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Measurements to Meet Monitoring Objectives

e Which potential toxin producing organisms/species are in the
waterbody?

e Microscopy, molecular tools (DNA Barcoding, qPCR), imaging instruments

e Which toxins are present?
e Toxin detection in the field and lab
e Passive samplers

* How much biomass is present and are cyanobacteria present?
e Chlorophyll, biovolume and pigment quantification

 What is the spatial extent of the bloom?
* Drones, aerial photos and autonomous underwater vehicles

 What environmental factors are driving blooms and toxin production?
* Modeling
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Microscopy

* Traditional ‘gold standard” method for quantification
 Cell counts are time consuming and expensive

 Cryptic or rare species can be missed

e Alternative to formal cell counts: Relative abundance

Field and Laboratory Guide to Freshwater Cyanobacteria
Harmful Algal Blooms for Native American and Alaska
Native Communities

Marine Diatoms Marine Dinoflagellates

Phytoplankton ID Gallery
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US Department of the kilerksr
U5, Genlogical Survey

Kudela Lab, UC Santa Cruz




Relative Abundance

Anabaenopsis sp.-

Anacystis sp.

Aphanizomenon cf. flos-aquae- -
Aphanizomenon cf. ovalisporurm

. . Aphanizomenon sp.- -
U Se d | n C A M a rl n e Aphanocapsa planctonica
Aphanocapsa spp.- - - -

BiOtOXin Monitoring Aphanothece sp.-

Arthrospira sp.

Chrococcus spp.-

P rog ra m Coelosphaerium sp.-
Cyanodictyon sp.-
Cylindrospermopsis cf. catermaco-
Cylindrospermopsis raciborksii
Dofichospermum circinalis-
Dolichospermum sp.-

Gleocapsa sp.-

Leptolyngbya sp.-

Limnothrix sp.

Merismopedia sp.-

Microcystis aeruginosa-

wicrocystis spp.+ - [ I I I NN I B N BN

Osciflatoria sp. -

REI’E <1% Phormidium sp_: -

Planktolyngbya sp.

Planktothrix agardhii- L 1]
Present 1-<10% ] 1

Planktothrix sp.-

o Coccoid cyanobacteria -
Common 10-<25% | mm 0

centric diatoms

. Abundant 25-<50% chlorophytes -

dinoflagellate

B Dominant 50-100%

pennate diatoms -
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Nostoc - 200x — iPhone
Field Scope

microPeek: The innovative mobile technology that turns every
smartphone into a professional microscope.

Apple iPhone 5
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FlowCAM

e Semi-automated imaging flow cytometer

e |dentification and biovolume estimation
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Imaging FlowCytobot (IFCB
in situ Automated Microscope

* |n situ submersible flow cytometer that generates

images of particles

* Images classified to identification, abundance,

biovolume
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Quantitative Polymerase
Chain Reaction (qPCR)

e |dentify and quantify taxa
e Rapid, sensitive and specific approach for taxa
identification

e Detection and quantification of toxin producing
genes

Quantify pathogens by
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Estimate public heaith
risks based on cell densities

Image courtesy of Bend Genetics




DNA Barcoding:
DNA sequencing to identify algal species

Compare to reference library
DNA extraction and amplification

Advantages:
e Faster than traditional microscopy methods
e Canidentify rare and cryptic species

Disadvantages:
e Requires a reference library
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Potential toxin producers from Lake Elsinore
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Normalized read counts

B Microcystis

M Oscillatoria corallinae
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Theroux and Howard, unpublished data
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Field Tests for Cyanotoxins

e Envirologix QualiTube
* Microcystins

e Beacon Analytical Systems Tube Kit
* Microcystins

e Abraxis strip tests (‘dipsticks’)
e Anatoxin-a, cylindrospermopsin,
microcystins




Monitoring Tool:
Solid Phase Adsorption Toxin Tracking (SPATT)

Passive sampler that is time-integrative

e Applicable in all waterbody types (marine, brackish, freshwater) " ' ‘

* Provides continuous toxin detection to capture ephemeral events that
discrete samples can miss

* Low cost, simple and easy to deploy/recover

Disadvantage:

e SPATT will not provide a concentration of toxin that is appli |
advisory thresholds (ng/g) '

* Only measures dissolved toxins not total toxins
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Microcystin Prevalence Underestimated From Grab
Samples By ~50%

Grab Samples SPATT Samples

Microcystins jugiL) i & Mlcror.}-stins (ngfg]
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Common Toxin Analytical Techniques

Table 3. Relative advantages and disadvantages of common analytical techniques utilized for analysis of cyanobacterial toxins and

taste-and-odor compounds.

Analytical techniques

Advantages

Disadvantages

Binassays

Enzyme-Linked Immunosorbent Assay (ELISA)

Inhibition Assays

Radioassays

Relatively easy to use

Cost per analyses lowest of
all techniques

Can be useful as screening
tools

Can indicate toxicity in some cases

Data interpretation can be difficult

Inhibition assays and radioassays not
always available

Bioassays frequently possess some
reactivity towards compounds other
than the intended target

Radioassays require permits to work with
radioisotopes

Research objeclives may require a
chromatographic technique for
comf 1 specific quantitati

Gas Chromatography (GC)

Flame lTomzation Detector ( GC/FID)

Mass Spectrometry (GC/MS)

Compound specific
Cost per analyses intermediate

Compound identification by GC/MS is
superior to GC/FID

Toxins will most likely require
derivitization

Not all compounds amenable to
derivitization

GC/FID may require further confirmation

Sample concentration techniques may be
necessary

. Ultraviolet-Visible { LC/UV-Vis)

Fl ‘ence (LC/FL ence)

Mass Spectrometry (LC/MS)
Tandem Mass Spectrometry (LC/MS/MS)

lon Trap Mass Spectrometry (LC/ITMS)

Liquid Chromatography (LC)
Derivitization typically not necessary
Compound specilic
Greatest number of toxins are amenable 1o
LC techniques

Cost per analyte can be lowest in a multi-
analyte method

Compound identification is superior by
LC/MS/MS or LC/ITMS

Matrix effects can be substantial

Cost per sample most expensive
Spectroscopic technigques may require
further confirmation

Sample concentration techniques may be
nl!Ceh'h'HI}'

= USGS

science for a changing world

Guidelines for Design and Sampling for Cyanobacterial Toxin
and Taste-and-Odor Studies in Lakes and Reservoirs
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Common techniques for chlorophyll and
phycocyanin quantification
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Iron Gate Reservoir, October 2016
Photo courtesy of Susan Fricke

Traditional camera sensors
worked well (RGB, RGB-IR)

Flight path with images centers

Steinberg, unpublished data




Temperature

Depth (m)
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34_005 - -
-117.813 -117.812 -117.811 -117.81 -117.809 -117.808 -117.807 -117.806 -117.805 -117.804
longitude

Figure courtesy of Stephanie Kemna, D. Caron & RESL at
University of Southern CA

The data provide a
three-dimensional
map of the various
water quality
parameters.
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Models to Forecast Freshwater Blooms
and Risk Levels

a USGS|

science for a changing world ~ %

Computed probability of

Kansas Real-Time Water Quallty

microcystin based on total

Methods
NRTWQ Home >> Kansas >> View Data >> 07144790

USGS station:

Home | View Data | | Constituents | Models Bibliography

Model Info
07144790 Cheney Reservoir near Cheney, KS

1 Go to NWISWeb

Constituent: Computed probability of microcystin w || concentration

Model Form: 1. 20153-01-01 - Present ~

Model Developed By Alan Wilson
Auburn University, Alabama

SECCHI DEPTH (meters) s |
(1ft = 0. 10‘im}

ALGAL BLOOM TYPES

i Toxic
Phytoplankton Cyanobacteria l:\ﬂ!rlﬂ?’!l:tari-
chlorophyll hycocyanin microcystin
(7 PR fhon3
PREDICTED [ 1 —
CONCENTRATIONS (b N (0180

RISK LEVEL e

Links

chlorophyll

Stone, M.L., Graham, J.L., and Gatotho,
JW,, 2013.
http://pubs.usgs.gov/of/2013/1123/.

PHYTOPLANKTON AND CYANOBACTERIAL FORECASTING MODELS
ALGAL BLOOM TYPES

WATER QUALITY DATA Phytoplankton Cyanobacteria

Chlorophyll (CHL) pg/L _

Toxic
cyanobacteria

Total Phosphorus (TP) pg/L
Soluble Reactive Phosphorus (SRP) ug/L
Total Nitrogen (TN) pg/L

Nitrogen:Phosphorus (N:P) molar

PREDICTED CONCENTRATIONS
RISK LEVEL
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