US ERA ARCHIVE DOCUMENT



Solutia Inc.

575 Maryville Centre Drive St. Louis, Missouri 63141

P.O. Box 66760 St. Louis, Missouri 63166-6760 *Tel* 314-674-1000

February 15, 2010

Mr. Kenneth Bardo - LU-9J U.S. EPA Region V Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507 **VIA FEDEX** 

Re:

PCB Groundwater Quality Assessment Program

4<sup>th</sup> Quarter 2009 Data Report

Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Mr. Bardo:

Enclosed please find the PCB Groundwater Quality Assessment Program 4<sup>th</sup> Quarter 2009 Data Report for Solutia Inc.'s W. G. Krummrich Plant, Sauget, IL.

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@solutia.com

Sincerely,

Gerald M. Rinaldi

Manager, Remediation Services

But M. Killi

**Enclosure** 

cc: Distribution List

## **DISTRIBUTION LIST**

PCB Groundwater Quality Assessment Program 4<sup>th</sup> Quarter 2009 Data Report Solutia Inc., W. G. Krummrich Plant, Sauget, IL

## **USEPA**

Leah Evison USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

## <u>IEPA</u>

James Moore IEPA Bureau of Land, 1021 North Grand Avenue East, Springfield, IL 62706

## **Booz Allen Hamilton**

Dan Briller Booz Allen Hamilton, 8283 Greensboro Drive, McLean, VA 22102

## **Solutia**

Justin Prien 500 Monsanto Avenue, Sauget, IL 62206-1198

## 4TH QUARTER 2009 DATA REPORT

# PCB GROUNDWATER QUALITY ASSESSMENT PROGRAM

SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared for Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

February 2010



URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 Project # **21562156.00008** 

1

1

3

3

4

5

| 1.0           | INTRODUCTION                                                    |
|---------------|-----------------------------------------------------------------|
| 2.0           | FIELD PROCEDURES                                                |
| 3.0           | LABORATORY PROCEDURES                                           |
| 4.0           | QUALITY ASSURANCE                                               |
| 5.0           | OBSERVATIONS                                                    |
| 6.0           | REFERENCES                                                      |
|               |                                                                 |
| LIST OF       | Figures                                                         |
|               | 1 Site Location Map                                             |
|               | 2 Former PCB Manufacturing Area Monitoring Well Locations       |
| <b>Figure</b> | 3 Potentiometric Surface Map – Middle / Deep Hydrogeologic Unit |

## **List of Tables**

Figure 4

Figure 5

| Table 1 | Monitoring Well Gauging Information                   |
|---------|-------------------------------------------------------|
| Table 2 | Groundwater & DNAPL Analytical Detections             |
| Table 3 | Monitoring Well PMA MW-1M Mann-Kendall Trend Analysis |
| Table 4 | Monitoring Well PMA MW-2M Mann-Kendall Trend Analysis |
| Table 5 | Monitoring Well PMA MW-3S Mann-Kendall Trend Analysis |
| Table 6 | Monitoring Well PMA MW-3M Mann-Kendall Trend Analysis |
| Table 7 | Monitoring Well PMA MW-4D Mann-Kendall Trend Analysis |
| Table 8 | Monitoring Well PMA MW-6D Mann-Kendall Trend Analysis |

## **List of Appendices**

| rms |
|-----|
|     |

**PCB Results - SHU Wells** 

PCB Results - MHU / DHU Wells

Appendix B Chains-of-Custody

Appendix C Quality Assurance Report

Appendix D Groundwater Analytical Results (with Data Review Sheets)

February 2010 i

#### 1.0 INTRODUCTION

This report presents the results of the 4th Quarter 2009 (4Q09) sampling event performed at the Solutia Inc. (Solutia) W.G. Krummrich Facility located in Sauget, Illinois (Site). This sampling event was conducted in accordance with the Revised PCB Groundwater Quality Assessment Program Work Plan (Solutia 2009). The Site location map is presented in **Figure 1**.

The PCB Groundwater Quality Assessment Program well network consists of ten monitoring wells, as follows (**Figure 2**):

- Two source area wells, PMAMW-4S and PMAMW-4D, are screened in the Shallow Hydrogeologic Unit (SHU) (designated with an "S") and Deep Hydrogeologic Unit (DHU) (designated with a "D"), respectively.
- Three well clusters (PMAMW-1S/M, PMAMW-2S/M and PMAMW-3S/M) are located down-gradient of the source area. These clusters include wells screened in the SHU and Middle Hydrogeologic Unit (MHU) (designated with an "M").
- Two individual wells designated PMAMW-5M and PMAMW-6D are located further downgradient of the source area, with PMAMW-5M screened in the MHU and PMAMW-6D screened in the DHU.

Groundwater samples were collected from nine of the ten monitoring wells during the 4Q09 sampling event. A dense non-aqueous phase liquid (DNAPL) sample was collected from monitoring well PMAMW-4S based on the presence of DNAPL in the monitoring well during sampling.

Field sampling activities were conducted in accordance with the procedures outlined in the Revised PCB Groundwater Quality Assessment Program Work Plan, including the collection of appropriate quality assurance and quality control (QA/QC) samples. The following section summarizes the field investigative procedures.

## 2.0 FIELD PROCEDURES

URS Corporation (URS) conducted the 4Q09 PCB Groundwater Quality Assessment Program field activities between November 13 and 24, 2009.

**Groundwater Level Measurements** – An oil/water interface probe was used to measure depth to static groundwater levels and determine the presence of non-aqueous phase liquids (NAPL) in the PCB Groundwater Quality Assessment Program well network. A dense phase NAPL was detected in monitoring well PMAMW-4S. Depth to groundwater measurements were collected from accessible existing wells (i.e., GM-, K- , PSMW- and PMA-series) and piezometers clusters (installed for the Sauget Area 2 RI/FS and WGK CA-750 Environmental Indicator projects) specified in the Revised PCB Groundwater Quality Assessment Program Work Plan.

Well gauging information for the 4Q09 event is presented in **Table 1**. As the middle and deep hydrogeologic units are the primary migration pathway for constituents present in groundwater at the WGK Facility, a groundwater potentiometric surface map based on water level data from wells screened in the MHU and DHU is presented as **Figure 3**.

**Groundwater Sampling** - Low-flow sampling techniques were used for groundwater sample collection. At each monitoring well, disposable, low-density polyethylene tubing was attached to a submersible pump, which was then lowered into the well to the middle of the screened interval. Monitoring wells were purged at a rate no more than 400 mL/minute to minimize drawdown. If significant drawdown occurred, flow rates were reduced.

Drawdown was measured periodically throughout purging to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen. Once the flow rate and drawdown were stable, field measurements were collected approximately every three to five minutes. Purging of a well was considered complete when the following water quality parameters remained stable over three consecutive flow-thru cell volumes:

| Parameter                           | Stabilization Guidelines                      |
|-------------------------------------|-----------------------------------------------|
| Dissolved Oxygen (DO)               | +/- 10% or +/-0.2 mg/L, whichever is greatest |
| Oxidation-Reduction Potential (ORP) | +/- 20 mV                                     |
| pН                                  | +/- 0.2 units                                 |
| Specific Conductivity               | +/- 3%                                        |

Sampling commenced upon completion of purging. Prior to sample collection, the flow-thru cell was bypassed to allow for collection of uncompromised groundwater. Consistent with the work plan, samples were collected at a flow rate less than or equal to the rate at which stabilization was achieved.

Quality Assurance/Quality Control (QA/QC) samples consisting of analytical duplicates (AD) and equipment blanks (EB) were collected at a rate of 10% and matrix spike/matrix spike duplicates (MS/MSD) were collected at a rate of 5%, complying with the work plan. All samples were submitted to TestAmerica for PCB analysis.

Each sample was labeled immediately following collection. The sample identification system used for each sample involved the following nomenclature "PMAMW#-MMYY-QAC" where:

- PMAMW# Monitoring Well Location (PCB Manufacturing Area (PMA)) and Number
- **MMYY** Month and year of sampling quarter, e.g.: November (fourth quarter), 2009 (1109)
- QAC will denote QA/QC samples (when applicable):
  - o **EB** equipment blank
  - o AD analytical duplicate
  - MS or MSD Matrix Spike or Matrix Spike Duplicate

**DNAPL Sampling** – An interface probe detected 0.38 feet of DNAPL in monitoring well PMAMW-4S during monitoring well gauging prior to sampling. Consequently, a DNAPL sample was collected. Using a process similar to groundwater sampling, DNAPL was pumped through polyethylene tubing into a 4 ounce glass sample container. Sample PMAMW04S-1109-DNAPL was submitted to TestAmerica for PCB analysis.

Upon collection and labeling, sample containers were immediately placed inside an iced cooler, packed in such a way as to help prevent breakage and maintain inside temperature at or below approximately 4°C. Field personnel recorded the project identification and number, sample description/location, required analysis, date and time of sample collection, type and matrix of sample, number of sample containers, analysis requested/comments, and sampler signature/date/time, with permanent ink on the chain-of-custody (COC). Prior to shipment, coolers were sealed between the lid and sides of the cooler with a custody seal, and then shipped to TestAmerica in Savannah, Georgia by means of overnight delivery service for groundwater (FedEx/UPS), and ground delivery for DNAPL (UPS). Field sampling data sheets are included in **Appendix A**, COC forms are included in **Appendix B**.

### 3.0 LABORATORY PROCEDURES

Samples were analyzed by TestAmerica for PCBs using Method 680.

## 4.0 QUALITY ASSURANCE

Analytical data were reviewed for quality and completeness, as described in the Revised PCB Water Quality Assessment Work Plan (Solutia 2009). Data qualifiers were added, as appropriate, and are included on the data tables and the laboratory result pages. The Quality Assurance report is included as **Appendix C**. The laboratory reports, along with data validation review sheets are included in **Appendix D**.

A total of 14 samples (nine investigative groundwater samples, one DNAPL, one field duplicate, one equipment blank, and an MS/MSD pair) were prepared and analyzed by TestAmerica for PCBs. Results for the various analyses were submitted as sample delivery groups (SDGs) KPM035 and KPM036. The samples contained in each SDG are listed below:

## **KPM035**

## KPM036

PMA-MW-4S-1109-DNAPL

PMA-MW-01M-1109
PMA-MW-01S-1109-MS
PMA-MW-01S-1109-MSD
PMA-MW-01S-1109
PMA-MW-02M-1109-AD
PMA-MW-02S-1109-EB
PMA-MW-02S-1109
PMA-MW-03M-1109
PMA-MW-03S-1109
PMA-MW-04D-1109
PMA-MW-05M-1109
PMA-MW-05M-1109
PMA-MW-06D-1109

Evaluation of the analytical data followed procedures outlined in the USEPA National Functional Guidelines for Superfund Organic Data Review (USEPA 2008) and the Revised PCB Water Quality Assessment Work Plan (Solutia 2009). Based on the above mentioned criteria, results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on LCS, surrogate and field duplicate data were achieved for these SDGs to meet the project objectives. Completeness, which is defined to be the percentage of analytical results which are judged to be valid, including estimated detect/nondetect (J/UJ) data was 100 percent.

## 5.0 OBSERVATIONS

This section presents a brief summary of the groundwater analytical results from the 4Q09 PCB Groundwater Quality Assessment sampling event. A summary of the laboratory results is provided in **Table 2** and the entire laboratory data package is provided in **Appendix D**.

## **Shallow Hydrogeologic Unit**

A DNAPL sample was collected from source area SHU monitoring well PMAMW-4S, and total PCBs were detected at a concentration of 512,000,000 µg/kg. Historically, measurable DNAPL has been observed in PMAMW-4S during previous sampling events.

PCBs were detected in one of the three down-gradient PCB Groundwater Quality Assessment Program SHU monitoring wells (PMAMW-3S) at a concentration of 2.03 µg/L. Such data

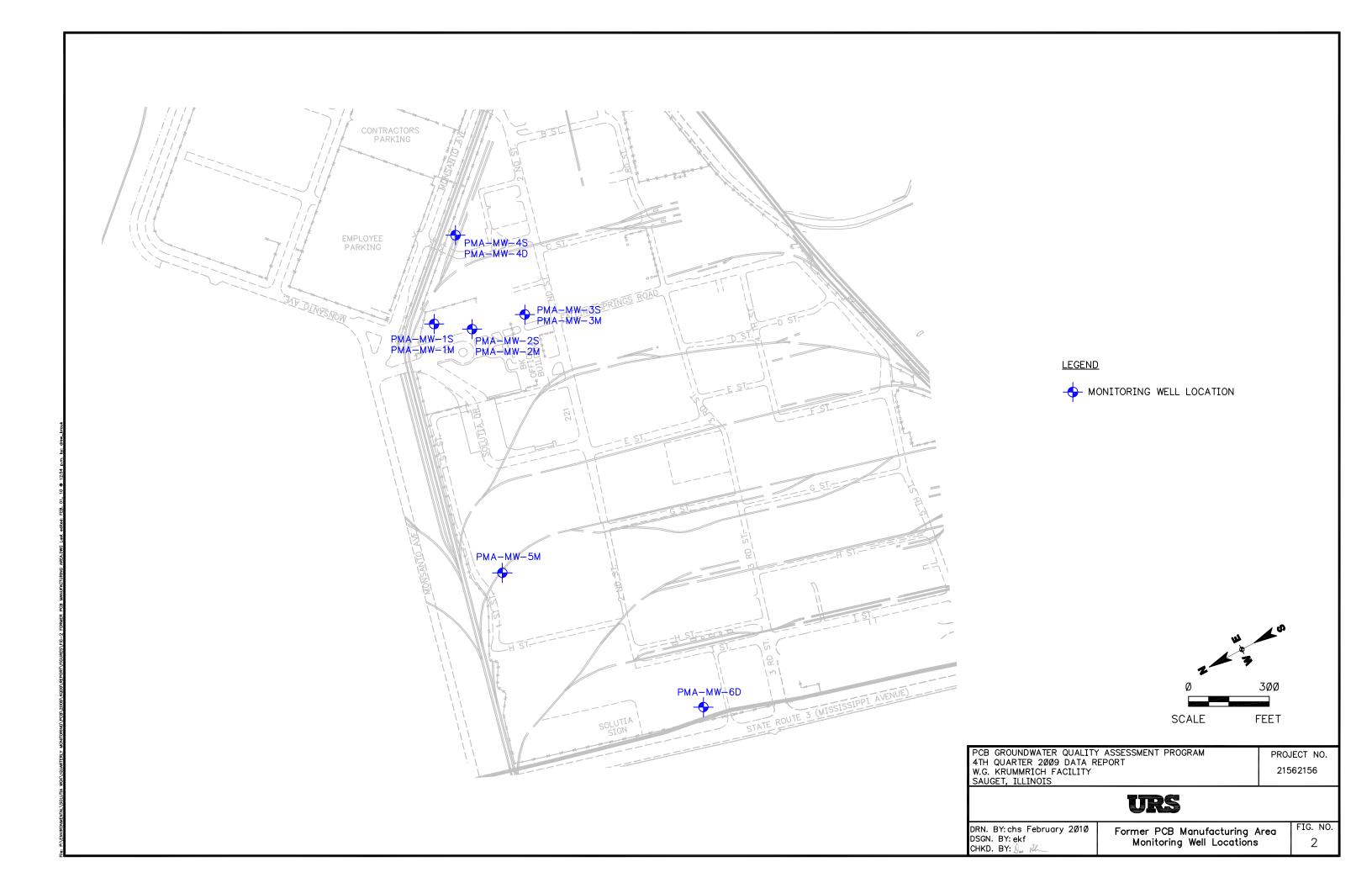
indicates that PCBs in the SHU are attenuating over the 300 to 400 ft distance between PMAMW-4S and the three downgradient monitoring wells. PCB sampling results for the SHU are presented on **Figure 4**.

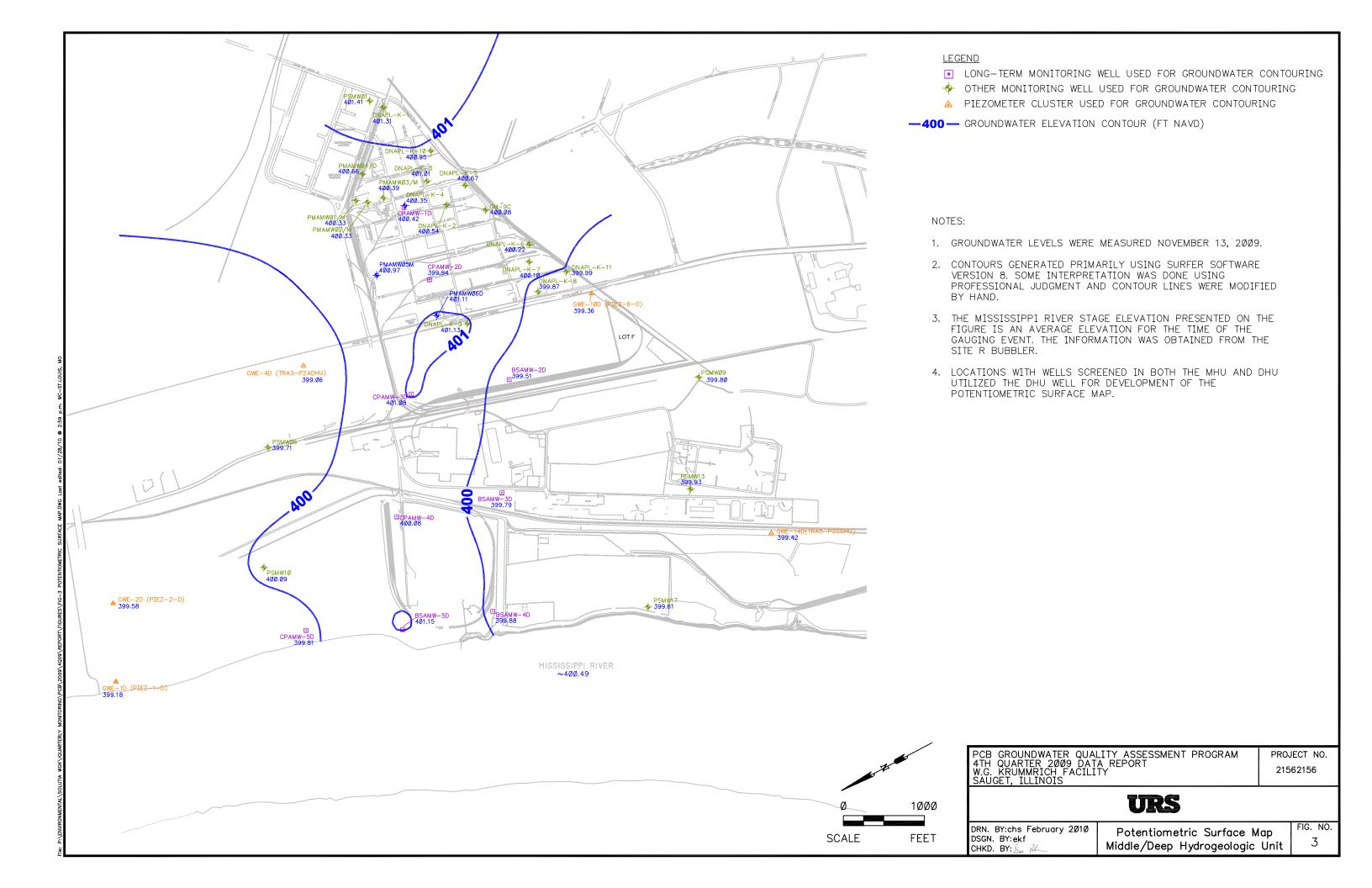
## Middle/Deep Hydrogeologic Unit

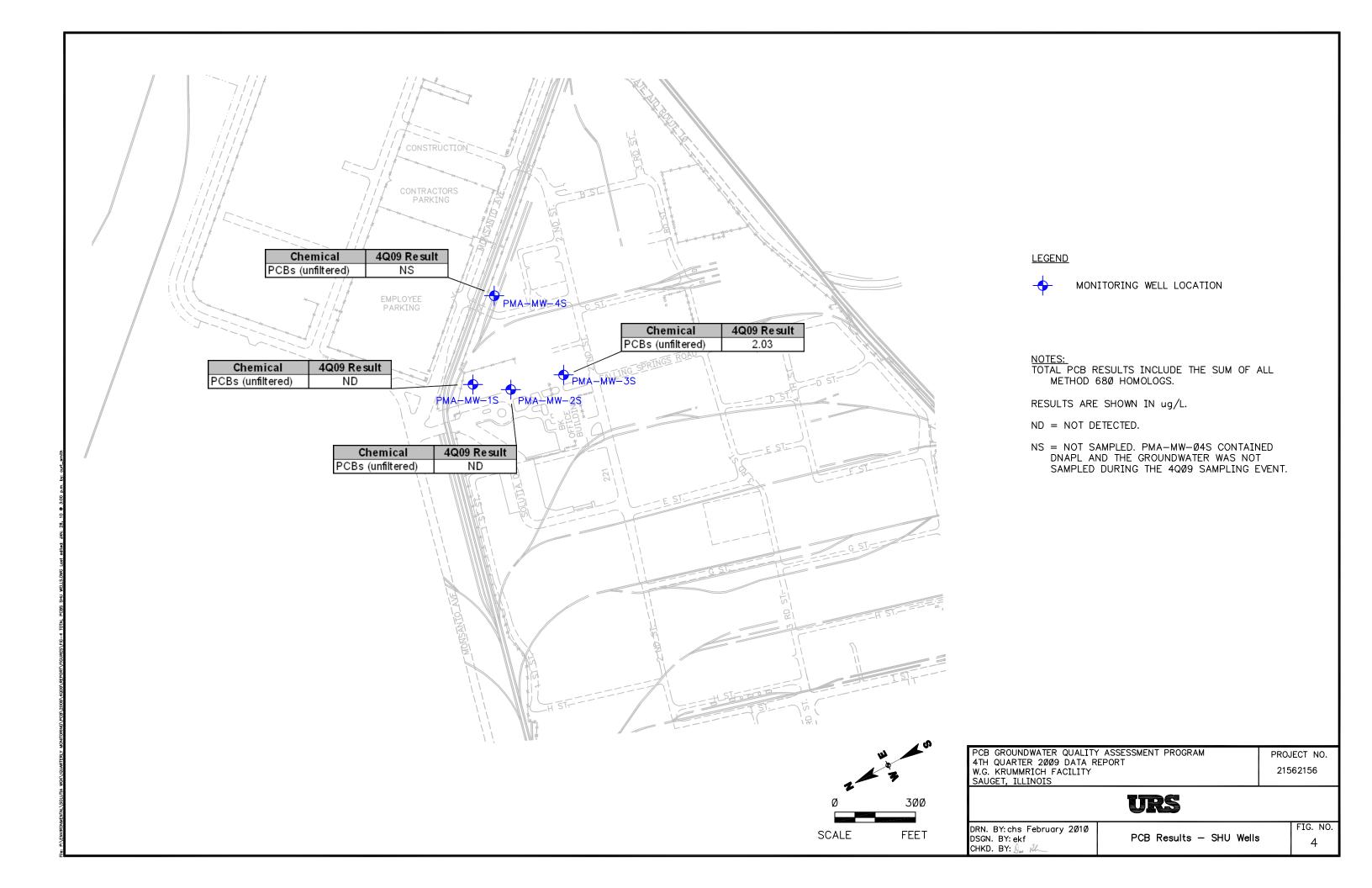
Laboratory analytical results for monitoring well PMAMW-4D, located in the Former PCB Manufacturing Area, indicated a total PCB concentration of 0.61  $\mu$ g/L for the 4Q09 sampling event. PCBs were also detected in four of the five downgradient monitoring wells at concentrations of 0.27  $\mu$ g/L (PMAMW-1M), 2.7  $\mu$ g/L (PMAMW-2M)/(3.4  $\mu$ g/L duplicate), 0.85  $\mu$ g/L (PMAMW-3M), and 0.3  $\mu$ g/L (PMAMW-6D). PCBs were not detected in the groundwater sample collected from monitoring well PMAMW-5M. **Figure 5** displays the 4Q09 PCB sampling results for the MHU/DHU.

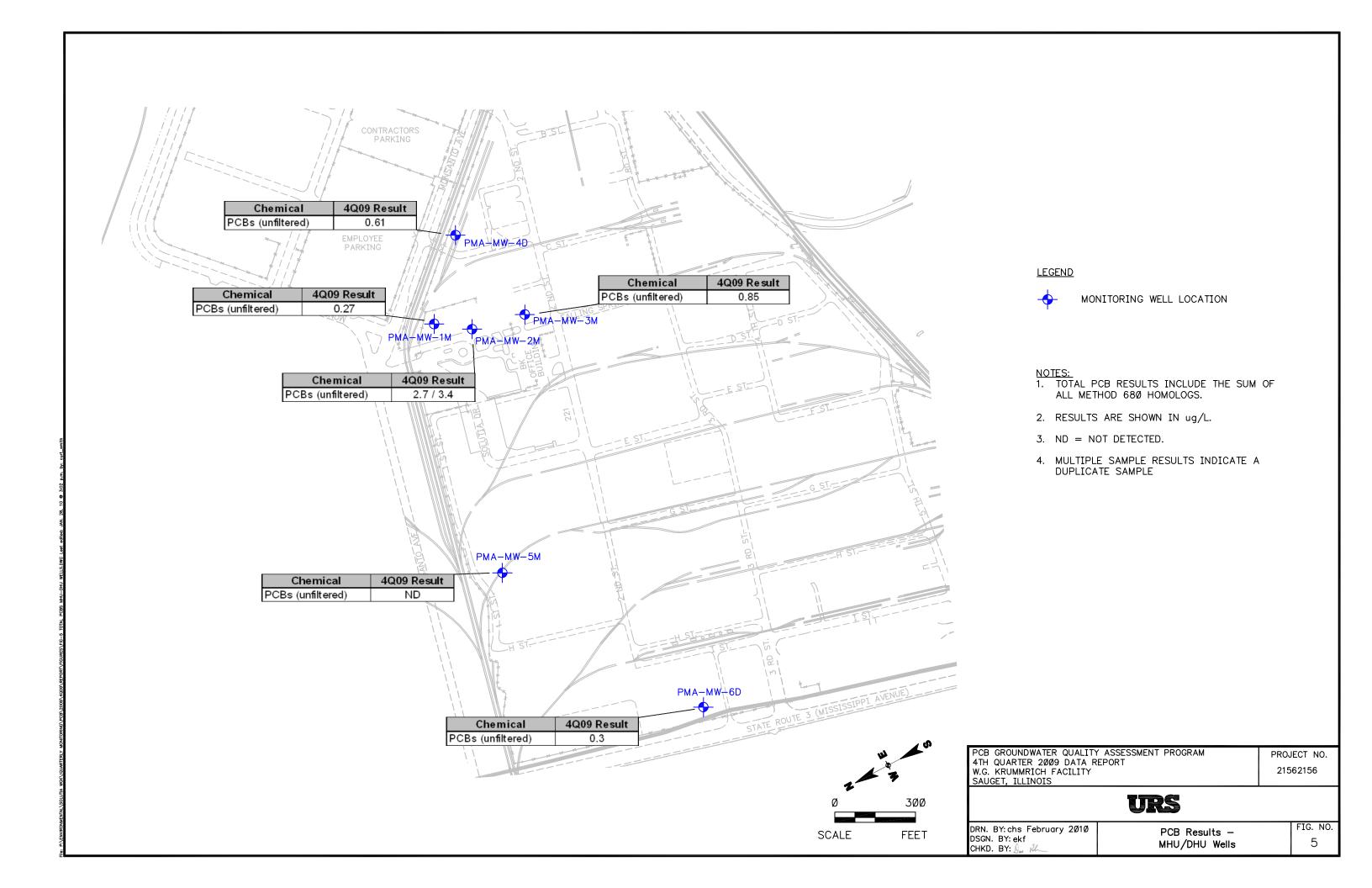
The 4Q09 sampling event was the sixth event conducted under the PCB Groundwater Quality Assessment Program. Mann-Kendall trend analyses of total PCBs in unfiltered samples of groundwater from monitoring wells within (PMAMW-4D) or downgradient of (PMAMW-1M, -2M, -3S, -3M, and -6D) the former PCB Manufacturing Area are presented in **Tables 3** through **8**. The data appear to exhibit an upward trend in concentrations at monitoring well PMAMW-2M at this time, but no trends at any of the other wells.


After eight quarters of sampling under the PCB Groundwater Quality Assessment Program, the Mann-Whitney U Test will be performed to determine whether or not concentrations in the second four quarters were higher or lower than the first four quarters. Linear regression analysis will be done for the eight quarters of data provided the data distribution allows the use of parametric statistical analysis.


## 6.0 REFERENCES


Solutia Inc, 2009. Revised PCB Groundwater Quality Assessment Program Work Plan, W.G. Krummrich Facility, Sauget, IL, Prepared by URS Corporation, May 2009.


U.S. Environmental Protection Agency (USEPA), 2008. National Functional Guidelines for Superfund Organic Data Review.


## **Figures**











## **Tables**

Table 1
Monitoring Well Gauging Information

|                         |                                |                                | Construct                                  | ion Details                                   |                                          |                                             | No                               | vember 13, 20                  | 009                           |
|-------------------------|--------------------------------|--------------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------------|---------------------------------------------|----------------------------------|--------------------------------|-------------------------------|
| Well ID                 | Ground<br>Elevation<br>(feet)* | Casing<br>Elevation*<br>(feet) | Depth to<br>Top of<br>Screen (feet<br>bgs) | Depth to<br>Bottom of<br>Screen (feet<br>bgs) | Top of<br>Screen<br>Elevation*<br>(feet) | Bottom of<br>Screen<br>Elevation*<br>(feet) | Depth to<br>Water<br>(feet btoc) | Product<br>Thickness<br>(feet) | Water<br>Elevation*<br>(feet) |
| Shallow Hydrogeologic U | Init (SHU 395-                 | 380 feet NAV                   |                                            |                                               |                                          |                                             |                                  |                                |                               |
| PMAMW-1S                | 410.30                         | 410.06                         | 20.18                                      | 25.18                                         | 390.12                                   | 385.12                                      | 10.06                            |                                | 400.00                        |
| PMAMW-2S                | 412.27                         | 411.66                         | 22.94                                      | 27.94                                         | 389.33                                   | 384.33                                      | 11.35                            |                                | 400.31                        |
| PMAMW-3S                | 412.37                         | 412.06                         | 22.71                                      | 27.71                                         | 389.66                                   | 384.66                                      | 11.71                            |                                | 400.35                        |
| PMAMW-4S                | 411.09                         | 410.43                         | 20.99                                      | 25.99                                         | 390.10                                   | 385.10                                      | 10.34                            | 0.38**                         | 400.09                        |
| Middle Hydrogeologic Un | it (MHU 380-3                  | 350 feet NAVD                  | 88)                                        |                                               |                                          |                                             |                                  |                                |                               |
| PMAMW-1M                | 410.32                         | 410.08                         | 54.54                                      | 59.54                                         | 355.78                                   | 350.78                                      | 9.75                             |                                | 400.33                        |
| PMAMW-2M                | 412.26                         | 411.93                         | 56.87                                      | 61.87                                         | 355.39                                   | 350.39                                      | 11.60                            | -                              | 400.33                        |
| PMAMW-3M                | 412.36                         | 412.10                         | 57.07                                      | 62.07                                         | 355.29                                   | 350.29                                      | 11.71                            | -                              | 400.39                        |
| PMAMW-5M                | 411.27                         | 410.97                         | 52.17                                      | 57.17                                         | 359.10                                   | 354.10                                      | 10.00                            | -                              | 400.97                        |
| PSMW-1                  | 409.37                         | 412.59                         | 34.56                                      | 39.56                                         | 374.81                                   | 369.81                                      | 11.18                            | -                              | 401.41                        |
| Deep Hydrogeologic Unit | (DHU 350 fee                   | et NAVD 88 - E                 | Bedrock)                                   |                                               |                                          |                                             |                                  |                                |                               |
| BSAMW-2D                | 412.00                         | 415.13                         | 65.79                                      | 70.79                                         | 346.21                                   | 341.21                                      | 15.62                            |                                | 399.51                        |
| BSAMW-3D                | 412.91                         | 415.74                         | 104.80                                     | 109.80                                        | 308.11                                   | 303.11                                      | 15.95                            |                                | 399.79                        |
| BSAMW-4D                | 425.00                         | 424.69                         | 118.54                                     | 123.54                                        | 306.46                                   | 301.46                                      | 24.81                            |                                | 399.88                        |
| BSAMW-5D                | 420.80                         | 420.49                         | 116.25                                     | 120.85                                        | 304.95                                   | 299.95                                      | 19.34                            |                                | 401.15                        |
| CPAMW-1D                | 408.62                         | 408.32                         | 66.12                                      | 71.12                                         | 342.50                                   | 337.50                                      | 7.90                             |                                | 400.42                        |
| CPAMW-2D                | 408.51                         | 408.20                         | 99.96                                      | 104.96                                        | 308.55                                   | 303.55                                      | 8.26                             | -                              | 399.94                        |
| CPAMW-3D                | 410.87                         | 410.67                         | 101.90                                     | 106.90                                        | 308.97                                   | 303.97                                      | 9.59                             | 1                              | 401.08                        |
| CPAMW-4D                | 421.57                         | 421.20                         | 116.44                                     | 121.44                                        | 305.13                                   | 300.13                                      | 21.12                            |                                | 400.08                        |
| CPAMW-5D                | 411.03                         | 413.15                         | 105.51                                     | 110.51                                        | 305.52                                   | 300.52                                      | 13.34                            | -                              | 399.81                        |
| DNAPL-K-1               | 413.07                         | 415.56                         | 108.2                                      | 123.2                                         | 304.87                                   | 289.87                                      | 14.25                            | -                              | 401.31                        |
| DNAPL-K-2               | 407.94                         | 407.72                         | 97.63                                      | 112.63                                        | 310.31                                   | 295.31                                      | 7.18                             |                                | 400.54                        |
| DNAPL-K-3               | 412.13                         | 411.91                         | 104.8                                      | 119.8                                         | 307.33                                   | 292.33                                      | 10.90                            | -                              | 401.01                        |
| DNAPL-K-4               | 409.48                         | 409.15                         | 102.55                                     | 117.55                                        | 306.93                                   | 291.93                                      | 8.80                             |                                | 400.35                        |
| DNAPL-K-5               | 412.27                         | 411.91                         | 102.15                                     | 117.15                                        | 310.12                                   | 295.12                                      | 11.24                            |                                | 400.67                        |
| DNAPL-K-6               | 410.43                         | 410.09                         | 102.47                                     | 117.47                                        | 307.96                                   | 292.96                                      | 9.87                             | -                              | 400.22                        |
| DNAPL-K-7               | 408.32                         | 407.72                         | 100.4                                      | 115.4                                         | 307.92                                   | 292.92                                      | 7.62                             | -                              | 400.10                        |
| DNAPL-K-8               | 408.56                         | 411.38                         | 102.65                                     | 117.65                                        | 305.91                                   | 290.91                                      | 11.51                            |                                | 399.87                        |
| DNAPL-K-9               | 406.45                         | 405.97                         | 97.42                                      | 112.42                                        | 309.03                                   | 294.03                                      | 4.84                             |                                | 401.13                        |
| DNAPL-K-10              | 413.50                         | 413.25                         | 105.43                                     | 120.43                                        | 308.07                                   | 293.07                                      | 12.30                            | -                              | 400.95                        |
| DNAPL-K-11              | 412.20                         | 411.78                         | 105.46                                     | 120.46                                        | 306.74                                   | 291.74                                      | 11.79                            | -                              | 399.99                        |
| GM-9C                   | 409.54                         | 411.21                         | 88                                         | 108                                           | 321.54                                   | 301.54                                      | 11.13                            |                                | 400.08                        |

W.G. Krummrich Facility - Sauget, Illinois PCB Groundwater Quality Assessment Program

Table 1
Monitoring Well Gauging Information

|                         |                                |                                       | Construct                                  | ion Details                                   |                                          |                                             | No                               | vember 13, 20                  | 009                           |  |  |  |  |  |
|-------------------------|--------------------------------|---------------------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------------|---------------------------------------------|----------------------------------|--------------------------------|-------------------------------|--|--|--|--|--|
| Well ID                 | Ground<br>Elevation<br>(feet)* | Casing<br>Elevation*<br>(feet)        | Depth to<br>Top of<br>Screen (feet<br>bgs) | Depth to<br>Bottom of<br>Screen (feet<br>bgs) | Top of<br>Screen<br>Elevation*<br>(feet) | Bottom of<br>Screen<br>Elevation*<br>(feet) | Depth to<br>Water<br>(feet btoc) | Product<br>Thickness<br>(feet) | Water<br>Elevation*<br>(feet) |  |  |  |  |  |
| Deep Hydrogeologic Unit | (DHU 350 fee                   | ) feet NAVD 88 - Bedrock) (continued) |                                            |                                               |                                          |                                             |                                  |                                |                               |  |  |  |  |  |
| GWE-1D (PIEZ-1D)        | 412.80                         | 415.60                                | 117                                        | 127                                           | 295.80                                   | 285.80                                      | 16.42                            |                                | 399.18                        |  |  |  |  |  |
| GWE-2D (PIEZ-2D)        | 417.45                         | 417.14                                | 127                                        | 137                                           | 290.45                                   | 280.45                                      | 17.56                            |                                | 399.58                        |  |  |  |  |  |
| GWE-4D (TRA3-PZADHU)    | 406.05                         | 405.74                                | 74                                         | 80                                            | 332.05                                   | 326.05                                      | 6.68                             |                                | 399.06                        |  |  |  |  |  |
| GWE-10D (PIEZ-6D)       | 410.15                         | 412.87                                | 102.5                                      | 112.5                                         | 307.65                                   | 297.65                                      | 13.51                            |                                | 399.36                        |  |  |  |  |  |
| GWE-14D (TRA5-PZCDHU)   | 420.47                         | 422.90                                | 90                                         | 96                                            | 330.47                                   | 324.47                                      | 23.48                            |                                | 399.42                        |  |  |  |  |  |
| PMAMW-4D                | 411.22                         | 410.88                                | 68.84                                      | 73.84                                         | 342.38                                   | 337.38                                      | 10.22                            |                                | 400.66                        |  |  |  |  |  |
| PMAMW-6D                | 407.63                         | 407.32                                | 96.49                                      | 101.49                                        | 311.14                                   | 306.14                                      | 6.21                             |                                | 401.11                        |  |  |  |  |  |
| PSMW-6                  | 404.11                         | 406.63                                | 99.80                                      | 104.80                                        | 304.31                                   | 299.31                                      | 6.92                             |                                | 399.71                        |  |  |  |  |  |
| PSMW-9                  | 403.92                         | 403.52                                | 100.40                                     | 105.40                                        | 303.52                                   | 298.52                                      | 3.72                             |                                | 399.80                        |  |  |  |  |  |
| PSMW-10                 | 409.63                         | 412.18                                | 101.23                                     | 106.23                                        | 308.40                                   | 303.40                                      | 12.09                            |                                | 400.09                        |  |  |  |  |  |
| PSMW-13                 | 405.80                         | 405.53                                | 106.08                                     | 111.08                                        | 299.72                                   | 294.72                                      | 5.60                             |                                | 399.93                        |  |  |  |  |  |
| PSMW-17                 | 420.22                         | 423.26                                | 121.25                                     | 126.25                                        | 298.97                                   | 293.97                                      | 23.65                            |                                | 399.61                        |  |  |  |  |  |

#### Notes:

\* - Elevation based upon North American Vertical Datum (NAVD) 88 datum

bgs - below ground surface

btoc - Below top of casing

<sup>\*\* -</sup> Measured on November 24, 2009

Table 2
Groundwater and DNAPL Analytical Detections

| Sample ID                  | Sample<br>Date | Units | Monochlorobiphenyl | Dichlorobiphenyl | Trichlorobiphenyl | Tetrachlorobiphenyl | Pentachlorobiphenyl | Hexachlorobiphenyl | Heptachlorobiphenyl | Octachlorobiphenyl | Nonachlorobiphenyl | Decachlorobiphenyl |
|----------------------------|----------------|-------|--------------------|------------------|-------------------|---------------------|---------------------|--------------------|---------------------|--------------------|--------------------|--------------------|
| Shallow Hydrologic Unit    |                |       |                    |                  |                   |                     |                     |                    |                     |                    |                    |                    |
| PMAMW-1S-0809              | 11/23/2009     | μg/L  | < 0.095            | < 0.095          | < 0.095           | <0.19               | <0.19               | <0.19              | <0.29               | <0.29              | <0.48              | <0.48              |
| PMAMW-2S-1109              | 11/23/2009     | μg/L  | < 0.094            | < 0.094          | < 0.094           | <0.19               | <0.19               | <0.19              | <0.28               | <0.28              | <0.47              | <0.47              |
| PMAMW-3S-1109              | 11/24/2009     | μg/L  | 1.8                | 0.23             | < 0.095           | <0.19               | <0.19               | <0.19              | < 0.29              | <0.29              | <0.48              | <0.48              |
| PMAMW-4S-1109-DNAPL        | 11/24/2009     | μg/kg | <370,000 J         | 6,000,000 J      | 51,000,000 J      | 110,000,000 J       | 88,000,000 J        | 140,000,000 J      | 97,000,000 J        | 20,000,000 J       | <1,900,000 J       | <1,900,000 J       |
| Middle / Deep Hydrologic U | nit            |       |                    |                  |                   |                     |                     |                    |                     |                    |                    |                    |
| PMAMW-1M-1109              | 11/23/2009     | μg/L  | 0.27               | < 0.095          | < 0.095           | <0.19               | <0.19               | <0.19              | <0.29               | <0.29              | <0.48              | <0.48              |
| PMAMW-2M-1109              | 11/23/2009     | μg/L  | 2.7                | < 0.095          | < 0.095           | <0.19               | <0.19               | <0.19              | <0.29               | <0.29              | <0.48              | <0.48              |
| PMAMW-2M-1109-AD           | 11/23/2009     | μg/L  | 3.4                | < 0.094          | < 0.094           | <0.19               | <0.19               | <0.19              | <0.28               | <0.28              | < 0.47             | <0.47              |
| PMAMW-3M-1109              | 11/24/2009     | μg/L  | 0.85               | < 0.094          | < 0.094           | <0.19               | <0.19               | <0.19              | <0.28               | <0.28              | < 0.47             | <0.47              |
| PMAMW-4D-1109              | 11/24/2009     | μg/L  | 0.27               | 0.34             | < 0.095           | <0.19               | <0.19               | <0.19              | <0.29               | <0.29              | <0.48              | <0.48              |
| PMAMW-5M-1109              | 11/23/2009     | μg/L  | < 0.095            | < 0.095          | < 0.095           | <0.19               | <0.19               | <0.19              | <0.29               | <0.29              | <0.48              | <0.48              |
| PMAMW-6D-1109              | 11/23/2009     | μg/L  | 0.3                | <0.094           | <0.094            | <0.19               | <0.19               | <0.19              | <0.28               | <0.28              | <0.47              | <0.47              |

#### Notes:

 $\mu$ g/L = micrograms per liter  $\mu$ g/Kg = micrograms per kilogram

< = Result is non-detect, less than the reporting limit

AD = Analytical Duplicate

J = Estimated value

**BOLD** indicates concentration greater than the reporting limit

4<sup>th</sup> Quarter 2009 Data Report 1 of 1 February 2010

# Table 3 Monitoring Well PMA MW-1M Mann-Kendall Trend Analysis

|                     |         |         | W.G.Krur | nmrich Fa | cility PCB | Mfg. Are | a Monitor | ing Well M | W-1M Ma | nn-Kenda | II Trend A | nalysis  |          |          |          |       |
|---------------------|---------|---------|----------|-----------|------------|----------|-----------|------------|---------|----------|------------|----------|----------|----------|----------|-------|
|                     | Event 1 | Event 2 | Event 3  | Event 4   | Event 5    | Event 6  | Event 7   | Event 8    | Event 9 | Event 10 | Event 11   | Event 12 | Event 13 | Event 14 | Event 15 | Row   |
|                     | 2Q06    | 3Q06    | 4Q06     | 1Q07      | 2Q07       | 3Q07     | 4Q07      | 1Q08       | 2Q08    | 3Q08     | 4Q08       | 1Q09     | 2Q09     | 3Q09     | 4Q09     | Total |
| Total PCBs, μg/L    | ND      | 0.24    | 0.21     | 0.17      | 0.26       | 0.29     | 48        | ND         | 0.18    | 0.38     | 0.26       | 0.16     | 0.21     | 0.27     | 0.27     |       |
| Compare to Event 1  |         | 1       | 1        | 1         | 1          | 1        | 1         | NA         | 1       | 1        | 1          | 1        | 1        | 1        | 1        | 13    |
| Compare to Event 2  |         |         | -1       | -1        | 1          | 1        | 1         | -1         | -1      | 1        | 1          | -1       | -1       | 1        | 1        | 1     |
| Compare to Event 3  |         |         |          | -1        | 1          | 1        | 1         | -1         | -1      | 1        | 1          | -1       | 0        | 1        | 1        | 3     |
| Compare to Event 4  |         |         |          |           | 1          | 1        | 1         | -1         | 1       | 1        | 1          | -1       | 1        | 1        | 1        | 7     |
| Compare to Event 5  |         |         |          |           |            | 1        | 1         | -1         | -1      | 1        | 0          | -1       | -1       | 1        | 1        | 1     |
| Compare to Event 6  |         |         |          |           |            |          | 1         | -1         | -1      | 1        | -1         | -1       | -1       | -1       | -1       | -5    |
| Compare to Event 7  |         |         |          |           |            |          |           | -1         | -1      | -1       | -1         | -1       | -1       | -1       | -1       | -8    |
| Compare to Event 8  |         |         |          |           |            |          |           |            | 1       | 1        | 1          | 1        | 1        | 1        | 1        | 7     |
| Compare to Event 9  |         |         |          |           |            |          |           |            |         | 1        | 1          | -1       | 1        | 1        | 1        | 4     |
| Compare to Event 10 |         |         |          |           |            |          |           |            |         |          | -1         | -1       | -1       | -1       | -1       | -5    |
| Compare to Event 11 |         |         |          |           |            |          |           |            |         |          |            | -1       | -1       | 1        | 1        | 0     |
| Compare to Event 12 |         |         |          |           |            |          |           |            |         |          |            |          | 1        | 1        | 1        | 3     |
| Compare to Event 13 |         |         |          |           |            |          |           |            |         |          |            |          |          | 1        | 1        | 2     |
| Compare to Event 14 |         |         |          |           |            |          |           |            |         |          |            |          |          |          | 0        | 0     |

Mann-Kendall Statistic (S) 2

90 % Confidence Mann-Kendall Statistic 2

Table 4
Monitoring Well PMA MW-2M Mann-Kendall Trend Analysis

|                     |         |         | W.G.Krur | nmrich Fa | cility PCE | Mfg. Are | a Monitor | ing Well M | IW-2M Ma | nn-Kenda | II Trend A | nalysis  |          |          |          |       |
|---------------------|---------|---------|----------|-----------|------------|----------|-----------|------------|----------|----------|------------|----------|----------|----------|----------|-------|
|                     | Event 1 | Event 2 | Event 3  | Event 4   | Event 5    | Event 6  | Event 7   | Event 8    | Event 9  | Event 10 | Event 11   | Event 12 | Event 13 | Event 14 | Event 15 | Row   |
|                     | 2Q06    | 3Q06    | 4Q06     | 1Q07      | 2Q07       | 3Q07     | 4Q07      | 1Q08       | 2Q08     | 3Q08     | 4Q08       | 1Q09     | 2Q09     | 3Q09     | 4Q09     | Total |
| Total PCBs, μg/L    | 2.3     | 2.4     | 2.8      | 2.1       | 3.3        | 2.5      | 3.1       | 1.7        | 3.0      | 4.3      | 2.5        | 2.9      | 4.14     | 3.1      | 2.7      |       |
| Compare to Event 1  |         | 1       | 1        | -1        | 1          | 1        | 1         | -1         | 1        | 1        | 1          | 1        | 1        | 1        | 1        | 10    |
| Compare to Event 2  |         |         | 1        | -1        | 1          | 1        | 1         | -1         | 1        | 1        | 1          | 1        | 1        | 1        | 1        | 9     |
| Compare to Event 3  |         |         |          | -1        | 1          | -1       | 1         | -1         | 1        | 1        | -1         | 1        | 1        | 1        | -1       | 2     |
| Compare to Event 4  |         |         |          |           | 1          | 1        | 1         | -1         | 1        | 1        | 1          | 1        | 1        | 1        | 1        | 9     |
| Compare to Event 5  |         |         |          | ·         |            | -1       | -1        | -1         | -1       | 1        | -1         | -1       | 1        | -1       | -1       | -6    |
| Compare to Event 6  |         |         |          |           |            |          | 1         | -1         | 1        | 1        | 0          | 1        | 1        | 1        | 1        | 6     |
| Compare to Event 7  |         |         |          |           |            |          |           | -1         | -1       | 1        | -1         | -1       | 1        | 0        | -1       | -3    |
| Compare to Event 8  |         |         |          |           |            |          |           |            | 1        | 1        | 1          | 1        | 1        | 1        | 1        | 7     |
| Compare to Event 9  |         |         |          |           |            |          |           |            |          | 1        | -1         | -1       | 1        | 1        | -1       | 0     |
| Compare to Event 10 |         |         |          |           |            |          |           |            |          |          | -1         | -1       | -1       | -1       | -1       | -5    |
| Compare to Event 11 |         |         |          |           |            |          |           |            |          |          |            | 1        | 1        | 1        | 1        | 4     |
| Compare to Event 12 |         |         |          |           |            |          |           |            |          |          |            |          | 1        | 1        | -1       | 1     |
| Compare to Event 13 |         |         |          |           |            |          |           |            |          |          |            |          |          | -1       | -1       | -2    |
| Compare to Event 14 |         |         |          |           |            |          |           |            |          |          |            |          |          |          | -1       | -1    |

Mann-Kendall Statistic (S)

90 % Confidence Mann-Kendall Statistic

# Table 5 Monitoring Well PMA MW-3S Mann-Kendall Trend Analysis

|                     |         |         | W.G.Krur | nmrich Fa | cility PCE | Mfg. Are | a Monitor | ing Well M | 1W-3S Ma | nn-Kenda | II Trend A | nalysis  |          |          |          |       |
|---------------------|---------|---------|----------|-----------|------------|----------|-----------|------------|----------|----------|------------|----------|----------|----------|----------|-------|
|                     | Event 1 | Event 2 | Event 3  | Event 4   | Event 5    | Event 6  | Event 7   | Event 8    | Event 9  | Event 10 | Event 11   | Event 12 | Event 13 | Event 14 | Event 15 | Row   |
|                     | 2Q06    | 3Q06    | 4Q06     | 1Q07      | 2Q07       | 3Q07     | 4Q07      | 1Q08       | 2Q08     | 3Q08     | 4Q08       | 1Q09     | 2Q09     | 3Q09     | 4Q09     | Total |
| Total PCBs, μg/L    | 0.66    | 0.32    | 0.2      | 0.35      | 0.8        | 0.3      | 0.21      | 0.25       | 0.64     | 0.26     | 0.24       | 0.79     | ND       | 0.34     | 2.0      |       |
| Compare to Event 1  |         | -1      | -1       | -1        | 1          | -1       | -1        | -1         | -1       | -1       | -1         | 1        | -1       | -1       | 1        | -8    |
| Compare to Event 2  |         |         | -1       | 1         | 1          | -1       | -1        | -1         | 1        | -1       | -1         | 1        | -1       | 1        | 1        | -1    |
| Compare to Event 3  |         | ·       |          | 1         | 1          | 1        | 1         | 1          | 1        | 1        | 1          | 1        | -1       | 1        | 1        | 10    |
| Compare to Event 4  |         |         |          |           | 1          | -1       | -1        | -1         | 1        | -1       | -1         | 1        | -1       | -1       | 1        | -3    |
| Compare to Event 5  |         |         |          | ·         |            | -1       | -1        | -1         | -1       | -1       | -1         | -1       | -1       | -1       | 1        | -8    |
| Compare to Event 6  |         |         |          |           |            |          | -1        | -1         | 1        | -1       | -1         | 1        | -1       | 1        | 1        | -1    |
| Compare to Event 7  |         |         |          |           |            |          |           | 1          | 1        | 1        | 1          | 1        | -1       | 1        | 1        | 6     |
| Compare to Event 8  |         |         |          |           |            |          |           |            | 1        | 1        | -1         | 1        | -1       | 1        | 1        | 3     |
| Compare to Event 9  |         |         |          |           |            |          |           |            |          | -1       | -1         | 1        | -1       | -1       | 1        | -2    |
| Compare to Event 10 |         |         |          |           |            |          |           |            |          |          | -1         | 1        | -1       | 1        | 1        | 1     |
| Compare to Event 11 |         |         |          |           |            |          |           |            |          |          |            | 1        | -1       | 1        | 1        | 2     |
| Compare to Event 12 |         |         |          |           |            |          |           |            |          |          |            |          | -1       | -1       | 1        | -1    |
| Compare to Event 13 |         |         |          |           |            |          |           |            |          |          |            |          |          | 1        | 1        | 2     |
| Compare to Event 14 |         |         |          |           |            |          |           |            |          |          |            |          |          |          | 1        | 1     |

Mann-Kendall Statistic (S)

90 % Confidence Mann-Kendall Statistic

# Table 6 Monitoring Well PMA MW-3M Mann-Kendall Trend Analysis

|                     |         |         | W.G.Krur | nmrich Fa | cility PCE | Mfg. Are | a Monitor | ing Well M | IW-3M Ma | nn-Kenda | II Trend A | nalysis  |          |          |          |       |
|---------------------|---------|---------|----------|-----------|------------|----------|-----------|------------|----------|----------|------------|----------|----------|----------|----------|-------|
|                     | Event 1 | Event 2 | Event 3  | Event 4   | Event 5    | Event 6  | Event 7   | Event 8    | Event 9  | Event 10 | Event 11   | Event 12 | Event 13 | Event 14 | Event 15 | Row   |
|                     | 2Q06    | 3Q06    | 4Q06     | 1Q07      | 2Q07       | 3Q07     | 4Q07      | 1Q08       | 2Q08     | 3Q08     | 4Q08       | 1Q09     | 2Q09     | 3Q09     | 4Q09     | Total |
| Total PCBs, µg/L    | 5.18    | 1.9     | ND       | 0.77      | ND         | 0.86     | 0.76      | 0.39       | 0.92     | 1.3      | 0.71       | 1.4      | 1.3      | 0.85     | 0.85     |       |
| Compare to Event 1  |         | -1      | -1       | -1        | -1         | -1       | -1        | -1         | -1       | -1       | -1         | -1       | -1       | -1       | -1       | -14   |
| Compare to Event 2  |         |         | -1       | -1        | -1         | -1       | -1        | -1         | -1       | -1       | -1         | -1       | -1       | -1       | -1       | -13   |
| Compare to Event 3  |         | ·       |          | 1         | NA         | 1        | 1         | 1          | 1        | 1        | 1          | 1        | 1        | 1        | 1        | 11    |
| Compare to Event 4  |         |         |          |           | -1         | 1        | -1        | -1         | 1        | 1        | -1         | 1        | 1        | 1        | 1        | 3     |
| Compare to Event 5  |         |         |          | ·         |            | 1        | 1         | 1          | 1        | 1        | 1          | 1        | 1        | 1        | 1        | 10    |
| Compare to Event 6  |         |         |          |           |            |          | -1        | -1         | 1        | 1        | -1         | 1        | 1        | -1       | -1       | -1    |
| Compare to Event 7  |         |         |          |           |            |          |           | -1         | 1        | 1        | -1         | 1        | 1        | 1        | 1        | 4     |
| Compare to Event 8  |         |         |          |           |            |          |           |            | 1        | 1        | 1          | 1        | 1        | 1        | 1        | 7     |
| Compare to Event 9  |         |         |          |           |            |          |           |            |          | 1        | -1         | 1        | 1        | -1       | -1       | 0     |
| Compare to Event 10 |         |         |          |           |            |          |           |            |          |          | -1         | 1        | 1        | -1       | -1       | -1    |
| Compare to Event 11 |         |         |          |           |            |          |           |            |          |          |            | 1        | 1        | 1        | 1        | 4     |
| Compare to Event 12 |         |         |          |           |            |          |           |            |          |          |            |          | -1       | -1       | -1       | -3    |
| Compare to Event 13 |         |         |          |           |            |          |           |            |          |          |            |          |          | -1       | -1       | -2    |
| Compare to Event 14 |         |         |          |           |            |          |           |            |          |          |            |          |          |          | 0        | 0     |

Mann-Kendall Statistic (S) 5

90 % Confidence Mann-Kendall Statistic

Table 7
Monitoring Well PMA MW-4D Mann-Kendall Trend Analysis

|                     |         | W.G     | .Krummri | ch Facility | PCB Mfg | . Area Mo | nitoring V | Vell MW-4 | D Mann-K | endall Tre | nd Analy: | sis  |      |          |       |
|---------------------|---------|---------|----------|-------------|---------|-----------|------------|-----------|----------|------------|-----------|------|------|----------|-------|
|                     | Event 1 | Event 2 | Event 3  | Event 4     | Event 5 | Event 6   |            | Event 8   | Event 9  | Event 10   |           |      |      | Event 14 | Row   |
|                     | 2Q06    | 3Q06    | 4Q06     | 1Q07        | 2Q07    | 3Q07      | 4Q07       | 1Q08      | 2Q08     | 4Q08       | 1Q09      | 2Q09 | 3Q09 | 4Q09     | Total |
| Total PCBs, µg/L    | 0.34    | 0.10    | 2.07     | 0.33        | 0.50    | 0.35      | 0.23       | 0.27      | 0.44     | 0.27       | 2.73      | 0.59 | 0.37 | 0.61     |       |
| Compare to Event 1  |         | -1      | 1        | -1          | 1       | 1         | -1         | -1        | 1        | -1         | 1         | 1    | 1    | 1        | 3     |
| Compare to Event 2  |         |         | 1        | 1           | 1       | 1         | 1          | 1         | 1        | 1          | 1         | 1    | 1    | 1        | 12    |
| Compare to Event 3  |         |         |          | -1          | -1      | -1        | -1         | -1        | -1       | -1         | 1         | -1   | -1   | -1       | -9    |
| Compare to Event 4  |         |         | ·        |             | 1       | 1         | -1         | -1        | 1        | -1         | 1         | 1    | 1    | 1        | 4     |
| Compare to Event 5  |         |         |          |             |         | -1        | -1         | -1        | -1       | -1         | 1         | 1    | -1   | 1        | -3    |
| Compare to Event 6  |         |         |          |             |         |           | -1         | -1        | 1        | -1         | 1         | 1    | 1    | 1        | 2     |
| Compare to Event 7  |         |         |          |             |         |           | •          | 1         | 1        | 1          | 1         | 1    | 1    | 1        | 7     |
| Compare to Event 8  |         |         |          |             |         |           |            |           | 1        | 1          | 1         | 1    | 1    | 1        | 6     |
| Compare to Event 9  |         |         |          |             |         |           |            |           |          | -1         | 1         | 1    | -1   | 1        | 1     |
| Compare to Event 10 |         |         |          |             |         |           |            |           |          |            | 1         | 1    | 1    | 1        | 4     |
| Compare to Event 11 |         |         |          |             |         |           |            |           |          |            |           | -1   | -1   | -1       | -3    |
| Compare to Event 12 |         |         |          |             |         |           |            |           |          |            |           |      | -1   | 1        | 0     |
| Compare to Event 13 |         |         |          |             |         |           |            |           |          |            |           |      |      | 1        | 1     |

Mann-Kendall Statistic (S) 2

25

90 % Confidence Mann-Kendall Statistic

# Table 8 Monitoring Well PMA MW-6D Mann-Kendall Trend Analysis

| W.G.Krummrich Facility Well PMA MW-6D Mann-Kendall Trend Analysis |         |         |         |         |         |         |       |  |  |  |  |
|-------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|-------|--|--|--|--|
|                                                                   | Event 1 | Event 2 | Event 3 | Event 4 | Event 5 | Event 6 | Row   |  |  |  |  |
|                                                                   | 3Q08    | 4Q08    | 1Q09    | 2Q09    | 3Q09    | 4Q09    | Total |  |  |  |  |
| Total PCBs, ug/L                                                  | 0.21    | 0.43    | 0.32    | 0.29    | 0.2     | 0.3     |       |  |  |  |  |
| Compare to Event 1                                                |         | 1       | 1       | 1       | -1      | 1       | 3     |  |  |  |  |
| Compare to Event 2                                                |         |         | -1      | -1      | -1      | -1      | -4    |  |  |  |  |
| Compare to Event 3                                                |         |         |         | -1      | -1      | -1      | -3    |  |  |  |  |
| Compare to Event 4                                                |         |         |         |         | -1      | 1       | 0     |  |  |  |  |
| Compare to Event 5                                                |         |         |         |         |         | 1       | 1     |  |  |  |  |

Mann-Kendall Statistic (S) -4

90 % Confidence Mann-Kendall Statistic -9

# Appendix A Groundwater Purging and Sampling Forms

| PROJECT NAME                                                 | PCB GW Quality Assessment A 3 / 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROJECT WEATHER                                                  | NUMBER:                                                                                          | 21562156.00004<br>. 55° F                                                                                                                                | FI                                                                                   | ELD PERSONNEL:                         | Mike                      | Corbett, Cra                                                                                                        | nig Williams                      |                |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|
|                                                              | ELL ID: PMAMW01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                  | SAMP                                                                                                                                                     | LE ID:                                                                               | PMAMW                                  | 01M-1109                  |                                                                                                                     |                                   |                |
| Constructed Well I<br>Depth to Water (bt<br>Depth to LNAPL/D | in the part of the | If Depth to To<br>Place Pump a<br>If Depth to To<br>Place Pump a | o of Screen is > Dept<br>t: Total Well Depth -<br>o of Screen is < Dept<br>t: Total Well Depth - | de LNAPL or DNAPL):<br>n to Water AND Screen<br>0.5 (Screen Length + DN<br>h to Water AND Water (<br>0.5 X Water Column He<br>nn height is < 4 ft, Place | Lenth is (4 feet,<br>IAPL Column Height<br>Column Height and S<br>ight + DNAPL Colum | creen Length are < 4ft<br>in Height) = | Mir<br>ft btoc (3<br>; Am | lume of Flow Through<br>himum Purge Volume<br>3 x Flow Through Cel<br>bient PID/FID Readin<br>Ilbore PID/FID Readir | e =<br>I Volume) 3, 6<br>ng: 4, 0 | 00 mL ppm ppm  |
| PURGE DATA Pump Type:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                |                                                                                                  |                                                                                                                                                          | ·                                                                                    |                                        | .29/                      |                                                                                                                     | 110% or 2 mall                    | ±20 mV         |
| Purge Volume                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to                                                         |                                                                                                  |                                                                                                                                                          | ±0.2 units                                                                           | Temp                                   | ±3 %<br>Cond.             | Turbidity                                                                                                           | ±10 % or ±2 mg/L<br>DO            | ORP            |
| (mL)                                                         | 7ime /024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water (ft)                                                       | colorless                                                                                        | Odor<br>hydrocarbon                                                                                                                                      | pH<br><b>6.90</b>                                                                    | (°C)<br>15.98                          | (ms/cm)<br>2.023          | (NTUs)                                                                                                              | (mg/l)<br>4. 8.3                  | (mv)<br>-/69.9 |
| 1.200                                                        | 1028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.10                                                             | 20/01/233                                                                                        | hydrocaroon                                                                                                                                              | 6.92                                                                                 | 16.26                                  | 2.145                     | 9.6                                                                                                                 | 4.80                              | -186.1         |
| 3,400<br>3,600                                               | 1032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                                                                  |                                                                                                                                                          | 6.92                                                                                 | 16.37                                  | 2.160                     | 6.5                                                                                                                 | 6.77                              | -/86.8         |
| <u> </u>                                                     | 1036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                                                                  |                                                                                                                                                          | 6.92                                                                                 | 16.30                                  | 2.166                     | 4.6                                                                                                                 | 7.43                              | -/89.7         |
| 1000                                                         | 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                                                                  |                                                                                                                                                          | 6.93                                                                                 | 16.21                                  | 2.175                     | 3./                                                                                                                 | 7.05                              | -190,0         |
| 6,000<br>7,200                                               | 1048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  | + 1/                                                                                             |                                                                                                                                                          | 6.93                                                                                 | 16.16                                  | 2.176                     | 5.1                                                                                                                 | 6.92                              | -172.8         |
| 175                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                  |                                                                                                                                                          |                                                                                      |                                        |                           |                                                                                                                     |                                   |                |
| Start Time: Stop Time:                                       | 1034<br>1048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |                                                                                                  | psed Time:erage Purge Rate (mL/m                                                                                                                         | 24 mi                                                                                | n.                                     | _ Water Quali             | ity Meter ID:                                                                                                       | YSI 6920<br>/ o q                 |                |
| SAMPLING DA                                                  | TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |                                                                                                  |                                                                                                                                                          |                                                                                      |                                        |                           |                                                                                                                     |                                   |                |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                  |                                                                                                                                                          |                                                                                      |                                        |                           |                                                                                                                     |                                   |                |
| Sample Date:                                                 | 11/33/09<br>Stainless Steel Monsoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |                                                                                                  | mple Time:                                                                                                                                               | 1050                                                                                 |                                        |                           | Total PCBs                                                                                                          |                                   |                |
| Sample Method: COMMENTS:                                     | Stainless Steel Monsoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n                                                                | Sa                                                                                               | mple Flow Rate:                                                                                                                                          | 300 ml                                                                               | -/min                                  | QA/QC San                 | nples: <u>no</u>                                                                                                    | ne                                |                |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                  |                                                                                                                                                          |                                                                                      |                                        |                           |                                                                                                                     |                                   |                |

| PROJECT NAME:                                                   | Assessment                                                                                                                           | PROJECT NUMBE                                                                                                                                | R: <u>2156</u>                                                      | 2156.00004                                                                                   | F                                                                                       | ELD PERSONNEL:                                            | Mik                                                              | e Corbett, C.                                                                                                                 | raig William                                                  |                                                |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|
| DATE: /<br>MONITORING WE                                        | <i>  33  09</i><br> LL ID:                                                                                                           | WEATHER:                                                                                                                                     | Sunn                                                                | y, 55°F<br>SAM                                                                               | PLE ID:                                                                                 |                                                           |                                                                  | MAMWO \$5-1109                                                                                                                |                                                               |                                                |
| Constructed Well De<br>Depth to Water (bto<br>Depth to LNAPL/DN | th (btoc): <b>94, 43</b> ft<br>epth (btoc): <b>25</b> 48 ft<br>c): <b>9, 34</b> ft<br>APL (btoc): ft<br>reen (btoc): <b>28.18</b> ft | Water Column Height ( If Depth to Top of Scre- Place Pump at: Total W If Depth to Top of Scre- Place Pump at: Total W If Screen Length and/o | en is > Depth<br>/ell Depth - 0<br>en is < Depti<br>/ell Depth - (I | to Water AND Screen<br>.5 (Screen Length + D<br>n to Water AND Water<br>0.5 X Water Column H | i Lenth is ⟨4 feet,<br>NAPL Column Height<br>Column Height and S<br>eight + DNAPL Colum | ın Height) =                                              | ft btoc                                                          | Volume of Flow Through<br>Minimum Purge Volume<br>(3 x Flow Through Cell<br>Ambient PID/FID Readin<br>Wellbore PID/FID Readin | = 3<br>Volume)                                                | 7, 3 <b>00</b> mL<br>7, 600 mL<br>_ppm<br>_ppm |
| PURGE DATA Pump Type:                                           | Stainless Steel Monso                                                                                                                | on                                                                                                                                           |                                                                     |                                                                                              |                                                                                         |                                                           |                                                                  |                                                                                                                               |                                                               |                                                |
| Purge Volume<br>(mL)<br>(7<br>1,200<br>2,400<br>3,600<br>4,800  | Time 0937 0941 0945 0949 0953                                                                                                        | Depth to Water (ft)  9.25 9.20 9.30 9.38 9.30                                                                                                | Color                                                               | Odor                                                                                         | ±0.2 units  pH 6.98 6.97 6.97 6.97 6.96                                                 | Temp<br>(°C)<br>(&.37<br>(6.38<br>(6.78<br>(6.94<br>(6.96 | ±3%<br>Cond.<br>(ms/cm)<br>/. 23 7<br>/. 23/<br>/. 21/<br>/. 21/ | Turbidity (NTUs)  9.6  5.1  1.6  0.8  0.7                                                                                     | ±10% or ±2 mg/L  DO (mg/l)  11-10  11-17  12-37  12-42  13-42 | ±20 mV ORP (mv) -25.4 -26.4 -25.3 -21.8 -21.4  |
| Start Time: Stop Time: SAMPLING DAT                             |                                                                                                                                      |                                                                                                                                              |                                                                     | osed Time:<br>rage Purge Rate (mL/i                                                          | 16 min.<br>min): 30(                                                                    | 2                                                         |                                                                  | Quality Meter ID:                                                                                                             | YSI 6920                                                      | -                                              |
| Sample Date: Sample Method: COMMENTS:                           | II/ 23/09<br>Stainless Steel Monsoon                                                                                                 |                                                                                                                                              |                                                                     | nple Time:<br>nple Flow Rate:                                                                | 1000<br>300                                                                             | mUmin                                                     | Analysi<br>QA/QC                                                 | is: Total PCBs Samples: MS/MSD                                                                                                |                                                               |                                                |

| PROJECT NAME:<br>DATE: ///<br>MONITORING WE            | PCB GW Quality Assessment  3/09 LL ID: PMAMW02M                                                               | PROJECT I WEATHER                                                      |                                                                                               | 2156.00004<br>, 55°F<br>SAMPI                                                                                          |                                                                                   |                                       |             | - Corbett, C.<br>1AMWOZM-110                                                                                                  | •                           | rs .                            |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------|
|                                                        |                                                                                                               |                                                                        |                                                                                               |                                                                                                                        | ···                                                                               |                                       |             |                                                                                                                               |                             |                                 |
| Constructed Well Dopth to Water (bto Depth to LNAPL/DN | in (btoc): 61.40 ft epth (btoc): 61.54 ft c): 70.75 ft APL (btoc): 56.54 ft ft epth (btoc): 56.54 ft ft ft ft | If Depth to Top<br>Place Pump at:<br>If Depth to Top<br>Place Pump at: | of Screen is > Depth<br>Total Well Depth - 0<br>of Screen is < Depth<br>Total Well Depth - (0 | to Water AND Screen L .5 (Screen Length + DN, n to Water AND Water C 0.5 X Water Column Heighn height is < 4 ft, Place | .enth is (4 feet,<br>APL Column Height<br>olumn Height and S<br>ght + DNAPL Colum | creen Length are ( 4:<br>nn Height) = | ft, ft btoc | Volume of Flow Through<br>Minimum Purge Volume<br>(3 x Flow Through Cell<br>Ambient PID/FID Readin<br>Wellbore PID/FID Readin | =<br>Volume) <u>3</u><br>g: | 200 mL<br>,600 mL<br>ppm<br>ppm |
| PURGE DATA Pump Type:                                  | Stainless Steel Monso                                                                                         | on.                                                                    |                                                                                               |                                                                                                                        |                                                                                   |                                       |             |                                                                                                                               |                             |                                 |
| i ump rype.                                            | Ordiness Sieer Monso                                                                                          | 011                                                                    |                                                                                               |                                                                                                                        | ±0.2 units                                                                        |                                       | ±3 %        |                                                                                                                               | ±10 % or ±2 mg/L            | ±20 mV                          |
| Purge Volume                                           |                                                                                                               | Depth to                                                               |                                                                                               |                                                                                                                        |                                                                                   | Temp                                  | Cond.       | Turbidity                                                                                                                     | DO                          | ORP                             |
| (mL)                                                   | Time                                                                                                          | Water (ft)                                                             | Color                                                                                         | Odor                                                                                                                   | pH                                                                                | (°C)                                  | (ms/cm)     | (NTUs)                                                                                                                        | (mg/l)                      | (mv)<br>-162.5                  |
| 0                                                      | 1237                                                                                                          | 10.76                                                                  | colorless                                                                                     | hydrocarbon                                                                                                            | 7.19                                                                              | 16.88                                 | 1,944       | 79.0<br>55.4                                                                                                                  | 8.63<br>5.83                | -181.9                          |
| 1,200                                                  | 1245                                                                                                          |                                                                        |                                                                                               | 1                                                                                                                      | <del>- 2.//</del>                                                                 | 16.99                                 | 1.969       | 30.4                                                                                                                          | 8.20                        | -/87.6                          |
| 2,400                                                  | 1244                                                                                                          |                                                                        | <del>                                     </del>                                              |                                                                                                                        | 7.12                                                                              | 12.11                                 | 1. 988      | 16.5                                                                                                                          | 8.07                        | -190.5                          |
| 3,600                                                  | 1249                                                                                                          |                                                                        |                                                                                               | + 1/                                                                                                                   | 7.12                                                                              | 17.01                                 | 1.989       | 8.7                                                                                                                           | 8.22                        | -194.1                          |
| 4;800<br>6,000                                         | 1257                                                                                                          |                                                                        | <b>-</b>                                                                                      | 1/                                                                                                                     | 7,14                                                                              | 17.07                                 | 1.986       | 6.8                                                                                                                           | 8.02                        | -195.8                          |
| 0,000                                                  | 10.51                                                                                                         |                                                                        |                                                                                               | -                                                                                                                      |                                                                                   | 17.07                                 | 1.100       | 2.6                                                                                                                           | 0.00                        | 7,79.0                          |
|                                                        |                                                                                                               |                                                                        |                                                                                               |                                                                                                                        |                                                                                   |                                       |             |                                                                                                                               |                             |                                 |
|                                                        |                                                                                                               |                                                                        |                                                                                               |                                                                                                                        |                                                                                   |                                       |             |                                                                                                                               |                             |                                 |
|                                                        |                                                                                                               |                                                                        |                                                                                               |                                                                                                                        |                                                                                   |                                       |             |                                                                                                                               |                             |                                 |
|                                                        |                                                                                                               |                                                                        |                                                                                               |                                                                                                                        |                                                                                   |                                       |             |                                                                                                                               |                             |                                 |
|                                                        |                                                                                                               |                                                                        |                                                                                               |                                                                                                                        |                                                                                   |                                       |             |                                                                                                                               |                             |                                 |
|                                                        |                                                                                                               |                                                                        |                                                                                               |                                                                                                                        |                                                                                   |                                       |             |                                                                                                                               |                             |                                 |
|                                                        |                                                                                                               |                                                                        |                                                                                               |                                                                                                                        |                                                                                   |                                       |             |                                                                                                                               |                             |                                 |
| Start Time: Stop Time:                                 | 1337                                                                                                          |                                                                        | •                                                                                             | osed Time:                                                                                                             |                                                                                   |                                       |             | uality Meter ID:                                                                                                              | YSI 6920                    | -                               |
|                                                        |                                                                                                               | <del></del>                                                            |                                                                                               |                                                                                                                        |                                                                                   |                                       |             | <u></u>                                                                                                                       |                             |                                 |
| SAMPLING DAT                                           | TA .                                                                                                          |                                                                        |                                                                                               |                                                                                                                        |                                                                                   |                                       |             |                                                                                                                               |                             |                                 |
|                                                        | 1./22/00                                                                                                      |                                                                        | _                                                                                             |                                                                                                                        |                                                                                   |                                       |             | T                                                                                                                             |                             |                                 |
| Sample Date:                                           | 11/23/09                                                                                                      |                                                                        |                                                                                               | nple Time:                                                                                                             | 1300                                                                              |                                       | Analysi:    | s: Total PCBs                                                                                                                 |                             |                                 |
| Sample Method:                                         | Stainless Steel Monsoon                                                                                       | <u> </u>                                                               | San                                                                                           | nple Flow Rate:                                                                                                        | 300 ML                                                                            | /miq.                                 | QA/QC       | Samples: AD                                                                                                                   |                             |                                 |
| COMMENTS:                                              |                                                                                                               |                                                                        |                                                                                               |                                                                                                                        |                                                                                   |                                       |             | ***************************************                                                                                       |                             |                                 |
|                                                        |                                                                                                               |                                                                        |                                                                                               |                                                                                                                        |                                                                                   |                                       |             |                                                                                                                               |                             |                                 |

| PROJECT NAME:<br>DATE:                                   | 23/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEATHER                                                                    |                                                                                                                                                               | 2156.00004<br>5, 55°F<br>SAM                                                              | PLE ID:                                                                               |                                         | Mike<br>10028-1109                     | Corbett, Craie                                                                                                                      | Williams                  |              |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|
| Constructed Well D Depth to Water (bto Depth to LNAPL/DN | th (btoc): <b>27.35</b> ft lepth (btoc): 27.35 ft lepth (btoc): 27.35 ft lepth (btoc): <b>6.5</b> ft lepth (btoc): 22.33 ft | If Depth to Top Place Pump at If Depth to Top Place Pump at If Screen Leng | a Height (do not includ<br>p of Screen is > Depth<br>t: Total Well Depth – 0.<br>p of Screen is < Depth<br>t: Total Well Depth – (0<br>gth and/or water colum | to Water AND Screen<br>5 (Screen Length + D<br>to Water AND Water<br>.5 X Water Column He | Lenth is (4 feet,<br>NAPL Column Height<br>Column Height and S<br>eight + DNAPL Colum | icreen Length are ( 4i                  | ft btoc                                | Volume of Flow Through<br>Minimum Purge Volume =<br>(3 x Flow Through Cell I<br>Ambient PID/FID Reading<br>Wellbore PID/FID Reading | :<br>/olume) 3,6<br>: 0.0 | ppm          |
| PURGE DATA Pump Type:                                    | Stainless Steel Mons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | soon                                                                       |                                                                                                                                                               |                                                                                           |                                                                                       |                                         |                                        |                                                                                                                                     |                           |              |
|                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            | ····                                                                                                                                                          | ······································                                                    | ±0.2 units                                                                            | \-`\;\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ±3%                                    |                                                                                                                                     | ±10 % or ±2 mg/L          | ±20 mV       |
| Purge Volume                                             | <u>-</u> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth to                                                                   |                                                                                                                                                               | 0.1                                                                                       |                                                                                       | Temp                                    | Cond.                                  | Turbidity                                                                                                                           | DO                        | ORP          |
| (mL)                                                     | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water (ft)                                                                 | Color                                                                                                                                                         | Odor                                                                                      | pH                                                                                    | (°C)                                    | (ms/cm)                                | (NTUs)                                                                                                                              | (mg/l)                    | (mv)         |
| 0.                                                       | 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.65                                                                      | colorless                                                                                                                                                     | odorless                                                                                  | 6.98                                                                                  | 17.91                                   | 1.270                                  | 3.8                                                                                                                                 | 4.20                      | -/3.3        |
| 1,300                                                    | 1156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                   |                                                                                                                                                               |                                                                                           | 6.92                                                                                  | 18.12                                   | 1.261                                  | 3.5                                                                                                                                 | 3.38                      | -4.2         |
| 2,400                                                    | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.62                                                                      |                                                                                                                                                               |                                                                                           | 6.93                                                                                  | 18.18                                   | 1.235                                  | 7.4                                                                                                                                 | 3.36                      | 4.4          |
| 3,600                                                    | 2-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                                                                                                                               |                                                                                           | 6.94                                                                                  | 18.26                                   | 1.207                                  | 1.6                                                                                                                                 | 3.37                      | /3.3         |
| 4,800                                                    | 1308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                          |                                                                                                                                                               |                                                                                           | 6.94                                                                                  | 18.27                                   | 1,196                                  | 0.7                                                                                                                                 | 3.32                      | 17./         |
| 6,000                                                    | 1212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.60                                                                      |                                                                                                                                                               |                                                                                           | 6.94                                                                                  | 18.27                                   | 1.178                                  | 0.5                                                                                                                                 | 3.28                      | 22.3         |
| 7,200                                                    | 1216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>V</i>                                                                   | <del>                                     </del>                                                                                                              | ₩                                                                                         | 6.94                                                                                  | 18.27                                   | 1.182                                  | 0.1                                                                                                                                 | 3, 25                     | 23.7         |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                                                                                                               |                                                                                           |                                                                                       | -                                       |                                        |                                                                                                                                     | <u></u>                   |              |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                                                                                                               |                                                                                           |                                                                                       |                                         |                                        |                                                                                                                                     |                           |              |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·····                                                                      |                                                                                                                                                               |                                                                                           |                                                                                       |                                         |                                        |                                                                                                                                     |                           |              |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                                                                                                               |                                                                                           |                                                                                       |                                         |                                        |                                                                                                                                     |                           |              |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                          |                                                                                                                                                               |                                                                                           |                                                                                       |                                         |                                        |                                                                                                                                     |                           |              |
| Start Time:<br>Stop Time:                                | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            | •                                                                                                                                                             | sed Time:<br>age Purge Rate (mL/n                                                         | 24 min.<br>nin):300                                                                   | )                                       |                                        | uality Meter ID:Y                                                                                                                   | SI 6920                   |              |
| SAMPLING DAT                                             | Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |                                                                                                                                                               |                                                                                           |                                                                                       |                                         |                                        |                                                                                                                                     |                           | <del>.</del> |
| Julia Millo DA                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |                                                                                                                                                               |                                                                                           |                                                                                       |                                         |                                        |                                                                                                                                     |                           |              |
| Sample Date:                                             | 11/23/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | Sam                                                                                                                                                           | ple Time:                                                                                 | 1220                                                                                  |                                         | Analysis                               | s: Total PCBs                                                                                                                       |                           |              |
| Sample Method:                                           | Stainless Steel Monsoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in.                                                                        |                                                                                                                                                               | ple Flow Rate:                                                                            | 1220<br>300 m                                                                         |                                         | •                                      |                                                                                                                                     |                           |              |
| Sample Method:                                           | Stairliess Steer WORSOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M. F                                                                       | Sam                                                                                                                                                           | pie riow Hate:                                                                            | 300 m                                                                                 | 4/min                                   | ······································ | - PETO                                                                                                                              | e this well -             |              |
| COMMENTS:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                                                                                                               |                                                                                           |                                                                                       | ,                                       |                                        | P/                                                                                                                                  | NAMWOZS-1                 | 109-EB       |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                                                                                                               |                                                                                           |                                                                                       |                                         |                                        |                                                                                                                                     |                           |              |

| PROJECT NAME:<br>DATE: 1//<br>MONITORING WE                                                              | PCB GW Quality Assessment  Jy/09 L ID: PMAMW03M                                                                       | PROJECT N WEATHER:                                                           | UMBER: 2150<br>                                                                       | 62156.00004<br>windy, 50°F<br>SAMPLI                                                                                                                                    |                                                              | LD PERSONNEL: _                                 |                       | Corbett, Cra                                                                                                                       | ig Williams      |         |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|
| Constructed Well Do<br>Depth to Water (bto<br>Depth to LNAPL/DN<br>Depth to Top of Sci<br>Screen Length: | in (btoc): 61.68 ft cpth (btoc): 61.81 ft cpth (btoc): — ft deen (btoc): 56.81 ft | If Depth to Top of<br>Place Pump at:<br>If Depth to Top of<br>Place Pump at: | of Screen is > Dept<br>Fotal Well Depth -<br>of Screen is < Dep<br>Fotal Well Depth - | ide LNAPL or DNAPL):<br>th to Water AND Screen Le<br>0.5 (Screen Length + DNA<br>th to Water AND Water Co<br>(0.5 X Water Column Heigl<br>umn height is < 4 ft, Place F | PL Column Height)<br>lumn Height and So<br>nt + DNAPL Column | = 59.3/<br>reen Length are (4ft,<br>1 Height) = | ft btoc               | /olume of Flow Through<br>/linimum Purge Volume :<br>(3 x Flow Through Cell<br>Ambient PID/FID Reading<br>Wellbore PID/FID Reading | =<br>Volume)     |         |
| PURGE DATA Pump Type:                                                                                    | Stainless Steel Monsoo                                                                                                | מר                                                                           |                                                                                       |                                                                                                                                                                         |                                                              |                                                 |                       |                                                                                                                                    |                  |         |
| rump Type.                                                                                               | Otanicas Otech Monace                                                                                                 | <u> </u>                                                                     |                                                                                       |                                                                                                                                                                         | ±0.2 units                                                   |                                                 | ±3%                   |                                                                                                                                    | ±10 % or ±2 mg/L | ±20 mV  |
| D Valuma                                                                                                 |                                                                                                                       | Donth to                                                                     |                                                                                       |                                                                                                                                                                         | ±0.2 units                                                   | Temp                                            | Cond.                 | Turbidity                                                                                                                          | DO               | ORP     |
| Purge Volume<br>(mL)                                                                                     | Time                                                                                                                  | Depth to<br>Water (ft)                                                       | Color                                                                                 | Odor                                                                                                                                                                    | рH                                                           | (°C)                                            | (ms/cm)               | (NTUs)                                                                                                                             | (mg/l)           | (mv)    |
| (IIIL)                                                                                                   | 0950                                                                                                                  | 10.78                                                                        | brown                                                                                 | hydrocarbon                                                                                                                                                             | 9.20                                                         | 16.70                                           | 2.315                 | 7.5                                                                                                                                | -5.49            | -211.7  |
| 1,200                                                                                                    | 0953                                                                                                                  | 10.70                                                                        | proun.                                                                                | Nyaroca. son                                                                                                                                                            | 9,24                                                         | 16.77                                           | 2.335                 | - 6.3                                                                                                                              | -5.36            | -233.6  |
| 2,400                                                                                                    | 0956                                                                                                                  |                                                                              |                                                                                       |                                                                                                                                                                         | 9.25                                                         | 16.78                                           | 2.346                 | 7.4                                                                                                                                | -5.23            | - 243.0 |
| 3,600                                                                                                    | 0959                                                                                                                  |                                                                              |                                                                                       |                                                                                                                                                                         | 9.31                                                         | 16.81                                           | 2.360                 | 7.3                                                                                                                                | -5.40            | -261.7  |
|                                                                                                          | (002-                                                                                                                 |                                                                              |                                                                                       |                                                                                                                                                                         | 9.38                                                         | 16.84                                           | 2.386                 | 7.2                                                                                                                                | -5.50            | -286.0  |
| 6,000                                                                                                    | 1005                                                                                                                  |                                                                              |                                                                                       |                                                                                                                                                                         | 9.39                                                         | 16.87                                           | 2.394                 | 7.6                                                                                                                                | -5.99            | -295.4  |
| 2,000                                                                                                    | 1008                                                                                                                  |                                                                              |                                                                                       |                                                                                                                                                                         | 9.40                                                         | 16.86                                           | 2.408                 | 7.6                                                                                                                                | -6.06            | - 299.4 |
| 7,200                                                                                                    | 1011                                                                                                                  |                                                                              |                                                                                       |                                                                                                                                                                         | 9.42                                                         | 16.84                                           | 2.411                 | 7.6                                                                                                                                | -6.08            | -310.7  |
|                                                                                                          | 1014                                                                                                                  |                                                                              |                                                                                       |                                                                                                                                                                         | 9.43                                                         | 16.83                                           | 2.414                 | 7.8                                                                                                                                | -6.20            | -317.6  |
| 9',600                                                                                                   |                                                                                                                       |                                                                              |                                                                                       |                                                                                                                                                                         | 9.43                                                         | 16.84                                           | 2,415                 | 7.1                                                                                                                                | -6.19            | -326.2  |
| 10,800                                                                                                   | 1017                                                                                                                  |                                                                              |                                                                                       |                                                                                                                                                                         | 9,44                                                         | 16.84                                           | 2.430                 | 6.4                                                                                                                                | -6.00            | -335.9  |
| 19,000                                                                                                   | 1030                                                                                                                  | <del></del>                                                                  |                                                                                       |                                                                                                                                                                         | 9 44                                                         | 16.83                                           | 2.428                 | 16                                                                                                                                 | -6.10            | -337./  |
| 13,200                                                                                                   | 1023                                                                                                                  | <u> </u>                                                                     | 4                                                                                     | <b>y</b>                                                                                                                                                                | 7.77                                                         | 16,00                                           | 0 - 1 - 0             |                                                                                                                                    | <u> </u>         |         |
|                                                                                                          |                                                                                                                       |                                                                              |                                                                                       |                                                                                                                                                                         |                                                              |                                                 |                       |                                                                                                                                    |                  |         |
| Start Time: Stop Time:                                                                                   | 0950                                                                                                                  |                                                                              |                                                                                       | lapsed Time:<br>verage Purge Rate (mL/mir                                                                                                                               | 33 mi                                                        |                                                 | Water Qu<br>Date Cali |                                                                                                                                    | YSI 6920         |         |
| SAMPLING DA                                                                                              | ΓA                                                                                                                    |                                                                              |                                                                                       |                                                                                                                                                                         |                                                              |                                                 |                       |                                                                                                                                    |                  |         |
|                                                                                                          |                                                                                                                       | 1                                                                            | _                                                                                     |                                                                                                                                                                         |                                                              |                                                 | Analysis              | : Total PCBs                                                                                                                       |                  |         |
| Sample Date:                                                                                             | 11/24/                                                                                                                |                                                                              |                                                                                       | ample Time:                                                                                                                                                             | 1030                                                         |                                                 | Analysis              |                                                                                                                                    |                  |         |
| Sample Method:                                                                                           | Stainless Steel Monsoon                                                                                               |                                                                              | S                                                                                     | ample Flow Rate:                                                                                                                                                        | 400                                                          | Ml./min.                                        | QA/QC S               | Samples:                                                                                                                           | ne               |         |
| COMMENTS:                                                                                                |                                                                                                                       |                                                                              |                                                                                       |                                                                                                                                                                         |                                                              |                                                 |                       |                                                                                                                                    |                  |         |

| PROJECT NAME:                                          | PCB GW Quality<br>Assessment                                                                                           |                                                                        | NUMBER: 2156                                                                             | 2156.00004                       | FI                                                                                    | ELD PERSONNEL:                                                        | Mike Co                               | rbett, Craig                                                                                                            | Williams                    |                 |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|
| DATE: 11,<br>MONITORING WE                             | / <mark>ን 4/ 09</mark><br>LL ID: <u>PMAMW03</u> S                                                                      | WEATHER:                                                               | cloud                                                                                    | , whate, 50° sam                 | PLE ID:                                                                               | PMAMWO                                                                | 3S-1109                               |                                                                                                                         |                             |                 |
|                                                        |                                                                                                                        |                                                                        |                                                                                          |                                  |                                                                                       |                                                                       |                                       |                                                                                                                         |                             |                 |
| INITIAL DATA                                           |                                                                                                                        |                                                                        |                                                                                          |                                  | .,                                                                                    | / 0                                                                   |                                       |                                                                                                                         | 0.00                        | 145 mi          |
| Constructed Well Depth to Water (bto Depth to LNAPL/DN | th (btoc): <b>37.42</b> ft<br>epth (btoc): 27.40 ft<br>c): <b>10.73</b> ft<br>IAPL (btoc): ft<br>reen (btoc): 22.40 ft | If Depth to Top<br>Place Pump at:<br>If Depth to Top<br>Place Pump at: | of Screen is > Depti<br>Total Well Depth —<br>of Screen is < Depti<br>Total Well Depth — | 0.5 X Water Column H             | Lenth is (4 feet,<br>NAPL Column Height<br>Column Height and S<br>eight + DNAPL Colum | 69  ) = 24,90  creen Length are (4ft, in Height) =  Il Depth - 2 ft = | Mir<br>ft btoc (3<br>An<br>ft btoc We | lume of Fłow Through<br>nimum Purge Volume<br>3 x Fłow Through Cell<br>nbient PID/FID Reading<br>bilbore PID/FID Readin | =<br>Volume) 3, 0<br>g: 0.0 | 600 mL          |
| PURGE DATA                                             |                                                                                                                        |                                                                        |                                                                                          |                                  |                                                                                       |                                                                       |                                       |                                                                                                                         |                             |                 |
| Pump Type:                                             | Stainless Steel Monso                                                                                                  | on                                                                     |                                                                                          |                                  | ±0.2 units                                                                            |                                                                       | ±3%                                   |                                                                                                                         | ±10 % or ±2 mg/L            | ±20 mV          |
| Purge Volume                                           |                                                                                                                        | Depth to                                                               |                                                                                          |                                  | ±0.2 ums                                                                              | Temp                                                                  | Cond.                                 | Turbidity                                                                                                               | DO                          | ORP             |
| (mL)                                                   | Time                                                                                                                   | Water (ft)                                                             | Color                                                                                    | Odor                             | pH                                                                                    | (°C)                                                                  | (ms/cm)                               | (NTUs)                                                                                                                  | (mg/l)                      | (mv)<br>// 2. O |
|                                                        | 0912                                                                                                                   | 10.75                                                                  | colorless                                                                                | odorless                         | 6.73                                                                                  | 17.00                                                                 | 2.272                                 | 5.3                                                                                                                     | 0.18                        | 82.0            |
| 1,200                                                  | 0916                                                                                                                   | 10.79                                                                  |                                                                                          |                                  | 6.79                                                                                  | 17.73                                                                 | 2.3/3                                 | 2.5                                                                                                                     | 0.//                        | 77.3            |
| 2,400<br>3,600                                         | 0924                                                                                                                   | 1071                                                                   |                                                                                          |                                  | 6.79                                                                                  | 17.73                                                                 | 2.315                                 | 1.1                                                                                                                     | 0.08                        | 70.7            |
| 4,800                                                  | 0928                                                                                                                   |                                                                        | V                                                                                        | ₩                                | 6.79                                                                                  | 17. 78                                                                | 2.315                                 | 1.1                                                                                                                     | 0.07                        | 66.9            |
|                                                        |                                                                                                                        |                                                                        |                                                                                          |                                  |                                                                                       |                                                                       |                                       |                                                                                                                         |                             |                 |
|                                                        |                                                                                                                        |                                                                        |                                                                                          |                                  |                                                                                       |                                                                       |                                       |                                                                                                                         |                             |                 |
|                                                        |                                                                                                                        |                                                                        |                                                                                          |                                  |                                                                                       |                                                                       |                                       |                                                                                                                         |                             |                 |
|                                                        |                                                                                                                        |                                                                        |                                                                                          |                                  |                                                                                       |                                                                       |                                       |                                                                                                                         |                             |                 |
| Start Time:                                            | 0912                                                                                                                   |                                                                        |                                                                                          | apsed Time:erage Purge Rate (mL) |                                                                                       | 000                                                                   | Water Qua                             | fity Meter ID:                                                                                                          | YSI 6920                    |                 |
| Stop Time:                                             | 0448                                                                                                                   |                                                                        | MV                                                                                       | erage runge nate (mb             |                                                                                       |                                                                       |                                       |                                                                                                                         |                             |                 |
| SAMPLING DA                                            | TA                                                                                                                     |                                                                        |                                                                                          |                                  |                                                                                       |                                                                       |                                       |                                                                                                                         |                             |                 |
| Sample Date:                                           | 11/24/00                                                                                                               | 7                                                                      |                                                                                          | mple Time:                       | 0930                                                                                  |                                                                       | •                                     |                                                                                                                         |                             |                 |
| Sample Method:                                         | Stainless Steel Monsoo                                                                                                 | ń                                                                      | Sa                                                                                       | mple Flow Rate:                  | 300 m                                                                                 | at/min.                                                               | QA/QC Sai                             | mples: ha                                                                                                               | ne                          |                 |
| COMMENTS:                                              |                                                                                                                        |                                                                        |                                                                                          |                                  |                                                                                       |                                                                       |                                       |                                                                                                                         |                             |                 |
|                                                        |                                                                                                                        |                                                                        |                                                                                          |                                  |                                                                                       |                                                                       |                                       |                                                                                                                         |                             |                 |

| PCB W Quality   PROJECT NUMBER:   21562156.00004   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   21562156.00004   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   21562156.00004   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   21562156.00004   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   21562156.00004   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   21562156.00004   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   21562156.00004   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   21562156.00004   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   21562156.00004   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   2108012   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   2108012   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   2108012   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   Assessment   PROJECT NUMBER:   2108012   FIELD PERSONNEL:   Mike (orbett, Craig Villiams   FIELD PERSONNEL:   Mike (orbett, Craig Villia   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Column Height (do not include LNAPL or DNAPL):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Water Column Height (do not include LNAPL or DNAPL):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Purge Volume   Depth to   Water (ft)   Color   Odor   pH   (°C)   (ms/cm)   (NTUs)   (mg/l)   (mv)   (mv)   (ml)   (133   134   136   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   13   |
| Purge Volume (mL) Time Water (ft) Color Odor pH (°C) (ms/cm) (NTUs) (mg/l) (my/l) (my  |
| Purge Volume (mL) Time Water (ft) Color Odor pH (°C) (ms/cm) (NTUs) (mg/l) (mv)  0 1/30 9.32 Colors hydrocorem 6.54 15.81 1.50 5.3 1.80 -155.8  1,200 1133 6.50 15.96 1.469 2.6 1.56 -157.8  2,400 1136 6.49 15.91 1.461 2.0 1.58 -159.7  3,600 1139 6.49 15.97 1.454 2.4 1.44 -160.2  4,800 1142 6.48 16.10 1.451 1.5 1.40 -160.6  6,000 1148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (mL) Time Water (ft) Color Odor pH (°C) (ms/cm) (N165) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (1197) (11 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{4,800}{6,000}$ $\frac{1145}{145}$ $\frac{6.48}{6.48}$ $\frac{16.10}{16.05}$ $\frac{1.451}{1.450}$ $\frac{1.40}{1.24}$ $\frac{-161.0}{1.200}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6:000 1145 6.48 16.05 1.450 1.24 -161.0<br>71200 1148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7,200 1148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8,400 [15]<br>9,600 1154 V 6,47 16.10 1.2 1.22 -161.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9(660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Elapsed Time: 24 min. Water Quality Meter ID: YSI 6920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Start Time: 1/30 Elapsed Time: 1/39 Stop Time: 400 Date Calibrated: 11/34/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SAMPLING DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table DODo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample Date: 11/24/06 Sample Title: 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Method: Stainless Steel Monsoon Sample Flow Rate: 400 mL/min QA/QC Samples: Market Monsoon Sample Flow Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| ROJECT NAME:                        | PCB GW Quality Assessment                                |                    | MBER:2                          | 21562156.00004                                        | FI                                            | ELD PERSONNEL:                         | Mike Cor             | bett, Cvaig                                     | Williams         |             |
|-------------------------------------|----------------------------------------------------------|--------------------|---------------------------------|-------------------------------------------------------|-----------------------------------------------|----------------------------------------|----------------------|-------------------------------------------------|------------------|-------------|
| NATE: <u>11/2</u><br>MONITORING WEL | 4/09<br>LID: PMAMW04S                                    | WEATHER:           | TRIA                            | 50°F<br>SAM                                           | MPLE ID:                                      | PMAMW04                                | 4S-1109              |                                                 |                  |             |
|                                     |                                                          |                    |                                 |                                                       |                                               |                                        |                      |                                                 |                  |             |
| NITIAL DATA                         |                                                          |                    |                                 |                                                       |                                               |                                        |                      |                                                 |                  |             |
| Vell Diameter: 2                    | inin                                                     | Water Column He    | ight (do not in                 | nclude LNAPL or DNAPL)<br>Depth to Water AND Scree    |                                               | 5.32                                   |                      | olume of Flow Through<br>inimum Purge Volume    | , ,              |             |
| Constructed Well De                 | n (btoc): <u>25.38</u> ft<br>pth (btoc): <u>25.33</u> ft | Place Pump at Ti   | ntai Well Dent                  | h - 0.5 (Screen Length +                              | DNAPL Column Height                           | ) <u>= ~ 25.36</u>                     | ft btoc              | (3 x Flow Through Cell<br>mbient PID/FID Readin | Volume)          | mL<br>ppm   |
|                                     | ):9.68ft<br>APL (btoc): 25.00 ft                         | If Depth to Top of | Screen is < 1<br>ntal Well Dent | Depth to Water AND Wate<br>th – (0.5 X Water Column i | r Column Height and S<br>Height + DNAPL Colum | creen Length are ( 4π,<br>nn Height) = |                      | eilbore PID/FID Readir                          |                  | ppm         |
| Depth to Top of Scr                 | een (btoc): 20.33 ft                                     | If Screen Length   | and/or water o                  | column height is < 4 ft, Pl                           | ace Pump at: Total We                         | 1 Depth - 2 ft =                       | ft btoc              |                                                 |                  |             |
| Screen Length:5                     | <u>ft</u>                                                |                    |                                 |                                                       |                                               |                                        |                      |                                                 |                  |             |
| PURGE DATA                          |                                                          |                    |                                 |                                                       |                                               |                                        |                      |                                                 |                  |             |
| Pump Type:                          | Stainless Steel Monsoc                                   | )n                 |                                 |                                                       | ±0.2 units                                    |                                        | ±3 %                 |                                                 | ±10 % or ±2 mg/L | ±20 mV      |
| Purge Volume                        |                                                          | Depth to           |                                 |                                                       |                                               | Temp                                   | Cond.                | Turbidity                                       | DO (mg/l)        | ORP<br>(mv) |
| (mL)                                | Time                                                     | Water (ft)         | Color                           | Odor                                                  | pH                                            | (°C)                                   | (ms/cm)              | (NTUs)                                          | (mg/l)           | (1114)      |
|                                     |                                                          |                    |                                 |                                                       |                                               |                                        |                      |                                                 |                  |             |
|                                     |                                                          |                    |                                 |                                                       |                                               |                                        |                      |                                                 |                  |             |
|                                     |                                                          |                    |                                 |                                                       |                                               |                                        |                      |                                                 | -                |             |
|                                     |                                                          |                    |                                 |                                                       |                                               |                                        |                      |                                                 |                  |             |
|                                     |                                                          |                    |                                 |                                                       |                                               |                                        |                      |                                                 |                  |             |
|                                     |                                                          |                    |                                 |                                                       |                                               |                                        |                      |                                                 |                  |             |
|                                     |                                                          |                    |                                 |                                                       |                                               | ```                                    | 11.1                 |                                                 |                  |             |
|                                     |                                                          |                    |                                 |                                                       |                                               |                                        | - MC                 | ×.                                              |                  |             |
|                                     |                                                          |                    |                                 |                                                       |                                               |                                        |                      |                                                 |                  |             |
|                                     |                                                          |                    |                                 | <u> </u>                                              |                                               |                                        |                      |                                                 |                  |             |
| Start Time:                         |                                                          |                    |                                 | Elapsed Time:                                         | ,,                                            |                                        | <u>.</u>             | ality Meter ID:                                 | YSI 6920         |             |
| Stop Time:                          |                                                          |                    |                                 | Average Purge Rate (m                                 | L/min):                                       |                                        | Date Cali            | orated:                                         |                  |             |
| CAMPLING DAT                        | - 1 1 A                                                  |                    | - 11                            | -h /                                                  |                                               | <u> </u>                               |                      |                                                 | 7                | Tr.         |
| SAMPLING DA                         | ra – No G                                                | w sample           | e collec                        |                                                       |                                               |                                        | Analysis             | : Total PCBs                                    |                  |             |
| Sample Date:                        | 0                                                        |                    |                                 | Sample Time: Sample Flow Rate:                        |                                               |                                        | Analysis:<br>QA/QC S |                                                 |                  |             |
| Sample Method:                      | Stainless Steel Monsoon                                  | nc Perista         | HIC                             | - Janupie i low nate.                                 |                                               |                                        |                      | •                                               |                  |             |
| COMMENTS:                           |                                                          |                    |                                 | •                                                     |                                               |                                        |                      |                                                 |                  |             |
| Collected                           | DNAPL sam                                                | ple - Pr           | 1A MWC                          | 045-1109-D                                            | NATL (a)                                      | 230                                    | ····                 |                                                 |                  |             |

| PROJECT NAME:                                                    | PCB GW Quality<br>Assessment                                                                       | PROJECT I                                                              | NUMBER: 215                                                                           | 62156.00004                                                                                                                                                         | Fil                                                           | ELD PERSONNEL:                                  | Mike Corbe             | ett, Craig Willi                                                                                                                  | ams                                 |           |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|
| DATE: 11/                                                        | 23/09                                                                                              | WEATHER:                                                               | cloudy,                                                                               | 61°F                                                                                                                                                                |                                                               |                                                 |                        | 7 0                                                                                                                               |                                     |           |
| MONITORING WEI                                                   | _L ID: PMAMW05M                                                                                    |                                                                        |                                                                                       | SAMPL                                                                                                                                                               | _E ID:                                                        | PMAMW                                           | 05M-1109               |                                                                                                                                   |                                     |           |
|                                                                  |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
| INITIAL DATA                                                     |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
| Constructed Well De<br>Depth to Water (btoo<br>Depth to LNAPL/DN | in h (btoc): 57.02 ft epth (btoc): 56.87 ft h:: 9.03 ft hAPL (btoc): ft een (btoc): 51.87 ft ft ft | If Depth to Top<br>Place Pump at:<br>If Depth to Top<br>Place Pump at: | of Screen is > Dept<br>Total Well Depth –<br>of Screen is < Dep<br>Total Well Depth – | ide LNAPL or DNAPL):<br>th to Water AND Screen L<br>0.5 (Screen Length + DN/<br>th to Water AND Water Co<br>(0.5 X Water Column Heli<br>umn height is < 4 ft, Place | APL Column Height)<br>olumn Height and S<br>oht + DNAPL Colum | = 54.37<br>creen Length are (4ft<br>n Height) = | ft btoc                | folume of Flow Through<br>finimum Purge Volume :<br>(3 x Flow Through Cell<br>Imbient PID/FID Reading<br>Vellbore PID/FID Reading | =<br>Volume) <u>3. 6</u><br>;: 6. 6 | mL<br>ppm |
| PURGE DATA                                                       |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
| Pump Type:                                                       | Stainless Steel Monsoo                                                                             | on                                                                     |                                                                                       |                                                                                                                                                                     |                                                               |                                                 | 0.07                   |                                                                                                                                   | +0.0/ · · 0 m = //                  | . 00 mW   |
| Purge Volume                                                     |                                                                                                    | Depth to                                                               | T                                                                                     |                                                                                                                                                                     | ±0.2 units                                                    | Temp                                            | ±3 %<br>Cond.          | Turbidity                                                                                                                         | ±10 % or ±2 mg/L                    | ±20 mV    |
| (mL)                                                             | Time                                                                                               | Water (ft)                                                             | Color                                                                                 | Odor                                                                                                                                                                | На                                                            | (°C)                                            | (ms/cm)                | (NTUs)                                                                                                                            | (mg/l)                              | (mv)      |
| 0                                                                | 1354                                                                                               | 9-03                                                                   | colorless                                                                             | hydrocarton                                                                                                                                                         | 7.23                                                          | 17.40                                           | 2.180                  | 2.9                                                                                                                               | 20.70                               | -143.6    |
| 1,200                                                            | 1358                                                                                               | 1                                                                      | 1                                                                                     | 7                                                                                                                                                                   | 7-12                                                          | 17.74                                           | 2.290                  | 1.5                                                                                                                               | 17.69                               | -156.2    |
| 2,400                                                            | 1402                                                                                               |                                                                        |                                                                                       |                                                                                                                                                                     | 7.11                                                          | 17.42                                           | 2.341                  | 0.4                                                                                                                               | 16.68                               | -166.1    |
| 3,600                                                            | 1406                                                                                               |                                                                        |                                                                                       |                                                                                                                                                                     | 7./2                                                          | 17.39                                           | 2.340                  | 0.3                                                                                                                               | 16.32                               | -169.4    |
| 4.800                                                            | 1410                                                                                               |                                                                        |                                                                                       |                                                                                                                                                                     | 7.13                                                          | 17.36                                           | 2.337                  | 0./                                                                                                                               | 16.15                               | -/74.3    |
| 6,000                                                            | 1414                                                                                               | ₩                                                                      | ¥                                                                                     |                                                                                                                                                                     | 7.13                                                          | 17.33                                           | 2.337                  | 0.2                                                                                                                               | 16.14                               | -174.8    |
|                                                                  |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               | +                                               |                        |                                                                                                                                   |                                     |           |
|                                                                  |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
|                                                                  |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     | ***************************************                       |                                                 |                        |                                                                                                                                   |                                     |           |
|                                                                  |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
|                                                                  |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
|                                                                  |                                                                                                    |                                                                        | <u> </u>                                                                              |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
|                                                                  |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
|                                                                  |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
| Start Time:<br>Stop Time:                                        | 13 <i>54</i><br>1414                                                                               |                                                                        |                                                                                       | apsed Time:S<br>verage Purge Rate (mL/mi                                                                                                                            | 20 min.<br>in): 30                                            | 00                                              | Water Qu<br>Date Calil | · · · · · · · · · · · · · · · · · · ·                                                                                             | YSI 6920<br><b>/09</b>              |           |
| SAMPLING DAT                                                     | . Δ                                                                                                |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
| DAME LING DAT                                                    | _                                                                                                  |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               |                                                 |                        |                                                                                                                                   |                                     |           |
| Sample Date:                                                     | 11/23/09                                                                                           |                                                                        |                                                                                       | ample Time:                                                                                                                                                         | 1420                                                          |                                                 | Analysis:              |                                                                                                                                   |                                     |           |
| Sample Method:                                                   | Stainless Steel Monsoon                                                                            |                                                                        | Si                                                                                    | ample Flow Rate:                                                                                                                                                    | •                                                             | mL/min.                                         | QA/QC S                | amples:                                                                                                                           |                                     |           |
| COMMENTS:                                                        |                                                                                                    |                                                                        |                                                                                       |                                                                                                                                                                     |                                                               | •                                               |                        |                                                                                                                                   |                                     |           |

#### LOW FLOW GROUNDWATER SAMPLING DATA SHEET

| PROJECT NAME:<br>DATE: //<br>MONITORING WE                      | PCB GW Quality Assessment 73/09 LL ID: PMAMW06E | PROJECT  <br>WEATHER                                                   |                                                                                                      | 156.00004<br>S/san, G!°F<br>SAMPI                                                                                                                 | ?                                                                                |                                    | Mike (        | Corbett, Craig                                                                                                                  | Willibus                               |                                         |
|-----------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|
| Constructed Well Do<br>Depth to Water (bto<br>Depth to LNAPL/DN | APL (btoc): ft<br>een (btoc): 96.18 ft          | If Depth to Top<br>Place Pump at:<br>If Depth to Top<br>Place Pump at: | of Screen is > Depth to<br>Total Well Depth - 0.5<br>of Screen is < Depth<br>Total Well Depth - (0.5 | LNAPL or DNAPL):<br>to Water AND Screen L<br>5 (Screen Length + DN,<br>to Water AND Water C<br>5 X Water Column Heig<br>n height is < 4 ft, Place | enth is (4 feet,<br>APL Column Height<br>olumn Height and S<br>ght + DNAPL Colum | creen Length are ( 4ft n Height) = | t,<br>ft btoc | Volume of Flow Through<br>Minimum Purge Volume<br>(3 x Flow Through Cell<br>Ambient PID/FID Reading<br>Wellbore PID/FID Reading | = Volume) 3,                           | 200 mL<br>600 mL<br>ppm<br>ppm          |
| PURGE DATA Pump Type:                                           | Stainless Steel Monso                           | on                                                                     |                                                                                                      | <del></del>                                                                                                                                       |                                                                                  |                                    |               |                                                                                                                                 |                                        |                                         |
|                                                                 | ·                                               |                                                                        |                                                                                                      |                                                                                                                                                   | ±0.2 units                                                                       |                                    | ±3 %          |                                                                                                                                 | ±10 % or ±2 mg/L                       | ±20 mV                                  |
| Purge Volume                                                    |                                                 | Depth to                                                               |                                                                                                      |                                                                                                                                                   |                                                                                  | Temp                               | Cond.         | Turbidity                                                                                                                       | DO                                     | ORP                                     |
| (mL)                                                            | Time                                            | Water (ft)                                                             | Color                                                                                                | Odor                                                                                                                                              | pН                                                                               | (°C)                               | (ms/cm)       | (NTUs)                                                                                                                          | (mg/l)                                 | (mv)                                    |
| 0                                                               | 1446                                            | 5.10                                                                   | black gray                                                                                           | hydrocarbon                                                                                                                                       | 7.03                                                                             | 16.88                              | 1.250         | 48.00                                                                                                                           | 14.52                                  | -178.3                                  |
| 1,200                                                           | 1450                                            | 1                                                                      | 3.0                                                                                                  | / 1                                                                                                                                               | 7.03                                                                             | 16.89                              | 1.251         | 19.7                                                                                                                            | 13.65                                  | - 182.3                                 |
| a, 400                                                          | 1454                                            |                                                                        | Colorless                                                                                            | i                                                                                                                                                 | 7.04                                                                             | 16.92                              | 1.790         | 5.6                                                                                                                             | /3.30                                  | -184.2                                  |
| 3,600                                                           | 1458                                            |                                                                        |                                                                                                      |                                                                                                                                                   | 7.04                                                                             | 16.91                              | 1.186         | 2.9                                                                                                                             | 13.18                                  | -184.6                                  |
| 4',800                                                          | 1502                                            |                                                                        |                                                                                                      |                                                                                                                                                   | 7.04                                                                             | 16.95                              | 1.179         |                                                                                                                                 | 12.86                                  | -185.5                                  |
| 6,000                                                           | 1506                                            | $\overline{}$                                                          | 1                                                                                                    | <b>V</b>                                                                                                                                          | 7.04                                                                             | 16.95                              | 1.177         | 0.7                                                                                                                             | 12.64                                  | -186.2                                  |
| 71,200                                                          | 1510- ML                                        | ***************************************                                |                                                                                                      |                                                                                                                                                   |                                                                                  | 10.70                              | 1             |                                                                                                                                 | 1                                      |                                         |
| ****                                                            |                                                 |                                                                        |                                                                                                      |                                                                                                                                                   |                                                                                  |                                    |               |                                                                                                                                 |                                        |                                         |
|                                                                 |                                                 |                                                                        |                                                                                                      |                                                                                                                                                   |                                                                                  |                                    |               |                                                                                                                                 |                                        |                                         |
|                                                                 |                                                 |                                                                        |                                                                                                      |                                                                                                                                                   |                                                                                  |                                    |               |                                                                                                                                 |                                        |                                         |
|                                                                 |                                                 |                                                                        |                                                                                                      |                                                                                                                                                   |                                                                                  |                                    |               |                                                                                                                                 |                                        |                                         |
|                                                                 |                                                 |                                                                        |                                                                                                      |                                                                                                                                                   |                                                                                  |                                    |               |                                                                                                                                 |                                        |                                         |
|                                                                 |                                                 |                                                                        |                                                                                                      |                                                                                                                                                   |                                                                                  |                                    |               |                                                                                                                                 |                                        |                                         |
|                                                                 |                                                 |                                                                        | <u> </u>                                                                                             |                                                                                                                                                   |                                                                                  |                                    |               |                                                                                                                                 |                                        |                                         |
|                                                                 |                                                 |                                                                        |                                                                                                      |                                                                                                                                                   |                                                                                  |                                    |               |                                                                                                                                 |                                        |                                         |
| Start Time:                                                     | 1446                                            |                                                                        |                                                                                                      | sed Time:                                                                                                                                         |                                                                                  |                                    |               |                                                                                                                                 | YSI 6920                               |                                         |
| Stop Time:                                                      | 1506                                            |                                                                        | Avera                                                                                                | age Purge Rate (mL/mi                                                                                                                             | n):300_                                                                          |                                    | _ Date Ca     | alibrated: ///23/                                                                                                               | 09                                     | _                                       |
|                                                                 |                                                 |                                                                        |                                                                                                      |                                                                                                                                                   |                                                                                  |                                    |               | , .                                                                                                                             |                                        |                                         |
| SAMPLING DAT                                                    | Ά                                               |                                                                        |                                                                                                      |                                                                                                                                                   |                                                                                  |                                    |               |                                                                                                                                 |                                        | ······································  |
| Sample Date:                                                    | 11/23/09                                        |                                                                        | Same                                                                                                 | ole Time:                                                                                                                                         | 1510                                                                             |                                    | Anotio        | is: Total PCBs                                                                                                                  |                                        |                                         |
| ·                                                               |                                                 |                                                                        |                                                                                                      |                                                                                                                                                   | 1510                                                                             |                                    | •             |                                                                                                                                 | ************************************** | *************************************** |
| Sample Method:                                                  | Stainless Steel Monsoon                         |                                                                        | Sam                                                                                                  | ole Flow Rate:                                                                                                                                    | 300 mc/                                                                          | min                                | QA/QC         | Samples:                                                                                                                        | بعـ                                    |                                         |
| COMMENTS:                                                       |                                                 |                                                                        |                                                                                                      | H333444444                                                                                                                                        |                                                                                  |                                    |               | ***************************************                                                                                         |                                        |                                         |

# Appendix B

**Chains-of-Custody** 

#### Savannah

102 LaRoche Avenue

Chain of Custody Record



| hapa 012 354 7858 fax 912,352.016 | 65 | 01 | 352. | 12 | ٩I | fax | 7858 | 254 | 010 |  |
|-----------------------------------|----|----|------|----|----|-----|------|-----|-----|--|
|-----------------------------------|----|----|------|----|----|-----|------|-----|-----|--|

|                         | Savannah, GA 31404                                            |                      |                   |                                                  |          |             |               |              |          |             |        |       |        |      |               |          |                                                  |        | TestAmerica Laboratories, Inc. |
|-------------------------|---------------------------------------------------------------|----------------------|-------------------|--------------------------------------------------|----------|-------------|---------------|--------------|----------|-------------|--------|-------|--------|------|---------------|----------|--------------------------------------------------|--------|--------------------------------|
|                         | shone 912.354.7858 fax 912.352.0165                           | Project Ma           | nager: Jeff       | Adams                                            |          |             | Site C        | onta         | et: Mike | Corb        | ett    |       | Date:  |      | 11/2          | 3/0      | 9                                                |        | COC No:                        |
|                         | Client Contact                                                | Tel/Fax: (3          |                   |                                                  |          |             | Lab C         | onta         | et: Lidy | a Guli      | zia    |       | Carri  | er:  | Fed           | EX       |                                                  |        | of COCs                        |
| -                       | JRS Corporation<br>1001 Highlands Plaza Drive West, Suite 300 |                      | Analysis Tu       |                                                  | Time     |             |               | Т            |          |             |        |       |        |      |               |          |                                                  |        | Job No.                        |
| 5                       |                                                               | Calendar             | (C) or Wo         | rk Days (V                                       | V)       | ****        |               |              |          |             |        |       |        |      |               |          |                                                  |        | -2156245 00004 MC              |
|                         | St. Louis, MO 63110  2343 429 0100 Phone                      | <del></del>          | AT if different i |                                                  |          |             | 11            |              |          |             |        |       |        |      |               | Į        |                                                  |        | 21562156.00004                 |
| ш                       | 3 4 425-0300                                                  |                      | 2                 | weeks                                            |          |             |               |              |          |             |        |       |        |      |               |          |                                                  |        | SDG No.                        |
| U                       | (314) 429-0462 FAX Project Name: 4Q09 PCB GW Sampling         |                      | 1                 | week                                             |          |             |               |              |          |             |        |       |        |      |               |          |                                                  |        |                                |
| 2                       | Site: Solutia WG Krummrich Facility                           |                      | 1                 | 2 days                                           |          |             | 89            | 3            |          |             |        |       |        |      |               |          |                                                  |        |                                |
|                         | P O #                                                         | 1 🗆                  | ١                 | day                                              |          |             | P ≥           | 3            |          |             |        |       |        |      |               | İ        |                                                  |        |                                |
|                         | PO#                                                           |                      |                   |                                                  |          |             | Kilitered Sar |              |          |             |        |       |        |      |               |          |                                                  |        |                                |
| u                       |                                                               | Sample               | Sample            | Sample                                           | ļ.       | # of        | Rittere       |              |          |             |        |       |        |      |               |          |                                                  |        | Sample Specific Notes:         |
| $\succeq$               | Sample Identification                                         | Date                 | Time              | Type                                             | Matri    | x Cont.     |               |              | -        | ++          | +      | ++    | =+=+   | +    | ++            | +        | ++                                               | +-     |                                |
| O                       | PMA-MW- <b>01S</b> -1109                                      | 14/23/09             | 1000              | G                                                | Water    | 2           | 1             | 2            |          |             |        |       |        |      | 1             |          | <del>                                     </del> | $\bot$ |                                |
| $\overline{}$           |                                                               | MASINI               | 1                 |                                                  |          | 2           |               | 1            |          |             |        |       |        |      |               |          |                                                  |        |                                |
| _                       | PMA-MW-015-1109-MS                                            | <del></del>          | 1000              | <del>├</del> ── <del>├</del> ─                   | +        | <del></del> | _             | 2            |          | 1 1         | $\top$ | 1-1   |        | 1    |               |          |                                                  |        |                                |
|                         | PMA-MW-015-1109-MSD                                           | <u> </u>             | 1000              | <b> </b>                                         |          | 9           |               |              | +-+      | ╁┼          | +      | ++    |        |      | ++            |          | ╁┼                                               | +      |                                |
| ÷                       | PMR-MW-01M-1109                                               |                      | 1050              |                                                  |          | 7           |               | 2            | -        | +           |        | 1     | -      |      | ╂             | _        | $\vdash$                                         | +      |                                |
| >                       | PMA-MW-073-1109-EB                                            |                      | 1110              |                                                  | 11       | 2           |               | 2            | 1        | 1           | _      |       |        |      | +             |          | $\vdash$                                         | +      |                                |
| I                       | PMA-MW-025-1109                                               |                      | 1220              |                                                  |          | <b> </b> み  | į,            | 2            |          |             |        | 1     | _      |      | 1             |          | ╀                                                | _      |                                |
| CHIVE                   | PMA-MW-02M-1109                                               |                      | 1300              |                                                  |          | 2           |               | 2            |          |             |        |       |        |      |               |          |                                                  | _      |                                |
| $\overline{\mathbf{o}}$ | PMA-MW-02-M-1109-AD                                           |                      | 1300              |                                                  |          | 2           |               | 2            |          |             |        |       |        |      |               |          | 11                                               | _      |                                |
| 2                       | PMA-MW-05M-1109                                               |                      | 1420              |                                                  |          | 2           |               | 2            |          |             |        |       |        |      |               |          | 11                                               | _      |                                |
| <u></u>                 | PMA-MW-0GD-1109                                               | 1                    | 1510              |                                                  |          | 1 2         |               | 2            |          |             |        |       |        |      |               |          |                                                  |        |                                |
| ◂                       | PMA-MW-06D-1109                                               | + 4                  | 1310              | <del>                                     </del> |          |             |               |              | 11       | 11          |        |       |        |      |               |          |                                                  |        |                                |
|                         |                                                               |                      | <u> </u>          |                                                  |          |             | +             |              | ++       | +           |        | 1-1   |        |      | 11            |          |                                                  | 1      |                                |
| ◂                       |                                                               |                      | <u> </u>          |                                                  |          |             |               | <del>-</del> | ++       | -           | -      | +     |        |      | -             |          | ++                                               | _      |                                |
| Δ                       | Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=N      | aOH; 6= Oti          | ner               |                                                  |          |             |               | Same         | alo Dier | neal        | ( A fe | e may | be ass | esse | d if sa       | mples    | are re                                           | etain  | ed longer than 1 month)        |
|                         | Possible Hazard Identification                                |                      |                   |                                                  |          |             | ľ             |              | Return   |             |        | 1     | Disp   |      |               | ,        |                                                  | Archi  | ve For Months                  |
| ш                       | Non-Hazard Flammable Skin Irritant                            | Poison               |                   | Unknow                                           | 71       |             |               |              | 1100077  |             |        |       |        |      |               |          |                                                  |        |                                |
|                         | Special Instructions/QC Requirements & Comments: Level 4      | раца Раск            | age               |                                                  |          |             |               |              |          |             |        |       |        |      | f_            | Q0 -     | 529                                              | 131    |                                |
| S                       | ·                                                             |                      |                   |                                                  |          |             |               |              |          |             |        |       |        |      | E.            |          | . 7   3                                          |        | 3.4                            |
|                         |                                                               |                      |                   |                                                  | <u> </u> | 2333        |               | Dago         | und bur  | <del></del> |        |       |        | lC   | `omnar        |          |                                                  |        |                                |
| _                       | Relinquished by:                                              | Company              | urs               |                                                  |          | /Time:      | 700           | C            | <u> </u> | 14          | se     | le    | lel    | -    | Compar        | <u>'</u> |                                                  |        | Date/Time: 11/23/09 1700       |
|                         | Relinquished by:                                              | Company              |                   |                                                  | Date     | /Time:      | l             | Rece         | ved by:  |             |        |       |        | C    | Compar        | ny:      |                                                  |        | Date/Time:                     |
|                         | Relinquished by:                                              | $\int \int_{\Omega}$ | A                 | į                                                | 183/     | 917         | 120           |              |          |             |        |       |        |      | ~             |          |                                                  |        | Date/Time:                     |
|                         | Relinquished by:                                              | Company              |                   | *********                                        |          | /Time:      |               | Rece         | ived by: | - AA 4-     | K      | Com   | u      | K    | Compai<br>TIA |          |                                                  |        | 11/24/09 0920                  |
|                         |                                                               | ļ                    |                   |                                                  |          |             |               | l            | ./;      | מי ש        | - •    | -     |        |      | 10.4          |          |                                                  |        | 1 1110 1111 000                |

#### Savannah

5102 LaRoche Avenue

## **Chain of Custody Record**

Savannah, GA 31404

|               | phone 912.354.7858 fax 912.352.0165                                |                |                 |                |                          |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       | ,       | TestAmerica Laboratories, Inc.              |
|---------------|--------------------------------------------------------------------|----------------|-----------------|----------------|--------------------------|----------------------------------------|------------------------------|-----------------------------------------|---------------------------|-----------------------------------------|-------|-----|-----------------|-----------------------------------------|--------|----------------|------------|---------------------------------------|---------|---------------------------------------------|
|               | Client Contact                                                     | Project Ma     | nager: Jefi     | Adams          |                          |                                        | Site C                       | ontact                                  | : Mike                    | Corbe                                   | tt    |     | Date:           |                                         | (1/2   | 4/0            | 9          |                                       | (       | COC No:                                     |
| _             | URS Corporation                                                    | Tel/Fax: (3    | 14) 743-42      | 28             |                          |                                        | Lab C                        | ontacı                                  | : Lidya                   | Guliz                                   | ia    |     | Carrie          |                                         | v      | PS             |            |                                       |         |                                             |
| -             | 1001 Highlands Plaza Drive West, Suite 300                         |                | Analysis T      | urnaround      | Time                     |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       | ŀ       | Job No.                                     |
| ٠,            | St. Louis, MO 63110                                                | Calendar       | (C) or Wo       | ork Days (W    | )                        |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        | - 1            |            |                                       |         | 21562156.00004                              |
| _             | (314) 429-0100 Phone                                               | T.             | AT if different | from Below _S  | Standard                 |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       |         |                                             |
| ш             | (314) 429-0462 FAX                                                 |                | 2               | weeks          |                          |                                        |                              |                                         |                           |                                         |       |     |                 | *************************************** |        |                |            |                                       |         | SDG No.                                     |
| _             | Project Name: 4Q09 PCB GW Sampling                                 |                | 1               | week           |                          |                                        |                              |                                         |                           |                                         | 1 1   |     |                 |                                         |        | .              |            |                                       | CHECKER |                                             |
| ≥             | Site: Solutia WG Krummrich Facility                                |                |                 | 2 days         |                          |                                        | by 680                       |                                         |                           |                                         | 1 1   |     |                 | 1                                       |        |                |            | 1 1                                   | -       |                                             |
| _             | PO#                                                                |                |                 | l day          | ·                        | MOCOMOUS ROOM                          | ample<br>S by 6              |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       | ĺ.      |                                             |
| 2             | Sample Identification                                              | Sample<br>Date | Sample<br>Time  | Sample<br>Type | Matrix                   | # of<br>Cont.                          | Filtered Sam<br>Total PCBs 1 | -                                       |                           |                                         |       |     |                 |                                         |        |                |            | · · · · · · · · · · · · · · · · · · · |         | Sample Specific Notes:                      |
| 0             | PMA-MW- <b>_033</b> -1109                                          | 11/24/09       | 0930            | G              | Water                    | 2                                      | 2                            |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       |         |                                             |
| $\overline{}$ | PMA-MW-03M-1109                                                    |                | 1030            |                |                          | A                                      | 12                           |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       |         |                                             |
| ۵             | PMA-NW-04D-1109                                                    | V              | 1200            | <b>V</b>       | 1                        | a                                      | 12                           |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       |         |                                             |
| ш             |                                                                    |                |                 |                |                          |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       |         |                                             |
| ▔             |                                                                    |                |                 |                |                          |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        |                |            | 1 1                                   |         |                                             |
| <             |                                                                    |                |                 |                |                          |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       |         |                                             |
| -             |                                                                    |                |                 |                |                          |                                        | П                            |                                         |                           |                                         |       |     |                 |                                         |        | Ī              |            |                                       |         |                                             |
| RCHIVE        |                                                                    |                |                 |                |                          |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        | İ              |            |                                       |         |                                             |
| $\mathbf{y}$  |                                                                    |                |                 |                |                          |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       |         |                                             |
| œ             |                                                                    |                |                 |                |                          |                                        |                              |                                         |                           |                                         |       |     | -               |                                         |        |                |            |                                       |         |                                             |
| ⋖             |                                                                    |                |                 |                |                          |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        |                |            |                                       |         |                                             |
|               |                                                                    |                |                 |                |                          |                                        |                              |                                         |                           | *************************************** |       |     |                 |                                         |        |                |            |                                       |         |                                             |
| ◂             | Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=Na0         | OH; 6= Oth     | er              | <u> </u>       |                          | ······································ | 1                            | 1 1                                     |                           | -                                       |       |     |                 | T                                       |        |                |            |                                       |         |                                             |
| Δ             | Possible Hazard Identification  Non-Hazard Flammable Skin Irritant | Poison         | $_{B}$          | Unknown        |                          |                                        |                              |                                         | <b>Dispo</b> :<br>eturn T |                                         |       |     | asses<br>Dispos |                                         |        |                |            | <b>retai</b> l<br>Arch                |         | l <b>longer than 1 month)</b><br>For Months |
| ш             | Special Instructions/QC Requirements & Comments: Level 4 D         |                |                 |                | *****                    |                                        |                              | *************************************** |                           |                                         | ***   |     |                 | -                                       | ****** | <del>400</del> | ********** | H-PONTHER WITH                        |         |                                             |
|               | •                                                                  |                | ~               |                |                          |                                        |                              | CONTRACTOR                              |                           | M                                       | P     |     | 3.              | $\mathcal{A}$                           |        |                |            |                                       |         |                                             |
| ß             |                                                                    |                |                 |                |                          |                                        |                              |                                         |                           | a 6:                                    | 18    |     |                 | •                                       |        |                |            |                                       |         |                                             |
| <b>-</b>      | Relinquished by: ———————————————————————————————————               | Company:       | URS             | 11/            | Date/Tir<br><b>24/09</b> | ne:                                    | Re<br>(1) Y                  | ceived                                  | by:                       | 1                                       | 1 10- | ~   |                 | Co                                      | mpan   | ıy:            |            |                                       |         | Date/Time: 11-25-09-10,18                   |
|               | Relinquished by:                                                   | Company:       |                 | * 13.0         | Date/Tir                 |                                        | D.                           | animad                                  | hou                       | 3                                       | 57    | =9, | 30              |                                         | mpan   |                |            |                                       |         | Date/Time:                                  |
|               |                                                                    |                |                 |                |                          |                                        |                              | 68                                      |                           | 5                                       | र्द   | 14  | 太               | 1                                       |        |                |            |                                       | _       | D                                           |
|               | Relinquished by:                                                   | Company:       |                 | `              | Date/Tir                 | ie:                                    | Re                           | ceived                                  | by:                       |                                         |       |     |                 | Co                                      | mpan   | ıy:            |            |                                       |         | Date/Time:                                  |
|               |                                                                    | <u> </u>       |                 |                | <u> </u>                 |                                        |                              |                                         |                           |                                         |       |     |                 |                                         |        |                |            | ***********                           |         |                                             |

#### Savannah

5102 LaRoche Avenue

## **Chain of Custody Record**

TestAmerica

The Leader in environmental testing

Savannah, GA 31404

Toot America I about twice Yes

| phone 912.354.7858 fax 912.352.0165                        |                |                 |                |                       |               |        |           |         |           |        |             |               |            |          |        |          |      |         |                 | TestAmerica Laboratories, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------|----------------|-----------------|----------------|-----------------------|---------------|--------|-----------|---------|-----------|--------|-------------|---------------|------------|----------|--------|----------|------|---------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Contact                                             | Project Ma     | nager: Jefi     | Adams          | illo Vinne and Indian |               | Site   | e Con     | itaet:  | Mike      | Corbe  | ett         |               | Da         | ite:     | 11     | 124      | 1/09 | ·       |                 | COC No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| URS Corporation                                            | Tel/Fax: (3    | 14) 743-422     | 28             |                       |               | Lal    | b Cor     | ntact:  | Lidya     | Gulia  | zia         |               | Ca         | rrier    | :      | UP.      | S    |         |                 | 1 of _1 COCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1001 Highlands Plaza Drive West, Suite 300                 |                | Analysis T      | urnaround '    | Time                  |               |        |           |         |           |        |             |               |            |          |        |          |      |         |                 | Job No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| St. Louis, MO 63110                                        | Calendar       | (C) or Wo       | rk Days (W     | )                     |               |        |           |         |           |        |             |               |            |          |        |          |      |         |                 | 21562156.00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (314) 429-0100 Phone                                       | Τ,             | AT if different | from Below _S  | Standard              |               |        |           |         |           |        |             |               |            |          |        |          |      |         | ļ               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (314) 429-0462 FAX                                         |                | 2               | weeks          |                       |               |        |           |         |           |        |             |               |            |          |        |          |      |         | -               | SDG No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Project Name: 4Q09 PCB GW Sampling                         |                | 1               | week           |                       |               |        |           |         | 1 1       |        |             | -             |            |          |        |          |      |         | İ               | NATION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE |
| Site: Solutia WG Krummrich Facility                        | ] 🗆            | :               | 2 days         |                       |               | 9      | 689       |         |           |        |             |               |            |          |        | 1        |      |         | 1               | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PO#                                                        |                |                 | day            | <del></del>           |               | Sample | s by      | 1       |           |        |             |               |            |          |        |          |      |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Identification                                      | Sample<br>Date | Sample<br>Time  | Sample<br>Type | Matrix                | # of<br>Cont. | tered  | Total PCB |         |           |        |             |               |            | iwania   |        |          |      |         |                 | Sample Specific Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PMA-MW-4S-1109-DNAPL                                       | 11/24/09       | 1230            | G              | NAPL                  | 2             |        | 2         |         |           |        |             |               |            |          |        |          |      |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 MA-MA-1107 DIA K                                         | 11/24/01       |                 |                | <u> </u>              |               | Ħ      | $\Box$    |         | +-1       |        | <del></del> |               |            | 1        |        | _        | 1    |         | $\neg \vdash$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            | -              |                 | <u> </u>       | -                     |               | +      | -         |         |           |        |             | ┝╌┝           | -          | -        |        | +        | +    | _       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            |                |                 |                |                       |               |        |           |         |           |        |             |               |            |          |        |          |      |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            |                |                 |                |                       |               |        |           | 1       |           |        |             |               |            |          |        |          |      |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            |                | , ,             |                | <u> </u>              |               |        |           | -       |           |        |             |               |            | 1        |        |          | 1    |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            |                |                 | ļ              | -                     |               | +      | $\vdash$  |         | -         |        |             | $\vdash$      | -          | +        |        | $\dashv$ | +-   | +       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            |                |                 |                |                       |               |        |           |         |           |        |             |               |            |          |        |          |      |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ì                                                          |                |                 |                |                       |               |        |           |         |           |        |             |               |            |          |        |          |      |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            | <u> </u>       |                 |                |                       |               | T      |           | _       |           |        | -           |               |            |          |        | $\top$   |      | <b></b> |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            |                |                 | <u> </u>       |                       |               | +      |           |         |           | -      | -           | -             | +          | +        |        |          | +    | -       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            |                |                 | <u> </u>       |                       |               |        |           |         |           |        |             | <u> </u>      |            |          |        |          |      |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            |                |                 |                |                       |               |        |           | -       |           |        |             |               | ļ          |          |        |          |      |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            |                |                 |                |                       |               | 1      |           |         |           |        |             |               |            |          |        |          |      |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            |                |                 |                |                       | <u> </u>      | ╁      |           |         | -         |        |             | ++            | _          | -        | ++     |          |      | -       | $\vdash \vdash$ | LON BORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                            |                |                 | <u> </u>       |                       |               |        | ļ         |         |           |        |             | ļ             |            |          | -      |          | _    | ļ       |                 | 680-52990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=Na  | OH; 6≃ Oth     | er              |                |                       |               |        | į         |         |           |        | ل_          |               |            | <u> </u> |        |          |      | ]       | بلبا            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Possible Hazard Identification                             |                | r1              |                |                       |               |        |           |         |           |        |             | may           | be a       | ssess    | sed ii | sam      | pies | are     | retain          | ed longer than 1 month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Non-Hazard Flammable Skin Irritant                         | Poison         |                 | Unknown        |                       | Marian Area   |        |           | 'Re     | tum T     | o Clie | ent         |               | DI.        | spose    | al By  | -20      |      | 11      | Archi           | Ve For Months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Special Instructions/QC Requirements & Comments: Level 4 E | ata Packa      | ge              |                |                       |               |        |           |         |           |        |             |               |            |          |        | 1        |      | . I &   |                 | ve For Months PERATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                            |                |                 |                |                       |               |        |           |         |           |        |             |               |            |          |        |          |      |         |                 | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Relinquished by: Whe Colot                                 | Company:       |                 |                | Date/Ti               | me:           |        | Rece      | eived l | by:<br>th |        |             | ^ ·           | 1          | 1 .      |        | pany     |      |         |                 | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| hhe Colit                                                  |                | URS             |                | 24/04                 |               | 7.00   |           |         |           | ()     | <u>1)</u>   | W             | <u>igr</u> | Ήh       | -      | 74.      |      | JV.     |                 | 11-25-901018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Relinquished by:                                           | Company:       |                 | •              | Date/Ti               | me:           |        | Rec       | eived l | by:       |        |             |               | ,          | ***      | Con    | pany     | •    |         |                 | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Relinquished by:                                           | Company:       |                 |                | Date/Ti               | me:           |        | Rec       | eived l | by:       |        |             |               |            |          | Con    | pany     | :    |         |                 | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                            |                |                 |                |                       |               |        |           |         |           |        |             | with the same |            |          |        |          |      |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Appendix C Quality Assurance Report

Solutia Inc. W.G. Krummrich Facility Sauget, Illinois

PCB Groundwater Quality Assessment Program 4<sup>th</sup> Quarter 2009 Data Report

Prepared for

Solutia Inc. 575 Maryville Centre Drive St. Louis, MO 63141

February 2010



URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 **Project # 21562156** 

| 1.0 | INTRODUCTION                                         | 1 |
|-----|------------------------------------------------------|---|
| 2.0 | RECEIPT CONDITION AND SAMPLE HOLDING TIMES           | 2 |
| 3.0 | LABORATORY METHOD AND EQUIPMENT BLANK SAMPLES        | 3 |
| 4.0 | SURROGATE SPIKE RECOVERIES                           | 3 |
| 5.0 | LABORATORY CONTROL SAMPLE RECOVERIES                 | 3 |
| 6.0 | MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES | 4 |
| 7.0 | FIELD DUPLICATE RESULTS                              | 4 |
| 8.0 | INTERNAL STANDARD RESPONSES                          | 4 |
| 9.0 | RESULTS REPORTED FROM DILUTIONS                      | 5 |
|     |                                                      |   |



#### 1.0 INTRODUCTION

This Quality Assurance Report presents the findings of a review of analytical data for groundwater samples collected in November of 2009 at the Solutia W.G. Krummrich plant as part of the 4<sup>th</sup> Quarter 2009 PCB Groundwater Quality Assessment Program. The samples were collected by URS Corporation personnel and analyzed by TestAmerica Laboratories located in Savannah, Georgia using USEPA methodologies. Samples were analyzed for polychlorinated biphenyls (PCBs).

One hundred percent of the data were subjected to a data quality review (Level III validation). The Level III reviews were performed in order to confirm that the analytical data provided by TestAmerica were acceptable in quality for their intended use.

A total of 14 samples (nine investigative groundwater samples, one DNAPL, one field duplicate, one matrix spike and matrix spike duplicate (MS/MSD) pair, and one equipment blank) were analyzed by TestAmerica. These samples were analyzed as part of Sample Delivery Groups (SDGs) KPM035 and KPM036 utilizing the following USEPA Methods:

#### Method 680 for PCBs

Samples were reviewed following procedures outlined in the USEPA National Functional Guidelines for Superfund Organic Data Review, 2008 and the Revised PCB Groundwater Quality Assessment Work Plan (Solutia 2009).

The above guidelines provided the criteria to review the data. Additional quantitative criteria are given in the analytical methods. Data was qualified based on the data quality review. Qualifiers assigned indicate data that did not meet acceptance criteria and for which corrective actions were not successful or not performed. The various qualifiers are explained in **Tables 1** and **2** below:

**TABLE 1 Laboratory Data Qualifiers** 

| Lab Qualifier | Definition                                                                                                                                                           |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U             | Analyte was not detected at or above the reporting limit.                                                                                                            |
| *             | LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits.                                                                                                      |
| E             | Result exceeded the calibration range, secondary dilution required.                                                                                                  |
| D             | Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D. |
| J             | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.                                                       |
| N             | MS, MSD: Spike recovery exceeds upper or lower control limits.                                                                                                       |
| Н             | Sample was prepped or analyzed beyond the specified holding time.                                                                                                    |
| В             | Compound was found in the blank and sample.                                                                                                                          |
| 4             | MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.            |



#### **TABLE 2 URS Data Qualifiers**

| URS Qualifier | Definition                                                                                                                                                                                                                                                                |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U             | The analyte was analyzed for but was not detected.                                                                                                                                                                                                                        |
| J             | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                      |
| υJ            | The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. |
| R             | The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                            |

Based on the criteria outlined, it is recommended that the results reported for these analyses are accepted for their intended use. Acceptable levels of accuracy, precision, and representativeness (based on MS/MSD, LCS, surrogate compounds and field duplicate results) were achieved for this data set, except where noted in this report. In addition, analytical completeness, defined to be the percentage of analytical results which are judged to be valid, including estimated detect/nondetect (J/UJ) values was 100 percent, which meets the completeness goal of 95 percent.

The data review included evaluation of the following criteria:

#### **Organics**

- Receipt condition and sample holding times
- Laboratory method blanks, and field equipment blank samples
- Surrogate spike recoveries
- Laboratory control sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) sample recoveries and Relative Percent Difference (RPD) values
- Field duplicate results
- Results reported from dilutions
- Internal standard responses

#### 2.0 RECEIPT CONDITION AND SAMPLE HOLDING TIMES

Sample holding time requirements for the analyses performed are presented in the methods and/or in the data review guidelines. Review of the sample collection, extraction and analysis dates involved comparing the chain-of-custody and the laboratory data summary forms for accuracy, consistency, and holding time compliance. Upon review of SDG KPM036, sample PMA-MW-4S-



1109-DNAPL was extracted one day outside of hold time (hold time is 14 days for PCBs in wastes). Professional judgment was used to qualify, but not reject data, since PCBs are very stable. Detections were qualified as estimated (J) and nondetects were qualified as estimated (UJ). Analytical data that required qualification based on holding time criteria are summarized in the following table:

| Field ID             | Parameter | Analyte                | Qualification |
|----------------------|-----------|------------------------|---------------|
| PMA-MW-4S-1109-DNAPL | PCBs      | Monochlorobiphenyl     | UJ            |
| PMA-MW-4S-1109-DNAPL | PCBs      | Dichlorobiphenyl       | J             |
| PMA-MW-4S-1109-DNAPL | PCBs      | Trichlorobiphenyl      | J             |
| PMA-MW-4S-1109-DNAPL | PCBs      | Tetrachlorobiphenyl    | J             |
| PMA-MW-4S-1109-DNAPL | PCBs      | Pentachlorobiphenyl    | J             |
| PMA-MW-4S-1109-DNAPL | PCBs      | Hexachlorobiphenyl     | J             |
| PMA-MW-4S-1109-DNAPL | PCBs      | Heptachlorobiphenyl    | J             |
| PMA-MW-4S-1109-DNAPL | PCBs      | Octachlorobiphenyl     | J             |
| PMA-MW-4S-1109-DNAPL | PCBs      | Nonachlorobiphenyl     | UJ            |
| PMA-MW-4S-1109-DNAPL | PCBs      | DCB Decachlorobiphenyl | UJ            |

The cooler receipt form did not indicate any problems.

#### 3.0 LABORATORY METHOD BLANK AND EQUIPMENT BLANK SAMPLES

Laboratory method blank samples evaluate the existence and magnitude of contamination problems resulting from laboratory activities. All laboratory method blank samples were analyzed at the method prescribed frequencies. No analytes were detected in the method blanks.

Equipment blank samples are used to assess the effectiveness of equipment decontamination procedures. No analytes were detected in the equipment blank sample.

#### 4.0 SURROGATE SPIKE RECOVERIES

Surrogate compounds are used to evaluate overall laboratory performance for sample preparation efficiency on a per sample basis. All samples analyzed for PCBs were spiked with surrogate compounds during sample preparation. USEPA National Functional Guidelines for Superfund Organic Data Review state how data is qualified, if surrogate spike recoveries do not meet evaluation criteria. Surrogate recoveries were within evaluation criteria with the exception of those surrogates in data reviews discussed further in Appendix D. No qualifications of data were required due to surrogate recoveries.



#### 5.0 LABORATORY CONTROL SAMPLE RECOVERIES

Laboratory control samples (LCS) are analyzed with each analytical batch to assess the accuracy of the analytical process. All LCS recoveries were within evaluation criteria. No qualification of data was required.

#### 6.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES

MS/MSD samples are analyzed to assess the accuracy and precision of the analytical process on an analytical sample in a particular matrix. MS/MSD samples were required to be collected at a frequency of one per 20 investigative samples in accordance with the work plan. URS Corporation submitted one MS/MSD sample set for nine investigative samples, meeting the work plan frequency requirement.

No qualifications were made to the data if the MS/MSD percent recoveries were zero due to dilutions or if the Relative Percent Difference (RPD) was the only factor outside of criteria. Also, USEPA National Functional Guidelines for Superfund Organic Methods Data Review (2008) states that organic data should not be qualified based on MS/MSD criteria alone. Therefore, if recoveries were outside evaluation criteria due to matrix interference or abundance of analytes, no qualifiers were assigned unless these analytes had other quality control criteria outside evaluation criteria.

Sample PMA-MW-01S1109 was spiked and analyzed for PCBs in SDG KPM035. All MS/MSD recoveries were within evaluation criteria. No qualification of data was required due to MS/MSD recoveries.

Although not designated for MS/MSD analyses on the chain of custody form, the laboratory spiked and analyzed sample PMA-MW-4S-1109-DNAPL for PCBs in SDG KPM036. MS/MSD recoveries could not be evaluated due to sample concentrations greater than four times (4X) the spiking concentrations. No qualification of data was required.

#### 7.0 FIELD DUPLICATE RESULTS

Field duplicate results are used to evaluate precision of the entire data collection activity, including sampling, analysis and site heterogeneity. When results for both duplicate and sample values are greater than five times the practical quantitation limit (PQL), satisfactory precision is indicated by an RPD less than or equal to 25 percent for aqueous samples. Where one or both of the results of a field duplicate pair are reported at less than five times the PQL, satisfactory precision is indicated if the field duplicate results agree within 2 times the quantitation limit. Field duplicate results that do not meet these criteria may indicate unsatisfactory precision of the results.

One field duplicate sample was collected for the ten investigative samples. This satisfies the requirement in the work plan (one per 10 investigative samples or 10 percent). Field duplicate results were within evaluation criteria. No qualifications of data were required.



#### 8.0 INTERNAL STANDARD RESPONSES

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. For the PCBs (Method 680), the IS areas must be within +/-30 percent of the preceding calibration verification (CV) IS value. Also, the IS retention times must be within 30 seconds of the preceding IS CV retention time. If the IS area count is outside criteria, Method 680 indicates the mean IS area obtained during the initial calibration (ICAL) (+/-50 percent) should be used.

The internal standards area responses for PCBs were verified for the data reviews. IS responses met the criteria as described above, with the exception of the IS responses in the data reviews discussed further in Appendix D. No qualifications of data were required.

#### 9.0 RESULTS REPORTED FROM DILUTIONS

The PCB DNAPL sample was diluted due to the high levels of PCBs in the sample. The diluted sample results for PCBs were reported at the lowest possible reporting limit.



# Appendix D

**Groundwater Analytical Results (with Data Review Sheets)** 

#### SDG KPM035

**Results of Samples from Monitoring Wells:** 

PMA-MW-1M

PMA-MW-1S

PMA-MW-2M

PMA-MW-2S

PMA-MW-3M

PMA-MW-3S

PMA-MW-4D

PMA-MW-5M

PMA-MW-6D

# Solutia Krummrich Data Review WGK PCB GW Quality 4Q09

Laboratory SDG: KPM035 Reviewer: Susan Jansen Date Reviewed: 1/27/2010

**Guidance: USEPA National Functional Guidelines for Superfund Organic** 

Methods Data Review 2008.

Applicable Work Plan: Revised PCB Groundwater Quality Assessment (Solutia

2009)

| Sample Identification | Sample Identification |
|-----------------------|-----------------------|
| PMA-MW-01M-1109       | PMA-MW-03M-1109       |
| PMA-MW-01S-1109       | PMA-MW-03S-1109       |
| PMA-MW-02M-1109       | PMA-MW-04D-1109       |
| PMA-MW-02M-1109-AD    | PMA-MW-05M-1109       |
| PMA-MW-02S-1109       | PMA-MW-06D-1109       |
| PMA-MW-02S-1109-EB    |                       |

#### 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate? Yes

#### 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form? No problems were indicated in the laboratory narrative or cooler receipt form.

#### 3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

#### 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks? No

#### 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

#### 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

#### 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG?

Yes, sample PMA-MW-01S-1109 was spiked and analyzed for PCBs.

Were MS/MSD recoveries within evaluation criteria?

Yes

#### 8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

Yes

#### 9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

#### 10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

| Field ID        | Field Duplicate ID |
|-----------------|--------------------|
| PMA-MW-02M-1109 | PMA-MW-02M-1109-AD |

Were field duplicates within evaluation criteria?

Yes

#### 11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; samples analyzed did not require a dilution.

#### 12.0 Additional Qualifications

Were additional qualifications applied?

No



#### ANALYTICAL REPORT

Job Number: 680-52931-1

SDG Number: KPM035

Job Description: WGK PCB GW Quality 4Q09 NOV 2009

For:

Solutia Inc.

575 Maryville Centre Dr. Saint Louis, MO 63141

Attention: Mr. Jerry Rinaldi

Lideja grilia

Approved for release. Lidya Gulizia Project Manager I 12/30/2009 3:52 PM

Lidya Gulizia
Project Manager I
lidya.gulizia@testamericainc.com
12/30/2009

Reviewed on:

JAN 27 2010

cc: Mr. Thomas Adams Mr. Bob Billman Dave Palmer

889

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel (912) 354-7858 Fax (912) 352-0165 www.testamericainc.com



#### Job Narrative 680-52931-1 / SDG KPM035

#### Receipt

All samples were received in good condition within temperature requirements.

#### GC/MS Semi VOA

No analytical or quality issues were noted.

#### Comments

No additional comments.

JAN 27 2010

#### **METHOD SUMMARY**

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

| Description                                  | Lab Location | Method  | Preparation Method |
|----------------------------------------------|--------------|---------|--------------------|
| Matrix Water                                 |              |         |                    |
| Polychlorinated Biphenyls (PCBs) (GC/MS)     | TAL SAV      | EPA 680 |                    |
| Liquid-Liquid Extraction (Separatory Funnel) | TAL SAV      |         | EPA 680            |

#### Lab References:

TAL SAV = TestAmerica Savannah

#### **Method References:**

EPA = US Environmental Protection Agency

JAN 27 2010

#### METHOD / ANALYST SUMMARY

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

 Method
 Analyst
 Analyst ID

 EPA 680
 Johnson, Brad
 BJ

#### SAMPLE SUMMARY

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

| _ab Sample ID  | Client Sample ID             | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received |
|----------------|------------------------------|---------------|----------------------|-----------------------|
| 680-52931-1    | PMA-MW-01S-1109 <sup>/</sup> | Water         | 11/23/2009 1000      | 11/24/2009 0920       |
| 680-52931-1MS  | PMA-MW-01S-1109-MS (         | Water         | 11/23/2009 1000      | 11/24/2009 0920       |
| 680-52931-1MSD | PMA-MW-01S-1109-MSD '        | Water         | 11/23/2009 1000      | 11/24/2009 0920       |
| 680-52931-2    | PMA-MW-01M-1109              | Water         | 11/23/2009 1050      | 11/24/2009 0920       |
| 80-52931-3     | PMA-MW-02S-1109-EB           | Water         | 11/23/2009 1110      | 11/24/2009 0920       |
| 80-52931-4     | PMA-MW-02S-1109 1            | Water         | 11/23/2009 1220      | 11/24/2009 0920       |
| 80-52931-5     | PMA-MW-02M-1109 /            | Water         | 11/23/2009 1300      | 11/24/2009 0920       |
| 80-52931-6     | PMA-MW-02M-1109-AD '         | Water         | 11/23/2009 1300      | 11/24/2009 0920       |
| 80-52931-7     | PMA-MW-05M-1109 1            | Water         | 11/23/2009 1420      | 11/24/2009 0920       |
| 80-52931-8     | PMA-MW-06D-1109 '            | Water         | 11/23/2009 1510      | 11/24/2009 0920       |
| 80-52990-2     | PMA-MW-03S-1109 1            | Water         | 11/24/2009 0930      | 11/25/2009 1018       |
| 80-52990-3     | PMA-MW-03M-1109 '            | Water         | 11/24/2009 1030      | 11/25/2009 1018       |
| 80-52990-4     | PMA-MW-04D-1109 🗸            | Water         | 11/24/2009 1200      | 11/25/2009 1018       |

# **SAMPLE RESULTS**

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-01S-1109

Lab Sample ID:

680-52931-1

Client Matrix:

Water

Date Sampled: 11/23/2009 1000 Date Received: 11/24/2009 0920

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: Preparation: Dilution:

Date Analyzed:

Date Prepared:

680 680

1.0

12/21/2009 1250 / 11/30/2009 1412

Analysis Batch: 680-156923

Prep Batch: 680-154828

Instrument ID:

Lab File ID:

MSY N/A

Initial Weight/Volume:

1050 mL 1 mL

Final Weight/Volume: Injection Volume:

| Analyte                  | Result (ug/L) | Qualifier                              | RL                |
|--------------------------|---------------|----------------------------------------|-------------------|
| Monochlorobiphenyl       | 0.095         | U                                      | 0.095             |
| Dichlorobiphenyl         | 0.095         | U                                      | 0.095             |
| Trichlorobiphenyl        | 0.095         | U                                      | 0.095             |
| Tetrachlorobiphenyl      | 0.19          | U                                      | 0.19              |
| Pentachlorobiphenyl      | 0.19          | U                                      | 0.19              |
| Hexachlorobiphenyl       | 0.19          | U                                      | 0.19              |
| Heptachlorobiphenyl      | 0.29          | U                                      | 0.29              |
| Octachlorobiphenyl       | 0.29          | U                                      | 0.29              |
| Nonachlorobiphenyl       | 0.48          | U                                      | 0.48              |
| DCB Decachlorobiphenyl   | 0.48          | U                                      | 0.48              |
| Surrogate                | %Rec          | Qualifier                              | Acceptance Limits |
| Decachlorobiphenyl-13C12 | 61            | ************************************** | 25 - 113          |

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-01M-1109

Lab Sample ID:

680-52931-2

12/21/2009 1320 1

11/30/2009 1412

Client Matrix:

Water

Date Sampled: 11/23/2009 1050

Date Received: 11/24/2009 0920

#### 680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

680 680

1.0

Analysis Batch: 680-156923

Prep Batch: 680-154828

Instrument ID:

MSY N/A

Lab File ID: Initial Weight/Volume:

1050 mL

Final Weight/Volume:

1 mL

|                          | 5 - 4 ( - 4)  | 0 115     | 5.                |
|--------------------------|---------------|-----------|-------------------|
| Analyte                  | Result (ug/L) | Qualifier | RL                |
| Monochlorobiphenyl       | 0.27          |           | 0.095             |
| Dichlorobiphenyl         | 0.095         | U         | 0.095             |
| Trichlorobiphenyl        | 0.095         | U         | 0.095             |
| Tetrachlorobiphenyl      | 0.19          | U         | 0.19              |
| Pentachlorobiphenyl      | 0.19          | U         | 0.19              |
| Hexachlorobiphenyl       | 0.19          | U         | 0.19              |
| Heptachlorobipheny!      | 0.29          | U         | 0.29              |
| Octachlorobiphenyl       | 0.29          | U         | 0.29              |
| Nonachlorobiphenyl       | 0.48          | U         | 0.48              |
| DCB Decachlorobiphenyl   | 0.48          | U         | 0.48              |
| Surrogate                | %Rec          | Qualifier | Acceptance Limits |
| Decachlorobiphenyl-13C12 | 63            |           | 25 - 113          |

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-02S-1109-EB

Lab Sample ID:

680-52931-3

12/21/2009 1351

11/30/2009 1412

Client Matrix:

Water

Date Sampled: 11/23/2009 1110

Date Received: 11/24/2009 0920

#### 680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

680 680

1.0

Analysis Batch: 680-156923 Prep Batch: 680-154828

Instrument ID:

Lab File ID:

MSY N/A

Initial Weight/Volume:

1030 mL

Final Weight/Volume:

1 mL

| Analyte                  | Result (ug/L) | Qualifier | RL                |
|--------------------------|---------------|-----------|-------------------|
| Monochlorobiphenyl       | 0.097         | U         | 0.097             |
| Dichlorobiphenyl         | 0.097         | U         | 0.097             |
| Trichlorobiphenyl        | 0.097         | U         | 0.097             |
| Tetrachlorobiphenyl      | 0.19          | U         | 0.19              |
| Pentachlorobiphenyl      | 0.19          | U         | 0.19              |
| Hexachlorobiphenyl       | 0.19          | U         | 0.19              |
| Heptachlorobipheny!      | 0.29          | U         | 0.29              |
| Octachlorobiphenyl       | 0.29          | U         | 0.29              |
| Nonachlorobiphenyl       | 0.49          | U         | 0.49              |
| DCB Decachlorobiphenyl   | 0.49          | U         | 0.49              |
| Surrogate                | %Rec          | Qualifier | Acceptance Limits |
| Decachlorobiphenyl-13C12 | 66            |           | 25 - 113          |

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-02S-1109

Lab Sample ID:

680-52931-4

Client Matrix:

Water

Date Sampled: 11/23/2009 1220

Date Received: 11/24/2009 0920

| 680 Polychlorinated Biphenyls (PCBs) (GC/MS) | 680 Pol | ychlorinated | <b>Biphenyls</b> | (PCBs) | (GC/MS) |
|----------------------------------------------|---------|--------------|------------------|--------|---------|
|----------------------------------------------|---------|--------------|------------------|--------|---------|

Method:

680

Analysis Batch: 680-156923

Instrument ID:

MSY N/A

Preparation:

680

Prep Batch: 680-154828

Lab File ID:

1060 mL

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

Date Analyzed:

12/21/2009 1422 /

1 mL

Date Prepared:

11/30/2009 1412

Injection Volume:

| Analyte                  | Result (ug/L) | Qualifier | RL                |
|--------------------------|---------------|-----------|-------------------|
| Monochlorobiphenyl       | 0.094         | U         | 0.094             |
| Dichlorobiphenyl         | 0.094         | U         | 0.094             |
| Trichlorobiphenyl        | 0.094         | U         | 0.094             |
| Tetrachlorobiphenyl      | 0.19          | U         | 0.19              |
| Pentachlorobiphenyl      | 0.19          | U         | 0.19              |
| Hexachlorobiphenyl       | 0.19          | U         | 0.19              |
| Heptachlorobiphenyl      | 0.28          | U         | 0.28              |
| Octachlorobiphenyl       | 0.28          | U         | 0.28              |
| Nonachlorobiphenyl       | 0.47          | U         | 0.47              |
| DCB Decachlorobiphenyl   | 0.47          | U         | 0.47              |
| Surrogate                | %Rec          | Qualifier | Acceptance Limits |
| Decachlorobiphenyl-13C12 | 63            |           | 25 - 113          |

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-02M-1109

Lab Sample ID:

680-52931-5

Client Matrix:

Water

Date Sampled: 11/23/2009 1300 Date Received: 11/24/2009 0920

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: Preparation:

Date Prepared:

680 680 Analysis Batch: 680-156923

Prep Batch: 680-154828

Instrument ID:

MSY

1.0

Lab File ID: Initial Weight/Volume: N/A 1050 mL

Dilution: Date Analyzed:

12/21/2009 1453

11/30/2009 1412

Final Weight/Volume:

1 mL

| Analyte                  | Result (ug/L) | Qualifier | RL                |
|--------------------------|---------------|-----------|-------------------|
| Monochlorobiphenyl       | 2.7           |           | 0.095             |
| Dichlorobiphenyl         | 0.095         | U         | 0.095             |
| Trichlorobiphenyl        | 0.095         | U         | 0.095             |
| Tetrachlorobiphenyl      | 0.19          | U         | 0.19              |
| Pentachlorobiphenyl      | 0.19          | U         | 0.19              |
| Hexachlorobiphenyl       | 0.19          | U         | 0.19              |
| Heptachlorobiphenyl      | 0.29          | U         | 0.29              |
| Octachlorobiphenyl       | 0.29          | U         | 0.29              |
| Nonachlorobiphenyl       | 0.48          | U         | 0.48              |
| DCB Decachlorobiphenyl   | 0.48          | U         | 0.48              |
| Surrogate                | %Rec          | Qualifier | Acceptance Limits |
| Decachlorobiphenyl-13C12 | 59            |           | 25 - 113          |

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-02M-1109-AD

Lab Sample ID:

680-52931-6

Client Matrix:

Water

Date Sampled: 11/23/2009 1300

Date Received: 11/24/2009 0920

| 680 Pol  | ychlorinated | <b>Binhenvis</b> | (PCBs)  | (GC/MS) |
|----------|--------------|------------------|---------|---------|
| 000 1 01 | ycinciniated | DIDITIONAL       | 11 0001 |         |

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

680 680

1.0

12/21/2009 1523/ 11/30/2009 1412

Analysis Batch: 680-156923

Prep Batch: 680-154828

Instrument ID:

Lab File ID:

MSY N/A

Initial Weight/Volume: Final Weight/Volume:

1060 mL 1 mL

| Analyte                  | Result (ug/L) | Qualifier                               | RL                |
|--------------------------|---------------|-----------------------------------------|-------------------|
| Monochlorobiphenyl       | 3.4           | *************************************** | 0.094             |
| Dichlorobiphenyl         | 0.094         | U                                       | 0.094             |
| Trichlorobiphenyl        | 0.094         | U                                       | 0.094             |
| Tetrachlorobiphenyl      | 0.19          | U                                       | 0.19              |
| Pentachlorobiphenyl      | 0.19          | U                                       | 0.19              |
| Hexachlorobiphenyl       | 0.19          | U                                       | 0.19              |
| -leptachlorobiphenyl     | 0.28          | U                                       | 0.28              |
| Octachlorobiphenyl       | 0.28          | U                                       | 0.28              |
| Nonachlorobiphenyl       | 0.47          | U                                       | 0.47              |
| DCB Decachlorobiphenyl   | 0.47          | U                                       | 0.47              |
| Surrogate                | %Rec          | Qualifier                               | Acceptance Limits |
| Decachlorobiphenyl-13C12 | 67            | ······································  | 25 - 113          |

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-05M-1109

Lab Sample ID:

680-52931-7

Client Matrix:

Water

Date Sampled: 11/23/2009 1420

Date Received: 11/24/2009 0920

| 680 Polychlorinated Biphenyls (PCBs) (GC/MS) | 680 Pol | vchlorinated | Biphenvis | (PCBs) | (GC/MS) |
|----------------------------------------------|---------|--------------|-----------|--------|---------|
|----------------------------------------------|---------|--------------|-----------|--------|---------|

Method:

680

61

Analysis Batch: 680-156923

Instrument ID:

MSY

Preparation:

680

Prep Batch: 680-154828

Lab File ID:

N/A

Dilution:

1.0

Initial Weight/Volume:

1050 mL

Final Weight/Volume:

25 - 113

Date Analyzed:

12/21/2009 1554 /

1 mL

Date Prepared:

Decachlorobiphenyl-13C12

11/30/2009 1412

Injection Volume:

Qualifier Analyte Result (ug/L) RL Monochlorobiphenyl 0.095 Ū 0.095 0.095 Dichlorobiphenyl U 0.095 Trichlorobiphenyl 0.095 U 0.095 Tetrachlorobiphenyl 0.19 U 0.19 Pentachlorobiphenyl 0.19 U 0.19 Hexachlorobiphenyl 0.19 U 0.19 Heptachlorobiphenyl 0.29 0.29 Octachlorobiphenyl 0.29 U 0.29 Nonachlorobiphenyl 0.48 U 0.48 DCB Decachlorobiphenyl 0.48 0.48 %Rec Qualifier Acceptance Limits Surrogate

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-06D-1109

Lab Sample ID:

680-52931-8

Client Matrix:

Water

Date Sampled: 11/23/2009 1510 Date Received: 11/24/2009 0920

#### 680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680

Analysis Batch: 680-156923

Instrument ID:

MSY

Preparation:

680

Prep Batch: 680-154828

Lab File ID:

N/A

Dilution:

1.0

Initial Weight/Volume:

1060 mL

Analyte

Result (ug/L)

0.30

Final Weight/Volume:

1 mL

Date Analyzed: Date Prepared:

Monochlorobiphenyl

Decachlorobiphenyl-13C12

12/21/2009 1625 11/30/2009 1412

Injection Volume:

Dichlorobiphenyl 0.094 Trichlorobiphenyl 0.094 Tetrachlorobiphenyl 0.19 Pentachlorobiphenyl 0.19 Hexachlorobiphenyl 0.19 U 0.19 Heptachlorobipheny! 0.28 U 0.28 0.28 U 0.28 Octachlorobiphenyl 0.47 U 0.47 Nonachlorobiphenyl 0.47 0.47 DCB Decachlorobiphenyl

%Rec Qualifier Acceptance Limits Surrogate 66

25 - 113

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-03S-1109

Lab Sample ID:

680-52990-2

Client Matrix:

Water

Date Sampled: 11/24/2009 0930

Date Received: 11/25/2009 1018

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680

Analysis Batch: 680-156923

Instrument ID:

MSY N/A

Preparation:

680

Prep Batch: 680-154828

Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

1050 mL

Date Analyzed:

Final Weight/Volume: 1 mL

Date Prepared:

12/21/2009 1656 4 11/30/2009 1412

| Analyte                  | Result (ug/L) | Qualifier | RL                |
|--------------------------|---------------|-----------|-------------------|
| Monochlorobiphenyl       | 1.8           |           | 0.095             |
| Dichlorobiphenyl         | 0.23          |           | 0.095             |
| Trichlorobiphenyl        | 0.095         | U         | 0.095             |
| Tetrachlorobiphenyl      | 0.19          | U         | 0.19              |
| Pentachlorobiphenyl      | 0.19          | U         | 0.19              |
| Hexachlorobiphenyl       | 0.19          | U         | 0.19              |
| Heptachlorobiphenyl      | 0.29          | U         | 0.29              |
| Octachlorobiphenyl       | 0.29          | U         | 0.29              |
| Nonachlorobiphenyl       | 0.48          | U         | 0.48              |
| DCB Decachlorobiphenyl   | 0.48          | U         | 0.48              |
| Surrogate                | %Rec          | Qualifier | Acceptance Limits |
| Decachlorobiphenyl-13C12 | 67            |           | 25 - 113          |

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-03M-1109

Lab Sample ID:

680-52990-3

Client Matrix:

Water

Date Sampled: 11/24/2009 1030

Date Received: 11/25/2009 1018

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: Preparation:

Date Prepared:

680

680

Dilution: Date Analyzed:

1.0

12/21/2009 1727 /

11/30/2009 1412

Analysis Batch: 680-156923

Prep Batch: 680-154828

Instrument ID:

Lab File ID:

MSY N/A

Initial Weight/Volume: Final Weight/Volume: 1060 mL 1 mL

| Analyte                  | Result (ug/L) | Qualifier | RL                |
|--------------------------|---------------|-----------|-------------------|
| Monochlorobiphenyl       | 0.85          |           | 0.094             |
| Dichlorobiphenyl         | 0.094         | U         | 0.094             |
| Trichlorobiphenyl        | 0.094         | U         | 0.094             |
| Tetrachlorobiphenyl      | 0.19          | U         | 0.19              |
| Pentachlorobiphenyl      | 0.19          | U         | 0.19              |
| Hexachlorobiphenyl       | 0.19          | U         | 0.19              |
| Heptachlorobiphenyl      | 0.28          | U         | 0.28              |
| Octachlorobiphenyl       | 0.28          | U         | 0.28              |
| Nonachlorobiphenyl       | 0.47          | U         | 0.47              |
| DCB Decachlorobiphenyl   | 0.47          | U         | 0.47              |
| Surrogate                | %Rec          | Qualifier | Acceptance Limits |
| Decachlorobiphenyl-13C12 | 53            |           | 25 - 113          |

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

Client Sample ID:

PMA-MW-04D-1109

Lab Sample ID:

680-52990-4

Client Matrix:

Water

Date Sampled: 11/24/2009 1200

Date Received: 11/25/2009 1018

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680

Analysis Batch: 680-156923

Instrument ID:

MSY

Preparation:

680

Lab File ID:

N/A

Dilution:

Prep Batch: 680-154828

Initial Weight/Volume:

1050 mL

Date Analyzed:

1.0

12/21/2009 1758 /

Final Weight/Volume:

1 mL

Date Prepared:

11/30/2009 1412

| Analyte                  | Result (ug/L) | Qualifier                               | RL                |
|--------------------------|---------------|-----------------------------------------|-------------------|
| Monochlorobiphenyl       | 0.27          | *************************************** | 0.095             |
| Dichlorobiphenyl         | 0.34          |                                         | 0.095             |
| Trichlorobiphenyl        | 0.095         | U                                       | 0.095             |
| Tetrachlorobiphenyl      | 0.19          | υ                                       | 0.19              |
| Pentachlorobiphenyl      | 0.19          | υ                                       | 0.19              |
| Hexachlorobiphenyl       | 0.19          | U                                       | 0.19              |
| Heptachlorobiphenyl      | 0.29          | U                                       | 0.29              |
| Octachlorobiphenyl       | 0.29          | U                                       | 0.29              |
| Nonachlorobiphenyl       | 0.48          | U                                       | 0.48              |
| DCB Decachlorobiphenyl   | 0.48          | υ,                                      | 0.48              |
| Surrogate                | %Rec          | Qualifier                               | Acceptance Limits |
| Decachlorobiphenyl-13C12 | 62            |                                         | 25 - 113          |

#### **DATA REPORTING QUALIFIERS**

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

| Lab Section    | Qualifier | Description                                              |
|----------------|-----------|----------------------------------------------------------|
| GC/MS Semi VOA |           |                                                          |
|                | U         | Indicates the analyte was analyzed for but not detected. |

# **QUALITY CONTROL RESULTS**

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

#### **QC Association Summary**

Report Basis Client Sample ID **Client Matrix** Method **Prep Batch** Lab Sample ID GC/MS Semi VOA Prep Batch: 680-154828 Water 680 Т Lab Control Sample LCS 680-154828/13-A Т Water 680 Method Blank MB 680-154828/12-A PMA-MW-01S-1109 Т Water 680 680-52931-1 Т Water 680 Matrix Spike 680-52931-1MS Т Water 680 680-52931-1MSD Matrix Spike Duplicate Т Water 680 PMA-MW-01M-1109 680-52931-2 Т Water 680 PMA-MW-02S-1109-EB 680-52931-3 Т Water 680 PMA-MW-02S-1109 680-52931-4 Т Water 680 680-52931-5 PMA-MW-02M-1109 680 680-52931-6 PMA-MW-02M-1109-AD Т Water 680 Т Water 680-52931-7 PMA-MW-05M-1109 680 Т Water 680-52931-8 PMA-MW-06D-1109 680 Т Water 680-52990-2 PMA-MW-03S-1109 Water 680 Т 680-52990-3 PMA-MW-03M-1109 Т Water 680 680-52990-4 PMA-MW-04D-1109 Analysis Batch:680-156923 Т Water 680 680-154828 LCS 680-154828/13-A Lab Control Sample MB 680-154828/12-A Т Water 680 680-154828 Method Blank PMA-MW-01S-1109 Т Water 680 680-154828 680-52931-1 Т Water 680 680-154828 Matrix Spike 680-52931-1MS Matrix Spike Duplicate Т Water 680 680-154828 680-52931-1MSD Т Water 680 680-154828 PMA-MW-01M-1109 680-52931-2 Т Water 680 680-154828 PMA-MW-02S-1109-EB 680-52931-3 Т Water 680 680-154828 PMA-MW-02S-1109 680-52931-4 Т PMA-MW-02M-1109 Water 680 680-154828 680-52931-5 Т Water 680 680-154828 PMA-MW-02M-1109-AD 680-52931-6 Т Water 680 680-154828 PMA-MW-05M-1109 680-52931-7 Т Water 680 680-154828 PMA-MW-06D-1109 680-52931-8 Т Water 680 680-154828 PMA-MW-03S-1109 680-52990-2 Т Water 680 680-154828 PMA-MW-03M-1109 680-52990-3 Water 680 680-154828 Т PMA-MW-04D-1109 680-52990-4

Report Basis

T = Total

Client: Solutia Inc.

Job Number: 680-52931-1

Sdg Number: KPM035

## **Surrogate Recovery Report**

## 680 Polychlorinated Biphenyls (PCBs) (GC/MS)

#### Client Matrix: Water

|                        |                        | 13DCB |
|------------------------|------------------------|-------|
| Lab Sample ID          | Client Sample ID       | %Rec  |
| 680-52931-1            | PMA-MW-01S-1109        | 61    |
| 680-52931-2            | PMA-MW-01M-1109        | 63    |
| 680-52931-3            | PMA-MW-02S-1109-<br>EB | 66    |
| 680-52931-4            | PMA-MW-02S-1109        | 63    |
| 680-52931-5            | PMA-MW-02M-1109        | 59    |
| 680-52931-6            | PMA-MW-02M-1109-<br>AD | 67    |
| 680-52931-7            | PMA-MW-05M-1109        | 61    |
| 680-52931-8            | PMA-MW-06D-1109        | 66    |
| 680-52990-2            | PMA-MW-03S-1109        | 67    |
| 680-52990-3            | PMA-MW-03M-1109        | 53    |
| 680-52990-4            | PMA-MW-04D-1109        | 62    |
| MB 680-154828/12-A     |                        | 62    |
| LCS<br>680-154828/13-A |                        | 68    |
| 680-52931-1 MS         | PMA-MW-01S-1109<br>MS  | 79    |
| 680-52931-1 MSD        | PMA-MW-01S-1109<br>MSD | 73    |

| Surrogate                        | Acceptance Limits |
|----------------------------------|-------------------|
| 13DCB = Decachlorobiphenyl-13C12 | 25-113            |



25 - 113

Job Number: 680-52931-1 Client: Solutia Inc. Sdg Number: KPM035

Method Blank - Batch: 680-154828 Method: 680 Preparation: 680

Lab Sample ID: MB 680-154828/12-A Analysis Batch: 680-156923 Instrument ID: GC/MS SemiVolatiles - Y Client Matrix: Water Prep Batch: 680-154828 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL 12/21/2009 1148 Final Weight/Volume: 1 mL Date Analyzed:

Date Prepared: 11/30/2009 1412 Injection Volume:

| Analyte                | Result | Qual | RL            |
|------------------------|--------|------|---------------|
| Monochlorobiphenyl     | 0.10   | U    | 0.10          |
| Dichlorobiphenyl       | 0.10   | U    | 0.10          |
| Trichlorobiphenyl      | 0.10   | U    | 0.10          |
| Tetrachlorobiphenyl    | 0.20   | U    | 0.20          |
| Pentachlorobiphenyl    | 0.20   | 0.20 |               |
| Hexachlorobiphenyl     | 0.20   | U    | 0.20          |
| Heptachlorobiphenyl    | 0.30   | U    | 0.30          |
| Octachlorobiphenyl     | 0.30   | U    | 0.30          |
| Nonachlorobiphenyl     | 0.50   | U    | 0.50          |
| DCB Decachlorobiphenyl | 0.50   | U    | 0.50          |
| Surrogate              | % Rec  | Acce | ptance Limits |

Lab Control Sample - Batch: 680-154828 Method: 680 Preparation: 680

Lab Sample ID: LCS 680-154828/13-A Analysis Batch: 680-156923 Instrument ID: GC/MS SemiVolatiles - Y

62

Client Matrix: Water Prep Batch: 680-154828 Lab File ID: N/A

1.0 Units: ug/L Initial Weight/Volume: 1000 mL Dilution: 12/21/2009 1219 Date Analyzed: Final Weight/Volume: 1 mL

11/30/2009 1412 Date Prepared: Injection Volume:

| Analyte                  | Spike Amount | Result | % Rec. | Limit          | Qual                                                                                                           |
|--------------------------|--------------|--------|--------|----------------|----------------------------------------------------------------------------------------------------------------|
| Monochlorobiphenyl       | 2.00         | 0.922  | 46     | · 10 - 125     | en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de |
| Dichlorobiphenyl         | 2.00         | 1.10   | 55     | 10 - 110       |                                                                                                                |
| Trichlorobiphenyl        | 2.00         | 1.19   | 60     | 17 - 110       |                                                                                                                |
| Tetrachlorobiphenyl      | 4.00         | 2.33   | 58     | 18 - 110       |                                                                                                                |
| Pentachlorobiphenyl      | 4.00         | 2.71   | 68     | 34 - 110       |                                                                                                                |
| Hexachlorobiphenyl       | 4.00         | 2.58   | 64     | 31 - 110       |                                                                                                                |
| Heptachlorobiphenyl      | 6.00         | 3.97   | 66     | 33 - 110       |                                                                                                                |
| Octachlorobiphenyl       | 6.00         | 3.99   | 67     | 33 - 110       |                                                                                                                |
| DCB Decachlorobiphenyl   | 10.0         | 6.48   | 65     | 26 - 115       |                                                                                                                |
| Surrogate                | % R          | ec     | Acc    | eptance Limits |                                                                                                                |
| Decachlorobiphenyl-13C12 | 68           |        |        | 25 - 113       |                                                                                                                |

Calculations are performed before rounding to avoid round-off errors in calculated results.

Decachlorobiphenyl-13C12

Job Number: 680-52931-1 Client: Solutia Inc.

Sdg Number: KPM035

Matrix Spike/ Method: 680 Matrix Spike Duplicate Recovery Report - Batch: 680-154828 Preparation: 680

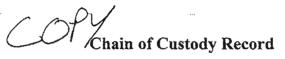
MS Lab Sample ID: 680-52931-1 Analysis Batch: 680-156923 Instrument ID: GC/MS SemiVolatiles - Y

Client Matrix: Water Prep Batch: 680-154828 Lab File ID: N/A Initial Weight/Volume: 1050 mL Dilution: 1.0 12/21/2009 1829 Final Weight/Volume: 1 mL Date Analyzed:

11/30/2009 1412 Injection Volume: Date Prepared:

MSD Lab Sample ID: 680-52931-1 Analysis Batch: 680-156923 Instrument ID: GC/MS SemiVolatiles - Y

Client Matrix: Water Prep Batch: 680-154828 Lab File ID: N/A


1050 mL Dilution: 1.0 Initial Weight/Volume: 12/21/2009 1900 Final Weight/Volume: 1 mL Date Analyzed:

11/30/2009 1412 Injection Volume: Date Prepared:

|                          | <u>% F</u> | tec.     |           |     |            |         |          |
|--------------------------|------------|----------|-----------|-----|------------|---------|----------|
| Analyte                  | MS         | MSD      | Limit     | RPD | RPD Limit  | MS Qual | MSD Qual |
| Monochlorobiphenyl       | 50         | 52       | 10 - 125  | 3   | 40         |         |          |
| Dichlorobiphenyl         | 61         | 61       | 10 - 110  | 1   | 40         |         |          |
| Trichlorobiphenyl        | 65         | 66       | 17 - 110  | 1   | 40         |         |          |
| Tetrachlorobiphenyl      | 66         | 65       | 18 - 110  | 3   | 40         |         |          |
| Pentachlorobiphenyl      | 78         | 76       | 34 - 110  | 3   | 40         |         |          |
| Hexachlorobiphenyl       | 76         | 73       | 31 - 110  | 4   | 40         |         |          |
| Heptachlorobiphenyl      | 78         | 74       | 33 - 110  | 5   | 40         |         |          |
| Octachlorobiphenyl       | 76         | 74       | 33 - 110  | 4   | 40         |         |          |
| DCB Decachlorobiphenyl   | 73         | 71       | 26 - 115  | 2   | 40         |         |          |
| Surrogate                | ****       | MS % Rec | MSD % Rec |     | Acceptance |         |          |
| Decachlorobiphenyl-13C12 |            | 79       | 73        |     | 25         | 5 - 113 |          |

## Savannah

5102 LaRoche Avenue





Savannah GA 31404

THE LEADER IN ENVIRONMENTAL HESTING

| phone 912.354.7858 fax 912.352.0165                      |                |                 |                |          |               |                 |            |           |         |       |      |      |        |          |               |      |       | TestAmerica    | Laboratori                    | es. Inc. |
|----------------------------------------------------------|----------------|-----------------|----------------|----------|---------------|-----------------|------------|-----------|---------|-------|------|------|--------|----------|---------------|------|-------|----------------|-------------------------------|----------|
| Client Contact                                           | Project M      | anager; Jef     | f Adams        |          |               | Site            | e Cor      | ntact: M  | ike Cor | bett  |      | Date | :      | 11/2     | 3/0           | 79   |       | COC No:        |                               |          |
| URS Corporation                                          | Tel/Fax: (3    | 314) 743-42     | 28             |          |               | Lal             | b Co       | ntact: Li | idya Gu | lizia |      | Car  | rier:  | II/:     | 1EX           |      |       | of _1          | COCs                          |          |
| 1001 Highlands Plaza Drive West, Suite 300               |                | Analysis T      | urnaround      | Time     |               |                 |            |           |         |       |      |      | T      | $\sqcap$ |               |      |       | Job No.        |                               |          |
| St. Louis, MO 63110                                      | Calenda        | r ( C ) or Wo   | ork Days (W    | ')       |               |                 |            |           | 11      |       |      | 1 1  |        |          |               |      | . !   | ىبىر.          | <del>:62</del> 46 <b>£000</b> | an-aic   |
| (314) 429-0100 Phone                                     | т              | AT if different | from Below _   | Standard |               |                 |            |           | 1       |       |      |      | 1      |          |               |      |       | 2156           | 2156.00                       | 1004     |
| (314) 429-0462 FAX                                       |                | 7               | 2 weeks        |          |               |                 |            |           | - [ ]   |       |      | 1    |        |          |               |      |       | SDG No.        |                               |          |
| Project Name: 4Q09 PCB GW Sampling                       |                | 1               | week           |          |               |                 |            | . 1 1     |         |       |      | 1 1  |        | 11       |               |      |       |                |                               |          |
| Site: Solutia WG Krummrich Facility                      |                |                 | 2 days         |          |               |                 | by 680     |           |         |       |      | 1    |        |          |               | ĺ    |       |                |                               |          |
| PO#                                                      |                |                 | l day          |          |               |                 | ž<br>Ž     |           |         |       |      |      | - [    |          | 1             |      |       |                |                               |          |
| Sample Identification                                    | Sample<br>Date | Sample<br>Time  | Sample<br>Type | Matrix   | # of<br>Cont. | Anteréer Samplé | Total PCBs |           |         |       |      |      |        |          |               |      |       | Sample         | e Specific No                 | otes:    |
| PMA-MW- <b>015</b> -1109 -                               | 11/23/09       | 1000            | C              | Water    | 2             |                 | 2          |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| PMA-MW-015-1109-MS/                                      |                | 1000            |                |          | 2             | Ш               | 2          |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| PMA-MW-015-1109-MSD'                                     |                | 1000            |                |          | 9             | Ц               | 2          |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| PMA-MW-01M-1109'                                         |                | 1050            |                |          | 2             |                 | 2          |           |         |       |      |      |        |          | $\bot$        |      |       |                |                               |          |
| PMA-MW-028-1109-EB'                                      |                | 1110            |                |          | 2             |                 | 2          |           |         |       |      |      |        |          |               |      | Ш     |                |                               |          |
| PMA-MW-025-1109'                                         |                | 1220            |                |          | 2             |                 | 2          |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| PMA-MW-02M-1109'                                         |                | 1300            |                |          | 2             |                 | 2          |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| PMA-MW-02-M-1109-AD-                                     |                | 1300            |                |          | 2             |                 | 2          |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| PMA-MW-05M-1109.                                         |                | 1420            |                |          | 3             |                 | 2          |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| PMA-MW-0GD-11091                                         | V              | 1510            | V              | V        | 2             |                 | 2          |           |         |       |      |      |        |          |               |      |       |                |                               |          |
|                                                          |                |                 |                |          |               |                 |            |           |         |       |      |      |        |          |               |      |       |                |                               |          |
|                                                          |                |                 |                |          |               |                 |            |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=N | aOH; 6= Oth    | er              |                |          |               | •               | 1          |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| Possible Hazard Identification                           |                |                 |                |          | -             |                 |            |           |         |       |      |      |        |          |               |      |       | ed longer than | 1 month)                      |          |
| Non-Hazard Flammable Skin Irritant                       | Poison         |                 | Unknown        |          |               |                 |            | Relur     | n To C  | lient |      | Disp | osal E | 3y Lab   | )             |      | Archi | ve For         | Months                        |          |
| Special Instructions/QC Requirements & Comments: Level 4 | Data Packa     | ige             |                |          |               |                 |            |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| · ·                                                      |                |                 |                |          |               |                 |            |           |         |       |      |      |        | ٤        |               |      | 931   |                |                               |          |
|                                                          |                |                 |                |          |               |                 |            |           |         |       |      |      |        |          | 3             | 18.8 | 3.613 | 3,4            |                               |          |
| Relinquished by:                                         | Company:       | URS             | ,              | Date/Ti  | ime:          | 700             | Rec        | eived by: | Th      | ed    | ne l | 22   | C      | ompan    | 27            |      |       | Date/Time:     | 1/1001                        | 170      |
| Relinquished by:                                         | Company:       |                 | 1              | Date/Ti  | ime:          |                 | Rec        | eived by: |         |       |      |      |        | ompan    | $\overline{}$ |      |       | Date/Time:     |                               |          |
| Ox Linevall                                              | ] ] #          | 4               | $u_{k}$        | 93/09    | 17.           | 10              | )          |           |         |       |      |      |        |          |               |      |       |                |                               |          |
| Relinquished by:                                         | Company:       |                 | <del>\</del>   | Datc/T   |               |                 | Rec        | cived by: | :       | 101   |      |      | - 1    | ompan    | •             |      |       | Date/Time:     |                               |          |
|                                                          |                |                 |                | 1        |               |                 | 1          | 1         | eorge   | K6    | me   | 1    |        | TH       | 84            |      |       | 11/24/09       | 092                           | ۸ ،      |

## Savannah

5102 LaRoche Avenue

## Chain of Custody Record



| Savannah, GA 31404<br>phone 912.354.7858 fax 912.352.0165 |                                                  |                |                |        |               |             |                   |            |                                                  |              |        |       |                     |         |             |        |          | Took A.  | nerica La   | hawatani   | es Inc   |        |
|-----------------------------------------------------------|--------------------------------------------------|----------------|----------------|--------|---------------|-------------|-------------------|------------|--------------------------------------------------|--------------|--------|-------|---------------------|---------|-------------|--------|----------|----------|-------------|------------|----------|--------|
| Client Contact                                            | Project Ma                                       | nager lef      | Adams          |        |               | Site        | • Co              | ntact: Mik | e Cor                                            | hatt         |        | Da    | to-                 | 7       | 24/2        | _      |          | COC N    |             | ooratori   | es, inc. | $\neg$ |
| URS Corporation                                           |                                                  | 14) 743-42     |                |        |               | _           |                   | ntact: Lid |                                                  | <del> </del> |        |       | rrier:              | uj.     | 24/0<br>185 | 4      |          | 1        |             | COCs       |          | ᅱ      |
| 1001 Highlands Plaza Drive West, Suite 300                | <del></del>                                      |                | urnaround      | Time   |               | 195         |                   | 1 7        | <del>,                                    </del> | 1            | П      | -     |                     | ٦,      |             |        | П        | Job No   |             | -          |          | ᅱ      |
| St. Louis, MO 63110                                       | <del>                                     </del> |                | ork Days (W    | -      |               | 78          |                   |            |                                                  |              | 1      |       |                     |         |             | 1 1    |          |          |             |            |          |        |
| (314) 429-0100 Phone                                      |                                                  |                | from Below _S  |        |               |             |                   |            |                                                  |              |        |       |                     |         |             |        |          | 1        | 21562       | 156.000    | 04       |        |
| (314) 429-0462 FAX                                        |                                                  |                | weeks          |        |               |             |                   |            | 1 1                                              |              |        |       |                     |         |             |        |          | SDG N    | 0.          |            |          | ┪      |
| Project Name: 4Q09 PCB GW Sampling                        | ┪ 🗆                                              |                | week           |        |               |             |                   |            | 1                                                | -            |        | - 1   |                     |         |             |        |          |          |             |            |          |        |
| Site: Solutia WG Krummrich Facility                       | 1 🗆                                              |                | 2 days         |        |               |             | 08                |            |                                                  |              |        |       |                     | 1       |             |        |          | 1        |             |            |          |        |
| PO#                                                       |                                                  |                | l day          |        |               | aple        | 충                 |            |                                                  |              |        |       |                     |         |             |        |          |          |             |            |          |        |
| Sample Identification                                     | Sample<br>Date                                   | Sample<br>Time | Sample<br>Type | Matrix | # of<br>Cont. | Filtered Sa | Total PCBs by 680 |            |                                                  |              | ł      |       |                     |         |             |        |          |          | Sample S    | pecific No | otes:    |        |
| PMA-MW- <u>033</u> -1109'                                 | 11/24/09                                         | 0930           | G              | Water  | 2             |             | 2                 |            |                                                  |              |        |       |                     |         |             |        |          |          |             |            |          |        |
| PMA-MW-03M-1109 -                                         |                                                  | 1030           |                |        | ð             |             | J                 |            |                                                  |              |        |       |                     |         |             |        |          |          |             |            |          |        |
| PMA-MW-04D-11091                                          | V                                                | 1200           | 1/             | V      | 2             |             | 2                 |            |                                                  |              |        |       |                     |         | П           |        |          |          |             |            |          |        |
| -                                                         |                                                  |                |                |        |               |             |                   |            |                                                  |              |        |       |                     |         |             |        |          |          |             |            |          |        |
|                                                           |                                                  |                |                |        |               |             |                   |            |                                                  |              |        |       |                     |         |             |        |          |          |             |            |          |        |
|                                                           |                                                  |                |                |        |               |             |                   |            |                                                  |              | 11     |       |                     |         | $\Box$      |        |          |          |             |            |          |        |
|                                                           |                                                  |                |                |        |               | T           |                   |            |                                                  |              |        |       |                     | $\top$  |             |        |          |          |             |            |          |        |
|                                                           |                                                  |                |                |        |               |             |                   |            |                                                  |              |        |       |                     |         |             |        |          |          |             |            |          | _      |
|                                                           |                                                  |                |                |        |               | T           | Г                 |            |                                                  |              |        |       |                     |         |             |        |          |          |             |            |          | _      |
|                                                           |                                                  |                |                |        |               | 十           |                   |            |                                                  |              |        |       | $\uparrow \uparrow$ |         | $\top$      |        | $\Box$   |          |             |            |          | _      |
|                                                           |                                                  |                |                | † · ·  | <del> </del>  | 十           |                   |            |                                                  |              | $\Box$ |       |                     |         | П           |        | $\sqcap$ |          |             | •          |          | _      |
|                                                           |                                                  |                |                | 1      |               | _           | T                 |            | <del></del>                                      |              |        | 7     | $\top$              | $\top$  | $\top$      |        | T        |          |             |            |          |        |
| Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=No | OH: 6= Oth                                       | ier            |                |        |               |             | 1                 |            |                                                  | _            |        | _     | 11                  |         | 1           | _      | 17       |          |             |            |          | _      |
| Possible Hazard Identification                            |                                                  |                |                |        |               |             | Sai               | mple Dis   | osal                                             | ( A fee      | may    | be as | sess                | ed if s | ampl        | es are | retair   | ed longe | r than 1 i  | nonth)     |          |        |
| Non-Hazard Flammable Skin Irritant                        | Poison                                           | 1 B 🗀          | Unknown        |        |               |             |                   | Return     | To C                                             | lient        |        | Di.   | sposa               | By L    | ab          |        | Archi    | ve For_  |             | Months     |          |        |
| Special Instructions/QC Requirements & Comments: Level 4  | Data Packa                                       | ige            |                |        |               |             |                   |            |                                                  | 1P           | )      | 3     | · c                 | 2       |             |        |          |          |             |            |          |        |
| Relinquished by:                                          | Company:                                         |                |                | Date/T | ime:          |             | Rec               | reived har | 150                                              |              |        |       |                     | Comp    | anv.        |        |          | Date/T   | ime:        |            |          | _      |
| - malet                                                   |                                                  | URS            | 11/            | 24/09  | 1             | 70E         |                   | ceived by: | Sh                                               | أرأ          | 2~     |       |                     | 7       | 4           |        |          |          | ime:<br>809 | 10:        | 18       |        |
| Relinquished by:                                          | Company:                                         |                |                | Ďate/T | ime:          |             | Rec               | ceived by: |                                                  | 5            | 2      |       | 5                   | Comp    | any:        |        |          | Date/T   | ime:        |            |          |        |
| Relinquished by:                                          | Company                                          | 1              | •              | Date/T | ime:          |             | Rec               | ceived by: |                                                  | <del></del>  | ,      | ,,    |                     | Comp    | any:        |        |          | Date/T   | ime:        |            |          |        |

## **Login Sample Receipt Check List**

Client: URS Corporation

Job Number: 680-52931-1

List Source: TestAmerica Savannah

SDG Number: KPM035

Login Number: 52931

Creator: Conner, Keaton

List Number: 1

| Question                                                                         | T / F/ NA | Comment                |
|----------------------------------------------------------------------------------|-----------|------------------------|
| Radioactivity either was not measured or, if measured, is at or below background | N/A       |                        |
| The cooler's custody seal, if present, is intact.                                | True      |                        |
| The cooler or samples do not appear to have been compromised or tampered with.   | True      |                        |
| Samples were received on ice.                                                    | True      | 3 coolers rec'd on ice |
| Cooler Temperature is acceptable.                                                | True      |                        |
| Cooler Temperature is recorded.                                                  | True      | 3.8, 3.6 and 3.4 C     |
| COC is present.                                                                  | True      |                        |
| COC is filled out in ink and legible.                                            | True      |                        |
| COC is filled out with all pertinent information.                                | True      |                        |
| There are no discrepancies between the sample IDs on the containers and the COC. | True      |                        |
| Samples are received within Holding Time.                                        | True      |                        |
| Sample containers have legible labels.                                           | True      |                        |
| Containers are not broken or leaking.                                            | True      |                        |
| Sample collection date/times are provided.                                       | True      |                        |
| Appropriate sample containers are used.                                          | True      |                        |
| Sample bottles are completely filled.                                            | True      |                        |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True      |                        |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | N/A       |                        |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True      |                        |
| Multiphasic samples are not present.                                             | N/A       |                        |
| Samples do not require splitting or compositing.                                 | N/A       |                        |
| Is the Field Sampler's name present on COC?                                      | N/A       |                        |
| Sample Preservation Verified                                                     | True      |                        |

## **Login Sample Receipt Check List**

Client: URS Corporation

Job Number: 680-52931-1

List Source: TestAmerica Savannah

SDG Number: KPM035

Login Number: 52990

Creator: Daughtry, Beth

List Number: 1

| Electrical Park                                                                  |           |                                                |
|----------------------------------------------------------------------------------|-----------|------------------------------------------------|
| Question                                                                         | T / F/ NA | Comment                                        |
| Radioactivity either was not measured or, if measured, is at or below background | N/A       |                                                |
| The cooler's custody seal, if present, is intact.                                | True      | •                                              |
| The cooler or samples do not appear to have been compromised or tampered with.   | True      |                                                |
| Samples were received on ice.                                                    | True      | 2 coolers rec'd on ice                         |
| Cooler Temperature is acceptable.                                                | True      |                                                |
| Cooler Temperature is recorded.                                                  | True      | 3.2 (GW) and 2.4 C (DNAPL)                     |
| COC is present.                                                                  | True      |                                                |
| COC is filled out in ink and legible.                                            | True      |                                                |
| COC is filled out with all pertinent information.                                | True      |                                                |
| There are no discrepancies between the sample IDs on the containers and the COC. | True      |                                                |
| Samples are received within Holding Time.                                        | True      |                                                |
| Sample containers have legible labels.                                           | True      |                                                |
| Containers are not broken or leaking.                                            | True      |                                                |
| Sample collection date/times are provided.                                       | True      |                                                |
| Appropriate sample containers are used.                                          | True      |                                                |
| Sample bottles are completely filled.                                            | True      |                                                |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True      | MS/MSD not requested in receitp for client SDG |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True      |                                                |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True      |                                                |
| Multiphasic samples are not present.                                             | N/A       |                                                |
| Samples do not require splitting or compositing.                                 | N/A       |                                                |
| Is the Field Sampler's name present on COC?                                      | True      |                                                |
| Sample Preservation Verified                                                     | True      |                                                |
|                                                                                  |           |                                                |

## SDG KPM036

Results of Sample from Monitoring Well: PMA-MW-4S

# Solutia Krummrich Data Review WGK PCB GW Quality 4Q09

Laboratory SDG: KPM036 Reviewer: Susan Jansen Date Reviewed: 1/27/2010

**Guidance: USEPA National Functional Guidelines for Superfund Organic** 

Methods Data Review 2008.

Applicable Work Plan: Revised PCB Groundwater Quality Assessment (Solutia

2009)

| Sample Identification |
|-----------------------|
| PMA-MW-4S-1109-DNAPL  |

## 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?

Yes, however the laboratory performed MS/MSD analyses on sample PMA-MW-4S-1109-DNAPL even though MS/MSD analyses were not requested on the COC.

## 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that PCB surrogates were diluted out and not recovered. MS/MSD recoveries could not be evaluated because sample concentrations were greater than four times (4X) the spiking concentrations. Sample PMA-MW-4S-1109-DNAPL was diluted due to high levels of target analytes. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

### 3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

No, sample PMA-MW-4S-1109-DNAPL was extracted one day outside of hold time (hold time is 14 days for PCBs in wastes). Professional judgment was used to not reject data, since PCBs are very stable.

Analytical data that required qualification based on holding time criteria are summarized in the following table:

| Field ID             | Parameter                                 | Analyte                | Qualification |  |  |  |
|----------------------|-------------------------------------------|------------------------|---------------|--|--|--|
| PMA-MW-4S-1109-DNAPL | PCBs                                      | Monochlorobiphenyl     | UJ            |  |  |  |
| PMA-MW-4S-1109-DNAPL | PCBs                                      | Dichlorobiphenyl       | J             |  |  |  |
| PMA-MW-4S-1109-DNAPL | PCBs                                      | PCBs Trichlorobiphenyl |               |  |  |  |
| PMA-MW-4S-1109-DNAPL | MW-4S-1109-DNAPL PCBs Tetrachlorobiphenyl |                        |               |  |  |  |
| PMA-MW-4S-1109-DNAPL | PCBs                                      | Pentachlorobiphenyl    | J             |  |  |  |
| PMA-MW-4S1109-DNAPL  | PCBs                                      | Hexachlorobiphenyl     | J             |  |  |  |
| PMA-MW-4S-1109-DNAPL | I109-DNAPL PCBs Heptachlorobiphenyl       |                        | J             |  |  |  |
| PMA-MW-4S-1109-DNAPL | 1109-DNAPL PCBs Octachlorobiphenyl        |                        | J             |  |  |  |
| PMA-MW-4S-1109-DNAPL | PCBs                                      | Nonachlorobiphenyl     | UJ            |  |  |  |
| PMA-MW-4S-1109-DNAPL | PCBs                                      | DCB Decachlorobiphenyl | UJ            |  |  |  |

#### 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks? No

#### 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

## 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

PCB surrogates were diluted out and not recovered in sample PMA-MW-4S-1109-DNAPL. No qualification of data was required.

#### 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG?

Although not specified for MS/MSD analysis on the chain of custody form, the laboratory spiked and analyzed sample PMA-MW-4S-1109-DNAPL for PCBs.

Were MS/MSD recoveries within evaluation criteria?

MS/MSD recoveries could not be evaluated due to sample concentrations greater than four times (4X) the spiking concentrations.

## 8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

No

| Sample Identification    | Parameter | Analyte                      | IS Area<br>Recovery | IS Criteria  |
|--------------------------|-----------|------------------------------|---------------------|--------------|
| PMA-MW-4S-1109-DNAPL-MSD | PCBs      | Phenanthrene-d <sub>10</sub> | 181338              | 56567-169701 |

Sample PMA-MW-4S-1109-MSD is a quality control samples and quality control samples do not require qualification; therefore, no qualification of data was required.

## 9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG? No

## 10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?
No

## 11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in the diluted sample.

## 12.0 Additional Qualifications

Were additional qualifications applied?

No



## ANALYTICAL REPORT

Job Number: 680-52990-1

SDG Number: KPM036

Job Description: WGK PCB GW DNAPL MW4S 4Q09 - NOV 2009

For: Solutia Inc.

575 Maryville Centre Dr. Saint Louis, MO 63141

Attention: Mr. Jerry Rinaldi

Lidya gricia

Approved for release Lidya Gulizia Project Manager I 12/30/2009 3:58 PM

Lidya Gulizia
Project Manager I
lidya.gulizia@testamericainc.com
12/30/2009

Reviewed ON:

JAN 27 2010

Mr. Thomas Adams Mr. Bob Billman Dave Palmer

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel (912) 354-7858 Fax (912) 352-0165 <a href="https://www.testamericainc.com">www.testamericainc.com</a>



#### Job Narrative 680-52990-1 / SDG KPM036

#### Receipt

All samples were received in good condition within temperature requirements.

#### GC/MS Semi VOA

Method(s) 680: Sample PMA-MW-4S-1109-DNAPL (680-52990-1) and the associated matrix spike/matr spike duplicate samples (680-52990-1 MS and 680-52990-1 MSD) were diluted due to abundance of target analytes. As such, surrogate and spike recoveries are not reported.

No other analytical or quality issues were noted.

#### Comments

No additional comments.

#### **METHOD SUMMARY**

Client: Solutia Inc.

Job Number: 680-52990-1

Sdg Number: KPM036

| Description                              | Lab Location | Method  | Preparation Method |
|------------------------------------------|--------------|---------|--------------------|
| Matrix Waste                             |              |         |                    |
| Polychlorinated Biphenyls (PCBs) (GC/MS) | TAL SAV      | EPA 680 |                    |
| Waste Preparation (PCBs)                 | TAL SAV      |         | EPA 680            |

Lab References:

TAL SAV = TestAmerica Savannah

**Method References:** 

EPA = US Environmental Protection Agency

TestAmerica Savannah

JAN 27 2010

## METHOD / ANALYST SUMMARY

Client: Solutia Inc.

Job Number: 680-52990-1

Sdg Number: KPM036

Method Analyst D Analyst ID

EPA 680

Robbins, Wayne

WR

TestAmerica Savannah

IAN 27 2010

## **SAMPLE SUMMARY**

Client: Solutia Inc.

Job Number: 680-52990-1

Sdg Number: KPM036

| Lab Sample ID | Client Sample ID     | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received |
|---------------|----------------------|---------------|----------------------|-----------------------|
| 680-52990-1   | PMA-MW-4S-1109-DNAPL | Waste         | 11/24/2009 1230      | 11/25/2009 1018       |

# **SAMPLE RESULTS**

## **Analytical Data**

Client: Solutia Inc.

Job Number: 680-52990-1

Sdg Number: KPM036

Client Sample ID:

PMA-MW-4S-1109-DNAPL

Lab Sample ID: Client Matrix:

680-52990-1

Waste

Date Sampled: 11/24/2009 1230

Date Received: 11/25/2009 1018

| 680 Polychlorinated Biphenyls (PCBs) (GC/MS) | 680 Polychlorinated | Biphenyls ( | (PCBs) | (GC/MS) |
|----------------------------------------------|---------------------|-------------|--------|---------|
|----------------------------------------------|---------------------|-------------|--------|---------|

Method:

680

Analysis Batch: 680-157108

Instrument ID:

MSY

Preparation:

680

Prep Batch: 680-155667

Lab File ID:

N/A

Dilution:

500

Date Analyzed:

Initial Weight/Volume:

1.34 g 10 mL

Date Prepared:

12/22/2009 1624 / 12/09/2009 1200

Final Weight/Volume: Injection Volume:

| Analyte                  | DryWt Corrected: N                                                                                            | Result (ug/Kg) | Qualifier    | RL                |
|--------------------------|---------------------------------------------------------------------------------------------------------------|----------------|--------------|-------------------|
| Monochlorobiphenyl       | inadore mantamentalescopa inicialista de la profesión inicia estre (11), descionado en Edistria de la Colonia | 370000         | "นา"         | 370000            |
| Dichlorobiphenyl         | •                                                                                                             | 6000000        | ĨŽ.,         | 370000            |
| Trichlorobiphenyl        |                                                                                                               | 51000000       | J            | 370000            |
| Tetrachlorobiphenyl      |                                                                                                               | 110000000      | 27."         | 750000            |
| Pentachlorobiphenyl      |                                                                                                               | 88000000       | "Ž"          | 750000            |
| Hexachlorobiphenyl       |                                                                                                               | 140000000      | J            | 750000            |
| Heptachlorobiphenyl      |                                                                                                               | 97000000       | <u> </u>     | 1100000           |
| Octachlorobiphenyl       |                                                                                                               | 20000000       | J            | 1100000           |
| Nonachlorobiphenyl       |                                                                                                               | 1900000        | "UJ"         | 1900000           |
| DCB Decachlorobiphenyl   |                                                                                                               | 1900000        | <b>`</b> UJ" | 1900000           |
| Surrogate                |                                                                                                               | %Rec           | Qualifier    | Acceptance Limits |
| Decachlorobiphenyl-13C12 |                                                                                                               | 0              | D            | 30 - 130          |

## **DATA REPORTING QUALIFIERS**

Client: Solutia Inc.

Job Number: 680-52990-1

Sdg Number: KPM036

| Lab Section    | Qualifier | Description                                                                                                                                                         |
|----------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GC/MS Semi VOA |           |                                                                                                                                                                     |
|                | U         | Indicates the analyte was analyzed for but not detected.                                                                                                            |
|                | 4         | MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.           |
|                | D         | Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D. |

# **QUALITY CONTROL RESULTS**

Client: Solutia Inc.

Job Number: 680-52990-1

Sdg Number: KPM036

## **QC Association Summary**

|                         |                        | Report |               |        |            |
|-------------------------|------------------------|--------|---------------|--------|------------|
| Lab Sample ID           | Client Sample ID       | Basis  | Client Matrix | Method | Prep Batch |
| GC/MS Semi VOA          |                        |        |               |        |            |
| Prep Batch: 680-155667  |                        |        |               |        |            |
| .CS 680-155667/3-A      | Lab Control Sample     | T      | Waste         | 680    |            |
| MB 680-155667/2-A       | Method Blank           | T      | Waste         | 680    |            |
| 880-52990-1             | PMA-MW-4S-1109-DNAPL   | Т      | Waste         | 680    |            |
| 880-52990-1MS           | Matrix Spike           | Т      | Waste         | 680    |            |
| 880-52990-1MSD          | Matrix Spike Duplicate | Т      | Waste         | 680    |            |
| Analysis Batch:680-1571 | 08                     |        |               |        |            |
| CS 680-155667/3-A       | Lab Control Sample     | T      | Waste         | 680    | 680-155667 |
| /IB 680-155667/2-A      | Method Blank           | Т      | Waste         | 680    | 680-155667 |
| 80-52990-1              | PMA-MW-4S-1109-DNAPL   | Т      | Waste         | 680    | 680-155667 |
| 80-52990-1MS            | Matrix Spike           | Т      | Waste         | 680    | 680-155667 |
| 80-52990-1MSD           | Matrix Spike Duplicate | Т      | Waste         | 680    | 680-155667 |
|                         |                        |        |               |        |            |

#### Report Basis

T = Total

TestAmerica Savannah

JAN 27 2010

Client: Solutia Inc.

Job Number: 680-52990-1

Sdg Number: KPM036

## **Surrogate Recovery Report**

## 680 Polychlorinated Biphenyls (PCBs) (GC/MS)

#### Client Matrix: Waste

|                    |                              | 13DCB |
|--------------------|------------------------------|-------|
| Lab Sample ID      | Client Sample ID             | %Rec  |
| 680-52990-1        | PMA-MW-4S-1109-D<br>NAPL     | (0D)  |
| MB 680-155667/2-A  |                              | 90    |
| LCS 680-155667/3-A |                              | 97    |
| 680-52990-1 MS     | PMA-MW-4S-1109-D<br>NAPL MS  | 0D    |
| 680-52990-1 MSD    | PMA-MW-4S-1109-D<br>NAPL MSD | 0D    |

Surrogate Acceptance Limits
13DCB = Decachlorobiphenyl-13C12 30-130

TestAmerica Savannah

JAN 27 2010 SEX

Client: Solutia Inc.

Job Number: 680-52990-1

Sdg Number: KPM036

Method Blank - Batch: 680-155667

Method: 680 Preparation: 680

Lab Sample ID:

MB 680-155667/2-A

Client Matrix:

Waste

Instrument ID: GC/MS SemiVolatiles - Y

Analysis Batch: 680-157108 Prep Batch: 680-155667

Lab File ID: N/A

Dilution:

1.0

Units: ug/Kg

Initial Weight/Volume:

1.00 g

Date Analyzed: Date Prepared: 12/22/2009 1417 12/09/2009 1200

Final Weight/Volume:

10 mL

Injection Volume:

| Analyte                  | Result | Qual | RL             |
|--------------------------|--------|------|----------------|
| Monochlorobiphenyl       | 990    | U    | 990            |
| Dichlorobiphenyl         | 990    | U    | 990            |
| Trichlorobiphenyl        | 990    | U .  | 990            |
| Tetrachlorobiphenyl      | 2000   | U    | 2000           |
| Pentachlorobiphenyl      | 2000   | U    | 2000           |
| Hexachlorobiphenyl       | 2000   | U    | 2000           |
| Heptachlorobiphenyl      | 3000   | U    | 3000           |
| Octachlorobiphenyl       | 3000   | U    | 3000           |
| Nonachlorobiphenyl       | 5100   | U    | 5100           |
| DCB Decachlorobiphenyl   | 5100   | U    | 5100           |
| Surrogate                | % Rec  | Acce | eptance Limits |
| Decachlorobiphenyl-13C12 | 90     |      | 30 - 130       |

Lab Control Sample - Batch: 680-155667

Method: 680 Preparation: 680

Lab Sample ID: LCS 680-155667/3-A

Instrument ID: GC/MS SemiVolatiles - Y

Client Matrix:

Waste

Analysis Batch: 680-157108 Prep Batch: 680-155667

Lab File ID: N/A

Dilution:

1.0

Units: ug/Kg

Initial Weight/Volume:

1.00 g

Date Analyzed:

12/22/2009 1316

Final Weight/Volume:

10 mL

Date Prepared:

12/09/2009 1200

Injection Volume:

| Analyte                  | Spike Amount | Spike Amount Result |              | Limit          | Qual |
|--------------------------|--------------|---------------------|--------------|----------------|------|
| Monochlorobiphenyl       | 20000        | 20000 19600         |              | 30 - 130       |      |
| Dichlorobiphenyl         | 20000        | 20700               | 103          |                |      |
| Trichlorobiphenyl        | 20000        | 20500               | 103          |                |      |
| Tetrachlorobiphenyl      | 40000        | 40000 39500         |              | 40 - 140       |      |
| Pentachlorobiphenyl      | 40000        | 40000 42500         |              | 40 - 140       |      |
| Hexachlorobiphenyl       | 40000        | 40800               | 102          | 40 - 140       |      |
| Heptachlorobiphenyl      | 60000        | 59900               | 100 40 - 140 |                |      |
| Octachlorobiphenyl       | 60000        | 59400               | 99           | 40 - 140       |      |
| DCB Decachlorobiphenyl   | 100000       |                     |              | 30 - 130       |      |
| Surrogate                | % R          | ec                  | Acc          | eptance Limits |      |
| Decachlorobiphenyl-13C12 | 97           |                     |              |                |      |

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Solutia Inc.

Job Number: 680-52990-1

Sdg Number: KPM036

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 680-155667

Method: 680

Preparation: 680

MS Lab Sample ID:

680-52990-1

Analysis Batch: 680-157108

Instrument ID: GC/MS SemiVolatiles - Y

Client Matrix:

Waste

Prep Batch: 680-155667

Lab File ID: N/A

Dilution:

500

Initial Weight/Volume: Final Weight/Volume: 1.32 g 10 mL

Date Analyzed: Date Prepared: 12/22/2009 1655 12/09/2009 1200

Injection Volume:

MSD Lab Sample ID:

680-52990-1 Waste

Analysis Batch: 680-157108

Instrument ID: GC/MS SemiVolatiles - Y

Client Matrix:

Lab File ID:

N/A

Dilution:

Prep Batch: 680-155667

500

Initial Weight/Volume:

1.33 g

Date Analyzed:

12/22/2009 1726

Final Weight/Volume:

10 mL

Date Prepared:

12/09/2009 1200

Injection Volume:

|                          | <u>%</u> | Rec.     |          |         |        |                |             |
|--------------------------|----------|----------|----------|---------|--------|----------------|-------------|
| Analyte                  | MS       | MSD      | Limit    | RPD     | RPD Li | mit MS Qu      | al MSD Qual |
| Monochlorobiphenyl       | NC       | NĈ)      | 30 - 130 | (NC)    | 50     | U              | _U_         |
| Dichlorobiphenyl         | -4420    | -5130    | 30 - 130 | 2       | 50     | 4              | 4           |
| Trichlorobiphenyl        | -42200   | -75900   | 30 - 130 | 12      | 50     | / 4            | 4           |
| Tetrachlorobiphenyl      | -38300   | -47200   | 40 - 140 | 3       | 50     | 4              | 4           |
| Pentachlorobiphenyl      | -27900   | -50500   | 40 - 140 | 9       | 50     | 4              | 4 /         |
| Hexachlorobiphenyl       | -52100   | -64200   | 40 - 140 | 3       | 50     | \ 4            | 4 /         |
| Heptachlorobiphenyl      | -15300   | -23700   | 40 - 140 | 4       | 50     | 4              | 4           |
| Octachlorobiphenyl       | 283      | -3400    | 40 - 140 | 9       | 50     | 4              | 4_/         |
| DCB Decachlorobiphenyl   | NC       | NC       | 30 - 130 | NC NC   | 50     | U              | U           |
| Surrogate                |          | MS % Rec | MSI      | O % Rec |        | Acceptance Lim | its         |
| Decachlorobiphenyl-13C12 |          | 0        | D 0      | D       |        | 30 - 130       |             |

## Savannah

5102 LaRoche Avenue

## **Chain of Custody Record**



Savannah, GA 31404

|                                                            |                               |                 |                |                                                  |                                  |                 |                   |          |          |            |       | TestAmerica Laboratories, Inc. |           |        |           |              |           |            |                               |        |                                         |
|------------------------------------------------------------|-------------------------------|-----------------|----------------|--------------------------------------------------|----------------------------------|-----------------|-------------------|----------|----------|------------|-------|--------------------------------|-----------|--------|-----------|--------------|-----------|------------|-------------------------------|--------|-----------------------------------------|
| Client Contact                                             | Project Manager: Jeff Adams S |                 |                |                                                  | Site Contact: Mike Corbett Date: |                 |                   |          |          | : 11/24/09 |       |                                |           |        |           | COC No:      |           |            |                               |        |                                         |
| URS Corporation                                            | Tel/Fax: (3                   | 14) 743-422     | 28             |                                                  |                                  | La              | ıb C              | ontac    | t: Lid   | ya Gi      | dizia |                                |           | Carrie |           |              | PS        |            |                               |        | 1 of1 COCs                              |
| 1001 Highlands Plaza Drive West, Suite 300                 |                               | Analysis T      | urnaround      | Time                                             |                                  | 燻               | П                 |          |          | Т          |       |                                |           | $\top$ | Т         |              |           | T          | Т                             | Т      | Job No.                                 |
| St. Louis, MO 63110                                        | Calendar                      | (C) or Wo       | ork Days (W    | )                                                |                                  |                 |                   |          |          |            |       |                                |           |        |           |              |           |            | 1                             |        | 21562156.00004                          |
| (314) 429-0100 Phone                                       | -1                            | AT if different | from Below _S  | Standard                                         |                                  |                 |                   |          |          |            | -     | 1                              |           | - 1    | 1         |              |           |            | ı                             | 1      |                                         |
| (314) 429-0462 FAX                                         |                               | 2               | ! weeks        |                                                  |                                  |                 |                   |          |          | 11         |       | ì                              |           | :      |           | 1 1          | ì         |            |                               |        | SDG No.                                 |
| Project Name: 4Q09 PCB GW Sampling                         |                               | 1               | week           |                                                  |                                  |                 |                   | 1 1      |          | 1          |       |                                |           |        |           | İİ           |           |            | 1                             |        |                                         |
| Site: Solutia WG Krummrich Facility                        | ] $\square$                   | :               | 2 days         |                                                  |                                  | a.              | 8                 |          |          |            |       |                                |           |        |           |              | - 1       |            |                               | 1      |                                         |
| PO#                                                        |                               | 1               | l day          |                                                  |                                  | dub             | ç                 | 1 1      |          |            | - 1   |                                |           |        |           |              |           |            |                               | İ      |                                         |
| Sample Identification                                      | Sample<br>Date                | Sample<br>Time  | Sample<br>Type | Matrix                                           | # of<br>Cant.                    | Filtered Sample | Total PCBs by 680 |          |          |            |       |                                |           |        |           |              |           |            |                               |        | Sample Specific Notes:                  |
| PMA-MW-4S-1109-DNAPL                                       | 11/24/09                      | 1230            | G              | NAPL                                             | 2                                |                 | 2                 | 1-1      | 1        |            |       |                                |           |        | T         |              |           | +          |                               | 1      |                                         |
|                                                            |                               |                 |                |                                                  |                                  |                 |                   |          |          |            | ľ     |                                |           |        |           |              |           |            |                               |        |                                         |
|                                                            |                               |                 |                |                                                  |                                  | T               |                   |          |          |            |       |                                |           |        |           |              |           |            |                               |        |                                         |
|                                                            |                               |                 |                |                                                  |                                  | T               | Γ                 |          |          |            |       |                                |           |        |           |              |           |            |                               |        |                                         |
|                                                            |                               |                 |                |                                                  |                                  |                 |                   |          |          |            |       |                                |           |        |           |              |           |            | T                             |        |                                         |
| d                                                          |                               |                 |                |                                                  |                                  | T               |                   |          |          |            |       |                                |           |        | T         |              | $\Box$    |            |                               |        |                                         |
|                                                            |                               |                 | T              |                                                  |                                  | T               | T                 | 11       |          |            |       |                                |           |        |           |              |           | 1          |                               | 1      |                                         |
|                                                            |                               |                 |                |                                                  |                                  | 1               | T                 |          |          |            |       | +                              | $\dagger$ |        | +         |              | $\dashv$  | $\top$     |                               |        |                                         |
|                                                            |                               |                 |                |                                                  |                                  | 1               | 1                 |          |          |            |       |                                | 1-        |        |           |              |           |            | $\top$                        |        |                                         |
|                                                            |                               |                 |                |                                                  |                                  | T               | ╁                 | -        |          | +-         |       |                                | 1         |        | †-        |              |           |            |                               | +      |                                         |
|                                                            |                               |                 |                | <del>                                     </del> |                                  | †               | 十                 | 1        | <u> </u> |            |       | _                              | -         |        | $\dagger$ |              |           |            | $\top$                        | 1      |                                         |
|                                                            |                               |                 |                |                                                  |                                  | 十               | T                 | 1        | $\vdash$ | +          |       |                                | $\top$    |        | +         | +            |           | $\top$     |                               | $\top$ | 1.80-52990                              |
| Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=Na  | ΩH+ 6= Ωth                    | <u></u>         |                |                                                  |                                  |                 | ١,                |          | $\dashv$ | +          |       | +                              |           |        | +         | +            |           | +          | +                             |        | 000000000000000000000000000000000000000 |
| Possible Hazard Identification                             | 011, v- 0th                   |                 |                |                                                  |                                  |                 | S                 | mple     | e Disp   | osal       | (Af   | ee ma                          | av be     | 2556   | SSEC      | if sa        | mple      | es ai      | re re                         | taine  | ed longer than 1 month)                 |
| Non-Hazard Flammable Skin Irritant                         | Poison                        | В               | Unknown        |                                                  |                                  |                 |                   | $\Box_F$ | Return   | To C       | lient |                                |           | Dispo  | sal E     | y Lat        | George to |            | $\exists_{A_{\underline{i}}}$ | rchiv  | e <u>For Mo</u> nths                    |
| Special Instructions/QC Requirements & Comments: Level 4 I | ata Packa                     | ge              |                |                                                  | •                                |                 |                   |          |          |            |       |                                |           |        |           |              |           | -          | V                             |        | PERATURE                                |
|                                                            |                               |                 |                |                                                  |                                  |                 |                   |          |          |            |       |                                |           |        |           |              |           |            |                               |        | 2.4                                     |
| Relinquished by: Whe Colit                                 | Company:                      | URS             | Pri            | Date/Ti                                          |                                  | 1110            | Re                | ceive    | d by:    | ر<br>ا     |       | ノ ()・                          | l i /     | htu    |           | ompar<br>TYA |           | <i>ا</i> ک | ,                             |        | Date/Time: 11-25-901018                 |
| Relinquished by:                                           | Company:                      |                 |                | Date/Ti                                          |                                  | LUS             |                   | ceive    |          | تك         | _ 1-  | <u> </u>                       | <u>(</u>  | LITE   |           | ompar        |           | <u> </u>   |                               | _      | Date/Time:                              |
|                                                            |                               |                 |                |                                                  |                                  |                 |                   |          |          |            |       |                                |           |        |           |              |           |            |                               |        |                                         |
| Relinquished by:                                           | Company:                      |                 |                | Date/Ti                                          | ime:                             |                 | Re                | eceive   | d by:    |            | _     | 3334 0410                      |           |        | C         | ompar        | ıy:       |            |                               |        | Date/Time:                              |

## Login Sample Receipt Check List

Client: URS Corporation

Job Number: 680-52990-1

SDG Number: KPM036

Login Number: 52990

List Source: TestAmerica Savannah

Creator: Daughtry, Beth List Number: 1

| Question                                                                         | T / F/ NA | Comment                                        |
|----------------------------------------------------------------------------------|-----------|------------------------------------------------|
| Radioactivity either was not measured or, if measured, is at or below background | N/A       |                                                |
| The cooler's custody seal, if present, is intact.                                | True      |                                                |
| The cooler or samples do not appear to have been compromised or tampered with.   | True      |                                                |
| Samples were received on ice.                                                    | True      | 2 coolers rec'd on ice                         |
| Cooler Temperature is acceptable.                                                | True      |                                                |
| Cooler Temperature is recorded.                                                  | True      | 3.2 (GW) and 2.4 C (DNAPL)                     |
| COC is present.                                                                  | True      |                                                |
| COC is filled out in ink and legible.                                            | True      |                                                |
| COC is filled out with all pertinent information.                                | True      |                                                |
| There are no discrepancies between the sample IDs on the containers and the COC. | True      |                                                |
| Samples are received within Holding Time.                                        | True      |                                                |
| Sample containers have legible labels.                                           | True      |                                                |
| Containers are not broken or leaking.                                            | True      |                                                |
| Sample collection date/times are provided.                                       | True      |                                                |
| Appropriate sample containers are used.                                          | True      |                                                |
| Sample bottles are completely filled.                                            | True      |                                                |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True      | MS/MSD not requested in receitp for client SDG |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True      |                                                |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True      |                                                |
| Multiphasic samples are not present.                                             | N/A       |                                                |
| Samples do not require splitting or compositing.                                 | N/A       |                                                |
| Is the Field Sampler's name present on COC?                                      | True      |                                                |
| Sample Preservation Verified                                                     | True      |                                                |