Appendix A

Procedure for Extrapolating Steady State Concentrations
[This page intentionally left blank.]
Appendix A

Procedure for Extrapolating Steady State Concentrations

1. Take the natural log of the concentrations (ppm) measured on or after the last day of feeding. Conduct a linear regression analysis where day is the independent variable and ln (concentration) is the dependent variable. The slope of this line is the depuration rate, $kd \ (d^{-1})$.

2. Estimate the tangent, dC/dt, for each point of the uptake curve using an exponential fit of the uptake data.

3. Estimate the uptake rate, ku, using each point during uptake and the last day of feeding using the following equation:

$$
k_u = \frac{\frac{dC}{dt} + kd \times Ct}{CIR}
$$

where

- ku = Uptake rate based on some time $t \ (kg^{-1})$,
- CIR = Chemical intake rate (mg/d),
- Ct = Concentration at some time $t \ (mg/kg)$, and
- kd = Depuration rate (d^{-1}).
4. Average each value of k_{ut} to get the best overall estimate of ku.

5. Estimate the steady state concentration, C_{ss} (mg/kg) using the following equation:

$$C_{ss} = \frac{ku}{kd} \times CIR.$$

6. Estimate the biotransfer factor (BTF) ([mg/kg]/[mg/d]) using the following equation:

$$BTF = \frac{C_{ss}}{CIR}.$$

7. Estimate the half-life of the chemical using the following equation:

$$t_{1/2} = \frac{\ln(2)}{kd}$$

where

- $t_{1/2}$ = half life of the chemical (d), and
- kd = depuration rate (d⁻¹).

8. Estimate the time required to reach steady state using the following equation:

$$t_{ss} = 5 \times t_{1/2}$$

where

- t_{ss} = time to reach steady state (d), and
- $t_{1/2}$ = half life of the chemical (d).

9. Compare the raw data to the steady-state prediction by plotting the two where the y-axis is concentration and the x-axis is time. Estimate concentrations during uptake using the following equation:

$$C_t = C_{ss} \times \left(1 - e^{-kd \times t}\right).$$
10. Compare the kinetic model’s prediction to the actual data. Calculate concentrations during uptake using the equation provided in Step 9. Calculate concentrations during depuration as follows:

\[C_t = C_{last} \times e^{-kd \times (t - t_{dosed})} \]

where

- \(C_t \) = Concentration at time \(t \) (mg/kg milk),
- \(C_{last} \) = Predicted concentration on last day of dosing (mg/kg milk),
- \(kd \) = Depuration rate (d\(^{-1}\)),
- \(t \) = Time, \(\geq \) days dosed (d), and
- \(t_{dosed} \) = Days dosed (d).
Appendix A

Reference