US ERA ARCHIVE DOCUMENT

Beazer

BEAZER EAST, INC. C/O THREE RIVERS MANAGEMENT, INC. MANOR OAK ONE, SUITE 200, 1910 COCHRAN ROAD, PITTSBURGH, PA 15220

February 19, 2013

Ms. Carolyn Bury
U.S. Environmental Protection Agency, Region V
77 West Jackson Boulevard
Mail Code DE-9J
Chicago, IL 60604-3590

Re: Former Koppers Wood-Treating Site – Carbondale, Illinois November 2012 Dioxin Sampling Final/Validated Data Submittal

Dear Ms. Bury:

In accordance with the November 19, 2012 *Work Plan for Additional Soil Sampling and PCDD/PCDF Analysis* (Work Plan), which was approved by the USEPA on November 20, 2012, Beazer conducted sampling in the residential area south of the Former Koppers Wood-Treating Site in Carbondale, Illinois on November 27 and 28, 2012. The purpose of this letter is to transmit the final/validated laboratory analytical data associated with the November 2012 sampling to the USEPA. The following are attached to this letter:

- Attachment 1 Validated Analytical Data Summary Table
- Attachment 2 Sample Location Maps
- Attachment 3 Data Validation Reports (includes validated laboratory analytical data sheets)

As discussed in the Work Plan, a total of 16 samples were collected – eight of the 16 were initially analyzed for PCDDs/PCDFs, and the other eight were held at the laboratory. Based on discussions with USEPA during a December 18, 2012 conference call, four of the initially held samples were released for PCDD/PCDF analysis. The results for all 12 of the analyzed samples are reported herein.

Please feel contact me at 412-208-8867 if you have any questions or comments regarding this submittal.

Sincerely,

Michael Slenska, P.E.

Senior Environmental Manager

Enclosure

cc: Ja

James Moore, IEPA Jeffrey Holden, ARCADIS Paul Anderson, ARCADIS David Bessingpas, ARCADIS

Attachment 1

Validated Analytical Data Summary Table

ABLE 1 ALIDATED ANALYTICAL DATA SUMARY - NOV. 2012 SAMPLES

DRMER KOPPERS WOOD-TREATING SITE ARBONDALE, ILLINOIS

	Sample ID:		A1-64	A1-65	A1-66	A1-67	A1-68	A1-69	A1-70	A1-71	A1-72	A1-73	A1-74	A1-75
~	Depth (ft bgs):		0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
	Sample Date:	Units	11/27/12	11/27/12	11/28/12	11/28/12	11/27/12	11/27/12	11/27/12	11/27/12	11/27/12	11/27/12	11/27/12	11/27/12
CD	Ds/PCDFs													
,2,3	,4,6,7,8-HpCDD	pg/g	344	358	1,530	5,010 EJ	296 [317]	205	897	653	269	773 [1,160]	316	817
,2,3	,4,6,7,8-HpCDF	pg/g	25.8	41.3	189 J	468	24.1 [26.5]	19.7	254	82.8	19.4	130 [186]	30.6	62.4
,2,3	,4,7,8,9-HpCDF	pg/g	1.88 J	3.13	13.1	29.3	1.88 J [1.84 J]	1.42 J	26.5	5.77	1.39 J	9.45 [14.6]	2.21 J	4.42
,2,3	,4,7,8-HxCDD	pg/g	2.88	3.52	11.5	31.4	3.31 [3.34]	2.15 J	8.26	7.01	2.77 J	9.72 [12.4]	3.19	9.48
,2,3	,4,7,8-HxCDF	pg/g	1.48 J	1.93 J	7.81	7.87	1.51 J [1.46 J]	1.16 J	11.7	3.85	0.844 J	5.26 [6.94]	1.98 J	2.32 J
	,6,7,8-HxCDD	pg/g	7.22	10.1	44.5	95.0	8.83 [10.7]	5.83	29.7	17.9	6.08	24.1 [30.8]	7.64	20.8
,2,3	,6,7,8-HxCDF	pg/g	1.09 J	1.42 J	5.86	5.54	1.26 J [1.12 UX]	0.808 UX	7.16	3.19	0.685 UX	5.98 [7.50]	1.65 J	2.12 J
	5,7,8,9-HxCDD	pg/g	6.96	8.17	27.1	79.3	8.04 [9.54]	5.35	21.0	16.4	6.66	23.7 [29.5]	6.97	33.7
,2,3	5,7,8,9-HxCDF	pg/g	0.139 J	0.193 J	0.745 J	0.737 J	0.483 U [0.505 U]	0.390 U	1.63 J	0.275 J	0.316 U	0.984 U [1.59 J]	0.375 U	0.277 U
,2,3	,7,8-PeCDD	pg/g	1.64 J	2.04 J	4.85	10.5	2.06 J [2.56 J]	1.53 J	4.04	4.16	1.22 UX	6.58 [6.47]	2.03 J	8.18
,2,3	,7,8-PeCDF	pg/g	0.419 J	0.336 J	2.29 J	0.807 J	0.453 J [0.395 J]	0.429 J	0.721 J	1.03 J	0.235 U	1.14 J [1.11 J]	0.709 J	0.682 J
,3,4	,6,7,8-HxCDF	pg/g	1.76 J	2.32 J	9.08	11.1	2.12 J [2.21 J]	1.24 J	14.3	5.05	1.18 J	8.06 [10.7]	2.17 J	3.58
	,7,8-PeCDF	pg/g	0.524 J	0.778 J	3.86 J	1.58 J	1.04 J [1.03 J]	0.654 J	0.609 J	2.48 J	0.190 UX	1.38 J [1.54 J]	1.00 J	0.568 J
	,8-TCDD	pg/g	0.301 J	0.269 UX	0.870	0.782	0.364 J [0.372 J]	0.316 UX	0.329 UX	0.561 J	0.185 UX	0.667 [0.579]	0.259 J	1.25
,3,7	,8-TCDF	pg/g	0.652	0.408 J	1.65	0.479 J	0.331 J [0.287 J]	0.555 J	0.336 J	1.22	0.157 J	0.627 [0.769]	0.821	0.760
CD	D	pg/g	17,700 EJ	12,700 EJ	30,900 EJ	170,000 DEJ	10,900 EJ [11,200 EJ]	9,870 EJ	19,900 EJ	24,000 EJ	20,000 EJ	21,500 EJ [26,800 EJ]	12,400 EJ	21,000 EJ
CD	F	pg/g	112	169	718	3,970 J	82.3 [88.8]	60.9	576	319	78.7	450 [871]	107	340
otal	HpCDD	pg/g	759	832	2,610	8,240	583 [656]	439	1,450	1,570	588	1,480 [2,150]	709	1,730
otal	HpCDF	pg/g	88.7	138	639	2,250	82.7 [80.6]	58.5	849	273	62.4	397 [633]	97.7	227
otal	HxCDD	pg/g	75.2	89.8	257	601	73.5 [84.3]	61.3	157	162	57.5	208 [274]	81.9	204
otal	HxCDF	pg/g	31.5	47.4	170	327	38.1 [37.9]	19.3	281	91.3	20.4	139 [205]	36.4	64.4
otal	PeCDD	pg/g	18.4	17.9	36.3	52.5	13.6 [16.5]	15.9	21.9	34.2	9.91	36.2 [47.1]	16.4	37.4
otal	PeCDF	pg/g	13.3	14.8	52.9	34.4	22.3 [19.6]	9.72	25.7	38.2	4.96	40.7 [58.5]	19.7	40.6
	TCDD	pg/g	9.13	5.82	7.00	4.51	2.11 [2.33]	3.73	1.46	12.2	1.25	7.27 [9.10]	1.87	7.82
	TCDF	pg/g	9.56	8.38	30.5	9.56	9.05 [6.87]	7.12	2.86	27.0	1.78	16.9 [20.7]	16.1	16.3
,3,7	,8-TCDD TEQ	pg/g	13.4	13.0	44.6	142	11.8 [12.8]	8.61	31.6	25.7	10.7	31.1 [39.5]	12.3	32.1

otes:

All 12 samples were composites of five discrete soil sample locations.

efinitions:

CDDs/PCDFs = polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans

g/g = picograms per gram, or parts per trillion (ppt)

bgs = feet below ground surface

EQ = Toxicity Equivalent, calculated using 2005 World Health Organization (WHO) Toxicity Equivalent Factors (TEFs)

] = analytical result for duplicate sample

Data Qualifiers:

D = result based on analysis of diluted sample

E = the amount detected is above the High Calibration Limit

J = the amount detected is below the Low Calibration Limit; or estimated value based on data validation

U = compound not detected; reported value is the sample specific estimated detection limit

UX = non-detect; reported value is the estimated maximum possible concentration

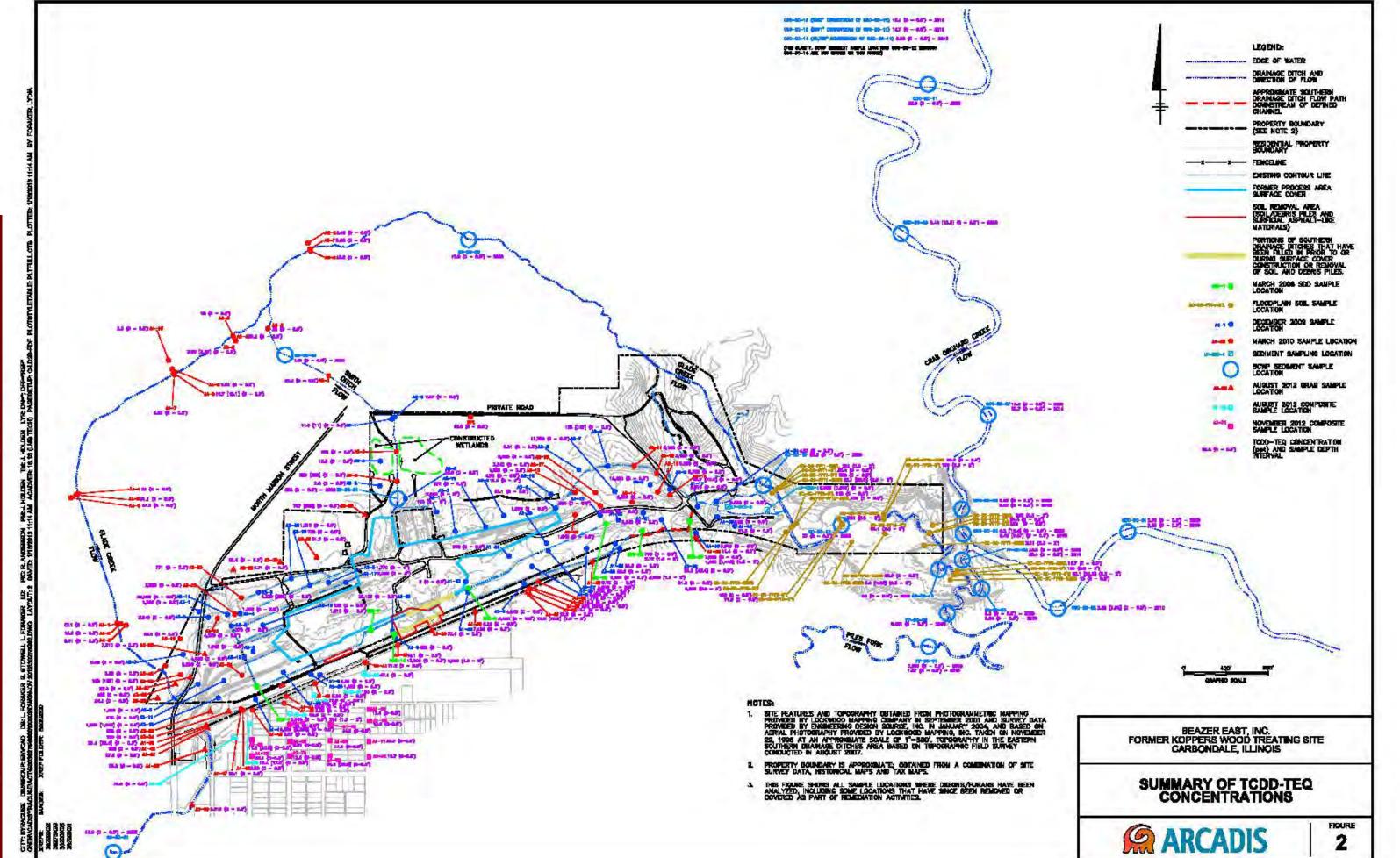
0391311324Tbl.xlsx Page 1 of 1 2/20/2013

Attachment 2

Sample Location Maps

NOT ANALYZED

NOTES


- 1. SIE FEATURES AND TOPOGRAPHY OBTAINED FROM PHOTOGRAMMETRIC MAPPING PROMIDED BY LOUNGOOD NAPPING CIMPANY IN SEPTEMBER ZOOI AND SURVEY DATA FROMDED BY ENGINEERING DESIGN SOURCE, INC. IN JUNIORAL AND PASED ON ACIGAL PHOTOGRAPHY PROMIDED BY LOCKNOOD MAPPING, INC. TAKION ON MOVEMBER 22, 1888 AT AN APPROXIMATE STATE OF 1"—SID!, TOPOGRAPHY IN THE EASTERN SOUTHERN DAMANACE DITORS AREA BASED ON TOPOGRAPHIC FIELD SURVEY CONDUCTED IN AUGUST 2007.
- 2. PROPERTY BOUNDARY IS APPROXIMATE; OBTAINED FROM A COMMINATION OF SITE SURVEY DATA. HISTORICAL MAPS AND TAX MAPS.
- 3. THE 2008 RESIDENTIAL SAMPLE LOCATIONS ARE APPRIXIMATE.
- AERIAL MAGE DITABLED FROM GODGLE EARTH AND DATED APRIL 2, 2012.

BEAZER EAST, INC. FORMER KOPPERS WOOD TREATING SITE CARBONDALE, ILLINOIS

AUGUST/NOVEMBER 2012 SAMPLE LOCATIONS AND TCDD-TEQ CONCENTRATIONS

Attachment 3

Data Validation Reports (includes validated laboratory data sheets)

Beazer East Inc.

Former Koppers Wood-Treating Site

Data Review

CARBONDALE, ILLINOIS

Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans (PCDDs/PCDFs) Analyses

SDG #: 2110011

Analyses Performed By: Vista Analytical Laboratory El Dorado Hills, California

Report #: 18268R Review Level: Tier III

Project: B0039275.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 2110011 for samples collected in association with the Beazer East Inc. Former Koppers Wood-Treating site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis						
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	PCDDs/ PCDFs	MET	MISC		
A1-68 (0-0.5')	2110011-01	Soil	11/27/2012				Х				
DUP-1	2110011-02	Soil	11/27/2012	A1-68 (0-0.5')			Х				
A1-75 (0-0.5')	2110011-03	Soil	11/27/2012				Х				
A1-69 (0-0.5')	2110011-04	Soil	11/27/2012				Х				
A1-74 (0-0.5')	2110011-05	Soil	11/27/2012				Х				
A1-70 (0-0.5')	2110011-06	Soil	11/27/2012				Х				
A1-73 (0-0.5')	2110011-07	Soil	11/27/2012				Х				
A1-71 (0-0.5')	2110011-08	Soil	11/27/2012				Х				
A1-72 (0-0.5')	2110011-09	Soil	11/27/2012				Х				
EB 112712	2110011-10	Water	11/27/2012				Х				

Note: Soil sample results were reported on a dry weight basis.

Sample location A1-73 (0-0.5') is the parent sample of field duplicate sample DUP 2 which is included in SDG 2110012 (data validation report 19269R); the field duplicate sample results were evaluated within this data validation report.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted	Performance Acceptable		Not	
	Items Reviewed	No	Yes	No	Yes	Required	
1.	Sample receipt condition		Χ		Х		
2.	Requested analyses and sample results		Х		Х		
3.	Master tracking list		Х		Х		
4.	Methods of analysis		Х		Х		
5.	Reporting limits		Х		Х		
6.	Sample collection date		Х		Х		
7.	Laboratory sample received date		Х		Х		
8.	Sample preservation verification (as applicable)		Х		Х		
9.	Sample preparation/extraction/analysis dates		Х		Х		
10.	Fully executed Chain-of-Custody (COC) form		Х		Х		
11.	Narrative summary of QA or sample problems provided		Х		Х		
12.	Data Package Completeness and Compliance		Х		Х		

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8290 as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II SOP associated with USEPA SW-846 Method 8290 Validating Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans by High Resolution GC/MS (SOP HW-19 Revision 1, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and

provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

POLYCHLORINATED DIBENZODIOXINS AND POLYCHLORINATED DIBENZOFURANS (PCDD/PCDF) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8290	Water	30 days from collection to extraction and 45 days from extraction to analysis	Cool to 4±2 °C
300-040 0290	Soil	30 days from collection to extraction and 45 days from extraction to analysis	Cool to 4±2 °C

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were not detected above the MDL in the associated laboratory method blank; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance including instrument sensitivity and mass resolution were acceptable.

Overall system performance and gas chromatographic column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

All compounds associated with the initial calibration standards must exhibit signal-to-noise ratios (S/N) of at least 2.5, isotopic ratios within the limits listed in table eight of the method, and percent relative standard deviations (%RSDs) of the relative response factors (RRFs) less than 20% for the labeled standards and less than 30% for the target compounds.

4.2 Continuing Calibration

Instrument performance must be verified at 12 hour periods after successful tune verifications. All compounds associated with the continuing calibration standard must exhibit S/N of at least 2.5, isotopic ratios within the limits listed in table eight of the method, and percent differences (%D) of the RRFs less than 30% for the labeled standards and less than 20% for the target compounds..

All initial and continuing calibration criteria were within the control limits.

5. Injection Internal Standard Performance

Injection internal standards are added to all extracts prior to instrumental analysis. The injection internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the injection internal standard compounds exhibit a signal-to-noise (S/N) ratio of at least 10 and elute within ± fifteen seconds of the retention times (RTs) established during calibration. The acceptance criteria also specify that each injection internal standard exhibit a ratio of the two identifying masses (m/z) within the method specified limits.

All injection internal standard S/N, RT, and m/z ratios were within established limits.

6. Surrogate Internal Standard Compounds

All field samples, blanks, LCS, and MS/MSD are spiked with surrogate internal standard compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The acceptance criteria require that the surrogate internal standard compounds exhibit a signal-to-noise (S/N) ratio of at least 10 and elute within ± fifteen seconds of the retention times (RTs) established during calibration. The acceptance criteria also specify that each surrogate internal standard exhibit a calculated recovery and a ratio of the two identifying masses (m/z) within the method specified limits.

All samples exhibited surrogate internal standard acceptance criteria within the control limits.

7. Clean-up Recovery Surrogate Performance

All field samples, blanks, LCS, and MS/MSD are spiked with recovery surrogates prior to extract clean-up. Recovery surrogate acceptance criteria require that their calculated recoveries, S/N, m/z ratios, and relative retention times (RRTs) be within the method-specified acceptance limits.

All recovery surrogate recoveries S/N, m/z ratios, and RRTs were within the control limits.

8. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the (optional) MS/MSD analysis should exhibit recoveries within the method-specified acceptance limits of 80-120%. The relative percent difference (RPD) between the MS and MSD results should be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

Sample location A1-69(0-0.5') was used for the MS/MSD analysis. All compounds associated with the MS/MSD analyses exhibited acceptable recoveries and RPDs between the MS and MSD results.

9. Ongoing Precision and Recovery (OPR) Sample Analysis

The OPR analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the OPR analysis must exhibit a percent recovery within the method-specified acceptance limits.

All compounds associated with the OPR analysis exhibited recoveries within the control limits.

10. Field Duplicate Sample Analysis

Field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results (in pg/g) for the field duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	2,3,7,8-TCDD	0.364 J	0.372 J	2.2 %
	1,2,3,7,8-PeCDD	2.06 J	2.56 J	21.6 %
	1,2,3,4,7,8-HxCDD	3.31	3.34	0.9 %
	1,2,3,6,7,8-HxCDD	8.83	10.7	19.2 %
	1,2,3,7,8,9-HxCDD	8.04	9.54	17.1 %
	1,2,3,4,6,7,8-HpCDD	296	317	6.9 %
	OCDD	10900 E	11200 E	2.7 %
	2,3,7,8-TCDF	0.331 J	0.287 J	14.2 %
	1,2,3,7,8-PeCDF	0.453 J	0.395 J	13.7 %
	2,3,4,7,8-PeCDF	1.04 J	1.03 J	1.0 %
A1-68 (0-0.5') / DUP-1	1,2,3,4,7,8-HxCDF	1.51 J	1.46 J	3.4 %
	1,2,3,6,7,8-HxCDF	1.26 J	1.12 U	AC
	2,3,4,6,7,8-HxCDF	2.12 J	2.21 J	4.2 %
	1,2,3,4,6,7,8-HpCDF	24.1	26.5	9.5 %
	1,2,3,4,7,8,9-HpCDF	1.88 J	1.84 J	2.2 %
	OCDF	82.3	88.8	7.6 %
	Total TCDD	2.11	2.33	9.9 %
	Total PeCDD	13.6	16.5	19.3 %
	Total HxCDD	73.5	84.3	13.7 %
	Total HpCDD	583	656	11.8 %
	Total TCDF	9.05	6.87	27.4 %

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Total PeCDF	22.3	19.6	12.9 %
A4 69 (O O E1) / DUD 4	Total HxCDF	38.1	37.9	0.5 %
A1-68 (0-0.5') / DUP-1	Total HpCDF	82.7	80.6	2.6 %
	TEQ	11.8	12.8	8.1 %
	2,3,7,8-TCDD	0.667	0.579	14.1 %
	1,2,3,7,8-PeCDD	6.58	6.47	1.7 %
	1,2,3,4,7,8-HxCDD	9.72	12.4	24.2 %
	1,2,3,6,7,8-HxCDD	24.1	30.8	24.4 %
	1,2,3,7,8,9-HxCDD	23.7	29.5	21.8 %
	1,2,3,4,6,7,8-HpCDD	773	1160	40.0 %
	OCDD	21500 E	26800 E	21.9 %
	2,3,7,8-TCDF	0.627	0.769	20.3 %
	1,2,3,7,8-PeCDF	1.14 J	1.11 J	2.7 %
	2,3,4,7,8-PeCDF	1.38 J	1.54 J	11.0 %
	1,2,3,4,7,8-HxCDF	5.26	6.94	27.5 %
	1,2,3,6,7,8-HxCDF	5.98	7.50	22.6 %
A4 70 (0 0 El) / DUD 0	2,3,4,6,7,8-HxCDF	8.06	10.7	28.1 %
A1-73 (0-0.5') / DUP 2	1,2,3,7,8,9-HxCDF	0.984 U	1.59 J	AC
	1,2,3,4,6,7,8-HpCDF	130	186	35.4 %
	1,2,3,4,7,8,9-HpCDF	9.45	14.6	42.8 %
	OCDF	450	871	63.7 %
	Total TCDD	7.27	9.10	22.4 %
	Total PeCDD	36.2	47.1	26.2 %
	Total HxCDD	208	274	27.4 %
	Total HpCDD	1480	2150	36.9 %
	Total TCDF	16.9	20.7	20.2 %
	Total PeCDF	40.7	58.5	35.9 %
	Total HxCDF	139	205	38.4 %
	Total HpCDF	397	633	45.8 %
	TEQ	31.1	39.5	23.8 %

AC Acceptable

The field duplicate sample results are acceptable.

11. Compound Identification

PCDD/PCDF compounds are identified by using the compound's ion abundance ratios, signal-to-noise

J Estimated (result is < RL)

U Not detected

values, and relative retention times.

An estimated maximum possible concentration (EMPC) designation is given to compounds which have signals eluting within the established retention time window which would, if positively identified, be greater than the detection limit. The signals do not, however, meet the ion abundance ratio criteria and therefore cannot be identified as the compound of interest. The EMPC value is the estimated concentration of the interferant quantitated "as the compound of interest". This value should be considered an elevated detection limit based on potential compound identification and quantitation interference. The "UX" qualifier has been added to the following sample results (in pg/g) to indicate the elevated detection limit as EMPC.

Sample ID	Compound	Laboratory Result	Reported Result	
DUP-1	1,2,3,6,7,8-HxCDF	1.12 EMPC	1.12 UX	
A1 60 (0 0 5')	2,3,7,8-TCDD	0.316 EMPC	0.316 UX	
A1-69 (0-0.5')	1,2,3,6,7,8-HxCDF	0.808 EMPC	0.808 UX	
A1-70 (0-0.5')	2,3,7,8-TCDD	0.329 EMPC	0.329 UX	
	2,3,7,8-TCDD	0.185 EMPC	0.185 UX	
A1 72 (0 0 5')	1,2,3,7,8-PeCDD	1.22 EMPC	1.22 UX	
A1-72 (0-0.5')	2,3,4,7,8-PeCDF	0.190 EMPC	0.190 UX	
	1,2,3,6,7,8-HxCDF	0.685 EMPC	0.685 UX	

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
A1-68 (0-0.5')	OCDD	10900 E		10900 EJ
DUP-1	OCDD	11200 E		11200 EJ
A1-75 (0-0.5')	OCDD	21000 E		21000 EJ
A1-69 (0-0.5')	OCDD	9870 E		9870 EJ
A1-74 (0-0.5')	OCDD	12400 E		12400 EJ
A1-70 (0-0.5')	OCDD	19900 E		19900 EJ
A1-73 (0-0.5')	OCDD	21500 E		21500 EJ
A1-71 (0-0.5')	OCDD	24000 E		24000 EJ
A1-72 (0-0.5')	OCDD	20000 E		20000 EJ

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentration greater than the linear range qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within the calibration range	D
Diluted sample result < the calibration range	DJ
Diluted sample result > the calibration range	EDJ
Original sample result > the calibration range	EJ

The analyzing laboratory noted that the compounds in the following table exhibited interference by a coeluting furan isomer and may have concentrations that are biased high. Therefore, the following results were qualified as estimated.

Sample Location	Analyte
A1-68 (0-0.5') DUP-1 A1-75 (0-0.5') A1-69 (0-0.5') A1-74 (0-0.5') A1-73 (0-0.5')	2,3,4,7,8-PeCDF
A1-70 (0-0.5') A1-71 (0-0.5')	2,3,4,7,8-PeCDF 1,2,3,7,8,9-HxCDF

12. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PCDD/PCDF

PCDDs/PCDFs; SW-846 8290	Rep	orted		mance	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times		X		X	
Reporting limits (units)		X		X	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Ongoing Precision and Accuracy (OPR) Accuracy (%R)		Х		Х	
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Internal Standard Spike %R		Х		Х	
Recovery Surrogate Standard Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation		•	•	1	1
System performance and column resolution		Х		Х	
Initial calibration %RSD		Х		Х	
Continuing calibration %D		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Signal-to-noise ratio		Х		Х	
Injection Internal Standard performance		Х		Х	
Recovery standard performance		Х		Х	
Compound identification and quantitation		l	l.		I
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted for sample dilutions		Х		Х	
F. Compound quantification		Х	Х		

RSD - relative standard deviation

%R - percent recovery

RPD - relative percent difference

%D – difference

SAMPLE COMPLIANCE REPORT

Sample Delivery					Compliancy ¹					
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	PCDDs/ PCDFs	MET	MISC	Noncompliance
	11/27/2012	SW846	A1-68 (0-0.5')	Soil			No	1		Calibration range exceedance
	11/27/2012	SW846	DUP-1	Soil			No			Calibration range exceedance; EMPC
	11/27/2012	SW846	A1-75 (0-0.5')	Soil			No			Calibration range exceedance
	11/27/2012	SW846	A1-69 (0-0.5')	Soil			No			Calibration range exceedance; EMPC
2110011	11/27/2012	SW846	A1-74 (0-0.5')	Soil			No			Calibration range exceedance
2110011	11/27/2012	SW846	A1-70 (0-0.5')	Soil			No			Calibration range exceedance; EMPC
	11/27/2012	SW846	A1-73 (0-0.5')	Soil			No			Calibration range exceedance
	11/27/2012	SW846	A1-71 (0-0.5')	Soil			No			Calibration range exceedance
	11/27/2012	SW846	A1-72 (0-0.5')	Soil			No			Calibration range exceedance; EMPC
	11/27/2012	SW846	EB 112712	Water			Yes			

¹ Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

alidation Performed By	y: Dennis Dyke	
------------------------	----------------	--

Signature:

Date: January 18, 2013

Peer Review: Dennis Capria

Date: _ January 24, 2013

CHAIN OF CUSTODY / LABORATORY QUALIFIERS / CORRECTED SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY

FOR LABORATORY USE ONLY	Storage
Laboratory Project ID: 2110011	Secured Yes No 🗆
Storage ID WK-2	_Temp _0.8_ °C

Project I.D.:	P.O.#_8¢63927	5.0	_	. 00	002 Sa	ımpler	1. STEN	(Name)	W		Stand Rush	4 days	21 (arge m 07 da	ay apply): ays Specify:		
Invoice to: Name	Com	pany	CADIS Add	iress	Exc	151	SIDR 1	20	City BAXTE	S N	tate 5	Zip 647.5	Ph#	18-8 e: . /	29 - A	ax#
Relinquished by signature and Printed	Vame)	24	Date: 11/28/12		Tin	ne:	15	Receiv	ed by signam	e and Printed N	meB. R	onod	Pat	e: 11/2	alia	Time: 1039
Relinquished by: (Signature and Printed	Name)	11/10	Date:		Tin	ne:	P	Receiv	ed by: (Signatur	e and Printed Na	ame)	UICE		e: /	1/12	Time:
an one (no.			See "Sample Log-in C	Che	ckli	st"	for add	tiona	l sample i	nforma	tion					imentuar
SHIP TO: Vista Analytical La 1104 Windfield Wa El Dorado Hills, CA (916) 673-1520 • F.	y 95762	3.0106	Method of Shipment:	Ad	ld An	alysi	(es) Requ		STATES?	S.P. S. S.S.		EP ABOR	/	R.P.A. Island		
ATTN:			Tracking No.:		1.2	ainer	(S)					375/5			1 2 ST 1 S	
Sample ID	Date	Time	Location/Sample Description	<u> </u>	\leftarrow	/	/ / /	/ /	777	77	1/2/	7	11	4	//	
A1-68 (0-0.5')	11/27/12			1		So		+		++	+	+	\vdash	+	-	
DUP-1	11/27/12	-		1	9	So		-		-	+	-	\vdash	-		
A1-75 (0-0.51)	11/27/12			1	6	50		-		-	-	-	\vdash	+	-	
A1-69 (0-0.5')	11/27/12			1	6	Sc		4	I X	\rightarrow			\vdash	_		
41-69 (0-0.5') MS	11/27/12	1010		1	G	50		_	X				\perp			
A1-69 (0-0.5') MSD	11/27/12	1010		1	_	50			X							
A1-74(0-0,5)	11/27/12	1100		1	G	So			X							
A1-70 (0-0.5)	11/27/12	1135		1	6	50			X							
A1-73 (0-0.5')	11/27/12	1210		1	6	So			X							
DUP-2	11/27/12			1	G	50			X	u Tai i					1	KHOLD*
Special Instructions/Comments:			*Bottle Preserv		Туре	- - - - : T=	DOCU. AND R	ESUI	OTATION LTS TO:	Compa Addres City: Phone: Email:	218-8 DAVID.	29-4 BESSI	Sta Sta 607 wgpa	te: MN	Zip x:	: 56425 S-V3. COM PP = Pulp/Paper,

CHAIN OF CUSTODY

FOR LABORATORY USE ONLY	Storage
2110011	Secured
Laboratory Project ID: 0110011	Yes No □
Storage ID WK-2	Temp O • O°°C

2 or 3

		EVENBON (Name)		21 Days ge may apply): 7 days Specify:							
nvoice to: Name DAVID BUSSIAGE Relinquished by (semantano ring	Com	pany ARCA	DIS 6602	dress	cer	510	e Ro.	City	State Zip	Z5 718-829	Fax# 7-4607
elinquished by (signal are and Frint	ed Name) KAY	STEV	ENSON Date: 1/28/12	2	Tin	ne: /4	K Be	ceived by: (Stepant	e and Printed Name + 3Be	medict 1/29	/12 Time: 1040
Relinquished by: (Signature and Print	ed Name)		Date:		Tin	ne:	Re	ceived by: signatur	e and Printed Name)	Date:	Time:
			See "Sample Log-in (Che	ckli	st" f	or additio	nal sample i	nformation	n sektre hann	
SHIP TO: Vista Analytical I 1104 Windfield V El Dorado Hills,	Vay		Method of Shipment:	Ad	ld An	alysis	(es) Requested	d RANGES	THE	S GRADES	
(916) 673-1520 •		3-0106	Tracking No.:		Cont	ainer	s) /	///	, , , , , ,		77/
ATTN:					1	7	-//				/8//
					San L	/0/					37//
Sample ID	Date	Time	Location/Sample Description	1	30/1	\$ 4	3/5/	\$ \$ \$ \$	\\$\\$\\\$\\&\\&\\&\\&\\	18/1/2	
A1-71 (0-0,51)	11/27/12	/330		1	G	50		I X			
A1-72 (c-0.5')	11/27/12			1	-	50		X			
A1-65 (0-0.5')	11/27/12			1		So		X		0 = 1 = 1 = 1	* HOLD *
A1-64 (0-0.5)	11/27/12			1	9	So		l x			* HOLD *
EB 112712	11/27/12			2	A	AQ		X			
A1-79 (0-0.5')	11/28/12			1	6	So		X			* HOLD *
A1-78 (0-0.5')	11/28/12			1	9	50		X			* HOLD *
A1-77 (0-0.5)	11/28/12			1	-	Su		X		1 1 1 1 1	* HOLD *
A1-76 (0-0.5')	11/28/12			1	G	50		X			* HOLD *
A1-67 (0-0.5)	11/28/12			1	-	So		X			* HOLD *
Special Instructions/Comments	y:		Order 2110012				DOCUME	END ENTATION	Name: DAVID B Company: ARCA Address: 6602	TOUS EXCENSION	RD.
10000							AND RES	SULTS TO:	City: BAXTER		
Container Types: A = 1 Liter Ambe P = PUF, T = MM5 Train, O= Other			*Bottle Preserv O = Other						Matrix Types: DW = D	rinking Water, EF = Effl dge, SO = Soil, WW =	ARCADIS -US. COM

CHAIN OF CUSTODY

3 0 = 3

FOR LABORATORY USE ONLY	Storage
2110011	Secured
Laboratory Project ID: 2110011	_ Yes No
Storage ID WR-2	_Temp 0.8 °C

Project I.D.:				75.0	2000), α	000	≥ San	npler	Ŕ	Sn St	EU	(Name	7: 302	1	_	Sta	ndaro sh (su	urchar	ne): 21 Days ge may apply): 7 days Specify:
Invoice to: Name DAVID BESSINGER	Con	pany ARCI	HDIS 6602 Ad	dress	US.	OR	RO		B	Cit 4×77	y ER		n	State	Zi	P 425	Ph#	21	8-8	29-4607
Relinquished by (Signature and Printed	Maria	ven	Data: i			ne: 144		10	éceiv	ed by:	Signa	rupe and	Printed	Name)				ate:	11/2	7/12 Time: 1040
Relinquished by: (Signature and Printed	Name)		Dáte:		Tin	ne:		H	Receiv	ed by:	(Signa	iture and	Printed	Name)			D	ate:		Time:
			See "Sample Log-in	Che	ckli	st"	for	addit	iona	l sar	nple	inf	orm	ation						in in Legisla
SHIP TO: Vista Analytical La 1104 Windfield Wa El Dorado Hills, CA (916) 673-1520 • Fa	ay A 95762	3-0106	Method of Shipment: Tracking No.:		ld An			Reques	/		2,1613	7	SP PS	1	3	A8780	1/30	\$2 P.	, gas	
ATTN:		I as a v			1.2	1	/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			8/8/8		TO SE			3/3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Sample ID	Date	Time	Location/Sample Description	1	-	-	1	13/	2/	7/	2/4	1	100	18/	2	7	1	4	4	
A1-66 (0-0,5')	11/28/12	_		1	+	So		\vdash	+	-	X			-	+	-	-		-	*HOLD*
EB 1/28/2	11/28/12	1400		2	A	Aq		-	+	+	X			+	+	+	\vdash		+	
	1							\vdash	+	+				+	+	+	\vdash			
									1					+	1					
									1											
									1				Y	: DA					2	
Special Instructions/Comments:			Jonk Order 211001 *Bottle Presen		Type	- - - : T=	Al	OCUM ND RE		TATI		1	Comp Addre City:_ Phone Email	ess:_C BAY :: 218 :: DA	ARI OLOCI 182 NO.B	CMI 2 E 9 9	S S KO	tate:	Fax:	RD. Zip: 564ZS PCAOLS - US. (CM.) Bluent, PP = Pulp/Paper,
P = PUF, T = MM5 Train, O= Other		-	O = Othe	r				-						edimeni queous,			e, SO	= Soil,	, ww =	= Wastewater, B = Blood/Ser

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H Recovery was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

EPA Method 8290 Sample ID: A1-68 (0-0.5') **Client Data** Sample Data **Laboratory Data** ARCADIS Soil 2110011-01 Name: Matrix: Lab Sample: Date Received: 29-Nov-2012 10:23 10.5 g Carbondale B2L0001 Project: Sample Size: OC Batch: Date Extracted: 03-Dec-2012 8:36 Date Collected: 27-Nov-2012 8:55 % Solids: 77.3 Date Analyzed: 06-Dec-12 18:11 Column: ZB-5 Analyst: MAS **Qualifiers** %R Analyte Conc. (pg/g) DL**EMPC Labeled Standard** LCL-UCL **Qualifiers** 0.364 IS 40 - 135 2,3,7,8-TCDD 13C-2,3,7,8-TCDD 90.4 1,2,3,7,8-PeCDD 2.06 J 13C-1,2,3,7,8-PeCDD 66.1 40 - 135 3.31 82.3 40 - 135 1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 8.83 13C-1,2,3,6,7,8-HxCDD 77.5 40 - 135 8.04 80.6 40 - 135 1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 296 13C-1,2,3,4,6,7,8-HpCDD 77.9 40 - 135 OCDD 10900 ΕJ 13C-OCDD 96.5 40 - 135 0.331 J 2,3,7,8-TCDF 13C-2,3,7,8-TCDF 83.2 40 - 135 1,2,3,7,8-PeCDF 0.453 13C-1,2,3,7,8-PeCDF 77.1 40 - 135 2,3,4,7,8-PeCDF 1.04 J 13C-2,3,4,7,8-PeCDF 81.2 40 - 135 1.51 J 80.9 40 - 135 1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1.26 J 78.2 40 - 135 13C-1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2.12 J 13C-2,3,4,6,7,8-HxCDF 75.5 40 - 135 1,2,3,7,8,9-HxCDF ND 0.483 13C-1,2,3,7,8,9-HxCDF 77.7 40 - 135 24.1 81.7 40 - 135 1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 1.88 J 40 - 135 1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 78.9 OCDF 82.3 13C-OCDF 40 - 135 83.8

			Toxic Equivalent Quotient (TEQ)	Data
			TEQMinWHO2005Dioxin	11.8
TOTALS				
Total TCDD	2.11	3.15		
Total PeCDD	13.6	14.3		
Total HxCDD	73.5			
Total HpCDD	583			
Total TCDF	9.05	9.16		
Total PeCDF	22.3			
Total HxCDF	38.1			
Total HnCDF	82 7			

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

CRS 37Cl-2,3,7,8-TCDD

The sample size is reported in wet weight.

87.1

40 - 135

Sample ID: DUP-1 EPA Method 8290

Client DataSample DataLaboratory DataName:ARCADISMatrix:SoilLab Sample:

Name:ARCADISMatrix:SoilLab Sample:2110011-02Date Received:29-Nov-201210:23Project:CarbondaleSample Size:10.3 gQC Batch:B2L0001Date Extracted:03-Dec-20128:36

Analyte	Conc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.372			J	IS	13C-2,3,7,8-TCDD	86.4	40 - 135	
1,2,3,7,8-PeCDD	2.56			J		13C-1,2,3,7,8-PeCDD	74.4	40 - 135	
1,2,3,4,7,8-HxCDD	3.34					13C-1,2,3,4,7,8-HxCDD	85.4	40 - 135	
1,2,3,6,7,8-HxCDD	10.7					13C-1,2,3,6,7,8-HxCDD	79.2	40 - 135	
1,2,3,7,8,9-HxCDD	9.54					13C-1,2,3,7,8,9-HxCDD	84.4	40 - 135	
1,2,3,4,6,7,8-HpCDD	317					13C-1,2,3,4,6,7,8-HpCDD	78.6	40 - 135	
OCDD	11200			ΕJ		13C-OCDD	99.1	40 - 135	
2,3,7,8-TCDF	0.287			J		13C-2,3,7,8-TCDF	65.4	40 - 135	
1,2,3,7,8-PeCDF	0.395			J		13C-1,2,3,7,8-PeCDF	78.2	40 - 135	
2,3,4,7,8-PeCDF	1.03			J		13C-2,3,4,7,8-PeCDF	78.7	40 - 135	
1,2,3,4,7,8-HxCDF	1.46			J		13C-1,2,3,4,7,8-HxCDF	84.4	40 - 135	
1,2,3,6,7,8-HxCDF	ND		1.12	UX		13C-1,2,3,6,7,8-HxCDF	79.5	40 - 135	
2,3,4,6,7,8-HxCDF	2.21			J		13C-2,3,4,6,7,8-HxCDF	78.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.505				13C-1,2,3,7,8,9-HxCDF	85.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	26.5					13C-1,2,3,4,6,7,8-HpCDF	82.4	40 - 135	
1,2,3,4,7,8,9-HpCDF	1.84			J		13C-1,2,3,4,7,8,9-HpCDF	89.6	40 - 135	
OCDF	88.8					13C-OCDF	86.9	40 - 135	
					CRS	3 37Cl-2,3,7,8-TCDD	82.5	40 - 135	
						Toxic Equivalent Quotient (T)	EQ) Data		
						TEQMinWHO2005Dioxin	12.8		
TOTALS									
Total TCDD	2.33		2.83						
Total PeCDD	16.5		17.4						
Total HxCDD	84.3								
Total HpCDD	656								
Total TCDF	6.87		8.15						
Total PeCDF	19.6		19.7						
Total HxCDF	37.9		39.0						
Total HpCDF	80.6		81.4						

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

Sample ID: A1-75 (0-0.5')								EPA M	ethod 8290
Client Data Name: ARCA Project: Carbo Date Collected: 27-No	ndale	Sample Data Matrix: Sample Size: % Solids:	Soil 10.7 g 74.9		Lab QC	boratory Data o Sample: Batch: te Analyzed:		Date Received: Date Extracted: 7 Column: ZB-5 Ar 0 Column: DB-225	nalyst: MAS	
Analyte Co	onc. (pg/g)	DL EMP	С	Qualifiers		Labeled Stand		%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	1.25				IS	13C-2,3,7,8-T	CDD	96.1	40 - 135	
1,2,3,7,8-PeCDD	8.18					13C-1,2,3,7,8-		77.3	40 - 135	
1,2,3,4,7,8-HxCDD	9.48					13C-1,2,3,4,7,		84.4	40 - 135	
1,2,3,6,7,8-HxCDD	20.8					13C-1,2,3,6,7,		78.3	40 - 135	
1,2,3,7,8,9-HxCDD	33.7					13C-1,2,3,7,8,	9-HxCDD	80.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	817					13C-1,2,3,4,6,	7,8-HpCDD	78.1	40 - 135	
OCDD	21000			ΕJ		13C-OCDD		116	40 - 135	
2,3,7,8-TCDF	0.760					13C-2,3,7,8-T	CDF	83.0	40 - 135	
1,2,3,7,8-PeCDF	0.682			J		13C-1,2,3,7,8-	PeCDF	87.7	40 - 135	
2,3,4,7,8-PeCDF	0.568			J		13C-2,3,4,7,8-	PeCDF	88.4	40 - 135	
1,2,3,4,7,8-HxCDF	2.32			J		13C-1,2,3,4,7,	8-HxCDF	83.0	40 - 135	
1,2,3,6,7,8-HxCDF	2.12			J		13C-1,2,3,6,7,	8-HxCDF	79.2	40 - 135	
2,3,4,6,7,8-HxCDF	3.58					13C-2,3,4,6,7,	8-HxCDF	81.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.277				13C-1,2,3,7,8,	9-HxCDF	83.5	40 - 135	
1,2,3,4,6,7,8-HpCDF	62.4					13C-1,2,3,4,6,	7,8-HpCDF	83.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	4.42					13C-1,2,3,4,7,	8,9-HpCDF	89.7	40 - 135	
OCDF	340					13C-OCDF		94.1	40 - 135	
					CRS	37Cl-2,3,7,8-T	CDD	91.7	40 - 135	
						Toxic Equival	lent Quotient (TE	Q) Data		
						TEQMinWHO	2005Dioxin	32.1		
TOTALS										
Total TCDD	7.82	8.06	ó							
Total PeCDD	37.4									
Total HxCDD	204									
Total HpCDD	1730									
Total TCDF	16.3	17.7	7							
Total PeCDF	40.6									
Total HxCDF	64.4									
Total HpCDF	227						HOL I A LI			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Sample ID: A1-69 (0	-0.5')							EPA Mo	ethod 8290
Client Data Name: ARCA Project: Carbon Date Collected: 27-Nov	dale v-2012 10:10	Sample Da Matrix: Sample S % Solids:	Soil Size: 10.1 g		Lab QC	Doratory Data Sample: 2110011-04 Batch: B2L0009 e Analyzed: 07-Dec-12 00:35 07-Dec-12 13:59		nalyst: MAS Analyst: MAS	
Analyte Cor	· (188)	DL 1	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND		0.316	UX	IS	13C-2,3,7,8-TCDD	97.0	40 - 135	
1,2,3,7,8-PeCDD	1.53			J		13C-1,2,3,7,8-PeCDD	83.2	40 - 135	
1,2,3,4,7,8-HxCDD	2.15			J		13C-1,2,3,4,7,8-HxCDD	84.5	40 - 135	
1,2,3,6,7,8-HxCDD	5.83					13C-1,2,3,6,7,8-HxCDD	78.3	40 - 135	
1,2,3,7,8,9-HxCDD	5.35					13C-1,2,3,7,8,9-HxCDD	80.0	40 - 135	
1,2,3,4,6,7,8-HpCDD	205					13C-1,2,3,4,6,7,8-HpCDD	79.3	40 - 135	
OCDD	9870			ΕJ		13C-OCDD	108	40 - 135	
2,3,7,8-TCDF	0.555			J		13C-2,3,7,8-TCDF	90.1	40 - 135	
1,2,3,7,8-PeCDF	0.429			J		13C-1,2,3,7,8-PeCDF	86.2	40 - 135	
2,3,4,7,8-PeCDF	0.654			J		13C-2,3,4,7,8-PeCDF	94.3	40 - 135	
1,2,3,4,7,8-HxCDF	1.16			J		13C-1,2,3,4,7,8-HxCDF	80.8	40 - 135	
1,2,3,6,7,8-HxCDF	ND		0.808	UX		13C-1,2,3,6,7,8-HxCDF	76.0	40 - 135	
2,3,4,6,7,8-HxCDF	1.24			J		13C-2,3,4,6,7,8-HxCDF	75.7	40 - 135	
1,2,3,7,8,9-HxCDF		.390				13C-1,2,3,7,8,9-HxCDF	83.4	40 - 135	
1,2,3,4,6,7,8-HpCDF	19.7					13C-1,2,3,4,6,7,8-HpCDF	79.3	40 - 135	
1,2,3,4,7,8,9-HpCDF	1.42			J		13C-1,2,3,4,7,8,9-HpCDF	89.1	40 - 135	
OCDF	60.9					13C-OCDF	92.0	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	91.7	40 - 135	
						Toxic Equivalent Quotient (TEQ)			
						TEQMinWHO2005Dioxin	8.61		
TOTALS									
Total TCDD	3.73		5.11						
Total PeCDD	15.9								
Total HxCDD	61.3								
Total HpCDD	439								
Total TCDF	7.12		9.14						
Total PeCDF	9.72		20.1						
Total HxCDF	19.3		20.1						
Total HpCDF	58.5								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

Sample ID: A1-74 (0-0.5')							EPA M	ethod 8290
Client Data Name: ARCA Project: Carbo Date Collected: 27-No	ndale	Sample Data Matrix: Sample Size: % Solids:	Soil 10.5 g 77.2		Lab QC	-	Date Received: Date Extracted: 20:35 Column: ZB-5 A 212:22 Column: DB-225	03-Dec-2012 nalyst: MAS	
Analyte Co	onc. (pg/g)	DL EMPO	C	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.259			J	IS	13C-2,3,7,8-TCDD	86.7	40 - 135	
1,2,3,7,8-PeCDD	2.03			J		13C-1,2,3,7,8-PeCDD	76.1	40 - 135	
1,2,3,4,7,8-HxCDD	3.19					13C-1,2,3,4,7,8-HxCDD	76.2	40 - 135	
1,2,3,6,7,8-HxCDD	7.64					13C-1,2,3,6,7,8-HxCDD	72.9	40 - 135	
1,2,3,7,8,9-HxCDD	6.97					13C-1,2,3,7,8,9-HxCDD	73.8	40 - 135	
1,2,3,4,6,7,8-HpCDD	316					13C-1,2,3,4,6,7,8-HpCDD	74.4	40 - 135	
OCDD	12400			ΕJ		13C-OCDD	97.0	40 - 135	
2,3,7,8-TCDF	0.821					13C-2,3,7,8-TCDF	78.1	40 - 135	
1,2,3,7,8-PeCDF	0.709			J		13C-1,2,3,7,8-PeCDF	81.4	40 - 135	
2,3,4,7,8-PeCDF	1.00			J		13C-2,3,4,7,8-PeCDF	85.2	40 - 135	
1,2,3,4,7,8-HxCDF	1.98			J		13C-1,2,3,4,7,8-HxCDF	76.4	40 - 135	
1,2,3,6,7,8-HxCDF	1.65			J		13C-1,2,3,6,7,8-HxCDF	71.5	40 - 135	
2,3,4,6,7,8-HxCDF	2.17			J		13C-2,3,4,6,7,8-HxCDF	72.3	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.375				13C-1,2,3,7,8,9-HxCDF	76.3	40 - 135	
1,2,3,4,6,7,8-HpCDF	30.6					13C-1,2,3,4,6,7,8-HpCDF	74.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	2.21			J		13C-1,2,3,4,7,8,9-HpCDF	82.8	40 - 135	
OCDF	107					13C-OCDF	86.0	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	83.7	40 - 135	
						Toxic Equivalent Quotien	t (TEQ) Data		
						TEQMinWHO2005Dioxin	12.3		
TOTALS									
Total TCDD	1.87	5.43							
Total PeCDD	16.4	18.2							
Total HxCDD	81.9	84.0							
Total HpCDD	709								
Total TCDF	16.1	17.1							
Total PeCDF	19.7								
Total HxCDF	36.4								
Total HpCDF	97.7	98.6							

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Sample ID: A1-70 ((0-0.5')							EPA M	lethod 829
Client Data Name: ARCADIS Project: Carbondale Date Collected: 27-Nov-2012 11:35		Mat Sam	Sample Data Matrix: Soil Sample Size: 10.4 g % Solids: 77.4			Laboratory Data Lab Sample: 2110011-06 Date Received: 29-Nov- QC Batch: B2L0001 Date Extracted: 03-Dec- Date Analyzed: 06-Dec-12 21:23 Column: ZB-5 Analyst: MA			
Analyte C	Analyte Conc. (pg/g)		DL EMPC		Labeled Standard		%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	ND		0.329	UX	IS	13C-2,3,7,8-TCDD	78.5	40 - 135	
1,2,3,7,8-PeCDD	4.04					13C-1,2,3,7,8-PeCDI	68.6	40 - 135	
1,2,3,4,7,8-HxCDD	8.26					13C-1,2,3,4,7,8-HxCl	DD 75.7	40 - 135	
1,2,3,6,7,8-HxCDD	29.7					13C-1,2,3,6,7,8-HxCl	DD 72.6	40 - 135	
1,2,3,7,8,9-HxCDD	21.0					13C-1,2,3,7,8,9-HxCl	DD 74.1	40 - 135	
1,2,3,4,6,7,8-HpCDD	897					13C-1,2,3,4,6,7,8-Hp	CDD 77.9	40 - 135	
OCDD	19900			ΕJ		13C-OCDD	108	40 - 135	
2,3,7,8-TCDF	0.336			J		13C-2,3,7,8-TCDF	71.5	40 - 135	
1,2,3,7,8-PeCDF	0.721			J		13C-1,2,3,7,8-PeCDF	73.8	40 - 135	
2,3,4,7,8-PeCDF	0.609			J		13C-2,3,4,7,8-PeCDF	82.3	40 - 135	
1,2,3,4,7,8-HxCDF	11.7					13C-1,2,3,4,7,8-HxCl	DF 75.3	40 - 135	
1,2,3,6,7,8-HxCDF	7.16					13C-1,2,3,6,7,8-HxCl	DF 73.2	40 - 135	
2,3,4,6,7,8-HxCDF	14.3					13C-2,3,4,6,7,8-HxCl	DF 73.8	40 - 135	
1,2,3,7,8,9-HxCDF	1.63			J		13C-1,2,3,7,8,9-HxCl	DF 77.3	40 - 135	
1,2,3,4,6,7,8-HpCDF	254					13C-1,2,3,4,6,7,8-Hp	CDF 79.6	40 - 135	
1,2,3,4,7,8,9-HpCDF	26.5					13C-1,2,3,4,7,8,9-Hp	CDF 85.8	40 - 135	
OCDF	576					13C-OCDF	92.2	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	79.1	40 - 135	
						Toxic Equivalent Qu	otient (TEQ) Data		
TOTAL C						TEQMinWHO2005D	ioxin 31.6		
TOTALS Total TCDD	1.46		3.03		1				
Total PeCDD	21.9		22.6						
Total PeCDD	41.7		22.0						

5.74

281

DL - Sample specifc estimated detection limit

Total HxCDD

Total HpCDD

Total TCDF

Total PeCDF

Total HxCDF

Total HpCDF

EMPC - Estimated maximum possible concentration

157

1450

2.86

25.7 281

849

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

Sample ID: A1-73 (0	I-0.5')								EPA M	ethod 8290
Client Data Name: ARCA Project: Carbon Date Collected: 27-Nov	ndale	Sample Data Matrix: Sample Size: % Solids:	Soil 10.2 g 78.6		Lab QC	ooratory Data Sample: Batch: e Analyzed:		Date Received: Date Extracted: Column: ZB-5 Ar Column: DB-225	03-Dec-2012 nalyst: MAS	
Analyte Cor	nc. (pg/g)	DL EMPO	C	Qualifiers		Labeled Stand	lard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.667				IS	13C-2,3,7,8-T0	CDD	70.5	40 - 135	
1,2,3,7,8-PeCDD	6.58					13C-1,2,3,7,8-	PeCDD	62.7	40 - 135	
1,2,3,4,7,8-HxCDD	9.72					13C-1,2,3,4,7,8	8-HxCDD	63.1	40 - 135	
1,2,3,6,7,8-HxCDD	24.1					13C-1,2,3,6,7,8	8-HxCDD	61.3	40 - 135	
1,2,3,7,8,9-HxCDD	23.7					13C-1,2,3,7,8,9	9-HxCDD	61.2	40 - 135	
1,2,3,4,6,7,8-HpCDD	773					13C-1,2,3,4,6,7	7,8-HpCDD	68.0	40 - 135	
OCDD	21500			ΕJ		13C-OCDD		84.9	40 - 135	
2,3,7,8-TCDF	0.627					13C-2,3,7,8-T0	CDF	66.3	40 - 135	
1,2,3,7,8-PeCDF	1.14			J		13C-1,2,3,7,8-	PeCDF	66.4	40 - 135	
2,3,4,7,8-PeCDF	1.38			J		13C-2,3,4,7,8-	PeCDF	71.6	40 - 135	
1,2,3,4,7,8-HxCDF	5.26					13C-1,2,3,4,7,8	8-HxCDF	61.4	40 - 135	
1,2,3,6,7,8-HxCDF	5.98					13C-1,2,3,6,7,8	8-HxCDF	58.9	40 - 135	
2,3,4,6,7,8-HxCDF	8.06					13C-2,3,4,6,7,8	8-HxCDF	60.1	40 - 135	
1,2,3,7,8,9-HxCDF	ND (.984				13C-1,2,3,7,8,9	9-HxCDF	65.5	40 - 135	
1,2,3,4,6,7,8-HpCDF	130					13C-1,2,3,4,6,7	7,8-HpCDF	64.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	9.45					13C-1,2,3,4,7,8	8,9-HpCDF	73.7	40 - 135	
OCDF	450					13C-OCDF		69.7	40 - 135	
					CRS	37Cl-2,3,7,8-T	CDD	70.1	40 - 135	
						Toxic Equival	ent Quotient (TEQ) Data		
						TEQMinWHO	2005Dioxin	31.1		
TOTALS										
Total TCDD	7.27	8.45								
Total PeCDD	36.2	39.7	1							
Total HxCDD	208									
Total HpCDD	1480									
Total TCDF	16.9	17.8								
Total PeCDF	40.7	42.2								
Total HxCDF	139	140								
Total HpCDF	397									

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

Sample ID: A1-71 (0-0.5')									EPA M	ethod 8290
Client Data Name: ARCA Project: Carbo Date Collected: 27-No	ondale		ample Data Matrix: Sample Size: % Solids:	Soil 10.3 g 77.5		Lab QC	ooratory Data Sample: Batch: e Analyzed:		9 Column: ZB-5	ed: 03-Dec-2012	
Analyte Co	onc. (pg/g)	DL	EMP	C	Qualifiers		Labeled Stand		%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.561				J	IS	13C-2,3,7,8-TO	CDD	87.1	40 - 135	
1,2,3,7,8-PeCDD	4.16						13C-1,2,3,7,8-l		77.4	40 - 135	
1,2,3,4,7,8-HxCDD	7.01						13C-1,2,3,4,7,8		81.8	40 - 135	
1,2,3,6,7,8-HxCDD	17.9						13C-1,2,3,6,7,8		79.0	40 - 135	
1,2,3,7,8,9-HxCDD	16.4						13C-1,2,3,7,8,9		78.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	653						13C-1,2,3,4,6,7		86.1	40 - 135	
OCDD	24000				ΕJ		13C-OCDD		116	40 - 135	
2,3,7,8-TCDF	1.22						13C-2,3,7,8-TO	CDF	81.0	40 - 135	
1,2,3,7,8-PeCDF	1.03				J		13C-1,2,3,7,8-l		83.7	40 - 135	
2,3,4,7,8-PeCDF	2.48				J		13C-2,3,4,7,8-l	PeCDF	91.1	40 - 135	
1,2,3,4,7,8-HxCDF	3.85						13C-1,2,3,4,7,8	8-HxCDF	80.4	40 - 135	
1,2,3,6,7,8-HxCDF	3.19						13C-1,2,3,6,7,8	8-HxCDF	78.4	40 - 135	
2,3,4,6,7,8-HxCDF	5.05						13C-2,3,4,6,7,8		77.3	40 - 135	
1,2,3,7,8,9-HxCDF	0.275				J		13C-1,2,3,7,8,9	9-HxCDF	82.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	82.8						13C-1,2,3,4,6,7		86.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	5.77						13C-1,2,3,4,7,8	3,9-HpCDF	94.6	40 - 135	
OCDF	319						13C-OCDF	•	94.8	40 - 135	
						CRS	37Cl-2,3,7,8-T	CDD	84.2	40 - 135	
							Toxic Equivale	ent Quotient (TE	Q) Data		
							TEQMinWHO:	2005Dioxin	25.7		
TOTALS											
Total TCDD	12.2		13.	3							
Total PeCDD	34.2										
Total HxCDD	162										
Total HpCDD	1570										
Total TCDF	27.0		27.:	5							
Total PeCDF	38.2										
Total HxCDF	91.3		91.	9							
Total HpCDF	273										

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

Sample ID: A1-72 ((0-0.5')							EPA M	ethod 8290
Client Data Name: ARCADIS Project: Carbondale Date Collected: 27-Nov-2012 14:00		Matri: Samp	Sample Data Matrix: Soil Sample Size: 10.4 g % Solids: 77.7			2110011-09 B2L0001 06-Dec-12 23:4		ved: 29-Nov-2012 10:23 cted: 03-Dec-2012 8:36 -5 Analyst: MAS	
Analyte Conc. (pg/g)		DL	EMPC	Qualifiers	Labeled Standard		%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND		0.185	UX	IS 13C-2,3,7,8-	TCDD	90.6	40 - 135	
1,2,3,7,8-PeCDD	ND		1.22	UX	13C-1,2,3,7,8	8-PeCDD	77.5	40 - 135	
1,2,3,4,7,8-HxCDD	2.77			J	13C-1,2,3,4,7	7,8-HxCDD	79.0	40 - 135	
1,2,3,6,7,8-HxCDD	6.08				13C-1,2,3,6,	7,8-HxCDD	74.7	40 - 135	
1,2,3,7,8,9-HxCDD	6.66				13C-1,2,3,7,8	3,9-HxCDD	75.7	40 - 135	
1,2,3,4,6,7,8-HpCDD	269				13C-1,2,3,4,0	6,7,8-HpCDD	84.0	40 - 135	
OCDD	20000			E J	13C-OCDD		108	40 - 135	
2,3,7,8-TCDF	0.157			J	13C-2,3,7,8-	TCDF	83.4	40 - 135	
1,2,3,7,8-PeCDF	ND	0.235			13C-1,2,3,7,8	8-PeCDF	87.7	40 - 135	
2,3,4,7,8-PeCDF	ND		0.190	UX	13C-2,3,4,7,8	8-PeCDF	88.3	40 - 135	
1,2,3,4,7,8-HxCDF	0.844			J	13C-1,2,3,4,	7,8-HxCDF	77.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND		0.685	UX	13C-1,2,3,6,	7,8-HxCDF	73.3	40 - 135	
2,3,4,6,7,8-HxCDF	1.18			J	13C-2,3,4,6,	7,8-HxCDF	73.2	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.316			13C-1,2,3,7,8	3,9-HxCDF	78.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	19.4				13C-1,2,3,4,0	6,7,8-HpCDF	83.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	1.39			J	13C-1,2,3,4,	7,8,9-HpCDF	93.0	40 - 135	
OCDF	78.7				13C-OCDF		84.0	40 - 135	
					CRS 37C1-2,3,7,8-	TCDD	87.9	40 - 135	
					Toxic Equiv	Q) Data			
					TEQMinWH	O2005Dioxin	10.7		
TOTALS									
Total TCDD	1.25		2.11						
Total PeCDD	9.91		11.7						
Total HxCDD	57.5								
Total HpCDD	588								
Total TCDF	1.78		2.49						

5.35

21.1

DL - Sample specifc estimated detection limit

Total PeCDF

Total HxCDF

Total HpCDF

EMPC - Estimated maximum possible concentration

4.96

20.4

62.4

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

Sample ID: EB 112	712							EPA M	lethod 8290
Client Data Name: ARCA Project: Carbo Date Collected: 27-No	ondale	Sample Data Matrix: Aqueous Sample Size: 1.01 L		Lab QC	ooratory Data Sample: Batch: e Analyzed:	2110011-10 B2L0033 13-Dec-12 20:3	Date Received: Date Extracted: 9 Column: ZB-5 A	12-Dec-2012	
Analyte Co	onc. (pg/L)	DL EMPC	Qualifiers	<u> </u>	Labeled Stan	dard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.755		IS	13C-2,3,7,8-T	CDD	81.5	40 - 135	
1,2,3,7,8-PeCDD	ND	1.01			13C-1,2,3,7,8	-PeCDD	67.4	40 - 135	
1,2,3,4,7,8-HxCDD	ND	1.15			13C-1,2,3,4,7	,8-HxCDD	67.1	40 - 135	
1,2,3,6,7,8-HxCDD	ND	1.35			13C-1,2,3,6,7	,8-HxCDD	71.7	40 - 135	
1,2,3,7,8,9-HxCDD	ND	1.56			13C-1,2,3,7,8	9-HxCDD	63.4	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	1.97			13C-1,2,3,4,6		60.0	40 - 135	
OCDD	ND	1.78			13C-OCDD		53.0	40 - 135	
2,3,7,8-TCDF	ND	0.858			13C-2,3,7,8-T	CDF	85.3	40 - 135	
1,2,3,7,8-PeCDF	ND	0.728			13C-1,2,3,7,8		62.9	40 - 135	
2,3,4,7,8-PeCDF	ND	0.684			13C-2,3,4,7,8		73.8	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.537			13C-1,2,3,4,7		69.0	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.532			13C-1,2,3,6,7		71.2	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.559			13C-2,3,4,6,7		74.7	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.817			13C-1,2,3,7,8		66.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	0.639			13C-1,2,3,4,6		61.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.929			13C-1,2,3,4,7		59.4	40 - 135	
OCDF	ND	2.34			13C-OCDF	,-,-	55.4	40 - 135	
				CRS	37C1-2,3,7,8-7	ГCDD	96.6	40 - 135	
						lent Quotient (TE	Q) Data		
					TEQMinWHO	02005Dioxin	0.00		
TOTALS									
Total TCDD	ND	0.755							
Total PeCDD	ND	1.01							
Total HxCDD	ND	1.56							
Total HpCDD	ND	1.97							
Total TCDF	ND	0.858							
Total PeCDF	ND	0.728							

Total HxCDF

Total HpCDF

EMPC - Estimated maximum possible concentration

ND

ND

0.817

0.929

LCL-UCL- Lower control limit - upper control limit

Beazer East Inc.

Former Koppers Wood-Treating Site

Data Review

CARBONDALE, ILLINOIS

Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans (PCDDs/PCDFs) Analyses

SDG #: 2110012

Analyses Performed By: Vista Analytical Laboratory El Dorado Hills, California

Report #: 18269R Review Level: Tier III

Project: B0039275.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 2110012 for samples collected in association with the Beazer East Inc. Former Koppers Wood-Treating site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis					
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	PCDDs/ PCDFs	MET	MISC	
DUP 2	2110012-01	Soil	11/27/2012	A1-73 (0-0.5')			Х			
A1-65 (0-0.5)	2110012-02	Soil	11/27/2012				Х			
A1-64 (0-0.5)	2110012-03	Soil	11/27/2012				Х			
A1-67 (0-0.5)	2110012-08	Soil	11/28/2012				Х			
A1-66 (0-0.5)	2110012-09	Soil	11/28/2012				Х			
EB 112812	2110012-10	Water	11/28/2012				Х			

Note: Soil sample results were reported on a dry weight basis.

The parent sample of field duplicate sample DUP 2 (sample location A1-73 (0-0.5')) is from SDG 2110011; the field duplicate sample results were evaluated with SDG 2110011 in data validation report 18268R.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted	Performance Acceptable		Not	
	Items Reviewed	No	Yes	No	Yes	Required	
1.	Sample receipt condition		Х		Х		
2.	Requested analyses and sample results		Х		Х		
3.	Master tracking list		Х		Х		
4.	Methods of analysis		Х		Х		
5.	Reporting limits		Х		Х		
6.	Sample collection date		Х		Х		
7.	Laboratory sample received date		Х		Х		
8.	Sample preservation verification (as applicable)		Х		Х		
9.	Sample preparation/extraction/analysis dates		Х		Х		
10.	Fully executed Chain-of-Custody (COC) form		Х		Х		
11.	Narrative summary of QA or sample problems provided		Х		Х		
12.	Data Package Completeness and Compliance		Х		Х		

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8290 as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II SOP associated with USEPA SW-846 Method 8290 Validating Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans by High Resolution GC/MS (SOP HW-19 Revision 1, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and

provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

POLYCHLORINATED DIBENZODIOXINS AND POLYCHLORINATED DIBENZOFURANS (PCDD/PCDF) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8290	Water	30 days from collection to extraction and 45 days from extraction to analysis	Cool to 4±2 °C
300-040 0290	Soil	30 days from collection to extraction and 45 days from extraction to analysis	Cool to 4±2 °C

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were detected in the associated QA blanks; however, the associated sample results were greater than the BA. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required.

3. Mass Spectrometer Tuning

Mass spectrometer performance including instrument sensitivity and mass resolution were acceptable.

Overall system performance and gas chromatographic column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

All compounds associated with the initial calibration standards must exhibit signal-to-noise ratios (S/N) of at least 2.5, isotopic ratios within the limits listed in table eight of the method, and percent relative

standard deviations (%RSDs) of the relative response factors (RRFs) less than 20% for the labeled standards and less than 30% for the target compounds.

4.2 Continuing Calibration

Instrument performance must be verified at 12 hour periods after successful tune verifications. All compounds associated with the continuing calibration standard must exhibit S/N of at least 2.5, isotopic ratios within the limits listed in table eight of the method, and percent differences (%D) of the RRFs less than 30% for the labeled standards and less than 20% for the target compounds..

All initial and continuing calibration criteria were within the control limits.

5. Injection Internal Standard Performance

Injection internal standards are added to all extracts prior to instrumental analysis. The injection internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the injection internal standard compounds exhibit a signal-to-noise (S/N) ratio of at least 10 and elute within \pm fifteen seconds of the retention times (RTs) established during calibration. The acceptance criteria also specify that each injection internal standard exhibit a ratio of the two identifying masses (m/z) within the method specified limits.

All injection internal standard S/N, RT, and m/z ratios were within established limits.

6. Surrogate Internal Standard Compounds

All field samples, blanks, LCS, and MS/MSD are spiked with surrogate internal standard compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The acceptance criteria require that the surrogate internal standard compounds exhibit a signal-to-noise (S/N) ratio of at least 10 and elute within ± fifteen seconds of the retention times (RTs) established during calibration. The acceptance criteria also specify that each surrogate internal standard exhibit a calculated recovery and a ratio of the two identifying masses (m/z) within the method specified limits.

Sample locations associated with surrogate internal standard compounds exhibiting recoveries outside of the control limits presented in the following table.

Sample Location	Surrogate	Recovery		
DUP 2 A1-65 (0-0.5) A1-64 (0-0.5) A1-66 (0-0.5)	13C-OCDD	> UL		
A1-67 (0-0.5)	13C-OCDD 13C-OCDF	> UL		

UL Upper control limit

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of any surrogate internal standard compound deviations, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
> UL	Detect	J
< LL but > 10%	Non-detect	UJ
< LL Dut > 10%	Detect	J
< 10%	Non-detect	R
< 1070	Detect	J

7. Clean-up Recovery Surrogate Performance

All field samples, blanks, LCS, and MS/MSD are spiked with recovery surrogates prior to extract clean-up. Recovery surrogate acceptance criteria require that their calculated recoveries, S/N, m/z ratios, and relative retention times (RRTs) be within the method-specified acceptance limits.

All recovery surrogate recoveries S/N, m/z ratios, and RRTs were within the control limits.

8. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the (optional) MS/MSD analysis should exhibit recoveries within the method-specified acceptance limits of 80-120%. The relative percent difference (RPD) between the MS and MSD results should be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

Sample location A1-67(0-0.5) was used for the MS/MSD analysis. All compounds associated with the MS/MSD analyses exhibited acceptable recoveries and RPDs between the MS and MSD results.

9. Ongoing Precision and Recovery (OPR) Sample Analysis

The OPR analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the OPR analysis must exhibit a percent recovery within the method-specified acceptance limits.

All compounds associated with the OPR analysis exhibited recoveries within the control limits.

10. Field Duplicate Sample Analysis

Field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

The field duplicate sample results were evaluated with SDG 2110011 in Data Validation Report 18268R.

11. Compound Identification

PCDD/PCDF compounds are identified by using the compound's ion abundance ratios, signal-to-noise values, and relative retention times.

An estimated maximum possible concentration (EMPC) designation is given to compounds which have signals eluting within the established retention time window which would, if positively identified, be greater than the detection limit. The signals do not, however, meet the ion abundance ratio criteria and therefore cannot be identified as the compound of interest. The EMPC value is the estimated concentration of the interferant quantitated "as the compound of interest". This value should be considered an elevated detection limit based on potential compound identification and quantitation interference. The "UX" qualifier has been added to the following sample results (in pg/g) to indicate the elevated detection limit as EMPC.

Sample ID	Compound	Laboratory Result	Reported Result
A1-65 (0-0.5)	2,3,7,8-TCDD	0.269 EMPC	0.269 UX

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
DUP 2	OCDD	26800 E		26800 EJ
A1-65 (0-0.5)	OCDD	12700 E		12700 EJ
A1-64 (0-0.5)	OCDD	17700 E		17700 EJ
A1-67 (0-0.5)	1,2,3,4,6,7,8-HpCDD	5010 E		5010 EJ
A1-07 (0-0.5)	OCDD	170000 DE		170000 DEJ
A1-66 (0-0.5)	OCDD	30900 E		30900 EJ

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentration greater than the linear range qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within the calibration range	D
Diluted sample result < the calibration range	DJ
Diluted sample result > the calibration range	EDJ
Original sample result > the calibration range	EJ

The analyzing laboratory noted that the compounds in the following table exhibited interference by a coeluting furan isomer and may have concentrations that are biased high. Therefore, the following results were qualified as estimated.

Sample Location	Analyte
DUP 2 A1-65 (0-0.5)	2,3,4,7,8-PeCDF
A1-64 (0-0.5) A1-67 (0-0.5) A1-66 (0-0.5)	2,3,4,7,8-PeCDF 1,2,3,7,8,9-HxCDF

12. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PCDD/PCDF

PCDDs/PCDFs; SW-846 8290	Rep	orted		mance	Not	
,	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	iC/MS)					
Tier II Validation						
Holding times		Х		X		
Reporting limits (units)		X		X		
Blanks						
A. Method blanks		X		X		
B. Equipment blanks		Х		Х		
Ongoing Precision and Accuracy (OPR) Accuracy (%R)		Х		Х		
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD RPD		Х		Х		
Field/Laboratory Duplicate Sample RPD		Х		Х		
Surrogate Internal Standard Spike %R		Х	Х			
Recovery Surrogate Standard Spike %R		Х		Х		
Dilution Factor		Х		Х		
Moisture Content		Х		Х		
Tier III Validation		•		•	•	
System performance and column resolution		Х		Х		
Initial calibration %RSD		Х		Х		
Continuing calibration %D		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Signal-to-noise ratio		Х		Х		
Injection Internal Standard performance		Х		Х		
Recovery standard performance		Х		Х		
Compound identification and quantitation			<u>I</u>			
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		Х		Х		
E. Reporting limits adjusted for sample dilutions		Х		Х		
F. Compound quantification		Х	Х			

RSD - relative standard deviation

%R - percent recovery

RPD - relative percent difference

%D – difference

SAMPLE COMPLIANCE REPORT

Sample Delivery						Compliancy ¹				
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	PCDDs/ PCDFs		MISC	Noncompliance
	11/27/2012	SW846	DUP 2	Soil			No			Surrogate Internal Standard %R; Calibration range exceedance
	11/27/2012	SW846	A1-65 (0-0.5)	Soil			No			Surrogate Internal Standard %R; Calibration range exceedance; EMPC
0440040	11/27/2012	SW846	A1-64 (0-0.5)	Soil			No			Surrogate Internal Standard %R; Calibration range exceedance
2110012	11/28/2012	SW846	A1-67 (0-0.5)	Soil			No			Surrogate Internal Standard %R; Calibration range exceedance
	11/28/2012	SW846	A1-66 (0-0.5)	Soil			No			Surrogate Internal Standard %R; Calibration range exceedance; Analyte interference
	11/28/2012	SW846	EB 112812	Water			Yes			

¹ Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

Validation Performed By: Dennis Dyke

Signature:

Date: January 18, 2013

Peer Review: Dennis Capria

Date: _ January 24, 2013

CHAIN OF CUSTODY / LABORATORY QUALIFIERS / CORRECTED SAMPLE ANALYSIS DATA SHEETS

CHAIN OF CUSTODY

FOR LABORATORY USE ONLY

Storage
Secured

Laboratory Project ID: 2||00|| Yes No

Storage ID Temp 0°C

1 OF 3

				1	())							T	AT: (0	Check	One):		
	P.O.# 8003977	5.0	000	- 00	00	Sam	pler:_	1. STEN	EVER	SON me)			Ri	ush (surcha days	arge	Days may apply): days Specif			
nvoice to: Name	Com	pany	CADIS (elat)	lress	E.co	ET.	5//	R Ro		City BAXTI	ברש	Stat	9	Zip	P	h#	8-8	29.	Fax# 4607	
Relinquished by: (Signature and Printed Na	me)	CA C	Date: 11/28/12	Mark.	Tin	ne: /4	15	Re	eceive	d by: (Signat	ure and Prin	ted Name	3.12	Oh O	dia	Date:	11/2	ali	Time:	129
Relinquished by: (Signature and Printed Na	me)		Date:		Tin		7 3			d by: (Signat			1	£11 € 6		Date:		1111	Time:	-1
- Marine		*****	See "Sample Log-in (Che	ckli	st"	for	additi	onal	sample	infor	natio	n							
SHIP TO: Vista Analytical Labo		****	Method of Shipment:					Requesto		SPA IGIS		ASON		- 45	>	7	A. John	/		
1104 Windfield Way El Dorado Hills, CA							(00)	211 4 4 4 4 5 1 1	/	SPATE	/ 8	P.B.		ERASIE			AL	To the state of th	13/	
(916) 673-1520 • Fax		3-0106	Tracking No.:		Cont	aine	r(s)	//	1/8	7				\$ 3 \$ \$ \$ \$ \$ \$ \$ \$ \$	SOUND	* * * * * * * * * * * * * * * * * * *	5/	7	1//	
ATTN:					/	/	/		20/		8/3/	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8/3	/2	18 J	8		18	//	
				/	San E	2/	Till S							3/3/3	\$ 18			THE STATE OF THE PARTY OF THE P		
Sample ID	Date	Time	Location/Sample Description	/	\$ / K	\$ /	20/		\$/	3/3/4	12/	\$ 4	120	10/	18/	/	/-			
A1-68 (0-0.5') .	11/27/12	0855		1	6	50				X										
DUP-1	11/27/12	1		1	67	So				X										
A1-75 (0-0.5')	ulzaliz	0940		1	6	So				X										
A1-69 (0-0.5')	11/27/12	1010		1	6	So				X										
11-69 (0-0.5') MS	11/21/12	1010		1	G	50				X										
A1-69 (0-0.5') MSD.	11/77/12	1010		1	6	Se				X										
41-74-(0-0.5)	ulerliz	1100		1	6	50				X										
A1-70 (0-0.5')	11/27/12	1135		1	6	50				X										
A1-73 (0-0.5')	11/27/12	1210		1	6	50				X										
DUP-2	11/27/12	_		1	6	Sp				X									* HOLD	*
Special Instructions/Comments: X Samples logged	in to	Wo	rkorder 2110011			_	DO		END ENT	ATION	Cor	ne: b npany lress:	: AR	CAT	115		AS R R			
							Al	ND RE	SUL	rs to:	City	1: B	XI	72		State	: MM	_ Z	ip: 57.473	5
												Comment of the last of the las	-							
Container Types: A = 1 Liter Amber, G	= Glass Jar		*Bottle Preserv	ative	Туре	T=	Thio	sulfate,											S - US, CO	
P = PUF, T = MM5 Train, O= Other			O = Other									1000							stewater, B = B	
												Aqueo								

CHAIN OF CUSTODY

2 OF 3

FOR LABORATORY USE ONLY	Storage
0	Secured
Laboratory Project ID: 2110012	Yes No No
Storage ID WZ-2	Temp A . 8 °C

						_				1 <	5	in the man	- ÷			- Commission	Check (One):	Days	
Project I.D.:			P.O.# B00392	275	, aa	20.	m	Z Sar	mpler:	R.	STE	VENS	زره				- 00		ay apply):	#
												(Name)			C	>14	days o	○7 d	ays Specify	<i>r</i> :
Invoice to: Name	Com	pany	11.00	dress	10	011	01	PA		City	50	S	tate	Zip 5/47	Ph	# 718	- 82	9 1	Fax#	
Relinquished by: (Signature and Printed)	Name)	CTEN	2250N Date: 1/28/12	-	Tin	200	40	- A	Receiv	ed by: (s	Signature	and Printed N		720	redic				Time:	01/6
Relinquished by: (Signature and Printed)	Name)	m) = 1	Date:	<u> </u>	Tin		45	7	Receiv	ed by:	Signature	and Printed N	ame)	DIF		Date:	-	412	Time:	70_
			See "Sample Log-in G	Cho	okli	0477	for	addit	iona	Leamy	No in	forma	tion					-		
			See Sample Log-III	l	CIXII	31	101	auun	лоща	7				7		7		-	1.1	
SHIP TO: Vista Analytical La 1104 Windfield Wa El Dorado Hills, CA	у		Method of Shipment:	Ad	ld An	alysi	s(es)	Reques	sted	SPAGE .	7	EPA SOS	/	ER AS DE	1	A A	Albas	TO THE STATE OF TH	7 30 S	
(916) 673-1520 • Fa	x (916) 673	3-0106	Tracking No.:		Cont	1	7	1/		,	1		13	//	1 2 A A A A A A A A A A A A A A A A A A	STATE OF THE PARTY	1	11	//	
					Sind &	/2/	Tille of S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							\$ 6	3	13/	100 M		
Sample ID	Date	Time	Location/Sample Description	1	3 / 6	3%	2/2	5/5	12/	2/2	12	\$ 3	E/E	0/0	12/	/	/	1		
A1-71 (0-0.5')	11/27/12	1330		1	6	50					<									
A1-72 (0-0.5')	11/27/12	1400		1	67	50					X									
A1-65 (0-0.5')	11/27/12	1430		1	6	So					X							7	* HOLD	*
A1-64 (0-0.5')	11/27/12	1500		1	6	50					X							7	k HOLE	*
GB 112712	11/27/12	1540		2	A	AQ					X									
A1-79 (0-0.5')	11/28/12	0900		1	6	So)	1							7	* HOLD	*
A1-78 (0-0.5')	11/28/12	0925		1	9	50					X							3	* HOLD	*
A1-77 (0-0.5)	1/28/12	0950		1	G	So				1	X							1	K HOLE	×
A1-76 (0-0.5)	1/28/12	1020		1	G	50					X							9	* HOL	D*
A1-67 (0-0.5)	11/28/12	1115		1	9	50					X							1	KHOLE	*
Special Instructions/Comments:_ X Sample agged	in to W	brK0	rder 2110011			_	DC		SEND	ATIO	N	Name: Compa Addres	ny: /	PRCA	DIS					_ *
- 0										TS TO		City:	BAX	EK.	-	State	MA	Zir	:56429	5
						-						Phone:	218-	829	460	7	_ Fax	x:		
Container Types: A = 1 Liter Amber, C	G = Glass Jar		*Bottle Preserv	vative	Туре	T=	Thios	ulfate,					A STATE OF THE PARTY OF THE PAR			100			PP = Pulp/Pa	
P = PUF, T = MM5 Train, O= Other			O = Othe	r				-				more observable and	liment,	SL = Sluc	dge, SC				ewater, B = Blo	

CHAIN OF CUSTODY

3 OF 3

FOR LABORATORY USE ONLY	Storage Secured
Laboratory Project ID: 2110012	Yes No No
Storage ID WR-Z	

Project I.D.:			P.O.# B003927	5.0	2000), α	XOX	Z Sa	mpl	er:	l.	ST	EV	(Nar	Scone)	الم		_	St	anda ush (ard: (surch		21 Da e may	ys apply): s Specif		
Invoice to: Name Relinquished by: (Signature and Printed N	(ama)	pany ARCA	Date:	dress	Tin		PO 5	B		BA		K.	ure and		Sta d Nam	1	Zi Slor	125 125	1	h# Z		82	9-1/2	#4607 Time:	40	
Relinquished by: (Signature and Printed N	ame)		Date:		Tin	ne:			Rec	eived	by:	(Signal	ure and	l Printe	d Nam	e)				Date				Time:		
A Maria Arosett			See "Sample Log-in (Che	ckli	st"	for	addi	tio	nals	sam	ple	inf	orn	ati	on								, ,		
SHIP TO: Vista Analytical Lab 1104 Windfield Way El Dorado Hills, CA	95762	2 0106	Method of Shipment:	Ad	ld An	alysis	s(es)	Reque	ested	/	SPA	600	/	and and	3619a	/	4	ASSO	/	/	RAIGO	13		Saria Contraction of the Contrac		
(916) 673-1520 • Fa	X (916) 67.	3-0106	Tracking No.:		Cont	7	7	18 10 PM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		18 18 18 18 18 18 18 18 18 18 18 18 18 1	A CONTRACTOR OF THE PARTY OF TH	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1000	10 A A A A A A A A A A A A A A A A A A A	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3/3	A ANNO	3/8/8/8/	3/3/3	The state of the s	\$/			
Sample ID	Date	Time	Location/Sample Description	1	2/4	7	7	7 3	/ 4	~	7	_	1	/	2/	1	7	7	7	4	4	1	/_	3 6		
A1-66 (0-0.5)	11/28/12			1	9	So			-			\geq				L		+	+	+	+	+	*	HOLL	ンボ	•
EB 112812	11/28/12	1400		2	A	Ma			-			X		_		H	+	+	+	+	+	+	-			-
														-		H	\vdash	+	+	+	+		+			-
			-						-							H	+	+	+	+	+		+			
									_							H		-		+		+	+			
																				1						
																		T								
Special Instructions/Comments:_ * Sample logger 11/30/12 Moved EB117	d in to	\$4 211	lorkoider 2110011 0012 as per Bill					OCUI		NTA				Com Add City	pan ress:	y:_ G AX	ARI 1002	CAT	DIS X	State	SION E: M	RR	Zo.	56473	5	
Container Types: A = 1 Liter Amber, G P = PUF, T = MM5 Train, O= Other			*Bottle Preserv O = Othe		170.10		Thios	sulfate						Ema Matri SD =	il:_] x Typ Sedin	es: nent,	DW:	= Drin	nking '	9P/1 Water	5@ ; EF =	Efflue	ent, PF	S - US. P = Pulp/Pa ater, B = B	aper,	um

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H Recovery was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Sample ID: DUP 2										EPA M	ethod 8290
Client Data Name: ARCA Project: Carbo Date Collected: 27-No	ondale]	mmple Data Matrix: Sample Size: % Solids:	Soil 13.3 g 76.6		Lab QC	ooratory Data Sample: Batch: e Analyzed:		Date Extraction Date Extraction DB-1	ved: 29-Nov-2012 cted: 19-Dec-2012 225 Analyst: MAS -5 Analyst: MAS	
Analyte Co	onc. (pg/g)	DL	EMP	C	Qualifiers		Labeled Stand		%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.579					IS	13C-2,3,7,8-T	CDD	82.3	40 - 135	
1,2,3,7,8-PeCDD	6.47						13C-1,2,3,7,8-	PeCDD	81.7	40 - 135	
1,2,3,4,7,8-HxCDD	12.4						13C-1,2,3,4,7,		80.3	40 - 135	
1,2,3,6,7,8-HxCDD	30.8						13C-1,2,3,6,7,	8-HxCDD	79.9	40 - 135	
1,2,3,7,8,9-HxCDD	29.5						13C-1,2,3,7,8,	9-HxCDD	79.2	40 - 135	
1,2,3,4,6,7,8-HpCDD	1160						13C-1,2,3,4,6,		84.3	40 - 135	
OCDD	26800				Æ, E J		13C-OCDD	•	209	40 - 135	Н
2,3,7,8-TCDF	0.769						13C-2,3,7,8-T	CDF	79.2	40 - 135	
1,2,3,7,8-PeCDF	1.11				J		13C-1,2,3,7,8-		79.0	40 - 135	
2,3,4,7,8-PeCDF	1.54				J		13C-2,3,4,7,8-		85.0	40 - 135	
1,2,3,4,7,8-HxCDF	6.94						13C-1,2,3,4,7,		89.1	40 - 135	
1,2,3,6,7,8-HxCDF	7.50						13C-1,2,3,6,7,		82.3	40 - 135	
2,3,4,6,7,8-HxCDF	10.7						13C-2,3,4,6,7,		78.6	40 - 135	
1,2,3,7,8,9-HxCDF	1.59				J		13C-1,2,3,7,8,		80.3	40 - 135	
1,2,3,4,6,7,8-HpCDF	186						13C-1,2,3,4,6,	7,8-HpCDF	81.9	40 - 135	
1,2,3,4,7,8,9-HpCDF	14.6						13C-1,2,3,4,7,	-	92.4	40 - 135	
OCDF	871						13C-OCDF	•	107	40 - 135	
						CRS	37Cl-2,3,7,8-7	CCDD	72.3	40 - 135	
							Toxic Equiva	lent Quotient (T	EQ) Data		
							TEQMinWHC	2005Dioxin	39.5		
TOTALS											
Total TCDD	9.10		10.	2							
Total PeCDD	47.1										
Total HxCDD	274										
Total HpCDD	2150										
Total TCDF	20.7		23.	7							
Total PeCDF	58.5										
Total HxCDF	205										
Total HpCDF	633										

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

EPA Method 8290 Sample ID: A1-65 (0-0.5) Sample Data **Client Data Laboratory Data** ARCADIS Soil 2110012-02 Name: Matrix: Lab Sample: Date Received: 29-Nov-2012 10:23 12.9 g B2L0072 Date Extracted: 19-Dec-2012 14:30 Project: Carbondale Sample Size: OC Batch: 29-Dec-12 18:14 Column: ZB-5 Analyst: MAS Date Collected: 27-Nov-2012 14:30 % Solids: 78.4 Date Analyzed: Analyte Conc. (pg/g) DL **EMPC Qualifiers Labeled Standard** %R LCL-UCL **Qualifiers** 0.269 UX ND IS 40 - 135 2,3,7,8-TCDD 13C-2,3,7,8-TCDD 86.8 1,2,3,7,8-PeCDD 2.04 J 13C-1,2,3,7,8-PeCDD 85.9 40 - 135 3.52 79.2 40 - 135 1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 10.1 13C-1,2,3,6,7,8-HxCDD 73.6 40 - 135 8.17 74.5 1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 40 - 135 1,2,3,4,6,7,8-HpCDD 358 13C-1,2,3,4,6,7,8-HpCDD 77.2 40 - 135 OCDD 12700 B.E.J 13C-OCDD 176 40 - 135 Н 0.408 2,3,7,8-TCDF 13C-2,3,7,8-TCDF 79.1 40 - 135 1,2,3,7,8-PeCDF 0.336 13C-1,2,3,7,8-PeCDF 80.4 40 - 135 0.778 J 2.3.4.7.8-PeCDF 13C-2,3,4,7,8-PeCDF 82.9 40 - 135 1.93 J 88.1 40 - 135 1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1.42 J 40 - 135 13C-1,2,3,6,7,8-HxCDF 81.7 2.32 2,3,4,6,7,8-HxCDF J 13C-2,3,4,6,7,8-HxCDF 79.8 40 - 135 0.193 J 1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF 83.2 40 - 135 41.3 83.7 40 - 135 1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 3.13 40 - 135 1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 90.5 OCDF 169 13C-OCDF 97.7 40 - 135 CRS 37Cl-2,3,7,8-TCDD 85.0 40 - 135 Toxic Equivalent Quotient (TEQ) Data TEQMinWHO2005Dioxin 13.0 TOTALS Total TCDD 5.82 6.85

9.37

DL - Sample specifc estimated detection limit

Total PeCDD

Total HxCDD

Total HpCDD

Total TCDF

Total PeCDF

Total HxCDF

Total HpCDF

EMPC - Estimated maximum possible concentration

17.9

89.8

832 8.38

14.8

47.4

138

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

Sample ID: A1-64 ((0-0.5)						EPA M	lethod 8290
'	ADIS ondale ov-2012 15:00	Sample Data Matrix: Soil Sample Size: 12.7 % Solids: 79.4	7 g	Lal QC		Date Received Date Extracte 9 Column: DB-22 03 Column: ZB-5	d: 19-Dec-2012 5 Analyst: MAS	
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.301		J	IS	13C-2,3,7,8-TCDD	79.5	40 - 135	
1,2,3,7,8-PeCDD	1.64		J		13C-1,2,3,7,8-PeCDD	83.1	40 - 135	
1,2,3,4,7,8-HxCDD	2.88				13C-1,2,3,4,7,8-HxCDD	87.0	40 - 135	
1,2,3,6,7,8-HxCDD	7.22				13C-1,2,3,6,7,8-HxCDD	80.9	40 - 135	
1,2,3,7,8,9-HxCDD	6.96				13C-1,2,3,7,8,9-HxCDD	80.4	40 - 135	
1,2,3,4,6,7,8-HpCDD	344				13C-1,2,3,4,6,7,8-HpCDD	81.6	40 - 135	
OCDD	17700		₽ ; E J		13C-OCDD	201	40 - 135	Н
2,3,7,8-TCDF	0.652				13C-2,3,7,8-TCDF	75.6	40 - 135	
1,2,3,7,8-PeCDF	0.419		J		13C-1,2,3,7,8-PeCDF	81.6	40 - 135	
2,3,4,7,8-PeCDF	0.524		J		13C-2,3,4,7,8-PeCDF	86.5	40 - 135	
1,2,3,4,7,8-HxCDF	1.48		J		13C-1,2,3,4,7,8-HxCDF	90.7	40 - 135	
1,2,3,6,7,8-HxCDF	1.09		J		13C-1,2,3,6,7,8-HxCDF	80.5	40 - 135	
2,3,4,6,7,8-HxCDF	1.76		J		13C-2,3,4,6,7,8-HxCDF	79.9	40 - 135	
1,2,3,7,8,9-HxCDF	0.139		J		13C-1,2,3,7,8,9-HxCDF	82.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	25.8				13C-1,2,3,4,6,7,8-HpCDF	84.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	1.88		J		13C-1,2,3,4,7,8,9-HpCDF	96.4	40 - 135	
OCDF	112				13C-OCDF	105	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	69.4	40 - 135	
					Toxic Equivalent Quotient (TE	CQ) Data		
					TEQMinWHO2005Dioxin	13.4		
TOTALS								
Total TCDD	9.13	10.5						
Total PeCDD	18.4							
Total HxCDD	75.2							
Total HpCDD	759							
Total TCDF	9.56	11.8						
Total PeCDF	13.3							
Total HxCDF	31.5							
Total HpCDF	88.7							

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

Sample ID: A1-67 (0-0.5)						EPA M	ethod 8290
Client Data Name: ARCA Project: Carbo Date Collected: 28-No	ondale	Sample Data Matrix: Soil Sample Size: 12.3 % Solids: 81.7	3 g	Laborator Lab Sample QC Batch: Date Analy	2110012-08 B2L0072 zed: 29-Dec-12 20:3	Date Receive Date Extracto 39 Column: ZB-5 27 Column: ZB-5	ed: 19-Dec-2012 Analyst: MAS	
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers	Label	ed Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.782		_	IS 13C-2	,3,7,8-TCDD	85.5	40 - 135	
1,2,3,7,8-PeCDD	10.5				,2,3,7,8-PeCDD	93.8	40 - 135	
1,2,3,4,7,8-HxCDD	31.4				,2,3,4,7,8-HxCDD	84.2	40 - 135	
1,2,3,6,7,8-HxCDD	95.0				,2,3,6,7,8-HxCDD	80.3	40 - 135	
1,2,3,7,8,9-HxCDD	79.3				,2,3,7,8,9-HxCDD	81.7	40 - 135	
1,2,3,4,6,7,8-HpCDD	5010		E J		,2,3,4,6,7,8-HpCDD	123	40 - 135	
OCDD	170000		D, B ,E J	13C-C		302	40 - 135	D, H
2,3,7,8-TCDF	0.479		J	13C-2	,3,7,8-TCDF	72.4	40 - 135	,
1,2,3,7,8-PeCDF	0.807		J	13C-1	,2,3,7,8-PeCDF	84.4	40 - 135	
2,3,4,7,8-PeCDF	1.58		J		,3,4,7,8-PeCDF	83.9	40 - 135	
1,2,3,4,7,8-HxCDF	7.87			13C-1	,2,3,4,7,8-HxCDF	98.5	40 - 135	
1,2,3,6,7,8-HxCDF	5.54				,2,3,6,7,8-HxCDF	89.1	40 - 135	
2,3,4,6,7,8-HxCDF	11.1			13C-2	,3,4,6,7,8-HxCDF	87.3	40 - 135	
1,2,3,7,8,9-HxCDF	0.737		J		,2,3,7,8,9-HxCDF	90.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	468			13C-1	,2,3,4,6,7,8-HpCDF	93.6	40 - 135	
1,2,3,4,7,8,9-HpCDF	29.3				,2,3,4,7,8,9-HpCDF	98.6	40 - 135	
OCDF	3970		J	13C-C		170	40 - 135	Н
				CRS 37C1-2	2,3,7,8-TCDD	79.1	40 - 135	
				Toxic	Equivalent Quotient (TE	EQ) Data		
				TEQM	IinWHO2005Dioxin	142		
TOTALS								
Total TCDD	4.51	5.46						
Total PeCDD	52.5							
Total HxCDD	601							
Total HpCDD	8240							
Total TCDF	9.56	10.2						
Total PeCDF	34.4	38.6						
Total HxCDF	327							
Total HpCDF	2250							

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

Sample ID: A1-66 ((0-0.5)							EPA M	ethod 8290
	ADIS ondale ov-2012 11:50	Sample Da Matrix: Sample S % Solids:	Soil		Lab QC	2	01 Column: DB-	ved: 29-Nov-2012 cted: 19-Dec-2012 225 Analyst: MAS	
Analyte Co	onc. (pg/g)	DL 1	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.870			_	IS	13C-2,3,7,8-TCDD	75.2	40 - 135	_
1,2,3,7,8-PeCDD	4.85					13C-1,2,3,7,8-PeCDD	85.6	40 - 135	
1,2,3,4,7,8-HxCDD	11.5					13C-1,2,3,4,7,8-HxCDD	67.6	40 - 135	
1,2,3,6,7,8-HxCDD	44.5					13C-1,2,3,6,7,8-HxCDD	64.3	40 - 135	
1,2,3,7,8,9-HxCDD	27.1					13C-1,2,3,7,8,9-HxCDD	64.8	40 - 135	
1,2,3,4,6,7,8-HpCDD	1530					13C-1,2,3,4,6,7,8-HpCDD	72.8	40 - 135	
OCDD	30900			₽,E J		13C-OCDD	198	40 - 135	Н
2,3,7,8-TCDF	1.65					13C-2,3,7,8-TCDF	66.3	40 - 135	
1,2,3,7,8-PeCDF	2.29			J		13C-1,2,3,7,8-PeCDF	76.8	40 - 135	
2,3,4,7,8-PeCDF	3.86			J		13C-2,3,4,7,8-PeCDF	79.7	40 - 135	
1,2,3,4,7,8-HxCDF	7.81					13C-1,2,3,4,7,8-HxCDF	82.5	40 - 135	
1,2,3,6,7,8-HxCDF	5.86					13C-1,2,3,6,7,8-HxCDF	74.1	40 - 135	
2,3,4,6,7,8-HxCDF	9.08					13C-2,3,4,6,7,8-HxCDF	71.6	40 - 135	
1,2,3,7,8,9-HxCDF	0.745			J		13C-1,2,3,7,8,9-HxCDF	74.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	189			J		13C-1,2,3,4,6,7,8-HpCDF	75.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	13.1					13C-1,2,3,4,7,8,9-HpCDF	80.0	40 - 135	
OCDF	718					13C-OCDF	95.0	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	76.1	40 - 135	
						Toxic Equivalent Quotient (T	EQ) Data		
						TEQMinWHO2005Dioxin	44.6		
TOTALS									
Total TCDD	7.00		7.30						
Total PeCDD	36.3								
Total HxCDD	257								
Total HpCDD	2610								
Total TCDF	30.5								
Total PeCDF	52.9								
Total HxCDF	170								
Total HpCDF	639								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Sample ID: EB 112812		EPA Method 8290
Client Data Name: ARCADIS Project: Carbondale Date Collected: 28-Nov-2012 14:00	Sample Data Matrix: Aqueous Sample Size: 0.996 L	Laboratory Data Lab Sample: 2110012-10 Date Received: 29-Nov-2012 10:23 QC Batch: B2L0077 Date Extracted: 20-Dec-2012 8:01 Date Analyzed: 27-Dec-12 14:05 Column: ZB-5 Analyst: MAS
Analyte Conc. (pg/L)	DL EMPC Qual	fiers Labeled Standard %R LCL-UCL Qualifiers
2,3,7,8-TCDD ND	1.70	IS 13C-2,3,7,8-TCDD 88.2 40 - 135
1,2,3,7,8-PeCDD ND	1.41	13C-1,2,3,7,8-PeCDD 105 40 - 135
1,2,3,4,7,8-HxCDD ND	2.03	13C-1,2,3,4,7,8-HxCDD 81.5 40 - 135
1,2,3,6,7,8-HxCDD ND	2.39	13C-1,2,3,6,7,8-HxCDD 81.4 40 - 135
1,2,3,7,8,9-HxCDD ND	2.37	13C-1,2,3,7,8,9-HxCDD 80.6 32 - 141
1,2,3,4,6,7,8-HpCDD ND	2.18	13C-1,2,3,4,6,7,8-HpCDD 80.0 40 - 135
OCDD ND	3.11	13C-OCDD 99.5 40 - 135
2,3,7,8-TCDF ND	0.616	13C-2,3,7,8-TCDF 86.2 40 - 135
1,2,3,7,8-PeCDF ND	1.41	13C-1,2,3,7,8-PeCDF 86.0 40 - 135
2,3,4,7,8-PeCDF ND	1.39	13C-2,3,4,7,8-PeCDF 86.6 40 - 135
1,2,3,4,7,8-HxCDF ND	1.20	13C-1,2,3,4,7,8-HxCDF 87.7 40 - 135
1,2,3,6,7,8-HxCDF ND	1.33	13C-1,2,3,6,7,8-HxCDF 82.4 40 - 135
2,3,4,6,7,8-HxCDF ND	1.52	13C-2,3,4,6,7,8-HxCDF 84.2 40 - 135
1,2,3,7,8,9-HxCDF ND	1.83	13C-1,2,3,7,8,9-HxCDF 89.7 40 - 135
1,2,3,4,6,7,8-HpCDF ND	1.26	13C-1,2,3,4,6,7,8-HpCDF 77.5 40 - 135
1,2,3,4,7,8,9-HpCDF ND	1.47	13C-1,2,3,4,7,8,9-HpCDF 90.5 40 - 135
OCDF ND	2.89	13C-OCDF 92.7 40 - 135
		CRS 37Cl-2,3,7,8-TCDD 86.3 40 - 135
		Toxic Equivalent Quotient (TEQ) Data
		TEQMinWHO2005Dioxin 0.00
TOTALS		
Total TCDD ND	3.01	
Total PeCDD ND	1.41	
Total HxCDD ND	3.23	
Total HpCDD ND	2.18	
Total TCDF ND	0.616	
Total PeCDF ND	1.77	

Total HxCDF Total HpCDF

EMPC - Estimated maximum possible concentration

ND

ND

2.60

1.12

LCL-UCL- Lower control limit - upper control limit