US ERA ARCHIVE DOCUMENT # Blue Water Satellite Using Satellite Imaging to Monitor the World's Land and Water Resources™ ### What we do - We use satellite images and patented image processing algorithms to monitor the world's land and water resources - We provide you with images and data that allow you to - Determine land and water body quality - Spot problems areas - Develop cost effective remediation strategies (cost savings offset image costs) ### Some of our Customers **Environmental Engineering** **Oil Companies** **Power Companies** Federal, State, Local Agencies, HOA's **US Army Corps of Engineers** ## Blue Water Satellite Using Landsat and other satellites... ...to see where the problems are. ### You CAN'T tell this..... To make intelligent decisions, From this. you need more data. BWS=5 samples/acre ### Lake Elsinore 10/01/1997 Chl-a Scan ### Lake Elsinore 10/01/1997 Chl-a Scan Chl-a (PPB) 0 – 5 # Most Water Bodies are not Homogeneous! | Station | Station | Mean | Mean | |---------|---------|---------|---------| | | | Chl a | PC | | ST 196 | 1 | 187.825 | 143.5 | | ST 197 | 2 | 371.225 | 309.225 | | ST 198 | 3 | 122.675 | 137.625 | | ST 199 | 4 | 616.775 | 568.525 | | ST 200 | 5 | 106.075 | 108.975 | | ST 201 | 6 | 65.775 | 60.625 | | ST 202 | 7 | 42.375 | 33.2 | | ST 203 | 8 | 51.65 | 39.7 | | ST 204 | 9 | 52.725 | 44.225 | | ST 205 | 10 | 32.675 | 23.1 | | ST 206 | 11 | 53.975 | 57.05 | | ST 207 | 12 | 52.375 | 45.05 | | ST 208 | 13 | 35.175 | 30.45 | | ST 209 | 14 | 30.175 | 23.6 | | ST 210 | 15 | 28.425 | 20.675 | | ST 606 | 16 | 26.75 | 23.55 | | ST 607 | 17 | 31.975 | 33.7 | | ST 608 | 18 | 33.2 | 37.275 | | ST 609 | 19 | 71.575 | 49.175 | | ST 610 | 20 | 143.125 | 69.55 | ### How it works Many chemical and biological constituents produce a unique spectral reflectance signature (Courtesy MIT Lincoln Labs) ### How Blue Water Satellite Works The ratios between the 7 bands of reflected light is a "fingerprint" for each constituent ### **Spectral Reflectance Curve Phosphorus on Land** Phosphorus in Soils Spectra of Soil at Various Phosphorus Levels used in BWSI Algorithm - + NASA Portal - + Goddard Homepage Search NASA: Keywords + ABOUT LANDSAT - NEWS & FEATURES + IMAGES + DATA + EDUCATION + REFERENCES #### News & Features - + How Landsat Helps - + Special Features - + Science Articles - + People of Landsat - + Did You Know? - + Podcasts & Videos - Article Archive landsat news #### Landsat Enables Remote Detection of Dangerous Water Pollutants Nov. 12 • A young Ohio business, Blue Water Satellite, Inc., is using Landsat 5 and 7 data to detect potentially harmful pollutants in water bodies across the U.S. used for recreation and for drinking water supplies. Using Landsat and algorithms developed at Ohio's Bowling Green State University, Blue Water can detect E. Coli, cyanobacteria, phosphorus, and Red Tide. Dr. Robert K. Vincent, a geology professor at BGSU, used NASA and NOAA grant money to help develop the pollutant-detection algorithms. #### More information: + Bowling Green business goes global [external link] ### Years of Research & Peer Review #### (12) United States Patent Vincent (54) METHOD AND APPARATUS FOR DETECTING PHYCOCYANIN-PIGMENTED ALGAE AND BACTERIA FROM (75) Inventor: Robert Vincent, Bowling Green, OH (US) (73) Assignce: Bowling Green State University, Bowling Green, OH (US) Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 10/763,138 (22) Filed: Jan. 22, 2004 US 7,132,254 B2 (10) Patent No.: (45) Date of Patent: Nov. 7, 2006 #### OTHER PUBLICATIONS Richardson, Laurie, Remote sensing of algal bloom tynamies, Jul /Aug. 1996, Bioscience, vol. 46, No. 7, pp. 492-601. Gitelson, A., et al., Optical properties of dense algal cultures outdoors and their application to remote estimation of biomass and pigment concentration in Spirulina plateusis (Cyanobacteria), 1995, Jun of Phycology, vol. 31, No. 5, pp. 828-834, abstract. Green, S., 2003, http://www.ued.ie/~app.phys/stuart/MODEL. HTM, The effect of chlorophyll concentration on airborne hyperspectrial reflectance.* Landsat 7 Science Data Users Handbook, http://ltpwww.gsfc.nasa.gov/IAS/handbook_htmls/chapter8/chater8.html, last updated Aug. 7, 2001; accessed Dec. 16, 2004.* Gitelson, A. et al. Creits. Gitelson, A et al. Optical properties of dense algal cultures outdoors and their application to remote estimation of biomass and pigment concentration in *Spirulina platensis* (cyanoacteria). 1995. J. Phycol. 31: 828-834.* #### Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Mapping the total phosphorus concentration of biosolid amended surface soils using #### Total Phosphorus Water Monitoring Using Satellite Imagery Figure 1: BWSI Total Phosphorus Processed Image Example, Lake Washington compared t within analyzed bove. For Remote Sensing Environment Zoom of Single Station 09/02/2003 ARTICLE INFO LANDSAT TM data ABSTRACT Department of Goology, Euveling Green State University, Reveling Green, OH 43463, United States Department of Environmental Sciences, University of Toleda, Toleda, DM 43686, United States B.B. Maruthi Sridhar 4.8, Robert K. Vincent 3, Jason D. Witter 5, Alison L. Spongberg 5 Conventional methods for soil sampling and analysis for soil variability in chemical characteristics are too Science of the Total Environment Mapping the total phosphorus concentration of biosolid amended surface soils using LANDSAT TM data B.B. Maruthi Sridhar ^{a.B.}, Robert K. Vincent ^a, Jason D. Witter ^b, Alison L. Spongberg ^b ARTICLE INTO on across the region. © 2009 Disovier R.V. All rights reserved of 469 312 7205. 0646-96873 - see from matter 6 2000 Claryler E.V. All rights reserved. sal corazinazion in Biosidi-agoliefi fielib. Dere Obegli conventional anchesi et alei sampling and totaling are bette asoli dei dis proporti con controlle del d SCIENCE CONBESTS Rancie Sensing of Environment 89 (2004) 381-392 Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie Available online at www.sciencedirect.com Robert K. Vincerx a.*, Xiaoming Qina, R. Michael L. McKayb, Jeffrey Minerb, Kevin Czajkowski*, Jeffrey Savino*, Thomas Bridgeman* ⁹ Department of Geology, Moviling Green State University, 217 Life Sciences Building, Booking Green, 691 43495, USA *Department of Biological Sciences, Bowling Green State University, 199 Overmon Hall, Bowling Green, OH 43403-0318, USA * Department of Geography and Planning, University of Tokah, University Hull, 45 804, 2801 West Baseruft Street. Tokaho, OH 45606, USA * University of Tolicals Loke Erric Contro. 6280 Bisshore Ed., Origin, 139 45618, USA Received 2 May 2000; received in revised form 14 October 2001; accepted 26 October 2003 I value was cates there despite the wer the field starts of the show that using the BWSI processed images for Phosphorus screening is certainly i fristorical and future monitoring afforts. The next examplion shows now the data ime of field sample collection and satellitle overpass are closer together. PAGE 5 ### **BWS to Laboratory Data Comparison** | | | Data com | nparison Blue | e Water Satellite, Heidelberg Nati | ional Center for Water Quality | | |----------|---|--------------|---------------|------------------------------------|--------------------------------|---------------------------| | | Phosphorus in water ppb datafrom samples taken at Moultonborough NH | | | | | | | # | Date | Lat | Long | Landsat TP (Averaged) ppb | Heidelberg Data ppb | UNH Data ppb | | 1 | 7/16/2011 | 43 40' 29.9" | 71 20' 45.3" | 4.7 | 9.8 | 5.6 | | 2 | 7/16/2011 | 43 42' 23.0" | 71 21' 16.1" | 11.3 | 11.6 | 6.9 | | 3 | 7/16/2011 | 43 43' 07.8" | 71 24 33.7" | 9.3 | 11.6 | 8.5 | | 4 | 7/16/2011 | 43 43' 34.2" | 71 22 32.6" | 6.5 | 12.5 | 8.6 | | 5 | 7/16/2011 | 43 42' 57.4" | 71 22' 08.7" | 2.6 | 14.8 | 9 | | 6 | 7/16/2011 | 43 43' 03.2" | 71 24' 37.3" | 13.4 | 12.4 | 11 | | 7 | 7/16/2011 | 43 43' 26.0" | 71 24' 37.3" | * | 16 | 8.4 | | 8 | 7/16/2011 | 43 43' 14.7" | 71 22' 58.7" | 8.8 | 11.6 | 8.5 | | *In an a | rea where sa | tellite meas | urement cou | ld not be made | | | | | | | | Δ Landsat to Heidleberg (ppb) | Δ Landsat to UNH (ppb) | Δ Heidleberg to UNH (ppb) | | | | | | 5.1 | 0.9 | 4.2 | | | | | | 0.3 | 4.4 | 4.7 | | | | | | 2.3 | 0.8 | 3.1 | | | | | | 6.0 | 2.1 | 3.9 | | | | | | 12.2 | 6.4 | 5.8 | | | | | | 1.0 | 2.4 | 1.4 | | | | | | | | 7.6 | | | | | | 2.8 | 0.3 | 3.1 | | Average | e of Absolute | Value delta | (ppb) | 4.3 | 2.5 | 4.2 | ### **Technology** - Uses Landsat and commercial satellites - Technology Bowling Green State University (BGSU). - \$1 million in funding from NASA and NOAA over 2 ½ years for validation. - 3 issued patents and 8 pending patents - Peer reviewed science - Ability to go back in time to 1984 - 5 samples/acre - Worldwide China, Australia, Canada, US, Etc. # Case Study #1 Identifying where the problems are Area with 106 Lakes ### Case Study #2 Sources Phosphorus Land ### Case Study #3 Identifying Point Source Problems on Land The image below details Total Phosphorus on Land (TPL) in an agricultural area # Case Study #4 Reducing Treatment Cost BWSI is the only technology that enables significant savings in treatment costs! #### Planned Treatment: Apply Alum in entire lake \$2,200,000 #### **BWSI Solution:** Target Alum to affected areas Cost of Satellite Images Total \$1,300,000 \$ 40,000 \$1,340,000 **Customer Savings:** \$860,000! "You really can't get this information in a cost-effective manner any other way. It's a real bargain if you're trying to do comprehensive sampling of the lake. It's the only way to get the information we want in a cost effective manner because it's lake wide and it's a big lake. – Frank Pickett PPL Montana ### Case study #5 Risk Mitigation The Blue Water Satellite Viewer (BWS Viewer™) enables clients to: Compare water bodies and constituents Quickly evaluate current and historic trends # Case Study #6 Temperature Plumes The image below details temperature in water (Deg C) ## Case Study #7 Aid in Determining Problem Sources Ohio River 2008 **Landsat Natural Color Image** Landsat processed Image ## Case Study #7 Aid in Determining Problem Sources Licking River 2008 Landsat Natural Color Image **Landsat Processed image** ### Case Study # 8 Total Phosphorus Land Finding a leaky septic system in abandoned summer camp ### BWS Range and Accuracy | Blue Water Satellite Constituent Accuracy and Range Data | | | | | |--|------------------------|-------------------|--|--| | Constituent | Range | Accuracy | | | | Cyanobacteria (Phycocyanin) | 0-17 ppb | ±2 ppb | | | | Cyanobacteria (Phycocyanin) | 17-60 ppb ^A | ±17 ppb | | | | Total Phosphorus Water (TPW) | 0-20 ppb | ±6 ppb | | | | Total Phosphorus Water (TPW) | 20-100 ppb | ±11 ppb | | | | Total Phosphorus Land (TPL) | 0-4000 ppm | ±530 ppm | | | | Chlorophyll-a | 1-155 ppb | ±22 ppb | | | | Temperature | 1.9 - 27.6°C | ± 1.52°C | | | | Aquatic Vegetation | Relative | Presence/ Absence | | | | Note: ppb = parts per billion | | | | | | Note: ppm = parts per million | | | | | ### Blue Water Satellite Deliverables - •Geo TIFF file for each image (for ArcGIS) - Processed images (pdf, tiff, or jpeg) - •Custom report (sample page as shown) - Accuracy data - •BWS Viewer ™ (optional) | TPW (PPB) | Calas | |-----------|-------| | IPW (PPB) | Color | | 0 - 5 | | | 6 - 10 | | | 11 - 15 | | | 16 - 20 | | | 21 - 30 | | | 31 - 40 | | | 41 - 50 | | | 51 - 60 | | | >60 | | | | | | TPW (PPB) | Area (Acres) | Percent of Lake | |-----------|--------------|-----------------| | 0-5 | 1174.24 | 23.99 | | 6-10 | 321.81 | 6.57 | | 11 - 15 | 351.38 | 7.18 | | 16 - 20 | 335.15 | 6.85 | | 21 - 30 | 499.28 | 10.20 | | 31 - 40 | 399.64 | 8.16 | | 41 - 50 | 296.23 | 6.05 | | 51 - 60 | 201.93 | 4.12 | | >60 | 1315.91 | 26.88 | Color scale (above left) indicates ranges of concentration of phosphorus in parts per billion as represented in scan image (top). Pie chart histogram (above) indicates percentage of water within view delineated by concentration ranges. Table (left) indicates actual acreage falling within each range of concentration of phosphorus. Phosphorus on land and in water analysis #### http://gispublic.co.lake ca.us/BWS/ Blue Water Satellite Customer Example: Clear Lake, California Lake County makes BWS data available online for public outreach # Blue Water Satellite No one sees it like Blue Water Satellite. No one. For additional information 855-885-5648 ext 1