percent)	12.6	1.0	2.19	1.0			0.41	1.0
8835-006	Total Aromatic Hydrocarbons (Weight Percent)	8.1	1.0	0.66	1.0			2.99	1.0
8835-007	Total Aromatic Hydrocarbons (Weight Percent)	12.9	1.0	5.24	1.0			0.85	1.0
8835-008	Total Aromatic Hydrocarbons (Weight Percent)	10.5	1.0	1.36	1.0				
8835-009	Total Aromatic Hydrocarbons (Weight Percent)			1.29	1.0				
8835-010	Total Aromatic Hydrocarbons (Weight Percent)			1.42	1.0				
8835-011	Total Aromatic Hydrocarbons (Weight Percent)			1.22	1.0				
8835-001	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)	0.7	1.0	2.9	1.0	1.0	1.0	0.39	1.0
8835-002	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)	0.7	1.0	3.09	1.0			1.5	1.0
8835-003	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)	0.8	1.0	1.52	1.0			1.52	1.0
8835-004	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)	0.9	1.0	2.08	1.0			0.42	1.0
8835-005	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)	0.3	1.0	2.35	1.0			0.49	1.0
8835-006	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)	0.3	1.0	0.7	1.0			3.15	1.0
8835-007	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)	0.6	1.0	5.47	1.0			0.89	1.0
8835-008	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)	0.6	1.0	1.41	1.0				
8835-009	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)			1.36	1.0				
8835-010	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)			1.5	1.0				
8835-011	Total Polynuclear Aromatic Hydrocarbons (Weight Percent)			1.22	1.0				

COMPARABLE FUELS RESULTS - TOTAL AROMATIC HYDROCARBONS

Appendix B

Constituent Levels

Concentration Minimum Composite Heating Limit Required CAS **Chemical Name** Value Detection Value (mg/kg at Number (mg/kg) (BTU/lb) 10,000 Limit **BTU/lb**) (mg/kg) 9000 18400 4900 Total Nitrogen as N NA _ **Total Halogens as Cl** NA 1000 18400 540 _ NA **Total Organic Halogens as Cl** 25 _ or individual halogenated organics listed below Polychlorinated biphenyls, total 1336-36-3 ND non-detect 1.4 [Arocolors, total]^a 57-12-5 ND non-detect 1.0 Cyanide, total Metals Antimony, total 7440-36-0 ND 7.9 -Arsenic, total 7440-38-2 ND 0.23 _ 7440-39-3 Barium, total ND 23 -7440-41-7 ND 1.2 Beryllium, total -Cadmium, total ND 7440-43-9 1.2 Chromium, total 7440-47-3 ND 2.3 _ Cobalt 7440-48-4 ND 4.6 -Lead, total 7439-92-1 57 18100 31 -Manganese 7439-96-5 ND 1.2 7439-97-6 ND 0.24 Mercury, total -Nickel, total 7440-02-0 106 18400 58 Selenium, total 7782-49-2 0.28 18400 0.15 -7440-22-4 ND 2.3 Silver, total Thallium, total 7440-28-0 ND 23 _ **Hydrocarbons** Benzo[a]anthracene 56-55-3 ND 1100 -Benzene 71-43-2 8000 19600 4100 _ Benzo[b]fluoranthene 205-99-2 ND 960 _ 207-08-9 ND 1900 Benzo[k]fluoranthene _ 960 Benzo[a]pyrene 50-32-8 ND -218-01-9 ND 1400 Chrysene -Dibenzo[a,h]anthracene 53-70-3 ND 960 _ 7,12-Dimethylbenz[a]anthracene 57-97-6 ND 1900 _ ND 1900 Fluoranthene 206-44-0 -Indeno(1,2,3-cd)pyrene 193-39-5 ND 960 -56-49-5 3-Methylcholanthrene ND 1900 -91-20-3 Naphthalene 6200 19400 3200 -

Appendix B: Comparable Fuel Specification

-	
┢	
Π	
5	
5	
ธ	
ŏ	
Ճ	
2	
2	
Τ	
Ω	
2	
4	
4	
2	
Π	
ທ	
3	

Chemical Name	CAS Number	Composite Value (mg/kg)	Heating Value (BTU/lb)	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Required Detection Limit (mg/kg)
Toluene	108-88-3	69000	19400	36000	-
Oxygenates					
Acetophenone	98-86-2	ND		1900	-
Acrolein	107-02-8	ND		37	-
Allyl alcohol	107-18-6	ND		30	-
Bis(2-ethylhexyl)phthalate [Di-2-ethylhexyl phthalate]	117-81-7	ND		1900	-
Butyl benzyl phthalate	85-68-7	ND		1900	-
o-Cresol [2-Methyl phenol]	95-48-7	ND		220	-
m-Cresol [3-Methyl phenol]	108-39-4	ND		220	-
p-Cresol [4-Methyl phenol]	106-44-5	ND		220	-
Di-n-butyl phthalate	84-74-2	ND		1900	-
Diethyl phthalate	84-66-2	ND		1900	-
2,4-Dimethylphenol	105-67-9	ND		1900	-
Dimethyl phthalate	131-11-3	ND		1900	-
Di-n-octyl phthalate	117-84-0	ND		960	-
Endothall	145-73-3	ND		100	-
Ethyl methacrylate	97-63-2	ND		37	-
2-Ethoxyethanol [Ethylene glycol monoethyl ether]	110-80-5	ND		100	-
Isobutyl alcohol	78-83-1	ND		37	-
Isosafrole	120-58-1	ND		1900	-
Methyl ethyl ketone [2-Butanone]	78-93-3	ND		37	-
Methyl methacrylate	80-62-6	ND		37	-
1,4-Naphthoquinone	130-15-4	ND		1900	-
Phenol	108-95-2	ND		1900	-
Propargyl alcohol [2-Propyn-1-ol]	107-19-7	ND		30	-
Safrole	94-59-7	ND		1900	-
Sulfonated Organics					
Carbon disulfide	75-15-0	ND		non-detect	37
Disulfoton	298-04-4	ND		non-detect	1900
Ethyl methanesulfonate	62-50-0	ND		non-detect	1900
Methyl methanesulfonate	66-27-3	ND		non-detect	1900
Phorate	298-02-2	ND		non-detect	1900
1,3-Propane sultone	1120-71-4	ND		non-detect	100
Tetraethyldithiopyrophosphate [Sulfotepp]	3689-24-5	ND		non-detect	1900
Thiophenol [Benzenethiol]	108-98-5	ND		non-detect	30

Chemical Name	CAS Number	Composite Value (mg/kg)	Heating Value (BTU/lb)	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Required Detection Limit (mg/kg)
O,O,O-Triethyl phosphorothioate	126-68-1	ND		non-detect	1900
Nitrogenated Organics					-
Acetonitrile [Methyl cyanide]	75-05-8	ND		non-detect	37
2-Acetylaminofluorene [2-AAF]	53-96-3	ND		non-detect	1900
Acrylonitrile	107-13-1	ND		non-detect	37
4-Aminobiphenyl	92-67-1	ND		non-detect	1900
4-Aminopyridine	504-24-5	ND		non-detect	100
Aniline	62-53-3	ND		non-detect	1900
Benzidine	92-87-5	ND		non-detect	1900
Dibenz[a,j]acridine	224-42-0	ND		non-detect	1900
O,O-Diethyl O-pyrazinyl phophoro- thioate [Thionazin]	297-97-2	ND		non-detect	1900
Dimethoate	60-51-5	ND		non-detect	1900
p-(Dimethylamino)azobenzene [4-Dimethylaminoazobenzene]	60-11-7	ND		non-detect	1900
3,3'-Dimethylbenzidine	119-93-7	ND		non-detect	1900
α, α -Dimethylphenethylamine	122-09-8	ND		non-detect	1900
3,3'-Dimethoxybenzidine	119-90-4	ND		non-detect	100
1,3-Dinitrobenzene [m-Dinitrobenzene]	99-65-0	ND		non-detect	1900
4,6-Dinitro-o-cresol	534-52-1	ND		non-detect	1900
2,4-Dinitrophenol	51-28-5	ND		non-detect	1900
2,4-Dinitrotoluene	121-14-2	ND		non-detect	1900
2,6-Dinitrotoluene	606-20-2	ND		non-detect	1900
Dinoseb [2-sec-Butyl-4,6-dinitrophenol]	88-85-7	ND		non-detect	1900
Diphenylamine	122-39-4	ND		non-detect	1900
Ethyl carbamate [Urethane]	51-79-6	ND		non-detect	100
Ethylenethiourea (2- Imidazolidinethione)	96-45-7	ND		non-detect	110
Famphur	52-85-7	ND		non-detect	1900
Methacrylonitrile	126-98-7	ND		non-detect	37
Methapyrilene	91-80-5	ND		non-detect	1900
Methomyl	16752-77-5	ND		non-detect	57
2-Methyllactonitrile [Acetone cyanohydrin]	75-86-5	ND		non-detect	100

	Chen
EPA ARCHIVE DOCUMENT	Methyl parath Methyl parath MNNG (N-Manitroguanidine nitroguanidine 1-Naphthylam [α-Naphthylam [β-Naphthylam [β-Nitrosoniline N-Nitrosodieth N-Nitrosoodiph [Diphenylnitro N-Nitrosopyrm 2-Nitropropan Parathion Phenacetin 1,4-Phenylene [p-Phenylened N-Phenylthiou 2-Picoline [alp Propythioracil [6-Propyl-2-th Pyridine Strychnine Thioacetamide
NS	Toluene-2,4-d [2,4-Diaminot

Chemical Name	CAS Number	Composite Value (mg/kg)	Heating Value (BTU/lb)	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Required Detection Limit (mg/kg)
Methyl parathion	298-00-0	ND		non-detect	1900
MNNG (N-Metyl-N-nitroso-N'- nitroguanidine)	70-25-7	ND		non-detect	110
1-Naphthylamine, [α-Naphthylamine]	134-32-7	ND		non-detect	1900
2-Naphthylamine, [β-Naphthylamine]	91-59-8	ND		non-detect	1900
Nicotine	54-11-5	ND		non-detect	100
4-Nitroaniline, [p-Nitroaniline]	100-01-6	ND		non-detect	1900
Nitrobenzene	98-95-3	ND		non-detect	1900
p-Nitrophenol, [p-Nitrophenol]	100-02-7	ND		non-detect	1900
5-Nitro-o-toluidine	99-55-8	ND		non-detect	1900
N-Nitrosodi-n-butylamine	924-16-3	ND		non-detect	1900
N-Nitrosodiethylamine	55-18-5	ND		non-detect	1900
N-Nitrosodiphenylamine, [Diphenylnitrosamine]	86-30-6	ND		non-detect	1900
N-Nitroso-N-methylethylamine	10595-95-6	ND		non-detect	1900
N-Nitrosomorpholine	59-89-2	ND		non-detect	1900
N-Nitrosopiperidine	100-75-4	ND		non-detect	1900
N-Nitrosopyrrolidine	930-55-2	ND		non-detect	1900
2-Nitropropane	79-46-9	ND		non-detect	30
Parathion	56-38-2	ND		non-detect	1900
Phenacetin	62-44-2	ND		non-detect	1900
1,4-Phenylene diamine, [p-Phenylenediamine]	106-50-3	ND		non-detect	1900
N-Phenylthiourea	103-85-5	ND		non-detect	57
2-Picoline [alpha-Picoline]	109-06-8	ND		non-detect	1900
Propythioracil [6-Propyl-2-thiouracil]	51-52-5	ND		non-detect	100
Pyridine	110-86-1	ND		non-detect	1900
Strychnine	57-24-9	ND		non-detect	100
Thioacetamide	62-55-5	ND		non-detect	57
Thiofanox	39196-18-4	ND		non-detect	100
Thiourea	62-56-6	ND		non-detect	57
Toluene-2,4-diamine [2,4-Diaminotoluene]	95-80-7	ND		non-detect	57

	Chemic
	Toluene-2,6-dian [2,6-Diaminotolu o-Toluidine
	p-Toluidine
	1,3,5-Trinitroben [sym-Trinitobenz
	Halogenated Or
	Allyl chloride
	Aramite
	Benzal chloride [Dichloromethyl
\leq	Benzyl chloride
Ν	Bis(2-chloroethy [Dichoroethyl eth
	Bromoform [Trib
	Bromomethane [
ă	4-Bromophenyl j [p-Bromo dipher
X	Carbon tetrachlo
	Chlordane
ш.	p-Chloroaniline
	Chlorobenzene
	Chlorobenzilate
-	p-Chloro-m-cres
	2-Chloroethyl vin
\mathbf{U}	Chloroform
2	Chloromethane [
4	2-Chloronaphtha [beta-Chloronapl
	2-Chlorophenol
PP	Chloroprene [2-Chloro-1,3-bu
ш	2,4-D [2,4-Dichlorophe
S	Diallate
ň	1,2-Dibromo-3-c

Chemical Name	CAS Number	Composite Value (mg/kg)	Heating Value (BTU/lb)	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Required Detection Limit (mg/kg)
Toluene-2,6-diamine [2,6-Diaminotoluene]	823-40-5	ND		non-detect	57
o-Toluidine	95-53-4	ND		non-detect	2200
p-Toluidine	106-49-0	ND		non-detect	100
1,3,5-Trinitrobenzene, [sym-Trinitobenzene]	99-35-4	ND		non-detect	2000
Halogenated Organics					
Allyl chloride	107-05-1	ND		non-detect	37
Aramite	140-57-8	ND		non-detect	1900
Benzal chloride [Dichloromethyl benzene]	98-87-3	ND		non-detect	100
Benzyl chloride	100-44-77	ND		non-detect	100
Bis(2-chloroethyl)ether [Dichoroethyl ether]	111-44-4	ND		non-detect	1900
Bromoform [Tribromomethane]	75-25-2	ND		non-detect	37
Bromomethane [Methyl bromide]	74-83-9	ND		non-detect	37
4-Bromophenyl phenyl ether [p-Bromo diphenyl ether]	101-55-3	ND		non-detect	1900
Carbon tetrachloride	56-23-5	ND		non-detect	37
Chlordane	57-74-9	ND		non-detect	14
p-Chloroaniline	106-47-8	ND		non-detect	1900
Chlorobenzene	108-90-7	ND		non-detect	37
Chlorobenzilate	510-15-6	ND		non-detect	1900
p-Chloro-m-cresol	59-50-7	ND		non-detect	1900
2-Chloroethyl vinyl ether	110-75-8	ND		non-detect	37
Chloroform	67-66-3	ND		non-detect	37
Chloromethane [Methyl chloride]	74-87-3	ND		non-detect	37
2-Chloronaphthalene [beta-Chloronaphthalene]	91-58-7	ND		non-detect	1900
2-Chlorophenol [o-Chlorophenol]	95-57-8	ND		non-detect	1900
Chloroprene [2-Chloro-1,3-butadiene]	1126-99-8	ND		non-detect	37
2,4-D [2,4-Dichlorophenoxyacetic acid]	94-75-7	ND		non-detect	7.0
Diallate	2303-16-4	ND		non-detect	1900
1,2-Dibromo-3-chloropropane	96-12-8	ND		non-detect	37

	Chemical Name
	1,2-Dichlorobenzene [o-Dichlorobenzene]
	1,3-Dichlorobenzene [m-Dichlorobenzene]
	1,4-Dichlorobenzene [p-Dichlorobenzene]
	3,3'-Dichlorobenzidine
	Dichlorodifluoromethane [CFC-12]
H	1,2-Dichloroethane [Ethylene dichloride]
NE	1,1-Dichloroethylene [Vinylidene chloride]
Ň	Dichloromethoxy ethane [Bis(2-chloroethoxy)methat
ſ	2,4-Dichlorophenol
7	2,6-Dichlorophenol
ŏ	1,2-Dichloropropane [Propylene dichloride]
õ	cis-1,3-Dichloropropylene
_	trans-1,3-Dichloropropyle
ш	1,3-Dichloro-2-propanol
Ν	Endosulfan I
	Endosulfan II
Ξ.	Endrin
C	Endrin aldehyde
2	Endrin Ketone
A	Epichlorohydrin [1-Chloro-2,3-epoxy prop
S EPA ARC	Ethylidene dichloride [1,1-Dichloroethane]
T	2-Fluoroacetamide
	Heptachlor
S	Heptachlor epoxide
n	

Chemical Name	CAS Number	Composite Value (mg/kg)
1,2-Dichlorobenzene [o-Dichlorobenzene]	95-50-1	ND
1,3-Dichlorobenzene [m-Dichlorobenzene]	541-73-1	ND
1,4-Dichlorobenzene [p-Dichlorobenzene]	106-46-7	ND
3,3'-Dichlorobenzidine	91-94-1	ND
Dichlorodifluoromethane [CFC-12]	75-71-8	ND
1,2-Dichloroethane [Ethylene dichloride]	107-06-2	ND
1,1-Dichloroethylene [Vinylidene chloride]	75-35-4	ND
Dichloromethoxy ethane [Bis(2-chloroethoxy)methane	111-91-1	ND
2,4-Dichlorophenol	120-83-2	ND
2,6-Dichlorophenol	87-65-0	ND
1,2-Dichloropropane [Propylene dichloride]	78-87-5	ND
cis-1,3-Dichloropropylene	10061-01-5	ND
trans-1,3-Dichloropropylene	10061-02-6	ND
1,3-Dichloro-2-propanol	96-23-1	ND
Endosulfan I	959-98-8	ND
Endosulfan II	33213-65-9	ND
Endrin	72-20-8	ND
Endrin aldehyde	7421-93-4	ND
Endrin Ketone	53494-70-5	ND
Epichlorohydrin [1-Chloro-2,3-epoxy propane]	106-89-8	ND
Ethylidene dichloride [1,1-Dichloroethane]	75-34-3	ND
2-Fluoroacetamide	640-19-7	ND
Heptachlor	76-44-8	ND
Heptachlor epoxide	1024-57-3	ND

Concentration

Limit

(mg/kg at

10,000

BTU/lb)

non-detect

non-detect

non-detect

non-detect

non-detect

non-detect

non-detect

non-detect

non-detect

non-detect non-detect

non-detect

non-detect

non-detect non-detect

non-detect

non-detect non-detect

non-detect

non-detect

non-detect

non-detect

non-detect

non-detect

Composite

Heating

Value

(BTU/lb)

Minimum

Required

Detection

Limit

(mg/kg)

1900

1900

1900

1900

37

37

37

1900

1900 1900

37

37

37 30

> 1.4 1.4

1.4

1.4 1.4

30

37

100

1.4

2.8

	Chemical Name
	Hexachlorobenzene
	Hexachloro-1,3-butadiene [Hexachlorobutadiene]
	Hexachlorocyclopentadiene
	Hexachloroethane
	Hexachlorophene
	Hexachloropropene [Hexachloropropylene]
	Isodrin
L	Kepone [Chlordecone]
DOCUMEN	Lindane [gamma-BHC] [gamma-Hexachlorocyclohexane]
ЧE	Methylene chloride [Dichloromethane]
N	4,4'-methylene-bis(2- chloroaniline)
\mathbf{O}	Methyl iodide [Iodomethane]
õ	Pentachlorobenzene
×	Pentachloroethane
	Pentachloronitrobenzene [PCNB] [Quintobenzene] [Quintozene]
/E	Pentachlorophenol
2	Pronamide
I	Silvex [2,4,5- Trichlorophenoxypropionic acid]
Ċ	2,3,7,8-Tetrachlorodibenzo-p- dioxin [2,3,7,8-TCDD]
~	1,2,4,5-Tetrachlorobenzene
4	1,1,2,2-Tetrachloroethane
	Tetrachloroethylene [Perchloroethylene]
~	2,3,4,6-Tetrachlorophenol
	1,2,4-Trichlorobenzene
JS EPA ARC	1,1,1-Trichloroethane [Methyl chloroform]
SN	

58-89-9	ND	non-detect
75-09-2	ND	non-detect
101-14-4	ND	non-detect
74-88-4	ND	non-detect
608-93-5	ND	non-detect
76-01-7	ND	non-detect
82-68-8	ND	non-detect
87-86-5	ND	non-detect
23950-58-5	ND	non-detect
93-72-1	ND	non-detect
1746-01-6	ND	non-detect
95-94-3	ND	non-detect
79-34-5	ND	non-detect
127-18-4	ND	non-detect
58-90-2	ND	non-detect
120-82-1	ND	non-detect
71-55-6	ND	non-detect

Composite

Value

(mg/kg)

ND

ND

ND

ND

ND

ND

ND

ND

CAS

Number

118-74-1

87-68-3

77-47-4

67-72-1

70-30-4

1888-71-7

465-73-6

143-50-0

Heating

Value

(BTU/lb)

Concentration

Limit

(mg/kg at

10,000

BTU/lb)

non-detect

non-detect

non-detect

non-detect

non-detect

non-detect

non-detect

non-detect

Minimum

Required

Detection

Limit

(mg/kg)

1900

1900

1900

1900

1000

1900

1900

3600

1.4

37

100

37 1900 37

1900

1900

1900 7.0

30

1900 37 37

1900 1900 37

Chemical Name	CAS Number	Composite Value (mg/kg)	Heating Value (BTU/lb)	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Required Detection Limit (mg/kg)
1,1,2-Trichloroethane [Vinyl trichloride]	79-00-5	ND		non-detect	37
Trichloroethylene	79-01-6	ND		non-detect	37
Trichlorofluoromethane [Trichlormonofluoromethane]	75-69-4	ND		non-detect	37
2,4,5-Trichlorophenol	95-95-4	ND		non-detect	1900
2,4,6-Trichlorophenol	88-06-2	ND		non-detect	1900
1,2,3-Trichloropropane	96-18-4	ND		non-detect	37
Vinyl Chloride	75-01-4	ND		non-detect	37

NA ND Not Applicable Non-Detect

-

Appendix C

SAIC

Statistical Analysis Results

Table 1. Gasoline - Combined Results (VOC non-detects from Composite 246)

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
	9.3	
Total Nitrogen as N		-
Total Halogens as Cl-	non-detect	25
Antimony	non-detect	7.0
Arsenic	non-detect	0.14
Barium	non-detect	14
Beryllium	non-detect	0.70
Cadmium	non-detect	0.70
Chromium	non-detect	1.4
Cobalt	non-detect	2.8
Lead	non-detect	7.0
Manganese	non-detect	0.70
Mercury	non-detect	0.10
Nickel	non-detect	2.8
Selenium	non-detect	0.14
Silver	non-detect	1.4
Thallium	non-detect	14
α,α-Dimethylphenethylamine	non-detect	670
α-Naphthylamine	non-detect	670
ß-Naphthylamine	non-detect	670
1,1,2,2-Tetrachloroethane	non-detect	34
1,1,2-Trichloroethane	non-detect	34
1,1-Dichloroethylene	non-detect	34
1,2,3,-Trichloropropane	non-detect	34
1,2,4,5-Tetrachlorobenzene	non-detect	670
1,2,4-Trichlorobenzene	non-detect	670
1,2-Dibromo-3-chloropropane	non-detect	34
1,2-Dichloroethylene (cis- or trans-)	non-detect	17
1,3,5-Trinitrobenzene	non-detect	670
1,4-Dichloro-2-butene (cis- or trans-)	non-detect	17
1,4-Naphthoquinone	non-detect	670
2,3,4,6-Tetrachlorophenol	non-detect	670
2,4,5-Trichlorophenol	non-detect	670
2,4,6-Trichlorophenol	non-detect	670
2,4-Dichlorophenol	non-detect	670
2,4-Dimethylphenol	non-detect	670
2,4-Dinitrophenol	non-detect	670
2,4-Dinitrotoluene	non-detect	670
2,6-Dichlorophenol	non-detect	670
2.6-Dinitrotoluene	non-detect	670
2-Acetylaminofluorene	non-detect	670
2-Chloroethyl vinyl ether	non-detect	34
2-Chloronaphthalene	non-detect	670
2-Chlorophenol	non-detect	670

Table 1. (Continued) Gasoline - Combined Results (VOC non-detects from Composite 246)

	Concentration Limit (mg/kg at 10,000	Minimum Detection Limit (mg/kg)
Chemical Name	BTU/lb)	
2-Picoline	non-detect	670
3,3'-Dichlorobenzidine	non-detect	670
3-3'-Dimethylbenzidine	non-detect	670
3-Methylcholanthrene	non-detect	670
4,6-Dinitro-o-cresol	non-detect	670
4-Aminobiphenyl	non-detect	670
4-Bromophenyl phenyl ether	non-detect	670
5-Nitro-o-toluidine	non-detect	670
7,12-Dimethylbenz[a]anthracene	non-detect	670
Acetonitrile	non-detect	34
Acetophenone	non-detect	670
Acrolein	non-detect	34
Acrylonitrile	non-detect	34
Allyl chloride	non-detect	34
Aniline	non-detect	670
Aramite	non-detect	670
Benzene	3500	-
Benzidine	non-detect	670
Benzo[a]anthracene	340	-
Benzo[a]pyrene	340	-
Benzo[b]fluoranthene	non-detect	670
Benzo[k]fluoranthene	non-detect	670
Bromoform	non-detect	34
Butyl benzyl phthalate	non-detect	670
Carbon disulfide	non-detect	34
Carbon tetrachloride	non-detect	34
Chlorobenzene	non-detect	34
Chlorobenzilate	non-detect	670
Chloroform	non-detect	34
Chloroprene	non-detect	34
Chrysene	340	-
cis-1,3-Dichloropropene	non-detect	34
Cresol (o-, m-, or p-)	non-detect	670
Di-n-butyl phthalate	non-detect	670
Di-n-octyl phthalate	340	-
Diallate	non-detect	670
Dibenz[a,j]acridine	non-detect	670
Dibenzo[a,h]anthracene	340	-
Dichlorodifluoromethane	non-detect	34
Diethyl phthalate	non-detect	670
Dimethoate	non-detect	670
Dimethyl phthalate	non-detect	670
Dinoseb	non-detect	670

Table 1. (Continued) Gasoline - Combined Results (VOC non-detects from Composite 246)

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Diphenylamine	non-detect	670
Disulfoton	non-detect	670
Ethyl methacrylate	non-detect	34
Ethyl methanesulfonate	non-detect	670
Famphur	non-detect	670
Fluoranthene		670
	non-detect	
Fluorene	non-detect	670
Hexachlorobenzene	non-detect	670
Hexachlorobutadiene	non-detect	670
Hexachlorocyclopentadiene	non-detect	670
Hexachloroethane	non-detect	670
Hexachlorophene	non-detect	17000
Hexachloropropene	non-detect	670
Indeno(1,2,3-cd)pyrene	non-detect	670
Isobutyl alcohol	non-detect	34
Isodrin	non-detect	670
Isosafrole	non-detect	670
Kepone	non-detect	1300
m-Dichlorobenzene	non-detect	670
Methacrylonitrile	non-detect	34
Methapyrilene	non-detect	670
Methyl bromide	non-detect	34
Methyl chloride	non-detect	34
Methyl ethyl ketone	non-detect	34
Methyl iodide	non-detect	34
Methyl methacrylate	non-detect	34
Methyl methanesulfonate	non-detect	670
Methyl parathion	non-detect	670
Methylene chloride	non-detect	34
N-Nitrosodi-n-butylamine	non-detect	670
N-Nitrosodiethylamine	non-detect	670
N-Nitrosomethylethylamine	non-detect	670
N-Nitrosomorpholine	non-detect	670
N-Nitrosopiperidine	non-detect	670
N-Nitrosopyrrolidine	non-detect	670
Naphthalene	2800	-
Nitrobenzene	non-detect	670
o-Dichlorobenzene	non-detect	670
o-Toluidine	non-detect	670
O,O,O-Triethyl phosphorothionate	non-detect	670
O,O-Diethyl O-pyrazinyl phosphothioate	non-detect	670
p-(Dimethylamino)azobenzene	non-detect	670
p-Chloro-m-cresol	non-detect	670

Table 1. (Continued) Gasoline - Combined Results (VOC non-detects from Composite 246)

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
p-Chloroaniline	non-detect	670
p-Dichlorobenzene	non-detect	670
p-Nitroaniline	non-detect	670
p-Nitrophenol	non-detect	670
p-Phenylenediamine	non-detect	670
Parathion	non-detect	670
Pentachlorobenzene	non-detect	670
Pentachloroethane	non-detect	34
Pentachloronitrobenzene	non-detect	670
Pentachlorophenol	non-detect	670
Phenacetin	non-detect	670
Phenol	non-detect	670
Phorate	non-detect	670
Pronamide	non-detect	670
Pyridine	non-detect	670
Safrole	non-detect	670
Tetrachloroethylene	non-detect	34
Tetraethyldithiopyrophosphate	non-detect	670
Toluene	35000	-
Trichloroethylene	non-detect	34
Trichlorofluoromethane	non-detect	34
Vinyl Chloride	non-detect	34

F	
\leq	
Σ	
Б	
ပ္ရ	
20	
С	
>	
Ŧ	
さ	
2	
4	
4	
Ш	
S	

Table 2.	
No.2 Fuel Oil - Combined Results	

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Total Nitrogen as N	110	-
Total Halogens as Cl-	non-detect	25
Antimony	non-detect	6.0
Arsenic	non-detect	0.12
Barium	non-detect	12
Beryllium	non-detect	0.60
Cadmium	non-detect	0.60
Chromium	non-detect	1.2
Cobalt	non-detect	2.4
Lead	6.6	-
Manganese	non-detect	0.60
Mercury	non-detect	0.11
Nickel	non-detect	2.4
Selenium	0.070	-
Silver	non-detect	1.2
Thallium	non-detect	12
α,α-Dimethylphenethylamine	non-detect	1200
α-Naphthylamine	non-detect	1200
ß-Naphthylamine	non-detect	1200
1,1,2,2-Tetrachloroethane	non-detect	34
1,1,2-Trichloroethane	non-detect	34
1,1-Dichloroethylene	non-detect	34
1,2,3,-Trichloropropane	non-detect	34
1,2,4,5-Tetrachlorobenzene	non-detect	1200
1,2,4-Trichlorobenzene	non-detect	1200
1,2-Dibromo-3-chloropropane	non-detect	34
1,2-Dichloroethylene (cis- or trans-)	non-detect	34
1,3,5-Trinitrobenzene	non-detect	1200
1,4-Dichloro-2-butene (cis- or trans-)	non-detect	34
1,4-Naphthoquinone	non-detect	1200
2,3,4,6-Tetrachlorophenol	non-detect	1200
2,4,5-Trichlorophenol	non-detect	1200
2,4,6-Trichlorophenol	non-detect	1200
2,4-Dichlorophenol	non-detect	1200
2,4-Dimethylphenol	non-detect	1200
2,4-Dinitrophenol	non-detect	1200
2,4-Dinitrotoluene	non-detect	1200
2,6-Dichlorophenol	non-detect	1200
2,6-Dinitrotoluene	non-detect	1200
2-Acetylaminofluorene	non-detect	1200
2-Chloroethyl vinyl ether	non-detect	34
2-Chloronaphthalene	non-detect	1200
2-Chlorophenol	non-detect	1200
2-Picoline	non-detect	1200

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
3,3'-Dichlorobenzidine	non-detect	1200
3-3'-Dimethylbenzidine	non-detect	1200
3-Methylcholanthrene	non-detect	1200
4.6-Dinitro-o-cresol	non-detect	1200
4-Aminobiphenyl	non-detect	1200
4-Bromophenyl phenyl ether	non-detect	1200
5-Nitro-o-toluidine	non-detect	1200
7,12-Dimethylbenz[a]anthracene	non-detect	1200
Acetonitrile	non-detect	34
Acetophenone	non-detect	1200
Acrolein	non-detect	34
Acrylonitrile	non-detect	34
Allyl chloride	non-detect	34
Aniline	non-detect	1200
Aramite	non-detect	1200
Benzene	21	-
Benzidine	non-detect	1200
Benzo[a]anthracene	610	-
Benzo[a]pyrene	610	_
Benzo[b]fluoranthene	non-detect	1200
Benzo[k]fluoranthene	non-detect	1200
Bromoform	non-detect	34
Butyl benzyl phthalate	non-detect	1200
Carbon disulfide	non-detect	34
Carbon tetrachloride	non-detect	34
Chlorobenzene	non-detect	34
Chlorobenzilate	non-detect	1200
Chloroform	non-detect	34
Chloroprene	non-detect	34
Chrysene	610	-
cis-1,3-Dichloropropene	non-detect	34
Cresol (o-, m-, or p-)	non-detect	1200
Di-n-butyl phthalate	non-detect	1200
Di-n-octyl phthalate	610	-
Diallate	non-detect	1200
Dibenz[a,j]acridine	non-detect	1200
Dibenzo[a,h]anthracene	610	-
Dichlorodifluoromethane	non-detect	34
Diethyl phthalate	non-detect	1200
Dimethoate	non-detect	1200
Dimethyl phthalate	non-detect	1200
Dinoseb	non-detect	1200
Diphenylamine	non-detect	1200
Disulfoton	non-detect	1200

Table 2. (Continued) No. 2 Fuel Oil - Combined Results)

Concentration Limit Minimum Detection (mg/kg at 10,000 Limit (mg/kg) **Chemical Name** BTU/lb) 34 Ethyl methacrylate non-detect Ethyl methanesulfonate non-detect 1200 Famphur non-detect 1200 Fluoranthene non-detect 1200 1200 Fluorene non-detect Hexachlorobenzene non-detect 1200 1200 Hexachlorobutadiene non-detect Hexachlorocyclopentadiene non-detect 1200 Hexachloroethane non-detect 1200 Hexachlorophene 29000 non-detect Hexachloropropene 1200 non-detect Indeno(1.2.3-cd)pyrene non-detect 1200 Isobutyl alcohol non-detect 34 Isodrin 1200 non-detect Isosafrole non-detect 1200 2300 Kepone non-detect m-Dichlorobenzene 1200 non-detect Methacrylonitrile 34 non-detect Methapyrilene non-detect 1200 Methvl bromide non-detect 34 Methyl chloride 34 non-detect Methyl ethyl ketone 34 non-detect Methyl iodide non-detect 34 Methyl methacrylate non-detect 34 Methyl methanesulfonate non-detect 1200 Methyl parathion non-detect 1200 Methylene chloride 34 non-detect N-Nitrosodi-n-butylamine non-detect 1200 N-Nitrosodiethvlamine non-detect 1200 N-Nitrosomethylethylamine 1200 non-detect N-Nitrosomorpholine non-detect 1200 N-Nitrosopiperidine 1200 non-detect <u>N-Nitrosopyr</u>rolidine non-detect 1200 Naphthalene 1200 _ Nitrobenzene non-detect 1200 o-Dichlorobenzene non-detect 1200 o-Toluidine non-detect 1200 O,O,O-Triethyl phosphorothionate non-detect 1200 1200 O.O-Diethyl O-pyrazinyl phosphothioate non-detect p-(Dimethylamino)azobenzene non-detect 1200 p-Chloro-m-cresol non-detect 1200 p-Chloroaniline non-detect 1200 p-Dichlorobenzene non-detect 1200

Table 2. (Continued) No. 2 Fuel Oil - Combined Results)

p-Nitroaniline

non-detect

1200

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
p-Nitrophenol	non-detect	1200
p-Phenylenediamine	non-detect	1200
Parathion	non-detect	1200
Pentachlorobenzene	non-detect	1200
Pentachloroethane	non-detect	34
Pentachloronitrobenzene	non-detect	1200
Pentachlorophenol	non-detect	1200
Phenacetin	non-detect	1200
Phenol	non-detect	1200
Phorate	non-detect	1200
Pronamide	non-detect	1200
Pyridine	non-detect	1200
Safrole	non-detect	1200
Tetrachloroethylene	non-detect	34
Tetraethyldithiopyrophosphate	non-detect	1200
Toluene	150	-
Trichloroethylene	non-detect	34
Trichlorofluoromethane	non-detect	34
Vinyl Chloride	non-detect	34

Table 2. (Continued) No.2 Fuel Oil - Combined Results

Z	
п	
Ν	
5	
2	
2	
Q	
Ξ	
2	
-	
5	
Q	
Ŷ	
◄	
4	
Δ.	
п	
ഗ	

Table 3.
No.4 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Total Nitrogen as N	1500	-
Total Halogens as Cl-	non-detect	10
Antimony	non-detect	11
Arsenic	non-detect	0.23
Barium	non-detect	23
Beryllium	non-detect	1.2
Cadmium	non-detect	1.2
Chromium	non-detect	2.3
Cobalt	non-detect	4.6
Lead	9.9	-
Manganese	non-detect	1.2
Mercury	non-detect	0.18
Nickel	16	-
Selenium	0.13	-
Silver	non-detect	2.3
Thallium	non-detect	23
α,α-Dimethylphenethylamine	non-detect	200
α-Naphthylamine	non-detect	200
ß-Naphthylamine	non-detect	200
1,1,2,2-Tetrachloroethane	non-detect	17
1,1,2-Trichloroethane	non-detect	17
1,1-Dichloroethylene	non-detect	17
1,2,3,-Trichloropropane	non-detect	17
1,2,4,5-Tetrachlorobenzene	non-detect	200
1,2,4-Trichlorobenzene	non-detect	200
1,2-Dibromo-3-chloropropane	non-detect	17
1,2-Dichloroethylene (cis- or trans-)	non-detect	17
1,3,5-Trinitrobenzene	non-detect	200
1,4-Dichloro-2-butene (cis- or trans-)	non-detect	17
1,4-Naphthoquinone	non-detect	200
2,3,4,6-Tetrachlorophenol	non-detect	200
2,4,5-Trichlorophenol	non-detect	200
2,4,6-Trichlorophenol	non-detect	200
2,4-Dichlorophenol	non-detect	200
2,4-Dimethylphenol	non-detect	200
2,4-Dinitrophenol	non-detect	200
2,4-Dinitrotoluene	non-detect	200
2,6-Dichlorophenol	non-detect	200
2,6-Dinitrotoluene	non-detect	200
2-Acetylaminofluorene	non-detect	200
2-Chloroethyl vinyl ether	non-detect	17
2-Chloronaphthalene	non-detect	200
2-Chlorophenol	non-detect	200
2-Picoline	non-detect	200

Table 3. (Continued) No. 4 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
3,3'-Dichlorobenzidine	non-detect	200
3-3'-Dimethylbenzidine	non-detect	200
3-Methylcholanthrene	non-detect	200
4,6-Dinitro-o-cresol	non-detect	200
4-Aminobiphenyl	non-detect	200
4-Bromophenyl phenyl ether	non-detect	200
5-Nitro-o-toluidine	non-detect	200
7,12-Dimethylbenz[a]anthracene	non-detect	200
Acetonitrile	non-detect	17
Acetophenone	non-detect	200
Acrolein	non-detect	17
Acrylonitrile	non-detect	17
Allyl chloride	non-detect	17
Aniline	non-detect	200
Aramite	non-detect	200
Benzene	22	-
Benzidine	non-detect	200
Benzo[a]anthracene	100	-
Benzo[a]pyrene	100	-
Benzo[b]fluoranthene	non-detect	200
Benzo[k]fluoranthene	non-detect	200
Bromoform	non-detect	17
Butyl benzyl phthalate	non-detect	200
Carbon disulfide	non-detect	17
Carbon tetrachloride	non-detect	17
Chlorobenzene	non-detect	17
Chlorobenzilate	non-detect	200
Chloroform	non-detect	17
Chloroprene	non-detect	17
Chrysene	100	-
cis-1,3-Dichloropropene	non-detect	17
Cresol (o-, m-, or p-)	non-detect	200
Di-n-butyl phthalate	non-detect	200
Di-n-octyl phthalate	100	-
Diallate	non-detect	200
Dibenz[a,j]acridine	non-detect	200
Dibenzo[a,h]anthracene	100	-
Dichlorodifluoromethane	non-detect	17
Diethyl phthalate	non-detect	200
Dimethoate	non-detect	200
Dimethyl phthalate	non-detect	200
Dinoseb	non-detect	200
Diphenylamine	non-detect	200
Disulfoton	non-detect	200

Table 3. (Continued) No. 4 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Ethyl methacrylate	non-detect	17
Ethyl methanesulfonate	non-detect	200
Famphur	non-detect	200
Fluoranthene	non-detect	200
Fluorene	110	-
Hexachlorobenzene	non-detect	200
Hexachlorobutadiene	non-detect	200
Hexachlorocyclopentadiene	non-detect	200
Hexachloroethane	non-detect	200
Hexachlorophene	non-detect	5000
Hexachloropropene	non-detect	200
Indeno(1,2,3-cd)pyrene	non-detect	200
Isobutyl alcohol	non-detect	17
Isodrin	non-detect	200
Isosafrole	non-detect	200
Kepone	non-detect	400
m-Dichlorobenzene	non-detect	200
Methacrylonitrile	non-detect	17
Methapyrilene	non-detect	200
Methyl bromide	non-detect	17
Methyl chloride	non-detect	17
Methyl ethyl ketone	non-detect	17
Methyl iodide	non-detect	17
Methyl methacrylate	non-detect	17
Methyl methanesulfonate	non-detect	200
Methyl parathion	non-detect	200
Methylene chloride	non-detect	17
N-Nitrosodi-n-butylamine	non-detect	200
N-Nitrosodiethylamine	non-detect	200
N-Nitrosomethylethylamine	non-detect	200
N-Nitrosomorpholine	non-detect	200
N-Nitrosopiperidine	non-detect	200
N-Nitrosopyrrolidine	non-detect	200
Naphthalene	340	-
Nitrobenzene	non-detect	200
o-Dichlorobenzene	non-detect	200
o-Toluidine	non-detect	200
O,O,O-Triethyl phosphorothionate	non-detect	200
O,O-Diethyl O-pyrazinyl phosphothioate	non-detect	200
p-(Dimethylamino)azobenzene	non-detect	200
p-Chloro-m-cresol	non-detect	200
p-Chloroaniline	non-detect	200
p-Dichlorobenzene	non-detect	200
p-Nitroaniline	non-detect	200

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
p-Nitrophenol	non-detect	200
p-Phenylenediamine	non-detect	200
Parathion	non-detect	200
Pentachlorobenzene	non-detect	200
Pentachloroethane	non-detect	17
Pentachloronitrobenzene	non-detect	200
Pentachlorophenol	non-detect	200
Phenacetin	non-detect	200
Phenol	non-detect	200
Phorate	non-detect	200
Pronamide	non-detect	200
Pyridine	non-detect	200
Safrole	non-detect	200
Tetrachloroethylene	non-detect	17
Tetraethyldithiopyrophosphate	non-detect	200
Toluene	110	-
Trichloroethylene	non-detect	17
Trichlorofluoromethane	non-detect	17
Vinyl Chloride	non-detect	17

Table 3. (Continued) No.4 Fuel Oil - Combined Results

_	
2	
п	
Ν	
5	
5	
×	
2	
п	
>	
Η	
C	
R	
4	
4	
4	
S	
5	

Table 4. No.6 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Total Nitrogen as N	3500	-
Total Halogens as Cl-	non-detect	10
Antimony	6.5	-
Arsenic	non-detect	0.20
Barium	non-detect	20
Beryllium	non-detect	1.0
Cadmium	non-detect	1.0
Chromium	non-detect	2.0
Cobalt	non-detect	4.1
Lead	30	_
Manganese	non-detect	1.0
Mercury	non-detect	0.22
Nickel	36	_
Selenium	0.12	-
Silver	non-detect	2.0
Thallium	non-detect	20
α,α-Dimethylphenethylamine	non-detect	640
α-Naphthylamine	non-detect	640
ß-Naphthylamine	non-detect	640
1,1,2,2-Tetrachloroethane	non-detect	20
1,1,2-Trichloroethane	non-detect	20
1,1-Dichloroethylene	non-detect	20
1,2,3,-Trichloropropane	non-detect	20
1,2,4,5-Tetrachlorobenzene	non-detect	640
1,2,4-Trichlorobenzene	non-detect	640
1,2-Dibromo-3-chloropropane	non-detect	20
1,2-Dichloroethylene (cis- or trans-)	non-detect	21
1,3,5-Trinitrobenzene	non-detect	640
1,4-Dichloro-2-butene (cis- or trans-)	non-detect	21
1,4-Naphthoquinone	non-detect	640
2,3,4,6-Tetrachlorophenol	non-detect	640
2,4,5-Trichlorophenol	non-detect	640
2,4,6-Trichlorophenol	non-detect	640
2,4-Dichlorophenol	non-detect	640
2,4-Dimethylphenol	non-detect	640
2,4-Dinitrophenol	non-detect	640
2,4-Dinitrotoluene	non-detect	640
2,6-Dichlorophenol	non-detect	640
2,6-Dinitrotoluene	non-detect	640
2-Acetylaminofluorene	non-detect	640
2-Chloroethyl vinyl ether	non-detect	20
2-Chloronaphthalene	non-detect	640
2-Chlorophenol	non-detect	640
2-Picoline	non-detect	640

Table 4. (Continued) No. 6 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
3,3'-Dichlorobenzidine	non-detect	640
3-3'-Dimethylbenzidine	non-detect	640
3-Methylcholanthrene	non-detect	640
4,6-Dinitro-o-cresol	non-detect	640
4-Aminobiphenyl	non-detect	640
4-Bromophenyl phenyl ether	non-detect	640
5-Nitro-o-toluidine	non-detect	640
7,12-Dimethylbenz[a]anthracene	non-detect	640
Acetonitrile	non-detect	20
Acetophenone	non-detect	640
Acrolein	non-detect	20
Acrylonitrile	non-detect	20
Allyl chloride	non-detect	20
Aniline	non-detect	640
Aramite	non-detect	640
Benzene	11	-
Benzidine	non-detect	640
Benzo[a]anthracene	930	-
Benzo[a]pyrene	530	_
Benzo[b]fluoranthene	420	_
Benzo[k]fluoranthene	non-detect	640
Bromoform	non-detect	20
Butyl benzyl phthalate	non-detect	640
Carbon disulfide	non-detect	20
Carbon tetrachloride	non-detect	20
Chlorobenzene	non-detect	20
Chlorobenzilate	non-detect	640
Chloroform	non-detect	20
Chloroprene	non-detect	20
Chrysene	1300	-
cis-1,3-Dichloropropene	non-detect	20
Cresol (o-, m-, or p-)	non-detect	790
Di-n-butyl phthalate	non-detect	640
Di-n-octyl phthalate	350	-
Diallate	non-detect	640
Dibenz[a,j]acridine	non-detect	640
Dibenzo[a,h]anthracene	350	-
Dichlorodifluoromethane	non-detect	20
Diethyl phthalate	non-detect	640
Dimethoate	non-detect	640
Dimethyl phthalate	non-detect	640
Dinoseb	non-detect	640
Diphenylamine	non-detect	640
Disulfoton	non-detect	640

Table 4. (Continued) No. 6 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Ethyl methacrylate	non-detect	20
Ethyl methanesulfonate	non-detect	640
Famphur	non-detect	640
Fluoranthene	non-detect	640
Fluorene	350	-
Hexachlorobenzene	non-detect	640
Hexachlorobutadiene	non-detect	640
Hexachlorocyclopentadiene	non-detect	640
Hexachloroethane	non-detect	640
Hexachlorophene	non-detect	16000
Hexachloropropene	non-detect	640
Indeno(1,2,3-cd)pyrene	350	-
Isobutyl alcohol	non-detect	20
Isodrin	non-detect	640
Isosafrole	non-detect	640
Kepone	non-detect	1300
m-Dichlorobenzene	non-detect	640
Methacrylonitrile	non-detect	20
Methapyrilene	non-detect	640
Methyl bromide	non-detect	20
Methyl chloride	non-detect	20
Methyl ethyl ketone	non-detect	20
Methyl iodide	non-detect	20
Methyl methacrylate	non-detect	20
Methyl methanesulfonate	non-detect	640
Methyl parathion	non-detect	640
Methylene chloride	non-detect	20
N-Nitrosodi-n-butylamine	non-detect	640
N-Nitrosodiethylamine	non-detect	640
N-Nitrosomethylethylamine	non-detect	640
N-Nitrosomorpholine	non-detect	640
N-Nitrosopiperidine	non-detect	640
N-Nitrosopyrrolidine	non-detect	640
Naphthalene	570	-
Nitrobenzene	non-detect	640
o-Dichlorobenzene	non-detect	640
o-Toluidine	non-detect	1300
0,0,0-Triethyl phosphorothionate	non-detect	640
O,O-Diethyl O-pyrazinyl phosphothioate	non-detect	640
p-(Dimethylamino)azobenzene	non-detect	640
p-Chloro-m-cresol	non-detect	640
p-Chloroaniline	non-detect	640
p-Dichlorobenzene		640
p-Dichlorobenzene p-Nitroaniline	non-detect non-detect	640

Table 4.	(Continued)
No.6 Fuel Oil -	Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
p-Nitrophenol	non-detect	640
p-Phenylenediamine	non-detect	640
Parathion	non-detect	640
Pentachlorobenzene	non-detect	640
Pentachloroethane	non-detect	20
Pentachloronitrobenzene	non-detect	640
Pentachlorophenol	non-detect	640
Phenacetin	non-detect	640
Phenol	non-detect	640
Phorate	non-detect	640
Pronamide	non-detect	640
Pyridine	non-detect	640
Safrole	non-detect	640
Tetrachloroethylene	non-detect	20
Tetraethyldithiopyrophosphate	non-detect	640
Toluene	41	_
Trichloroethylene	non-detect	20
Trichlorofluoromethane	non-detect	20
Vinyl Chloride	non-detect	20

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Total Nitrogen as N	1200	-
Total Halogens as Cl ⁻	non-detect	10
Antimony	5.5	-
Arsenic	non-detect	0.20
Barium	non-detect	20
Beryllium	non-detect	1.0
Cadmium	non-detect	1.0
Chromium	non-detect	2.0
Cobalt	non-detect	4.1
Lead	8.6	-
Manganese	non-detect	1.0
Mercury	non-detect	0.17
Nickel	3.7	-
Selenium	0.11	-
Silver	non-detect	2.0
Thallium	non-detect	20
α,α-Dimethylphenethylamine	non-detect	200
α-Naphthylamine	non-detect	200
β-Naphthylamine	non-detect	200
1,1,2,2-Tetrachloroethane	non-detect	17
1,1,2-Trichloroethane	non-detect	17
1,1-Dichloroethylene	non-detect	17
1,2,3,-Trichloropropane	non-detect	17
1,2,4,5-Tetrachlorobenzene	non-detect	200
1,2,4-Trichlorobenzene	non-detect	200
1,2-Dibromo-3-chloropropane	non-detect	17
1,2-Dichloroethylene (cis- or trans-)	non-detect	16
1,3,5-Trinitrobenzene	non-detect	200
1,4-Dichloro-2-butene (cis- or trans-)	non-detect	16
1,4-Naphthoquinone	non-detect	200
2,3,4,6-Tetrachlorophenol	non-detect	200
2,4,5-Trichlorophenol	non-detect	200
2,4,6-Trichlorophenol	non-detect	200
2,4-Dichlorophenol	non-detect	200
2,4-Dimethylphenol	non-detect	200
2,4-Dinitrophenol	non-detect	200
2,4-Dinitrotoluene	non-detect	200
2,6-Dichlorophenol	non-detect	200
2,6-Dinitrotoluene	non-detect	200
2-Acetylaminofluorene	non-detect	200
2-Chloroethyl vinyl ether	non-detect	17
2-Chloronaphthalene	non-detect	200
2-Chlorophenol	non-detect	200
2-Picoline	non-detect	200

Table 5.Composite 246 50th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
3,3'-Dichlorobenzidine	non-detect	200
3-3'-Dimethylbenzidine	non-detect	200
3-Methylcholanthrene	non-detect	200
4,6-Dinitro-o-cresol	non-detect	200
4-Aminobiphenyl	non-detect	200
4-Bromophenyl phenyl ether	non-detect	200
5-Nitro-o-toluidine	non-detect	200
7,12-Dimethylbenz[a]anthracene	non-detect	200
Acetonitrile	non-detect	17
Acetophenone	non-detect	200
Acrolein	non-detect	17
Acrylonitrile	non-detect	17
Allyl chloride	non-detect	17
Aniline	non-detect	200
Aramite	non-detect	200
Benzene	17	-
Benzidine	non-detect	200
Benzo[a]anthracene	300	-
Benzo[a]pyrene	230	-
Benzo[b]fluoranthene	120	-
Benzo[k]fluoranthene	non-detect	200
Bromoform	non-detect	17
Butyl benzyl phthalate	non-detect	200
Carbon disulfide	non-detect	17
Carbon tetrachloride	non-detect	17
Chlorobenzene	non-detect	17
Chlorobenzilate	non-detect	200
Chloroform	non-detect	17
Chloroprene	non-detect	17
Chrysene	300	-
cis-1,3-Dichloropropene	non-detect	17
Cresol (o-, m-, or p-)	non-detect	200
Di-n-butyl phthalate	non-detect	200
Di-n-octyl phthalate	110	-
Diallate	non-detect	200
Dibenz[a,j]acridine	non-detect	200
Dibenzo[a,h]anthracene	110	-
Dichlorodifluoromethane	non-detect	17
Diethyl phthalate	non-detect	200
Dimethoate	non-detect	200
Dimethyl phthalate	non-detect	200
Dinoseb	non-detect	200
Diphenylamine	non-detect	200
Disulfoton	non-detect	200

Table 5. (Continued)Composite 246 50th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Ethyl methacrylate	non-detect	17
Ethyl methanesulfonate	non-detect	200
Famphur	non-detect	200
Fluoranthene	non-detect	200
Fluorene	110	-
Hexachlorobenzene	non-detect	200
Hexachlorobutadiene	non-detect	200
Hexachlorocyclopentadiene	non-detect	200
Hexachloroethane	non-detect	200
Hexachlorophene	non-detect	5000
Hexachloropropene	non-detect	200
Indeno(1,2,3-cd)pyrene	110	-
Isobutyl alcohol	non-detect	17
Isodrin	non-detect	200
Isosafrole	non-detect	200
Kepone	non-detect	400
m-Dichlorobenzene	non-detect	200
Methacrylonitrile	non-detect	17
Methapyrilene	non-detect	200
Methyl bromide	non-detect	17
Methyl chloride	non-detect	17
Methyl ethyl ketone	non-detect	17
Methyl iodide	non-detect	17
Methyl methacrylate	non-detect	17
Methyl methanesulfonate	non-detect	200
Methyl parathion	non-detect	200
Methylene chloride	non-detect	17
N-Nitrosodi-n-butylamine	non-detect	200
N-Nitrosodiethylamine	non-detect	200
N-Nitrosomethylethylamine	non-detect	200
N-Nitrosomorpholine	non-detect	200
N-Nitrosopiperidine	non-detect	200
N-Nitrosopyrrolidine	non-detect	200
Naphthalene	330	-
Nitrobenzene	non-detect	200
o-Dichlorobenzene	non-detect	200
o-Toluidine	non-detect	200
O,O,O-Triethyl phosphorothionate	non-detect	200
O,O-Diethyl O-pyrazinyl phosphothioate	non-detect	200
p-(Dimethylamino)azobenzene	non-detect	200
p-Chloro-m-cresol	non-detect	200
p-Chloroaniline	non-detect	200
p-Dichlorobenzene	non-detect	200
p-Nitroaniline	non-detect	200

Table 5. (Continued)Composite 246 50th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
p-Nitrophenol	non-detect	200
p-Phenylenediamine	non-detect	200
Parathion	non-detect	200
Pentachlorobenzene	non-detect	200
Pentachloroethane	non-detect	17
Pentachloronitrobenzene	non-detect	200
Pentachlorophenol	non-detect	200
Phenacetin	non-detect	200
Phenol	non-detect	200
Phorate	non-detect	200
Pronamide	non-detect	200
Pyridine	non-detect	200
Safrole	non-detect	200
Tetrachloroethylene	non-detect	17
Tetraethyldithiopyrophosphate	non-detect	200
Toluene	98	_
Trichloroethylene	non-detect	17
Trichlorofluoromethane	non-detect	17
Vinyl Chloride	non-detect	17

Table 5. (Continued)Composite 246 50th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Total Nitrogen as N	2700	_
Total Halogens as Cl ⁻	non-detect	25
Antimony	5.90	-
Arsenic	non-detect	0.22
Barium	non-detect	22
Beryllium	non-detect	1.10
Cadmium	non-detect	1.10
Chromium	non-detect	2.20
Cobalt	non-detect	4.50
Lead	22	-
Manganese	non-detect	1.10
Mercury	non-detect	0.18
Nickel	26	-
Selenium	0.12	-
Silver	non-detect	2.20
Thallium	non-detect	22
α,α-Dimethylphenethylamine	non-detect	910
α-Naphthylamine	non-detect	910
β-Naphthylamine	non-detect	910
1,1,2,2-Tetrachloroethane	non-detect	34
1,1,2-Trichloroethane	non-detect	34
1,1-Dichloroethylene	non-detect	34
1,2,3,-Trichloropropane	non-detect	34
1,2,4,5-Tetrachlorobenzene	non-detect	910
1,2,4-Trichlorobenzene	non-detect	910
1,2-Dibromo-3-chloropropane	non-detect	34
1,2-Dichloroethylene (cis- or trans-)	non-detect	17
1,3,5-Trinitrobenzene	non-detect	1100
1,4-Dichloro-2-butene (cis- or trans-)	non-detect	17
1,4-Naphthoquinone	non-detect	910
2,3,4,6-Tetrachlorophenol	non-detect	910
2,4,5-Trichlorophenol	non-detect	910
2,4,6-Trichlorophenol	non-detect	910
2,4-Dichlorophenol	non-detect	910
2,4-Dimethylphenol	non-detect	910
2,4-Dinitrophenol	non-detect	910
2,4-Dinitrotoluene	non-detect	910
2,6-Dichlorophenol	non-detect	910
2,6-Dinitrotoluene	non-detect	910
2-Acetylaminofluorene	non-detect	910
2-Chloroethyl vinyl ether	non-detect	34
2-Chloronaphthalene	non-detect	910
2-Chlorophenol	non-detect	910
2-Picoline	non-detect	910

Table 6.Composite 246 90th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
3,3'-Dichlorobenzidine	non-detect	910
3-3'-Dimethylbenzidine	non-detect	910
3-Methylcholanthrene	non-detect	910
4,6-Dinitro-o-cresol	non-detect	910
4-Aminobiphenyl	non-detect	910
4-Bromophenyl phenyl ether	non-detect	910
5-Nitro-o-toluidine	non-detect	910
7,12-Dimethylbenz[a]anthracene	non-detect	910
Acetonitrile	non-detect	34
Acetophenone	non-detect	910
Acrolein	non-detect	34
Acrylonitrile	non-detect	34
Allyl chloride	non-detect	34
Aniline	non-detect	910
Aramite	non-detect	910
Benzene	22	-
Benzidine	non-detect	910
Benzo[a]anthracene	760	-
Benzo[a]pyrene	530	-
Benzo[b]fluoranthene	500	-
Benzo[k]fluoranthene	non-detect	910
Bromoform	non-detect	34
Butyl benzyl phthalate	non-detect	910
Carbon disulfide	non-detect	34
Carbon tetrachloride	non-detect	34
Chlorobenzene	non-detect	34
Chlorobenzilate	non-detect	910
Chloroform	non-detect	34
Chloroprene	non-detect	34
Chrysene	930	-
cis-1,3-Dichloropropene	non-detect	34
Cresol (o-, m-, or p-)	non-detect	200
Di-n-butyl phthalate	non-detect	910
Di-n-octyl phthalate	480	-
Diallate	non-detect	910
Dibenz[a,j]acridine	non-detect	910
Dibenzo[a,h]anthracene	480	-
Dichlorodifluoromethane	non-detect	34
Diethyl phthalate	non-detect	910
Dimethoate	non-detect	910
Dimethyl phthalate	non-detect	910
Dinoseb	non-detect	910
Diphenylamine	non-detect	910
Disulfoton	non-detect	910

Table 6. (Continued)Composite 246 90th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Ethyl methacrylate	non-detect	34
Ethyl methanesulfonate	non-detect	910
Famphur	non-detect	910
Fluoranthene	non-detect	910
Fluorene	480	-
Hexachlorobenzene	non-detect	910
Hexachlorobutadiene	non-detect	910
Hexachlorocyclopentadiene	non-detect	910
Hexachloroethane	non-detect	910
Hexachlorophene	non-detect	22000
Hexachloropropene	non-detect	910
Indeno(1,2,3-cd)pyrene	480	-
Isobutyl alcohol	non-detect	34
Isodrin	non-detect	910
Isosafrole	non-detect	910
Kepone	non-detect	1800
m-Dichlorobenzene	non-detect	910
Methacrylonitrile	non-detect	34
Methapyrilene	non-detect	910
Methyl bromide	non-detect	34
Methyl chloride	non-detect	34
Methyl ethyl ketone	non-detect	34
Methyl iodide	non-detect	34
Methyl methacrylate	non-detect	34
Methyl methanesulfonate	non-detect	910
Methyl parathion	non-detect	910
Methylene chloride	non-detect	34
N-Nitrosodi-n-butylamine	non-detect	910
N-Nitrosodiethylamine	non-detect	910
N-Nitrosomethylethylamine	non-detect	910
N-Nitrosomorpholine	non-detect	910
N-Nitrosopiperidine	non-detect	910
N-Nitrosopyrrolidine	non-detect	910
Naphthalene	1000	-
Nitrobenzene	non-detect	910
o-Dichlorobenzene	non-detect	910
o-Toluidine	non-detect	1200
O,O,O-Triethyl phosphorothionate	non-detect	910
O,O-Diethyl O-pyrazinyl phosphothioate	non-detect	910
p-(Dimethylamino)azobenzene	non-detect	910
p-Chloro-m-cresol	non-detect	910
p-Chloroaniline	non-detect	910
p-Dichlorobenzene	non-detect	910
p-Nitroaniline	non-detect	910

Table 6. (Continued)Composite 246 90th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
p-Nitrophenol	non-detect	910
p-Phenylenediamine	non-detect	910
Parathion	non-detect	910
Pentachlorobenzene	non-detect	910
Pentachloroethane	non-detect	34
Pentachloronitrobenzene	non-detect	910
Pentachlorophenol	non-detect	910
Phenacetin	non-detect	910
Phenol	non-detect	910
Phorate	non-detect	910
Pronamide	non-detect	910
Pyridine	non-detect	910
Safrole	non-detect	910
Tetrachloroethylene	non-detect	34
Tetraethyldithiopyrophosphate	non-detect	910
Toluene	140	_
Trichloroethylene	non-detect	34
Trichlorofluoromethane	non-detect	34
Vinyl Chloride	non-detect	34

Table 6. (Continued)Composite 246 90th Percentile - Combined Results

US EPA ARCHIVE DOCUMENT

Table 7. Composite All 50th Percentile - Combined Results (VOC non-detects from Composite 246)

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Total Nitrogen as N	170	-
Total Halogens as Cl ⁻	non-detect	10
Antimony	4.7	-
Arsenic	non-detect	0.14
Barium	non-detect	18
Beryllium	non-detect	0.90
Cadmium	non-detect	0.90
Chromium	non-detect	1.8
Cobalt	non-detect	3.6
Lead	7.0	-
Manganese	non-detect	0.90
Mercury	non-detect	0.11
Nickel	2.4	-
Selenium	0.090	_
Silver	non-detect	1.8
Thallium	non-detect	18
α, α -Dimethylphenethylamine	non-detect	220
α-Naphthylamine	non-detect	220
ß-Naphthylamine	non-detect	220
1,1,2,2-Tetrachloroethane	non-detect	17
1,1,2-Trichloroethane	non-detect	17
1,1-Dichloroethylene	non-detect	17
1,2,3,-Trichloropropane	non-detect	17
1,2,4,5-Tetrachlorobenzene	non-detect	220
1,2,4-Trichlorobenzene	non-detect	220
1,2-Dibromo-3-chloropropane	non-detect	17
1,2-Dichloroethylene (cis- or trans-)	non-detect	16
1,3,5-Trinitrobenzene	non-detect	220
1,4-Dichloro-2-butene (cis- or trans-)	non-detect	16
1,4-Naphthoquinone	non-detect	220
2,3,4,6-Tetrachlorophenol	non-detect	220
2,4,5-Trichlorophenol	non-detect	220
2,4,6-Trichlorophenol	non-detect	220
2,4-Dichlorophenol	non-detect	220
2,4-Dimethylphenol	non-detect	220
2,4-Dinitrophenol	non-detect	220
2,4-Dinitrotoluene	non-detect	220
2,6-Dichlorophenol	non-detect	220
2,6-Dinitrotoluene	non-detect	220
2-Acetylaminofluorene	non-detect	220
2-Chloroethyl vinyl ether	non-detect	17
2-Chloronaphthalene	non-detect	220
2-Chlorophenol	non-detect	220

Table 7. (Continued) Composite All 50th Percentile - Combined Results (VOC non-detects from Composite 246)

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
2-Picoline	non-detect	220
3,3'-Dichlorobenzidine	non-detect	220
3-3'-Dimethylbenzidine	non-detect	220
3-Methylcholanthrene	non-detect	220
4,6-Dinitro-o-cresol	non-detect	220
4-Aminobiphenyl	non-detect	220
4-Bromophenyl phenyl ether	non-detect	220
5-Nitro-o-toluidine	non-detect	220
7,12-Dimethylbenz[a]anthracene	non-detect	220
Acetonitrile	non-detect	17
Acetophenone	non-detect	220
Acrolein	non-detect	17
Acrylonitrile	non-detect	17
Allyl chloride	non-detect	17
Aniline	non-detect	220
Aramite	non-detect	220
Benzene	21	-
Benzidine	non-detect	220
Benzo[a]anthracene	140	-
Benzo[a]pyrene	140	-
Benzo[b]fluoranthene	140	-
Benzo[k]fluoranthene	non-detect	220
Bromoform	non-detect	17
Butyl benzyl phthalate	non-detect	220
Carbon disulfide	non-detect	17
Carbon tetrachloride	non-detect	17
Chlorobenzene	non-detect	17
Chlorobenzilate	non-detect	220
Chloroform	non-detect	17
Chloroprene	non-detect	17
Chrysene	140	-
cis-1,3-Dichloropropene	non-detect	17
Cresol (o-, m-, or p-)	non-detect	200
Di-n-butyl phthalate	non-detect	220
Di-n-octyl phthalate	120	-
Diallate	non-detect	220
Dibenz[a,j]acridine	non-detect	220
Dibenzo[a,h]anthracene	140	-
Dichlorodifluoromethane	non-detect	17
Diethyl phthalate	non-detect	220
Dimethoate	non-detect	220
Dimetholate	non-detect	220
Dinoseb	non-detect	220

Table 7. (Continued) Composite All 50th Percentile - Combined Results (VOC non-detects from Composite 246)

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Diphenylamine	non-detect	220
Disulfoton		220
	non-detect	
Ethyl methacrylate	non-detect	17
Ethyl methanesulfonate	non-detect	220
Famphur	non-detect	220
Fluoranthene	non-detect	220
Fluorene	120	-
Hexachlorobenzene	non-detect	220
Hexachlorobutadiene	non-detect	220
Hexachlorocyclopentadiene	non-detect	220
Hexachloroethane	non-detect	220
Hexachlorophene	non-detect	5500
Hexachloropropene	non-detect	220
Indeno(1,2,3-cd)pyrene	140	-
Isobutyl alcohol	non-detect	17
Isodrin	non-detect	220
Isosafrole	non-detect	220
Kepone	non-detect	440
m-Dichlorobenzene	non-detect	220
Methacrylonitrile	non-detect	17
Methapyrilene	non-detect	220
Methyl bromide	non-detect	17
Methyl chloride	non-detect	17
Methyl ethyl ketone	non-detect	17
Methyl iodide	non-detect	17
Methyl methacrylate	non-detect	17
Methyl methanesulfonate	non-detect	220
Methyl parathion	non-detect	220
Methylene chloride	non-detect	17
N-Nitrosodi-n-butylamine	non-detect	220
N-Nitrosodiethylamine	non-detect	220
N-Nitrosomethylethylamine	non-detect	220
N-Nitrosomorpholine	non-detect	220
N-Nitrosopiperidine	non-detect	220
N-Nitrosopyrrolidine	non-detect	220
Naphthalene	360	-
Nitrobenzene	non-detect	220
o-Dichlorobenzene	non-detect	220
o-Toluidine	non-detect	270
O,O,O-Triethyl phosphorothionate	non-detect	220
O,O-Diethyl O-pyrazinyl phosphotohioate	non-detect	220
p-(Dimethylamino)azobenzene	non-detect	220
p-Chloro-m-cresol	non-detect	220

Table 7. (Continued) Composite All 50th Percentile - Combined Results (VOC non-detects from Composite 246)

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
p-Chloroaniline	non-detect	220
p-Dichlorobenzene	non-detect	220
p-Nitroaniline	non-detect	220
p-Nitrophenol	non-detect	220
p-Phenylenediamine	non-detect	220
Parathion	non-detect	220
Pentachlorobenzene	non-detect	220
Pentachloroethane	non-detect	17
Pentachloronitrobenzene	non-detect	220
Pentachlorophenol	non-detect	220
Phenacetin	non-detect	220
Phenol	non-detect	220
Phorate	non-detect	220
Pronamide	non-detect	220
Pyridine	non-detect	220
Safrole	non-detect	220
Tetrachloroethylene	non-detect	17
Tetraethyldithiopyrophosphate	non-detect	220
Toluene	110	-
Trichloroethylene	non-detect	17
Trichlorofluoromethane	non-detect	17
Vinyl Chloride	non-detect	17

Table 8. Composite All 90th Percentile - Combined Results (VOC non-detects from Composite 246)

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Total Nitrogen as N	1800	
Total Halogens as Cl ⁻	non-detect	25
Antimony	5.9	
Arsenic	non-detect	0.22
Barium	non-detect	22
Beryllium	non-detect	1.1
Cadmium	non-detect	1.1
Chromium	non-detect	2.2
Cobalt	non-detect	4.4
Lead	22	- 11
Manganese	non-detect	1.1
Mercury	non-detect	0.18
Nickel	18	-
Selenium	0.12	
Silver	non-detect	2.2
Thallium	non-detect	22
α,α-Dimethylphenethylamine	non-detect	700
α-Naphthylamine	non-detect	700
ß-Naphthylamine	non-detect	700
1,1,2,2-Tetrachloroethane	non-detect	34
1,1,2-Trichloroethane	non-detect	34
1,1-Dichloroethylene	non-detect	34
1,2,3,-Trichloropropane	non-detect	34
1,2,4,5-Tetrachlorobenzene	non-detect	700
1,2,4-Trichlorobenzene	non-detect	700
1,2-Dibromo-3-chloropropane	non-detect	34
1,2-Dichloroethylene (cis- or trans-)	non-detect	17
1,3,5-Trinitrobenzene	non-detect	900
1,4-Dichloro-2-butene (cis- or trans-)	non-detect	17
1,4-Naphthoquinone	non-detect	700
2,3,4,6-Tetrachlorophenol	non-detect	700
2,4,5-Trichlorophenol	non-detect	700
2,4,6-Trichlorophenol	non-detect	700
2,4-Dichlorophenol	non-detect	700
2.4-Dimethylphenol	non-detect	700
2,4-Dinitrophenol	non-detect	700
2,4-Dinitrotoluene	non-detect	700
2,6-Dichlorophenol	non-detect	700
2.6-Dinitrotoluene	non-detect	700
2-Acetylaminofluorene	non-detect	700
2-Chloroethyl vinyl ether	non-detect	34
2-Chloronaphthalene		700
2-Chlorophenol	non-detect	700

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
2-Picoline	· · · · · · · · · · · · · · · · · · ·	700
	non-detect	
3,3'-Dichlorobenzidine	non-detect	700
3-3'-Dimethylbenzidine	non-detect	700
3-Methylcholanthrene	non-detect	700
4,6-Dinitro-o-cresol	non-detect	700
4-Aminobiphenyl	non-detect	700
4-Bromophenyl phenyl ether	non-detect	700
5-Nitro-o-toluidine	non-detect	700
7,12-Dimethylbenz[a]anthracene	non-detect	700
Acetonitrile	non-detect	34
Acetophenone	non-detect	700
Acrolein	non-detect	34
Acrylonitrile	non-detect	34
Allyl chloride	non-detect	34
Aniline	non-detect	700
Aramite	non-detect	700
Benzene	3300	-
Benzidine	non-detect	700
Benzo[a]anthracene	610	-
Benzo[a]pyrene	530	-
Benzo[b]fluoranthene	390	-
Benzo[k]fluoranthene	non-detect	700
Bromoform	non-detect	34
Butyl benzyl phthalate	non-detect	700
Carbon disulfide	non-detect	34
Carbon tetrachloride	non-detect	34
Chlorobenzene	non-detect	34
Chlorobenzilate	non-detect	700
Chloroform	non-detect	34
Chloroprene	non-detect	34
Chrysene	610	-
cis-1,3-Dichloropropene	non-detect	34
Cresol (o-, m-, or p-)	non-detect	200
Di-n-butyl phthalate	non-detect	700
Di-n-octyl phthalate	360	-
Diallate	non-detect	700
Dibenz[a,j]acridine	non-detect	700
Dibenzo[a,h]anthracene	360	-
Dichlorodifluoromethane	non-detect	34
Diethyl phthalate	non-detect	700
		700
Dimethoate	non-detect	
Dimethyl phthalate Dinoseb	non-detect non-detect	700 700

Chemical Name	Concentration Limit (mg/kg at 10,000	Minimum Detection Limit (mg/kg)
	BTU/lb)	700
Diphenylamine	non-detect	700
Disulfoton	non-detect	700
Ethyl methacrylate	non-detect	34
Ethyl methanesulfonate	non-detect	700
Famphur	non-detect	700
Fluoranthene	non-detect	700
Fluorene	360	-
Hexachlorobenzene	non-detect	700
Hexachlorobutadiene	non-detect	700
Hexachlorocyclopentadiene	non-detect	700
Hexachloroethane	non-detect	700
Hexachlorophene	non-detect	18000
Hexachloropropene	non-detect	700
Indeno(1,2,3-cd)pyrene	360	-
Isobutyl alcohol	non-detect	34
Isodrin	non-detect	700
Isosafrole	non-detect	700
Kepone	non-detect	1400
m-Dichlorobenzene	non-detect	700
Methacrylonitrile	non-detect	34
Methapyrilene	non-detect	700
Methyl bromide	non-detect	34
Methyl chloride	non-detect	34
Methyl ethyl ketone	non-detect	34
Methyl iodide	non-detect	34
Methyl methacrylate	non-detect	34
Methyl methanesulfonate	non-detect	700
Methyl parathion	non-detect	700
Methylene chloride	non-detect	34
N-Nitrosodi-n-butylamine	non-detect	700
N-Nitrosodiethylamine	non-detect	700
N-Nitrosomethylethylamine	non-detect	700
N-Nitrosomorpholine	non-detect	700
N-Nitrosopiperidine	non-detect	700
N-Nitrosopyrrolidine	non-detect	700
Naphthalene	1300	-
Nitrobenzene	non-detect	700
o-Dichlorobenzene	non-detect	700
o-Toluidine	non-detect	1000
O,O,O-Triethyl phosphorothionate	non-detect	700
O,O-Diethyl O-pyrazinyl phosphothioate	non-detect	700
p-(Dimethylamino)azobenzene	non-detect	700
p-Chloro-m-cresol	non-detect	700

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
p-Chloroaniline	non-detect	700
p-Dichlorobenzene	non-detect	700
p-Nitroaniline	non-detect	700
p-Nitrophenol	non-detect	700
p-Phenylenediamine	non-detect	700
Parathion	non-detect	700
Pentachlorobenzene	non-detect	700
Pentachloroethane	non-detect	34
Pentachloronitrobenzene	non-detect	700
Pentachlorophenol	non-detect	700
Phenacetin	non-detect	700
Phenol	non-detect	700
Phorate	non-detect	700
Pronamide	non-detect	700
Pyridine	non-detect	700
Safrole	non-detect	700
Tetrachloroethylene	non-detect	34
Tetraethyldithiopyrophosphate	non-detect	700
Toluene	25000	
Trichloroethylene	non-detect	34
Trichlorofluoromethane	non-detect	34
Vinyl Chloride	non-detect	34

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
1,1,1-Trichloroethane	non-detect	34
1,1,2-Trichloro-1,2,2-trifluoroethane	non-detect	30
1,1-Dichloro-1-propene	non-detect	30
1,1-Dichloroethane	non-detect	34
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	non-detect	8.8
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	non-detect	8.8
1,2,3,4-Tetrachlorobenzene	non-detect	14
1,2,3,5-Tetrachlorobenzene	non-detect	14
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	non-detect	8.8
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	non-detect	8.8
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	non-detect	8.8
1,2,3,7,8-Pentachlorodibenzo-p-furan	non-detect	8.8
1,2,3-Trichlorobenzene	non-detect	14
1,2-Dichloroethane	non-detect	34
1,2-Dichloropropane	non-detect	34
1,3-Dichloro-2-propanol	non-detect	30
1,3-Dichloropropane	non-detect	30
1,3-Propane sultone	non-detect	14
1-Chloronaphthalene	non-detect	14
2,2-Dichloropropane	non-detect	30
2,3,4,5-Tetrachlorophenol	non-detect	14
2,3,4-Trichlorophenol	non-detect	14
2,3,5-Trichlorophenol	non-detect	14
2,3,6-Trichlorophenol	non-detect	14
2,3,7,8-Tetrachlorodibenzo-p-dioxin	non-detect	3.5
2,3,7,8-Tetrachlorodibenzo-p-furan	non-detect	3.5
2,3-Dichloro-1-propene	non-detect	30
2,3-Dichlorophenol	non-detect	14
2,4-D	non-detect	7.0
2,5-Dichlorophenol	non-detect	14
2-Fluoroacetamide	non-detect	14
2-Methylnaphthalene	1200	-
2-Nitropropane	non-detect	30
3,3'-Dimethoxybenzidine	non-detect	14
3,4-Dichlorophenol	non-detect	14
3,5-Dichlorophenol	non-detect	14
3-/4-Chlorophenol	non-detect	14

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
3-Nitroaniline	non-detect	670
4,4'-methylene-bis(2-chloroaniline)	non-detect	14
4-Aminopyridine	non-detect	14
4-Chlorophenyl phenyl ether	non-detect	670
6-Propyl-2-thiouracil	non-detect	14
Acenaphthene	non-detect	670
Acetone cyanohydrin	non-detect	14
Allyl alcohol	non-detect	30
Ammonium vanadate	non-detect	32
Anthracene	non-detect	670
Aroclor-1016	non-detect	1.4
Aroclor-1221	non-detect	1.4
Aroclor-1232	non-detect	1.4
Aroclor-1242	non-detect	1.4
Aroclor-1248	non-detect	1.4
Aroclor-1254	non-detect	1.4
Aroclor-1260	non-detect	1.4
Arsenic acid	non-detect	0.27
Arsenic pentoxide	non-detect	0.22
Arsenic trioxide	non-detect	0.19
Barium Cyanide	non-detect	3.7
Benzal chloride	non-detect	14
Benzenethiol	non-detect	30
Benzyl chloride	non-detect	14
Bis(2-chloroethoxy)methane	non-detect	670
Bis(2-chloroethyl)ether	non-detect	670
Bis(2-ethylhexyl)phthalate	non-detect	670
Bromide	non-detect	5.0
Bromodichloromethane	non-detect	34
Calcium Cyanide	non-detect	1.8
Calcium chromate	non-detect	4.2
Chlordane	non-detect	14
Chloride	6.2	-
Chloroethane	non-detect	34
Copper Cyanide	non-detect	1.7
Cyanide	non-detect	1.0
Cyanogen Bromide	non-detect	6.6

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
Cyanogen Chloride	non-detect	103
Di-selenium-tetra-sulfide	non-detect	830
Dibenzofuran	non-detect	670
Dibromochloromethane	non-detect	34
Endosulfan I	non-detect	1.4
Endosulfan II	non-detect	1.4
Endothall	non-detect	14
Endrin	non-detect	1.4
Endrin aldehyde	non-detect	1.4
Endrin ketone	non-detect	1.4
Epichlorohydrin	non-detect	30
Ethyl carbamate	non-detect	14
Ethylene glycol monoethyl ether	non-detect	14
Ethylenethiourea (2-Imidazolidinethione)	non-detect	14
Fluoride	non-detect	3.0
Heptachlor	non-detect	1.4
Heptachlor epoxide	non-detect	2.8
Lead acetate	non-detect	13
Lead phosphate	non-detect	9.2
MNNG (N-Metyl-N-nitroso-N'-nitroguanidine)	non-detect	14
Methomyl	non-detect	7.0
N-Nitrosodiphenylamine	non-detect	670
Nickel Cyanide	non-detect	3.5
Nickel carbonyl	non-detect	8.2
Nicotine	non-detect	14
Octachlorodibenzodioxin	non-detect	18
Octachlorodibenzofuran	non-detect	18
Osmium tetroxide	non-detect	41
Phenanthrene	non-detect	670
Phenylthiourea	non-detect	7.0
Potassium Cyanide	non-detect	2.5
Potassium Silver Cyanide	non-detect	2.9
Propargyl alcohol	non-detect	30
Pyrene	non-detect	670
Selenium dioxide	non-detect	0.20
Selenium sulfide	non-detect	0.31
Silver Cyanide	non-detect	2.6

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
Silvex	non-detect	7.0
Strychnine	non-detect	14
Tetra-selenium-tetra-sulfide	non-detect	1600
Tetraethyl lead	non-detect	11
Thallium acetate	non-detect	18
Thallium carbonate	non-detect	16
Thallium chloride	non-detect	17
Thallium nitrate	non-detect	18
Thallium oxide	non-detect	15
Thallium sulfate	non-detect	17
Thioacetamide	non-detect	7.0
Thiofanox	non-detect	14
Thiourea	non-detect	7.0
Toluene-2,4-diamine	non-detect	7.0
Toluene-2,6-diamine	non-detect	7.0
Vanadium pentoxide	non-detect	18
Zinc Cyanide	non-detect	2.3
Zinc phosphide	non-detect	0.37
alpha-BHC	non-detect	1.4
beta-BHC	non-detect	1.4
delta-BHC	non-detect	1.4
gamma-BHC (Lindane)	non-detect	1.4
m-Dinitrobenzene	non-detect	670
p-Toluidine	non-detect	14
trans-1,3-Dichloropropene	non-detect	34

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
1,1,1-Trichloroethane	non-detect	34
1,1,2-Trichloro-1,2,2-trifluoroethane	non-detect	30
1,1-Dichloro-1-propene	non-detect	30
1,1-Dichloroethane	non-detect	34
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	non-detect	75
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	non-detect	75
1,2,3,4-Tetrachlorobenzene	non-detect	100
1,2,3,5-Tetrachlorobenzene	non-detect	100
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	non-detect	75
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	non-detect	75
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	non-detect	75
1,2,3,7,8-Pentachlorodibenzo-p-furan	non-detect	75
1,2,3-Trichlorobenzene	non-detect	100
1,2-Dichloroethane	non-detect	34
1,2-Dichloropropane	non-detect	34
1,3-Dichloro-2-propanol	non-detect	30
1,3-Dichloropropane	non-detect	30
1,3-Propane sultone	non-detect	100
1-Chloronaphthalene	non-detect	100
2,2-Dichloropropane	non-detect	30
2,3,4,5-Tetrachlorophenol	non-detect	100
2,3,4-Trichlorophenol	non-detect	100
2,3,5-Trichlorophenol	non-detect	100
2,3,6-Trichlorophenol	non-detect	100
2,3,7,8-Tetrachlorodibenzo-p-dioxin	non-detect	30
2,3,7,8-Tetrachlorodibenzo-p-furan	non-detect	30
2,3-Dichloro-1-propene	non-detect	30
2,3-Dichlorophenol	non-detect	100
2,4-D	non-detect	6.0
2,5-Dichlorophenol	non-detect	100
2-Fluoroacetamide	non-detect	100
2-Methylnaphthalene	3400	-
2-Nitropropane	non-detect	30
3,3'-Dimethoxybenzidine	non-detect	100
3,4-Dichlorophenol	non-detect	100
3,5-Dichlorophenol	non-detect	100
3-/4-Chlorophenol	non-detect	100
3-Nitroaniline	non-detect	1200

Table 2A. No.2 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
4,4'-methylene-bis(2-chloroaniline)	non-detect	100
4-Aminopyridine	non-detect	100
4-Chlorophenyl phenyl ether	non-detect	1200
6-Propyl-2-thiouracil	non-detect	100
Acenaphthene	non-detect	1200
Acetone cyanohydrin	non-detect	100
Allyl alcohol	non-detect	30
Ammonium vanadate	non-detect	28
Anthracene	non-detect	1200
Aroclor-1016	non-detect	1.2
Aroclor-1221	non-detect	1.2
Aroclor-1232	non-detect	1.2
Aroclor-1242	non-detect	1.2
Aroclor-1248	non-detect	1.2
Aroclor-1254	non-detect	1.2
Aroclor-1260	non-detect	1.2
Arsenic acid	non-detect	0.23
Arsenic pentoxide	non-detect	0.18
Arsenic trioxide	non-detect	0.16
Barium Cyanide	non-detect	3.7
Benzal chloride	non-detect	100
Benzenethiol	non-detect	30
Benzyl chloride	non-detect	100
Bis(2-chloroethoxy)methane	non-detect	1200
Bis(2-chloroethyl)ether	non-detect	1200
Bis(2-ethylhexyl)phthalate	non-detect	1200
Bromide	non-detect	5.0
Bromodichloromethane	non-detect	34
Calcium Cyanide	non-detect	1.8
Calcium chromate	non-detect	3.6
Chlordane	non-detect	12
Chloride	non-detect	5.0
Chloroethane	non-detect	34
Copper Cyanide	non-detect	1.7
Cyanide	non-detect	1.0
Cyanogen Bromide	non-detect	6.6
Cyanogen Chloride	non-detect	8.6
Di-selenium-tetra-sulfide	non-detect	370

Table 2A. No.2 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Dibenzofuran	non-detect	1200
Dibromochloromethane	non-detect	34
Endosulfan I	non-detect	1.2
Endosulfan II	non-detect	1.2
Endothall	non-detect	100
Endrin	non-detect	1.2
Endrin aldehyde	non-detect	1.2
Endrin ketone	non-detect	1.2
Epichlorohydrin	non-detect	30
Ethyl carbamate	non-detect	100
Ethylene glycol monoethyl ether	non-detect	100
Ethylenethiourea (2-Imidazolidinethione)	non-detect	12
Fluoride	non-detect	3.0
Heptachlor	non-detect	1.2
Heptachlor epoxide	non-detect	2.4
Lead acetate	non-detect	22
Lead phosphate	non-detect	15
MNNG (N-Metyl-N-nitroso-N'-nitroguanidine)	non-detect	12
Methomyl	non-detect	6.0
N-Nitrosodiphenylamine	non-detect	1200
Nickel Cyanide	non-detect	3.5
Nickel carbonyl	non-detect	7.0
Nicotine	non-detect	100
Octachlorodibenzodioxin	non-detect	150
Octachlorodibenzofuran	non-detect	150
Osmium tetroxide	non-detect	40
Phenanthrene	860	-
Phenylthiourea	non-detect	6.0
Potassium Cyanide	non-detect	2.5
Potassium Silver Cyanide	non-detect	2.9
Propargyl alcohol	non-detect	30
Pyrene	non-detect	1200
Selenium dioxide	non-detect	0.21
Selenium sulfide	non-detect	0.34
Silver Cyanide	non-detect	2.6
Silvex	non-detect	6.0
Strychnine	non-detect	100
Tetra-selenium-tetra-sulfide	non-detect	710

Table 2A. No.2 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Tetraethyl lead	non-detect	18
Thallium acetate	non-detect	15
Thallium carbonate	non-detect	14
Thallium chloride	non-detect	14
Thallium nitrate	non-detect	16
Thallium oxide	non-detect	12
Thallium sulfate	non-detect	15
Thioacetamide	non-detect	6.0
Thiofanox	non-detect	100
Thiourea	non-detect	6.0
Toluene-2,4-diamine	non-detect	6.0
Toluene-2,6-diamine	non-detect	6.0
Vanadium pentoxide	non-detect	18
Zinc Cyanide	non-detect	2.3
Zinc phosphide	non-detect	0.32
alpha-BHC	non-detect	1.2
beta-BHC	non-detect	1.2
delta-BHC	non-detect	1.2
gamma-BHC (Lindane)	non-detect	1.2
m-Dinitrobenzene	non-detect	1200
p-Toluidine	non-detect	100
trans-1,3-Dichloropropene	non-detect	34

Table 2A. No.2 Fuel Oil - Combined Results

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
1,1,1-Trichloroethane	non-detect	17
1,1,2-Trichloro-1,2,2-trifluoroethane	non-detect	29
1,1-Dichloro-1-propene	non-detect	29
1,1-Dichloroethane	non-detect	17
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	non-detect	72
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	non-detect	72
1,2,3,4-Tetrachlorobenzene	non-detect	100
1,2,3,5-Tetrachlorobenzene	non-detect	100
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	non-detect	72
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	non-detect	72
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	non-detect	72
1,2,3,7,8-Pentachlorodibenzo-p-furan	non-detect	72
1,2,3-Trichlorobenzene	non-detect	100
1,2-Dichloroethane	non-detect	17
1,2-Dichloropropane	non-detect	17
1,3-Dichloro-2-propanol	non-detect	29
1,3-Dichloropropane	non-detect	29
1,3-Propane sultone	non-detect	100
1-Chloronaphthalene	non-detect	100
2,2-Dichloropropane	non-detect	29
2,3,4,5-Tetrachlorophenol	non-detect	100
2,3,4-Trichlorophenol	non-detect	100
2,3,5-Trichlorophenol	non-detect	100
2,3,6-Trichlorophenol	non-detect	100
2,3,7,8-Tetrachlorodibenzo-p-dioxin	non-detect	29
2,3,7,8-Tetrachlorodibenzo-p-furan	non-detect	29
2,3-Dichloro-1-propene	non-detect	29
2,3-Dichlorophenol	non-detect	100
2,4-D	non-detect	5.7
2,5-Dichlorophenol	non-detect	100
2-Fluoroacetamide	non-detect	100
2-Methylnaphthalene	1000	-
2-Nitropropane	non-detect	29
3,3'-Dimethoxybenzidine	non-detect	100
3,4-Dichlorophenol	non-detect	100
3,5-Dichlorophenol	non-detect	100
3-/4-Chlorophenol	non-detect	100
3-Nitroaniline	non-detect	200

Table 3A. No.4 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
4,4'-methylene-bis(2-chloroaniline)	non-detect	100
4-Aminopyridine 4-Chlorophenyl phenyl ether	non-detect	100 200
	non-detect	
6-Propyl-2-thiouracil	non-detect non-detect	100 200
Acenaphthene		
Acetone cyanohydrin	non-detect	100
Allyl alcohol	non-detect	29
Ammonium vanadate	non-detect	68
Anthracene	non-detect	200
Aroclor-1016	non-detect	1.1
Aroclor-1221	non-detect	1.1
Aroclor-1232	non-detect	1.1
Aroclor-1242	non-detect	1.1
Aroclor-1248	non-detect	1.1
Aroclor-1254	non-detect	1.1
Aroclor-1260	non-detect	1.1
Arsenic acid	non-detect	0.43
Arsenic pentoxide	non-detect	0.35
Arsenic trioxide	non-detect	0.30
Barium Cyanide	non-detect	3.7
Benzal chloride	non-detect	100
Benzenethiol	non-detect	29
Benzyl chloride	non-detect	100
Bis(2-chloroethoxy)methane	non-detect	200
Bis(2-chloroethyl)ether	non-detect	200
Bis(2-ethylhexyl)phthalate	non-detect	200
Bromide	non-detect	5.0
Bromodichloromethane	non-detect	17
Calcium Cyanide	non-detect	1.8
Calcium chromate	non-detect	6.9
Chlordane	non-detect	11
Chloride	non-detect	5.0
Chloroethane	non-detect	17
Copper Cyanide	non-detect	1.7
Cyanide	non-detect	1.0
Cyanogen Bromide	non-detect	6.6
Cyanogen Chloride	non-detect	8.6
Di-selenium-tetra-sulfide	non-detect	1300

Table 3A. No.4 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
	,	200
Dibenzofuran	non-detect	200
Dibromochloromethane	non-detect	17
Endosulfan I	non-detect	1.1
Endosulfan II	non-detect	1.1
Endothall	non-detect	100
Endrin	non-detect	1.1
Endrin aldehyde	non-detect	1.1
Endrin ketone	non-detect	1.1
Epichlorohydrin	non-detect	29
Ethyl carbamate	non-detect	100
Ethylene glycol monoethyl ether	non-detect	100
Ethylenethiourea (2-Imidazolidinethione)	non-detect	110
Fluoride	non-detect	3.0
Heptachlor	non-detect	1.1
Heptachlor epoxide	non-detect	2.3
Lead acetate	non-detect	34
Lead phosphate	non-detect	24
MNNG (N-Metyl-N-nitroso-N'-nitroguanidine)	non-detect	110
Methomyl	non-detect	57
N-Nitrosodiphenylamine	non-detect	200
Nickel Cyanide	non-detect	3.5
Nickel carbonyl	non-detect	13
Nicotine	non-detect	100
Octachlorodibenzodioxin	non-detect	140
Octachlorodibenzofuran	non-detect	140
Osmium tetroxide	non-detect	40
Phenanthrene	250	-
Phenylthiourea	non-detect	57
Potassium Cyanide	non-detect	2.5
Potassium Silver Cyanide	non-detect	2.9
Propargyl alcohol	non-detect	29
Pyrene	non-detect	200
Selenium dioxide	non-detect	0.35
Selenium sulfide	non-detect	0.56
Silver Cyanide	non-detect	2.6
Silvex	non-detect	5.7
Strychnine	non-detect	100
Tetra-selenium-tetra-sulfide	non-detect	2400

Table 3A. No.4 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Tetraethyl lead	non-detect	29
Thallium acetate	non-detect	30
Thallium carbonate	non-detect	26
Thallium chloride	non-detect	27
Thallium nitrate	non-detect	30
Thallium oxide	non-detect	24
Thallium sulfate	non-detect	28
Thioacetamide	non-detect	57
Thiofanox	non-detect	100
Thiourea	non-detect	57
Toluene-2,4-diamine	non-detect	57
Toluene-2,6-diamine	non-detect	57
Vanadium pentoxide	non-detect	18
Zinc Cyanide	non-detect	2.3
Zinc phosphide	non-detect	0.75
alpha-BHC	non-detect	1.1
beta-BHC	non-detect	1.1
delta-BHC	non-detect	1.1
gamma-BHC (Lindane)	non-detect	1.1
m-Dinitrobenzene	non-detect	200
p-Toluidine	non-detect	100
trans-1,3-Dichloropropene	non-detect	17

Table 3A. No.4 Fuel Oil - Combined Results

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
1,1,1-Trichloroethane	non-detect	21
1,1,2-Trichloro-1,2,2-trifluoroethane	non-detect	26
1,1-Dichloro-1-propene	non-detect	26
1,1-Dichloroethane	non-detect	21
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	non-detect	64
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	non-detect	64
1,2,3,4-Tetrachlorobenzene	non-detect	100
1,2,3,5-Tetrachlorobenzene	non-detect	100
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	non-detect	64
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	non-detect	64
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	non-detect	64
1,2,3,7,8-Pentachlorodibenzo-p-furan	non-detect	64
1,2,3-Trichlorobenzene	non-detect	100
1,2-Dichloroethane	non-detect	21
1,2-Dichloropropane	non-detect	21
1,3-Dichloro-2-propanol	non-detect	26
1,3-Dichloropropane	non-detect	26
1,3-Propane sultone	non-detect	100
1-Chloronaphthalene	non-detect	100
2,2-Dichloropropane	non-detect	26
2,3,4,5-Tetrachlorophenol	non-detect	100
2,3,4-Trichlorophenol	non-detect	100
2,3,5-Trichlorophenol	non-detect	100
2,3,6-Trichlorophenol	non-detect	100
2,3,7,8-Tetrachlorodibenzo-p-dioxin	non-detect	26
2,3,7,8-Tetrachlorodibenzo-p-furan	non-detect	26
2,3-Dichloro-1-propene	non-detect	26
2,3-Dichlorophenol	non-detect	100
2,4-D	non-detect	5.1
2,5-Dichlorophenol	non-detect	100
2-Fluoroacetamide	non-detect	100
2-Methylnaphthalene	4200	-
2-Nitropropane	non-detect	26
3,3'-Dimethoxybenzidine	non-detect	100
3,4-Dichlorophenol	non-detect	100
3,5-Dichlorophenol	non-detect	100
3-/4-Chlorophenol	non-detect	100
3-Nitroaniline	non-detect	980

Table 4A. No.6 Fuel Oil - Combined Results

Table 4A.		
No.6 Fuel Oil - Combined Results		

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
4,4'-methylene-bis(2-chloroaniline)	non-detect	100
4-Aminopyridine	non-detect	100
4-Chlorophenyl phenyl ether	non-detect	980
6-Propyl-2-thiouracil	non-detect	100
Acenaphthene	non-detect	980
Acetone cyanohydrin	non-detect	100
Allyl alcohol	non-detect	26
Ammonium vanadate	non-detect	590
Anthracene	non-detect	980
Aroclor-1016	non-detect	1.0
Aroclor-1221	non-detect	1.0
Aroclor-1232	non-detect	1.0
Aroclor-1242	non-detect	1.0
Aroclor-1248	non-detect	1.0
Aroclor-1254	non-detect	1.0
Aroclor-1260	non-detect	1.0
Arsenic acid	non-detect	0.39
Arsenic pentoxide	non-detect	0.31
Arsenic trioxide	non-detect	0.27
Barium Cyanide	non-detect	3.7
Benzal chloride	non-detect	100
Benzenethiol	non-detect	26
Benzyl chloride	non-detect	100
Bis(2-chloroethoxy)methane	non-detect	980
Bis(2-chloroethyl)ether	non-detect	980
Bis(2-ethylhexyl)phthalate	non-detect	980
Bromide	non-detect	5.0
Bromodichloromethane	non-detect	21
Calcium Cyanide	non-detect	1.8
Calcium chromate	non-detect	6.1
Chlordane	non-detect	10
Chloride	non-detect	5.0
Chloroethane	non-detect	21
Copper Cyanide	non-detect	1.7
Cyanide	non-detect	1.0
Cyanogen Bromide	non-detect	6.6
Cyanogen Chloride	non-detect	8.6
Di-selenium-tetra-sulfide	non-detect	1400

Table 4A.		
No.6 Fuel Oil - Combined Results		

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
Dibenzofuran	non-detect	980
Dibromochloromethane	non-detect	21
Endosulfan I	non-detect	1.0
Endosulfan II	non-detect	1.0
Endothall	non-detect	100
Endrin	non-detect	1.0
Endrin aldehyde	non-detect	1.0
Endrin ketone	non-detect	1.0
Epichlorohydrin	non-detect	26
Ethyl carbamate	non-detect	100
Ethylene glycol monoethyl ether	non-detect	100
Ethylenethiourea (2-Imidazolidinethione)	non-detect	100
Fluoride	non-detect	3.0
Heptachlor	non-detect	1.0
Heptachlor epoxide	non-detect	2.0
Lead acetate	non-detect	110
Lead phosphate	non-detect	79
MNNG (N-Metyl-N-nitroso-N'-nitroguanidine)	non-detect	100
Methomyl	non-detect	50
N-Nitrosodiphenylamine	non-detect	980
Nickel Cyanide	non-detect	3.5
Nickel carbonyl	non-detect	330
Nicotine	non-detect	100
Octachlorodibenzodioxin	non-detect	130
Octachlorodibenzofuran	non-detect	130
Osmium tetroxide	non-detect	40
Phenanthrene	860	-
Phenylthiourea	non-detect	50
Potassium Cyanide	non-detect	2.5
Potassium Silver Cyanide	non-detect	2.9
Propargyl alcohol	non-detect	26
Pyrene	610	-
Selenium dioxide	non-detect	0.40
Selenium sulfide	non-detect	0.63
Silver Cyanide	non-detect	2.6
Silvex	non-detect	5.1
Strychnine	non-detect	100
Tetra-selenium-tetra-sulfide	non-detect	2600

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Tetraethyl lead	non-detect	94
Thallium acetate	non-detect	26
Thallium carbonate	non-detect	23
Thallium chloride	non-detect	24
Thallium nitrate	non-detect	27
Thallium oxide	non-detect	21
Thallium sulfate	non-detect	25
Thioacetamide	non-detect	50
Thiofanox	non-detect	100
Thiourea	non-detect	50
Toluene-2,4-diamine	non-detect	50
Toluene-2,6-diamine	non-detect	50
Vanadium pentoxide	non-detect	18
Zinc Cyanide	non-detect	2.3
Zinc phosphide	non-detect	11
alpha-BHC	non-detect	5.0
beta-BHC	non-detect	5.0
delta-BHC	non-detect	1.0
gamma-BHC (Lindane)	non-detect	1.0
m-Dinitrobenzene	non-detect	980
p-Toluidine	non-detect	100
trans-1,3-Dichloropropene	non-detect	21

Table 4A. No.6 Fuel Oil - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
1,1,1-Trichloroethane	non-detect	17
1,1,2-Trichloro-1,2,2-trifluoroethane	non-detect	29
1,1-Dichloro-1-propene	non-detect	29
1,1-Dichloroethane	non-detect	17
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	non-detect	68
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	non-detect	68
1,2,3,4-Tetrachlorobenzene	non-detect	100
1,2,3,5-Tetrachlorobenzene	non-detect	100
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	non-detect	68
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	non-detect	68
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	non-detect	68
1,2,3,7,8-Pentachlorodibenzo-p-furan	non-detect	68
1,2,3-Trichlorobenzene	non-detect	100
1,2-Dichloroethane	non-detect	17
1,2-Dichloropropane	non-detect	17
1,3-Dichloro-2-propanol	non-detect	29
1,3-Dichloropropane	non-detect	29
1,3-Propane sultone	non-detect	100
1-Chloronaphthalene	non-detect	100
2,2-Dichloropropane	non-detect	29
2,3,4,5-Tetrachlorophenol	non-detect	100
2,3,4-Trichlorophenol	non-detect	100
2,3,5-Trichlorophenol	non-detect	100
2,3,6-Trichlorophenol	non-detect	100
2,3,7,8-Tetrachlorodibenzo-p-dioxin	non-detect	29
2,3,7,8-Tetrachlorodibenzo-p-furan	non-detect	29
2,3-Dichloro-1-propene	non-detect	29
2,3-Dichlorophenol	non-detect	100
2,4-D	non-detect	5.4
2,5-Dichlorophenol	non-detect	100
2-Fluoroacetamide	non-detect	100
2-Methylnaphthalene	1000	-
2-Nitropropane	non-detect	29
3,3'-Dimethoxybenzidine	non-detect	100
3,4-Dichlorophenol	non-detect	100
3,5-Dichlorophenol	non-detect	100
3-/4-Chlorophenol	non-detect	100
3-Nitroaniline	non-detect	200

Table 5A.Composite 246 50th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
4,4'-methylene-bis(2-chloroaniline)	non-detect	100
4-Aminopyridine	non-detect	100
4-Chlorophenyl phenyl ether	non-detect	200
6-Propyl-2-thiouracil	non-detect	100
Acenaphthene	non-detect	200
Acetone cyanohydrin	non-detect	100
Allyl alcohol	non-detect	29
Ammonium vanadate	non-detect	28
Anthracene	non-detect	200
Aroclor-1016	non-detect	1.1
Aroclor-1221	non-detect	1.1
Aroclor-1232	non-detect	1.1
Aroclor-1242	non-detect	1.1
Aroclor-1248	non-detect	1.1
Aroclor-1254	non-detect	1.1
Aroclor-1260	non-detect	1.1
Arsenic acid	non-detect	0.38
Arsenic pentoxide	non-detect	0.31
Arsenic trioxide	non-detect	0.27
Barium Cyanide	non-detect	3.7
Benzal chloride	non-detect	100
Benzenethiol	non-detect	29
Benzyl chloride	non-detect	100
Bis(2-chloroethoxy)methane	non-detect	200
Bis(2-chloroethyl)ether	non-detect	200
Bis(2-ethylhexyl)phthalate	non-detect	200
Bromide	non-detect	5.0
Bromodichloromethane	non-detect	17
Calcium Cyanide	non-detect	1.8
Calcium chromate	non-detect	6.1
Chlordane	non-detect	11
Chloride	non-detect	5.0
Chloroethane	non-detect	17
Copper Cyanide	non-detect	1.7
Cyanide	non-detect	1.0
Cyanogen Bromide	non-detect	6.6
Cyanogen Chloride	non-detect	8.6
Di-selenium-tetra-sulfide	non-detect	650
Dibenzofuran	non-detect	200

Table 5A.Composite 246 50th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Dibromochloromethane	non-detect	17
Endosulfan I	non-detect	1.1
Endosulfan II	non-detect	1.1
Endothall	non-detect	100
Endrin	non-detect	1.1
Endrin aldehyde	non-detect	1.1
Endrin ketone	non-detect	1.1
Epichlorohydrin	non-detect	29
Ethyl carbamate	non-detect	100
Ethylene glycol monoethyl ether	non-detect	100
Ethylenethiourea (2-Imidazolidinethione)	non-detect	100
Fluoride	non-detect	3.0
Heptachlor	non-detect	1.1
Heptachlor epoxide	non-detect	2.3
Lead acetate	non-detect	30
Lead phosphate	non-detect	21
MNNG (N-Metyl-N-nitroso-N'-nitroguanidine)	non-detect	100
Methomyl	non-detect	50
N-Nitrosodiphenylamine	non-detect	200
Nickel Cyanide	non-detect	3.5
Nickel carbonyl	non-detect	10
Nicotine	non-detect	100
Octachlorodibenzodioxin	non-detect	140
Octachlorodibenzofuran	non-detect	140
Osmium tetroxide	non-detect	40
Phenanthrene	300	-
Phenylthiourea	non-detect	50
Potassium Cyanide	non-detect	2.5
Potassium Silver Cyanide	non-detect	2.9
Propargyl alcohol	non-detect	29
Pyrene	300	-
Selenium dioxide	non-detect	0.28
Selenium sulfide	non-detect	0.45
Silver Cyanide	non-detect	2.6
Silvex	non-detect	5.4
Strychnine	non-detect	100
Tetra-selenium-tetra-sulfide	non-detect	1200
Tetraethyl lead	non-detect	25
Thallium acetate	non-detect	26

Table 5A.Composite 246 50th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Thallium carbonate	non-detect	23
Thallium chloride	non-detect	24
Thallium nitrate	non-detect	26
Thallium oxide	non-detect	21
Thallium sulfate	non-detect	25
Thioacetamide	non-detect	50
Thiofanox	non-detect	100
Thiourea	non-detect	50
Toluene-2,4-diamine	non-detect	50
Toluene-2,6-diamine	non-detect	50
Vanadium pentoxide	non-detect	18
Zinc Cyanide	non-detect	2.3
Zinc phosphide	non-detect	0.55
alpha-BHC	non-detect	1.1
beta-BHC	non-detect	1.1
delta-BHC	non-detect	1.1
gamma-BHC (Lindane)	non-detect	1.1
m-Dinitrobenzene	non-detect	200
p-Toluidine	non-detect	100
trans-1,3-Dichloropropene	non-detect	17

Table 5A.Composite 246 50th Percentile - Combined Results

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
1,1,1-Trichloroethane	non-detect	34
1,1,2-Trichloro-1,2,2-trifluoroethane	non-detect	30
1,1-Dichloro-1-propene	non-detect	30
1,1-Dichloroethane	non-detect	34
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	non-detect	74
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	non-detect	74
1,2,3,4-Tetrachlorobenzene	non-detect	100
1,2,3,5-Tetrachlorobenzene	non-detect	100
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	non-detect	74
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	non-detect	74
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	non-detect	74
1,2,3,7,8-Pentachlorodibenzo-p-furan	non-detect	74
1,2,3-Trichlorobenzene	non-detect	100
1,2-Dichloroethane	non-detect	34
1,2-Dichloropropane	non-detect	34
1,3-Dichloro-2-propanol	non-detect	30
1,3-Dichloropropane	non-detect	30
1,3-Propane sultone	non-detect	100
1-Chloronaphthalene	non-detect	100
2,2-Dichloropropane	non-detect	30
2,3,4,5-Tetrachlorophenol	non-detect	100
2,3,4-Trichlorophenol	non-detect	100
2,3,5-Trichlorophenol	non-detect	100
2,3,6-Trichlorophenol	non-detect	100
2,3,7,8-Tetrachlorodibenzo-p-dioxin	non-detect	30
2,3,7,8-Tetrachlorodibenzo-p-furan	non-detect	30
2,3-Dichloro-1-propene	non-detect	30
2,3-Dichlorophenol	non-detect	100
2,4-D	non-detect	6.0
2,5-Dichlorophenol	non-detect	100
2-Fluoroacetamide	non-detect	100
2-Methylnaphthalene	3200	-
2-Nitropropane	non-detect	30
3,3'-Dimethoxybenzidine	non-detect	100
3,4-Dichlorophenol	non-detect	100
3,5-Dichlorophenol	non-detect	100
3-/4-Chlorophenol	non-detect	100
3-Nitroaniline	non-detect	910

Table 6A.Composite 246 90th Percentile - Combined Results

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
4,4'-methylene-bis(2-chloroaniline)	non-detect	100
4-Aminopyridine	non-detect	100
4-Chlorophenyl phenyl ether	non-detect	910
6-Propyl-2-thiouracil	non-detect	100
Acenaphthene	non-detect	910
Acetone cyanohydrin	non-detect	100
Allyl alcohol	non-detect	30
Ammonium vanadate	non-detect	150
Anthracene	non-detect	910
Aroclor-1016	non-detect	1.2
Aroclor-1221	non-detect	1.2
Aroclor-1232	non-detect	1.2
Aroclor-1242	non-detect	1.2
Aroclor-1248	non-detect	1.2
Aroclor-1254	non-detect	1.2
Aroclor-1260	non-detect	1.2
Arsenic acid	non-detect	0.42
Arsenic pentoxide	non-detect	0.34
Arsenic trioxide	non-detect	0.29
Barium Cyanide	non-detect	3.7
Benzal chloride	non-detect	100
Benzenethiol	non-detect	30
Benzyl chloride	non-detect	100
Bis(2-chloroethoxy)methane	non-detect	910
Bis(2-chloroethyl)ether	non-detect	910
Bis(2-ethylhexyl)phthalate	non-detect	910
Bromide	non-detect	5.0
Bromodichloromethane	non-detect	34
Calcium Cyanide	non-detect	1.8
Calcium chromate	non-detect	6.7
Chlordane	non-detect	12
Chloride	non-detect	5.0
Chloroethane	non-detect	34
Copper Cyanide	non-detect	1.7
Cyanide	non-detect	1.0
Cyanogen Bromide	non-detect	6.6
Cyanogen Chloride	non-detect	8.6
Di-selenium-tetra-sulfide	non-detect	1200

Table 6A.Composite 246 90th Percentile - Combined Results

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
Dibenzofuran	non-detect	910
Dibromochloromethane	non-detect	34
Endosulfan I	non-detect	1.2
Endosulfan II	non-detect	1.2
Endothall	non-detect	100
Endrin	non-detect	1.2
Endrin aldehyde	non-detect	1.2
Endrin ketone	non-detect	1.2
Epichlorohydrin	non-detect	30
Ethyl carbamate	non-detect	100
Ethylene glycol monoethyl ether	non-detect	100
Ethylenethiourea (2-Imidazolidinethione)	non-detect	110
Fluoride	non-detect	3.0
Heptachlor	non-detect	1.2
Heptachlor epoxide	non-detect	2.4
Lead acetate	non-detect	74
Lead phosphate	non-detect	53
MNNG (N-Metyl-N-nitroso-N'-nitroguanidine)	non-detect	110
Methomyl	non-detect	55
N-Nitrosodiphenylamine	non-detect	910
Nickel Cyanide	non-detect	3.5
Nickel carbonyl	non-detect	300
Nicotine	non-detect	1300
Octachlorodibenzodioxin	non-detect	150
Octachlorodibenzofuran	non-detect	150
Osmium tetroxide	non-detect	40
Phenanthrene	820	-
Phenylthiourea	non-detect	55
Potassium Cyanide	non-detect	2.5
Potassium Silver Cyanide	non-detect	2.9
Propargyl alcohol	non-detect	30
Pyrene	600	-
Selenium dioxide	non-detect	0.34
Selenium sulfide	non-detect	0.54
Silver Cyanide	non-detect	2.6
Silvex	non-detect	6.0
Strychnine	non-detect	100
Tetra-selenium-tetra-sulfide	non-detect	2400

Table 6A.Composite 246 90th Percentile - Combined Results

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Tetraethyl lead	non-detect	63
Thallium acetate	non-detect	29
Thallium carbonate	non-detect	25
Thallium chloride	non-detect	26
Thallium nitrate	non-detect	29
Thallium oxide	non-detect	23
Thallium sulfate	non-detect	27
Thioacetamide	non-detect	55
Thiofanox	non-detect	100
Thiourea	non-detect	55
Toluene-2,4-diamine	non-detect	55
Toluene-2,6-diamine	non-detect	55
Vanadium pentoxide	non-detect	18
Zinc Cyanide	non-detect	2.3
Zinc phosphide	non-detect	2.7
alpha-BHC	non-detect	1.2
beta-BHC	non-detect	1.2
delta-BHC	non-detect	1.2
gamma-BHC (Lindane)	non-detect	1.2
m-Dinitrobenzene	non-detect	910
p-Toluidine	non-detect	100
trans-1,3-Dichloropropene	non-detect	34

Table 6A.Composite 246 90th Percentile - Combined Results

	Concentration Limit (mg/kg at 10,000	Minimum Detection Limit (mg/kg)
Chemical Name	BTU/lb)	
1,1,1-Trichloroethane	non-detect	17
1,1,2-Trichloro-1,2,2-trifluoroethane	non-detect	29
1,1-Dichloro-1-propene	non-detect	29
1,1-Dichloroethane	non-detect	17
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	non-detect	64
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	non-detect	64
1,2,3,4-Tetrachlorobenzene	non-detect	100
1,2,3,5-Tetrachlorobenzene	non-detect	100
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	non-detect	64
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	non-detect	64
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	non-detect	64
1,2,3,7,8-Pentachlorodibenzo-p-furan	non-detect	64
1,2,3-Trichlorobenzene	non-detect	100
1,2-Dichloroethane	non-detect	17
1,2-Dichloropropane	non-detect	17
1,3-Dichloro-2-propanol	non-detect	29
1,3-Dichloropropane	non-detect	29
1,3-Propane sultone	non-detect	100
1-Chloronaphthalene	non-detect	100
2,2-Dichloropropane	non-detect	29
2,3,4,5-Tetrachlorophenol	non-detect	100
2,3,4-Trichlorophenol	non-detect	100
2,3,5-Trichlorophenol	non-detect	100
2,3,6-Trichlorophenol	non-detect	100
2,3,7,8-Tetrachlorodibenzo-p-dioxin	non-detect	26
2,3,7,8-Tetrachlorodibenzo-p-furan	non-detect	26
2,3-Dichloro-1-propene	non-detect	29
2,3-Dichlorophenol	non-detect	100
2,4-D	non-detect	5.7
2,5-Dichlorophenol	non-detect	100
2-Fluoroacetamide	non-detect	100
2-Methylnaphthalene	1000	-
2-Nitropropane	non-detect	29
3,3'-Dimethoxybenzidine	non-detect	100
3,4-Dichlorophenol	non-detect	100
3,5-Dichlorophenol	non-detect	100

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
3-/4-Chlorophenol	non-detect	100
3-Nitroaniline	non-detect	220
4,4'-methylene-bis(2-chloroaniline)	non-detect	100
4-Aminopyridine	non-detect	100
4-Chlorophenyl phenyl ether	non-detect	220
6-Propyl-2-thiouracil	non-detect	100
Acenaphthene	non-detect	220
Acetone cyanohydrin	non-detect	100
Allyl alcohol	non-detect	29
Ammonium vanadate	non-detect	31
Anthracene	non-detect	220
Aroclor-1016	non-detect	1.1
Aroclor-1221	non-detect	1.1
Aroclor-1232	non-detect	1.1
Aroclor-1242	non-detect	1.1
Aroclor-1248	non-detect	1.1
Aroclor-1254	non-detect	1.1
Aroclor-1260	non-detect	1.1
Arsenic acid	non-detect	0.27
Arsenic pentoxide	non-detect	0.22
Arsenic trioxide	non-detect	0.19
Barium Cyanide	non-detect	3.7
Benzal chloride	non-detect	100
Benzenethiol	non-detect	29
Benzyl chloride	non-detect	100
Bis(2-chloroethoxy)methane	non-detect	220
Bis(2-chloroethyl)ether	non-detect	220
Bis(2-ethylhexyl)phthalate	non-detect	220
Bromide	non-detect	5.0
Bromodichloromethane	non-detect	17
Calcium Cyanide	non-detect	1.8
Calcium chromate	non-detect	4.2
Chlordane	non-detect	11
Chloride	2.6	-
Chloroethane	non-detect	17
Copper Cyanide	non-detect	1.7
Cyanide	non-detect	1.0

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Cyanogen Bromide	non-detect	6.6
Cyanogen Chloride	non-detect	8.6
Di-selenium-tetra-sulfide	non-detect	420
Dibenzofuran	non-detect	220
Dibromochloromethane	non-detect	17
Endosulfan I	non-detect	1.1
Endosulfan II	non-detect	1.1
Endothall	non-detect	100
Endrin	non-detect	1.1
Endrin aldehyde	non-detect	1.1
Endrin ketone	non-detect	1.1
Epichlorohydrin	non-detect	29
Ethyl carbamate	non-detect	100
Ethylene glycol monoethyl ether	non-detect	100
Ethylenethiourea (2-Imidazolidinethione)	non-detect	14
Fluoride	non-detect	3.0
Heptachlor	non-detect	1.1
Heptachlor epoxide	non-detect	2.3
Lead acetate	non-detect	26
Lead phosphate	non-detect	18
MNNG (N-Metyl-N-nitroso-N'-nitroguanidine)	non-detect	14
Methomyl	non-detect	7.0
N-Nitrosodiphenylamine	non-detect	220
Nickel Cyanide	non-detect	3.5
Nickel carbonyl	non-detect	8.2
Nicotine	non-detect	100
Octachlorodibenzodioxin	non-detect	130
Octachlorodibenzofuran	non-detect	130
Osmium tetroxide	non-detect	40
Phenanthrene	250	-
Phenylthiourea	non-detect	7.0
Potassium Cyanide	non-detect	2.5
Potassium Silver Cyanide	non-detect	2.9
Propargyl alcohol	non-detect	29
Pyrene	140	-
Selenium dioxide	non-detect	0.26
Selenium sulfide	non-detect	0.41

Chemical Name	Concentration Limit (mg/kg at 10,000 BTU/lb)	Minimum Detection Limit (mg/kg)
Silver Cyanide	non-detect	2.6
Silvex	non-detect	5.7
Strychnine	non-detect	100
Tetra-selenium-tetra-sulfide	non-detect	810
Tetraethyl lead	non-detect	22
Thallium acetate	non-detect	18
Thallium carbonate	non-detect	16
Thallium chloride	non-detect	17
Thallium nitrate	non-detect	18
Thallium oxide	non-detect	15
Thallium sulfate	non-detect	17
Thioacetamide	non-detect	7.0
Thiofanox	non-detect	100
Thiourea	non-detect	7.0
Toluene-2,4-diamine	non-detect	7.0
Toluene-2,6-diamine	non-detect	7.0
Vanadium pentoxide	non-detect	18
Zinc Cyanide	non-detect	2.3
Zinc phosphide	non-detect	0.37
alpha-BHC	non-detect	1.2
beta-BHC	non-detect	1.2
delta-BHC	non-detect	1.1
gamma-BHC (Lindane)	non-detect	1.1
m-Dinitrobenzene	non-detect	220
p-Toluidine	non-detect	100
trans-1,3-Dichloropropene	non-detect	17

Table 8A. Composite All 90th Percentile - Combined Results (VOC non-detects from Composite 246)

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
1,1,1-Trichloroethane	non-detect	34
1,1,2-Trichloro-1,2,2-trifluoroethane	non-detect	30
1,1-Dichloro-1-propene	non-detect	30
1,1-Dichloroethane	non-detect	34
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	non-detect	74
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	non-detect	74
1,2,3,4-Tetrachlorobenzene	non-detect	100
1,2,3,5-Tetrachlorobenzene	non-detect	100
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	non-detect	74
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	non-detect	74
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	non-detect	74
1,2,3,7,8-Pentachlorodibenzo-p-furan	non-detect	74
1,2,3-Trichlorobenzene	non-detect	100
1,2-Dichloroethane	non-detect	34
1,2-Dichloropropane	non-detect	34
1,3-Dichloro-2-propanol	non-detect	30
1,3-Dichloropropane	non-detect	30
1,3-Propane sultone	non-detect	100
1-Chloronaphthalene	non-detect	100
2,2-Dichloropropane	non-detect	30
2,3,4,5-Tetrachlorophenol	non-detect	100
2,3,4-Trichlorophenol	non-detect	100
2,3,5-Trichlorophenol	non-detect	100
2,3,6-Trichlorophenol	non-detect	100
2,3,7,8-Tetrachlorodibenzo-p-dioxin	non-detect	30
2,3,7,8-Tetrachlorodibenzo-p-furan	non-detect	30
2,3-Dichloro-1-propene	non-detect	30
2,3-Dichlorophenol	non-detect	100
2,4-D	non-detect	6.7
2,5-Dichlorophenol	non-detect	100
2-Fluoroacetamide	non-detect	100
2-Methylnaphthalene	2500	-
2-Nitropropane	non-detect	30
3,3'-Dimethoxybenzidine	non-detect	100
3,4-Dichlorophenol	non-detect	100
3,5-Dichlorophenol	non-detect	100
3-/4-Chlorophenol	non-detect	100

Table 8A.Composite All 90th Percentile - Combined Results(VOC non-detects from Composite 246)

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
3-Nitroaniline	non-detect	700
4,4'-methylene-bis(2-chloroaniline)	non-detect	100
4-Aminopyridine	non-detect	100
4-Chlorophenyl phenyl ether	non-detect	700
6-Propyl-2-thiouracil	non-detect	100
Acenaphthene	non-detect	700
Acetone cyanohydrin	non-detect	100
Allyl alcohol	non-detect	30
Ammonium vanadate	non-detect	86
Anthracene	non-detect	700
Aroclor-1016	non-detect	1.3
Aroclor-1221	non-detect	1.3
Aroclor-1232	non-detect	1.3
Aroclor-1242	non-detect	1.3
Aroclor-1248	non-detect	1.3
Aroclor-1254	non-detect	1.3
Aroclor-1260	non-detect	1.3
Arsenic acid	non-detect	0.41
Arsenic pentoxide	non-detect	0.34
Arsenic trioxide	non-detect	0.29
Barium Cyanide	non-detect	3.7
Benzal chloride	non-detect	100
Benzenethiol	non-detect	30
Benzyl chloride	non-detect	100
Bis(2-chloroethoxy)methane	non-detect	700
Bis(2-chloroethyl)ether	non-detect	700
Bis(2-ethylhexyl)phthalate	non-detect	700
Bromide	non-detect	5.0
Bromodichloromethane	non-detect	34
Calcium Cyanide	non-detect	1.8
Calcium chromate	non-detect	6.6
Chlordane	non-detect	13
Chloride	2.7	-
Chloroethane	non-detect	34
Copper Cyanide	non-detect	1.7
Cyanide	non-detect	1.0
Cyanogen Bromide	non-detect	6.6

Table 8A.Composite All 90th Percentile - Combined Results(VOC non-detects from Composite 246)

	Concentration Limit	Minimum Detection
	(mg/kg at 10,000	Limit (mg/kg)
Chemical Name	BTU/lb)	
Cyanogen Chloride	non-detect	8.6
Di-selenium-tetra-sulfide	non-detect	1200
Dibenzofuran	non-detect	700
Dibromochloromethane	non-detect	34
Endosulfan I	non-detect	1.3
Endosulfan II	non-detect	1.3
Endothall	non-detect	100
Endrin	non-detect	1.3
Endrin aldehyde	non-detect	1.3
Endrin ketone	non-detect	1.3
Epichlorohydrin	non-detect	30
Ethyl carbamate	non-detect	100
Ethylene glycol monoethyl ether	non-detect	100
Ethylenethiourea (2-Imidazolidinethione)	non-detect	110
Fluoride	non-detect	3.0
Heptachlor	non-detect	1.3
Heptachlor epoxide	non-detect	2.7
Lead acetate	non-detect	74
Lead phosphate	non-detect	53
MNNG (N-Metyl-N-nitroso-N'-nitroguanidine)	non-detect	110
Methomyl	non-detect	54
N-Nitrosodiphenylamine	non-detect	700
Nickel Cyanide	non-detect	3.5
Nickel carbonyl	non-detect	46
Nicotine	non-detect	100
Octachlorodibenzodioxin	non-detect	150
Octachlorodibenzofuran	non-detect	150
Osmium tetroxide	non-detect	40
Phenanthrene	730	-
Phenylthiourea	non-detect	54
Potassium Cyanide	non-detect	2.5
Potassium Silver Cyanide	non-detect	2.9
Propargyl alcohol	non-detect	30
Pyrene	600	-
Selenium dioxide	non-detect	0.34
Selenium sulfide	non-detect	0.53
Silver Cyanide	non-detect	2.6

Table 8A.Composite All 90th Percentile - Combined Results(VOC non-detects from Composite 246)

	Concentration Limit	Minimum Detection
Chemical Name	(mg/kg at 10,000	Limit (mg/kg)
	BTU/lb)	
Silvex	non-detect	6.7
Strychnine	non-detect	100
Tetra-selenium-tetra-sulfide	non-detect	2300
Tetraethyl lead	non-detect	63
Thallium acetate	non-detect	28
Thallium carbonate	non-detect	25
Thallium chloride	non-detect	26
Thallium nitrate	non-detect	29
Thallium oxide	non-detect	23
Thallium sulfate	non-detect	27
Thioacetamide	non-detect	54
Thiofanox	non-detect	100
Thiourea	non-detect	54
Toluene-2,4-diamine	non-detect	54
Toluene-2,6-diamine	non-detect	54
Vanadium pentoxide	non-detect	18
Zinc Cyanide	non-detect	2.3
Zinc phosphide	non-detect	1.7
alpha-BHC	non-detect	1.4
beta-BHC	non-detect	1.4
delta-BHC	non-detect	1.3
gamma-BHC (Lindane)	non-detect	1.3
m-Dinitrobenzene	non-detect	700
p-Toluidine	non-detect	100
trans-1,3-Dichloropropene	non-detect	34

Appendix D

MDL Data

METHOD DETECTION LIMIT STUDY BY GCMS 8240 - VOA

		-		Fuel = G			_	
Compound	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Rep.6	Rep.7	MDL
Dichlorodifluoromethane	40	38	35	41	41	38	37	7
Chloromethane	57	57	54	60	60	56	57	7
Vinyl Chloride	56	57	54	59	59	54	56	6
Bromomethane	56	63	70	65	72	66	64	16
Chloroethane	54	59	55	57	60	53	55	9
Trichlorofluoromethane	50	52	116	52	58	74	52	76
1,1-Dichloroethene	53	53	51	53	53	52	53	3
Acetone	68	65	62	64	61	59	59	10
lodomethane	54	55	53	55	54	54	54	2
Carbon disulfide	78	80	76	80	81	76	77	6
Allyl chloride	53	54	52	55	53	54	53	3
Methylene chloride	56	50	50	53	51	49	52	7
trans-1,2-Dichloroethene	53	55	53	55	54	54	53	2
1,1-Dichloroethane	46	47	48	48	47	48	47	2
cis-1,2-Dichloroethene	54	53	54	53	53	54	53	2
2-Butanone	54	50	49	50	47	50	47	7
Methacrylonitrile	49	42	44	43	43	44	43	7
Chloroform	46	45	46	47	45	47	45	2
1,2-Dichloroethane	47	46	47	48	47	48	46	2
Vinyl acetate	45	45	45	45	46	44	45	1
1,1,1-Trichloroethane	48	49	49	49	49	48	49	1
Carbon tetrachloride	50	51	50	52	51	50	50	2
Benzene	81	82	81	83	83	81	81	2
Trichloroethene	53	52	52	53	53	52	52	2
1,2-Dichloropropane	47	47	47	47	47	46	47	1
Dibromomethane	49	48	48	48	48	48	48	2
Methyl methacrylate	51	51	51	50	51	51	51	1
Bromodichloromethane	47	45	46	46	46	45	45	2
2-Chloroethylvinyl ether	26	25	26	24	25	24	25	2
cis-1,3-Dichloropropene	48	46	47	46	46	46	46	2
trans-1,3-Dichloropropene	45	44	44	44	44	44	44	2
Ethyl methacrylate	45	43	44	44	44	44	44	2
1,1,2-Trichloroethane	43	41	42	41	42	42	41	2
Dibromochloromethane	44	41	42	41	42	42	42	3
Bromoform	45	42	42	42	41	43	43	4
1,1,2,2-Tetrachloroethane	44	43	43	42	42	44	44	2
Acrolein	405	431	353	415	395	381	406	79
Acetonitrile	66	70	66	68	67	67	69	5
Acrylonitrile	56	46	43	47	45	44	49	14
Propionitrile	47	46	44	45	44	46	46	3
Isobutanol	111	46	46	43	44	44	47	79
p-Dioxane	49	47	46	46	47	47	48	4
cis-1,4-Dichloro-2-butene	45	41	41	42	41	42	42	4
trans-1,4-Dichloro-2-butene	46	45	45	44	44	46	45	3
4-Methyl-2-pentanone	48	47	47	48	48	47	47	1
Toluene	257	266	262	266	264	262	260	10
Tetrachloroethene	56	56	55	56	56	54	54	3
2-Hexanone	49	46	46	45	45	46	45	4
1,2-Dibromoethane	49 50	49	49	49	49	49	-5 50	2
Chlorobenzene	49	49	48	48	49	49	48	1

				Fuel = G	asoline			
Compound	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Rep.6	Rep.7	MDL
Ethylbenzene	94	94	94	94	95	94	94	1
m,p-Xylene	132	133	130	132	132	132	131	2
o-Xylene	111	112	110	110	111	112	111	2
Styrene	50	49	48	48	48	49	49	1
1,2,3,-Trichloropropane	53	51	52	51	51	52	43	10
Pentachloraethane	44	43	44	43	43	44	44	2
1,3-Dichlorobenzene	45	44	44	44	44	45	44	1
1,4-Dichlorobenzene	44	43	43	43	43	44	44	2
1,2-Dichlorobenzene	44	43	44	42	43	43	43	2
1,2-Dibromo-3-chloropropane	45	43	43	42	44	43	43	3
1,2,4-Trichlorobenzene	43	42	42	42	43	43	43	1

Comments:

1) All values are in ug/Kg

2) Spiked amount = 50ug/Kg

3) MDL = t x sd

Where t is the student-t statistic for the 99% confidence limit for n-1 degrees of freedom and sd is the standard deviation in the seven replicate analyses

Fuel = No.2 MDL Compound Rep.1 Rep.2 Rep.3 Rep.4 Rep.5 Rep.6 Rep.7 Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone lodomethane Carbon disulfide Allyl chloride Methylene chloride trans-1,2-Dichloroethene 1.1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Methacrylonitrile Chloroform 1,2-Dichloroethane Vinyl acetate 1,1,1-Trichloroethane Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Dibromomethane Methyl methacrylate Bromodichloromethane 2-Chloroethylvinyl ether cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane Dibromochloromethane Bromoform 1,1,2,2-Tetrachloroethane Acrolein Acetonitrile Acrylonitrile Propionitrile Isobutanol p-Dioxane cis-1,4-Dichloro-2-butene trans-1,4-Dichloro-2-butene 4-Methyl-2-pentanone Toluene Tetrachloroethene

METHOD DETECTION LIMIT STUDY BY GCMS 8240 - VOA

2-Hexanone 1,2-Dibromoethane

Chlorobenzene

METHOD DETECTION LIMIT STUDY BY GCMS 8240 - VOA

				Fuel =	No.2			
Compound	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Rep.6	Rep.7	MDL
Ethylbenzene	170	170	173	172	171	172	173	4
m,p-Xylene	247	245	249	249	248	246	248	4
o-Xylene	211	211	212	214	212	212	213	3
Styrene	52	52	53	53	53	52	53	1
1,2,3,-Trichloropropane	42	41	42	42	42	42	42	1
Pentachloraethane	42	40	42	42	41	41	41	2
1,3-Dichlorobenzene	45	45	46	46	46	45	46	1
1,4-Dichlorobenzene	44	45	45	45	45	45	45	1
1,2-Dichlorobenzene	43	43	44	44	44	43	44	2
1,2-Dibromo-3-chloropropane	44	46	47	45	44	43	47	5
1,2,4-Trichlorobenzene	43	46	53	46	44	44	44	11

Comments:

1) All values are in ug/Kg

2) Spiked amount = 50ug/Kg

3) MDL = t x sd

Where t is the student-t statistic for the 99% confidence limit for n-1 degrees of freedom and sd is the standard deviation in the seven replicate analyses

Fuel = No.6 MDL Compound Rep.1 Rep.2 Rep.3 Rep.4 Rep.5 Rep.6 Rep.7 Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone lodomethane Carbon disulfide Allyl chloride Methylene chloride trans-1,2-Dichloroethene 1.1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Methacrylonitrile Chloroform 1,2-Dichloroethane Vinyl acetate 1,1,1-Trichloroethane Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Dibromomethane Methyl methacrylate Bromodichloromethane 2-Chloroethylvinyl ether cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane Dibromochloromethane Bromoform 1,1,2,2-Tetrachloroethane Acrolein Acetonitrile Acrylonitrile Propionitrile Isobutanol p-Dioxane cis-1,4-Dichloro-2-butene trans-1,4-Dichloro-2-butene 4-Methyl-2-pentanone Toluene Tetrachloroethene 2-Hexanone 1,2-Dibromoethane Chlorobenzene

METHOD DETECTION LIMIT STUDY BY GCMS 8240 - VOA

METHOD DETECTION LIMIT STUDY BY GCMS 8240 - VOA

				Fuel =	= No.6			
Compound	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Rep.6	Rep.7	MDL
Ethylbenzene	50	50	50	51	49	51	49	2
m,p-Xylene	53	54	53	54	53	53	53	1
o-Xylene	51	51	52	51	52	51	51	1
Styrene	49	49	49	49	49	49	48	1
1,2,3,-Trichloropropane	57	59	46	49	49	48	56	16
Pentachloraethane	46	49	46	48	48	48	46	4
1,3-Dichlorobenzene	50	51	48	50	50	49	48	3
1,4-Dichlorobenzene	49	50	48	49	50	49	48	3
1,2-Dichlorobenzene	48	49	47	48	49	47	46	4
1,2-Dibromo-3-chloropropane	46	47	44	45	46	46	44	3
1,2,4-Trichlorobenzene	46	47	44	46	45	45	44	4

Comments:

1) All values are in ug/Kg

2) Spiked amount = 50ug/Kg

3) MDL = t x sd

Where t is the student-t statistic for the 99% confidence limit for n-1 degrees of freedom and sd is the standard deviation in the seven replicate analyses

				Fuel = Ga	asoline			
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL
Acenaphthene	24	25	25	24	25	23	25	2
Acenaphthylene	21	21	22	20	21	20	21	1
Acetophenone	17	18	20	13	19	18	18	7
2-Acetylaminofluorene	15	17	18	17	16	18	16	3
4-Aminobiphenyl	19	20	20	19	20	20	20	1
Aniline	27	21	27	21	17	15	21	14
Anthracene	25	24	24	24	24	24	24	1
Aramite	15	14	17	16	15	16	15	3
Benzidine	16	17	19	18	15	19	16	5
Benzo[a]anthracene	19	19	19	19	19	19	19	0.3
Benzo[a]pyrene	19	19	18	19	18	19	18	0.4
Benzo[b]fluoranthene	16	17	16	17	17	15	17	2
Benzo[g,h,i]perylene	14	15	19	18	15	20	15	7
Benzo[k]fluoranthene	23	21	21	21	22	21	21	2
Benzyl Alcohol	19	19	18	18	19	18	19	2
Bis(2-chloroethoxy)methane	17	17	18	17	16	18	16	2
Bis(2-chloroethyl)ether	12	11	18	15	11	9	26	18
Bis(2-chloroisopropyl)ether	6	6	6	6	7	6	6	1
Bis(2-ethylhexyl)phthalate	15	15	17	16	15	16	15	2
4-Bromophenyl phenyl ether	23	23	24	23	23	23	23	2
Butyl benzyl phthalate	16	17	18	17	17	17	17	1
Di-n-butylphthalate	20	19	20	19	20	19	19	1
4-Chloroaniline	27	29	30	29	29	28	30	4
Chlorobenzilate	17	17	19	18	17	18	17	2 2
4-Chloro-3-methylphenol	23 19	24	23 21	22 20	23 20	24 21	24 20	2
2-Chloronaphthalene 2-Chlorophenol	19	20 12	21 11	20 12	20 12	21 11	20 13	2
4-Chlorophenyl phenyl ether	19	12	20	12	20	19	20	2
Chrysene	20	20	20 19	20	20	20	20	1
Diallate	19	19	21	19	20 19	20	19	2
Dibenz[a,j]acridine	15	15	19	18	19	20 19	15	7
Dibenzo[a,h]anthracene	15	15	18	17	14	19	14	6
Dibenzofuran	19	20	20	19	20	20	20	1
1,2-Dichlorobenzene	14	14	13	13	14	13	14	1
1,3-Dichlorobenzene	17	18	18	16	18	17	17	2
1,4-Dichlorobenzene	18	17	17	18	18	18	18	2
3,3'-Dichlorobenzidine	18	18	19	19	18	18	18	1
2,4-Dichlorophenol	29	30	29	29	29	28	30	2
2,6-Dichlorophenol	26	27	27	27	26	27	27	1
Diethyl phthalate	19	19	19	18	19	18	19	2
Dimethoate	15	16	18	17	15	18	15	5
p-Dimethylaminoazobenzene	17	17	19	18	17	18	17	2
7,12-Dimethylbenz[a]anthracene	20	20	18	19	20	18	20	3
3-3'-Dimethylbenzidine	15	15	16	16	15	16	15	2
a,a-Dimethylphenethylamine	0	0	0	0	0	0	0	ND
2,4-Dimethylphenol	21	19	21	21	20	21	20	2
Dimethyl phthalate	19	19	20	18	19	18	19	2
m-Dinitrobenzene	19	20	21	19	21	20	21	3
4,6-Dinitro-2-methylphenol	14	15	16	16	16	17	17	3
2,4-Dinitrophenol	11	13	14	13	14	14	15	4
2,4-Dinitrotoluene	18	19	19	18	19	19	20	2
2,6-Dinitrotoluene	17	18	18	17	19	17	19	2
Dinoseb	13	15	16	15	16	16	16	3
Diphenylamine	25	26	26	25	25	25	25	1
Disulfoton	18	19	20	19	19	19	19	2
Ethylmethanesulfonate	27	29	25	28	28	8	30	24
Famphur	16	15	23	23	15	23	15	13
Fluoranthene	22	22	21	21	22	20	22	3
Fluorene	23	23	23	23	23	22	23	1
Hexachlorobenzene	23	23	24	23	23	24	23	2

				Fuel = Ga	asoline			
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL
Hexachlorobutadiene	24	24	25	24	24	26	24	2
Hexachlorocyclopentadiene	13	13	16	15	14	15	14	4
Hexachloroethane	54	191	23	29	27	16	28	195
Hexachlorophene	0	0	0	0	0	0	0	ND
Hexachloropropene	19	20	21	21	20	23	21	4
Indeno(1,2,3-c,d)pyrene	18	18	22	21	17	23	18	8
Isodrin	20	20	20	19	20	20	20	1
Isophorone	16	20	17	16	20	20	17	6
Isosafrole	13	13	24	25	19	27	26	19
Kepone	26	25	29	30	24	29	24	8
Methapyrilene	18	18	19	19	18	18	17	2
Methyl parathion	16	15	19	17	15	18	16	5
3-Methylcholanthrene	18	18	18	18	18	18	18	1
Methylmethanesulfonate	28	26	26	28	27	27	31	6
2-Methylnaphthalene	256	249	272	264	248	285	252	44
2-Methylphenol	24	27	25	27	27	22	28	7
4-Methylphenol	19	18	18	17	18	18	18	2
Naphthalene	207	201	232	210	207	240	190	55
1,4-Naphthoquinone	15	14	15	15	15	14	16	2
1-Naphthylamine	22	22	23	21	22	20	22	3
2-Naphthylamine	23	24	23	22	24	22	23	2
2-Nitroaniline	17	17	17	17	18	16	18	2
3-Nitroaniline	22	23	21	21	23	21	23	2
4-Nitroaniline	26	26	24	24	25	22	26	5
Nitrobenzene	22	56	17	14	19	21	26	44
2-Nitrophenol	19	20	21	20	21	21	21	2
4-Nitrophenol	31	13	14	19	11	13	21	21
4-Nitroquinoline-1-oxide	6	7	10	9	7	10	7	5
N-Nitroso-di-n-butylamine	22	23	24	22	22	23	22	2
N-Nitrosodiethylamine	20	20	14	19	16	17	17	7
N-Nitrosodiphenylamine	21	20	21	20	20	20	20	2
N-Nitrosodi-n-propylamine	39	29	25	26	13	14	21	28
N-Nitrosomethylethylamine	9	11	12	12	12	12	13	3
N-Nitrosomorpholine	70	70	34	19	19	16	32	74
N-Nitrosopiperidine	20	20	19	21	21	21	22	3
N-Nitrosopyrrolidine	14	14	13	14	13	13	14	2
5-Nitro-o-toluidine	22	22	22	21	23	20	23	3
Di-n-octylphthalate	16	16	15	16	16	15	16	1
Parathion	18	18	19	19	18	19	19	2
Pentachlorobenzene	20	20	21	20	20	20	21	1
Pentachloronitrobenzene	22	22	23	22	22	22	22	1
Pentachlorophenol	18	18	18	18	18	18	18	1
Phenacetin	20	20	20	20	20	19	20	1
Phenanthrene	20	21	21	20	21	20	21	1
Phenol	18	16	15	15	17	13	17	5
p-Phenylenediamine	14	15	15	15	14	15	14	2
Phorate	15	15	16	15	15	15	15	1
2-Picoline	8	14	15	19	21	18	20	14
Pronamide	19	19	20	19	19	19	19	1
Pyrene	20	20	21	21	20	20	20	1
Pyridine	8	7	9	11	8	9	9	4
Safrole	17	17	18	17	18	19	18	2
Sulfotep	20	20	22	21	20	21	20	3
1,2,4,5-Tetrachlorobenzene	20	20	20	19	20	21	20	1
2,3,4,6-Tetrachlorophenol	23	23	22	22	23	22	24	2
Thionzin	19	20	21	20	20	20	20	2
o-Toluidine	28	21	24	21	26	18	27	12
1,2,4-Trichlorobenzene	23	23	23	23	23	24	23	1
2,4,5-Trichlorophenol	16	17	19	16	17	18	17	3
2,4,6-Trichlorophenol	24	25	24	24	25	23	25	2

		Fuel = Gasoline							
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL	
O,O,O-Triethylphosphorothioate	18	18	19	18	18	18	17	2	
1,3,5-Trinitrobenzene	12	14	14	14	14	14	15	4	

Comments:

1) All values in ug/Kg

2) Spiked amount = 100ug/Kg

3) ND = Not detected

4) MDL = t x sd

Where t is the student-t statistic for the 99% confidence limit for n-1 degrees of freedom

and sd is the standard deviation in the seven replicate analyses

				Fuel =	No.2			
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL
Acenaphthene	149	134	143	143	137	145	147	17
Acenaphthylene	131	125	131	126	134	129	125	11
Acetophenone	68	78	68	64	71	65	64	15
2-Acetylaminofluorene	114	108	109	111	115	111	113	8
4-Aminobiphenyl	117	119	111	119	117	117	121	10
Aniline	102	113	111	100	104	104	99	17
Anthracene	101	106	103	108	108	100	100	11
Aramite	114	108	110	120	117	115	114	13
Benzidine	94	97	97	92	98	98	97	7
Benzo[a]anthracene	111	107	108	111	112	112	112	7
Benzo[a]pyrene	102	103	103	102	103	102	102	2
Benzo[b]fluoranthene	111	98	105	108	105	106	101	13
Benzo[g,h,i]perylene	132	140	133	125	140	141	141	19
Benzo[k]fluoranthene	91 94	102 98	103 99	91 93	91 87	87 88	96 88	19 16
Benzyl Alcohol Bis(2-chloroethoxy)methane	94 110	90 87	99 109	93 112	07 112	00 113	00 105	29
Bis(2-chloroethyl)ether	91	101	96	93	85	94	96	29 16
Bis(2-chloroisopropyl)ether	62	66	90 69	93 65	64	94 64	90 64	7
Bis(2-ethylhexyl)phthalate	62 110	106	105	120	107	64 110	108	16
4-Bromophenyl phenyl ether	120	118	105	120	118	115	120	8
Butyl benzyl phthalate	111	102	105	116	108	109	106	14
Di-n-butylphthalate	131	132	134	132	128	131	126	8
4-Chloroaniline	119	111	114	115	113	117	114	9
Chlorobenzilate	119	112	116	124	116	118	114	12
4-Chloro-3-methylphenol	71	64	75	68	71	66	71	12
2-Chloronaphthalene	127	131	129	135	127	127	128	10
2-Chlorophenol	66	71	69	67	68	70	67	6
4-Chlorophenyl phenyl ether	110	100	111	107	110	106	99	15
Chrysene	115	111	113	115	115	115	114	5
Diallate	108	109	113	111	107	119	111	12
Dibenz[a,j]acridine	110	115	109	103	114	113	116	15
Dibenzo[a,h]anthracene	108	115	113	107	119	119	117	16
Dibenzofuran	121	108	114	117	116	129	111	22
1,2-Dichlorobenzene	101	108	107	102	100	99	98	13
1,3-Dichlorobenzene	82	118	106	95	103	104	102	35
1,4-Dichlorobenzene	114	92	101	98	73	86	87	40
3,3'-Dichlorobenzidine	105	100	101	102	103	104	107	8
2,4-Dichlorophenol	105	103	108	110	105	114	110	11
2,6-Dichlorophenol	103	98	109	102	107	100	103	12
Diethyl phthalate	80	76	81	80 105	77	83	82	8
Dimethoate	102 127	107 117	106	105 134	108	102	110 123	9 17
p-Dimethylaminoazobenzene 7,12-Dimethylbenz[a]anthracene		94	120 101	104	126 97	126 95	97	11
3-3'-Dimethylbenzidine	98 115	94 113	113	104	97 112	95 112	108	8
a,a-Dimethylphenethylamine	0	0	0	0	0	0	0	ND
2,4-Dimethylphenol	117	102	111	114	117	121	117	20
Dimethyl phthalate	88	87	86	86	88	90	88	5
m-Dinitrobenzene	78	72	77	81	76	75	79	9
4,6-Dinitro-2-methylphenol	97	103	100	100	106	109	100	13
2,4-Dinitrophenol	93	92	88	88	92	90	91	6
2,4-Dinitrotoluene	82	80	80	77	86	80	80	9
2,6-Dinitrotoluene	101	106	106	107	106	98	104	10
Dinoseb	118	129	121	122	120	117	119	12
Diphenylamine	118	112	119	116	122	115	115	10
Disulfoton	132	137	136	134	129	130	132	10
Ethylmethanesulfonate	106	114	107	106	100	102	107	13
Famphur	207	161	190	154	209	216	212	80
Fluoranthene	138	141	137	143	139	135	132	11
Fluorene	149	116	136	149	148	147	144	38
Hexachlorobenzene	142	147	141	145	140	138	134	13

				Fuel =	No.2			
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL
Hexachlorobutadiene	148	147	156	144	150	147	141	15
Hexachlorocyclopentadiene	53	50	60	52	60	57	65	17
Hexachloroethane	89	104	93	86	90	93	87	19
Hexachlorophene	0	0	0	0	0	0	0	ND
Hexachloropropene	139	140	138	136	139	143	136	8
Indeno(1,2,3-c,d)pyrene	102	106	100	97	107	109	103	14
Isodrin	155	160	163	152	155	153	151	13
Isophorone	138	158	135	139	135	132	142	28
Isosafrole	141	136	132	129	137	138	138	13
Kepone	50	59	36	33	10	26	24	51
Methapyrilene	120	127	120	121	119	115	114	13
Methyl parathion	158	159	150	155	152	153	158	11
3-Methylcholanthrene	109	110	112	105	113	113	114	10
Methylmethanesulfonate	166	180	171	171	166	158	161	23 22
2-Methylnaphthalene	276 70	284 79	281 73	268	278 77	271 75	289 73	22 9
2-Methylphenol				73				9 12
4-Methylphenol Naphthalene	88 199	94 197	84 197	83 196	90 198	91 206	89 194	12
1,4-Naphthoquinone	0	0	0	0	0	206	194 0	ND
1-Naphthylamine	79	81	80	79	78	78	76	5
2-Naphthylamine	97	95	96	95	94	98	97	5
2-Nitroaniline	73	93 74	90 72	93 72	54 76	90 77	77	7
3-Nitroaniline	68	69	67	69	68	64	66	5
4-Nitroaniline	100	91	96	101	105	102	99	14
Nitrobenzene	83	76	80	82	84	81	82	8
2-Nitrophenol	96	107	102	94	96	96	98	15
4-Nitrophenol	59	67	64	59	60	61	58	10
4-Nitroquinoline-1-oxide	24	22	25	24	28	26	25	6
N-Nitroso-di-n-butylamine	0	0	0	0	0	0	0	ND
N-Nitrosodiethylamine	123	128	121	116	117	112	114	17
N-Nitrosodiphenylamine	94	90	95	99	98	97	92	10
N-Nitrosodi-n-propylamine	79	73	83	83	74	83	82	14
N-Nitrosomethylethylamine	146	157	145	145	139	133	133	26
N-Nitrosomorpholine	55	56	54	56	58	55	56	4
N-Nitrosopiperidine	130	109	130	122	136	134	123	29
N-Nitrosopyrrolidine	73	73	79	77	71	69	72	11
5-Nitro-o-toluidine	94	91	96	93	97	96	98	8
Di-n-octylphthalate	115	101	102	133	99	94	97	43
Parathion	156	163	151	161	149	148	155	17
Pentachlorobenzene	114	101	107	106	116	109	95	23
Pentachloronitrobenzene	103	110	107	113	108	106	110	10
Pentachlorophenol	122	132	122	129	118	121	122	15
Phenacetin Phenanthrene	157	163	151	156	152	152	154	13
Phenol	102 91	98 96	109 97	104 91	102 89	108 88	108 88	13 12
p-Phenylenediamine	0	90 0	97 0	0	0	0	0	ND
Phorate	84	86	86	86	84	83	82	5
2-Picoline	174	187	189	172	176	172	170	24
Pronamide	105	104	108	112	106	104	105	9
Pyrene	127	120	123	133	129	131	122	15
Pyridine	108	82	101	105	99	97	84	32
Safrole	72	85	75	70	72	76	78	15
Sulfotep	162	165	158	166	158	156	161	12
1,2,4,5-Tetrachlorobenzene	108	98	98	99	110	104	91	21
2,3,4,6-Tetrachlorophenol	114	109	112	115	114	108	104	12
Thionzin	96	94	95	97	82	89	98	18
o-Toluidine	106	111	104	112	109	109	102	11
1,2,4-Trichlorobenzene	114	109	116	108	119	117	112	13
2,4,5-Trichlorophenol	104	104	92	95	108	105	100	18
2,4,6-Trichlorophenol	98	100	100	100	100	95	99	6
-	-							•

		Fuel = No.2							
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL	
O,O,O-Triethylphosphorothioate	145	116	146	144	148	147	142	35	
1,3,5-Trinitrobenzene	101	103	104	103	100	102	113	14	

Comments:

1) All values in ug/Kg

2) Spiked amount = 100ug/Kg

3) ND = Not detected

4) MDL = t x sd

Where t is the student-t statistic for the 99% confidence limit for n-1 degrees of freedom

and sd is the standard deviation in the seven replicate analyses

				Fuel =	No.2			
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL
Acenaphthene	149	134	143	143	137	145	147	17
Acenaphthylene	131	125	131	126	134	129	125	11
Acetophenone	68	78	68	64	71	65	64	15
2-Acetylaminofluorene	114	108	109	111	115	111	113	8
4-Aminobiphenyl	117	119	111	119	117	117	121	10
Aniline	102	113	111	100	104	104	99	17
Anthracene	101	106	103	108	108	100	100	11
Aramite	114	108	110	120	117	115	114	13
Benzidine	94	97	97	92	98	98	97	7
Benzo[a]anthracene	111	107	108	111	112	112	112	7
Benzo[a]pyrene	102	103	103	102	103	102	102	2
Benzo[b]fluoranthene	111	98	105	108	105	106	101	13
Benzo[g,h,i]perylene	132	140	133	125	140	141	141	19
Benzo[k]fluoranthene	91 94	102 98	103 99	91 93	91 87	87 88	96 88	19 16
Benzyl Alcohol Bis(2-chloroethoxy)methane	94 110	90 87	99 109	93 112	07 112	00 113	00 105	29
Bis(2-chloroethyl)ether	91	101	96	93	85	94	96	29 16
Bis(2-chloroisopropyl)ether	62	66	90 69	93 65	64	94 64	90 64	7
Bis(2-ethylhexyl)phthalate	62 110	106	105	120	107	64 110	108	16
4-Bromophenyl phenyl ether	120	118	105	120	118	115	120	8
Butyl benzyl phthalate	111	102	105	116	108	109	106	14
Di-n-butylphthalate	131	132	134	132	128	131	126	8
4-Chloroaniline	119	111	114	115	113	117	114	9
Chlorobenzilate	119	112	116	124	116	118	114	12
4-Chloro-3-methylphenol	71	64	75	68	71	66	71	12
2-Chloronaphthalene	127	131	129	135	127	127	128	10
2-Chlorophenol	66	71	69	67	68	70	67	6
4-Chlorophenyl phenyl ether	110	100	111	107	110	106	99	15
Chrysene	115	111	113	115	115	115	114	5
Diallate	108	109	113	111	107	119	111	12
Dibenz[a,j]acridine	110	115	109	103	114	113	116	15
Dibenzo[a,h]anthracene	108	115	113	107	119	119	117	16
Dibenzofuran	121	108	114	117	116	129	111	22
1,2-Dichlorobenzene	101	108	107	102	100	99	98	13
1,3-Dichlorobenzene	82	118	106	95	103	104	102	35
1,4-Dichlorobenzene	114	92	101	98	73	86	87	40
3,3'-Dichlorobenzidine	105	100	101	102	103	104	107	8
2,4-Dichlorophenol	105	103	108	110	105	114	110	11
2,6-Dichlorophenol	103	98	109	102	107	100	103	12
Diethyl phthalate	80	76	81	80 105	77	83	82	8
Dimethoate	102 127	107 117	106	105 134	108	102	110 123	9 17
p-Dimethylaminoazobenzene 7,12-Dimethylbenz[a]anthracene		94	120 101	104	126 97	126 95	97	11
3-3'-Dimethylbenzidine	98 115	94 113	113	104	97 112	95 112	108	8
a,a-Dimethylphenethylamine	0	0	0	0	0	0	0	ND
2,4-Dimethylphenol	117	102	111	114	117	121	117	20
Dimethyl phthalate	88	87	86	86	88	90	88	5
m-Dinitrobenzene	78	72	77	81	76	75	79	9
4,6-Dinitro-2-methylphenol	97	103	100	100	106	109	100	13
2,4-Dinitrophenol	93	92	88	88	92	90	91	6
2,4-Dinitrotoluene	82	80	80	77	86	80	80	9
2,6-Dinitrotoluene	101	106	106	107	106	98	104	10
Dinoseb	118	129	121	122	120	117	119	12
Diphenylamine	118	112	119	116	122	115	115	10
Disulfoton	132	137	136	134	129	130	132	10
Ethylmethanesulfonate	106	114	107	106	100	102	107	13
Famphur	207	161	190	154	209	216	212	80
Fluoranthene	138	141	137	143	139	135	132	11
Fluorene	149	116	136	149	148	147	144	38
Hexachlorobenzene	142	147	141	145	140	138	134	13

				Fuel =	No.2			
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL
Hexachlorobutadiene	148	147	156	144	150	147	141	15
Hexachlorocyclopentadiene	53	50	60	52	60	57	65	17
Hexachloroethane	89	104	93	86	90	93	87	19
Hexachlorophene	0	0	0	0	0	0	0	ND
Hexachloropropene	139	140	138	136	139	143	136	8
Indeno(1,2,3-c,d)pyrene	102	106	100	97	107	109	103	14
Isodrin	155	160	163	152	155	153	151	13
Isophorone	138	158	135	139	135	132	142	28
Isosafrole	141	136	132	129	137	138	138	13
Kepone	50	59	36	33	10	26	24	51
Methapyrilene	120	127	120	121	119	115	114	13
Methyl parathion	158	159	150	155	152	153	158	11
3-Methylcholanthrene	109	110	112	105	113	113	114	10
Methylmethanesulfonate	166	180	171	171	166	158	161	23 22
2-Methylnaphthalene	276 70	284 79	281 73	268	278 77	271 75	289 73	22 9
2-Methylphenol				73				9 12
4-Methylphenol Naphthalene	88 199	94 197	84 197	83 196	90 198	91 206	89 194	12
1,4-Naphthoquinone	0	0	0	0	0	206	194 0	ND
1-Naphthylamine	79	81	80	79	78	78	76	5
2-Naphthylamine	97	95	96	95	94	98	97	5
2-Nitroaniline	73	93 74	90 72	93 72	54 76	90 77	77	7
3-Nitroaniline	68	69	67	69	68	64	66	5
4-Nitroaniline	100	91	96	101	105	102	99	14
Nitrobenzene	83	76	80	82	84	81	82	8
2-Nitrophenol	96	107	102	94	96	96	98	15
4-Nitrophenol	59	67	64	59	60	61	58	10
4-Nitroquinoline-1-oxide	24	22	25	24	28	26	25	6
N-Nitroso-di-n-butylamine	0	0	0	0	0	0	0	ND
N-Nitrosodiethylamine	123	128	121	116	117	112	114	17
N-Nitrosodiphenylamine	94	90	95	99	98	97	92	10
N-Nitrosodi-n-propylamine	79	73	83	83	74	83	82	14
N-Nitrosomethylethylamine	146	157	145	145	139	133	133	26
N-Nitrosomorpholine	55	56	54	56	58	55	56	4
N-Nitrosopiperidine	130	109	130	122	136	134	123	29
N-Nitrosopyrrolidine	73	73	79	77	71	69	72	11
5-Nitro-o-toluidine	94	91	96	93	97	96	98	8
Di-n-octylphthalate	115	101	102	133	99	94	97	43
Parathion	156	163	151	161	149	148	155	17
Pentachlorobenzene	114	101	107	106	116	109	95	23
Pentachloronitrobenzene	103	110	107	113	108	106	110	10
Pentachlorophenol	122	132	122	129	118	121	122	15
Phenacetin Phenanthrene	157	163	151	156	152	152	154	13
Phenol	102 91	98 96	109 97	104 91	102 89	108 88	108 88	13 12
p-Phenylenediamine	0	90 0	97 0	0	0	0	0	ND
Phorate	84	86	86	86	84	83	82	5
2-Picoline	174	187	189	172	176	172	170	24
Pronamide	105	104	108	112	106	104	105	9
Pyrene	127	120	123	133	129	131	122	15
Pyridine	108	82	101	105	99	97	84	32
Safrole	72	85	75	70	72	76	78	15
Sulfotep	162	165	158	166	158	156	161	12
1,2,4,5-Tetrachlorobenzene	108	98	98	99	110	104	91	21
2,3,4,6-Tetrachlorophenol	114	109	112	115	114	108	104	12
Thionzin	96	94	95	97	82	89	98	18
o-Toluidine	106	111	104	112	109	109	102	11
1,2,4-Trichlorobenzene	114	109	116	108	119	117	112	13
2,4,5-Trichlorophenol	104	104	92	95	108	105	100	18
2,4,6-Trichlorophenol	98	100	100	100	100	95	99	6
-	-							•

		Fuel = No.2						
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL
O,O,O-Triethylphosphorothioate	145	116	146	144	148	147	142	35
1,3,5-Trinitrobenzene	101	103	104	103	100	102	113	14

Comments:

1) All values in ug/Kg

2) Spiked amount = 100ug/Kg

3) ND = Not detected

4) MDL = t x sd

Where t is the student-t statistic for the 99% confidence limit for n-1 degrees of freedom

and sd is the standard deviation in the seven replicate analyses

4-Aminobiphenyi 104 108 106 118 80 81 74 53 Antinacene 100 86 100 90 94 97 85 13 Antinacene 123 125 151 141 144 131 140 32 Benzolajprene 169 179 205 189 181 189 203 40 Benzolajprene 101 101 177 158 169 172 148 102 Benzolajprene 101 101 177 158 169 172 148 102 Benzojkiluoranthene 64 87 119 101 75 108 100 101 122 112 Bis/2-chlorosthoylphtha 88 90 108 105 107 106 106 23 Bis/2-biorosthylphthalate 134 128 164 161 138 145 160 160 100 100					Fuel =	No.6			
Acenaphthylene 112 110 116 118 117 117 147 2-Acetyphaminofluorene 116 113 122 120 107 104 104 24 A-minobphenyl 104 108 106 118 80 81 74 53 Aniline 100 86 100 90 94 97 186 113 104 132 132 33 Aramite 123 125 151 141 144 131 140 32 Benzolghuoranthene 199 98 113 107 144 96 108 166 153 40 Benzolghuoranthene 138 155 150 166 166 153 40 Benzolghuoranthene 64 719 95 95 99 104 100 101 102 115 Benzolghuoranthene 96 97 95 95 99 104 10	Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL
Acetophanone 94 97 116 117 119 117 118 132 132 133 133 132 132 133 133 131 107 104 96 108 105 107 108 105 107 Benzolgh/luoranthene 64 87 119 101 75 108 105 111 1112 112 125 116 110 104 104 114 112 112 112 116 116 112 1116 111	Acenaphthene	105		120	115		120	121	22
2-Acerylaminofluorene 116 113 122 120 107 104 104 24 Anninobiphenyi 104 108 106 118 80 81 74 53 Anlinacene 100 86 100 90 94 97 88 17 Banzdiantracene 194 98 113 107 104 96 108 22 Benzdialpurene 170 161 210 122 175 200 178 90 Benzdialpuroanthene 138 135 150 166 168 105 112 114 112 122 175 Benzdialpuroanthene 84 87 119 101 75 108 105 107 106 106 168 Benzdialpuroanthene 84 97 105 104 102 11 Bis(2-chiorostory)inthinate 133 132 133 150 123 144 144 145	Acenaphthylene	112	110	116	119	116	121	124	16
4-Aminobiphenyi 104 108 106 118 80 81 74 53 Antinacene 100 86 100 90 94 97 85 13 Antinacene 123 125 151 141 144 131 140 32 Benzolajprene 169 179 205 189 181 189 203 40 Benzolajprene 101 101 177 158 169 172 148 102 Benzolajprene 101 101 177 158 169 172 148 102 Benzojkiluoranthene 64 87 119 101 75 108 100 101 122 112 Bis/2-chlorosthoylphtha 88 90 108 105 107 106 106 23 Bis/2-biorosthylphthalate 134 128 164 161 138 145 160 160 100 100	Acetophenone	94		116	117	119	117	117	34
Aniline 110 113 134 134 133 132 132 133 Anthracene 100 86 100 90 94 97 88 17 Aramite 123 125 151 141 144 131 140 32 Benzolgipurene 168 179 205 189 181 189 203 40 Benzolgipurontene 170 161 210 122 175 200 178 90 Benzolgipurontene 64 87 119 101 75 108 105 61 BenzolgiAconteneyyinethane 96 97 105 104 100 101 102 11 Bis(2-choronethyyinethane 96 97 95 99 104 104 18 Bis(2-choronethypithenyi ethar 108 105 116 110 109 110 10 Bis(2-choronethypithenyi ethar 108 104 <td< td=""><td>2-Acetylaminofluorene</td><td>116</td><td></td><td>122</td><td>120</td><td>107</td><td>104</td><td>104</td><td>24</td></td<>	2-Acetylaminofluorene	116		122	120	107	104	104	24
Anthracene 100 86 100 90 94 97 88 17 Aramite 123 125 151 141 144 131 140 32 Benziglaphtracene 169 179 205 189 181 189 203 40 Benziglaphtracene 170 161 210 122 175 200 178 90 Benziglaphtranthene 164 170 126 166 168 166 172 148 102 Benziglaphtranthene 64 87 119 101 75 108 100 101 102 111 Bis(2-chronsethoxylmethane 96 97 95 95 99 104 108 186 2400 106 105 107 106 106 26 26 26 26 26 26 26 26 27 26 27 27 27 26 27 26 <td< td=""><td>4-Aminobiphenyl</td><td>104</td><td>108</td><td>106</td><td>118</td><td>80</td><td>81</td><td>74</td><td>53</td></td<>	4-Aminobiphenyl	104	108	106	118	80	81	74	53
Aramite 123 125 151 141 144 131 107 044 08 123 107 104 96 108 22 Benzolglanthracene 169 179 205 189 181 189 203 40 Benzolgliveranthene 138 135 150 166 168 153 40 Benzolglivoranthene 64 87 119 101 75 108 105 61 Benzolglivoranthene 64 87 119 101 101 102 11 Bis(2-chloroistorylipther 87 97 95 99 90 105 104 104 118 Bis(2-chloroistorylipther 88 90 106 105 107 106 106 48 Dirv-bulylpthylpther 108 145 116 110 109 101 104 113 115 114 116 77 4 4 135 16	Aniline	110		134	134	133	132	132	33
Benzialine 94 98 113 107 104 96 108 22 Benzolalphrene 170 161 210 122 175 200 178 90 Benzolalpyrene 101 101 177 158 166 166 156 153 40 Benzolghilporanthene 64 87 119 101 75 108 105 112 114 112 112 25 Bis(2-chloroethoxy)methane 96 97 105 104 100 101 102 11 Bis(2-chloroethoxy)methane 96 97 105 104 100	Anthracene	100		100	90	94		88	
Benzo[a]purene 169 179 205 189 181 189 203 40 Benzo[b][uoranthene 133 135 150 166 166 156 153 40 Benzo[b][uoranthene 101 101 177 158 169 172 148 102 Benzo[k][uoranthene 64 87 119 101 75 108 105 112 114 112 112 124 Benzo[k][uoranthene 64 87 105 104 100 101 102 11 Bis(2-chloroethyl)ether 88 90 108 105 107 106 106 23 Bis(2-chloroethyl)ether 88 90 108 115 116 110 109 100 1	Aramite			151	141	144		140	32
Benzojajpyrene 170 161 210 122 175 200 178 90 Benzojajjutoranthene 138 135 150 166 168 156 150 Benzojaj, ijperviene 101 101 177 158 169 172 144 102 Benzyi Alcohol 98 96 115 112 114 112 115 116 110 100 101 102 11 115 116 110 109 110 10 101 100 101 100 101 100 100 100 100 100 100 100 100 100 100 100 100 100 100 110 112 133 114 116<									
Benzolghiluoranthene 138 135 150 166 168 156 153 40 Benzolghiluperulene 101 101 177 158 169 172 148 102 Benzolkhiluoranthene 64 87 119 101 75 108 105 61 Benzolkhiluoranthene 66 97 105 104 100 101 102 11 Bis(2-chloroethyljether 88 90 108 105 107 106 106 26 Bis(2-ethylphexyljphthalate 133 134 148 118 116 110 109 100 100 Bix/bex/phthalate 133 115 118 118 115 114 116 77 4-Chloroanline 84 77 92 94 96 97 96 23 Chlorobenzilate 147 136 155 160 156 163 179 53 4-C						181		203	40
Benzolgh, hjperylene 101 101 177 158 169 172 148 102 Benzyk Jkochol 98 96 115 112 114 112 112 114 Bis(2-chloroethoxy)methane 96 97 105 104 100 101 102 115 Bis(2-chloroisopropyl)ether 88 90 108 105 107 106 106 26 Bis(2-chloroisopropyl)ether 108 108 115 116 110 109 110 10 Bis(2-chloroisopropyl)ether 108 108 115 118 115 114 115 114 115 114 116 7 Bis(2-chloroshipthalate 134 128 164 161 138 131 155 134 116 7 33 103 122 140 155 Chlorobenzilet 147 136 185 100 100 100 100 100 100 <td>Benzo[a]pyrene</td> <td>170</td> <td></td> <td>210</td> <td></td> <td></td> <td></td> <td>178</td> <td></td>	Benzo[a]pyrene	170		210				178	
Benzol/Altoonal 64 87 119 101 75 108 105 61 Benzyl Alcohol 98 96 115 112 114 112 112 212 Bis(2-chloroethy)/enther 87 97 95 95 99 104 104 108 Bis(2-chlorospropy)/enther 88 90 108 105 107 106 106 26 Bis(2-ethroispropy)/enther 108 108 115 116 110 101 102 11 Bis(2-ethroispropy)/enthalate 113 115 118 118 115 116 100 100 100 Birt/ benzylphthalate 113 115 118 111 112 113 116 116 163 179 53 Chlorobenzilate 147 136 185 160 156 163 179 53 Chlorophenol 101 101 101 101 100 100									
Benzy/Alcohol 98 96 115 112 114 112 112 112 113 Bis(2-chloroethy)(nether 87 97 95 99 104 100 101 102 11 Bis(2-chloroethy)(nether 88 90 108 105 107 106 106 26 Bis(2-chloroisopropy)(nether 108 108 115 116 110 109 110 10 Bity) benzyi phthalate 133 134 128 164 161 138 131 115 114 116 7 4-Chioroaniline 84 77 92 94 96 97 96 23 Chlorobenzilate 147 136 185 160 156 163 179 53 2-Chlorophenol 88 90 100 100 100 100 100 100 160 4-Chlorophenol 88 90 100 100 100									
Bis(2-chloroethox))methane 96 97 105 104 100 101 102 11 Bis(2-chloroethyl)ether 87 97 95 95 99 104 104 18 Bis(2-chloroethyl)ether 188 90 108 105 107 106 106 23 ABromphenyl phenyl ether 108 108 115 116 110 109 110 10 Buyl benzyl phthalate 134 128 164 161 138 145 165 48 Dr-hotylphthalate 113 115 118 111 112 113 112 100 110 110 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Bis (2-chlorosisopropyl)ether 87 97 95 95 99 104 104 18 Bis (2-chlorosisopropyl)ether 88 90 108 105 107 106 106 23 4-Bromophenyl phenyl ether 108 114 146 113 115 114 110 109 110 10 Bis (2-ethylhexyl)phthalate 113 115 114 116 113 115 114 116 17 4-Chloroaniline 84 77 92 94 96 97 96 23 Chlorobanzilate 147 136 185 160 156 163 179 53 4-Chloroanilne 84 77 92 94 96 97 96 23 2-Chlorophenyl phenol 101 104 111 112 113 112 108 15 2-Chlorophenyl phenyl ether 107 107 117 115 113 114 119 15 Dibenzola, hjanthracene 111 102 142 134 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-								
Bis (2-chloroisopropyl)ether 88 90 108 105 107 106 106 26 Bis (2-ethylhexyl)phnhalate 135 134 146 145 138 131 150 23 Butyl benzyl phthalate 134 128 164 161 138 145 165 48 Din-butylphthalate 113 115 114 116 7 92 94 96 97 96 23 Chlorobenzilate 147 136 185 160 156 163 179 53 2-Chlorophenol 84 77 92 94 96 97 96 23 2-Chlorophenol 101 104 111 112 113 118 119 15 Chrosphenol 80 70 107 117 113 118 119 15 Dialate 67 73 80 74 79 76 74 14									
Bis(2-entrylhexyl)prinelate 135 134 146 145 138 131 150 23 4-Bromophenyl phenyl ether 108 108 115 116 110 109 110 10 Burly benzyl phthalate 134 128 164 161 138 145 166 48 Din-butylphthalate 113 115 118 118 115 116 114 116 7 4-Chloroa-methylphenol 101 104 111 112 113 108 155 2-Chloroaphenol 88 90 100									
4-Bromophenyl Denzyl phthalate 108 108 115 116 110 109 110 10 Butyl benzyl phthalate 134 128 164 161 138 145 165 48 Din-butylphthalate 113 115 118 118 115 114 116 7 4-Chloro-armethylphenol 101 104 111 112 113 112 108 15 2-Chlorophenol 88 90 100 100 100 100 100 16 4-Chloro-shrentylphenol 107 107 117 115 113 118 119 15 Chlorophenyl phenyl ether 107 107 117 115 113 118 119 15 Dibenz(a,jalacridine 91 84 148 126 134 93 103 77 Dibenzofuran 101 100 100 100 100 100 103 103 103 103									
Butyl benzyl phthalate 134 128 164 161 138 145 165 48 Din-butylphthalate 113 115 118 118 115 114 116 7 Chlorobenzilate 147 136 185 160 156 163 179 53 4-Chloro-3-methylphenol 101 104 111 112 113 112 108 155 2-Chlorophenol 88 90 100 110 100 100 100 100 100 100 100 103 103 103 103 103 103 103 103 103 103 104 120 120 129 129 129 129 126 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Dim-butylphthalate 113 115 118 118 115 114 116 7 4-Chloropaniline 84 77 92 94 96 97 96 23 4-Chloroba-methylphenol 101 104 111 112 113 112 108 155 2-Chlorophenol 88 90 101 103 102 104 92 26 3.3'Dichlorobenzene 92 94 66 <									
4-Chloroaniline 84 77 92 94 96 97 96 23 Chlorobenzilate 147 136 185 160 156 163 179 53 4-Chloro-smethylphenol 101 104 111 112 113 112 108 15 2-Chlorophenol 88 90 100 100 100 100 100 100 164 4-Chlorophenol 88 90 100 100 100 100 100 166 4-Chlorophenyl phenyl ether 107 107 117 115 113 118 119 155 Dibenzajlacridine 91 84 148 126 134 93 103 77 114 50 Dibenzojran 101 100 110 105 106 109 98 14 12-Dichlorobenzene 92 94 103 103 104 103 103 16 13. 132 140 132 140 126 129 24 25 3.5									
Chlorobenzilate 147 136 185 160 156 163 179 53 4-Chloro-3-methylphenol 101 104 111 112 113 112 108 15 2-Chlorophenol 88 90 100 110 103 101 103 101 103 102 104 92 25 3,3'Dichlorobenzene									
4-Chloro-3-methylphenol 101 104 111 112 113 112 108 15 2-Chlorophenol 88 90 100 100 100 100 100 166 4-Chlorophenol 88 90 100 100 100 100 166 4-Chlorophenyl phenyl ether 107 107 117 115 113 118 119 15 Chrysene 314 374 436 322 292 309 339 156 Dibenz[a,]jacridine 91 84 148 126 134 93 103 77 Dibenzofuan 101 100 110 105 106 109 98 14 1,2-Dichlorobenzene 92 94 103 103 104 103 103 106 1,3-Dichlorobenzene 102 107 113 110 109 107 120 18 1,4-Dichlorobenzidine 96 109 106 118 94 95 98 28 2,6-Dichl									
2-Chloronaphthalene 92 103 122 133 109 132 140 56 2-Chlorophenol 88 90 101 100 101 100 101 100 101 100 101 100 103 104 103 103 103 104 122 128 26 2,4-Dichlorobenzene 52									
2-Chlorophenol 88 90 101 100 100 101 103 100 101 103 102 104 122 123 123 124 129 129 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
4-Chlorophenyl phenyl ether 107 107 117 115 113 118 119 15 Chrysene 314 374 436 322 292 309 339 156 Diallate 67 73 80 74 79 76 74 14 Dibenzo[a,h]anthracene 111 102 142 131 136 137 111 50 Dibenzofuran 101 100 110 105 106 109 98 14 1,2-Dichlorobenzene 92 94 103 103 104 103 103 16 1,3-Dichlorobenzene 86 86 98 103 102 104 92 25 3,3-Dichlorobenzene 86 86 98 103 102 104 92 26 2,4-Dichlorophenol 109 111 128 127 124 129 129 24 Dimethylaninoazobenzene 58 60 114 78 53 55 52 71 3,3									
Chrysene 314 374 436 322 292 309 339 156 Diallate 67 73 80 74 79 76 74 14 Dibenz[a,j]acridine 91 84 148 126 134 93 103 77 Dibenzo[a,h]anthracene 111 102 142 131 136 137 111 50 Dibenzofuran 101 100 110 105 106 109 98 14 1,3-Dichlorobenzene 92 94 103 103 104 103 103 16 1,4-Dichlorobenzene 96 109 106 118 94 95 98 28 2,4-Dichlorobenzenol 101 103 110 112 111 113 112 129 26 2,6-Dichlorophenol 101 103 110 112 111 113 112 113 112 113 129	-								
Dialitate 67 73 80 74 79 76 74 14 Dibenzo[a, j]acridine 91 84 148 126 134 93 103 77 Dibenzo[a, h]anthracene 111 102 142 131 136 137 111 50 Dibenzofuran 101 100 110 105 106 109 98 14 1,2-Dichlorobenzene 92 94 103 103 104 103 103 16 1,3-Dichlorobenzene 102 107 113 110 109 107 120 18 1,4-Dichlorobenzidine 96 109 106 118 94 95 98 28 2,6-Dichlorophenol 101 103 110 112 111 113 112 15 Diethyl phthalate 113 113 132 127 121 130 129 24 Dimethylaminoazobenzene 52 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Dibenz[a,j]acridine 91 84 148 126 134 93 103 77 Dibenzo[a,h]anthracene 111 102 142 131 136 137 111 50 Dibenzofuran 101 100 110 105 106 109 98 14 1,2-Dichlorobenzene 92 94 103 103 104 103 103 104 1,3-Dichlorobenzene 86 86 98 103 102 104 92 25 3,3-Dichlorobenzidine 96 109 106 118 94 95 98 28 2,4-Dichlorophenol 101 103 110 112 111 113 112 15 Diethyl phthalate 113 113 132 127 124 129 24 Dimethylaminoazobenzene 52 36 63 61 63 54 60 19 3-4-Dimethylaminoazobenzene 52									
Dibenzola, hjanthracene 111 102 142 131 136 137 111 50 Dibenzofuran 101 100 110 105 106 109 98 14 1,2-Dichlorobenzene 92 94 103 103 104 103 103 1,3-Dichlorobenzene 86 86 98 103 102 104 92 25 3,3-Dichlorobenzene 86 86 98 103 102 104 92 25 3,3-Dichlorobenzidine 96 109 106 118 94 95 98 28 2,4-Dichlorophenol 101 103 110 112 111 113 112 15 Diethyl phthalate 52 36 63 61 63 54 60 30 p-Dimethylaminazobenzene 58 60 114 78 53 55 52 71 7,12-Dimethylaminezaione 75 6									
Dibenzofuran 101 100 110 105 106 109 98 14 1,2-Dichlorobenzene 92 94 103 103 104 103 103 16 1,3-Dichlorobenzene 86 86 98 103 102 104 92 25 3,3-Dichlorobenzidine 96 109 111 128 127 124 129 129 26 2,4-Dichlorobenol 101 103 110 112 111 113 112 15 Diethyl phthalate 113 113 132 127 121 130 129 24 Dimethoate 52 36 63 61 63 54 60 30 p-Dimethylbenz[ajanthracene 75 64 75 73 79 69 63 19 3.3-Dimethylbenethylamine 71 71 66 73 67 66 66 9 2,4-Dimethylphenol									
1,2-Dichlorobenzene 92 94 103 103 104 103 103 16 1,3-Dichlorobenzene 102 107 113 110 109 107 120 18 1,4-Dichlorobenzene 86 86 98 103 102 104 92 25 3,3-Dichlorobenzidine 96 109 106 118 94 95 98 28 2,4-Dichlorophenol 109 111 128 127 124 129 129 26 2,6-Dichlorophenol 101 103 110 112 111 113 112 15 Diethyl phthalate 113 113 132 127 121 130 129 24 Dimethoate 52 36 63 61 63 54 60 30 p-Dimethylaminoazobenzene 58 60 114 78 53 55 52 71 7,12-Dimethylbenz[a]anthracene 75 64 75 73 67 66 66 9									
1,3-Dichlorobenzene 102 107 113 110 109 107 120 18 1,4-Dichlorobenzene 86 86 98 103 102 104 92 25 3,3-Dichlorobenzidine 96 109 106 118 94 95 98 28 2,4-Dichlorophenol 101 103 110 112 124 129 129 26 2,6-Dichlorophenol 101 103 110 112 111 113 112 115 Diethyl phthalate 113 113 132 127 124 129 24 Dimethoate 52 36 63 61 63 54 60 30 p-Dimethylbenz[ajanthracene 75 64 75 73 79 69 63 19 3.4-Dimethylphenethylamine 71 71 66 73 67 66 66 9 2,4-Dimethylphenol 111 114 140 136 137 137 144 41 Dimethylphenol <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
1,4-Dichlorobenzene 86 86 98 103 102 104 92 25 3,3'-Dichlorobenzidine 96 109 106 118 94 95 98 28 2,4-Dichlorophenol 109 111 128 127 124 129 129 26 2,6-Dichlorophenol 101 103 110 112 111 113 112 115 Diethyl phthalate 113 113 132 127 121 130 129 24 Dimethoate 52 36 63 61 63 54 60 30 p-Dimethylbenz[a]anthracene 75 64 75 73 79 69 63 19 3.3'-Dimethylbenzldine 71 71 66 73 67 66 66 9 2,4-Dimethylphenol 111 114 140 136 137 137 144 41 Dimethylphenol 0 0 0 0 0 0 0 0 13	-								
3,3'-Dichlorobenzidine 96 109 106 118 94 95 98 28 2,4-Dichlorophenol 109 111 128 127 124 129 129 26 2,6-Dichlorophenol 101 103 110 112 111 113 112 111 113 112 111 113 112 121 130 129 24 Diethyl phthalate 113 113 132 127 121 130 129 24 Dimethoate 52 36 63 61 63 54 60 30 p-Dimethylaminoazobenzene 75 64 75 73 79 69 63 19 3.3'-Dimethylbenzidine 104 101 123 113 92 96 98 34 a,a-Dimethylphenol 111 114 140 136 137 137 144 41 Dimethylphenol 111 111 122 115 116 119 120 13 m-Dinitro-Darene									
2,4-Dichlorophenol109111128127124129129262,6-Dichlorophenol10110311011211111311215Diethyl phthalate11311313212712113012924Dimethoate5236636163546030p-Dimethylaminoazobenzene586011478535552717,12-Dimethylbenz[a]anthracene75647573796963193-3'-Dimethylbenzidine10410112311392969834a,a-Dimethylphenethylamine7171667367666692,4-Dimethylphenol11111414013613713714441Dimethyl phthalate111111112211511611912013m-Dinitrobenzene000000ND2,4-Dinitroluene63588579817168312,4-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10810312411411011411621Disulfoton10310012812211511611831Ethylmethanes									
2,6-Dichlorophenol10110311011211111311215Diethyl phthalate11311313212712113012924Dimethoate5236636163546030p-Dimethylaminoazobenzene586011478535552717,12-Dimethylbenz[a]anthracene75647573796963193-3'-Dimethylbenzidine10410112311392969834a,a-Dimethylphenethylamine7171667367666692,4-Dimethylphenol11111414013613713714441Dimethyl phthalate11111112211511611912013m-Dinitrobenzene000000ND4.6-Dinitro-2-methylphenol63588579817168312,4-Dinitrobuene81818172921229151Dinoseb84531067687846852Diphenylamine10810312411411011411621Disulfoton10310012812211511611831Ethylmethanesulfonate10710912112411611911619Flu									
Diethyl phthalate11311313212712113012924Dimethoate5236636163546030p-Dimethylaminoazobenzene586011478535552717,12-Dimethylbenz[a]anthracene75647573796963193-3'-Dimethylbenzidine10410112311392969834a,a-Dimethylphenethylamine7171667367666692,4-Dimethylphenol111111414013613713714441Dimethyl phthalate111111112211511611912013m-Dinitrobenzene000000ND2,4-Dinitrophenol63588579817168312,4-Dinitrotoluene81818172921229151Dioseb84531067687846852Diphenylamine10310012812211511611831Ethylmethanesulfonate10710912112411611911619Famphur0000000NDFluorene11111011911611612612419									
Dimethoate5236636163546030p-Dimethylaminoazobenzene586011478535552717,12-Dimethylbenz[a]anthracene75647573796963193-3'-Dimethylbenzidine10410112311392969834a,a-Dimethylphenethylamine7171667367666692,4-Dimethylphenol111111414013613713714441Dimethyl phthalate11111112211511611912013m-Dinitrobenzene000000ND2,4-Dinitroblenzene00000ND2,4-Dinitroblenzene00000ND2,4-Dinitrotoluene63588579817168312,4-Dinitrotoluene000000002,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10310012812211511611831Ethylmethanesulfonate10710912112411611911619Fluorene10910491868694 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•								
p-Dimethylaminoazobenzene586011478535552717,12-Dimethylbenz[a]anthracene75647573796963193-3'-Dimethylbenzidine10410112311392969834a,a-Dimethylphenethylamine7171667367666692,4-Dimethylphenol111111414013613713714441Dimethyl phthalate111111112211511611912013m-Dinitrobenzene000000ND4,6-Dinitro-2-methylphenol63588579817168312,4-Dinitrobluene0000000002,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10310012812211511611831Ethylmethanesulfonate10710912112411611911619Famphur0000000NDFluorene11111011911612612419									
7,12-Dimethylbenz[a]anthracene75647573796963193-3'-Dimethylbenzidine10410112311392969834a,a-Dimethylphenethylamine7171667367666692,4-Dimethylphenol11111414013613713714441Dimethylphenol11111112211511611912013m-Dinitrobenzene000000ND4,6-Dinitro-2-methylphenol63588579817168312,4-Dinitrophenol63588579817168312,4-Dinitrotoluene000000002,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10310012812211511611831Ethylmethanesulfonate10710912112411611911619Fluoranthene109104918686948231Fluorene11111011911611612612419									
3-3'-Dimethylbenzidine10410112311392969834a,a-Dimethylphenethylamine7171667367666692,4-Dimethylphenol11111414013613713714441Dimethyl phthalate11111112211511611912013m-Dinitrobenzene000000ND4,6-Dinitro-2-methylphenol00000ND2,4-Dinitrophenol63588579817168312,4-Dinitrotoluene000000002,4-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10310012812211511611831Ethylmethanesulfonate10710912112411611911619Fluoranthene109104918686948231Fluorene11111011911611612612419									
a,a-Dimethylphenethylamine7171667367666692,4-Dimethylphenol11111414013613713714441Dimethyl phthalate11111112211511611912013m-Dinitrobenzene0000000ND4,6-Dinitro-2-methylphenol000000ND2,4-Dinitrophenol63588579817168312,4-Dinitrotoluene000000002,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10310012812211511611831Ethylmethanesulfonate10710912112411611911619Fluoranthene109104918686948231Fluorene11111011911611612612419									
2,4-Dimethylphenol11111414013613713714441Dimethyl phthalate11111112211511611912013m-Dinitrobenzene0000000ND4,6-Dinitro-2-methylphenol000000ND2,4-Dinitrophenol63588579817168312,4-Dinitrotoluene000000002,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10310012812211511611831Ethylmethanesulfonate10710912112411611911619Fluoranthene109104918686948231Fluorene11111011911611612612419									
Dimethyl phthalate11111112211511611912013m-Dinitrobenzene0000000ND4,6-Dinitro-2-methylphenol000000ND2,4-Dinitrophenol63588579817168312,4-Dinitrotoluene000000002,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10810312411411011411621Disulfoton10310012812211511611831Ethylmethanesulfonate10710912112411611911619Fluoranthene109104918686948231Fluorene11111011911611612612419									
m-Dinitrobenzene0000000ND4,6-Dinitro-2-methylphenol0000000ND2,4-Dinitrophenol63588579817168312,4-Dinitrotoluene000000002,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10810312411411011411621Disulfoton10310012812211511611831Ethylmethanesulfonate10710912112411611911619Fluoranthene109104918686948231Fluorene11111011911611612612419									
4,6-Dinitro-2-methylphenol000000ND2,4-Dinitrophenol63588579817168312,4-Dinitrotoluene000000002,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10810312411411011411621Disulfoton10310012812211511611831Ethylmethanesulfonate10710912112411611911619Fluoranthene109104918686948231Fluorene11111011911611612612419									
2,4-Dinitrophenol63588579817168312,4-Dinitrotoluene0000000002,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10810312411411011411621Disulfoton10310012812211511611831Ethylmethanesulfonate10710912112411611911619Famphur000000NDNDFluoranthene109104918686948231Fluorene11111011911611612612419									
2,4-Dinitrotoluene000000002,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10810312411411011411621Disulfoton10310012812211511611831Ethylmethanesulfonate10710912112411611911619Famphur000000NDNDFluoranthene109104918686948231Fluorene11111011911611612612419	2,4-Dinitrophenol								
2,6-Dinitrotoluene81818172921229151Dinoseb84531067687846852Diphenylamine10810312411411011411621Disulfoton10310012812211511611831Ethylmethanesulfonate10710912112411611911619Famphur000000NDFluoranthene109104918686948231Fluorene11111011911611612612419									
Dinoseb84531067687846852Diphenylamine10810312411411011411621Disulfoton10310012812211511611831Ethylmethanesulfonate10710912112411611911619Famphur0000000NDFluoranthene109104918686948231Fluorene11111011911611612612419	2,6-Dinitrotoluene		81	81	72	92	122	91	51
Diphenylamine10810312411411011411621Disulfoton10310012812211511611831Ethylmethanesulfonate10710912112411611911619Famphur0000000NDFluoranthene109104918686948231Fluorene11111011911611612612419		84					84	68	
Disulfoton10310012812211511611831Ethylmethanesulfonate10710912112411611911619Famphur0000000NDFluoranthene109104918686948231Fluorene11111011911611612612419	Diphenylamine			124				116	21
Ethylmethanesulfonate10710912112411611911619Famphur000000NDFluoranthene109104918686948231Fluorene11111011911611612612419									
Famphur000000NDFluoranthene109104918686948231Fluorene11111011911611612612419									
Fluoranthene109104918686948231Fluorene11111011911611612612419	-								
Fluorene 111 110 119 116 116 126 124 19	Fluoranthene								
	Fluorene								
110 104 33 39 103 93 21	Hexachlorobenzene	94	110	104	93	99	103	93	21

				Fuel =	No.6			
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL
Hexachlorobutadiene	108	109	118	117	116	118	118	14
Hexachlorocyclopentadiene	35	29	53	45	38	38	41	24
Hexachloroethane	75	70	86	88	90	85	84	24
Hexachlorophene	0	0	0	0	0	0	0	ND
Hexachloropropene	85	85	106	106	102	102	104	30
Indeno(1,2,3-c,d)pyrene	90	86	151	162	147	144	147	97
Isodrin	147	139	101	111	151	106	112	66
Isophorone	109	109	131	133	126	130	130	33
Isosafrole	111	112	120	121	120	127	127	20
Kepone	0	0	0	0	0	0	0	ND
Methapyrilene	80	73	92	97	89	83	91	26
Methyl parathion	56	50	65	67	69	57	64	21
3-Methylcholanthrene	122	119	137	125	123	132	108	29
Methylmethanesulfonate	155	154	200	191	190	189	192	60
2-Methylnaphthalene	145	152	158	155	155	155	160	15
2-Methylphenol	96	98	116	114	115	115	115	28
4-Methylphenol	120	118	89	91	92	90	90	44
Naphthalene	115	115	123	132	130	131	132	25
1,4-Naphthoquinone	0	0	0	0	0	0	0	ND
1-Naphthylamine	76	75	84	57	82	62	57	37
2-Naphthylamine	61	54	63	55	65	65	65	14
2-Nitroaniline	95	101	124	118	106	116	120	34
3-Nitroaniline	75	73	116	110	81	97	88	53
4-Nitroaniline	81	78	86	78	84	87	82	11
Nitrobenzene	104	96	114	104	105	101	102	17
2-Nitrophenol	105	113	126	125	126	124	127	27
4-Nitrophenol	79	75	116	102	111	121	113	58
4-Nitroquinoline-1-oxide	0	0	0	0	0	0	0	ND
N-Nitroso-di-n-butylamine	118	108	129	123	134	124	125	26
N-Nitrosodiethylamine	102	102	121	117	115	116	116	24
N-Nitrosodiphenylamine	103	103	123	126	120	122	120	30
N-Nitrosodi-n-propylamine	91	94	87	121	121	112	126	51
N-Nitrosomethylethylamine	138	137	115	112	107	111	111	41
N-Nitrosomorpholine	41	41	41	45	47	41	40	8
N-Nitrosopiperidine	108	108	137	135	134	135	138	43
N-Nitrosopyrrolidine	91	96	116	162	105	105	108	75
5-Nitro-o-toluidine	98	102	101	95	102	107	104	12
Di-n-octylphthalate	113	107	119	116	109	108	106	16
Parathion	110	95	124	128	100	94	93	46
Pentachlorobenzene	111	111	117	112	110	118	115	11
Pentachloronitrobenzene	16	29	27	31	25	24	79	66
Pentachlorophenol	122	118	134	127	122	115	111	24
Phenacetin	103	100	106	94	104	104	99	13
Phenanthrene	165	152	170	166	164	173	169	22
Phenol	93	94	106	105	106	107	106	19
p-Phenylenediamine	0	0	0	0	0	0	0	ND
Phorate	71	71	104	107	67	73	106	59
2-Picoline	149	149	177	173	170	168	170	35
Pronamide	84	74	97	81	84	86	81	22
Pyrene	252	229	311	282	255	266	294	87
Pyridine	38	43	44	43	43	45	48	9
Safrole	80	82	143	85	97	87	100	69
Sulfotep	121	123	139	136	129	127	133	21
1,2,4,5-Tetrachlorobenzene	102	102	114	107	106	112	115	18
2,3,4,6-Tetrachlorophenol	90	74	94	82	89	96	87	23
Thionzin	105	87	120	107	104	117	108	34
o-Toluidine	81	81	90	91	94	92	92	17
1,2,4-Trichlorobenzene	100	101	107	107	106	108	108	10
				144				34
								34
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	135 78	142 73	160 91		130 87	151 98	155 104	3

		Fuel = No.6						
Compound	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL
O,O,O-Triethylphosphorothioate	116	116	124	124	122	123	125	12
1,3,5-Trinitrobenzene	0	0	0	0	0	0	0	ND

Comments:

1) All values in ug/Kg

2) Spiked amount = 100ug/Kg

3) ND = Not detected

4) MDL = t x sd

Where t is the student-t statistic for the 99% confidence limit for n-1 degrees of freedom

and sd is the standard deviation in the seven replicate analyses

Metal	Rep.#1	Rep.#2	Rep.#3	Rep.#4	Rep.#5	Rep.#6	Rep.#7	MDL Uni	ts True Value
Antimony	0.57	0.47	0.62	0.38	0.50	0.34	0.23	0.43 mg/l	- 0.5
Arsenic	9.81	8.58	8.47	9.51	6.63	7.07	9.95	4.13 ug/L	10
Barium	1.02	1.07	0.91	0.82	0.96	0.80	0.71	0.53 mg/l	_ 1
Beryllium	0.109	0.109	0.109	0.110	0.110	0.111	0.110	0.002 mg/l	0.1
Cadmium	0.112	0.108	0.121	0.117	0.117	0.116	0.121	0.015 mg/l	. 0.1
Chromium	0.415	0.447	0.450	0.472	0.440	0.428	0.471	0.066 mg/l	0.5
Cobalt	0.284	0.282	0.264	0.283	0.296	0.270	0.288	0.034 mg/l	0.2
Lead	0.780	0.787	0.810	0.802	0.821	0.843	0.852	0.085 mg/l	1
Manganese	0.041	0.044	0.041	0.042	0.042	0.040	0.042	0.0039 mg/l	0.05
Nickel	0.217	0.216	0.222	0.218	0.220	0.217	0.222	0.008 mg/l	0.2
Selenium	13.50	11.39	13.61	14.24	13.06	10.52	13.13	4.17 ug/L	10
Silver	0.175	0.178	0.180	0.179	0.171	0.167	0.163	0.020 mg/l	0.2
Thallium	0.77	0.77	0.65	0.74	0.67	0.66	0.60	0.21 mg/l	. 1

Comments:

1) Since the procedure used for these metals was 3040 Dissolution in Xylene, the above MDL was performed in xylene as the common matrix.

2) MDL = t x sd

Where t is the student-t statistic for the 99% confidence limit for n-1 degrees of freedom and sd is the standard deviation in the seven replicate analyses

RESULTS FOR METHOD DETECTION LIMIT STUDY - MERCURY

	Fuel = Gasoline							
Metal	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Rep.6	Rep.7	MDL
Mercury	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.012

	<i>Fuel</i> = <i>No.</i> 2							
Metal	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Rep.6	Rep.7	MDL
Mercury	0.03	0.04	0.04	0.04	0.04	0.05	0.04	0.018

	Fuel = No.6							
Metal	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Rep.6	Rep.7	MDL
Mercury	0.04	0.03	0.03	0.03	0.04	0.03	0.04	0.017

Comments:

1) Units = ug Total

2) True Value of Spike = 0.100 ug

3) MDL = t x sd

Where t is the student-t statistic for the 99% confidence limit for n-1 degrees of freedom and sd is the standard deviation in the seven replicate analyses

Quality Assurance Results

SURROGATE RECOVERY DATA - SEMI-VOLATILE

Sample ID	2-Fluorophenol	Phenol-d ₆	Nitrobenzene-d ₅	2-Fluorobiphenyl	2,4,6-Tribromophenol	Terphenyl-d ₁₄
2011	14.2	50.6	63.8	86	29.4	73
2012	24.4	79.8	64	80.2	35.2	72.2
2013	D	D	D	D	D	D
2014	D	D	D	D	D	D
2015	9.1	48.2	45	77	63.4	77.1
2016	13.9	74.5	48	78.8	66	74.1
2017	16.8	48.8	56.6	90.2	27.4	92.4
2018	22.6	92.6	65.6	94.2	51.8	88.4
2019	93.7	76.3	134	118	103	103
2020	114	96.5	150	123	110	113
2021	106	102	154	114	138	107
2022	100	121	128	125	109	113
2023	114	102	134	108	148	111
2024	100	101	145	94.5	86.2	101
2025	106	83.8	112	117	98.6	112
2026	119	107	165	102	108	103
2027	101	90.5	114	109	127	103
2028	113	101	141	96.4	113	107
2029	104	108	109	111	114	105
2030	84.3	89.6	98.9	99.6	93.4	110
2031	88.5	89.8	99.6	103	94.3	109
2032	101	100	96.1	101	100	120
2033	99.4	75.5	27.7	94.8	79.3	100
2034	125	113	60.9	91.7	131	116
2230	75.4	72.8	78.9	87.4	62.1	87.1
2231	88.8	77.1	92.3	104	92.8	111
2232	112	106	76.3	93.2	90.9	94.7

D = Surrogate Diluted Out. Sample diluted due to high concentration of target compounds.

SURROGATE RECOVERY DATA - VOLATILE

Sample ID	1,2-Dichloroethane-d ₄	Toluene-d ₈	Bromofluorobenzene
2011	95	114	90
2012	95	115	91
2013	100	105	98
2014	100	111	92
2015	100	111	92
2016	103	95	102
2017	106	100	106
2018	106	97	102
2019	94	101	95
2020	94	102	95
2021	108	101	108
2022	101	97	99
2023	112	95	108
2024	110	96	104
2025	104	101	103
2026	106	95	105
2027	101	103	101
2028	125	79	110
2029	88	93	86
2030	95	101	94
2031	96	97	94
2032	91	101	90
2033	97	102	98
2034	93	95	91
2230	108	96	112
2231	102	105	102
2232	101	106	99

Appendix E

QC SUMMARY - METALS

Sample ID	Metal	Ana	lysis	Spiked Sample
		Initial	Duplicate	% Recovery
2018	Cobalt	BQL	BQL	97
2028	Cobalt	0.49	0.58	106
2029	Cobalt	BQL	BQL	105
2034	Cobalt	BQL	BQL	101
2018	Beryllium	BQL	BQL	81.2
2028	Beryllium	BQL	BQL	100
2029	Beryllium	BQL	BQL	102
2034	Beryllium	BQL	BQL	104
2018	Silver	BQL	BQL	110
2028	Silver	BQL	BQL	132
2029	Silver	BQL	BQL	135
2034	Silver	BQL	BQL	126
2018	Cadmium	BQL	BQL	102
2028	Cadmium	BQL	BQL	107
2029	Cadmium	BQL	BQL	110
2034	Cadmium	BQL	BQL	106
2018	Manganese	BQL	BQL	99.2
2028	Manganese	BQL	BQL	99.8
2029	Manganese	BQL	BQL	102
2034	Manganese	BQL	BQL	98.8
2018	Selenium	BQL	BQL	94.4
2028	Selenium	BQL	BQL	116
2029	Selenium	11	17	76.3
2034	Selenium	BQL	BQL	85.7
2018	Arsenic	BQL	BQL	76.3
2028	Arsenic	BQL	BQL	102
2029	Arsenic	BQL	BQL	70.2
2034	Arsenic	BQL	BQL	96.9
2018	Nickel	BQL	BQL	104
2028	Nickel	BQL	BQL	95.9
2029	Nickel	1.39	1.39	116
2034	Nickel	0.30	0.28	96.9
2018	Lead	BQL	BQL	120
2028	Lead	0.65	0.67	93
2029	Lead	0.84	0.85	100
2034	Lead	2.8	2.7	84

QC SUMMARY - METALS (continued)

Sample ID	Metal	Analysis		Spiked Sample
		Initial	Duplicate	% Recovery
2018	Antimony	BQL	BQL	96
2028	Antimony	BQL	BQL	92
2029	Antimony	BQL	BQL	92
2034	Antimony	0.78	1.10	109
2018	Chromium	BQL	BQL	120
2028	Chromium	BQL	BQL	104
2029	Chromium	BQL	BQL	107
2034	Chromium	BQL	BQL	97
2018	Thallium	BQL	BQL	128
2028	Thallium	BQL	BQL	126
2029	Thallium	BQL	BQL	128
2034	Thallium	BQL	BQL	124
2018	Barium	BQL	BQL	85
2028	Barium	BQL	BQL	80
2029	Barium	BQL	BQL	75
2034	Barium	BQL	BQL	72
2018	Mercury	BQL	BQL	47
2028	Mercury	BQL	BQL	45
2029	Mercury	BQL	BQL	36
2034	Mercury	BQL	BQL	38

Units in mg/L BQL = Below Quantitative Limit Appendix F

Constituents Not in Final Rule

Appendix F

Table 1: Constituents Not in Final Rule

The following is a list of constituents for which EPA proposed specifications, but will not be including in the final rule. Listed next to the constituent is the reason why it does not appear in the final rule.

Chemical Name	Reason why not in final rule	
1,2-Dichloroethylene (cis- or trans-)	covered by isomers	
1,4-Dichloro-2-butene (cis- or trans-)	covered by isomers	
Fluorene	not on Appendix VIII	
1,1,2-Trichloro-1,2,2-trifluoroethane	not on Appendix VIII	
1,1-Dichloro-1-propene	not on Appendix VIII	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	not on Appendix VIII	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	not on Appendix VIII	
1,2,3,4-Tetrachlorobenzene	not on Appendix VIII	
1,2,3,5-Tetrachlorobenzene	not on Appendix VIII	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	not on Appendix VIII	
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	not on Appendix VIII	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	not on Appendix VIII	
1,2,3,7,8-Pentachlorodibenzo-p-furan	not on Appendix VIII	
1,2,3-Trichlorobenzene	not on Appendix VIII	
1,3-Dichloropropane	not on Appendix VIII	
1-Chloronaphthalene	not on Appendix VIII	
2,2-Dichloropropane	not on Appendix VIII	
2,3,4,5-Tetrachlorophenol	not on Appendix VIII	
2,3,4-Trichlorophenol	not on Appendix VIII	
2,3,5-Trichlorophenol	not on Appendix VIII	
2,3,6-Trichlorophenol	not on Appendix VIII	
2,3,7,8-Tetrachlorodibenzo-p-furan	not on Appendix VIII	
2,3-Dichloro-1-propene	not on Appendix VIII	
2,3-Dichlorophenol	not on Appendix VIII	
2,5-Dichlorophenol	not on Appendix VIII	
2-Methylnaphthalene	not on Appendix VIII	
3,4-Dichlorophenol	not on Appendix VIII	
3,5-Dichlorophenol	not on Appendix VIII	
3-/4-Chlorophenol	not on Appendix VIII	
3-Nitroaniline	not on Appendix VIII	
4-Chlorophenyl phenyl ether	not on Appendix VIII	
Acenaphthene	not on Appendix VIII	
Ammonium vanadate	covered by metals	
Anthracene	not on Appendix VIII	
Arochlor-1016	covered by total PCBs	
Arochlor-1221	covered by total PCBs	
Arochlor-1232	covered by total PCBs	

Chemical Name	Reason why not in final rule		
Arochlor-1242			
Arochlor-1242 Arochlor-1248	covered by total PCBs		
Arochlor-1248 Arochlor-1254	covered by total PCBs		
Arochlor-1254 Arochlor-1260	covered by total PCBs		
Arochior-1200 Arsenic acid	covered by total PCBs		
	covered by metals		
Arsenic pentoxide	covered by metals		
Arsenic trioxide	covered by metals		
Barium Cyanide	covered by metals		
Bromide	not on Appendix VIII		
Bromodichloromethane	not on Appendix VIII		
Calcium Cyanide	covered by total cyanide		
Calcium chromate	covered by metals		
Chloride	not on Appendix VIII		
Chloroethane	not on Appendix VIII		
Copper Cyanide	covered by total cyanide		
Cyanogen Bromide	covered by total cyanide		
Cyanogen Chloride	covered by total cyanide		
Di-selenium-tetra-sulfide	covered by metals		
Dibenzofuran	not on Appendix VIII		
Dibromochloromethane	not on Appendix VIII		
Fluoride	not on Appendix VIII		
Lead acetate	covered by metals		
Lead phosphate	covered by metals		
Nickel Cyanide	covered by total cyanide		
Nickel carbonyl	covered by metals		
Octachlorodibenzodioxin	not on Appendix VIII		
Octachlorodibenzofuran	not on Appendix VIII		
Osmium tetraoxide	covered by metals		
Phenanthrene	not on Appendix VIII		
Potassium Cyanide	covered by total cyanide		
Potassium Silver Cyanide	covered by total cyanide		
Pyrene	not on Appendix VIII		
Selenium dioxide	covered by metals		
Selenium sulfide	covered by metals		
Silver Cyanide	covered by total cyanide		
Tetra-selenium-tetra-sulfide	covered by metals		
Tetraethyl lead	covered by metals		
Thallium acetate	covered by metals		
Thallium carbonate	covered by metals		
Thallium chloride	covered by metals		
Thallium nitrate	covered by metals		
	· · · · · · · · · · · · · · · · · · ·		
Thallium oxide	covered by metals		

Chemical Name	Reason why not in final rule	
Thallium sulfate	covered by metals	
Vanadium pentoxide	covered by metals	
Zinc Cyanide	covered by metals	
Zinc phosphide	covered by metals	
alpha-BHC	not on Appendix VIII	
beta-BHC	not on Appendix VIII	
delta-BHC	not on Appendix VIII	