Climate and Energy Resources for State, Local and Tribal Governments

Air Quality

On this page

Air Quality Impacts Associated with Climate Change

Air pollution levels are directly influenced by changes in weather, such as heat waves. Changes in weather that might result from climate change, such as warmer temperatures and more frequent episodes of stagnant air, therefore, also have the potential to affect air pollution. In addition, increases in heat–related mortality and morbidity are expected due to warmer temperatures.

EPA's Assessment of the Impacts of Global Change on Regional U.S. Air Quality: A Synthesis of Climate Change Impacts on Ground–Level Ozone (2009) evaluated the potential impact of global change on U.S. air quality (assuming no additional air pollutant emission reductions).

  • Ozone. The assessment indicates that climate change has the potential to significantly increase ground-level ozone concentrations in many regions over the next 40 years, although specific regional patterns are uncertain.
  • Particulate Matter. The analysis is less definitive about particle pollution impacts, but indicates that future climate conditions might result in a range of impacts—both increases and decreases—in particle pollution concentrations in different regions. Climate change may also affect different components of particle pollution differently.

Numerous scientific studies have linked ozone and particle air pollution to a variety of health problems, including increased susceptibility to respiratory infections and premature death.

Information about estimating the costs, benefits, and economic impacts of air quality improvements is available from EPA's Economics & Cost Analysis Support site and in the Benefits and Costs of the Clean Air Act reports. More details on assessing the air quality benefits of clean energy initiatives are available in Chapter 4 of Assessing the Multiple Benefits of Clean Energy: A Resource for States.

Top of Page

Air Quality Contributions to Climate Change

In addition to changes in ozone and particle pollution due to climate change, these pollutants also contribute to climate change. Different types of pollutants affect the climate in different ways, depending on their specific properties and the amount of time they stay in the atmosphere. For example, particles influence the climate by scattering and absorbing incoming solar radiation and interacting with various cloud processes. Particles can also have important indirect effects on climate through impacts on clouds and precipitation.

Some pollutants absorb energy and lead to climate warming.

  • Ozone air pollution, is a significant contributor to climate warming. Because ozone stays in the atmosphere for one a few days or weeks, reducing these emissions can help reduce climate impacts in the near term.
  • Black carbon, a component of particle pollution, directly absorbs incoming solar radiation and reduces reflection of sunlight off of snow and ice. In both of these ways, black carbon contributes to increased absorption of energy at the earth's surface and warming of the atmosphere. Recent studies suggest that black carbon may be having a significant impact on the earth's climate.

Other pollutants reflect the sun's rays and prevent that energy from reaching the Earth's surface, leading to climate cooling.

  • Some types of particles—particularly sulfates, nitrates, and some types of directly emitted organic carbon—are largely reflective and therefore have a net cooling impact on the atmosphere.

For more information about air quality interactions with climate change, see EPA's National Air Quality Status and Trends.

Top of Page

Air Quality Benefits of Climate Change Mitigation

Because of the links between climate and air quality, the National Academy of Sciences (2005) recommends that air pollution and climate change policies be developed through an integrated approach, as discussed in Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties Exit. A number of strategies that are used to reduce greenhouse gases for climate change mitigation will reduce air emissions that contribute to multiple air quality concerns such as ozone and particle pollution, toxic air pollutants, atmospheric deposition, and visibility. These kinds of approaches are “win–win,” providing benefits for both air quality and climate change mitigation simultaneously.

Specifically, clean energy offers a cost–effective way to meet growing demand for electricity and natural gas while reducing emissions of air pollutants and greenhouse gases, improving public health, lowering energy costs, and improving the reliability and security of the energy system.

Energy efficiency can reduce electricity consumption, and renewable energy can supply energy from non– or less–polluting sources, resulting in fewer air emissions from electric generating power plants and improved air quality.

Many of the pages on this website provide detailed information and resources on clean energy opportunities for state decision makers, including:

Top of Page

Resources

Assessing the Multiple Benefits of Clean Energy

Assessing the Multiple Benefits of Clean Energy: A Resource for States provides an overview of the multiple benefits of clean energy and their importance. It includes information on:

  • The importance of and approaches to calculating or estimating energy savings as the foundation for deriving multiple benefits
  • A range of tools and approaches to estimating energy systems, environmental, and economic benefits across varying levels of rigor
  • How states have supported the use of clean energy through the estimation of multiple benefits

Public Health Benefits of Reducing Air Pollution

In Public Health Benefits of Reducing Ground Level Ozone & Fine Particle Matter in the Northeast U.S. Exit, the Northeast States for Coordinated Air Use Management (NESCAUM) examines the public health and monetary benefits of several potential emission control programs, which include an electric generating unit control strategy for nitrogen oxides and sulfur dioxide.

Incorporating Energy Efficiency/Renewable Energy in State and Tribal Implementation Plans

The Roadmap for Incorporating Energy Efficiency/Renewable Energy Policies and Programs into State and Tribal Implementation Plans is part of EPA's effort to encourage state, tribal and local agencies to consider incorporating energy efficiency (EE) and renewable energy (RE) policies and programs in their State and Tribal Implementation Plans (SIPs/TIPs). The initiative includes a manual, training, tools and technical assistance.

Top of Page

Tools

Co–Benefits Risk Assessment (COBRA) Screening Model

COBRA is a screening tool that enables users to:

  • Roughly estimate the impact of emission changes on ambient air pollution
  • Further translate this into health effect impacts
  • Monetize the value of those impacts

View the estimated county–level results in tables and maps

Emissions & Generation Resource Integrated Database (eGRID)

eGRID contains a comprehensive inventory of environmental attributes of electric power systems including air emissions data for nitrogen oxides, sulfur dioxide, carbon dioxide, and mercury. The data are organized in a series of Microsoft Excel files that state governments can use to find data on emissions from electricity generation within their state.

Environmental Benefits Mapping and Analysis Program – Community Edition (BenMAP-CE)

BenMAP-CE is an open-source computer program that calculates the number and economic value of air pollution-related deaths and illnesses. The software incorporates a database that includes many of the concentration-response relationships, population files, and health and economic data needed to quantify these impacts. It is powerful enough to perform a full-scale benefits assessment, but easy enough for beginners to use.

Top of Page