US ERA ARCHIVE DOCUMENT

Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

Tel: 314-674-3312 Fax: 314-674-8808

gmrina@solutia.com

May 19, 2011

Mr. Kenneth Bardo - LU-9J U.S. EPA Region V Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507 VIA FEDEX

Re: Route 3 Drum Site Groundwater Monitoring Program

1st Quarter 2011 Data Report

Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Mr. Bardo:

Enclosed please find the Route 3 Drum Site Groundwater Monitoring Program 1st Quarter 2011 Data Report for Solutia Inc.'s W. G. Krummrich Plant, Sauget, IL.

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@solutia.com

Sincerely,

Gerald M. Rinaldi

Manager, Remediation Services

Sundy M. Killer

Enclosure

cc: Distribution List

DISTRIBUTION LIST

Route 3 Drum Site Groundwater Monitoring Program 1st Quarter 2011 Data Report Solutia Inc., W. G. Krummrich Plant, Sauget, IL

USEPA

Stephanie Linebaugh USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

IEPA

James Moore IEPA Bureau of Land, 1021 North Grand Avenue East, Springfield, IL 62706

Booz Allen Hamilton

Dan Briller Booz Allen Hamilton, 8283 Greensboro Drive, McLean, VA 22102

Solutia

Brett Shank 500 Monsanto Avenue, Sauget, IL 62206-1198

FIRST QUARTER 2011
DATA REPORT
ILLINOIS ROUTE 3 DRUM SITE
GROUNDWATER SAMPLING
SOLUTIA INC.
W.G. KRUMMRICH FACILITY
SAUGET, ILLINOIS

Prepared for:

SOLUTIA INC. St. Louis, Missouri

Prepared by:

GEOTECHNOLOGY, INC. St. Louis, Missouri

Geotechnology, Inc. Report No. J017210.11

May 18, 2011

FIRST QUARTER 2011 DATA REPORT ILLINOIS ROUTE 3 DRUM SITE GROUNDWATER SAMPLING SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

TABLE OF CONTENTS

	<u>Page</u>
1.0	INTRODUCTION1
2.0	FIELD PROCEDURES1
3.0	LABORATORY PROCEDURES3
4.0	QUALITY ASSURANCE
5.0	OBSERVATIONS4
6.0	REFERENCES4
	TABLES
	Monitoring Well Gauging InformationTableGroundwater Analytical Results2Monitored Natural Attenuation Results Summary3
	ILLUSTRATIONS
	Site Location Map
	APPENDICES
	<u>Appendix</u>
	Groundwater Purging and Sampling Forms A Chains-of-Custody B
	Quality Assurance Report

FIRST QUARTER 2011

DATA REPORT

ILLINOIS ROUTE 3 DRUM SITE

GROUNDWATER SAMPLING

SOLUTIA INC.

W.G. KRUMMRICH FACILITY

SAUGET, ILLINOIS

1.0 INTRODUCTION

Solutia Inc. (Solutia) is conducting groundwater monitoring activities as outlined in the Revised Illinois Route 3 Drum Site Operation and Maintenance Plan (Solutia, 2008). The Illinois Route 3 Drum Site (Site) is an area associated with the Solutia W.G. Krummrich (WGK) Facility located in Sauget, Illinois that is subject to a RCRA Administrative Order on Consent (AOC) entered into by the U.S. EPA and Solutia on May 3, 2000. This report presents the results of the sampling event completed in 1st Quarter 2011 (1Q11). The Site is located in the area identified as "Lot F" in Figure 1.

During the 1Q11 sampling event, groundwater samples were collected from two Shallow Hydrogeologic Unit (SHU) monitoring wells, designated GM-31A and GM-58A (Figure 2), located hydraulically downgradient of the Site. Samples from each well were analyzed for select semivolatile organic compounds (SVOCs) using EPA Method 8270C. In addition, samples were collected from both wells for evaluation of monitored natural attenuation (MNA). The types of natural attenuation processes active at the site were determined by measurements of the following key geochemical parameters: alkalinity, carbon dioxide, chloride, dissolved oxygen (DO), total and dissolved iron, total and dissolved manganese, methane, nitrate, sulfate, total and dissolved organic carbon, and oxidation-reduction potential (ORP).

2.0 FIELD PROCEDURES

Geotechnology, Inc. (Geotechnology) personnel collected groundwater level measurements on February 16, 2011 and conducted the 1Q11 Illinois Route 3 Drum Site groundwater sampling on February 23, 2011. Groundwater samples were collected from two monitoring wells during the 1Q11 sampling event. This section summarizes the field investigative procedures.

Groundwater Level Measurements. An oil/water interface probe was used to measure depth to static groundwater levels and determine the presence of non-aqueous phase liquids (NAPL). Depth-to-groundwater measurements for the 1Q11 sampling event are presented in Table 1. NAPL was not detected in either of the monitoring wells.

Solutia Inc. J017210.11 May 18, 2011

Page 2

Groundwater Sampling. Low-flow sampling techniques were used for groundwater sample collection. At each monitoring well, disposable, low-density polyethylene tubing was attached to a submersible pump, which was then lowered into the well to the middle of the screened interval. Monitoring wells were purged at a rate of 263 to 273 mL/minute to minimize drawdown. If significant drawdown occurred, flow rates were reduced.

Drawdown was measured periodically throughout purging to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen. Once the flow rate and drawdown were stable, field measurements were collected approximately every three to five minutes. Purging of a well was considered complete when the following water quality parameters remained stable over three consecutive flow-through cell volumes:

Parameter	Stabilization Guidelines
Dissolved Oxygen (DO)	+/- 10% or +/-0.2 mg/L, whichever is greatest
Oxidation-Reduction Potential (ORP)	+/- 20 mV
pН	+/- 0.2 units
Specific Conductivity	+/- 3%

Sampling commenced upon completion of purging. Prior to sample collection, the flow-through cell was bypassed to allow for collection of uncompromised groundwater. Samples were collected at a flow rate less than or equal to the rate at which stabilization was achieved. Sample containers were filled based on laboratory analysis to be performed. Bottles were filled in the following order:

- Gas Sensitive Parameters (e.g., carbon dioxide, methane)
- Semivolatile Organic Compounds (SVOCs)
- General Chemistry (i.e., alkalinity, chloride, total and dissolved iron, total and dissolved manganese, nitrate, sulfate, and total and dissolved organic carbon)
- Field Parameters (i.e., dissolved oxygen and oxidation reduction potential)

Samples for analysis of dissolved iron, dissolved organic carbon, and dissolved manganese were filtered in the field using in-line 0.2 micron disposable filters, represented by a "F(0.2)" in the sample nomenclature.

Quality Assurance/Quality Control (QA/QC) samples consisting of analytical duplicates (AD) and equipment blanks (EB) were collected at a rate of 10% and matrix spike/matrix spike duplicates (MS/MSD) were collected at a rate of 5%. One duplicate and one MS/MSD sample were collected.

Solutia Inc. May 18, 2011 Page 3 J017210.11

Each sample was labeled immediately following collection. The groundwater sample identification system included the following nomenclature: "GM-31A-0211" which denotes Groundwater Monitoring well number 31A sampled in February 2011. QA/QC samples are identified by the suffix AD or MS/MSD. A notation of "F" in the sample nomenclature indicates a sample that was filtered in the field with a 0.2 micron filter.

Upon collection and labeling, sample containers were immediately placed inside an iced cooler, packed in such a way as to help prevent breakage and maintain inside temperature at or below approximately 4°C. Field personnel recorded the project identification and number, sample description/location, required analysis, date and time of sample collection, type and matrix of sample, number of sample containers, analysis requested/comments, and sampler signature/date/time, with permanent ink on the chain-of-custody (COC). Prior to shipment, coolers were sealed between the lid and sides of the cooler with a custody seal, and then shipped to TestAmerica in Savannah, Georgia by means of overnight delivery service. Field sampling data sheets are included in Appendix A. COC forms are included in Appendix B.

3.0 LABORATORY PROCEDURES

Samples were analyzed by TestAmerica for the 40 CFR 264 Appendix IX SVOCs, and MNA parameters (per the Route 3 Drum Site O&M Plan), using the following methodologies:

- SVOCs, via USEPA SW-846 Method 8270C The constituents of concern (COCs) identified by the USEPA are biphenyl, 2,4-dichlorophenol, dinitrochlorobenzene, 3-nitrobenzene, 2-nitrobiphenyl, 3-nitrobiphenyl, 4-nitrobiphenyl, 2-nitrochlorobenzene, nitrochlorobenzene, 4-nitrochlorobenzene, pentachlorophenol, and 2,4,6-trichlorophenol.
- MNA parameters consisted of alkalinity (310.1), carbon dioxide (310.1), chloride (325.2), total and dissolved iron (6010B), total and dissolved manganese (6010B), dissolved organic carbon (415.1), nitrate (353.2), sulfate (375.4), dissolved gases (RSK-175), and total organic carbon (TOC) (415.1).

Laboratory results were provided in electronic and hard copy formats.

4. QUALITY ASSURANCE

Analytical data were reviewed for quality and completeness. Data qualifiers were added, as appropriate, and are included on the data tables and the laboratory result pages. The Quality Assurance report is included as Appendix C. The laboratory report and data review sheets are included in Appendix D.

Solutia Inc. May 18, 2011 Page 4 J017210.11

A total of six groundwater samples (two investigative groundwater samples, one field duplicate, one MS/MSD pair, and one equipment blank) were prepared and analyzed by TestAmerica for SVOCs and MNA parameters. The results for the various analyses were submitted as sample delivery group (SDG) KOM011 and contained results for GM-31A and GM-58A. Evaluation of the analytical data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008) and the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 2004). Based on the above mentioned criteria, results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on MS/MSD, LCS, surrogate and field duplicate data were achieved for this SDG to meet the project objectives. Completeness, which is defined to be the percentage of analytical results which are judged to be valid, including estimated detect/nondetect data, was 94.74 percent.

5.0 OBSERVATIONS

SVOCs were detected in the groundwater samples collected from monitoring wells GM-31A and GM-58A during the 1Q11 sampling event. Laboratory analytical data for groundwater sample GM-31A-0211 indicated detections of 19 μ g/L of 2,4,6-trichlorophenol and 9.9 μ g/L of nitrobenzene. Laboratory analytical data for groundwater sample GM-58A-0211 indicates a detection of 63 μ g/L of 2,4,6-trichlorophenol and 220 μ g/L of 2-chloronitrobenzene/4-chloronitrobenzene. A summary of SVOC detections is provided in Table 2, with MNA results provided in Table 3.

6.0 REFERENCES

- Solutia Inc., 2008. Revised Illinois Route 3 Drum Site Operation and Maintenance Plan, W.G. Krummrich Facility, Sauget, IL, May 2008.
- U.S. Environmental Protection Agency (USEPA), 2004. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.
- U.S. Environmental Protection Agency (USEPA), 2008 National Functional Guidelines for Superfund Organic Methods Data Review.

J017210.11 TABLE 1 May 2011

MONITORING WELL GAUGING INFORMATION

			Constructi	on Details				February 2011						
			Depth to	Depth to		Bottom of								
Well ID	Ground	Casing	Top	Bottom	Top of Screen	Screen	Depth to	Depth to	Water					
	Elevation*	Elevation*	of Screen	of Screen	Elevation*	Elevation*	Water	Bottom	Elevation*					
	(feet)	(feet)	(feet bgs)	(feet bgs)	(feet)	(feet)	(feet btoc)	(feet btoc)	(feet)					
hallow Hydrogeologic Unit (SH	U 395-380 feet N	AVD 88)												
M-31A	416.63	418.63	19.00	39.00	397.63	377.63	24.34	40.42	394.29					
M-58A	412.24	414.24	19.40	39.40	392.84	372.84	20.26	40.93	393.98					

- Elevation based upon North American Vertical Datum (NAVD) 88 datum

gs - below ground surface

toc - below top of casing

GROUNDWATER ANALYTICAL RESULTS

						TABLE 2	i					J017210 May 2	
				GROUN	DWATE	R ANALY	TICAL R	ESULTS					
Sample ID	Sample Date	1,1'-Biphenyl (µg/L)	1-Chloro-2,4-Dinitrobenzene (μg/L)	1-Chloro-3-Nitrobenzene (μg/L)	2,4,6-Trichlorophenol (μg/L)	2,4-Dichlorophenol (μg/L)	2-Chloronitrobenzene/ 4-Chloronitrobenzene (µg/L)	2-Nitrobiphenyl (µg/L)	3-Nitrobiphenyl (µg/L) 3,4-Dichloronitrobenzene (µg/L) 4-Nitrobiphenyl (µg/L)		4-Nitrobiphenyl (µg/L)	Nitrobenzene (µg/L)	Pentachlorophenol (μg/L)
hallow Hydrogeolo	gic Unit (SHU	395 - 380 ft	NAVD 88)										
M-31A-0211	02/23/11	<9.9	<9.9	<9.9	19	<9.9	< 20	9.9	<9.9	<9.9	<9.9	<9.9*	<49
M-31A-0211-AD	02/23/11	<10	<10	<10	11	<10	<21	<10	<10	<10	<10	<10*	<52
M-58A-0211	02/23/11	<10	<10	<10	63	<10	220	<10	<10	<10	<10	<10	< 50
= Result is non-dete = LCS, LCSD, MS,	otes: g/L = micrograms per liter = Result is non-detect, less than the reporting limit given - indicated as a U qualifier on lab data = LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits OLD indicates concentration greater than the reporting limit												

J017210.11 TABLE 3 May 2011

MONITORED NATURAL ATTENUATION RESULTS SUMMARY

Sample ID	Sample Date	Alkalinity (mg/L)	Carbon Dioxide (mg/l)	Chloride (mg/L)	Dissolved Oxygen (mg/L)	Ethane (μg/L)	Ethylene (μg/l)	Ferrous Iron (mg/L	iron (mg/L.)	Iron, Dissolved (mg/L)	Manganese (mg/L)	Manganese, Dissolved (mg/l)	Methane (μg/l)	Nitrogen, Nitrate (mg/L)	Sulfate as SO4 (mg/L)	Dissolved Organic Carbon (mg/L)	Total Organic Carbon (mg/L)	ORP (mV)
allow Hydrogeologic Unit (SHU 395 - 38	0 ft NAVD	88)																
И-31A-0211	02/23/11	360	21	29	0.0	<1.1	<1.0	0.31	6.9 J		0.91		4.1	< 0.050	93		3.7	105.3
И-31A-F(0.2)-0211	02/23/11									<0.050 J		0.79				4		
И-58A-0211	02/23/11	510	39	60	0.0	<1.1	<1.0	0.38	10 J		1.4		6.1	1.3	110		4.9	189.3
И-58A-F(0.2)-0211	02/23/11									0.091 J		1.4				4.3		

and ORP were measured in the field using a Horiba U22 equipped with a flow-thru cell.

rrous Iron readings were not measured in the field.

/L - milligrams per liter

L = micrograms per liter

Result is non-detect, less than the reporting limit given - indicated as a U qualifier on lab data

blank space indicates sample not analyzed for select analyte

.2) = Sample was filtered utilizing a $0.2 \mu m$ filter in the field

APPENDIX A GROUNDWATER PURGING AND SAMPLING FORMS

LOW FLOW GROUNDWATER SAMPLING DATA SHEET

	2-23-11	DRUM 1Q M-3119	PROJECT NUMB WEATHER: SAMPLE ID:	ER: <u>Jol</u> <u>40</u> F 6m - 31 A -	7210.11	e	FIELD	PERSONNEL:	KCR / DCW	
INITIAL DATA Well Diameter: Measured Well Dept Constructed Well Depth to Water (btoo Depth to LNAPL/Di	h (btoc): pth (btoc): k): NAPL (btoc): cen (btoc):	2'' 40.42 41.00 24.04 21.00	ft If Depth to Top of Sci ft Place Pump at: Total ft If Depth to Top of Sci ft Place Pump at: Total ft If Screen Length and/	een is > Depth to Wate Well Depth - 0.5 (Scree een is < Depth to Wate Well Depth -)9.5 X Wa or water column height	er AND Screen Le en Length + DNA er AND Water Co ater Column Heig is <4 ft, Place Pt	ength is <4 feet APL Column Heigl Dumn Height and S ght + DNAPL Colu Imp at: Total Well	nt) = Screen Length are < mn Height) =		Minimum Purge Volu (3 x Flow Through C Ambient PID/FID Re	Cell Volume) 2100 mL
PURGE DATA Pump Type:	QE	D 500	nole Pro			HAVE THE STA	BILIZATION PA	RAMETERS BEEN SA	TISFIED? All are unit	s unless %
			<u> </u>		± 0.2 R	lecord Data Only	± 3%	Record Data Only	$\pm 10\%$ or ± 0.2	± 20
Purge Volume	Time	Depth to	Calor	Odor	lla	Temp	Cond.	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
				- 0001		- '				_
		2 109	Smullihat cloudy	2001		14.28				108
Well Diameter Vel Diameter Vel Depth (blooc) Vel Out Ve									106	
			YUJOW TINT					268	0.0	106
						0.17	381		104	
	1000 1315 YILIOW tint G.88 14.69 0.12 268 0.0 4000 1319 6.80 13.96 0.12 381 0.0 1 5000 1323 Y 6.78 14.12 0.12 349 0.0								103	
		V	7	-	6.60	14.19	0.12	326	0.0	109
	 									
			Average P						lity Meter ID: Hor.	ba U-ZZ 2-Z3-11
SAMPLING DATA	١			3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						
Sample Date:	2			A 10 Martin A 100 (100)		-	<u> </u>	Analysis: 5	Nocs nutals,	MNA
VOA Vials, No Hea	adspace X	Initials:	KCR							
COMMENTS:	MNA:	Alkalinit	y coz chlorid	c. Ferrous	Inn,	methone	Witcote	Ferrous Iron (Filtere	d 0.2 micron) = 0	.3)
			1312+01313-	Clearl out	Flou	though	all sing	i + UiS	5.1+.n, mp	
	**************************************	1			JUSK, MEN		s high	turbility	,	7.1

LOW FLOW GROUNDWATER SAMPLING DATA SHEET

PROJECT NAME: DATE: MONITORING WE	2-23-1		PROJECT NUMBE WEATHER: SAMPLE ID:	40°	7210.11 Rainy 58A-0211		FIELD	PERSONNEL: 16	CR / DRW	
INITIAL DATA Well Diameter: Measured Well Dep Constructed Well D Depth to Water (bto Depth to LNAPL/D Depth to Top of Ser Sereen Length:	epth (btoc): ck): NAPL (btoc): een (btoc):	2` ir 40.93 ft 41.4 ft 20.24 ft 21.4 ft 20 ft	If Depth to Top of Scre Place Pump at: Total V If Depth to Top of Scre Place Pump at: Total W	en is > Depth to Wat Vell Depth - 0.5 (Scr en is < Depth to Wat Vell Depth -)9.5 X W	ter AND Screen L een Length + DN ter AND Water C Vater Column Hei	ength is <4 feet APL Column Heigh olumn Height and S ght + DNAPL Colu Pump at: Total Well	creen Length are mn Height) =	ft 31, 4 ft btoc 44 ft, ft btoc ft btoc	Minimum Purge Volu (3 x Flow Through C Ambient PID/FID Re	ough Cell): 700 mL une = Cell Volume) 7100 mL ading: 000 ppm cading: ppm
PURGE DATA Pump Type:	C	LED S	imple Pro			HAVE THE STAI	BILIZATION PA	RAMETERS BEEN SA		
			1		± 0.2	Record Data Only	± 3%	Record Data Only	± 10% or ± 0.2	± 20
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	pH	Temp (°C)	Cond. Ms/cm	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
0	1435	19,88	- 1 1 1 1			17.66	0.15	250.0	0.0	200
1000	14 4 3	19.90	Yellow fint	vars	6.77	12.96	0.15	233.0	0.0	196
2000 3000	1447	19.89			6.75	13.22	0.15	284	0.0	193
4000	145 D	19.89	↓	V	6-73	13-36	0.15	290	0.0	189
5000	1453				6.72	13.5	0.15	750	0.0	186
Start Time: Stop Time:	1435 1453	-	Average Pu	Elapsed Time: _ rge Rate (mL/min): _	18 m	1.n 263.15 mc/n	ni <u>n</u>			101.pa 11-25
SAMPLING DAT Sample Date: Sample Method:	A	2-23-11	10 m	Sample Time: Sample Flow Rate:	1	505 2 63.15 my		Analysis:QA/QC Samples:	SUDCS ME	tals MNA
YOA Vials, No He	4-	NA: AIK	KCR e TOE DOC	chlor. Le	Ferrous I	in, met	hane,	Ferrous Iron (Filtere	d 0.2 micron) = 0.	38 .
		1								

APPENDIX B

CHAINS-OF-CUSTODY

Test,		120		F AND CHA	in of Custody i	REC	OR	D	9	31	UZ Lai	rica Sa loche A n, GA 3		h			F	² hone:		testamericain 154-7858 -0165	c.com	
10317) Alt	ernate	Labora	tory Na	me/Loc	ation							
THE LEADER	IN ENVIR	ONMENTAL	TESTING															hone: ax:				
PROJECT REFEREN	NCE DGLAD S	.t 1Q11	PROJECT NO		PROJECT LOCATION (STATE)			TRIX 'PE					REQUIRED ANALYSIS							PAGE 1		OF \
TAL (LAB) PROJECT	T MANAGER		P.O. NUMBER	3	CONTRACT NO.	ļ.,		Ī	T-		ç	Γ	2		4					STANDARD RE	PORT	
CLIENT (SITE) PM	1 Rinal	d (CLIENT PHO	NE	CLIENT FAX	GRAB (G) INDICATE			ENT	Ja	5/2	10'	52.	Method RSK Ethod RSK	53	:	Fe/mo	<u>-</u>		DELIVERY DATE DUE	:	Ø
6,	n Rin	raldi	314-67	4-3312	CLIENT FAX 314-674-8808]NC			SOLV	90	G 5	320	20 6	12	W	5-	66	DOC 415				
CLIENT NAME		-	CLIENT E-MA	AIL ()	man kanna	4B (G			팀	7	و ہے	3	Ã. ¥.	8 33	五			À		EXPEDITED RI DELIVERY		\circ
SOLU CLIENT ADDRESS	1 tien	Tuc	1 gm cin	in 6 50%	Atia . Com	3 GR/		3	OID.	00	104	716	5 4	불	7	Ŕ	25.0	600		(SURCHARGE)		
CLIENT ADDRESS _	75 Ma	-nguilt	Center D	r St. lou	is mo 63/41	COMPOSITE (C) OR	EEE CE	200	SLIG				2 0	ECL	₹.	-	4			DATE DUE		
CLIENT ADDRESS 575 May with Center Dr. St. 10mis, mo 631 COMPANY CONTRACTING THIS WORK (if applicable)							AQUEOUS (WATER)	E S	COUEOU	لائع	440.3	Kora	nade	HATTER ISK	M	april 1	ME	Hil		NUMBER OF C PER SHIPMEN		RS SUBMITTED
SAMPLE SAMPLE IDENTIFICATION							AQUE	AB SOLL	NON			NUI	MBER O	F CONT	AINERS	SUBMIT	TED			AE	EMARK	S
2-23-11							X			а	1	1	1	3	1	1				******		
	1330	6.10	-314 -0	1211 - F	(0.2)	6	X										1	1		[5,140	/	
	1330	6m-	311-0	211 - A	D	6	K			а											355	
	1505	6m-	S5A1 -	0211		6	K		П	2	1	1	,	3	١	ı						7
	1505			0211-	F(0.2)	6			П		·	•					1	1		Filter	وي ا	
	1505			0211-		6	X			2												
	1505	6m	-58A	- 0211 -	msD	6	X		1 1	3												
1	1505	6m	- 581	-0211-	- EB	6	X		1	a												
				2							i:					10 NO.		40.00				
-																						
RELINQUISHED BY: (SIGNATURE) DATE TIME RELINQUISHED BY: (S							IE)				DATE		TIME		RELINC	DUISHE	BY: (S	GNATURE	:)	DATE		TIME
RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE)											DATE		TIME		RECEIN	/ED BY:	(SIGNATU	RE)		DATE		TIME
			1 .			LABO	ORAT	ORY	USE	ONLY												
RECEIVED FOR LABO	ORATORY BY:		DATE	TIME	CUSTODY INTACT	CU	STOD AL NO	Υ		SAVANI LOG NO	HAI		LABOR	IATORY	REMARK	(S		······	1	ř		
						527		•••	- f		 ,.59 ik)					3.	4,	·o/ [.	2 (2.2		

APPENDIX C QUALITY ASSURANCE REPORT

FIRST QUARTER 2011 ILLINOIS ROUTE 3 DRUM SITE GROUNDWATER SAMPLING QUALITY ASSURANCE REPORT SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared for:

SOLUTIA INC. St. Louis, Missouri

Prepared by:

GEOTECHNOLOGY, INC. St. Louis, Missouri

Geotechnology, Inc. Report No. J017210.11

May 18, 2011

FIRST QUARTER 2011 ILLINOIS ROUTE 3 DRUM SITE GROUNDWATER SAMPLING QUALITY ASSURANCE REPORT SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	1
2.0	RECEIPT CONDITION AND SAMPLE HOLDING TIMES	3
3.0	LABORATORY METHOD AND EQUIPMENT BLANK SAMPLES	3
4.0	SURROGATE SPIKE RECOVERIES	4
5.0	LABORATORY CONTROL SAMPLE RECOVERIES	4
6.0	MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES	4
7.0	FIELD DUPLICATE RESULTS	5
8.0	INTERNAL STANDARD RESPONSES	5
9.0	RESULTS REPORTED FROM DILUTIONS	5
10.0	MASS SPECTROMETER TUNING	5
11.0	CALIBRATION	6
12.0	COMPOUND IDENTIFICATION	6
13.0	OTHER PROBLEMS/DOCUMENTATION	6

FIRST QUARTER 2011 ILLINOIS ROUTE 3 DRUM SITE GROUNDWATER SAMPLING QUALITY ASSURANCE REPORT SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

1.0 INTRODUCTION

This Quality Assurance Report presents the findings of a review of analytical data for groundwater samples collected in February of 2011 at the Solutia W.G. Krummrich plant as part of the 1st Quarter 2011 Illinois Route 3 Drum Site Groundwater Sampling. The samples were collected by Geotechnology, Inc. (Geotechnology) personnel and analyzed by TestAmerica Laboratories located in Savannah, Georgia using USEPA methodologies. Groundwater samples were analyzed for semi-volatile organic compounds (SVOCs) and monitored natural attenuation (MNA) parameters.

Geotechnology subcontracted with the M.J.W. Corporation to conduct third party Level III data validation. One hundred percent of the data was subjected to a data quality review (Level III validation.) M.J.W. Corporation selected four random groundwater samples for Level IV data validation (GM-31A-0211, GM-31A-F(0.2)-0211, GM-58A-0211 and GM-58A-F(0.2)-0211. The Level III and IV reviews were performed in order to confirm that the analytical data provided by TestAmerica were acceptable in quality for their intended use.

A total of 6 samples (two investigative groundwater samples, one field duplicate, one matrix spike and matrix spike duplicate (MS/MSD) pair, and one equipment blank) were analyzed by TestAmerica. These samples were analyzed as part of Sample Delivery Group (SDG) KOM11 utilizing the following USEPA SW-846 Methods:

- Method 8270 for semi-volatile organic compounds
- Method RSK-175 for dissolved gases (ethane, ethylene and methane)
- Method 6010B for total and dissolved iron and manganese
- Method 325.2 for chloride
- Method 353.2 for nitrogen, nitrate
- Method 375.4 for sulfate
- Method 415.1 for total and dissolved organic carbon
- Method 310.1 for alkalinity and carbon dioxide

Samples were reviewed following procedures outlined in the USEPA National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008) and the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004.

Solutia, Inc. J017210.11 May 18, 2011

Page 2

The above guidelines provided the criteria to review the data. Additional quantitative criteria are given in the analytical methods. Data was qualified based on the data quality review. Qualifiers assigned indicate data that did not meet acceptance criteria and for which corrective actions were not successful or not performed. The various qualifiers are explained in Tables 1 and 2 below:

Table 1 – Laboratory Data Qualifiers

Lab Qualifier	Definition
U	Indicates the analyte was analyzed for but not detected.
F	MS or MSD exceeds the control limits.
Н	Sample was prepped or analyzed beyond the specified holding time.
*	LC or LCS exceeds the control limits.

Table 2 – Geotechnology (MJW Corporation) Data Qualifiers

MJW Corp.	Definition
Qualifier	
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	Indicates the result qualified as estimated.

Based on the criteria outlined, it is recommended that the results reported for these analyses are accepted for their intended use. Acceptable levels of accuracy, precision, and representativeness (based on MS/MSD, LCS, surrogate compounds and field duplicate results) were achieved for this data set, except where noted in this report. In addition, analytical completeness, defined to be the percentage of analytical results which are judged to be valid, including estimated detect/nondetect (J/UJ) values was 94.74%.

The data review included evaluation of the following criteria:

Organics

- Receipt condition and sample holding times
- Laboratory method blanks, and field equipment blank samples
- Surrogate spike recoveries
- Laboratory control sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) sample recoveries and relative percent difference (RPD) values
- Field duplicate results
- Results reported from dilutions
- Internal standard responses
- Mass spectrometer tuning

Solutia, Inc. J017210.11 May 18, 2011

Page 3

- Calibration
- Compound identification
- Other problems/documentation

Inorganics

- Receipt condition and sample holding times
- Laboratory method blank
- LCS recoveries
- MS/MSD sample recoveries and matrix duplicate RPD values
- Field duplicate and laboratory duplicate results
- Results report from dilutions

2.0 RECEIPT CONDITION AND SAMPLE HOLDING TIMES

Sample holding time requirements for the analyses performed are presented in the methods and/or in the data review guidelines. Review of the sample collection, extraction and analysis dates involved comparing the chain-of-custody and the laboratory data summary forms for accuracy, consistency, and holding time compliance.

Since the LCS exceeded control limits for all samples submitted for Method 8270C analysis, the samples were re-extracted and re-analyzed outsize of the holding times. The original data is acceptable for use.

The cooler receipt form indicated that one of the four coolers was received by the laboratory at a temperature outside the temperature requirements – one was reported as "rec'd on ice" at 1.2 degrees Celsius, which is outside the $4^{\circ}C \pm 2^{\circ}C$ criteria. Samples received were in good condition; therefore, no qualification of data was required.

3.0 LABORATORY METHOD AND EQUIPMENT BLANK SAMPLES

Laboratory method blank samples evaluate the existence and magnitude of contamination problems resulting from laboratory activities. All laboratory method blank samples were analyzed at the method prescribed frequencies. No analytes were detected in the method blank; therefore, no qualification of date was required.

Equipment blank samples are used to assess the effectiveness of equipment decontamination procedures. No analytes were detected in the equipment blank sample.

Solutia, Inc. J017210.11 May 18, 2011

Page 4

4.0 SURROGATE SPIKE RECOVERIES

Surrogate compounds are used to evaluate overall laboratory performance for sample preparation efficiency on a per sample basis. All samples analyzed for SVOCs were spiked with surrogate compounds during sample preparation. USEPA National Functional Guidelines for Superfund Organic Methods Data Review state how data is qualified, if surrogate spike recoveries do not meet evaluation criteria. Surrogate recoveries were within evaluation criteria. No qualifications of data were required due to surrogate recoveries.

5.0 LABORATORY CONTROL SAMPLE RECOVERIES

Laboratory control samples (LCS) are analyzed with each analytical batch to assess the accuracy of the analytical process. LCS 680-195497/13A was out of limit for Nitrobenzene. All samples were re-extracted outside of holding times and both sets of results were reported. The re-analysis of LCS 680-195497/13A was acceptable for all analytes; therefore, no qualification of data was required.

6.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES

MS/MSD samples are analyzed to assess the accuracy and precision of the analytical process on an analytical sample in a particular matrix. MS/MSD samples were required to be collected at a frequency of one per 20 investigative samples in accordance with the work plan (one per 20 investigative samples or 5%). Geotechnology submitted one MS/MSD sample set for two investigative samples, meeting the work plan frequency requirement.

No qualifications were made to the data if the MS/MSD percent recoveries were zero due to dilutions or if the Relative Percent Difference (RPD) was the only factor outside of criteria. Also, USEPA National Functional Guidelines for Superfund Organic Methods Data Review (2008) states that organic data does not need qualification based on MS/MSD criteria alone. Therefore, if recoveries were outside evaluation criteria due to matrix interference or abundance of analytes, no qualifiers were assigned unless these analytes had other quality control criteria outside evaluation criteria.

Sample GM-58A-0211 was spiked and analyzed for SVOCs in SDG KOM11. MS/MSD batch 680-195497 had results out of control limits for 1-chloro-3-nitrobenzene, 2-chloronitrobenzene/ 4-chloronitrobenzene, 1,1-biphenyl, nitrobenzene, and 2,4,6-trichlorophenol for Method 8270C. Matrix spike 680-65917-B-1-B MS was out of control limits for iron for Method 6010B and was qualified as estimated "J". Data does not require qualification based on MS/MSD data alone; therefore no qualification of semi-volatile data was performed.

Solutia, Inc. May 18, 2011 Page 5 J017210.11

7.0 FIELD DUPLICATE RESULTS

Field duplicate results are used to evaluate precision of the entire data collection activity, including sampling, analysis and site heterogeneity. When results for both duplicate and sample values are greater than five times the practical quantitation limit (PQL), satisfactory precision is indicated by an RPD less than or equal to 25 percent for aqueous samples. Where one or both of the results of a field duplicate pair are reported at less than five times the PQL, satisfactory precision is indicated if the field duplicate results agree within 2 times the quantitation limit. Field duplicate results that do not meet these criteria may indicate unsatisfactory precision of the results.

One field duplicate sample was collected for the two investigative samples. This satisfies the requirement in the work plan (one per 10 investigative samples or 10 percent). Field duplicate results were within evaluation criteria. No qualifications of data were required.

8.0 INTERNAL STANDARD RESPONSES

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. For the SVOCs, the IS areas must be within -50 to +10% percent of the preceding calibration verification (CV) IS value. Also, the IS retention times must be within 30 seconds of the preceding IS CV retention time.

The internal standards area responses for SVOCs were verified for the data reviews. IS responses met the criteria as described above. No qualifications of data were required.

9.0 RESULTS REPORTED FROM DILUTIONS

Samples were not diluted; therefore, qualifications of data were not required.

10. MASS SPECTROMETER TUNING

Instrument performance was determined to be satisfactory. No qualifications of data were required.

Solutia, Inc. May 18, 2011 Page 6 J017210.11

11.0 CALIBRATION

Percent Relative Standard Deviation (%RSD) is used to indicate the stability of a specific compound response factor over increasing concentration. Percent D (%D) is a measure of the instrument's daily performance. Percent RSD must be <30% and Percent D must be <25%.

No samples were qualified for percent D or percent RSD; therefore no qualifications of data were required.

12.0 COMPOUND IDENTIFICATION

Compound identification was determined to be satisfactory. No qualifications of data were required.

13.0 OTHER PROBLEMS/DOCUMENTATION

Other problems or documentation were no noted. No qualifications of data were required.

APPENDIX D

GROUNDWATER ANALYTICAL RESULTS (WITH DATA REVIEW SHEETS)

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-65900-1 TestAmerica Sample Delivery Group: KOM011

Client Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

For: Solutia Inc. 575 Maryville Centre Dr. Saint Louis, Missouri 63141

Attn: Jerry Rinaldi

Lideja Julieia

Authorized for release by: 03/28/2011 05:48:22 PM

Lidya Gulizia
Project Manager II
lidya.gulizia@testamericainc.com

cc: Duane Kreuger

Results relate only to the items tested and the sample(s) as received by the laboratory. The test results in this report meet all 2003 NELAC requirements for accredited parameters, exceptions are noted in this report. Pursuant to NELAC, this report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 32

AG-4/11/11

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
	5
Definitions	6
Client Sample Results	7
Surrogate Summary	15
QC Sample Results	16
QC Association	25
Chronicle	28
Chain of Custody	30
Sample Receipt Checklist	31
Certification Summary	32

Case Narrative

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Job ID: 680-65900-1

Laboratory: TestAmerica Savannah

Narrative

Job Narrative 680-65900-1 / SDG KOM011

Receipt

All samples were received in good condition within temperature requirements.

GC/MS Semi VOA

Method(s) 8270C: The laboratory control sample (LCS)) for batch 195497 exceeded control limits for multiple analytes that are not reported in the project samples. Per laboratory standard operating procedure (SOP), all samples were re-extracted outside holding times and both sets of results have been reported.

Method(s) 8270C: Internal standard (ISTD) response for the following sample(s) was outside control limits: GM-58A-0211-EB (680-65900-6). The sample(s) was re-analyzed with concurring results. The original set of data has been reported.

Method(s) 8270C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 195497 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8270C: Twice the required about of Internal standard solution (ISTD) was added to the extract for sample GM-58A-0211(680-65900-4). All calculations have been adjusted and data reported.

No other analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Comments

No additional comments.

TestAmerica Savannah

Ale

Sample Summary

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
680-65900-1	GM-31A-0211	Water	02/23/11 13:30	02/24/11 09:23	
680-65900-2	GM-31A-0211-F(0.2)	Water	02/23/11 13:30	02/24/11 09:23	
680-65900-3	GM-31A-0211-AD	Water	02/23/11 13:30	02/24/11 09:23	
680-65900-4	GM-58A-0211	Water	02/23/11 15:05	02/24/11 09:23	
680-65900-5	GM-58A-0211-F(0.2)	Water	02/23/11 15:05	02/24/11 09:23	
680-65900-6	GM-58A-0211-EB	Water	02/23/11 15:05	02/24/11 09:23	

TestAmerica Savannah

Ale-4/11/11

Method Summary

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

5

Method	Method Description	Protocol	Laboratory
8270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
RSK-175	Dissolved Gases (GC)	RSK	TAL SAV
6010B	Metals (ICP)	SW846	TAL SAV
310.1	Alkalinity	MCAWW	TAL SAV
325.2	Chloride	MCAWW	TAL SAV
353.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL SAV
375.4	Sulfate	MCAWW	TAL SAV
415.1	TOC	MCAWW	TAL SAV
115.1	DOC	MCAWW	TAL SAV

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

AG-4/11/11

Qualifier Definition/Glossary

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description				
•	LCS or LCSD exceeds the control limits				
F	MS or MSD exceeds the control limits				

H Sample was prepped or analyzed beyond the specified holding time

U Indicates the analyte was analyzed for but not detected.

GC VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis.

EPA United States Environmental Protection Agency

ND Not Detected above the reporting level.

MDL Method Detection Limit

RL Reporting Limit

RE, RE1 (etc.) Indicates a Re-extraction or Reanalysis of the sample.

%R Percent Recovery

RPD Relative Percent Difference, a measure of the relative difference between two points.

Analytical Data

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Client Sample ID: GM-31A-0211

Date Collected: 02/23/11 13:30 Date Received: 02/24/11 09:23 Lab Sample ID: 680-65900-1

Matrix: Water

Method: 8270C - Semivolatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1'-Biphenyl	9.9	The second control of	9.9		ug/L		02/28/11 14:49	03/03/11 17:34	
2,4-Dichlorophenol	9.9	U	9.9		ug/L		02/28/11 14:49	03/03/11 17:34	
Nitrobenzene	9.9	u •	9.9		ug/L		02/28/11 14:49	03/03/11 17:34	
Pentachlorophenol		U	49		ug/L		02/28/11 14:49	03/03/11 17:34	
2,4,6-Trichlorophenol	19		9,9		ug/L		02/28/11 14:49	03/03/11 17:34	
1-Chloro-3-nitrobenzene	9.9	u	9.9		ug/L		02/28/11 14:49	03/03/11 17:34	
2-Nitrobiphenyl	9.9	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9.9		ug/L		02/28/11 14:49	03/03/11 17:34	
3-Nitrobiphenyl	9.9	U	9.9		ug/L		02/28/11 14:49	03/03/11 17:34	
3,4-Dichloronitrobenzene	9.9		9.9		ug/L		02/28/11 14:49	03/03/11 17:34	
4-Nitrobiphenyl	9.9	110 -31 00	9.9		ug/L		02/28/11 14:49	03/03/11 17:34	
98 - Robert Radio Colorida Colorida (1972) 2014 - 1998 - 1998 - 1994 - 199	20		20						
2-chloronitrobenzene / 4-chloronitrobenzene	20	U	20		ug/L		02/28/11 14:49	03/03/11 17:34	
1-chloro-2,4-dinitrobenzene	9.9	U	9.9		ug/L		02/28/11 14:49	03/03/11 17:34	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	69	VAC	38 - 130				02/28/11 14:49	03/03/11 17:34	
2-Fluorophenol	58		25 _ 130				02/28/11 14:49	03/03/11 17:34	
Nitrobenzene-d5	61		39 - 130				02/28/11 14:49	03/03/11 17:34	
Phenol-d5	57		25 - 130				02/28/11 14:49	03/03/11 17:34	
Terphenyl-d14	52		10 - 143				02/28/11 14:49	03/03/11 17:34	
2,4,6-Tribromophenol	85		31 - 141				02/28/11 14:49	03/03/11 17:34	
Method: 8270C - Semivolatil	e Organic Compou	nds (GC/MS	S) - RE						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1'-Biphenyl	9.7	UH	9.7		ug/L		03/08/11 14:38	03/15/11 12:10	
2,4-Dichlorophenol	9.7	UH	9.7		ug/L		03/08/11 14:38	03/15/11 12:10	
Nitrobenzene	9.7	UН	9.7		ug/L		03/08/11 14:38	03/15/11 12:10	
Pentachlorophenol	49	UH	49		ug/L		03/08/11 14:38	03/15/11 12:10	
2,4,6-Trichlorophenol	13	Н	9.7		ug/L		03/08/11 14:38	03/15/11 12:10	
1-Chloro-3-nitrobenzene	9.7	UH	9.7		ug/L		03/08/11 14:38	03/15/11 12:10	
2-Nitrobiphenyl	9.7	UH	9.7		ug/L		03/08/11 14:38	03/15/11 12:10	
3-Nitrobiphenyl	9.7	UН	9.7		ug/L		03/08/11 14:38	03/15/11 12:10	
3,4-Dichloronitrobenzene	9.7	UH	9.7		ug/L		03/08/11 14:38	03/15/11 12:10	
4-Nitrobiphenyl	9.7	UН	9.7		ug/L		03/08/11 14:38	03/15/11 12:10	
2-chloronitrobenzene /	19	UН	19		ug/L		03/08/11 14:38	03/15/11 12:10	
4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene	9.7	UН	9.7		ug/L		03/08/11 14:38	03/15/11 12:10	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	73		38 - 130				03/08/11 14:38	03/15/11 12:10	- DI 176
2-Fluorophenol	60		25 - 130				03/08/11 14:38	03/15/11 12:10	
Nitrobenzene-d5	64		39 - 130				03/08/11 14:38	03/15/11 12:10	
Phenol-d5	58		25 ₋ 130						
							03/08/11 14:38	03/15/11 12:10	-
Terphenyl-d14	52		10 - 143				03/08/11 14:38	03/15/11 12:10	
2,4,6-Tribromophenol	81		31 - 141				03/08/11 14:38	03/15/11 12:10	
Method: RSK-175 - Dissolve			6.5						
	D 11	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte								X	
Analyte Ethane	1.1	U	1.1		ug/L			03/02/11 17:34	
Analyte		U	1.1		ug/L ug/L			X	

TestAmerica Savannah

AQ 4/11/11

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Client Sample ID: GM-31A-0211

Date Collected: 02/23/11 13:30 Date Received: 02/24/11 09:23 Lab Sample ID: 680-65900-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	6.9	" 3 "	0.050		mg/L		03/02/11 12:50	03/07/11 19:37	1
Manganese	0.91		0.010		mg/L		03/02/11 12:50	03/07/11 19:37	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29		1.0		mg/L			02/28/11 17:18	1
Nitrate as N	0.050	U	0.050		mg/L			02/24/11 16:49	1
Sulfate	93		25		mg/L			03/08/11 12:54	5
Total Organic Carbon	3.7		1.0		mg/L			03/03/11 16:40	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	360		5,0		mg/L		2000	02/27/11 12:59	1
Carbon Dioxide, Free	21		5.0		mg/L			02/27/11 12:59	1

TestAmerica Savannah

AG-4/11/11

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Client Sample ID: GM-31A-0211-F(0.2)

Date Collected: 02/23/11 13:30 Date Received: 02/24/11 09:23

Dissolved Organic Carbon

Lab Sample ID: 680-65900-2

03/04/11 03:53

Matrix: Water

Method: 6010B - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.050	U "5"	0.050		mg/L		03/02/11 12:50	03/07/11 19:41	1
Manganese, Dissolved	0.79		0.010		mg/L		03/02/11 12:50	03/07/11 19:41	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1.0

mg/L

4.0

TestAmerica Savannah

Ala 4/11/11

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Client Sample ID: GM-31A-0211-AD

Date Collected: 02/23/11 13:30 Date Received: 02/24/11 09:23 Lab Sample ID: 680-65900-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1'-Biphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:02	
2,4-Dichlorophenol	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:02	
Nitrobenzene	10	U *	10		ug/L		02/28/11 14:49	03/03/11 18:02	
Pentachlorophenol	52	U	52		ug/L		02/28/11 14:49	03/03/11 18:02	
2,4,6-Trichlorophenol	11		10		ug/L		02/28/11 14:49	03/03/11 18:02	
1-Chloro-3-nitrobenzene	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:02	
2-Nitrobiphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:02	
3-Nitrobiphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:02	
3,4-Dichloronitrobenzene	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:02	
4-Nitrobiphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:02	
2-chloronitrobenzene /	21	U	21		ug/L		02/28/11 14:49	03/03/11 18:02	
4-chloronitrobenzene									
1-chloro-2,4-dinitrobenzene	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:02	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	67		38 - 130				02/28/11 14:49	03/03/11 18:02	-
2-Fluorophenol	55		25 _ 130				02/28/11 14:49	03/03/11 18:02	
Nitrobenzene-d5	59		39 - 130				02/28/11 14:49	03/03/11 18:02	
Phenol-d5	53		25 - 130				02/28/11 14:49	03/03/11 18:02	
	40		12 112					00/00/44 40 00	
i erphenyi-d14	42		10 - 143				02/28/11 14:49	03/03/11 18:02	
2,4,6-Tribromophenol	85	nds (GC/MS	31 - 141				02/28/11 14:49 02/28/11 14:49	03/03/11 18:02	
2,4,6-Tribromophenol Method: 8270C - Semivolatilo Analyte	<i>85</i> e Organic Compou Result	Qualifier	31 ₋ 141 6) - RE RL	MDL	Unit	D	02/28/11 14:49 Prepared	03/03/11 18:02 Analyzed	Dil Fa
Terphenyl-d14 2,4,6-Tribromophenol Method: 8270C - Semivolatilo Analyte 1,1'-Biphenyl	e Organic Compou Result	Qualifier U H	31 - 141 6) - RE RL 10	MDL	ug/L	<u>D</u>	02/28/11 14:49 Prepared 03/08/11 14:38	03/03/11 18:02 Analyzed 03/15/11 12:38	Dil Fa
2,4,6-Tribromophenol Method: 8270C - Semivolatilo Analyte 1,1'-Biphenyl 2,4-Dichlorophenol	e Organic Compou Result 10	Qualifier U H U H	31 - 141 6) - RE RL 10	MDL	ug/L ug/L	<u> </u>	02/28/11 14:49 Prepared 03/08/11 14:38 03/08/11 14:38	03/03/11 18:02 Analyzed 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte I,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene	e Organic Compou Result 10 10	Qualifier U H U H U H	31 - 141 6) - RE RL 10 10	MDL	ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte I,1'-Biphenyl 2,4-Dichlorophenol Vitrobenzene Pentachlorophenol	e Organic Compou Result 10 10 10	Qualifier U H U H U H U H	31 - 141 6) - RE RL 10 10 10 51	MDL	ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol	e Organic Compou Result 10 10 10 51	Qualifier U H U H U H U H U H U H	31 - 141 3) - RE RL 10 10 10 51	MDL	ug/L ug/L ug/L	<u> </u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte I,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol I-Chloro-3-nitrobenzene	e Organic Compou Result 10 10 10 51 10	Qualifier UH UH UH UH UH UH	31 - 141 6) - RE RL 10 10 10 51 10 10	MDL	ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl	e Organic Compou Result 10 10 10 51 10 10	Qualifier UH UH UH UH UH UH UH	31 - 141 6) - RE RL 10 10 10 51 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl	e Organic Compou Result 10 10 10 51 10 10 10	Qualifier UH UH UH UH UH UH UH UH	31 - 141 6) - RE RL 10 10 10 51 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene	e Organic Compou Result 10 10 10 51 10 10 10	Qualifier UH	31 - 141 6) - RE RL 10 10 10 51 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl	e Organic Compou Result 10 10 10 51 10 10 10	Qualifier UH UH UH UH UH UH UH UH	31 - 141 6) - RE RL 10 10 10 51 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol -Chloro-3-nitrobenzene 2-Nitrobiphenyl 1,4-Dichloronitrobenzene -Nitrobiphenyl -Nitrobiphenyl -Nitrobiphenyl -Nitrobiphenyl -Nitrobiphenyl	e Organic Compou Result 10 10 10 51 10 10 10 10	Qualifier UH	31 - 141 6) - RE RL 10 10 10 51 10 10 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 4-Chloro-3-nitrobenzene 2-Nitrobiphenyl 4-Dichloronitrobenzene 1-Nitrobiphenyl 1-Nitrobiphenyl 1-chloronitrobenzene	e Organic Compou Result 10 10 10 51 10 10 10 10 10	Qualifier UH	31 - 141 6) - RE RL 10 10 10 51 10 10 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u> </u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene	e Organic Compou Result 10 10 10 51 10 10 10 10 10	Qualifier UH	31 - 141 6) - RE RL 10 10 10 10 10 10 10 10 21	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 3-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3,4-Dichloronitrobenzene 3-Nitrobiphenyl 4-Chloronitrobenzene 4-Nitrobiphenyl 4-Chloronitrobenzene 4-Chloronitrobenzene 4-Chloronitrobenzene 4-Chloronitrobenzene 4-Chloronitrobenzene	85 e Organic Compou Result 10 10 10 51 10 10 10 10 21	Qualifier UH	31 - 141 S) - RE RL 10 10 10 10 10 10 10 10 10 1	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte J.1-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 3,4,6-Trichlorophenol 4-Nitrobiphenyl 5-Nitrobiphenyl 5-Nitrobiphenyl 6-Chloronitrobenzene 6-Nitrobiphenyl 6-chloronitrobenzene 7-chloronitrobenzene 8-chloropagagagagagagagagagagagagagagagagagagag	e Organic Compou Result 10 10 10 51 10 10 10 10 21 10	Qualifier UH	31 - 141 S) - RE RL 10 10 10 10 10 10 10 10 10 1	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/03/11 18:02 Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte A	e Organic Compou Result 10 10 10 51 10 10 10 21 10 21 10	Qualifier UH	31 - 141 S) - RE RL 10 10 10 10 10 10 10 10 10 1	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:49 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/03/11 18:02 Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol -Chloro-3-nitrobenzene 2-Nitrobiphenyl Nitrobiphenyl 3,4-Dichloronitrobenzene -Nitrobiphenyl 2-chloronitrobenzene /-Chloro-3-nitrobenzeneNitrobiphenylChloronitrobenzene	85 e Organic Compou Result 10 10 10 10 10 10 10 10 10 10 10 10 10	Qualifier UH	31 - 141 S) - RE RL 10 10 10 10 10 10 10 10 10 1	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/03/11 18:02 Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 3-Nitrobiphenyl 3-Nitrobiphenyl 4-Dichloronitrobenzene 1-Nitrobiphenyl 2-chloronitrobenzene 4-chloronitrobenzene 4-chloronitrobenzene 5-Eluorophenol 8-Fluorophenol 1-Fluorophenol 1-Fluorophenol 1-Fluorophenol 1-Fluorophenol 1-Introbenzene-d5	85 e Organic Compou Result 10 10 10 10 10 10 10 10 10 10 10 69 54 62	Qualifier UH	31 - 141 S) - RE RL 10 10 10 10 10 10 10 10 10 21 10 Limits 38 - 130 25 - 130 39 - 130	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/03/11 18:02 Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38 Analyzed 03/15/11 12:38 03/15/11 12:38 03/15/11 12:38	Dil Fa

TestAmerica Savannah

Ala 4/11/11

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Client Sample ID: GM-58A-0211

Date Collected: 02/23/11 15:05 Date Received: 02/24/11 09:23 Lab Sample ID: 680-65900-4

Matrix: Water

1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene 4-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5		U U U U U U U	10 10 10 50 10 10 10 10 10 20		Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	Prepared 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49	Analyzed 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30	Dil Fa
Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene 4-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorophenol	10 50 63 10 10 10 10 220 10	U U U U U U	10 50 10 10 10 10 10 10		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49	03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30	
Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene 4-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorophenol	50 63 10 10 10 10 220 10	U U U U U	50 10 10 10 10 10 10 20		ug/L ug/L ug/L ug/L ug/L ug/L ug/L		02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49	03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30	
2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene 4-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	63 10 10 10 10 220 10	υ υ υ υ	10 10 10 10 10 10 20		ug/L ug/L ug/L ug/L ug/L ug/L		02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49	03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30	
1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene 4-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	10 10 10 10 10 220 10 % Recovery	U U U U	10 10 10 10 10 20		ug/L ug/L ug/L ug/L ug/L ug/L		02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49	03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30	
1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene 4-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	10 10 10 10 10 220 10 % Recovery	U U U U	10 10 10 10 10 20		ug/L ug/L ug/L ug/L ug/L ug/L		02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49	03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30	
3-Nitrobiphenyl 3,4-Dichloronitrobenzene 4-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	10 10 10 220 10 % Recovery	υ υ υ	10 10 10 10 20		ug/L ug/L ug/L ug/L ug/L		02/28/11 14:49 02/28/11 14:49 02/28/11 14:49 02/28/11 14:49	03/03/11 18:30 03/03/11 18:30 03/03/11 18:30 03/03/11 18:30	
3-Nitrobiphenyl 3,4-Dichloronitrobenzene 4-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	10 10 10 220 10 % Recovery	υ υ υ	10 10 10 20		ug/L ug/L ug/L ug/L		02/28/11 14:49 02/28/11 14:49 02/28/11 14:49	03/03/11 18:30 03/03/11 18:30 03/03/11 18:30	
3,4-Dichloronitrobenzene 4-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	10 10 220 10 % Recovery	U U	10 10 20		ug/L ug/L ug/L		02/28/11 14:49 02/28/11 14:49	03/03/11 18:30 03/03/11 18:30	
4-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	10 220 10 % Recovery	U	10 20		ug/L ug/L		02/28/11 14:49	03/03/11 18:30	
2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	220 10 % Recovery	U	20		ug/L				
4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	10 % Recovery				50 P (50 fee)		02/20/11 14.45	03/03/11 10.50	
1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	% Recovery		10		um/l				
2-Fluorobiphenyl 2-Fluorophenol	•				ug/L		02/28/11 14:49	03/03/11 18:30	
2-Fluorophenol	51	Qualifier	Limits				Prepared	Analyzed	Dil Fa
and the second s		···	38 - 130				02/28/11 14:49	03/03/11 18:30	
Nitmhenzena d5	40		25 - 130				02/28/11 14:49	03/03/11 18:30	
Will Ober Zelle-UJ	42		39 - 130				02/28/11 14:49	03/03/11 18:30	
Phenol-d5	38		25 - 130				02/28/11 14:49	03/03/11 18:30	
Terphenyl-d14	49		10 - 143				02/28/11 14:49	03/03/11 18:30	
2,4,6-Tribromophenol	67		31 - 141				02/28/11 14:49	03/03/11 18:30	
Method: 8270C - Semivolatile Org Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1'-Biphenyl	9.5	UН	9.5		ug/L		03/08/11 14:38	03/15/11 13:06	
2,4-Dichlorophenol	9.5	UH	9.5		ug/L		03/08/11 14:38	03/15/11 13:06	
Nitrobenzene	9.5	UH	9,5		ug/L		03/08/11 14:38	03/15/11 13:06	
Pentachlorophenol	48	UH	48		ug/L		03/08/11 14:38	03/15/11 13:06	
2,4,6-Trichlorophenol	91	Н	9.5		ug/L		03/08/11 14:38	03/15/11 13:06	
1-Chloro-3-nitrobenzene	9.5	UH	9.5		ug/L		03/08/11 14:38	03/15/11 13:06	
2-Nitrobiphenyl	9.5	UH	9,5		ug/L		03/08/11 14:38	03/15/11 13:06	
3-Nitrobiphenyl	9.5	UH	9.5		ug/L		03/08/11 14:38	03/15/11 13:06	
3,4-Dichloronitrobenzene	9.5	UH	9.5		ug/L		03/08/11 14:38	03/15/11 13:06	
4-Nitrobiphenyl	9.5	UН	9.5		ug/L		03/08/11 14:38	03/15/11 13:06	
2-chloronitrobenzene /	290	Н	19		ug/L		03/08/11 14:38	03/15/11 13:06	
4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene	9.5	UН	9.5		ug/L		03/08/11 14:38	03/15/11 13:06	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	82		38 - 130				03/08/11 14:38	03/15/11 13:06	
2-Fluorophenol	63		25 - 130				03/08/11 14:38	03/15/11 13:06	
Nitrobenzene-d5	72		39 - 130				03/08/11 14:38	03/15/11 13:06	
Phenol-d5	61		25 - 130				03/08/11 14:38	03/15/11 13:06	
Terphenyl-d14	37		10 - 143				03/08/11 14:38	03/15/11 13:06	-
2,4,6-Tribromophenol	86		31 ₋ 141						
e, a, o-r natumopnenor	86		31 - 141				03/08/11 14:38	03/15/11 13:06	
Method: RSK-175 - Dissolved Gas			51	pars. 1		_	(4.5.4.4.000mea.vv. =	s and designing derivations as	-
Analyte		Qualifier	RL -	MDL		D	Prepared	Analyzed	Dil F
Ethane	1.1		1.1		ug/L			03/02/11 17:47	
Ethylene	1.0	U	1.0 0.58		ug/L			03/02/11 17:47	

TestAmerica Savannah

Al-4/11/11

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Client Sample ID: GM-58A-0211

Date Collected: 02/23/11 15:05 Date Received: 02/24/11 09:23 Lab Sample ID: 680-65900-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	10	112 11 -	0.050		mg/L		03/02/11 12:50	03/07/11 19:53	
Manganese	1.4		0.010		mg/L		03/02/11 12:50	03/07/11 19:53	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	60	(A	1.0		mg/L			02/28/11 17:18	1
Nitrate as N	1.3		0.050		mg/L			02/24/11 16:50	1
Sulfate	110		25		mg/L			03/08/11 12:54	5
Total Organic Carbon	4.9		1.0		mg/L			03/03/11 16:54	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	510		5.0		mg/L			02/26/11 18:56	1
Carbon Dioxide, Free	39		5.0		mg/L			02/26/11 18:56	1

TestAmerica Savannah

Al-

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Client Sample ID: GM-58A-0211-F(0.2)

Date Collected: 02/23/11 15:05 Date Received: 02/24/11 09:23 Lab Sample ID: 680-65900-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron, Dissolved	0.091	11.2.11	0.050		mg/L		03/02/11 12:50	03/07/11 20:05	
Manganese, Dissolved	1.4		0.010		mg/L		03/02/11 12:50	03/07/11 20:05	•
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.3		1.0		mg/L			03/04/11 03:53	

TestAmerica Savannah

Ale 4/11/11

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Client Sample ID: GM-58A-0211-EB

Date Collected: 02/23/11 15:05 Date Received: 02/24/11 09:23 Lab Sample ID: 680-65900-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1'-Biphenyl	10	Ū	10		ug/L		02/28/11 14:49	03/03/11 18:58	
2,4-Dichlorophenol	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:58	
Nitrobenzene	10	U *	10		ug/L		02/28/11 14:49	03/03/11 18:58	
Pentachlorophenol	52	U	52		ug/L		02/28/11 14:49	03/03/11 18:58	
2,4,6-Trichlorophenol	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:58	
1-Chloro-3-nitrobenzene	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:58	
2-Nitrobiphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:58	
3-Nitrobiphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:58	
3,4-Dichloronitrobenzene	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:58	
4-Nitrobiphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:58	
2-chloronitrobenzene /	21	U	21		ug/L		02/28/11 14:49	03/03/11 18:58	
4-chloronitrobenzene									
1-chloro-2,4-dinitrobenzene	10	U	10		ug/L		02/28/11 14:49	03/03/11 18:58	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2-Fluorobiphenyl	71		38 - 130				02/28/11 14:49	03/03/11 18:58	-
2-Fluorophenol	46		25 - 130				02/28/11 14:49	03/03/11 18:58	
Nitrobenzene-d5	54		39 - 130				02/28/11 14:49	03/03/11 18:58	
Phenol-d5	46		25 - 130				02/28/11 14:49	03/03/11 18:58	
Terphenyl-d14	86		10 - 143				02/28/11 14:49	03/03/11 18:58	
	89		31 - 141				02/28/11 14:49	03/03/11 18:58	
Method: 8270C - Semivolatile	e Organic Compou Result	Qualifier	6) - RE RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dill
Method: 8270C - Semivolatile Analyte	e Organic Compou	Qualifier	6) - RE	MDL	Unit ug/L	<u>D</u>			Dill
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl	e Organic Compou Result	Qualifier	6) - RE RL	MDL		<u>D</u>	Prepared	Analyzed	Dil I
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol	e Organic Compou Result 10	Qualifier U H	S) - RE RL 10	MDL	ug/L	<u>D</u>	Prepared 03/08/11 14:38	Analyzed 03/15/11 13:34	Dilf
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Vitrobenzene	e Organic Compou Result 10	Qualifier U H U H	S) - RE RL 10	MDL	ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34	Dil F
Method: 8270C - Semivolatile Analyte I,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol	e Organic Compou Result 10 10 10 51	Qualifier U H U H U H	S) - RE RL 10 10	MDL	ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	Dil I
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol	e Organic Compou Result 10 10 10 51	Qualifier U H U H U H U H	8) - RE RL 10 10 10	MDL	ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	Dil I
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene	e Organic Compou Result 10 10 10 51 10	Qualifier U H U H U H U H U H	S) - RE RL 10 10 10 51	MDL	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	Dil I
Method: 8270C - Sernivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl	Per Organic Compou Result 10 10 10 51 10 10	Qualifier U H U H U H U H U H U H	S) - RE RL 10 10 10 51 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	Dil I
Method: 8270C - Semivolatile Analyte I,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol I-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl	Pe Organic Compou Result 10 10 10 51 10 10	Qualifier U H U H U H U H U H U H U H U H U H U H	8) - RE RL 10 10 10 10 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	Dil I
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene	e Organic Compou Result 10 10 10 51 10 10 10	Qualifier U H U H U H U H U H U H U H U H U H U H	8) - RE RL 10 10 10 51 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	Dil F
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene 1-Nitrobiphenyl	Pe Organic Compou Result 10 10 10 51 10 10 10 10	Qualifier UH UH UH UH UH UH UH UH UH	8) - RE RL 10 10 10 51 10 10 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	Dil I
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3-A-Dichloronitrobenzene 1-Nitrobiphenyl 2-chloronitrobenzene	Pe Organic Compou Result 10 10 10 51 10 10 10 10 10	Qualifier UH	8) - RE RL 10 10 10 51 10 10 10 10 10 10 20	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	Dil I
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol -Chloro-3-nitrobenzene 2-Nitrobiphenyl 1,4-Dichloronitrobenzene 1-Nitrobiphenyl 2-chloronitrobenzene / 1-chloronitrobenzene / 1-chloronitrobenzene	Pe Organic Compou Result 10 10 10 51 10 10 10 10 10	Qualifier UH	8) - RE RL 10 10 10 51 10 10 10 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	Dil I
Method: 8270C - Sernivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3,4-Dichloronitrobenzene 1-Nitrobiphenyl 2-chloronitrobenzene 1-chloronitrobenzene 1-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate	Pe Organic Compou Result 10 10 10 51 10 10 10 10 20 10	Qualifier UH	8) - RE RL 10 10 10 51 10 10 10 10 10 10 10 10 10 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3-A-Dichloronitrobenzene 1-Nitrobiphenyl 2-chloronitrobenzene 1-chloronitrobenzene 1-chloronitrobenzene 1-chloronitrobenzene 1-chloro-2,4-dinitrobenzene 3-Triuorobiphenyl	Pe Organic Compour Result 10 10 10 10 10 10 10 10 10 10 10 10 10	Qualifier UH	8) - RE RL 10 10 10 10 10 10 10 10 10 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3-A-Dichloronitrobenzene 1-Nitrobiphenyl 2-chloronitrobenzene 1-chloronitrobenzene 1-chloronitrobenzene 1-chloro-2,4-dinitrobenzene 8-Intropate 2-Fluorobiphenyl	Pe Organic Compour Result 10 10 10 10 10 10 10 10 10 10 10 10 10	Qualifier UH	8) - RE RL 10 10 10 10 10 10 10 10 10 10 10 10 20 10 Limits 38 - 130 25 - 130	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3-Nitrobiphenyl 2-chloronitrobenzene 1-Nitrobiphenyl 2-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorophenol	Pe Organic Compour Result 10 10 10 10 10 10 10 10 10 10 10 10 10	Qualifier UH	8) - RE RL 10 10 10 10 10 10 10 10 10 10 10 10 10	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	
Method: 8270C - Semivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 1-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3-Nitrobiphenyl 3-Nitrobiphenyl 2-chloronitrobenzene / 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorophenol Nitrobenzeneol	Pe Organic Compour Result 10 10 10 10 10 10 10 10 10 10 10 10 10	Qualifier UH	8) - RE RL 10 10 10 10 10 10 10 10 10 10 10 10 20 10 Limits 38 - 130 25 - 130	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	
Method: 8270C - Sernivolatile Analyte 1,1'-Biphenyl 2,4-Dichlorophenol Nitrobenzene Pentachlorophenol 1,-Chloro-3-nitrobenzene 2-Nitrobiphenyl 3,4-Dichloronitrobenzene 4-Nitrobiphenyl 2-chloronitrobenzene 1-chloro-2,4-dinitrobenzene Surrogate 2-Fluorophenol Nitrobenzene 5-Fluorophenol Nitrobenzene	Per Organic Compouration Result 10 10 10 10 10 10 10 10 10 10 10 20 10 % Recovery 78 62 65	Qualifier UH	8) - RE RL 10 10 10 51 10 10 10 10 10 10 10 20 10 Limits 38 - 130 25 - 130 39 - 130	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38 03/08/11 14:38	Analyzed 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34 03/15/11 13:34	Dil F

TestAmerica Savannah

AC 4/11/11

Surrogate Summary

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Prep Type: Total/NA

				Percent Su	rrogate Reco	very (Accept	ance Limits)
		FBP	2FP	NBZ	PHL	TPH	TBP
Lab Sample ID	Client Sample ID	(38-130)	(25-130)	(39-130)	(25-130)	(10-143)	(31-141)
680-65900-1	GM-31A-0211	69	58	61	57	52	85
680-65900-1 - RE	GM-31A-0211	73	60	64	58	52	81
680-65900-3	GM-31A-0211-AD	67	55	59	53	42	85
680-65900-3 - RE	GM-31A-0211-AD	69	54	62	56	56	79
680-65900-4	GM-58A-0211	51	40	42	38	49	67
680-65900-4 - RE	GM-58A-0211	82	63	72	61	37	86
680-65900-4 MS	GM-58A-0211	45	41	46	41	64	63
680-65900-4 MS - RE	GM-58A-0211	83	67	71	67	66	91
680-65900-4 MS	GM-58A-0211	70	55	64	57	55	77
680-65900-4 MSD	GM-58A-0211	47	38	43	36	80	71
680-65900-4 MSD - RE	GM-58A-0211	79	66	70	65	56	89
680-65900-4 MSD	GM-58A-0211	52	48	52	48	63	64
680-65900-6	GM-58A-0211-EB	71	46	54	46	86	89
680-65900-6 - RE	GM-58A-0211-EB	78	62	65	60	97	88
LCS 680-195497/13-A	LCS 680-195497/13-A	57	40	47	41	84	84
LCS 680-195497/19-A	LCS 680-195497/19-A	53	53	55	48	86	67
LCS 680-196317/13-A	LCS 680-196317/13-A	85	73	71	71	97	89
LCSD 680-196317/14-A	LCSD 680-196317/14-A	82	69	74	67	95	89
MB 680-195497/12-A	MB 680-195497/12-A	68	56	57	51	95	87
MB 680-196317/12-A	MB 680-196317/12-A	84	70	74	69	98	88

Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = Terphenyl-d14

TBP = 2,4,6-Tribromophenol

TestAmerica Savannah

Ab-4/11/11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-195497/12-A

Matrix: Water

Analysis Batch: 196003

MB MB

Client Sample ID: MB 680-195497/12-A

Prep Type: Total/NA

Prep Batch: 195497

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 15:42	1
2,4-Dichlorophenol	10	U	10		ug/L		02/28/11 14:49	03/03/11 15:42	1
Nitrobenzene	10	U	10		ug/L		02/28/11 14:49	03/03/11 15:42	1
Pentachlorophenol	50	U	50		ug/L		02/28/11 14:49	03/03/11 15:42	
2,4,6-Trichlorophenol	10	U	10		ug/L		02/28/11 14:49	03/03/11 15:42	1
1-Chloro-3-nitrobenzene	10	U	10		ug/L		02/28/11 14:49	03/03/11 15:42	1
2-Nitrobiphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 15:42	1
3-Nitrobiphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 15:42	1
3,4-Dichloronitrobenzene	10	U	10		ug/L		02/28/11 14:49	03/03/11 15:42	1
4-Nitrobiphenyl	10	U	10		ug/L		02/28/11 14:49	03/03/11 15:42	1
2-chloronitrobenzene / 4-chloronitrobenzene	20	U	20		ug/L		02/28/11 14:49	03/03/11 15:42	1
1-chloro-2,4-dinitrobenzene	10	U	10		ug/L		02/28/11 14:49	03/03/11 15:42	1

-	MB I	MB			
Surrogate	% Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	68	38 - 130	02/28/11 14:49	03/03/11 15:42	1
2-Fluorophenol	56	25 - 130	02/28/11 14:49	03/03/11 15:42	1
Nitrobenzene-d5	57	39 - 130	02/28/11 14:49	03/03/11 15:42	1
Phenol-d5	51	25 - 130	02/28/11 14:49	03/03/11 15:42	1
Terphenyl-d14	95	10 - 143	02/28/11 14:49	03/03/11 15:42	1
2,4,6-Tribromophenol	87	31 - 141	02/28/11 14:49	03/03/11 15:42	1

Lab Sample ID: LCS 680-195497/13-A

Matrix: Water

Analysis Batch: 196003

Client Sample ID: LCS 680-195497/13-A Prep Type: Total/NA

Prep Batch: 195497

	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
1,1'-Biphenyl	100	56.8		ug/L		57	54 - 130
2,4-Dichlorophenol	100	57.1		ug/L		57	54 - 130
Nitrobenzene	100	44.5	•	ug/L		44	56 - 130
Pentachlorophenol	100	83.2		ug/L		83	42 - 138
2,4,6-Trichlorophenol	100	61.0		ug/L		61	57 - 130

Surrogate	LCS % Recovery	LCS Qualifier	Limits
2-Fluorobiphenyl			38 - 130
2-Fluorophenol	40		25 - 130
Nitrobenzene-d5	47		39 - 130
Phenol-d5	41		25 - 130
Terphenyl-d14	84		10 - 143
2,4,6-Tribromophenol	84		31 - 141

Lab Sample ID: LCS 680-195497/19-A Matrix: Water

Analysis Batch: 196003

Client Sample ID: LCS 680-195497/19-A

Prep Type: Total/NA

Prep Batch: 195497

Pilary Sid Dateri. 100000	Prep Datch: 195497
Spike LCS LCS	% Rec.
Analyte Added Result Qualifier Unit D % Rec	Limits
1-Chloro-3-nitrobenzene 100 70.2 ug/L 70	10 - 130
2-Nitrobiphenyl 100 69.2 ug/L 69	10 - 130
3-Nitrobiphenyl 100 72.8 ug/L 73	10 - 130

TestAmerica Savannah

A6 4/11/11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

 Lab Sample ID: LCS 680-195497/19-A
 Client Sample ID: LCS 680-195497/19-A

 Matrix: Water
 Prep Type: Total/NA

 Analysis Batch: 196003
 Spike
 LCS LCS
 "Rec.

 Analyte
 Added
 Result Qualifier
 Unit
 D % Rec
 Limits

	Shive	LUS	LUG				/o Rec.	
Analyte	Added	Result (Qualifier	Unit	D	% Rec	Limits	
3,4-Dichloronitrobenzene	100	69.9		ug/L		70	10 - 130	_
4-Nitrobiphenyl	100	72.1		ug/L		72	10 - 130	
2-chloronitrobenzene / 4-chloronitrobenzene	200	143		ug/L		71	10 - 130	
1-chloro-2,4-dinitrobenzene	100	70.2		ug/L		70	10 - 130	

	LCS	LCS	
Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl	53		38 - 130
2-Fluorophenol	53		25 - 130
Nitrobenzene-d5	55		39 - 130
Phenol-d5	48		25 - 130
Terphenyl-d14	86		10 - 143
2,4,6-Tribromophenol	67		31 - 141

Lab Sample ID: 680-65900-4 MS

Matrix: Water

Analysis Batch: 196003

Client Sample ID: GM-58A-0211

Prep Type: Total/NA Prep Batch: 195497

	Sample	Sample	Spike	MS	MS				% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
1-Chloro-3-nitrobenzene	10	U	100	64.9	37 -104 70-1-10-1	ug/L		65	10 - 130	
2-Nitrobiphenyl	10	U	100	72.4		ug/L		72	10 - 130	
3-Nitrobiphenyl	10	U	100	66.7		ug/L		67	10 - 130	
3,4-Dichloronitrobenzene	10	U	100	62.7		ug/L		63	10 - 130	
4-Nitrobiphenyl	10	U	100	63.1		ug/L		63	10 - 130	
2-chloronitrobenzene / 4-chloronitrobenzene	220		200	332		ug/L		110	10 - 130	
1-chloro-2,4-dinitrobenzene	10	Ú	100	67.6		ug/L		68	10 - 130	

	MS	MS	
Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl	45		38 - 130
2-Fluorophenol	41		25 - 130
Nitrobenzene-d5	46		39 - 130
Phenol-d5	41		25 - 130
Terphenyl-d14	64		10 - 143
2,4,6-Tribromophenol	63		31 - 141

Lab Sample ID: 680-65900-4 MS

Matrix: Water

Analysis Batch: 197304

Client Sample ID: GM-58A-0211

Prep Type: Total/NA

Prep Batch: 195497

	Sample	Sample	Spike	MS	MS				% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
1,1'-Biphenyl	10	Ū	100	71.5		ug/L		71	54 - 130	-:
2,4-Dichlorophenol	10	U	100	75.7		ug/L		76	54 - 130	
Nitrobenzene	10	U	100	74.0		ug/L		73	56 - 130	
Pentachlorophenol	50	U	100	90.8		ug/L		91	42 - 138	
2,4,6-Trichlorophenol	63		100	161	F	ug/L		146	57 - 130	

	MS	MS	
Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl	70		38 - 130
2-Fluorophenol	55		25 - 130

TestAmerica Savannah

A6-4/11/11

Quality Control Data

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-65900-4 MS

Matrix: Water

Analysis Batch: 197304

Client Sample ID: GM-58A-0211

Prep Type: Total/NA

Prep Batch: 195497

	MS	MS	
Surrogate	% Recovery	Qualifier	Limits
Nitrobenzene-d5	64		39 - 130
Phenol-d5	57		25 - 130
Terphenyl-d14	55		10 - 143
2,4,6-Tribromophenol	77		31 - 141

Lab Sample ID: 680-65900-4 MSD

Matrix: Water

Analysis Batch: 196003

Client Sample ID: GM-58A-0211

Prep Type: Total/NA

9

Prep Batch: 195497

Spike MSD MSD Sample Sample % Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit % Rec Limits RPD Limit 1-Chloro-3-nitrobenzene 10 U 100 63.7 F ug/L 10 - 130 2 50 2-Nitrobiphenyl 10 U ug/L 100 80.1 10 - 130 80 10 50 3-Nitrobiphenyl 10 U 100 75.0 ug/L 75 10 - 13012 50 3,4-Dichloronitrobenzene 10 U 100 64.1 ug/L 64 10 - 130 2 50 4-Nitrobiphenyl 10 100 71.1 ug/L 71 10 - 130 12 50 2-chloronitrobenzene / 220 200 348 F ug/L 159 10 - 130 5 50 4-chloronitrobenzene 1-chloro-2,4-dinitrobenzene 10 U 100 70.9 ug/L 10 - 130

Spike

Added

100

100

100

100

100

MSD MSD

49.8 F

55.3

78.6

114

56.3 F

Result Qualifier

Unit

ug/L

ug/L

ug/L

ug/L

ug/L

D

79

99

	MSD	MSD	
Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl	47		38 - 130
2-Fluorophenol	38		25 - 130
Nitrobenzene-d5	43		39 - 130
Phenol-d5	36		25 - 130
Terphenyl-d14	80		10 - 143
2.4.6-Tribromophenol	71		31 - 141

Sample Sample

10 U

10 U

10 U

50 U

63

Result Qualifier

Lab Sample ID: 680-65900-4 MSD

Matrix: Water

Analyte

1,1'-Biphenyl

Nitrobenzene

2,4-Dichlorophenol

Pentachlorophenol

2,4,6-Trichlorophenol

Analysis Batch: 197304

Client Sample ID: GM-58A-0211

42 - 138

57 - 130

Prep Type: Total/NA

Prep Batch: 195497

14

34

50

50

Limits % Rec RPD Limit 54 - 130 50 36 50 55 54 - 130 31 50 56 - 130 27 50

7		
te	% Recovery	Qualifier
	MSD	MSD

Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl	52		38 - 130
2-Fluorophenol	48		25 - 130
Nitrobenzene-d5	52		39 - 130
Phenol-d5	48		25 - 130
Terphenyl-d14	63		10 - 143
2,4,6-Tribromophenol	64		31 - 141

TestAmerica Savannah

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-196317/12-A Client Sample ID: MB 680-196317/12-A Matrix: Water Prep Type: Total/NA Prep Batch: 196317 Analysis Batch: 197226

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	10	U	10		ug/L		03/08/11 14:38	03/15/11 10:45	1
2,4-Dichlorophenol	10	U	10		ug/L		03/08/11 14:38	03/15/11 10:45	1
Nitrobenzene	10	U	10		ug/L		03/08/11 14:38	03/15/11 10:45	1
Pentachlorophenol	50	U	50		ug/L		03/08/11 14:38	03/15/11 10:45	1
2,4,6-Trichlorophenol	10	U	10		ug/L		03/08/11 14:38	03/15/11 10:45	1
1-Chloro-3-nitrobenzene	10	U	10		ug/L		03/08/11 14:38	03/15/11 10:45	1
2-Nitrobiphenyl	10	U	10		ug/L		03/08/11 14:38	03/15/11 10:45	1
3-Nitrobiphenyl	10	U	10		ug/L		03/08/11 14:38	03/15/11 10:45	1
3,4-Dichloronitrobenzene	10	U	10		ug/L		03/08/11 14:38	03/15/11 10:45	1
4-Nitrobiphenyl	10	U	10		ug/L		03/08/11 14:38	03/15/11 10:45	1
2-chloronitrobenzene / 4-chloronitrobenzene	20	U	20		ug/L		03/08/11 14:38	03/15/11 10:45	1
1-chloro-2,4-dinitrobenzene	10	U	10		ug/L		03/08/11 14:38	03/15/11 10:45	1

	MB	MB				
Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		38 - 130	03/08/11 14:38	03/15/11 10:45	1
2-Fluorophenol	70		25 - 130	03/08/11 14:38	03/15/11 10:45	1
Nitrobenzene-d5	74		39 - 130	03/08/11 14:38	03/15/11 10:45	1
Phenol-d5	69		25 - 130	03/08/11 14:38	03/15/11 10:45	1
Terphenyl-d14	98		10 - 143	03/08/11 14:38	03/15/11 10:45	1
2.4.6-Tribromophenol	88		31 - 141	03/08/11 14:38	03/15/11 10:45	1

Lab Sample ID: LCS 680-196317/13-A Matrix: Water

Analysis Batch: 197226

Client Sample ID: LCS 680-196317/13-A Prep Type: Total/NA

Prep Batch: 196317

3000	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
1,1'-Biphenyl	100	86.7		ug/L		87	54 - 130	
2,4-Dichlorophenol	100	80.8		ug/L		81	54 - 130	
Nitrobenzene	100	70.7		ug/L		71	56 - 130	
Pentachlorophenol	100	99.2		ug/L		99	42 - 138	
2,4,6-Trichlorophenol	100	93.2		ug/L		93	57 - 130	

Surrogate	1,500,000	LCS Qualifier	Limits
2-Fluorobiphenyl	85		38 - 130
2-Fluorophenol	73		25 - 130
Nitrobenzene-d5	71		39 - 130
Phenol-d5	71		25 - 130
Terphenyl-d14	97		10 - 143
2,4,6-Tribromophenol	89		31 - 141

Lab Sample ID: LCSD 680-196317/14-A Matrix: Water

Client Samp	ole ID:	LCSD	680-196317/14-A

Prep Type: Total/NA

Analysis Batch: 197226							Prep B	Batch: 196317	
	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
1,1'-Biphenyl	100	81.0	*	ug/L		81	54 - 130	7	50
2,4-Dichlorophenol	100	79.3		ug/L		79	54 - 130	2	50
Nitrobenzene	100	71.3		ug/L		71	56 - 130	1	50

TestAmerica Savannah

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-196317/14-A Client Sample ID: LCSD 680-196317/14-A Matrix: Water Prep Type: Total/NA Analysis Batch: 197226 Prep Batch: 196317 Spike LCSD LCSD % Rec. RPD Analyte Added Result Qualifier Unit % Rec Limits RPD Limit 100 Pentachlorophenol 91.5 ug/L 42 - 138 8 50 2,4,6-Trichlorophenol 100 84.2 ug/L 84 57 - 130 10 50

	LCSD	LCSD	
Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl	82		38 - 130
2-Fluorophenol	69		25 - 130
Nitrobenzene-d5	74		39 - 130
Phenol-d5	67		25 - 130
Terphenyl-d14	95		10 - 143
2,4,6-Tribromophenol	89		31 - 141

Lab Sample ID: 680-65900-4 MS

Matrix: Water

Analysis Batch: 197226

Client Sample ID: GM-58A-0211

Prep Type: Total/NA Prep Batch: 196317

	Sample	Sample	Spike	MS	MS				% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
1,1'-Biphenyl - RE	9.5	UH	94.5	81.0	H	ug/L		86	54 - 130	-
2,4-Dichlorophenol - RE	9.5	UН	94.5	77.5	Н	ug/L		79	54 - 130	
Nitrobenzene - RE	9.5	UН	94.5	75.2	Н	ug/L		73	56 - 130	
Pentachlorophenol - RE	48	UН	94.5	103	Н	ug/L		99	42 - 138	
2,4,6-Trichlorophenol - RE	91	Н	94.5	182	Н	ug/L		96	57 - 130	
	10000000000000000000000000000000000000	772-1527Madas								

MS	MS

Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl - RE	83	*	38 - 130
2-Fluorophenol - RE	67		25 - 130
Nitrobenzene-d5 - RE	71		39 - 130
Phenol-d5 - RE	67		25 - 130
Terphenyl-d14 - RE	66		10 - 143
2,4,6-Tribromophenol - RE	91		31 - 141

Lab Sample ID: 680-65900-4 MSD

Matrix: Water

Analysis Batch: 197226

Client Sample ID: GM-58A-0211

Prep Type: Total/NA

Prep Batch: 196317

Sample Sample Spike MSD MSD % Rec. RPD Analyte Result Qualifier Added Result Qualifier % Rec Unit Limits RPD Limit 1,1'-Biphenyl - RE 9.5 U H 94.3 76.3 H ug/L 81 54 - 130 50 6 2,4-Dichlorophenol - RE 9.5 UH 94.3 76.6 H ug/L 78 54 - 130 50 Nitrobenzene - RE 9.5 UH 94.3 75.1 H ug/L 73 56 - 130 0 50 Pentachlorophenol - RE 48 UH 94.3 94.0 H 90 ug/L 42 - 138 9 50 2,4,6-Trichlorophenol - RE 91 H 94.3 168 H ug/L 82 57 - 130 8 50

	MSD	MSD	
Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl - RE	79		38 - 130
2-Fluorophenol - RE	66		25 - 130
Nitrobenzene-d5 - RE	70		39 - 130
Phenol-d5 - RE	65		25 - 130
Terphenyl-d14 - RE	56		10 - 143
2,4,6-Tribromophenol - RE	89		31 - 141

TestAmerica Savannah

4/11/11

Matrix: Water

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Method:	RSK-1	75 - E	Dissolved	Gases	(GC)
---------	-------	--------	-----------	-------	------

Lab Sample ID: MB 680-195877/24

Client Sample ID: MB 680-195877/24

Prep Type: Total/NA

Analysis Batch: 195877

		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Ethane	1.1	Ū	1.1		ug/L			03/02/11 12:42	1
Ì	Ethylene	1.0	U	1.0		ug/L			03/02/11 12:42	1
į	Methane	0.58	U	0.58		ug/L			03/02/11 12:42	1

Lab Sample ID: LCS 680-195877/22

Client Sample ID: LCS 680-195877/22 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 195877

ranayolo Balom 100017	Spike	LCS	LCS				% Rec.	
Analyte	Added		Qualifier	Unit	D	% Rec	Limits	
Ethane	282	255		ug/L	_	90	75 - 125	
Ethylene	271	240		ug/L		89	75 - 125	
Methane	153	133		ug/L		87	75 - 125	

Lab Sample ID: LCSD 680-195877/23

Client Sample ID: LCSD 680-195877/23

Prep Type: Total/NA

9

Matrix: Water

Analysis Batch: 195877

7700677	•	Spike	LCSD	LCSD				% Rec.		RPD
	Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
	Ethane	282	284	la de la companya de	ug/L		101	75 - 125	11	30
	Ethylene	271	266		ug/L		98	75 - 125	10	30
	Methane	153	149		ug/L		97	75 - 125	11	30
- 33	<u></u>									

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 680-195759/24-A

Matrix: Water

Analysis Batch: 196312

Client Sample ID: MB	680-195759/24-A
Prep Type: T	otal Recoverable

Prep Batch: 195759

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.050	U	0.050		mg/L		03/02/11 12:50	03/07/11 19:17	1
Iron, Dissolved	0.050	U	0.050		mg/L		03/02/11 12:50	03/07/11 19:17	1
Manganese	0.010	U	0.010		mg/L		03/02/11 12:50	03/07/11 19:17	1
Manganese, Dissolved	0.010	U	0.010		mg/L		03/02/11 12:50	03/07/11 19:17	1

Lab Sample ID: LCS 680-195759/23-A

Matrix: Water

Analysis Batch: 196312

Client Sample ID: LCS 680-195759/23-A Prep Type: Total Recoverable

Prep Batch: 195759

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Iron	1.00	1.01		mg/L		101	75 - 125	
Iron, Dissolved	1.00	1.01		mg/L		101	75 - 125	
Manganese	0.500	0.493		mg/L		99	75 - 125	-
Manganese, Dissolved	0.500	0.493		mg/L		99	75 - 125	A 10 10 10 10 10 10 10

TestAmerica Savannah

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Lab Sample ID: MD 500 405444/24									CII-	4 C	le ID- NED C	00 40-	
Lab Sample ID: MB 680-195441/21 Matrix: Water									Clier	it Samp	le ID: MB 6 Prep Ty		
Analysis Batch: 195441											rieb i	pe. 10	Julin
Amalyolo Baton. 100441	MB	MB											
Analyte	Result	Qualifier		RL		RL Unit		D	Pr	epared	Analyze	ed	Dil Fa
Alkalinity	5.0	U		5.0		mg/L		9 -			02/26/11 1		
Carbon Dioxide, Free	5.0	U		5.0		mg/L					02/26/11 1	4:57	
Lab Sample ID: MB 680-195441/45									Clier	ıt Sampl	e ID: MB 6	80-195	441/4
Matrix: Water											Prep Ty	/pe: To	otal/N
Analysis Batch: 195441													
		MB		20		and the secondary		1.221	- 20	1020	424	42	12/4/46/2009
Analyte		Qualifier		RL		RL Unit		D	Pro	epared	Analyze		Dil Fa
Alkalinity	5.0	U		5.0		mg/L					02/26/11 1		
Carbon Dioxide, Free	5.0	U		5.0		mg/L					02/26/11 1	6:54	
Lab Sample ID: LCS 680-195441/46								C	lient	Sample	ID: LCS 6		
Matrix: Water											Prep Ty	pe: To	tal/N
Analysis Batch: 195441			C=!!-=		100	1.00					0/ D-		
Analyte			Spike Added		LCS		11.34		-	W D	% Rec.		
Alkalinity			352		331	Qualifier	Unit mg/L		_ D	% Rec	80 - 120	-	-
areamity			332		331		mg/L			54	00 - 120		
Lab Sample ID: LCSD 680-195441/40								Cli	ent S	Sample I	D: LCSD 6	80-195	441/4
Matrix: Water										er enem angeren i 🖷 heretan van en en	Prep Ty		
Analysis Batch: 195441												•	
			Spike		LCSD	LCSD					% Rec.		RF
Analyte			Added		Result	Qualifier	Unit		D	% Rec	Limits	RPD	Lin
Alkalinity			352		332		mg/L			94	80 - 120	2	
Lab Sample ID: LCSD 680-195441/78								Cli	ent S	ample l	D: LCSD 6	RO-195	441/7
Matrix: Water								0	ciii c	umpic i	Prep Ty		
Analysis Batch: 195441												po. 10	
en e			Spike		LCSD	LCSD					% Rec.		RP
Analyte			Added		Result	Qualifier	Unit		D	% Rec	Limits	RPD	Lim
Alkalinity			352		331	·	mg/L			94	80 - 120	0	3
lethod: 325.2 - Chloride										nt Same	le ID: MB (580-19	5597/
									Clie	nt Samp			
Lab Sample ID: MB 680-195597/1									Clie	nt Samp	Prep Ty	pe: To	
Lab Sample ID: MB 680-195597/1 Matrix: Water									Clie	nt Samp		pe: To	
Lab Sample ID: MB 680-195597/1 Matrix: Water Analysis Batch: 195597	МВ								Clie	iit Saiiip		pe: To	
Lab Sample ID: MB 680-195597/1 Watrix: Water Analysis Batch: 195597 Analyte	Result	Qualifier	-	RL	MI	DL Unit		D		pared			Dil Fa
Lab Sample ID: MB 680-195597/1 Watrix: Water Analysis Batch: 195597 Analyte		Qualifier	-	RL 1.0	МІ	OL Unit mg/L		<u>D</u> -			Prep Ty	d	
Lab Sample ID: MB 680-195597/1 Matrix: Water Analysis Batch: 195597 Analyte Chloride	Result	Qualifier	-		мі				Pre	pared	Analyze 02/28/11 16	d 5:36	
Lab Sample ID: MB 680-195597/1 Matrix: Water Analysis Batch: 195597 Analyte Chloride Lab Sample ID: LCS 680-195597/2	Result	Qualifier			мі				Pre	pared	Analyze 02/28/11 16	d 5:36 580-19	5597/
Lab Sample ID: MB 680-195597/1 Matrix: Water Analysis Batch: 195597 Analyte Chloride Lab Sample ID: LCS 680-195597/2 Matrix: Water	Result	Qualifier	· ·		мі				Pre	pared	Analyze 02/28/11 16	d 5:36 580-19	5597/
Lab Sample ID: MB 680-195597/1 Matrix: Water Analysis Batch: 195597 Analyte Chloride Lab Sample ID: LCS 680-195597/2 Matrix: Water	Result	Qualifier	Spike		LCS	mg/L			Pre	pared	Analyze 02/28/11 16	d 5:36 580-19	825000 THE SAME
Lab Sample ID: MB 680-195597/1 Matrix: Water Analysis Batch: 195597 Analyte Chloride Lab Sample ID: LCS 680-195597/2 Matrix: Water Analysis Batch: 195597	Result	Qualifier	Spike Added		LCS	mg/L	Unit		Pre	pared	Analyze 02/28/11 16 e ID: LCS 6 Prep Ty	d 5:36 580-19	5597/

TestAmerica Savannah

A6 4/11/11 Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

Method: 353.2 - Nitrogen, Nitrate-Nitrite

9

Lab Sample ID: MB 680-195454/1 Matrix: Water									Clie	nt Sam	ple ID: MB 680- Prep Type:	
Analysis Batch: 195454											riep rype.	TOLAINA
,	MB	MB										
Analyte	Result	Qualifier		RL	М	DL Unit		D	Pre	epared	Analyzed	Dil Fac
Nitrate as N	0.050	Ū		0.050		mg/L	8	_	-		02/24/11 16:26	1
Nitrate Nitrite as N	0.050	U		0.050		mg/L	6				02/24/11 16:26	1
Nitrite as N	0.050	n		0.050		mg/L					02/24/11 16:26	1
Lab Sample ID: LCS 680-195454/2									Clien	ıt Samp	le ID: LCS 680-1	195454/2
Matrix: Water										an or amount about the 🗷 as	Prep Type:	Total/NA
Analysis Batch: 195454												
-			Spike		LCS	LCS					% Rec.	
Analyte			Added		Result	Qualifier	Unit		D	% Rec	Limits	
Nitrate as N			0.500	-	0.511		mg/L			102		
Nitrate Nitrite as N			1.00		0.997		mg/L			100	90 - 110	
Nitrite as N			0.500		0.487		mg/L			97	90 - 110	
Method: 375.4 - Sulfate					***************************************							
Lab Sample ID: MB 680-196411/1									Clie	nt Samp	ole ID: MB 680-1	196411/1
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 196411												
	MB	MB										
Analyte	Result	Qualifier		RL	MI	DL Unit		D	Pre	pared	Analyzed	Dil Fac
Sulfate	5.0	U		5.0		mg/L		_			03/08/11 10:18	1
Lab Sample ID: LCS 680-196411/2									Clien	t Sampl	le ID: LCS 680-1	196411/2
Matrix: Water											Prep Type: 7	Total/NA
Analysis Batch: 196411											n .5.5	
			Spike		LCS	LCS					% Rec.	
Analyte			Added		Result		Unit		D	% Rec	Limits	

Menio	u. 4	10.1	-	
			eternal me	

Lab Sample ID: LCS 680-196100/4

Sulfate

	Lab Sample ID: MB 680-196100/2							Client Samp	ole ID: MB 680-1	96100/2
	Matrix: Water								Prep Type: T	otal/NA
	Analysis Batch: 196100									
		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total Organic Carbon	1.0	U	1.0		mg/L			03/03/11 15:42	1
r										

20.0

21.8

mg/L

Matrix: Water							Prep Ty	pe: To	tal/NA
Analysis Batch: 196100							351 (5	17.0	
	Spike	LCS	LCS				% Rec.		_,
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits		
Total Organic Carbon	20.0	20.2	0.000	mg/L		101	80 - 120		

TestAmerica Savannah

4/11/11

75 - 125

Client Sample ID: LCS 680-196100/4

109

Quality Control Data

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

Client Sample ID: MB 680-196112/1

Client Sample ID: LCS 680-196112/2

Client Sample ID: GM-31A-0211-F(0.2)

Client Sample ID: GM-31A-0211-F(0.2)

SDG: KOM011

Prep Type: Dissolved

Prep Type: Dissolved

Prep Type: Dissolved

Prep Type: Dissolved

Method:	415.1	- DOC	(Continued)
			(00111111111111111111111111111111111111

Lab Sample ID: MB 680-196112/1

Matrix: Water

Analysis Batch: 196112

мв мв

Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed Dissolved Organic Carbon 1.0 U 1.0 mg/L 03/04/11 03:53

Lab Sample ID: LCS 680-196112/2

Matrix: Water

Analysis Batch: 196112

Spike LCS LCS % Rec. Result Qualifier Analyte Added Unit Limits Dissolved Organic Carbon 20.0 20.3 mg/L 102 80 - 120

Lab Sample ID: 680-65900-2 MS

Matrix: Water

Analysis Batch: 196112

Spike Sample Sample MS MS % Rec. Result Qualifier Added Result Qualifier Unit % Rec Limits Dissolved Organic Carbon 20.0 mg/L 101 24.2 80 - 120

Lab Sample ID: 680-65900-2 MSD

Matrix: Water

Analysis Batch: 196112

Sample Sample Spike MSD MSD % Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit % Rec Limits RPD Limit Dissolved Organic Carbon 4.0 20.0 24.2 mg/L 80 - 120 101 0 20

TestAmerica Savannah

4/11/11

9

QC Association Summary

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

GC/MS Semi VOA

Prep Batch: 19:	5497
-----------------	------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-65900-1	GM-31A-0211	Total/NA	Water	3520C	
MB 680-195497/12-A	MB 680-195497/12-A	Total/NA	Water	3520C	
LCS 680-195497/13-A	LCS 680-195497/13-A	Total/NA	Water	3520C	
680-65900-4 MS	GM-58A-0211	Total/NA	Water	3520C	H - 4.2/H 1 - 1 - 1 - 1
680-65900-4 MSD	GM-58A-0211	Total/NA	Water	3520C	
LCS 680-195497/19-A	LCS 680-195497/19-A	Total/NA	Water	3520C	
680-65900-3	GM-31A-0211-AD	Total/NA	Water	3520C	
680-65900-4 MS	GM-58A-0211	Total/NA	Water	3520C	
680-65900-4 MSD	GM-58A-0211	Total/NA	Water	3520C	
680-65900-4	GM-58A-0211	Total/NA	Water	3520C	
680-65900-6	GM-58A-0211-EB	Total/NA	Water	3520C	

Analysis Batch: 196003

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 680-195497/19-A	LCS 680-195497/19-A	Total/NA	Water	8270C	195497
680-65900-1	GM-31A-0211	Total/NA	Water	8270C	195497
680-65900-3	GM-31A-0211-AD	Total/NA	Water	8270C	195497
680-65900-4	GM-58A-0211	Total/NA	Water	8270C	195497
680-65900-6	GM-58A-0211-EB	Total/NA	Water	8270C	195497
680-65900-4 MS	GM-58A-0211	Total/NA	Water	8270C	195497
680-65900-4 MSD	GM-58A-0211	Total/NA	Water	8270C	195497
MB 680-195497/12-A	MB 680-195497/12-A	Total/NA	Water	8270C	195497
LCS 680-195497/13-A	LCS 680-195497/13-A	Total/NA	Water	8270C	195497

Prep Batch: 196317

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-65900-4 - RE	GM-58A-0211	Total/NA	Water	3520C	-
680-65900-6 - RE	GM-58A-0211-EB	Total/NA	Water	3520C	
MB 680-196317/12-A	MB 680-196317/12-A	Total/NA	Water	3520C	
LCS 680-196317/13-A	LCS 680-196317/13-A	Total/NA	Water	3520C	
LCSD 680-196317/14-A	LCSD 680-196317/14-A	Total/NA	Water	3520C	
680-65900-4 MS - RE	GM-58A-0211	Total/NA	Water	3520C	
680-65900-4 MSD - RE	GM-58A-0211	Total/NA	Water	3520C	
680-65900-1 - RE	GM-31A-0211	Total/NA	Water	3520C	•
680-65900-3 - RE	GM-31A-0211-AD	Total/NA	Water	3520C	

Analysis Batch: 197226

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-196317/12-A	MB 680-196317/12-A	Total/NA	Water	8270C	196317
680-65900-3 - RE	GM-31A-0211-AD	Total/NA	Water	8270C	196317
680-65900-4 - RE	GM-58A-0211	Total/NA	Water	8270C	196317
680-65900-4 MS - RE	GM-58A-0211	Total/NA	Water	8270C	196317
680-65900-4 MSD - RE	GM-58A-0211	Total/NA	Water	8270C	196317
LCS 680-196317/13-A	LCS 680-196317/13-A	Total/NA	Water	8270C	196317
LCSD 680-196317/14-A	LCSD 680-196317/14-A	Total/NA	Water	8270C	196317
680-65900-6 - RE	GM-58A-0211-EB	Total/NA	Water	8270C	196317
680-65900-1 - RE	GM-31A-0211	Total/NA	Water	8270C	196317

Analysis Batch: 197304

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-65900-4 MS	GM-58A-0211	Total/NA	Water	8270C	195497
680-65900-4 MSD	GM-58A-0211	Total/NA	Water	8270C	195497

TestAmerica Savannah

Al. 4/11/11

QC Association Summary

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

00	• •	10	
GC	. 1	/U	М

Anal	ysis	Batch:	195877
------	------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-65900-1	GM-31A-0211	Total/NA	Water	RSK-175	
680-65900-4	GM-58A-0211	Total/NA	Water	RSK-175	
LCS 680-195877/22	LCS 680-195877/22	Total/NA	Water	RSK-175	
LCSD 680-195877/23	LCSD 680-195877/23	Total/NA	Water	RSK-175	
MB 680-195877/24	MB 680-195877/24	Total/NA	Water	RSK-175	

Metals

Prep Batch: 195759

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
GM-31A-0211	Total Recoverable	Water	3005A	= =====================================
LCS 680-195759/23-A	Total Recoverable	Water	3005A	
MB 680-195759/24-A	Total Recoverable	Water	3005A	
GM-31A-0211-F(0.2)	Dissolved	Water	3005A	
GM-58A-0211	Total Recoverable	Water	3005A	
GM-58A-0211-F(0.2)	Dissolved	Water	3005A	
	GM-31A-0211 LCS 680-195759/23-A MB 680-195759/24-A GM-31A-0211-F(0.2) GM-58A-0211	GM-31A-0211 Total Recoverable LCS 680-195759/23-A Total Recoverable MB 680-195759/24-A Total Recoverable GM-31A-0211-F(0.2) Dissolved GM-58A-0211 Total Recoverable	GM-31A-0211 Total Recoverable Water LCS 680-195759/23-A Total Recoverable Water MB 680-195759/24-A Total Recoverable Water GM-31A-0211-F(0.2) Dissolved Water GM-58A-0211 Total Recoverable Water	GM-31A-0211 Total Recoverable Water 3005A LCS 680-195759/23-A Total Recoverable Water 3005A MB 680-195759/24-A Total Recoverable Water 3005A GM-31A-0211-F(0.2) Dissolved Water 3005A GM-58A-0211 Total Recoverable Water 3005A

Analysis Batch: 196312

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-195759/24-A	MB 680-195759/24-A	Total Recoverable	Water	6010B	195759
LCS 680-195759/23-A	LCS 680-195759/23-A	Total Recoverable	Water	6010B	195759
680-65900-1	GM-31A-0211	Total Recoverable	Water	6010B	195759
680-65900-2	GM-31A-0211-F(0.2)	Dissolved	Water	6010B	195759
680-65900-4	GM-58A-0211	Total Recoverable	Water	6010B	195759
680-65900-5	GM-58A-0211-F(0.2)	Dissolved	Water	6010B	195759

General Chemistry

Analysis Batch: 195441

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-195441/21	MB 680-195441/21	Total/NA	Water	310.1	-
LCSD 680-195441/40	LCSD 680-195441/40	Total/NA	Water	310.1	
MB 680-195441/45	MB 680-195441/45	Total/NA	Water	310.1	
LCS 680-195441/46	LCS 680-195441/46	Total/NA	Water	310.1	
680-65900-4	GM-58A-0211	Total/NA	Water	310.1	
LCSD 680-195441/78	LCSD 680-195441/78	Total/NA	Water	310.1	

Analysis Batch: 195451

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-65900-1	GM-31A-0211	Total/NA	Water	310.1	

Analysis Batch: 195454

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-195454/1	Total/NA	Water	353.2	
GM-31A-0211	Total/NA	Water	353.2	
GM-58A-0211	Total/NA	Water	353.2	
LCS 680-195454/2	Total/NA	Water	353.2	
	MB 680-195454/1 GM-31A-0211 GM-58A-0211	MB 680-195454/1 Total/NA GM-31A-0211 Total/NA GM-58A-0211 Total/NA	MB 680-195454/1 Total/NA Water GM-31A-0211 Total/NA Water GM-58A-0211 Total/NA Water	MB 680-195454/1 Total/NA Water 353.2 GM-31A-0211 Total/NA Water 353.2 GM-58A-0211 Total/NA Water 353.2

Analysis Batch: 195597

Lab Sample ID Client Sample ID MB 680-195597/1 MB 680-195597/1		Prep Type	Matrix	Method	Prep Batch
MB 680-195597/1	MB 680-195597/1	Total/NA	Water	325.2	
680-65900-1	GM-31A-0211	Total/NA	Water	325.2	

TestAmerica Savannah

Al-4/11/11

QC Association Summary

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

General Chemistry (Continued)

Analysis	Batch: 19	5597 (C	ontinued)
-----------------	-----------	---------	-----------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-65900-4	GM-58A-0211	Total/NA	Water	325.2	
LCS 680-195597/2	LCS 680-195597/2	Total/NA	Water	325.2	

Analysis Batch: 196100

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-196100/2	MB 680-196100/2	Total/NA	Water	415.1	
LCS 680-196100/4	LCS 680-196100/4	Total/NA	Water	415.1	
680-65900-1	GM-31A-0211	Total/NA	Water	415.1	
680-65900-4	GM-58A-0211	Total/NA	Water	415.1	

Analysis Batch: 196112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-196112/1	MB 680-196112/1	Dissolved	Water	415.1	
CS 680-196112/2	LCS 680-196112/2	Dissolved	Water	415.1	
880-65900-5	GM-58A-0211-F(0.2)	Dissolved	Water	415.1	
80-65900-2	GM-31A-0211-F(0.2)	Dissolved	Water	415.1	
80-65900-2 MS	GM-31A-0211-F(0.2)	Dissolved	Water	415.1	
680-65900-2 MSD	GM-31A-0211-F(0.2)	Dissolved	Water	415.1	

Analysis Batch: 196411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-196411/1	MB 680-196411/1	Total/NA	Water	375.4	
680-65900-1	GM-31A-0211	Total/NA	Water	375.4	
680-65900-4	GM-58A-0211	Total/NA	Water	375.4	
LCS 680-196411/2	LCS 680-196411/2	Total/NA	Water	375.4	

TestAmerica Savannah

. Ale 4/11/11

Lab Chronicle

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Client Sample ID: GM-31A-0211

Date Collected: 02/23/11 13:30 Date Received: 02/24/11 09:23 Lab Sample ID: 680-65900-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			195497	02/28/11 14:49	RBS	TestAmerica Savannah
Total/NA	Analysis	8270C		1	196003	03/03/11 17:34	LH	TestAmerica Savannah
Total/NA	Prep	3520C	RE		196317	03/08/11 14:38	RBS	TestAmerica Savannah
Total/NA	Analysis	8270C	RE	1	197226	03/15/11 12:10	LH	TestAmerica Savannah
Total/NA	Analysis	RSK-175		1	195877	03/02/11 17:34	AJM	TestAmerica Savannah
Total Recoverable	Prep	3005A			195759	03/02/11 12:50	JPH	TestAmerica Savannah
Total Recoverable	Analysis	6010B		1	196312	03/07/11 19:37	BCB	TestAmerica Savannah
Total/NA	Analysis	310.1		1	195451	02/27/11 12:59	TR	TestAmerica Savannah
Total/NA	Analysis	353.2		1	195454	02/24/11 16:49	JR	TestAmerica Savannah
Total/NA	Analysis	325.2		1	195597	02/28/11 17:18	JR	TestAmerica Savannah
Total/NA	Analysis	415.1		1	196100	03/03/11 16:40	КВ	TestAmerica Savannah
Total/NA	Analysis	375.4		5	196411	03/08/11 12:54	JR	TestAmerica Savannah

Client Sample ID: GM-31A-0211-F(0.2)

Date Collected: 02/23/11 13:30 Date Received: 02/24/11 09:23 Lab Sample ID: 680-65900-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			195759	03/02/11 12:50	JPH	TestAmerica Savannah
Dissolved	Analysis	6010B		1	196312	03/07/11 19:41	всв	TestAmerica Savannah
Dissolved	Analysis	415.1		1	196112	03/04/11 03:53	кв	TestAmerica Savannah

Client Sample ID: GM-31A-0211-AD

Date Collected: 02/23/11 13:30

Date Received: 02/24/11 09:23

Lab Sample ID: 680-65900-3

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			195497	02/28/11 14:49	RBS	TestAmerica Savannah
Total/NA	Analysis	8270C		1	196003	03/03/11 18:02	LH	TestAmerica Savannah
Total/NA	Prep	3520C	RE		196317	03/08/11 14:38	RBS	TestAmerica Savannah
Total/NA	Analysis	8270C	RE	1	197226	03/15/11 12:38	LH	TestAmerica Savannah

Client Sample ID: GM-58A-0211

Date Collected: 02/23/11 15:05

Date Received: 02/24/11 09:23

Lab Sample ID: 680-65900-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab	-
Total/NA	Prep	3520C			195497	02/28/11 14:49	RBS	TestAmerica Savannah	100
Total/NA	Analysis	8270C		1	196003	03/03/11 18:30	LH	TestAmerica Savannah	
Total/NA	Prep	3520C	RE		196317	03/08/11 14:38	RBS	TestAmerica Savannah	
Total/NA	Analysis	8270C	RE	1	197226	03/15/11 13:06	LH	TestAmerica Savannah	
Total/NA	Analysis	RSK-175		1	195877	03/02/11 17:47	AJM	TestAmerica Savannah	
Total Recoverable	Prep	3005A			195759	03/02/11 12:50	JPH	TestAmerica Savannah	
Total Recoverable	Analysis	6010B		1	196312	03/07/11 19:53	BCB	TestAmerica Savannah	

TestAmerica Savannah

Page 28 of 32 . Ab-4/11/11

Lab Chronicle

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Client Sample ID: GM-58A-0211

Date Collected: 02/23/11 15:05 Date Received: 02/24/11 09:23 Lab Sample ID: 680-65900-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	310.1		1	195441	02/26/11 18:56	TR	TestAmerica Savannah
Total/NA	Analysis	353.2		1	195454	02/24/11 16:50	JR	TestAmerica Savannah
Total/NA	Analysis	325.2		1	195597	02/28/11 17:18	JR	TestAmerica Savannah
Total/NA	Analysis	415.1		1	196100	03/03/11 16:54	КВ	TestAmerica Savannah
Total/NA	Analysis	375.4		5	196411	03/08/11 12:54	JR	TestAmerica Savannah

Client Sample ID: GM-58A-0211-F(0.2)

Date Collected: 02/23/11 15:05

Date Received: 02/24/11 09:23

Lab Sample ID: 680-65900-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		77.
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			195759	03/02/11 12:50	JPH	TestAmerica Savannah
Dissolved	Analysis	6010B		1	196312	03/07/11 20:05	BCB	TestAmerica Savannah
Dissolved	Analysis	415.1		1	196112	03/04/11 03:53	КВ	TestAmerica Savannah

Client Sample ID: GM-58A-0211-EB

Date Collected: 02/23/11 15:05

Date Received: 02/24/11 09:23

Lab Sample ID: 680-65900-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			195497	02/28/11 14:49	RBS	TestAmerica Savannah
Total/NA	Analysis	8270C		1	196003	03/03/11 18:58	LH	TestAmerica Savannah
Total/NA	Prep	3520C	RE		196317	03/08/11 14:38	RBS	TestAmerica Savannah
Total/NA	Analysis	8270C	RE	1	197226	03/15/11 13:34	LH	TestAmerica Savannah

TestAmerica Savannah

Page 29 of 32

14Ce 4/11/11

Tes	tAn			T AND CHAI	N OF CUSTODY F	REC	COR	D	9	51	stAmei 02 LaR vannah	oche A		'n	.90		4		(912) 3	testamericair 54-7858 -0165	nc.com	
103	17 (11								() AII	ernate	Labora	tory Na	me/Loc	ation			Phone:				
THE LEAD	ER IN ENVIR	ONMENTAL	TESTING															ax:				
PROJECT REFE	ERENCE Drwn s	.ite - 1Q1	PROJECT NO	o. M site	PROJECT LOCATION (STATE) TL			TAIX 'PE					RE	EQUIRE) ANALY	SIS				PAGE		OF \
TAL (LAB) PROJ	JECT MANAGER	di	P.O. NUMBER	4	CONTRACT NO.	H					C		7. 2	- K	Ч					STANDARD REDELIVERY	EPORT	टेस
CLIENT (SITE)	PM		CLIENT PHO		CLIENT FAX	DICA			VENT	ηnc	1, 20 O	110	375.2	SK	53.	415.1	Fe/m,	5		DATE DUI	E	
CLIENT NAME	Gm Rin) aldi	311 - 617 CLIENT E-MA	14-3312 AL	314-674-8808	18			l, sol	107	603	160	יא ש	2	לפ	7	43	Doc 4 15		EXPEDITED R	100000	
Sc	olytin,	Inc	9m rin	in @ 501v	itis . com	GRAB			© ©	32.	oter	150	Chloride 325.	またる	N. Hak 353.	7ac	25.4	Lin		DELIVERY (SURCHARGE	:)	0
					is mo 63/41	HO (S	EH)	SOF	150		(-		5 3	£ 7.	ž	۲	ā	۵		DATE DUE	E	
		WORK (If app	olicable)		is, mo 63/41	OSITE (C	OUS (WA	OH SEN	OUEOUS	161, st.	Total Fe/ms	74	No.	E	MY,	開	Profe	Hil		NUMBER OF C PER SHIPMEN		S SUBMITTED
DATE	UPLE TIME		SAMP	LE IDENTIFICATIO	М	COM	AQUE	W E	NON			NU	MBER O	F CONT	AINERS	SUBMI	TED			R	EMARK	S
2-23-11	1330	6m	- 31A-	0211		6	×			a	1	١	I	3	7	1				· · · · · · · · · · · · · · · · · · ·		
200	1330	6.21	-314 -0	7211 - F	(0.2)	1	X										1	ſ		[5,150	البيدة	
4	1330	6m-	- 31 A - 0	211 - A!	D	6	X X			а												
4	1505	6m	- 58 A -	0211						2	1	ı	1	3	١	١						
	1505	6m	-58A -	0211-	F(0.2)	6	X										1	1		Filte	ree	_
	1505	6 m	-58A-	0211-	nis	6	X			2												
	1505	6M	-581	- 0211 -	msD	6	X			3												
4	1505	6~	1 - 586	-0211-	EB	6	X			a												
					No.																	
RELINQUISHED	6 D		Z-23-11	16:40	RELINQUISHED BY: (SIGN	IATUF	RE)			5	DATE		TIME		RELING	DUISHE	D BY: (si	GNATURE)		DATE		TIME
RECEIVED BY:	SIGNATURE)		DATE	TIME	RECEIVED BY: (SIGNATURE	:)					DATE		TIME		RECEN	/ED BY:	(SIGNATU	RE)		DATE		TIME
						LAB	ORAT	YRO	USE	ONLY									-			
(SIGNATURE)	LABORATORY BY	<i>(</i> .	DATE	TIME	CUSTODY INTACT YES	CU SE	STOD AL NO	ιΥ),	i	SAVAN	NAH O.		LABOR	ATORY I	REMARK	(S	ر-،	. 1	1	1		
Hours	Ph	40	2/24/11		NO O						1.5900	,					5.	4.	6/1.1	2 (2.2		

13

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-65900-1

SDG Number: KOM011

List Source: TestAmerica Savannah

Login Number: 65900

List Number: 1

Creator: Conner, Keaton

oreator. Conner, Neaton		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	4 coolers rec'd on ice
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.6, 4.0, 1.2, 2.2 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	10
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	

Client: Solutia Inc.

Project/Site: WGK Route 3 Drum Site O&M - GW 1Q11

TestAmerica Job ID: 680-65900-1

SDG: KOM011

Laboratory	Authority	Program	EPA Region	Certification ID	* Expiration Date
TestAmerica Savannah		USDA		SAV 3-04	10/29/10
TestAmerica Savannah	A2LA	DoD ELAP	0	0399-01	03/31/11
TestAmerica Savannah	A2LA	ISO/IEC 17025	0	399.01	03/31/11
TestAmerica Savannah	Alabama	State Program	4	41450	06/30/11
TestAmerica Savannah	Arkansas	Arkansas DOH	6	N/A	06/30/10
TestAmerica Savannah	Arkansas	State Program	6	88-0692	02/01/12
TestAmerica Savannah	California	NELAC	9	3217CA	07/31/11
TestAmerica Savannah	Colorado	State Program	8	N/A	12/31/11
TestAmerica Savannah	Connecticut	State Program	1	PH-0161	03/31/11
FestAmerica Savannah	Delaware	State Program	3	N/A	06/30/11
TestAmerica Savannah	Florida	NELAC	4	E87052	06/30/11
FestAmerica Savannah	Georgia	Georgia EPD	4	N/A	06/30/11
TestAmerica Savannah	Georgia	State Program	4	803	06/30/11
TestAmerica Savannah	Guam	State Program	9	09-005r	04/17/11
TestAmerica Savannah	Hawaii	State Program	9	N/A	06/30/11
TestAmerica Savannah	Illinois	NELAC	5	200022	11/30/11
TestAmerica Savannah	Indiana	State Program	5	N/A	06/30/11
TestAmerica Savannah	lowa	State Program	7	353	07/01/11
TestAmerica Savannah	Kansas	NELAC	7	E-10322	10/31/11
TestAmerica Savannah	Kentucky	Kentucky UST	4	18	11/17/11
FestAmerica Savannah	Kentucky	State Program	4	90084	12/31/11
TestAmerica Savannah	Louisiana	NELAC	6	30690	06/30/11
TestAmerica Savannah	Louisiana	NELAC	6	LA100015	12/31/11
TestAmerica Savannah	Maine	State Program	1	GA00006	08/16/12
TestAmerica Savannah	Maryland	State Program	3	250	12/31/11
TestAmerica Savannah	Massachusetts	State Program	1	M-GA006	06/30/11
estAmerica Savannah	Michigan	State Program	5	9925	06/30/11
estAmerica Savannah	Mississippi	State Program	4	N/A	06/30/10
estAmerica Savannah	Montana	State Program	8	CERT0081	01/01/11
restAmerica Savannah	Nebraska	State Program	7	TestAmerica-Savannah	06/30/11
TestAmerica Savannah	Nevada	State Program	9	GA6	07/31/11
TestAmerica Savannah	New Jersey	NELAC	2	GA769	06/30/11
TestAmerica Savannah	New Mexico	State Program	6	N/A	06/30/10
TestAmerica Savannah	New York	NELAC	2	10842	04/01/11
TestAmerica Savannah	North Carolina	North Carolina DENR	4	269	12/31/11
TestAmerica Savannah	North Carolina	North Carolina PHL	4	13701	07/31/11
FestAmerica Savannah	Oklahoma	State Program	6	9984	08/31/11
restAmerica Savannah	Pennsylvania	NELAC	3	68-00474	06/30/11
restAmerica Savannah	Puerto Rico	State Program	2	GA00006	01/01/12
restAmerica Savannah	Rhode Island	State Program	1	LAO00244	
restAmerica Savannah	South Carolina	State Program	4	98001	12/30/11 06/30/11
estAmerica Savannah	Tennessee	State Program	4		
estAmerica Savannah		The Paris Paris and Albert The second real contractions.	6	TN02961	12/31/11
	Texas	NELAC	857	T104704185-08-TX	11/30/11
estAmerica Savannah	Vermont	State Program	1	87052	11/16/11
estAmerica Savannah	Virginia	State Program	3	302	06/30/11
estAmerica Savannah	Washington	State Program	10	C1794	06/10/11
estAmerica Savannah	West Virginia	West Virginia DEP	3	94	06/30/11
estAmerica Savannah	West Virginia	West Virginia DHHR (DW)	3	9950C	12/31/10
					08/31/11
TestAmerica Savannah TestAmerica Savannah	Wisconsin Wyoming	State Program State Program	5 8	999819810 8TMS-Q	08/3 0 <u>6</u> /3

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

* Any expired certifications in this list are currently pending renewal and are considered valid.

TestAmerica Savannah

Al-4/11/11

April 21, 2011

Mr. Duane T. Kreuger Geotechnology, Inc. 11816 Lackland Road Suite 150 St. Louis, MO 63146

Dear Mr. Kreuger:

The data reported by Test America Laboratories under SDG KOM011 has been reviewed for quality assurance validation. Data was reported for Volatiles (dissolved gases), Semi-Volatiles, ICP Metals (total and dissolved), Chloride, Nitrate, Sulfate, Organic Carbon (total and dissolved), Alkalinity, and Carbon Dioxide for 8 samples as requested by Geotechnology, Inc. The 8 samples listed below were validated by MJW. The samples in **bold type** have been validated for level IV validation. The data in this report has either been approved for use, or approved with qualification.

- GM-31A-0211 (Lab ID: 680-65900-1)
- GM-31A-F(0.2)-0211 (Lab ID: 680-65900-2)
- GM-31A-0211 AD (Lab ID: 680-65900-3 FD)
- GM-58A-0211 (Lab ID: 680-65900-4)
- GM-58A-0211-MS (Lab ID: 680-65900-4MS)
- GM-58A-0211-MSD (Lab ID: 680-65900-4MSD)
- GM-58A-F(0.2)-1210 (Lab ID: 680-65900-5)
- GM-58A-1210-EB (Lab ID: 680-65900-6EB)

If you have any questions concerning this data validation report, please contact me at 585-344-7197.

Very truly yours,

MJW Corporation Inc.

Annette Guilds, CES Senior Scientist

Approved by:

David A. Dooley, Ph.D., CHP President, MJW Corporation Inc.

mett Genter

2010-1918.010 KOM011

QUALITY ASSURANCE REPORT

Solutia Inc. W.G. Krummrich Facility Sauget, Illinois

1st Quarter 2011 Data Validation Report Illinois Route 3 Drum Site SDG: KOM011

Prepared for

GEOTECHNOLOGY, INC. 11816 Lackland Road, Suite 150 St. Louis, MO 63146

April 2011

MJW

MJW Corporation, Inc. 1900 Sweet Home Road Amherst, NY 14228 (716)-631-8291 **Project # 2010-1918**

DATA ASSESSMENT NARRATIVE (ORGANICS)

ORGANIC DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis	
CASE NO.: SDG NO.: KOM011 LABO SITE: Solutia W.G. Krummrich Plant (Drum Site)	ORATORY: Test America
DATA ASSESSMENT	
The current SOP No. HW-6 (Revision 11), June 1996 for CLP Organi Review has been applied.	cs Review and Preliminary
All data were found to be valid and acceptable except those analytes the (unusable). Due to various QC problems some analytes may have bee (estimated), "N" (presumptive evidence for the presence of the material (presumptive evidence for the presence of the material at an estimated detailed on the attached sheets.	n qualified with a "J" al), "U" (non-detect), or "JN"
The "R" flag means that the associated value is unusable. In other work evident and the reported analyte concentration is unreliable.	rds, significant data bias is
Data is fully usable and acceptable.	
Reviewer's	
to the second section of the second s	e: <u>4/21/2011</u>
MJW Approval: Date	e: <u>4/21/2011</u>
Organic Data Assessment	page 1 of 5

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

The following action was taken in the samples and analytes shown due to excessive holding time.

No action necessary.

2. SURROGATES:

All samples are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below.

No action necessary.

3. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

No action necessary.

4. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than 5 times the blank contaminant level (10 times for common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the sample shown were qualified with "U" for these reasons:

A) Method blank contamination:

No action necessary.

B) Field or rinse blank contamination:

No action necessary.

C) Trip blank contamination:

No action necessary.

5. MASS SPECTROMETER TUNING:

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is (BFB) Bromofluorobenzene and for semi-volatiles Decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, all associated data will be classified as unusable "R".

No action necessary.

6. CALIBRATION:

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for the Target Compound List (TCL) must be ≥ 0.05 in both initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound will be rejected "R".

No action necessary.

7. CALIBRATION:

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detects data may be qualified "R".

For the PEST/PCB fraction, if %RSD exceeds 20% for all analytes except for the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ".

The following analytes in the sample shown were qualified for %RSD and %D:

No action necessary.

8. INTERNAL STANDARDS PERFORMANCE GC/MS:

Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than ± 30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction.

No action necessary.

9. COMPOUND IDENTIFICATION:

A) Volatile and Semi-Volatile Fractions:

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within \pm 0.06 RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications.

No action necessary.

B) Pesticide Fraction:

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns and a GC/MS confirmation is required if the concentration exceeds 10ng/ml in the final sample extract.

N/A

- 10. CONTRACT PROBLEMS NON-COMPLIANCE: None
- 11. FIELD DOCUMENTATION: A field duplicate was analyzed for sample GM-31A-1210. The RPD was 53.3% for 2,4,6-Trichlorophenol and 1.0% for 2-Nitrobiphenyl. All other analytes were non-detect and therefore were not evaluated.
- 12. OTHER PROBLEMS: None
- 13. This package contains reextractions, reanalyses or dilutions. Upon reviewing the QA results, the following Form 1(s) are identified to be used.

None

DATA ASSESSMENT NARRATIVE (INORGANICS)

INORGANIC DATA ASSESSMENT NARRATIVE

Site:	Solutia W.G. Krummich	Plant (Drum Site)	Matrix: Soil	
SDG#	KOM011	Lab <u>Test America</u>		Water X
Contr	actor <u>Geotechnology Inc</u>	. Reviewer Annette G	uilds-MJW	Other
A.2.1	Validation Flags The considered by the data us	following flags have been apper.	lied in red by the data val	idator and must be
	J- This flag indicates the	result qualified as estimated		
		wn through a sample result inc ant errors based on documente		
	Fully Usable Data-	he results that do not carry "J"	or "red-line" are fully usa	ble.
	Contractual Qualifiers-B-20 of SOW ILM01.0.	The legend of contractual qua	lifiers applied by the lab o	n Form I's is found on page
A.2.2	The data assessment is gi	ven below.		
Sa		ne exception of Iron (Total a M-31A-0211-F(0.2), GM-58A ix spike.		
		nmarize additional comments mmunication with the laborato		
cl qı el	arified that CCV's/CCB's nality with LCS/LCSD. T	d on Form II for Alkalinity and are not analyzed for Alkalinity hus Form II was prepared in er Analysis Run Log) pages 633-6	y and Carbon Dioxide. Theror and pages 613 and 614	lese analyses are checked for 4 should be ignored or
		od blank listed and page 45 is 6, 619, and 620 for the correct		r Alkalinity/Carbon
A.2.3	Contract-Problem/Non-Co	ompliance		
		ntrol for Iron but the laboratory n I's). Only the matrix spike r		
	Reviewer: <u>Annel</u> Approval:	Signature Signature Signature	550	<u>4/21/2011</u> <u>4/21/2011</u>
	*****	Page 1 of 1		

Summary Data Qualifiers

Summary of Sample Data Qualifiers

SDG # KOM011 Site Name Solutia W.G. Krummrich Plant (Drum Site)

Client ID	Lab ID	Matrix	Fe			
GM-31A-0211	680-65900-1	Water	J			
GM-31A-0211-F(0.2)	680-65900-2	Water	J			
GM-31A-0211-AD	680-65900-3FD	Water				
GM-58A-0211	680-65900-4	Water	J			
GM-58A-0211-F(0.2)	680-65900-5	Water	J	40		
GM-58A-1210-EB	680-65900-6EB	Water		the state of the s		
		2000.000	79			
				8		
		100012000				
		0200000	200722			
					- Wall-1998	0.446.400 gg/
	300000					
			-219			
			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		2000, 2000, 2000	
	30,200					72 75 75 75 75

Data Outlier Forms

Samples		* * * *	55	Control	0
Affected	Matrix	Analyte	Percent Recovery	Limits	Qualifier
GM-58A-0211	Water	Iron	50.0%	75-125%	J
GM-58A-0211-F(0.2)	Water	Iron	50.0%	75-125%	J
GM-31A-0211	Water	Iron	50.0%	75-125%	J
GM-31A-0211-F(0.2)	Water	Iron	50.0%	75-125%	J
				y T	
				W-932 S	
					Marcon
					vi
			Statute de la companya del companya de la companya del companya de la companya de	2 48	
201					
			1927	19 - CW - 15	W. C.
-					
					10 to

- 10.000 W 10.00					
		 			

Total and Dissolved Analyses

Sample	Analyte	Total Amt (mg/L)	Dissolved Amt (mg/L)	Qualifier
GM-31A-0211	Iron	6.90	0.05	none
GM-31A-0211	Manganese	0.910	0.79	none
GM-58A-0211	Iron	10.00	0.09	none
GM-58A-0211	Manganese	1.400	1.40	none
GM-31A-0211	Organic Carbon	3.70	4.0	none
GM-58A-0211	Organic Carbon	4.900	4.3	none
JII. 00/1 02/1	Organio Gangon		117	***********
				- n-n-n-
-				- Pr. 18
-				
				100
177 <u>-</u>				
	100			
		200		
	25 E)			
	1000			
	11 5 5 6 6 7 6			
				7
2-12-William 2				
	-			

CERTIFICATES OF ANALYSIS (COA's)

with Data Validation Qualifiers Added

1A-IN INORGANIC ANALYSIS DATA SHEET METALS - TOTAL RECOVERABLE

Client Sample ID: GM-31A-0211 Lab Sample ID: 680-65900-1

Lab Name: TestAmerica Savannah Job No.: 680-65900-1

SDG ID.: KOM011

Matrix: Water Date Sampled: 02/23/2011 13:30

Reporting Basis: WET Date Received: 02/24/2011 09:23

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-89-6	Iron	6.9	0.050	0.024	mg/L		7	1	6010B
7439-96-5	Manganese	0.91	0.010	0.0030	mg/L		9	1	6010B

Page 423 of 809

1A-IN INORGANIC ANALYSIS DATA SHEET METALS - DISSOLVED

Client Sample ID: GM-31A-0211-F(0.2)

Lab Sample ID: 680-65900-2

Lab Name: TestAmerica Savannah

Job No.: 680-65900-1

SDG ID.: KOM011

Matrix: Water

Date Sampled: 02/23/2011 13:30

Reporting Basis: WET

Date Received: 02/24/2011 09:23

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-89-6	Iron, Dissolved	0.050	0.050	0.024	mg/L	U	T	1	6010B
7439-96-5	Manganese, Dissolved	0.79	0.010	0.0030	ma/L			1	6010B

Page 424 of 809

1A-IN INORGANIC ANALYSIS DATA SHEET METALS - TOTAL RECOVERABLE

Client Sample ID: GM-58A-0211 Lab Sample ID: 680-65900-4

Lab Name: TestAmerica Savannah Job No.: 680-65900-1

SDG ID.: KOM011

Matrix: Water Date Sampled: 02/23/2011 15:05

Reporting Basis: WET Date Received: 02/24/2011 09:23

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-89-6	Iron	10	0.050	0.024	mg/L		J	1	6010B
7439-96-5	Manganese	1.4	0.010	0.0030	mg/L			1	6010B

Page 425 of 809

1A-IN INORGANIC ANALYSIS DATA SHEET METALS - DISSOLVED

Client Sample ID: GM-58A-0211-F(0.2)

Lab Sample ID: 680-65900-5

Lab Name: TestAmerica Savannah

Job No.: 680-65900-1

SDG ID.: KOM011

Matrix: Water

Date Sampled: 02/23/2011 15:05

Reporting Basis: WET

Date Received: 02/24/2011 09:23

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-89-6	Iron, Dissolved	0.091	0,050	0.024	mg/L		15	1	6010B
7439-96-5	Manganese, Dissolved	1.4	0.010	0.0030	mg/L			1	6010B

Page 426 of 809