

For assistance in accessing this document please send an email to EPACyanoHABs@epa.gov

Application of DNA-based tools for algal bloom monitoring

April 27, 2017

Bend Genetics Tim Otten, PhD, MPH Bend Genetics, LLC 87 Scripps Dr Ste 108 Sacramento, CA 95825 ottentim@bendgenetics.com www.bendgenetics.com

Presentation overview

Case studies to illustrate how different molecular tools can be used for monitoring and risk assessment and interpretation of these types of data

- Real-time quantitative PCR (QPCR)
- Amplicon sequencing (DNA barcoding)
- Shotgun metagenomics

Variable risks associated with certain CyanoHAB taxa or from mixed assemblages

 $\overline{}$

Overview of common genetic tools

- Polymerase Chain Reaction (PCR) the amplification of specific DNA sequences using complementary synthetic DNA molecules (primers)
 - Sequence information is required in order to design assays
 - Assays can be designed to be strain-specific or universal
- Amplicon Sequencing PCR products (amplicons) are barcoded (indexed), then deeply sequenced in parallel
 - Used to estimate the <u>relative abundance</u> of targeted organisms in each sample
 - Not a practical method for public health monitoring, but great for research
- Real-Time Quantitative PCR (QPCR) same concept as regular PCR, but includes a fluorescent dye or probe allowing for <u>absolute quantification</u> of gene copies
 - Used in a tiered monitoring framework; high throughput & quick time to results
 - Assumes gene copies/mL equivalent to cells/mL for single copy genes targeted
- Shotgun metagenomics DNA molecules are fragmented and massively sequenced without any amplification step. The generated sequences are assembled into larger fragments of individual genomes.
 - Longer time required for analysis, but useful for assigning specific functions (e.g., toxin or taste-and-odor production) to specific organisms

 Culture-free method

Genetics of Klamath River Microcystis blooms

DOCUMENT ARCHIVE EPA S

US EPA ARCHIVE DOCUMENT

Visual evidence for co-occurring strains

M. *wesenbergii* - loosely packed cells with thick mucilagnous sheath

M. aeruginosa - densely packed cells with thin mucilaginous sheath

Comparison of methods - *Microcystis* cell counts vs QPCR estimates

Otten et al., 2015. Harmful Algae 46:71-81.

Comparison of methods - *Microcystis* cell counts vs QPCR estimates

All samples were 0.5 m grab samples

Otten, in prep.

Comparison of methods - *Microcystis* cell counts vs QPCR estimates

Discrepancy between environmental counts and QPCR not likely explained by ploidy

Otten et al., 2015. Harmful Algae 46:71-81.

Comparison of methods - Microcystins vs QPCR (*mcyE*) estimates

All samples were 0.5 m grab samples

Otten et al., 2015. Harmful Algae 46:71-81.

Comparison of methods - Microcystins vs QPCR (*mcyE*) estimates

All samples were 0.5 m grab samples

Otten, in prep.

Sediment sample collection DOCUMENT EPA ARCHIVE Copco Cove during initial sampling (9/26/14) S

US EPA ARCHIVE DOCUMENT

QPCR to assess *Microcystis* cell abundances

Surface samples (0.5 m) collected on 7/9/14, 9/23/14, 9/25/14, 10/20/14, 11/4/14 (CR01) Otten, *in prep*.

Microcystis abundance increased with depth

Amplicon sequencing (cpcBA) to assess cyanobacterial community in sediments

Otten, *in prep*.

DOCUMENT ARCHIVE EPA

Shotgun metagenomics to ID toxin and T&O producers

Otten et al., 2016. AEM 82:5210-5220.

Differential binning of microbial genomes

DOCUMENT

ARCHIVE

From 2 m depth-integrated samples

Otten et al., 2016. AEM 82:5210-5220.

Development of *Anabaena*-specific QPCR for assaying geosmin genes

DCUMENT

ARCHIVE

П

Obtained coverage depth from 30 million (100 bp) reads/sample relative to target abundance

US EPA ARCHIVE DOCUMENT

 \bullet

Sample collection & archival

Collect water sample and concentrate by vacuum filtration

- Filter type is not critical, glass fiber or membrane filters work
- Larger pore sizes (e.g., < 1 µm) will selectively retain cyanobacteria and other algae
- Small pore sizes (e.g., 0.2 μm) retain all bacteria
- Don't freeze water samples before filtering --- cells lyse=DNA lost
- Record volume filtered, required for QPCR quantification
- Store filters in microcentrifuge tubes at -20°C; stable for years
 - Samples can be archived and batch processed

Conclusions

- QPCR is a useful proxy for cyanotoxin risks that is best used in a tiered monitoring framework
 - Assays are selected based on taxa present, samples with elevated toxin or T&O gene concentrations are candidates for toxin testing.
- Because DNA is amplified, toxigenic cells can be detected sooner than other methods
- QPCR can also be used for source tracking or benthic surveys
- Amplicon sequencing can be used to generate relative abundances of microbial taxa and/or phytoplankton when data are not time-sensitive
- Shotgun metagenomics allows for culture-free identification of problematic taxa
 - Data can be used to improve existing QPCR assays or develop novel ones

Thanks for your attention!

Please feel free to contact me with any questions.

Tim Otten, PhD, MPH Bend Genetics, LLC T: 916-550-1048 ottentim@bendgenetics.com www.bendgenetics.com

