US ERA ARCHIVE DOCUMENT

Solutia Inc.

575 Maryville Centre Drive St. Louis, Missouri 63141

P.O. Box 66760 St. Louis, Missouri 63166-6760 *Tel* 314-674-1000

November 23, 2009

Mr. Kenneth Bardo - LU-9J U.S. EPA Region V Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507 **VIA FEDEX**

Re:

PCB Groundwater Quality Assessment Program

3rd Quarter 2009 Data Report

Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Mr. Bardo:

Enclosed please find the PCB Groundwater Quality Assessment Program 3rd Quarter 2009 Data Report for Solutia Inc.'s W. G. Krummrich Plant, Sauget, IL.

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@solutia.com

Sincerely,

Gerald M. Rinaldi

Manager, Remediation Services

Sends Me Simble

Enclosure

cc: Distribution List

DISTRIBUTION LIST

PCB Groundwater Quality Assessment Program 3rd Quarter 2009 Data Report Solutia Inc., W. G. Krummrich Plant, Sauget, IL

USEPA

Leah Evison

USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

IEPA

James Moore

IEPA Bureau of Land, 1021 North Grand Avenue East, Springfield, IL 62706

Booz Allen Hamilton

Dan Briller

Booz Allen Hamilton, 8283 Greensboro Drive, McLean, VA 22102

Solutia

Cathy Bumb 575 Maryville Centre Drive, St. Louis, MO 63141

Justin Prien 500 Monsanto Avenue, Sauget, IL 62206-1198

3 ^{R D} QUARTER 2009 DATA REPORT

PCB GROUNDWATER QUALITY ASSESSMENT PROGRAM

SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared for Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

November 2009

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 Project # **21562156.00007**

1.0	INTROD	UCTION1
2.0	FIELD P	ROCEDURES1
3.0	LABORA	ATORY PROCEDURES3
4.0	QUALITY	Y ASSURANCE
5.0	OBSERV	/ATIONS4
6.0	REFERE	NCES5
List of	Figures	
Figure Figure Figure Figure Figure	2 3 4	Site Location Map Former PCB Manufacturing Area Monitoring Well Locations Potentiometric Surface Map – Middle / Deep Hydrogeologic Unit PCB Results - SHU Wells PCB Results – MHU / DHU Wells
List of	Tables	
Table 2 Table 3 Table 4 Table 5 Table 6 Table 6	2 3 4 5 5	Monitoring Well Gauging Information Groundwater & DNAPL Analytical Detections Monitoring Well PMA MW-1M Mann-Kendall Trend Analysis Monitoring Well PMA MW-2M Mann-Kendall Trend Analysis Monitoring Well PMA MW-3S Mann-Kendall Trend Analysis Monitoring Well PMA MW-3M Mann-Kendall Trend Analysis Monitoring Well PMA MW-4D Mann-Kendall Trend Analysis Monitoring Well PMA MW-6D Mann-Kendall Trend Analysis

List of Appendices

Appendix A	Groundwater	Duraina and	Compling	Earma
Appendix A	Groundwater	Puraina and	Sampling	Forms

Appendix B Chains-of-Custody

Appendix C Quality Assurance Report

Appendix D Groundwater Analytical Results (with Data Review/Validation Sheets)

November 2009

1.0 INTRODUCTION

This report presents the results of the 3rd Quarter 2009 (3Q09) sampling event performed at the Solutia Inc. (Solutia) W.G. Krummrich Facility located in Sauget, Illinois (Site). This sampling event was conducted in accordance with the Revised PCB Groundwater Quality Assessment Program Work Plan (Solutia 2009). The Site location map is presented in **Figure 1**.

The PCB Groundwater Quality Assessment Program well network consists of ten monitoring wells, as follows (**Figure 2**):

- Two source area wells, PMAMW-4S and PMAMW-4D, are screened in the Shallow Hydrogeologic Unit (SHU) (designated with an "S") and Deep Hydrogeologic Unit (DHU) (designated with a "D"), respectively.
- Three well clusters (PMAMW-1S/M, PMAMW-2S/M and PMAMW-3S/M) are located down-gradient of the source area. These clusters include wells screened in the SHU and Middle Hydrogeologic Unit (MHU) (designated with an "M").
- Two individual wells designated PMAMW-5M and PMAMW-6D are located further downgradient of the source area, with PMAMW-5M screened in the MHU and PMAMW-6D screened in the DHU.

Groundwater samples were collected from nine of the ten monitoring wells during the 3Q09 sampling event. A dense non-aqueous phase liquid (DNAPL) sample was collected from monitoring well PMAMW-4S based on the presence of DNAPL in the monitoring well during sampling.

Field sampling activities were conducted in accordance with the procedures outlined in the Revised PCB Groundwater Quality Assessment Program Work Plan, including the collection of appropriate quality assurance and quality control (QA/QC) samples. The following section summarizes the field investigative procedures.

2.0 FIELD PROCEDURES

URS Corporation (URS) conducted the 3Q09 PCB Groundwater Quality Assessment Program field activities between August 17 and 25, 2009.

Groundwater Level Measurements – An oil/water interface probe was used to measure depth to static groundwater levels and determine the presence of non-aqueous phase liquids (NAPL) in the PCB Groundwater Quality Assessment Program well network. A dense phase NAPL was detected in monitoring well PMAMW-4S. Depth to groundwater measurements were collected from accessible existing wells (i.e., GM-, K-, PSMW- and PMA-series) and piezometers clusters (installed for the Sauget Area 2 RI/FS and WGK CA-750 Environmental Indicator projects) specified in the Revised PCB Groundwater Quality Assessment Program Work Plan.

Well gauging information for the 3Q09 event is presented in **Table 1**. As the middle and deep hydrogeologic units are the primary migration pathway for constituents present in groundwater at the WGK Facility, a groundwater potentiometric surface map based on water level data from wells screened in the MHU and DHU is presented as **Figure 3**.

Groundwater Sampling - Low-flow sampling techniques were used for groundwater sample collection. At each monitoring well, disposable, low-density polyethylene tubing was attached to a submersible pump, which was then lowered into the well to the middle of the screened interval. Monitoring wells were purged at a rate no more than 400 mL/minute to minimize drawdown. If significant drawdown occurred, flow rates were reduced.

Drawdown was measured periodically throughout purging to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen. Once the flow rate and drawdown were stable, field measurements were collected approximately every three to five minutes. Purging of a well was considered complete when the following water quality parameters remained stable over three consecutive flow-thru cell volumes:

Parameter	Stabilization Guidelines
Dissolved Oxygen (DO)	+/- 10% or +/-0.2 mg/L, whichever is greatest
Oxidation-Reduction Potential (ORP)	+/- 20 mV
pН	+/- 0.2 units
Specific Conductivity	+/- 3%

Sampling commenced upon completion of purging. Prior to sample collection, the flow-thru cell was bypassed to allow for collection of uncompromised groundwater. Consistent with the work plan, samples were collected at a flow rate less than or equal to the rate at which stabilization was achieved.

Quality Assurance/Quality Control (QA/QC) samples consisting of analytical duplicates (AD) and equipment blanks (EB) were collected at a rate of 10% and matrix spike/matrix spike duplicates (MS/MSD) were collected at a rate of 5%, complying with the work plan. All samples were submitted to TestAmerica for PCB analysis.

Each sample was labeled immediately following collection. The sample identification system used for each sample involved the following nomenclature "PMAMW#-MMYY-QAC" where:

- PMAMW# Monitoring Well Location (PCB Manufacturing Area (PMA)) and Number
- MMYY Month and year of sampling quarter, e.g.: August (Third quarter), 2009 (0809)
- QAC will denote QA/QC samples (when applicable):
 - o **EB** equipment blank
 - AD analytical duplicate
 - MS or MSD Matrix Spike or Matrix Spike Duplicate

DNAPL Sampling – An interface probe detected 0.40 feet of DNAPL in monitoring well PMAMW-4S during monitoring well gauging prior to sampling. Consequently, a DNAPL sample was collected. Using a process similar to groundwater sampling, DNAPL was pumped through polyethylene tubing into a 4 ounce glass sample container. Sample PMAMW04S-0809-DNAPL was submitted to TestAmerica for Total PCB analysis by EPA Method 680.

Upon collection and labeling, sample containers were immediately placed inside an iced cooler, packed in such a way as to help prevent breakage and maintain inside temperature at or below approximately 4°C. Field personnel recorded the project identification and number, sample description/location, required analysis, date and time of sample collection, type and matrix of sample, number of sample containers, analysis requested/comments, and sampler signature/date/time, with permanent ink on the chain-of-custody (COC). Prior to shipment, coolers were sealed between the lid and sides of the cooler with a custody seal, and then shipped to TestAmerica in Savannah, Georgia by means of overnight delivery service for groundwater (FedEx/UPS), and ground delivery for DNAPL (UPS). Field sampling data sheets are included in **Appendix A**, COC forms are included in **Appendix B**.

3.0 LABORATORY PROCEDURES

Samples were analyzed by TestAmerica for PCBs using Method 680.

4.0 QUALITY ASSURANCE

Analytical data were reviewed for quality and completeness, as described in the Revised PCB Groundwater Quality Assessment Work Plan (Solutia 2009). Data qualifiers were added, as appropriate, and are included on the data tables and the laboratory result pages. The Quality Assurance report is included as **Appendix C**. Laboratory result pages (i.e. Form 1's) along with data validation review sheets are included in **Appendix D**.

A total of 12 samples (nine investigative groundwater samples, one DNAPL, one field duplicate, one equipment blank) were prepared and analyzed by TestAmerica for PCBs. Results for the various analyses were submitted as sample delivery groups (SDGs) KPM033 and KPM034. The samples contained in each SDG are listed below.

KPM033

KPM034

PMAMW-1S-0809 PMAMW-4S-0809-DNAPL
PMAMW-1M-0809
PMAMW-2S-0809
PMAMW-2S-0809-EB
PMAMW-2M-0809
PMAMW-6D-0809
PMAMW-5M-0809
PMAMW-3S-0809
PMAMW-3S-0809
PMAMW-3M-0809
PMAMW-4D-0809

Evaluation of the analytical data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, (USEPA 1999) and the Revised PCB Groundwater Quality Assessment Work Plan (Solutia 2009). Based on the above mentioned criteria, results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on LCS, surrogate and field duplicate data, were achieved for these SDGs to meet the project objectives. Completeness, which is defined to be the percentage of analytical results which are judged to be valid, including estimated (J/UJ) data was 96 percent.

5.0 OBSERVATIONS

This section presents a brief summary of the groundwater analytical results from the 3Q09 PCB Groundwater Quality Assessment sampling event. A summary of the laboratory results is provided in **Table 2** and the entire laboratory data package is provided in **Appendix D**.

Shallow Hydrogeologic Unit

A DNAPL sample was collected from source area SHU monitoring well PMAMW-4S, and total PCBs were detected at a concentration of 517,330,000 µg/kg. Historically, measurable DNAPL has been observed in PMAMW-4S during previous sampling events.

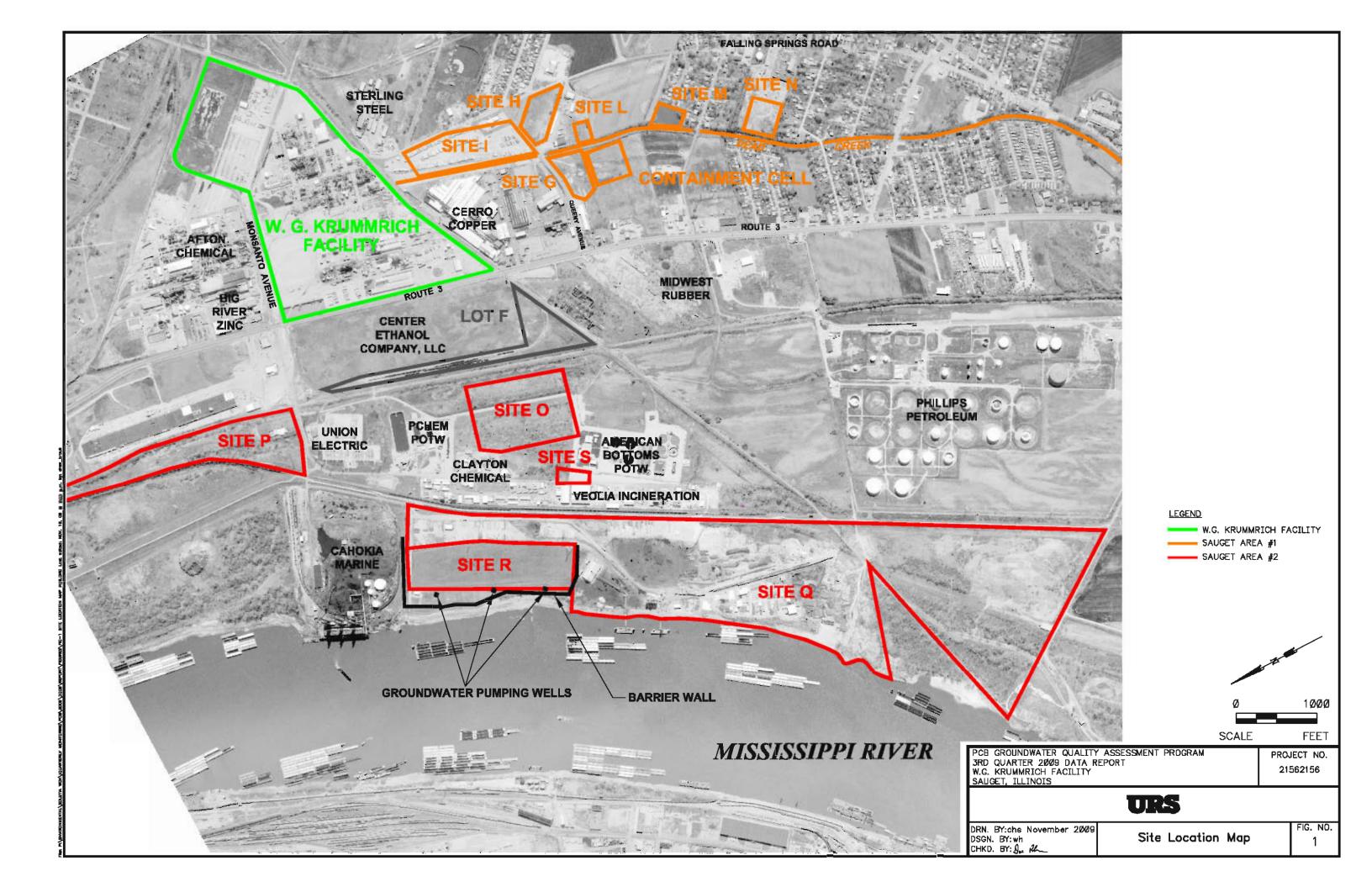
PCBs were detected in one of the three down-gradient PCB Groundwater Quality Assessment Program SHU monitoring wells (PMAMW-3S) at a concentration of 0.34 μ g/L. Such data indicates that PCBs in the SHU are attenuating over the 300 to 400 ft distance between

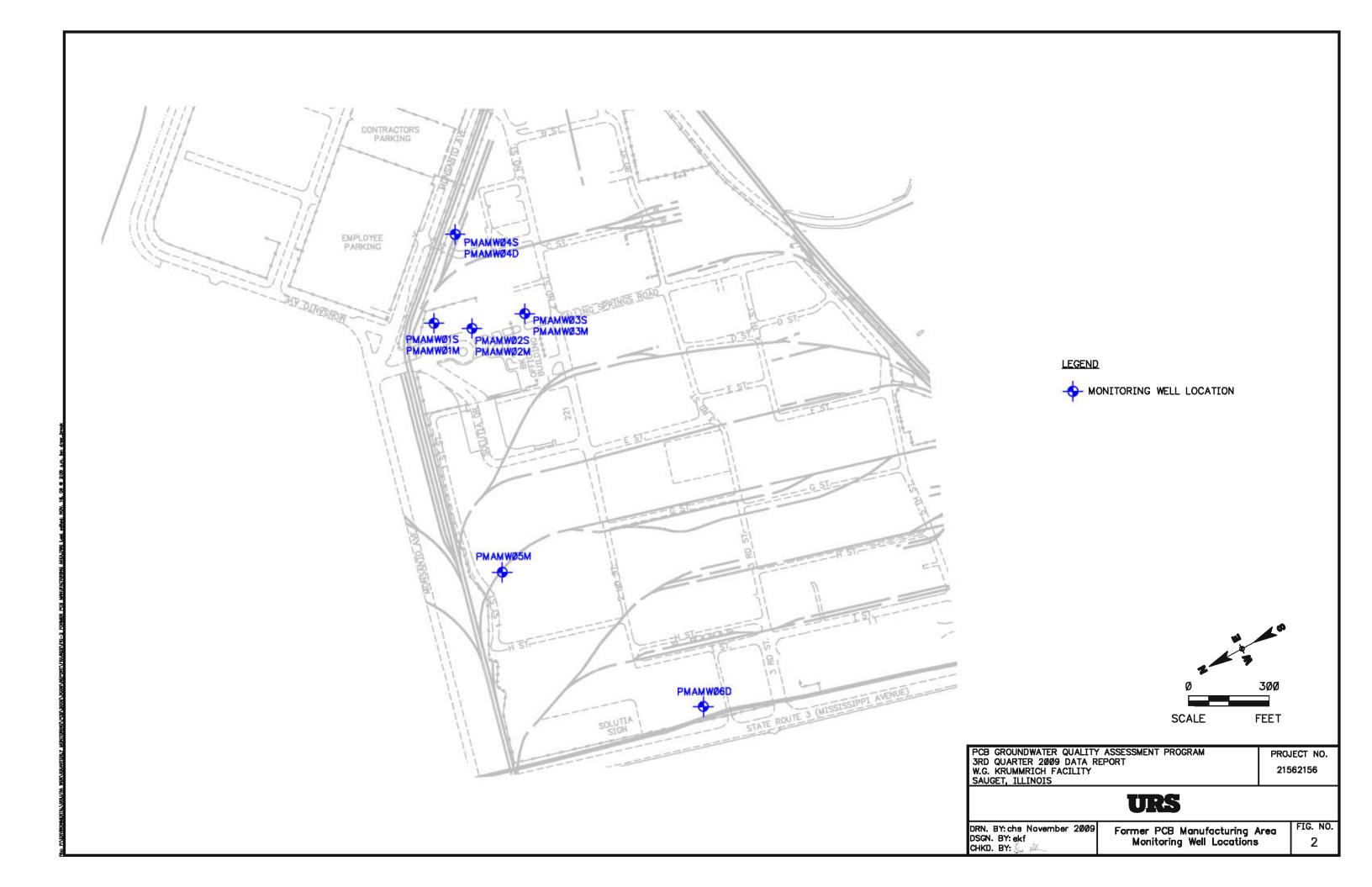
PMAMW-4S and the three downgradient monitoring wells. PCB sampling results for the SHU are presented on **Figure 4**.

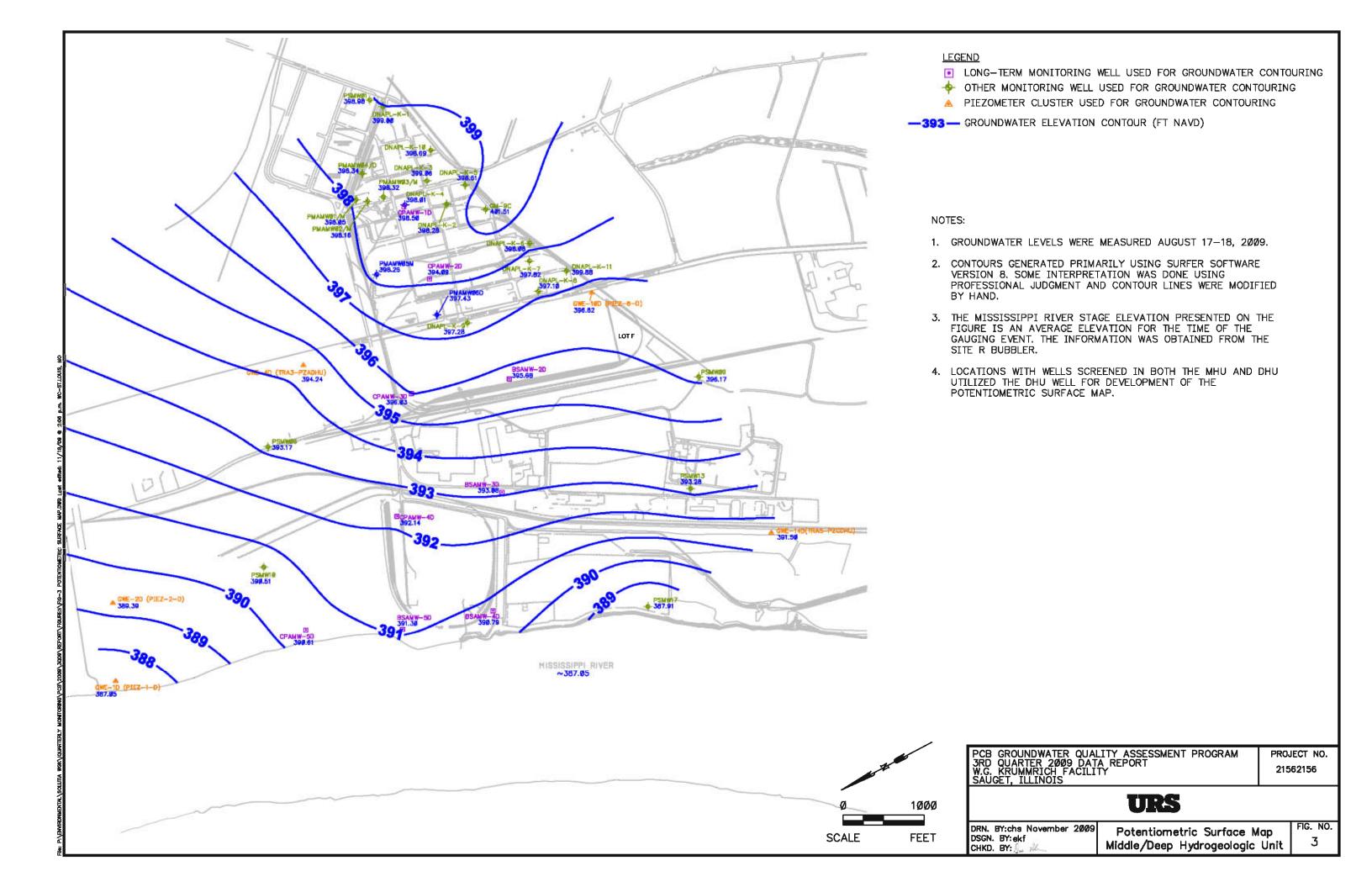
Middle/Deep Hydrogeologic Unit

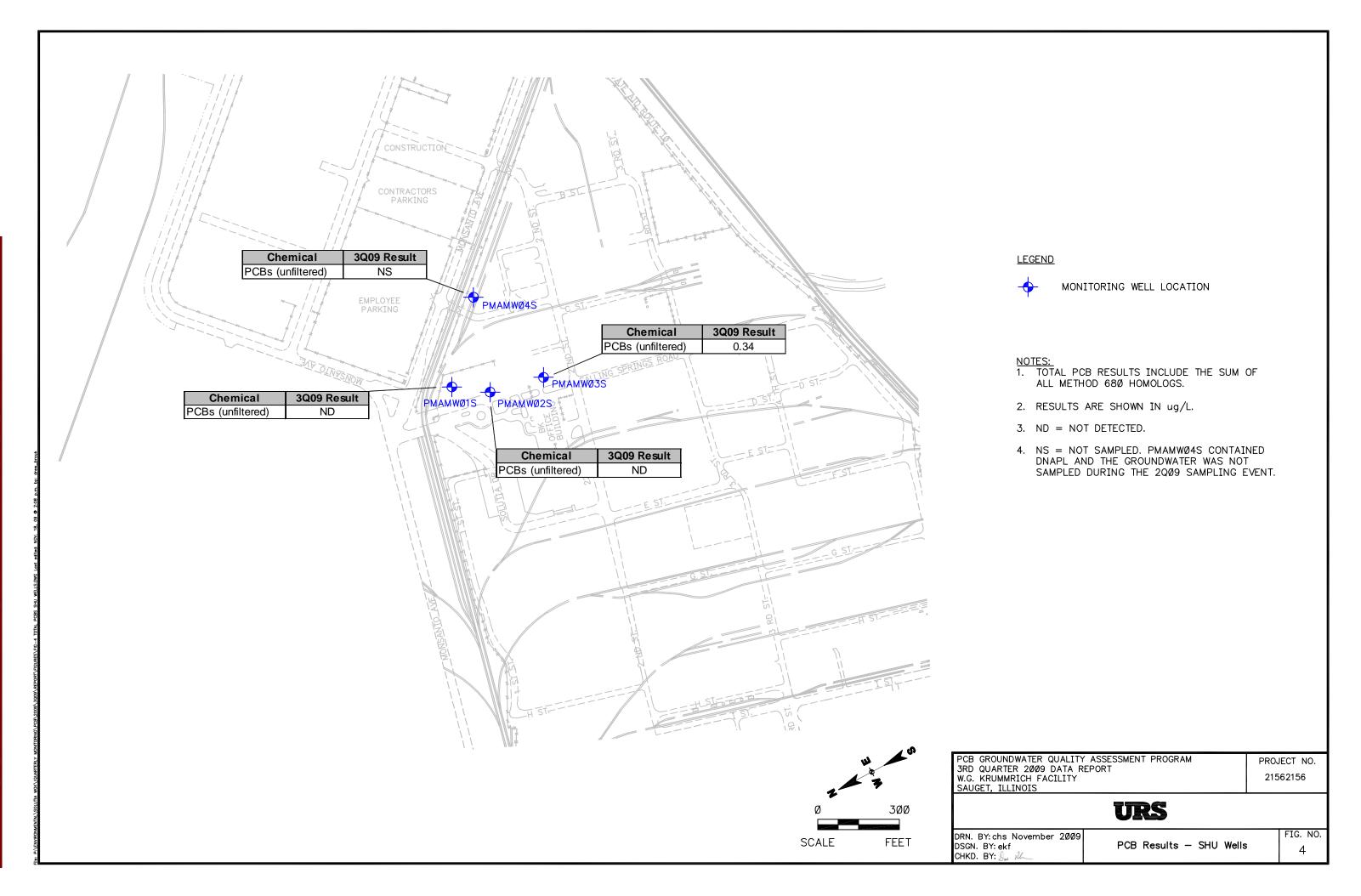
Laboratory analytical results for monitoring well PMAMW-4D, located in the Former PCB Manufacturing Area, indicated a total PCB concentration of 0.37 μ g/L for the 3Q09 sampling event. PCBs were also detected in four of the five downgradient monitoring wells at concentrations of 0.27 μ g/L (PMAMW-1M), 3.1 μ g/L (PMAMW-2M)/(1.8 μ g/L duplicate), 0.85 μ g/L (PMAMW-3M), and 0.2 μ g/L (PMAMW-6D). PCBs were not detected in the groundwater sample collected from monitoring well PMAMW-5M. **Figure 5** displays the 3Q09 PCB sampling results for the MHU/DHU.

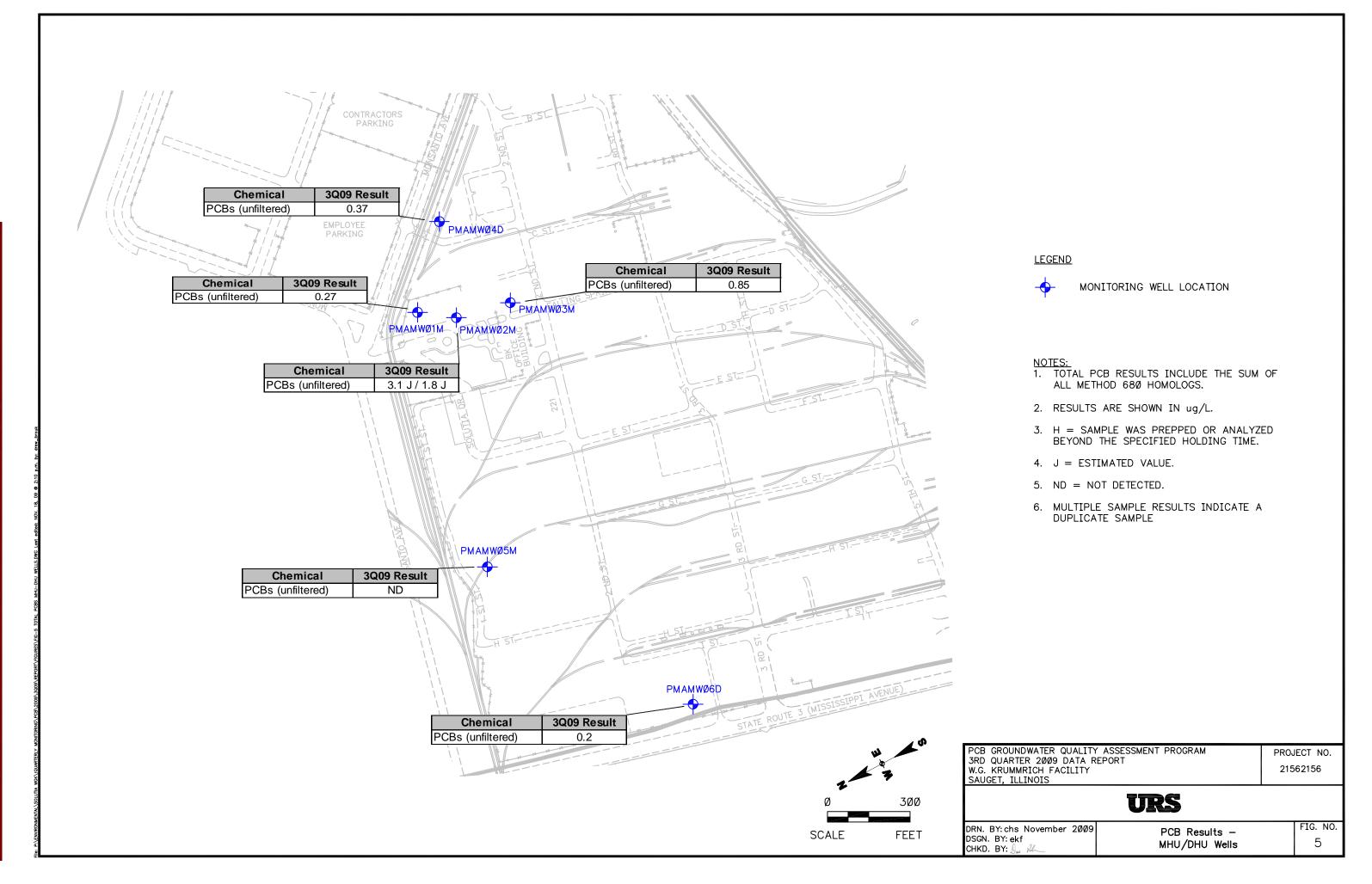
The 3Q09 sampling event was the fifth event conducted under the PCB Groundwater Quality Assessment Program. Mann-Kendall trend analyses of total PCBs in unfiltered samples of groundwater from monitoring wells within (PMAMW-4D) or downgradient of (PMAMW-1M, -2M, -3S, and -3M) the former PCB Manufacturing Area are presented in **Tables 3** through **7**. There is a statistically significant upward trend in concentrations at monitoring well PMAMW-2M at this time, but no trends at any of the other wells.


After eight quarters of sampling under the PCB Groundwater Quality Assessment Program, the Mann-Whitney U Test will be performed to determine whether or not concentrations in the second four quarters were higher or lower than the first four quarters. Linear regression analysis will be done for the eight quarters of data provided the data distribution allows the use of parametric statistical analysis.


6.0 REFERENCES


Solutia Inc, 2009. Revised PCB Groundwater Quality Assessment Program Work Plan, W.G. Krummrich Facility, Sauget, IL, Prepared by URS Corporation, May 2009.


U.S. Environmental Protection Agency (USEPA), 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review.


Figures

Tables

Table 1
Monitoring Well Gauging Information

			Construct	ion Details			Aug	gust 17 - 18, 2	009
Well ID	Ground Elevation (feet)*	Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Depth to Bottom of Screen (feet bgs)	Top of Screen Elevation* (feet)	Bottom of Screen Elevation* (feet)	Depth to Water (feet btoc)	Product Thickness (feet)	Water Elevation* (feet)
Shallow Hydrogeologic U	Jnit (SHU 395-	380 feet NAV	D 88)						
PMAMW-1S	410.30	410.06	20.18	25.18	390.12	385.12	10.96		399.10
PMAMW-2S	412.27	411.66	22.94	27.94	389.33	384.33	13.44		398.22
PMAMW-3S	412.37	412.06	22.71	27.71	389.66	384.66	13.67		398.39
PMAMW-4S	411.09	410.43	20.99	25.99	390.10	385.10	11.67	0.40**	398.76
Middle Hydrogeologic Ur	nit (MHU 380-3	350 feet NAVD	88)						
PMAMW-1M	410.32	410.08	54.54	59.54	355.78	350.78	12.03		398.05
PMAMW-2M	412.26	411.93	56.87	61.87	355.39	350.39	13.77		398.16
PMAMW-3M	412.36	412.10	57.07	62.07	355.29	350.29	13.78		398.32
PMAMW-5M	411.27	410.97	52.17	57.17	359.10	354.10	12.71		398.26
PSMW-1	409.37	412.59	34.56	39.56	374.81	369.81	13.61		398.98
Deep Hydrogeologic Unit	t (DHU 350 fee	et NAVD 88 - E	Bedrock)						
BSAMW-2D	412.00	415.13	65.79	70.79	346.21	341.21	19.45		395.68
BSAMW-3D	412.91	415.74	104.80	109.80	308.11	303.11	22.66		393.08
BSAMW-4D	425.00	424.69	118.54	123.54	306.46	301.46	33.90		390.79
BSAMW-5D	420.80	420.49	116.25	120.85	304.95	299.95	29.19		391.30
CPAMW-1D	408.62	408.32	66.12	71.12	342.50	337.50	9.82		398.50
CPAMW-2D	408.51	408.20	99.96	104.96	308.55	303.55	14.11		394.09
CPAMW-3D	410.87	410.67	101.90	106.90	308.97	303.97	14.64		396.03
CPAMW-4D	421.57	421.20	116.44	121.44	305.13	300.13	29.06		392.14
CPAMW-5D	411.03	413.15	105.51	110.51	305.52	300.52	22.54		390.61
DNAPL-K-1	413.07	415.56	108.2	123.2	304.87	289.87	16.56		399.00
DNAPL-K-2	407.94	407.72	97.63	112.63	310.31	295.31	9.44		398.28
DNAPL-K-3	412.13	411.91	104.8	119.8	307.33	292.33	12.85		399.06
DNAPL-K-4	409.48	409.15	102.55	117.55	306.93	291.93	11.14		398.01
DNAPL-K-5	412.27	411.91	102.15	117.15	310.12	295.12	13.30		398.61
DNAPL-K-6	410.43	410.09	102.47	117.47	307.96	292.96	12.01		398.08
DNAPL-K-7	408.32	407.72	100.4	115.4	307.92	292.92	9.90		397.82
DNAPL-K-8	408.56	411.38	102.65	117.65	305.91	290.91	14.28		397.10
DNAPL-K-9	406.45	405.97	97.42	112.42	309.03	294.03	8.69		397.28
DNAPL-K-10	413.50	413.25	105.43	120.43	308.07	293.07	14.56		398.69
DNAPL-K-11	412.20	411.78	105.46	120.46	306.74	291.74	14.11		397.67
GM-9C	409.54	411.21	88	108	321.54	301.54	11.33		399.88

Table 1
Monitoring Well Gauging Information

			Construct	ion Details			Aug	gust 17 - 18, 2	009
Well ID	Ground Elevation (feet)*	Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Depth to Bottom of Screen (feet bgs)	Top of Screen Elevation* (feet)	Bottom of Screen Elevation* (feet)	Depth to Water (feet btoc)	Product Thickness (feet)	Water Elevation* (feet)
Deep Hydrogeologic Unit	(DHU 350 fee	et NAVD 88 - E	Bedrock) (con	tinued)					
GWE-1D (PIEZ-1D)	412.80	415.60	117	127	295.80	285.80	28.55		387.05
GWE-2D (PIEZ-2D)	417.45	417.14	127	137	290.45	280.45	27.75		389.39
GWE-4D (TRA3-PZADHU)	406.05	405.74	74	80	332.05	326.05	11.50		394.24
GWE-10D (PIEZ-6D)	410.15	412.87	102.5	112.5	307.65	297.65	16.25		396.62
GWE-14D (TRA5-PZCDHU)	420.47	422.90	90	96	330.47	324.47	31.40		391.50
PMAMW-4D	411.22	410.88	68.84	73.84	342.38	337.38	12.54		398.34
PMAMW-6D	407.63	407.32	96.49	101.49	311.14	306.14	9.89		397.43
PSMW-6	404.11	406.63	99.80	104.80	304.31	299.31	13.46		393.17
PSMW-9	403.92	403.52	100.40	105.40	303.52	298.52	7.35		396.17
PSMW-10	409.63	412.18	101.23	106.23	308.40	303.40	21.67		390.51
PSMW-13	405.80	405.53	106.08	111.08	299.72	294.72	12.25		393.28
PSMW-17	420.22	423.26	121.25	126.25	298.97	293.97	35.35		387.91

Notes:

* - Elevation based upon North American Vertical Datum (NAVD) 88 datum

** - Measured on August 25, 2009

bgs - below ground surface

btoc - Below top of casing

Table 2 **Groundwater and DNAPL Analytical Detections**

Sample ID	Sample Date	Units	Monochlorobiphenyl (ug/L)	Dichlorobiphenyl (ug/L)	Trichlorobiphenyl (ug/L)	Tetrachlorobiphenyl (ug/L)	Pentachlorobiphenyl (ug/L)	Hexachlorobiphenyl (ug/L)	Heptachlorobiphenyl (ug/L)	Octachlorobiphenyl (ug/L)	Nonachlorobiphenyl (ug/L)	Decachlorobiphenyl (ug/L)
Shallow Hydrologic Unit												
PMAMW-1S-0809	8/21/2009	μg/L	< 0.097	< 0.097	< 0.097	<0.19	<0.19	<0.19	<0.29	< 0.29	< 0.49	< 0.49
PMAMW-2S-0809	8/21/2009	μg/L	< 0.097	< 0.097	< 0.097	<0.19	<0.19	<0.19	<0.29	< 0.29	< 0.49	< 0.49
PMAMW-3S-0809	8/25/2009	μg/L	0.34 *	<0.094 *	<0.094 *	<0.19 *	<0.19 *	<0.19 *	<0.28 *	<0.28 *	<0.47 *	<0.47 * R
PMAMW-4S-0809-DNAPL	8/25/2009	μg/kg	320,000 J	4,600,000 J	47,000,000 J	110,000,000 J	77,000,000 J	140,000,000 J	120,000,000 J	14,000,000 J	3,600,000 J	810,000 J
Middle / Deep Hydrologic U	nit											
PMAMW-1M-0809	8/21/2009	μg/L	0.27	< 0.097	< 0.097	<0.19	<0.19	<0.19	<0.29	< 0.29	< 0.49	<0.49 R
PMAMW-2M-0809	8/21/2009	μg/L	3.1 J	< 0.094	< 0.094	<0.19	<0.19	<0.19	<0.28	<0.28	< 0.47	< 0.47
PMAMW-2M-0809-AD	8/21/2009	μg/L	1.8 J	< 0.094	< 0.094	<0.19	<0.19	<0.19	<0.28	<0.28	<0.47	< 0.47
PMAMW-3M-0809	8/25/2009	μg/L	0.85 *	<0.094	<0.094	<0.19	<0.19	<0.19	<0.28	<0.28	<0.47	<0.47 R
PMAMW-4D-0809	8/25/2009	μg/L	0.2 *	0.17 *	<0.094 *	<0.19 *	<0.19 *	<0.19 *	<0.28 *	<0.28 *	<0.47 *	<0.47 * R
PMAMW-5M-0809	8/21/2009	μg/L	<0.097	<0.097	<0.097	<0.19	<0.19	<0.19	<0.29	<0.29	<0.49	<0.49
PMAMW-6D-0809	8/21/2009	μg/L	0.2	<0.097	<0.097	<0.19	<0.19	<0.19	<0.29	<0.29	<0.49	<0.49

Notes:

μg/L = micrograms per liter

μg/Kg = micrograms per kilogram

< = Result is non-detect, less than the reporting limit

AD = Analytical Duplicate

J = Estimated value

R = Rejected (data that failed to meet the criteria for being acceptable for use)

* = LCS or LCSD, or RPD of the LCS and LCSD, exceeds the control limits

BOLD indicates concentration greater than the reporting limit

Table 3
Monitoring Well PMA MW-1M Mann-Kendall Trend Analysis

		W.G	.Krummri	ch Facility	/ PCB Mfg	ı. Area Mo	nitoring V	/ell MW-1	M Mann-K	endall Tre	nd Analys	is			
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6		Event 8	Event 9	Event 10		Event 12			Row
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	2Q09	3Q09	Total
Total PCBs, µg/L	ND	0.24	0.21	0.17	0.26	0.29	48	ND	0.18	0.38	0.26	0.16	0.21	0.27	
Compare to Event 1		1	1	1	1	1	1	NA	1	1	1	1	1	1	12
Compare to Event 2			-1	-1	1	1	1	-1	-1	1	1	-1	-1	1	0
Compare to Event 3				-1	1	1	1	-1	-1	1	1	-1	0	1	2
Compare to Event 4					1	1	1	-1	1	1	1	-1	1	1	6
Compare to Event 5						1	1	-1	-1	1	0	-1	-1	1	0
Compare to Event 6							1	-1	-1	1	-1	-1	-1	-1	-4
Compare to Event 7								-1	-1	-1	-1	-1	-1	-1	-7
Compare to Event 8									1	1	1	1	1	1	6
Compare to Event 9										1	1	-1	1	1	3
Compare to Event 10											-1	-1	-1	-1	-4
Compare to Event 11												-1	-1	1	-1
Compare to Event 12													1	1	2
Compare to Event 13														1	1

Mann-Kendall Statistic (S)

16

90 % Confidence Mann-Kendall Statistic

25

Table 4
Monitoring Well PMA MW-2M Mann-Kendall Trend Analysis

		W.G	.Krummri	ch Facility	/ PCB Mfg	j. Area Mo	nitoring V	/ell MW-2l	VI Mann-K	endall Tre	nd Analys	sis			
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6		Event 8	Event 9		Event 11	Event 12			Row
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	2Q09	3Q09	Total
Total PCBs, µg/L	2.3	2.4	2.8	2.1	3.3	2.5	3.1	1.7	3.0	4.3	2.5	2.9	4.14	3.10	
Compare to Event 1		1	1	-1	1	1	1	-1	1	1	1	1	1	1	9
Compare to Event 2			1	-1	1	1	1	-1	1	1	1	1	1	1	8
Compare to Event 3				-1	1	-1	1	-1	1	1	-1	1	1	1	3
Compare to Event 4					1	1	1	-1	1	1	1	1	1	1	8
Compare to Event 5						-1	-1	-1	-1	1	-1	-1	1	-1	-5
Compare to Event 6							1	-1	1	1	0	1	1	1	5
Compare to Event 7								-1	-1	1	-1	-1	1	0	-2
Compare to Event 8									1	1	1	1	1	1	6
Compare to Event 9										1	-1	-1	1	1	1
Compare to Event 10											-1	-1	-1	-1	-4
Compare to Event 11												1	1	1	3
Compare to Event 12													1	1 1	2
Compare to Event 13														-1	-1

Mann-Kendall Statistic (S) 33

90 % Confidence Mann-Kendall Statistic 25

Table 5
Monitoring Well PMA MW-3S Mann-Kendall Trend Analysis

		W.G	.Krummri	ch Facility	y PCB Mfg	j. Area Mo	nitoring V	/ell MW-3	S Mann-K	endall Tre	nd Analys	is			
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10					
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	2Q09	3Q09	Total
Total PCBs, µg/L	0.66	0.32	0.20	0.35	0.80	0.30	0.21	0.25	0.64	0.26	0.24	0.79	ND	0.34	
Compare to Event 1		-1	-1	-1	1	-1	-1	-1	-1	-1	-1	1	-1	-1	-9
Compare to Event 2			-1	1	1	-1	-1	-1	1	-1	-1	1	-1	1	-2
Compare to Event 3				1	1	1	1	1	1	1	1	1	-1	1	9
Compare to Event 4					1	-1	-1	-1	1	-1	-1	1	-1	-1	-4
Compare to Event 5						-1	-1	-1	-1	-1	-1	-1	-1	-1	-9
Compare to Event 6							-1	-1	1	-1	-1	1	-1	1	-2
Compare to Event 7								1	1	1	1	1	-1	1	5
Compare to Event 8									1	1	-1	1	-1	1	2
Compare to Event 9										-1	-1	1	-1	-1	-3
Compare to Event 10											-1	1	-1	1	0
Compare to Event 11												1	-1	1	1
Compare to Event 12													-1	-1	-2
Compare to Event 13														1	1

Mann-Kendall Statistic (S) -13

90 % Confidence Mann-Kendall Statistic -25

Table 6
Monitoring Well PMA MW-3M Mann-Kendall Trend Analysis

		W.G	.Krummri	ch Facility	PCB Mfg	. Area Mo	nitoring W	/ell MW-3N	M Mann-K	endall Tre	nd Analys	is			
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10					_
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	2Q09	3Q09	Total
Total PCBs, µg/L	5.18	1.90	ND	0.77	ND	0.86	0.76	0.39	0.92	1.3	0.71	1.4	1.30	0.85	
Compare to Event 1		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-13
Compare to Event 2			-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-12
Compare to Event 3				1	NA	1	1	1	1	1	1	1	1	1	10
Compare to Event 4					-1	1	-1	-1	1	1	-1	1	1	1	2
Compare to Event 5						1	1	1	1	1	1	1	1	1	9
Compare to Event 6							-1	-1	1	1	-1	1	1	-1	0
Compare to Event 7								-1	1	1	-1	1	1	1	3
Compare to Event 8									1	1	1	1	1	1	6
Compare to Event 9										1	-1	1	1	-1	1
Compare to Event 10											-1	1	1	-1	0
Compare to Event 11												1	1	1	3
Compare to Event 12													-1	-1	-2
Compare to Event 13														-1	-1

Mann-Kendall Statistic (S)

90 % Confidence Mann-Kendall Statistic 25

Table 7
Monitoring Well PMA MW-4D Mann-Kendall Trend Analysis

		W.G.Krui	mmrich Fa	acility PCE	3 Mfg. Are	a Monitor	ing Well M	IW-4D Mai	nn-Kenda	II Trend A	nalysis			
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13	Row
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	4Q08	1Q09	2Q09	3Q09	Total
Total PCBs, µg/L	0.34	0.10	2.07	0.33	0.50	0.35	0.23	0.27	0.44	0.27	2.73	0.59	0.37	
Compare to Event 1		-1	1	-1	1	1	-1	-1	1	-1	1	1	1	2
Compare to Event 2			1	1	1	1	1	1	1	1	1	1	1	11
Compare to Event 3		·		-1	-1	-1	-1	-1	-1	-1	1	-1	-1	-8
Compare to Event 4			·		1	1	-1	-1	1	-1	1	1	1	3
Compare to Event 5						-1	-1	-1	-1	-1	1	1	-1	-4
Compare to Event 6							-1	-1	1	-1	1	1	1	1
Compare to Event 7								1	1	1	1	1	1	6
Compare to Event 8									1	1	1	1	1	5
Compare to Event 9										-1	1	1	-1	0
Compare to Event 10											1	1	1	3
Compare to Event 11												-1	-1	-2
Compare to Event 12													-1	-1

Mann-Kendall Statistic (S)

16

90 % Confidence Mann-Kendall Statistic

23

Table 8 Monitoring Well PMA MW-6D Mann-Kendall Trend Analysis

W.G.Krummrich F	acility Wel	I PMA MW-	6D Mann-K	Cendall Tre	nd Analysi	S
	Event 1	Event 2	Event 3	Event 4	Event 5	Row
	3Q08	4Q08	1Q09	2Q09	3Q09	Total
Total PCBs, ug/L	0.21	0.43	0.32	0.29	0.20	
Compare to Event 1		1	1	1	-1	2
Compare to Event 2			-1	-1	-1	-3
Compare to Event 3				-1	-1	-2
Compare to Event 4					-1	-1

Mann-Kendall Statistic (S) -4

90 % Confidence Mann-Kendall Statistic -7

Appendix A Groundwater Purging and Sampling Forms

PROJECT NAME: DATE: S/ MONITORING WE	PCB GW Quality Assessment - 1/0 9 LL ID: PMAMW01M	PROJECT I		21562156.00003 Preezy, 70s SAMPL		ELD PERSONNEL:		orbett, Drew	Bronk	
Constructed Well De Depth to Water (btoo	APL (btoc): ft reen (btoc): 54.30 ft	If Depth to Top Place Pump at: If Depth to Top Place Pump at:	of Screen is > Depth Total Well Depth - (of Screen is < Depth Total Well Depth - (de LNAPL or DNAPL): n to Water AND Screen L 0.5 (Screen Length + DNA th to Water AND Water Co (0.5 X Water Column Heig mn height is < 4 ft, Place	enth is (4 feet, APL Column Height) olumn Height and So ght + DNAPL Columi	creen Length are (4ft, n Height) =	ft btoc A ft btoc W	olume of Flow Through linimum Purge Volume (3 x Flow Through Cell mbient PID/FID Reading /ellbore PID/FID Reading	= Volume)	
Pump Type:	Stainless Steel Monsoo	n								
					±0.2 units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pН	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
	1037	12.03	coloriess	hydrocarbon	6.81	17.84	2.536	2.8	4.21	-136.2
800	1039			1	6-80	17.81	2.54/	0.2	3.77	-141.6
1.600	1041	<u> </u>			6.79	17.75	2.541	0.4	3.66	-143.2 -141.6
21400	1045	1	 	-	6.77 6.77	17.61	2.540	10.7	3.74	-142.9
3,300	1047				6.76	17.64	2.546	6.5	4.15	-142.4
4,800	1049			1/	6.75	17.62	2.336	5.0	4.19	-144.6
5,600	1051	V	V	V	6.75	17.62	2.540	5.8	4.20	- 144.9
						M.Z. a				
						tec				
Start Time: Stop Time:	1037			npsed Time:erage Purge Rate (mL/mi	14 min 1400		Water Quarte Calib	,	YSI 6920	-
SAMPLING DAT	·A									
Comple Doda	0/-11 -		A	mula Timas	1100		Amakinta	Total PCBs		
Sample Date:	8/21/09 Stainless Steel Monsoon			mple Time:	1100	, , ,	Analysis:		_	
Sample Method: COMMENTS:	Stainless Steel Monsoon		Sa	mple Flow Rate:	400 ,	nl/min -	QA/QC Sa	emples: none		
										_

PROJECT NAME: DATE: <u>8</u> /2 MONITORING WE	1109	PROJECT WEATHER		156.00003 , breezy , 7	70° PLE ID:	ELD PERSONNEL: PMAMW01		orbett, Draw	s Brouk	
Constructed Well D Depth to Water (bto Depth to LNAPL/DN	APL (btoc):ft reen (btoc):ft	If Depth to Top Place Pump at If Depth to Top Place Pump at	Height (do not include of Screen is > Depth t : Total Well Depth – 0.5 of Screen is < Depth : Total Well Depth – (0. th and/or water column	o Water AND Screen 6 (Screen Length + DI to Water AND Water 5 X Water Column He	Lenth is (4 feet, NAPL Column Height Column Height and S eight + DNAPL Colum	creen Length are (4ft, n Height) =	Mini ft btoc (3 Amb	ime of Flow Through C mum Purge Volume = x Flow Through Cell V pient PID/FID Reading: bore PID/FID Reading	olume) 2,250	mL mL ppm ppm
PURGE DATA Pump Type:	Stainless Steel Monso	non.								
. ump 1 jpo	Otamicss Oteor Monse				±0.2 units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	7ime 0950	Water (ft)	coloriess	none	pH 6.60	(°C)	(ms/cm) 1.457	(NTUs) 26.4	(mg/l)	(mv) /53. 2
750	0953	11.30	Coloriess	1010	6.61	18.06	1.422	17.2	2.78	125.7
\$ 1560	0956				6.63	11.93	1.404	12.3	3.00	117.0
2,750	0959				6.63	17.63	1.406	9.2	3.07	117.4
3,000	1082				6.64	17.45	1.404	7.8	3.16	118,0
3,000	1005	- V	- V	₩	6.64	17.41	1.410	7.0	3.17	117.6
					ME	-		1		
Start Time: Stop Time:	0950 1805			sed Time: age Purge Rate (mL/r		, D	Water Qualit Date Calibra		SI 6920 70 9	
SAMPLING DAT	TA .									
CAMI LING DA										
Sample Date:	8/21/0	9	Sam	ple Time:	1010		Analysis:	Total PCBs		
Sample Method:	Stainless Steel Monsoor	1	Sam	ple Flow Rate:	1010 050 r	allonia	QA/QC Sam	oles: MS/MSD →	PMAMWOIS -	2809 - MS
COMMENTS:								*	PMAMWOIS-0	809 - MSD

PROJECT NAME: DATE: %	PCB GW Quality Assessment	PROJECT N		156.00003	FI	ELD PERSONNEL:	Mike (orbett, Dr	tas Brouk	
	LID: PMAMW02M	_	7	SAMPL SAMPL	E ID:	PMAMW0	2M-0809			_
								i/		
Constructed Well De Depth to Water (btoo Depth to LNAPL/DNA	in (btoc): (1.60 ft pth (btoc): 61.60 ft pth (btoc): 61.60 ft pth (btoc): ft pth (btoc): 56.60 ft pth (btoc): 56.6	If Depth to Top Place Pump at: If Depth to Top Place Pump at:	Total Well Depth – 0.5 of Screen is < Depth Total Well Depth – (0.5)	o Water AND Screen Lo 6 (Screen Length + DNA to Water AND Water Co 5 X Water Column Heig	APL Column Height Dlumn Height and S Int + DNAPL Colun	47. 85 (t) = 59.10 Screen Length are (4ft, nn Height) = Il Depth · 2 ft =	ft btoc (An ———————————————————————————————————	lume of Flow Throug nimum Purge Volum 3 x Flow Through Ce nbient PID/FID Readi ellbore PID/FID Readi	e = Il Volume)	
PURGE DATA										
Pump Type:	Stainless Steel Monson	on								•
				T	±0.2 units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	Ha	Temp (°C)	Cond. (ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
(n.c.)	1210	13.76	colorless	hydrocarbon	7.02	19.35	2.333	37.4	4.72	-105.4
800	1212		1	192	6.97	19.40	2.321	20.5	4.06	-/23.4
1.600	1214				6.94	19.41	2.313	23.8	4,12	-132.2
2,400	1216				6.93	19.47	2.311	13.7	7.//	-134.4
3,200	13/8		//	1/	6.93	19.47	2.311 2.315 2.337	6.4	4.22	-136.4
1,000	12-20	<u>\</u>	V		6.91	19,2/	J. 337	4.8	4.15	-/37.3
						117				
		_				746				
_					_					
Start Time: Stop Time:	1320		-	sed Time: age Purge Rate (mL/mi	10 min. n): 400	>		lity Meter ID: rated: <i>8/31/0</i>	YSI 6920 4	
SAMPLING DAT	Λ	_						<u> </u>	_	
SAWIPLING DAT										
Sample Date:	8/21/09		Sam	ple Time:	177	_	Analysis:	Total PCBs		
Sample Method:	8/21/09 Stainless Steel Monsoon			ple Flow Rate:	400	5 mt/min	QA/QC Sar		PMAMWOZM-	-0809 - AD
COMMENTS:						- Neprin				- 0-1 / 1

	21/09	PROJECT N		1562156.00003 y, breezy, 70	⁹ 5	ELD PERSONNEL:	mike	Corbett, D.	raw Bronk	
MONITORING WE	ELL ID: PMAMW02S			SAME	PLE ID:	PMAMW0	28-0809	-	_	
				_						
INITIAL DATA										
Constructed Well Depth to Water (bto Depth to LNAPL/DI	oth (btoc): 27.33 ft Depth (btoc): 27.33 ft Depth (btoc): 13.53 ft NAPL (btoc): 15.53 ft Oreen (btoc): 22.33 ft	If Depth to Top Place Pump at: If Depth to Top Place Pump at:	of Screen is > De Total Well Depth of Screen is < D Total Well Depth	clude LNAPL or DNAPL):_ epth to Water AND Screen I = 0.5 (Screen Length + DN epth to Water AND Water (I = (0.5 X Water Column He clumn height is < 4 ft, Plac	Lenth is (4 feet, NAPL Column Height Column Height and S sight + DNAPL Colum	creen Length are 〈 4ft, n Height) =	ft btoc	'olume of Flow Through finimum Purge Volume (3 x Flow Through Cell Imbient PID/FID Readin Vellbore PID/FID Readin	= Volume) 2,3 g: 0.0	
PURGE DATA										
Pump Type:	Stainless Steel Monso	on								
					±0.2 units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	Hq	Temp (°C)	Cond. (ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
<u>(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	1139	13.55	colorless	l l	7.30	20.26	1.241	18.9	4.67	57.6
800	1141	1		1	6.87	19.91	1.196	13.6	3-23	78.4
1,600	1143				6.72	19.93	1.194	11.8	3.68	88.0
3.400	1145	1.0			6.75	19.95	1.193	10.3	3.61	94.2
3,200 4,000	1147		1		6.71	19.67	1.194	8.0 6.8	3.27 3.85	101.8
1,000				V	(0.6)	11.00		ω.η	3.00	107.0
					-	AEC				
					/			-		
Start Time:	1/39			Elapsed Time:		'n.		 	YSI 6920	
Stop Time:	1149			Average Purge Rate (mL/n	nin): 400		Date Cali	brated: 8/31/0	7	
SAMPLING DA	TA									
Sample Date:	8/21/09			Sample Time:	,,,		Analyeis	Total PCBs		
Sample Method:	Stainless Steel Monsoon			Sample Flow Rate:	11 5 5 400 nn		QA/QC S			,1
Sample Method:	Statificas Steel Michael			oampie riow Rate.	400 km	6/min			fore this we	
COMMENTS:								PW.	1MW02S-080	19-EB
					_					

PROJECT NAME: DATE:	PCB GW Quality Assessment (105/09 L ID: PMAMW03M	WEATHER		62156.00003 14, 70s SAMPL		ELD PERSONNEL:		. Corbett,	Drew Bronk	
Constructed Well De Depth to Water (btoo Depth to LNAPL/DN	in ft (btoc): 61.81 ft c): 13.92 ft APL (btoc): ft een (btoc): 56.81 ft ft ft	if Depth to To Place Pump a If Depth to To Place Pump a	p of Screen is > Dept t: Total Well Depth – p of Screen is < Dep t: Total Well Depth –	ide LNAPL or DNAPL): th to Water AND Screen Le 0.5 (Screen Length + DNA oth to Water AND Water Co (0.5 X Water Column Heig umn height is < 4 ft, Place I	enth is (4 feet, PL Column Height) Iumn Height and So ht + DNAPL Columi	= 59.31 creen Length are (4ft, 1 Height) =	ft btoc	Volume of Flow Throu Minimum Purge Volun (3 x Flow Through C Ambient PID/FID Read Wellbore PID/FID Read	ne = ell Volume) 2, ling: 0.0	750 mL 250 mL ppm ppm
PURGE DATA Pump Type:	Stainless Steel Monson	on			. 0. 0 waita		.2.0/		. 10 % or . 2 mg//	.20 ~1/
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	±0.2 units	Temp (°C)	<u>±3 %</u> Cond. (ms/cm)	Turbidity (NTUs)	±10 % or ±2 mg/L DO (mg/l)	±20 mV ORP (mv)
0	1030	13.99	deprown	hydrocarbon	9.04	18.78	2.586	167.3	1.47	~117.7
4.800	1042	13.11		MYATOCAT BOTT	9.24	18.60	2.628	95.3	0.54	-182.9
7,700	1048				9.28	18.54	2.647	61.3	0.50	-195.6
100			 					45.5	0.49	-180,9
10,400	1056				9.30	18.58	2. 659		0.47	
15, 200	1102				9.31	18.58	3.664		0.47	-178.5
20,000	1108				4.32	18.5%	2.632	33.4	0.45	-197.2
24,800	1114				9.33	18.61	2.676	31.1	0.45	-194.0
25,600	1116				9.33	18.62	2.677	30.7	0.44	-183.8
26,400	1118				9.33	18.61	2.676	28.9	0.44	-/77./
27,200	1120	V	₩		9.33	18.65	2.678	29.1	0.44	- 183./
						MEC				
Start Time: Stop Time:	1120			apsed Time: verage Purge Rate (mL/mìr		in.		tuality Meter ID:	YSI 692 <u>0</u> PS/0 9	
SAMPLING DAT	Α									
Sample Date:	olacina		S	ample Time:	سم د ۱۱		Analysi	s: Total PCBs		
Sample Method:	Stainless Steel Monsoon			ample Flow Rate:	1105 400mL	/min	QA/QC	Samples: hon	e	
COMMENTS:						•				

PROJECT NAME:	PCB GW Quality Assessment	PROJECT WEATHER		2156.00003	FIE	LD PERSONNEL:	Mike	Corbett,	Drew Brow	k
MONITORING WEI			"	, 70 <i>s</i>	PLE ID:	PMAMW0	3S-0809			
									_	
INITIAL DATA										
Constructed Well De Depth to Water (btoo Depth to LNAPL/DNA	in (btoc): 27.40 ft epth (btoc): 27.40 ft ft: 13.85 ft APL (btoc): — ft een (btoc): 22.40 ft ft ft	If Depth to To Place Pump a If Depth to To Place Pump a	p of Screen is < Deptl t: Total Well Depth – (to Water AND Screen .5 (Screen Length + D 1 to Water AND Water 0.5 X Water Column H		reen Length are (4ft, Height) =	Mining Mi	me of Flow Througi mum Purge Volume x Flow Through Cel iient PID/FID Readir bore PID/FID Readir	I Volume) 2, 2	
PURGE DATA										
Pump Type:	Stainless Steel Monso	oon			.00.		2.07		40.07 0 (. 20\/
Purge Volume		Depth to			±0.2 units	Temp	±3 % Cond.	Turbidity	±10 % or ±2 mg/L	±20 mV ORP
(mL)	Time	Water (ft)	Color	Odor	Hq	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
D	0938	13.87	colorless	none	6.53	18.68	2.057	\$7.0	1. 23	35.0
800	0940				6.57	18.69	2.045	46.8	1.18	33./
1,600	0942				6.59	18.71	2.045	32.8	1.//	29.7
3,400	0944				6.62	18.73	8.048	25.1	1.12	30.1
3,200	0946				6.63	18.80	2.049	13.7	1.14	32,4
4,000					6.64	18.90	2.051	17.3	1.16	34.4
4,800	0950				6.65	18.88	2.051	15.2	1.18	36.1
5,600	0952				6.66	18.86	2.052	14.9	1,20	37.3
6,400	0954				6-66	18.86	2.052	14.7	1.20	38.1
7,200	0956				6.66	18.86	J.052	14.2	1.22	<u> </u>
8:000	0958				6.66	18.85	2.053	13.8		39.0
5,800	1000				6.66	18.85	2.052	12.8	1.25	40.9
9,600	1002				6.67	18.84	2.052	13.0	1,28	42.6
19:400	1004	-		ļ.,	6.68	18.85	2.052	12.0	1.30	44.5
11,200	1006	<u> </u>		•	6.68	18.85	2.053	12.0	1,30	44.6
Start Time:	0938		Ela	osed Time:	28 mi	n	Water Quality	y Meter ID:	YSI 6920	
Stop Time:	1006		Ave	rage Purge Rate (mL/			Date Calibrat	ted: 8/25	109	
SAMPLING DAT	A .									
Sample Date:	8/25/09		Sar	nple Time:	1010		Analysis:	Total PCBs		
Sample Method:	Stainless Steel Monsoor	<u> </u>	Sar	nple Flow Rate:		L/min	QA/QC Samp	oles: no	me	
COMMENTS:										

PROJECT NAME:	PCB GW Quality Assessment	PROJECT NL	IMBER:	21562156.00003	FI	ELD PERSONNEL:	Mike o	Corbett, Dra	W Brank	
	25/09	WEATHER:		unny , 70s				or copy pro	- W DIVA-	
	LID: PMAMW04D	_		SAMPI	_E ID:	PMAMW0	4D-0809			
INITIAL DATA Well Diameter: 2	in	Water Column He	aight (do not i	include LNAPL or DNAPL):	60	. 76	ft btoc Vo	lume of Flow Through	n Cell): 7 <i>8</i>	o mL
Constructed Well De Depth to Water (btoc Depth to LNAPL/DNA	(btoc): 73.45 ft oth (btoc): 73.50 ft b: 73.69 ft PL (btoc): ft een (btoc): 68.50 ft	If Depth to Top of Place Pump at: To If Depth to Top of Place Pump at: T	Screen is > I otal Well Dep Screen is < otal Well Dep	Depth to Water AND Screen L th – 0.5 (Screen Length + DN/ Depth to Water AND Water Co th – (0.5 X Water Column Heig column height is < 4 ft, Place	enth is <4 feet, APL Column Height olumn Height and S ght + DNAPL Colum	reen Length are (4ft, n Height) =	ft btoc (3	nimum Purge Volume B x Flow Through Cell abient PID/FID Readin allbore PID/FID Readin	g: 2, 2	mL ppm ppm
PURGE DATA Pump Type:	Stainless Steel Monsoc	DN								
					±0.2 units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume	T '	Depth to	0.1	0.4	_11	Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(ms/cm) 2-4/8	(NTUs)	(mg/l)	(mv)
	1202	12.70	colorless	hydrocarbon	6.80	18.99		38.7	1.79	-122.6
1,600	1206	-	_		6.58	19.00	3,409	28.7	1.74	-128.4
4,800	1214	+			6.48	18.75	2.399	24.7	1.77	-/3/.2
/; 200	1520				6.48	18.78	2.4//,	23.0	1.87	-/32.6
9,600	1226	+			6.48	18.87	2.424	/7.8	1.99	-/37./
10,400	1228	1,	/_		6.48	18.82	2.426	20.8	2.00	-137.7
11,200	1230	V	V	V	6.48	18.80	2.429	21.6	2.04	-/38,3
								1		
						MEC				
						,00				•
Start Time:				Elapsed Time:	28 min.		Mater Ougli	ity Meter ID:	YSI 6920	
Stop Time:	1202						Date Calibra	- 1		•
Stop time	1 450			Average Purge Rate (mL/mi	-70C	·	Date Canon	ated: 0/45		
SAMPLING DATA	4									
Sample Date:	8/25	109		Sample Time:	1235		Analysis:	Total PCBs		
Sample Method:	Stainless Steel Monsoon			Sample Flow Rate:	1235	mL/min	QA/QC San	nples:	ne	
COMMENTS:						,				

PROJECT NAME:	PCB GW Quality Assessment 725/09	PROJECT NUM WEATHER:		156.00003	FIE	_D PERSONNEL:	Mike C	orbett, Dr	ew Brouk			
	LID: PMAMW04S			y, 70s	LE ID:	PMAMW04	45-0809-DNAPL					
INITIAL DATA												
Constructed Well De Depth to Water (btoo Depth to LNAPL/DNA	in (btoc): 25.33 ft pth (btoc): 25.33 ft pth (btoc): 24.43 ft APL (btoc): 20.33 ft ft	Place Pump at: Total If Depth to Top of S Place Pump at: Total	creen is > Depth to al Well Depth — 0.5 creen is < Depth to al Well Depth — (0.	o Water AND Screen (Screen Length + DN to Water AND Water (5 X Water Column He	Lenth is 〈4 feet, IAPL Column Height〉; Column Height and Sc ight + DNAPL Column e Pump at: Total Well I	reen Length are (4ft, Height) =	Mir ft btoc (3 Am	ume of Flow Through nimum Purge Volume 3 x Flow Through Cell bient PID/FID Readin (Ibore PID/FID Readin	Volume)	mL ppm ppm		
PURGE DATA Pump Type:	Stainless Steel Monso	ΔD										
i dnip i ype.	Stairiess Steel Moriso	<u></u>			±0.2 units		±3 %		±10 % or ±2 mg/L	±20 mV		
Purge Volume	Time	Depth to	Color	Odor		Temp	Cond.	Turbidity (NTUs)	DO	ORP (my)		
(mL)	Time	Water (ft)	Color	Oddi	рН	(°C)	(ms/cm)	(NTOS)	(mg/l)	(1114)		
				_	A	-						
Start Time: Stop Time:			•	ned Time: age Purge Rate (mL/n	nin):		Water Quali		YSI 6920			
										MC		
SAMPLING DAT	A											
Sample Date: Sample Method:	8/25/09 Stainless Steel Monsoon			ole Time: ole Flow Rate:	1230		Analysis:	Total PCBs (NF				
COMMENTS:	d water san							no				

	PCB GW Quality Assessment ンパクタ LL ID: PMAMW05M	WEATHER		156.00003 <i>Breez V., 70</i> / SAMP	5		<u>Mike Cor</u>	bett, Dra	ew Brouk	
Constructed Well Dopth to Water (bto) Depth to LNAPL/DN Depth to Top of Screen Length:	in th (btoc): 56.87 ft epth (btoc): 56.87 ft c): 12.74 ft APL (btoc): 51.87 ft ft ft	If Depth to To Place Pump a If Depth to To Place Pump a	n Height (do not include p of Screen is > Depth t: Total Well Depth – 0. p of Screen is < Depth t: Total Well Depth – (0 gth and/or water colum	to Water AND Screen I 5 (Screen Length + DN to Water AND Water C .5 X Water Column He	IAPL Column Height Column Height and S ight + DNAPL Colun) = 54.37 creen Length are (4ft, an Height) =	Minit ft btoc (3: , Amb	me of Flow Throug mum Purge Volume x Flow Through Cel ient PID/FID Readir bore PID/FID Readir	:= ! Volume) 2-	750_mL , 250_ mL ppm ppm
PURGE DATA Pump Type:	Stainless Steel Monso	oon								
					±0.2 units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume		Depth to			±0.2 dints	Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
0	1322	12.78	colorless	hydrocarbon	7.11	20.56	2.569	15.8	3.01	-38.6
800	1324	1		7	7.00	20.19	2.533	12.1	2.65	~50.3
1.600	1326				6.97	20.20	2.530	10.4	2.72	-53.4
2,400	1328		1		1.94	20.38	2,528	8.6	2.75	-56.0
3, 200	1330				6.92	19.94	3.528	7.0	2.88	-59.9
3,200 4,800 4,800	1332				6.92	20.29	2.503	6.3	3.06	-61.7
4,800.	1334		—		6.92	20.30	2.526	6.0	3.13	-62,2
5 600	1336				6.92	20.25	2.524	5.8	3.26	-63.3
6:400	133%		 	 	6.92	20.28	2.526	5.8	3.3/	- 64.0
7,200	1340			<u> </u>	6.93	20.50	2.522-	5.6	3.37	- 64.5
8,000	1342	V		1	6.93	20.67	2.524	5.4	3.45	-65.1
-0-1	<u> </u>			+ -	ME					
					7.75					
Start Time: Stop Time:	1372			sed Time: rage Purge Rate (mL/m	20 min. nin): 400		Water Quality		YSI 6920 109	
SAMPLING DAT	ΓΑ									
Sample Date: Sample Method:	Stainless Steel Monsoon	1		nple Time:	13.50 400	mL/min	Analysis:QA/QC Samp	Total PCBs	e	
COMMENTS:						,				

LOW FLOW GROUNDWATER SAMPLING DATA SHEET

	PCB GW Quality Assessment 21/07 LLID: PMAMW06D	PROJECT N		62156.00003 <i>louds, 70s f</i> SAMPI	breezy LEID: 1		Mike	e Corbett, Dres	N Brouk	
Constructed Well De Depth to Water (btoo Depth to LNAPL/DN	in h (btoc): 101.18 ft epth (btoc): 101.18 ft c): 9.79 ft APL (btoc): ft een (btoc): 96.18 ft ft	If Depth to Top Place Pump at: If Depth to Top Place Pump at:	of Screen is > Dept Total Well Depth – of Screen is < Dep Total Well Depth –	de LNAPL or DNAPL):_ h to Water AND Screen L 0.5 (Screen Length + DN th to Water AND Water C (0.5 X Water Column Hei mn height is < 4 ft, Place	enth is (4 feet, APL Column Heigh olumn Height and 9 ght + DNAPL Colun	Screen Length are (4ft	ft btoc	Volume of Flow Through Minimum Purge Volume (3 x Flow Through Cell Ambient PID/FID Readin Wellbore PID/FID Readin	= Volume) 2 g: 0,0	750 mL , 250 mL ppm ppm
PURGE DATA										
Pump Type:	Stainless Steel Monsoc	on					2.04		10.07	20. 14
Purge Volume		Depth to			±0.2 units	Temp	±3 % Cond.	Turbidity	±10 % or ±2 mg/L	±20 mV ORP
(mL)	Time	Water (ft)	Color	Odor	рН	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
0	1418	9.79	Colorless	hydrocarbon	7.11	20.06	1.314	28.9	3.75	-102./
800	1420				6.85	19.52	1.368	26.7	2.79	-116.2
1,600	1424				6.80	19.48	1.270	7.7	2.83	-118.4
3,200 3,200	1426				6.77	19.50	1.278	7.7	2.99 3.48	-/23.0
4.000	1428				6.77	19.53	1.282	a 3	3.50	-/23.8
4,800	1430	1,			677	19.54	1.286	9.3	3.52	-124.4
5,600	1432	1	V	J/	6.77	19.73	1.289	8.8	3.65	-124.0
					•					
							_			
					M					
										-
Start Time: Stop Time:	1418 1438			apsed Time: rerage Purge Rate (mL/m	14 in): 400	min.	_ Water Qu _ Date Cali		YSI 6920	-
SAMPLING DAT	·A					_				
CAMI LING DAI										
Sample Date:	8/21/09	7	Sa	ample Time:	1440		Analysis	: Total PCBs		
Sample Method:	Stainless Steel Monsoon	•	. Sa	ample Flow Rate:	400 mL/	min.	QA/QC S	amples:		
-					150 110/1				•••	
COMMENTS:										
<u></u>						_				
		<u> </u>								

Appendix B

Chains-of-Custody

Savannah

5102 LaRoche Avenue

Chain of Custody Record

Savannah, GA 31404

TestAm	nerica
Self-the sel	STATE OF THE PROPERTY OF THE PARTY OF THE PA
the state of the second	AMERICAN STREET

phone 912.354.7858 Tax 912.352.0165		,																			TestAmerica Laboratorics, Inc.
Client Contact	Project Ma	anager: Jef	f Adams			Site	: Co	ontact	t: Mik	e Cor	bett			1706				ĆΣ			COC No:
URS Corporation	Tel/Fax: (314) 743-42	28			Lab) Co	ontact	t: Lidy	ya Gi	Ilizia			Car	rier:	Fe	15	<		\Box	l of 1 COCs
1001 Highlands Plaza Drive West, Suite 300		Analysis T	urnaround	Time									Ţ						77		Job No.
St. Louis, MO 63110			ork Days (W				-	1										-	1	- 1	21562156.00003
(314) 429-0100 Phone		AT if different	from Below \$	tana	ard			1 1								1	[]			L	
(314) 429-0462 FAX		2	weeks						İ										11	ľ	SDG No.
Project Name: 3Q09 PCB GW Sampling		3	week				- (- 1					1		ļ		- 1	
Site: Solutia WG Krummrich Facility] . \square		2 days				880			1 1		1		1						ļ	
PO#			day			1	Ş.	1		1										L	
Sample Identification	Sample Date	Sampte Time	Sample Type	Matrix	# of Cont.	S PS JULIA	Total PCBs by 680														Sample Specific Notes:
PMAMW-1S-0809	3/21/09	1010	G	Water	2		2														
PMAMW-1S-0809-MS		1010	G	Water	2		2														
PMAMW-IS-0809-MSD		1010	G	Water	2	Ц	Ž														
PMAMW-1M-0809		1100	G	Water	2		2														
PMAMW-2S-0809		1155	G	Water	2	Ц	2								_					\perp	
PMAMW-2S-0809-EB		1120	6	Water	2	\perp	2			Ц		_	ļ.,							\perp	
PMAMW-2M-0809		1725	G	Water	2	Ц	2					\perp									
PMAMW-2M-0809-AD		1225	G	Water	2	-	2			\coprod			_					\perp	11	_	
PMAMW-6D-0809		1440	G	Water	2	4	2		1											\perp	
PMAMW-5M-0809	V	1350	G	Water	2		2	-							<u>_</u>					1	
Trip Plank				Water	Z		Z	1			-				\pm		_	+		1	
							_														
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaC	H; 6= Otho	er					1			Ш											
Possible Hazard Identification Non-Hazard Flummable Skin Irritum	D-1	В	Unknown			5		npie l D _{Re}					Bertaliera.	asse Dispo			-		retain Archi		longer than 1 month)
Special Instructions/QC Requirements & Comments: Level 4 D:			Unknown				_	- Re	itum i	0 UII	em			Dispo	isar b	y tal		_	AIGBI	ve r	or Months
	iia i acha	Ķc																	3. 7	z į	2.6/2.6
Relinquished by LLCLT	Company:	URS	8/	Date/Tir	163	ð	tece	eived I	He	rgi	K(, sw	4			mpan T4	SN			E	Date/Time: 644 10121 1333
Relinquished by:	Company:			Date/Tir	ne:	P	tece	cived l	oy:						Co	mpan	y:			E	Date/Time:
Relinquished by:	Company:			Date/fir	ne:	R	teco	cived I	by:						Co	mpan	y:			Ε	Date/l'ime:

Savannah

LaRoche Avenue

Chain of Custody Record

unah GA 31404

ne 912.354.7858 fax 912.352.0165																						estAmerica Laboratories, Inc.	
Client Contact	Project Ma	nager: Jeff	Adams	•		Site	Con	tact: N	Mike	Corb	ett		3	A LOW							CC	OC No:	
S Corporation	Tel/Fax: (3	14) 743-422	8			Lab	Con	tact:)	Lidya	a Gul	izia		(Carrie	r:Ú	PS	.*					_l of _l COCs	
1 Highlands Plaza Drive West, Suite 300	ı	Analysis Tu	rnaround '	Time			\top						Ţ								Jo	ob No.	
Louis, MO 63110			rk Days (W)								İ		l					-	1		1	21562156.00003	
4) 429-0100 Phone	TΑ	T if different fi	rom Below	tando	nd																L		
4) 429-0462 FAX			weeks				ŀ														S	DG No.	
ject Name: 3Q09 PCB GW Sampling		1	week											Ì	-				Ì				
e: Solutía WG Krummrich Facility		2	2 days				88									Ì							
D #		1	day			1	à a								1				-		-		
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Ellerets	Total PCBs by 680															Sample Specific Notes:	
PMAMW-3S-0809	8/25/09	1010	G	Water	2		2																
PMAMW-3M-0809		1125	G	Water	2		2												_	ļ			
PMAMW-4D-0809	V	1235	G	Water	2		2											_	_				_
						Ш					_				_	ļ			_	_	1		
3									_			_		-		ļ					_		_
1						Ш										_			_	_	1		
h				ļ		Ц			_		_				\perp	<u> </u>			_	<u> </u>			
P						Ш	_		_					_		_					_		
				ļ			-		-			<u> </u>			_	-			-		1,	<u> </u>	
				ļ			\perp		_			<u> </u>			_	_			_	-	4	80900-08	
Trip Blank				Water	2	廿	2		1						,	15, 50, 5	-1 .⊼		₹.			MC	
						Ш										1		4				The Carlotte of Carlotte	
eservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=Na	OH; 6= Oth	er					1															1.8	
ossible Hazard Identification												e ma						les a	re re	e tain e Irchiv	ed i	Tonger than 1 month) For Months	
Non-Hazard Flammable Skin Irritant	Poison		Unknown					Ret	urn 1	To Cli	ient			Dispo	sai B	y La	D		, , , , , , , , , , , , , , , , , , ,	rcniv	/e /~	orwornins	_
pecial Instructions/QC Requirements & Comments: Level 4 E	ata Packa	ge																					
elinquished by:	Company:	URS	8/2	Date/Ti	me:	0	Rece	ived b	y:) ()(A	<u> </u>	ht	C:	ompa	ny:	Ć`	- } ∨	·	D	0ate/Time: 8-20-9:1000	
elinquished by:	Company:		1	Date/Ti				ived b				 >			Q	bmpa				-	D	Date/Time:	
elinquished by:	Company:			Date/Ti	ime:		Rece	ived b	y:						C	ompa	ny:				D	Date/Time:	

Savannah

02 LaRoche Avenue

Chain of Custody Record

vannah, GA 31404

ione 912.354.7858 fax 912.352.0165																					TestAmerica Laboratories, Inc.
Client Contact	Project Ma	nager: Jef	f Adams		5	Site	Conta	ct: M	ike C	Corbet	it		102	n i i			X (10.0)				COC No:
RS Corporation	Tel/Fax: (3	14) 743-42	28)	Lab	Conta	et: L	idya (Gulizi	ia		Cai	rrier:	' /	PS					1 of _1 COCs
001 Highlands Plaza Drive West, Suite 300		Analysis T	urnaround '	Time	3	0															Job No.
t. Louis, MO 63110	}	`	ork Days (W							***************************************		-									21562156.00003
14) 429-0100 Phone	TA	T if different l	rom Below 🗲	tanda	d																
14) 429-0462 FAX		2	weeks		60800					***************************************											SDG No.
roject Name: 3Q09 PCB GW Sampling			week							***************************************											
ite: Solutia WG Krummrich Facility		:	2 days			. 8	200					***************************************	ĺ								
O#			day			副 .	à l														
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Fillered Sa	John P. DS			***************************************											Sample Specific Notes:
PMAMW-4S-0809-DNAPL	8/25/09	/230	G	NAPL	2	7	R.							П							
	1					T							T				T	T			
						T		\Box		-		_	1		+	1	T				
						十	+			-	H		-	\vdash	-	-	\dagger	-	\vdash		
						╫		\vdash		+	H	+	+	╁┼	+	-	-	+-			· · · · · · · · · · · · · · · · · · ·
						_			_		\sqcup				- -	\bot	\vdash				
																<u> </u>					
h																					
1											-										
						T		П			***************************************										680-50201
						1						_			1	†	T				
						\dagger		H	-	+		+	+		92.	4			i d	-	
				 		+	-		-			-	-	\vdash		-	+		6		
•••••					1	4			-	-						+	┼-	╄—			2.8
reservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaC)H; 6= Othe	r				1	1			1					بلِ		Ļ	<u></u>	Щ		
ossible Hazard Identification						IS			-												l longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison		Unknown					Retur	n To	Clien	t		Dis	oosal	By Le	ab_			Arch	ive	ForMonths
pecial Instructions/QC Requirements & Comments: Level 4 D	ata Packa	ge																			
elinquished by:	Company:		-/	Date/Tir	ne:	R	eceive	d by:		\sim					Compa			٠,٠			Date/Time:
aliminished by:	Compositi	URS	8/2	5/09 Date/Tir	<u> 160</u>	길	Eceive	t d	7)	U		\mathcal{O}	<u>10</u>	17	Compa		1+	} _	<i>X-)</i> /		8-24-9
elinquished by:	Company:			Date/ I II		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	CCLIVE	.uυy.							-ompe	··· y ·					
elinquished by:	Company:	***************************************		Date/Tir	ne:	R	eceive	d by:						(Compa	iny:					Date/Time:

Appendix C Quality Assurance Report

Solutia Inc. W.G. Krummrich Facility Sauget, Illinois

PCB Groundwater Quality Assessment Program 3rd Quarter 2009 Data Report

Prepared for

Solutia Inc. 575 Maryville Centre Drive St. Louis, MO 63141

November 2009

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 **Project # 21562156**

1.0	INTRODUCTION	1
2.0	RECEIPT CONDITION AND SAMPLE HOLDING TIMES	3
3.0	LABORATORY METHOD AND EQUIPMENT BLANK SAMPLES	4
4.0	SURROGATE SPIKE RECOVERIES	4
5.0	LABORATORY CONTROL SAMPLE RECOVERIES	4
6.0	MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES	4
7.0	FIELD DUPLICATE RESULTS	5
8.0	INTERNAL STANDARD RESPONSES	5
9.0	RESULTS REPORTED FROM DILUTIONS	5

1.0 INTRODUCTION

This Quality Assurance Report presents the findings of a review of analytical data for groundwater samples collected in August of 2009 at the Solutia W.G. Krummrich plant as part of the 3rd Quarter 2009 PCB Groundwater Quality Assessment Program. The samples were collected by URS Corporation personnel and analyzed by TestAmerica Laboratories located in Savannah, Georgia using USEPA methodologies. Samples were analyzed for polychlorinated biphenyls (PCBs).

One hundred percent of the data were subjected to a data quality review (Level III validation); ten percent of these data were subjected to a full data validation (Level IV validation). Samples PMAMW-1M-0809, PMAMW-3S-0809, PMAMW-3M-0809, and PMAMW-4D-0809 were subjected to a full Level IV validation. Validation results are presented in the Full Validation of Polychlorinated Biphenyl Homologs Data – SDG KPM033 which follows the KPM033 Data Review in **Appendix D**. The Level III and IV validations were performed in order to confirm that the analytical data provided by TestAmerica were acceptable in quality for their intended use.

A total of 14 samples (nine investigative groundwater samples, one DNAPL, one field duplicate, one matrix spike and matrix spike duplicate (MS/MSD) pair, and one equipment blank) were analyzed by TestAmerica. These samples were analyzed as part of Sample Delivery Groups (SDGs) KPM033 and KPM034 utilizing the following USEPA Methods:

Method 680 for PCBs

Samples were reviewed following procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999, and the Revised PCB Groundwater Quality Assessment Work Plan, (Solutia 2009).

The above guidelines provided the criteria to review the data. Additional quantitative criteria are given in the analytical methods. Data was qualified based on the data quality review. Qualifiers assigned indicates data that did not meet acceptance criteria and for which corrective actions were not successful or not performed. The various qualifiers are explained in **Tables 1** and **2** below:

TABLE 1 Laboratory Data Qualifiers

Lab Qualifier	Definition
U	Analyte was not detected at or above the reporting limit.
*	LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits.
E	Result exceeded the calibration range, secondary dilution required.
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
N	MS, MSD: Spike recovery exceeds upper or lower control limits.
Н	Sample was prepped or analyzed beyond the specified holding time.
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

TABLE 2 URS Data Qualifiers

URS Qualifier	Definition
U	The analyte was analyzed for but was not detected.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Based on the criteria outlined, it is recommended that the results reported for these analyses are accepted for their intended use. Acceptable levels of accuracy, precision, and representativeness (based on MS/MSD, LCS, surrogate compounds and field duplicate results) were achieved for this data set, except where noted in this report. In addition, analytical completeness, defined to be the percentage of analytical results which are judged to be valid, including estimated detect/nondetect (J/UJ) values was 96 percent, which meets the completeness goal of 95 percent.

The data review included evaluation of the following criteria:

Organics

- Receipt condition and sample holding times
- · Laboratory method blanks, and field equipment blank samples
- Surrogate spike recoveries
- Laboratory control sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) sample recoveries and Relative Percent Difference (RPD) values
- Field duplicate results
- Results reported from dilutions
- Internal standard responses

2.0 RECEIPT CONDITION AND SAMPLE HOLDING TIMES

Sample holding time requirements for the analyses performed are presented in the methods and/or in the data review guidelines. Review of the sample collection, extraction and analysis dates involved comparing the chain-of-custody and the laboratory data summary forms for accuracy, consistency, and holding time compliance. Upon review of SDG KPM034, sample PMAMW-4S-0809-DNAPL was extracted 5 days outside of hold time (hold time is 14 days for PCBs in wastes). Professional judgment was used to not reject data, since PCBs are very stable. Detected analytes were qualified as estimated (J) as summarized in the table below:

Field ID	Parameter	Analyte	Qualification
PMAMW-4S-0809-DNAPL	PCBs	Monochlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	Dichlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	Octachlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	Nonachlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	DCB Decachlorobiphenyl	J
PMAMW-4S-0809-DNAPL-DL	PCBs	Trichlorobiphenyl	J
PMAMW-4S-0809-DNAPL-DL	PCBs	Tetrachlorobiphenyl	J
PMAMW-4S-0809-DNAPL-DL	PCBs	Pentachlorobiphenyl	J
PMAMW-4S-0809-DNAPL-DL	PCBs	Hexachlorobiphenyl	J
PMAMW-4S-0809-DNAPL-DL	PCBs	Heptachlorobiphenyl	J

The cooler receipt form did not indicate any problems.

3.0 LABORATORY METHOD BLANK AND EQUIPMENT BLANK SAMPLES

Laboratory method blank samples evaluate the existence and magnitude of contamination problems resulting from laboratory activities. All laboratory method blank samples were analyzed at the method prescribed frequencies. No analytes were detected in the method blanks.

Equipment blank samples are used to assess the effectiveness of equipment decontamination procedures. No analytes were detected in the equipment blank sample.

4.0 SURROGATE SPIKE RECOVERIES

Surrogate compounds are used to evaluate overall laboratory performance for sample preparation efficiency on a per sample basis. All samples analyzed for PCBs were spiked with surrogate compounds during sample preparation. USEPA National Functional Guidelines for Organic Data Review state how data is qualified, if surrogate spike recoveries do not meet evaluation criteria. Surrogate recoveries were within evaluation criteria with the exception of those surrogates in data reviews discussed further in Appendix D. No qualifications of data were required due to surrogate recoveries.

5.0 LABORATORY CONTROL SAMPLE RECOVERIES

Laboratory control samples (LCS) are analyzed with each analytical batch to assess the accuracy of the analytical process. All LCS recoveries were within evaluation criteria with the exceptions of those discussed in the data review for SDG KPM033. Professional judgment was used to not qualify data since all LCS recoveries were within evaluation criteria and all LCSD recoveries were outside criteria due to a residual acid in the extract from an acid cleanup procedure that was completed as part of the method extraction.

6.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES

MS/MSD samples are analyzed to assess the accuracy and precision of the analytical process on an analytical sample in a particular matrix. MS/MSD samples were required to be collected at a frequency of one per 20 investigative samples in accordance with the work plan. URS Corporation submitted one MS/MSD sample set for ten investigative samples, meeting the work plan frequency requirement.

No qualifications were made to the data if the MS/MSD percent recoveries were zero due to dilutions or if the Relative Percent Difference (RPD) was the only factor outside of criteria. Also, USEPA National Functional Guidelines for Organic Data Review (October 1999) states that organic data should not be qualified based on MS/MSD criteria alone. Therefore, if recoveries were outside evaluation criteria due to matrix interference or abundance of analytes, no qualifiers were assigned unless these analytes had other quality control criteria outside evaluation criteria.

Sample PMAMW-1S-0809 was spiked and analyzed for PCBs in SDG KPM033. All MS/MSD recoveries were within evaluation criteria. No qualification of data was required due to MS/MSD recoveries.

7.0 FIELD DUPLICATE RESULTS

Field duplicate results are used to evaluate precision of the entire data collection activity, including sampling, analysis and site heterogeneity. When results for both duplicate and sample values are greater than five times the practical quantitation limit (PQL), satisfactory precision is indicated by an RPD less than or equal to 25 percent for aqueous samples. Where one or both of the results of a field duplicate pair are reported at less than five times the PQL, satisfactory precision is indicated if the field duplicate results agree within 2 times the quantitation limit. Field duplicate results that do not meet these criteria may indicate unsatisfactory precision of the results.

One field duplicate sample was collected for the ten investigative samples. This satisfies the requirement in the work plan (one per 10 investigative samples or 10 percent). Field duplicate results were within evaluation criteria with the exception of those with an RPD greater than 25% between the parent and field duplicate results in data reviews discussed further in Appendix D. Qualifications due to field duplicate results are listed in the table below:

SDG	Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
KPM033	PMAMW-2M-0809	PMAMW-2M-0809-AD	PCBs	Monochlorobiphenyl	53	J

8.0 INTERNAL STANDARD RESPONSES

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. For the PCBs (Method 680), the IS areas must be within +/- 30 percent of the preceding calibration verification (CV) IS value. Also, the IS retention times must be within 30 seconds of the preceding IS CV retention time. If the IS area count is outside criteria, Method 680 indicates the mean IS area obtained during the initial calibration (ICAL) (+/- 50 percent) should be used.

The internal standards area responses for PCBs were verified for the data reviews. IS responses met the criteria as described above, with the exception of the IS responses in the data reviews discussed further in Appendix D. Qualifications due to internal standard area recoveries are listed in the table below:

SDG	Field ID	Parameter	Analyte	Qualification
KPM034	PMAMW-4S-0809-DNAPL	PCBs	Monochlorobiphenyl	J
KPM034	PMAMW-4S-0809-DNAPL	PCBs	Dichlorobiphenyl	J
KPM034	PMAMW-4S-0809-DNAPL	PCBs	Octachlorobiphenyl	J
KPM034	PMAMW-4S-0809-DNAPL	PCBs	Nonachlorobiphenyl	J
KPM034	PMAMW-4S-0809-DNAPL	PCBs	DCB Decachlorobiphenyl	J

9.0 RESULTS REPORTED FROM DILUTIONS

The PCB DNAPL sample was diluted and reanalyzed due to the high levels of PCBs in the sample. The diluted sample results for PCBs were reported at the lowest possible reporting limit.

Appendix D

Groundwater Analytical Results

(with Data Review/Validation Sheets)

SDG KPM033

Results of Samples from Wells:

PMAMW-1M

PMAMW-1S

PMAMW-2M

PMAMW-2S

PMAMW-3M

PMAMW-3S

PMAMW-4D

PMAMW-5M

PMAMW-6D

D.1.a Solutia Krummrich Data Review

Laboratory SDG: KPM033

Reviewer: Elizabeth Kunkel

Date Reviewed: 10/9/2009

Guidance: USEPA National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Revised PCB Groundwater Quality Assessment (Solutia 2009)

Sample Identification	Sample Identification
PMAMW-1S-0809	PMAMW-1M-0809
PMAMW-2S-0809	PMAMW-2S-0809-EB
PMAMW-2M-0809	PMAMW-2M-0809-AD
PMAMW-6D-0809	PMAMW-5M-0809
PMAMW-3S-0809	PMAMW-3M-0809
PMAMW-4D-0809	

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that LCSD recoveries were outside evaluation criteria. The surrogate recoveries for decachlorobiphenyl- $13C_{12}$ were outside evaluation criteria in quality control samples. Internal standard recoveries for phenanthrene- d_{10} and chrysene- d_{12} were outside evaluation criteria in the laboratory control sample duplicate. Additionally, samples were qualified due to field duplicate RPD. These issues are addressed further in the appropriate section below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

5.0 Laboratory Control Sample

Were LCS/LCSD recoveries within evaluation criteria?

No

LCS/LCSD ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
680-146749/5-A/ 680-146749/6-A	PCBs	Monochlorobiphenyl	44/230	136	10-125/40
680-146749/5-A/ 680-146749/6-A	PCBs	Dichlorobiphenyl	47/ 265	139	10-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Trichlorobiphenyl	49/ 285	141	17-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Tetrachlorobiphenyl	51/ 291	141	18-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Pentachlorobiphenyl	55/ 313	140	34-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Hexachlorobiphenyl	55/ 313	140	31-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Heptachlorobiphenyl	57/ 324	140	33-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Octachlorobiphenyl	59/ 329	139	33-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	DCB Decachlorobiphenyl	61/ 344	139	26-115/40

Professional judgment was used to not qualify data since all LCS recoveries were within evaluation criteria and all LCSD recoveries were outside criteria due to a residual acid in the extract from an acid cleanup procedure that was completed as part of the method extraction.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Laboratory ID	Parameter	Surrogate	Recovery	Criteria
MB 680-146212/9-A	PCBs	Decachlorobiphenyl-13C ₁₂	17	25-113
LCSD 680-146749/6-A	PCBs	Decachlorobiphenyl-13C ₁₂	386	25-113

Method blanks and LCSDs are quality control samples; therefore, no qualification of data is required.

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, sample PMAMW-1S-0809 was spiked and analyzed for PCBs.

Were MS/MSD recoveries within evaluation criteria?

Yes

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

No

Laboratory ID	Parameter	Analyte	IS Area Recovery	IS Criteria
LCSD 680-146749/6-A	PCBs	Phenanthrene-d ₁₀	3587	17895-53683
LCSD 680-146749/6-A	PCBs	Chrysene-d ₁₂	9416	24232-72696

Quality control samples do not require qualification. LCSD samples are quality control samples; therefore, no qualification of data is required.

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
PMAMW-2M-0809	PMAMW-2M-0809-AD

Were field duplicates within evaluation criteria?

No

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
PMAMW-2M-0809	PMAMW-2M-0809-AD	PCBs	Monochlorobiphenyl	53	J

11.0 Sample Dilutions

For samples that were diluted and non-detect, were undiluted results also reported?

Samples analyzed did not require a dilution.

12.0 Additional Qualifications

Were additional qualifications applied?

No

D.1.b FULL VALIDATION OF POLYCHLORINATED BIPHENYL HOMOLOGS DATA – SDG KPM033

This section describes the full validation for four water samples which were prepared as specified in USEPA Method 680 (aqueous) and analyzed for polychlorinated biphenyl (PCB) homologs by USEPA Method 680. Samples were analyzed by TestAmerica Laboratory of Savannah, Georgia, and submitted as part of sample delivery group (SDG) KPM033. Samples included as part of this validation are listed below:

Sample Identification
PMAMW-1M-0809
PMAMW-3S-0809
PMAMW-3M-0809
PMAMW-4D-0809

Quality assurance/quality control (QA/QC) criteria were identified in the Revised PCB Groundwater Quality Assessment Work Plan (Solutia, 2009) and of those criteria established in USEPA Method 680. Evaluation of the analytical data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 1999) where applicable to SW-846 Method 680.

Criteria evaluated included the following method performance criteria:

- Data package completeness
- Laboratory case narrative/cooler receipt form
- Holding times and sample preservation
- GC/MS instrument performance
- Initial calibration
- Calibration verification
- Blank samples
- Surrogate spike recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) samples
- Internal standard areas
- Laboratory control sample (LCS)
- Target compound identification and quantitation
- Overall assessment of data

1.1 Data Package Completeness

The data package was reviewed to make certain that it contained the data contractually required in the deliverable. This included checking the data package for the results of each analyte requested for each field sample submitted in the analytical batch, along with requested QC documentation for the respective methods. The data package was complete.

1.2 Laboratory Case Narrative/Cooler Receipt Form

The laboratory case narrative indicated that LCSD recoveries were outside evaluation criteria. The surrogate recoveries for decachlorobiphenyl-13C₁₂ surrogate recoveries were outside

evaluation criteria in quality control samples. Internal standard recoveries for phenanthrene-d₁₀ and chrysene-d₁₂ were outside evaluation criteria in the laboratory control sample duplicate. Although not indicated in the laboratory case narrative, the initial and continuing calibration average response factors for PCB decachlorobiphenyl were less than 0.05. Additionally, samples were qualified due to field duplicate RPD. These issues are addressed further in the appropriate sections below. No problems were noted on the cooler receipt form.

1.3 Holding Times and Sample Preservation

Review of the sample collection and analysis dates involved comparing the chains-of-custody, the summary forms, the raw data forms, and the chromatograms for accuracy, consistency, and holding time compliance. The cooler receipt form indicated the cooler temperatures were received at $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$. The samples were extracted within the holding time criteria of 7 days (water) and analyzed within 40 days after extraction.

1.4 Instrument Performance

GC/MS instrument performance checks were performed to ensure mass resolution, identification, and instrument sensitivity. Criteria for evaluation of instrument performance included possible transcription/calculation errors, adherence to instrument tuning frequency requirements, mass assignments, and ion abundance criteria. Instrument performance check samples were evaluated against criteria identified in the data package. No qualification of data was required.

Based on the raw data, the ion abundance criteria were within evaluation criteria for all masses, and no calculation or transcription errors were noted.

1.5 Initial Calibration

Calibration criteria were established to assess whether the instrument was capable of producing acceptable qualitative and quantitative data for PCB analysis. Samples as part of SDG KPM033 were analyzed using instrument MSF5973. The initial calibration (ICAL) for instrument MSF5973 was established on 9/17/2009 prior to sample analysis and using at least five concentration standards to establish the initial calibration curve as required by Method 680. For the initial calibration, the response factors (RFs) were reviewed and were greater than 0.05 for all analytes, with the exception of decachlorobiphenyl (0.034).

Qualifications due to ICAL RFs are listed in the table below:

Field ID	Analyte	Qualification
PMAMW-1M-0809	DCB Decachlorobiphenyl	R
PMAMW-3S-0809	DCB Decachlorobiphenyl	R
PMAMW-3M-0809	DCB Decachlorobiphenyl	R
PMAMW-4D-0809	DCB Decachlorobiphenyl	R

Review of the initial calibration summary forms indicated the relative standard deviations (%RSDs) were $\leq 30\%$ for all compounds.

Recalculations of the RFs and %RSD for two compounds per standard were performed, and no errors in calculation were noted.

1.6 Calibration Verification

Review of the sample chromatograms indicate the calibration verifications (CVs) were performed within 12 hours of operation. Based on the review of raw data and summary forms,

all RFs met the evaluation criteria of greater than 0.05 for all analytes, with the exception of decachlorobiphenyl (0.035). This compound was previously qualified due to ICAL RF below evaluation criteria, therefore no additional qualification was required. In addition, percent differences (%Ds) met the evaluation criteria of \leq 30% for all target compounds, no qualification of data was required.

Recalculation of the RF and %D for one compound per standard was completed, and no errors in calculation were noted.

1.7 Blank Samples

The purpose of the method blank samples is to evaluate the existence and magnitude of contamination problems emanating from laboratory activities. Method blank samples were analyzed with each analytical batch as required by USEPA SW-846 Method 680. All target compounds in the method blanks were reported as non-detect. Review of chromatograms indicates all peaks present were accounted or the concentrations reported were below the method detection limit.

1.8 Surrogate Spike Recoveries

Surrogate compounds were used to evaluate the overall laboratory sample preparation efficiency on a per-sample basis. All surrogate recoveries were within criteria with the exceptions for the method blank and laboratory control standard duplicate summarized in the table below:

Laboratory ID	Parameter	Surrogate	Recovery	Criteria
MB 680-146212/9-A	PCBs	Decachlorobiphenyl-13C ₁₂	17	25-113
LCSD 680-146749/6-A	PCBs	Decachlorobiphenyl-13C ₁₂	386	25-113

Method blanks and LCSDs are quality control samples; therefore, no qualification of data is required. Ten percent of the recoveries were recalculated, and the summary forms versus the raw data were verified. No calculation or transcription errors were noted.

1.9 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples

A MS/MSD sample is analyzed to assess accuracy and precision for the analyses and potential matrix affects. The validated samples were not chosen for MS/MSD analysis.

1.10 Internal Standards

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. Each sample included the internal standards chrysene- d_{12} and phenanthrene- d_{10} . Method 680 indicates the IS areas must be within +/- 30% of the preceding CV IS value. Also, the IS retention times must be within 30 seconds of the preceding IS CV retention time. If the IS area count is outside criteria, Method 680 indicates that the mean IS area obtained during the ICAL (+/- 50%) should be used. The internal standard recoveries that were outside evaluation criteria of \pm 50% are summarized in the table below:

Laboratory ID	Parameter	Analyte	IS Area Recovery	IS Criteria
LCSD 680-146749/6-A	PCBs	Phenanthrene-d ₁₀	3587	17895-53683
LCSD 680-146749/6-A	PCBs	Chrysene-d ₁₂	9416	24232-72696

Quality control samples do not require qualification. LCSD samples are quality control samples; therefore, no qualification of data is required.

1.11 Laboratory Control Sample (LCS)

Laboratory control samples were analyzed with each analytical batch to assess the accuracy of the analytical process. All LCS/LCSD recoveries were within evaluation criteria with the exceptions summarized in the table below:

LCS/LCSD ID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
680-146749/5-A/ 680-146749/6-A	PCBs	Monochlorobiphenyl	44/ 230	136	10-125/40
680-146749/5-A/ 680-146749/6-A	PCBs	Dichlorobiphenyl	47/ 265	139	10-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Trichlorobiphenyl	49/ 285	141	17-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Tetrachlorobiphenyl	51/ 291	141	18-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Pentachlorobiphenyl	55/ 313	140	34-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Hexachlorobiphenyl	55/ 313	140	31-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Heptachlorobiphenyl	57/ 324	140	33-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	Octachlorobiphenyl	59/ 329	139	33-110/40
680-146749/5-A/ 680-146749/6-A	PCBs	DCB Decachlorobiphenyl	61/ 344	139	26-115/40

Analytical data which were reported as non-detect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Professional judgment was used to not qualify data since all LCS recoveries were within evaluation criteria and all LCSD recoveries were outside criteria due to a residual acid in the extract from an acid cleanup procedure that was completed as part of the method extraction.

A minimum of 20% of the spiking compound recoveries for the LCS's were recalculated using the LCS summary forms, and no calculation or transcription errors were noted.

1.12 Target Compound Identification and Quantitation

For validation of the compound identification, chromatograms were reviewed to verify the major peaks were identified, the spectra of the identified compounds were verified against the library spectra, and the relative retention time was no greater than 0.06 different from the associated continuing calibration retention times. No anomalies were noted with the identification of the target compounds in the samples.

For the validation of compound quantitation, approximately 10% of the detected compound results were recalculated from the raw data, and no calculation errors were noted. Review of the data indicated that the correct reporting limits were reported.

1.13 Overall Data Assessment

Based on the criteria outlined, it is recommended that the results reported for these analyses are accepted for their intended use with the exception of the rejected data. Acceptable levels of accuracy and precision, based on LCS, and surrogate data were achieved for this SDG. Qualifiers were added as appropriate.

ANALYTICAL REPORT

Job Number: 680-50142-1

SDG Number: KPM033

Job Description: WGK PCB GW Quality 3Q09 AUG 2009

For: Solutia Inc. 575 Maryville Centre Dr. Saint Louis, MO 63141

Attention: Mr. Jerry Rinaldi

Lidya gricia

Lidya Guizia

Lidya Gulizia Project Manager I lidya.gulizia@testamericainc.com 09/28/2009

Reviewed

ON

cc: Mr. Jeff Adams Mr. Bob Billman Dave Palmer

SEP 29 2009

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel (912) 354-7858 Fax (912) 352-0165 www.testamericainc.com

Job Narrative 680-J50142-1 / SDG KPM033

Receipt

All samples were received in good condition within temperature requirements.

GC/MS Semi VOA

Method(s) 680: The laboratory control sample duplicate (LCSD) for preparation batch 146749 exceeded control limits for all spiked analytes. The extract contained residual acid as a result of the acid cleanup procedure. Therefore, the internal standards recovered low and analytes recovered high biased. The responses of the target compounds and surrogate in the LCSD are comparable to the responses in the LCS.

Method(s) 680: The surrogate recovery for the blank associated with batch 146212 was outside recovery limits. All associated sample surrogates fell within acceptance criteria; therefore, the data have been reported.

Method(s) 680: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 146749 exceeded control limits for all spiked analytes.

No other analytical or quality issues were noted.

Comments

No additional comments.

METHOD SUMMARY

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Description	Lab Location	Method	Preparation Method
Matrix Water			
Polychlorinated Biphenyls (PCBs) (GC/MS)	TAL SAV	EPA 680	
Liquid-Liquid Extraction (Separatory Funnel)	TAL SAV		EPA 680

Lab References:

TAL SAV = TestAmerica Savannah

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Method	Analyst	Analyst ID
EPA 680	Chamberlain, Kim	KAC

SAMPLE SUMMARY

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

		•	Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
680-50142-1	PMAMW-1S-0809	Water	08/21/2009 1010	08/22/2009 1333
680-50142-1MS	PMAMW-1S-0809-MS	Water	08/21/2009 1010	08/22/2009 1333
680-50142-1MSD	PMAMW-1S-0809-MSD	Water	08/21/2009 1010	08/22/2009 1333
680-50142-2	PMAMW-1M-0809 ▼	Water	08/21/2009 1100	08/22/2009 1333
680-50142-3	PMAMW-2S-0809 V	Water	08/21/2009 1155	08/22/2009 1333
680-50142-4EB	PMAMW-2S-0809-EB	Water	08/21/2009 1120	08/22/2009 1333
680-50142-5	PMAMW-2M-0809	Water	08/21/2009 1225	08/22/2009 1333
680-50142-6FD	PMAMW-2M-08 <u>09-</u> AD	Water	08/21/2009 1225	08/22/2009 1333
680-50142-7	PMAMW-6D-0809	Water	08/21/2009 1440	08/22/2009 1333
680-50142-8	PMAMW-5M-0809 🗸	Water	08/21/2009 1350	08/22/2009 1333
680-50208-1	PMAMW-3S-0809 V	Water	08/25/2009 1010	08/26/2009 1000
680-50208-2	PMAMW-3M-0809 🗸	Water	08/25/2009 1125	08/26/2009 1000
680-50208-3	PMAMW-4D-0809 🖌	Water	08/25/2009 1235	08/26/2009 1000

SAMPLE RESULTS

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Client Sample ID:

PMAMW-1S-0809

Lab Sample ID:

680-50142-1

Client Matrix:

Water

Date Sampled: 08/21/2009 1010 Date Received: 08/22/2009 1333

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: Preparation: 680

Analysis Batch: 680-148768

Instrument ID:

MSF

680 1.0

Prep Batch: 680-146212

Lab File ID:

N/A

Dilution:

Initial Weight/Volume:

1030 mL

Final Weight/Volume:

Date Analyzed:

09/17/2009 2257

1 mL

Date Prepared:

08/25/2009 1324

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.097	U	0.097
Dichlorobiphenyl	0.097	U	0.097
Trichlorobiphenyl	0.097	U	0.097
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.29	U .	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec	Qualifier	Acceptance Limits

Decachlorobiphenyl-13C12

72

25 - 113

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Client Sample ID:

PMAMW-1M-0809

Lab Sample ID:

680-50142-2

Client Matrix:

Water

Date Sampled: 08/21/2009 1100 Date Received: 08/22/2009 1333

680 Polychlorinated	Biphenyls	(PCBs)	(GC/MS)
---------------------	------------------	--------	---------

Method: Preparation: 680 680

Analysis Batch: 680-148768

Instrument ID:

MSF N/A

Dilution:

1.0

Prep Batch: 680-146212

Lab File ID: Initial Weight/Volume:

1030 mL 1 mL

Date Analyzed: Date Prepared: 09/17/2009 2329 08/25/2009 1324 Final Weight/Volume: Injection Volume:

Result (ug/L) Analyte Qualifier RL Monochlorobiphenyl 0.27 0.097 U Dichlorobiphenyl 0.097 0.097 U 0.097 Trichlorobiphenyl 0.097 U Tetrachlorobiphenyl 0.19 0.19 U 0.19 Pentachlorobiphenyl 0.19 U 0.19 Hexachlorobiphenyl 0.19 U 0.29 0.29 Heptachlorobiphenyl Octachlorobiphenyl 0.29 0.29 U Nonachlorobiphenyl 0.49 0.49 SR" 0.49 0.49 DCB Decachlorobiphenyl %Rec Qualifier Acceptance Limits Surrogate 25 - 113 Decachlorobiphenyl-13C12 70

Job Number: 680-50142-1 Client: Solutia Inc.

Sdg Number: KPM033

Client Sample ID:

PMAMW-2S-0809

Lab Sample ID:

680-50142-3

Client Matrix:

Water

Date Sampled: 08/21/2009 1155 Date Received: 08/22/2009 1333

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: Preparation: 680 680 Analysis Batch: 680-148768

61

Instrument ID: Lab File ID:

MSF N/A

Dilution:

1.0

Prep Batch: 680-146212

Initial Weight/Volume:

1030 mL

Date Analyzed:

09/18/2009 0001

Final Weight/Volume:

1 mL

Date Prepared:

Decachlorobiphenyl-13C12

08/25/2009 1324

Injection Volume:

25 - 113

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.097	U	0.097
Dichlorobiphenyl	0.097	U	0.097
Trichlorobiphenyl	0.097	U	0.097
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec	Qualifier	Acceptance Limits

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Client Sample ID:

PMAMW-2S-0809-EB

Lab Sample ID:

680-50142-4EB

Client Matrix:

Surrogate

Decachlorobiphenyl-13C12

Water

Date Sampled: 08/21/2009 1120

Date Received: 08/22/2009 1333

Acceptance Limits

25 - 113

Mathadi	680	Analysis Databy 600 140760	Instrument ID:	MSF
Method:	680	Analysis Batch: 680-148768 Prep Batch: 680-146212	Lab File ID:	N/A
Preparation:	1.0	Frep Batch, 660-140212	Initial Weight/Volume:	1060 mL
Dilution:	09/18/2009 0033		•	
Date Analyzed: Date Prepared:	08/25/2009 1324		Final Weight/Volume: Injection Volume:	1 mL
Analyte		Result (ug/L)	Qualifier	RL
Monochlorobipher	nyl	0.094	U	0.094
Dichlorobiphenyl		0.094	U	0.094
Trichlorobiphenyl		0.094	U	0.094
Tetrachlorobiphen	yl	0.19	U	0.19
Pentachlorobiphenyl		0.19	U	0.19
Hexachlorobiphen	yl	0.19	U	0.19
Heptachlorobipher	nyl	0.28	U	0.28
Octachlorobipheny	yl	0.28	U	0.28
Nonachlorobiphen	ył	0.47	U	0.47
DCB Decachlorob	iphenyl	0.47	U	0.47

Qualifier

%Rec

75

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Client Sample ID:

PMAMW-2M-0809

Lab Sample ID:

680-50142-5

Client Matrix:

Water

Date Sampled: 08/21/2009 1225

Date Received: 08/22/2009 1333

680 Polychi	orinated Bi	phenyls ((PCBs)	(GC/MS)	,

Method:

680 680

74

Analysis Batch: 680-148768

Instrument ID:

MSF

Preparation: Dilution:

Prep Batch: 680-146212

Lab File ID:

N/A

1.0

Initial Weight/Volume: Final Weight/Volume:

25 - 113

1060 mL 1 mL

Date Analyzed: Date Prepared:

Decachlorobiphenyl-13C12

09/18/2009 0105 08/25/2009 1324

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	3.1	~J"	0.094
Dichlorobiphenyl	0.094	Ū	0.094
Trichlorobiphenyl	0.094	U	0.094
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	. 0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.28	U	0.28
Octachlorobiphenyl	0.28	U	0.28
Nonachlorobiphenyl	0.47	U	0.47
DCB Decachlorobiphenyl	0.47	U	0.47
Surrogate	%Rec	Qualifier	Acceptance Limits

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Client Sample ID:

PMAMW-2M-0809-AD

Lab Sample ID:

680-50142-6FD

Client Matrix:

Water

Date Sampled: 08/21/2009 1225 Date Received: 08/22/2009 1333

		680 Polychlorinated Biphenyls (P	PCBs) (GC/MS)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	680 680 1.0 09/18/2009 0138 08/25/2009 1324	Analysis Batch: 680-148768 Prep Batch: 680-146212	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Vol Injection Volume	ume: 1 mL
Analyte		Result (ug/L)	Qualifier	RL
Monochlorobipheny	/	1.8	J"	0.094
Dichlorobiphenyl		0.094	Ü	0.094
Trichlorobiphenyl		0.094	U	0.094
Tetrachlorobipheny	l	0.19	U	0.19
Pentachlorobipheny	/l	0.19	U	0.19
Hexachlorobipheny	I	0.19	U	0.19
Heptachlorobiphen	yl	0.28	U	0.28
Octachlorobiphenyl		0.28	U	0.28
Nonachlorobipheny	1	0.47	U	0.47
DCB Decachlorobip	bhenyl	0.47	U	0.47
Surrogate		%Rec	Qualifier A	cceptance Limits
Decachlorobipheny	I-13C12	59	25	5 - 113

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Client Sample ID:

PMAMW-6D-0809

Lab Sample ID:

680-50142-7

Client Matrix:

Water

Date Sampled: 08/21/2009 1440 Date Received: 08/22/2009 1333

Method: Preparation:

Date Prepared:

680 680 Prep Batch: 680-146212

Analysis Batch: 680-148768

Instrument ID: Lab File ID:

MSF N/A

Dilution: 1.0 Date Analyzed:

09/18/2009 0210 08/25/2009 1324 Initial Weight/Volume: Final Weight/Volume:

1030 mL 1 mL

Injection Volume:

Analyte Result (ug/L) Qualifier RL Monochlorobiphenyl 0.20 0.097 U Dichlorobiphenyl 0.097 0.097 U Trichlorobiphenyl 0.097 0.097 Ų Tetrachlorobiphenyl 0.19 0.19 0.19 U Pentachlorobiphenyl 0.19 U Hexachlorobiphenyl 0.19 0.19 U Heptachlorobiphenyl 0.29 0.29 0.29 U 0.29 Octachlorobiphenyl Nonachlorobiphenyl 0.49 U 0.49 DCB Decachlorobiphenyl 0.49 U 0.49 %Rec Qualifier Acceptance Limits Surrogate

Decachlorobiphenyl-13C12

65

25 - 113

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Client Sample ID:

PMAMW-5M-0809

Lab Sample ID:

680-50142-8

Client Matrix:

Water

Date Sampled: 08/21/2009 1350 Date Received: 08/22/2009 1333

680 Polychlorinated	Rinhanyle	(DCRc)	(CC/MS)
680 Polychiorinated	Bibnenvis	IPUBSI	(GC/MSI

Method:

680

Analysis Batch: 680-148768

Instrument ID:

MSF

Preparation: Dilution:

680

Prep Batch: 680-146212

Lab File ID:

N/A 1030 mL

Date Analyzed:

1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Prepared:

09/18/2009 0242 08/25/2009 1324

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.097	U	0.097
Dichlorobiphenyl	0.097	U	0.097
Trichlorobiphenyl	0.097	U	0.097
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.29	, U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec	Qualifier	Acceptance Limits
Decachlorobiphenyl-13C12	69		25 - 113

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Client Sample ID:

PMAMW-3S-0809

Lab Sample ID:

680-50208-1

Client Matrix:

Water

Date Sampled: 08/25/2009 1010

Date Received: 08/26/2009 1000

680 Polychlorinated Biphenyls (PCBs) (GC/MS)	s (PCBs) (GC/MS)
--	------------------

Method: Preparation: 680 680 Analysis Batch: 680-148768

Instrument ID: Lab File ID: MSF N/A

Dilution:

1.0

Prep Batch: 680-146749

Initial Weight/Volume:

1060 mL

Date Analyzed:

09/17/2009 1807

Final Weight/Volume:

1 mL

Date Prepared:

08/31/2009 1350

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.34	*	0.094
Dichlorobiphenyl	0.094	U*	0.094
Trichlorobiphenyl	0.094	U *	0.094
Tetrachlorobiphenyl	0.19	U *	0.19
Pentachlorobiphenyl	0.19	U*	0.19
Hexachlorobiphenyl	0.19	U*	0.19
Heptachlorobiphenyl	0.28	· U*	0.28
Octachlorobiphenyl	0.28	U *	0.28
Nonachlorobiphenyl	0.47	U	0.47
DCB Decachlorobiphenyl	0.47	-W "R"	0.47
Surrogate	%Rec	Qualifier	Acceptance Limits

Decachlorobiphenyl-13C12

81

25 - 113

Client: Solutia Inc.

Decachlorobiphenyl-13C12

Job Number: 680-50142-1

Sdg Number: KPM033

Client Sample ID:

PMAMW-3M-0809

Lab Sample ID:

680-50208-2

Client Matrix:

Water

Date Sampled: 08/25/2009 1125

Date Received: 08/26/2009 1000

25 - 113

680 Polychlorinated Biphenyls (PCBs) (GC/MS)					
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	680 680 1.0 09/17/2009 1840 08/31/2009 1350	Analysis Batch: 680-148768 Prep Batch: 680-146749	Instrument ID: Lab File ID: Initial Weight/V Final Weight/V Injection Volun	olume: 1 mL	
Analyte		Result (ug/L)	Qualifier	RL	
Monochlorobiphenyl	The AND THE STATE OF THE STATE	0.85	*	0.094	
Dichlorobiphenyl		0.094	U *	0.094	
Trichlorobiphenyl		0.094	U *	0.094	
Tetrachlorobiphenyl		0.19	U *	0.19	
Pentachlorobipheny	l .	0.19	U *	0.19	
Hexachlorobiphenyl		0.19	U *	0.19	
Heptachlorobipheny	1	0.28	U *	0.28	
Octachlorobiphenyl		0.28	U *	0.28	
Nonachlorobiphenyl		0.47	U	0.47	
DCB Decachlorobip	henyl	0.47	Ju NR"	0.47	
Surrogate		%Rec	Qualifier	Acceptance Limits	

52

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Client Sample ID:

PMAMW-4D-0809

Lab Sample ID:

680-50208-3

Client Matrix:

Water

Date Sampled: 08/25/2009 1235

Date Received: 08/26/2009 1000

680 Polychlorinated Biphenyls (PCI	Bs) (GC/MS)
------------------------------------	-------------

Method:

680

Analysis Batch: 680-148768

Instrument ID:

MSF

Preparation:

680

Prep Batch: 680-146749

Lab File ID:

N/A

Dilution:

Initial Weight/Volume:

1060 mL

Date Analyzed:

1.0

Final Weight/Volume:

1 mL

Date Prepared:

09/17/2009 1912 08/31/2009 1350

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.20	*	0.094
Dichlorobiphenyl	0.17	*	0.094
Trichlorobiphenyl	0.094	U *	0.094
Fetrachlorobiphenyl	0.19	U *	0.19
Pentachlorobiphenyl	0.19	U *	0.19
Hexachlorobiphenyl	0.19	U *	0.19
leptachlorobiphenyl	0.28	U *	0.28
Octachlorobiphenyl	0.28	U *	0.28
Nonachlorobiphenyl	0.47	U	0.47
DCB Decachlorobiphenyl	0.47	- R"	0.47
Surrogate	%Rec	Qualifier	Acceptance Limits
Decachlorobiphenyl-13C12	73		25 - 113

DATA REPORTING QUALIFIERS

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Lab Section	Qualifier	Description
GC/MS Semi VOA	•	
	U	Indicates the analyte was analyzed for but not detected.
	*	LCS or LCSD exceeds the control limits
	*	RPD of the LCS and LCSD exceeds the control limits
	X	Surrogate exceeds the control limits

QUALITY CONTROL RESULTS

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

QC Association Summary

	au	Report Basis	011		David Datat
Lab Sample ID	Client Sample ID		Client Matrix	Method	Prep Batch
GC/MS Semi VOA		****			
Prep Batch: 680-146212					
LCS 680-146212/10-A	Lab Control Sample	Т	Water	680	
MB 680-146212/9-A	Method Blank	T	Water	680	
680-50142-1	PMAMW-1S-0809	Т	Water	680	
680-50142-1MS	Matrix Spike	Т	Water	680	
680-50142-1MSD	Matrix Spike Duplicate	Т	Water	680	
680-50142-2	PMAMW-1M-0809	Т	Water	680	
680-50142-3	PMAMW-2S-0809	Т	Water	680	
680-50142-4EB	PMAMW-2S-0809-EB	Т	Water	680	
680-50142-5	PMAMVV-2M-0809	Т	Water	680	
680-501 42- 6FD	PMAMW-2M-0809-AD	Т	Water	680	
680-50142-7	PMAMW-6D-0809	Т	Water	680	
680-50142-8	PMAMW-5M-0809	Т	Water	680	
Prep Batch: 680-146749					
_CS 680-146749/5-A	Lab Control Sample	Т	Water	680	
CSD 680-146749/6-A	Lab Control Sample Duplicate	T	Water	680	
//B 680-146749/4-A	Method Blank	Т	Water	680	
880-50208-1	PMAMW-3S-0809	Т	Water	680	
880-50208-2	PMAMW-3M-0809	Т	Water	680	
680-50208-3	PMAMW-4D-0809	Т	Water	680	
Analysis Batch:680-14876	В				
CS 680-146212/10-A	Lab Control Sample	Т	Water	680	680-146212
MB 680-146212/9-A	Method Blank	Τ	Water	680	680-146212
.CS 680-146749/5-A	Lab Control Sample	Т	Water	680	680-146749
CSD 680-146749/6-A	Lab Control Sample Duplicate	Т	Water	680	680-146749
ИВ 680-146749/4-A	Method Blank	Т	Water	680	680-146749
680-50142-1	PMAMW-1S-0809	Т	Water	680	680-146212
80-50142-1MS	Matrix Spike	T	Water	680	680-146212
80-50142-1MSD	Matrix Spike Duplicate	Т	Water	680	680-146212
680-50142-2	PMAMW-1M-0809	Т	Water	680	680-146212
680-50142-3	PMAMW-2S-0809	Т	Water	680	680-146212
80-50142-4EB	PMAMW-2S-0809-EB	Т	Water	680	680-146212
80-50142-5	PMAMW-2M-0809	Т	Water	680	680-146212
80-50142-6FD	PMAMW-2M-0809-AD	Т	Water	680	680-146212
80-50142-7	PMAMW-6D-0809	Т	Water	680	680-146212
80-50142-8	PMAMW-5M-0809	Т	Water	680	680-146212
880-50208-1	PMAMW-3S-0809	Т	Water	680	680-146749
880-50208-2	PMAMW-3M-0809	Т	Water	680	680-146749
680-50208-3	PMAMW-4D-0809	Т	Water	680	680-146749

Report Basis

T = Total

TestAmerica Savannah

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Surrogate Recovery Report

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Client Matrix: Water

		13DCB
Lab Sample ID	Client Sample ID	%Rec
680-50142-1	PMAMW-1S-0809	72
680-50142-2	PMAMW-1M-0809	70
680-50142-3	PMAMW-2S-0809	61
680-50142-4	PMAMW-2S-0809-EB	75
680-50142-5	PMAMW-2M-0809	74
680-50142-6	PMAMW-2M-0809-A D	59
680-50142-7	PMAMW-6D-0809	65
680-50142-8	PMAMW-5M-0809	69
680-50208-1	PMAMW-3S-0809	81
680-50208-2	PMAMW-3M-0809	52
680-50208-3	PMAMW-4D-0809	73
MB 680-146212/9-A		(17X)
MB 680-146749/4-A		77
LCS 680-146212/10-A		83
LCS 680-146749/5-A		68
LCSD 680-146749/6-A		(386X)
680-50142-1 MS	PMAMW-1S-0809 MS	67
680-50142-1 MSD	PMAMW-1S-0809 MSD	58

Surrogate	Acceptance Limits
13DCB = Decachlorohiphenyl-13C12	25_113

SEP 29 2009 ZZK

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Method Blank - Batch: 680-146212

Method: 680 Preparation: 680

Lab Sample ID: MB 680-146212/9-A

Analysis Batch: 680-148768

Instrument ID: GC/MS SemiVolatiles - F

Client Matrix:

Water

Lab File ID: N/A

Dilution:

1.0

Prep Batch: 680-146212

Initial Weight/Volume:

1000 mL

Date Analyzed: 09/17/2009 2152

Units: ug/L

Final Weight/Volume:

Date Prepared: 08/25/2009 1324

Injection Volume:

Analyte	Result	Qual	RL
Monochlorobiphenyl	0.10	U	0.10
Dichlorobiphenyl	0.10	U	0.10
Trichlorobiphenyl	0.10	U	0.10
Tetrachlorobiphenyl	0.20	U	0.20
Pentachlorobiphenyl	0.20	U	0.20
Hexachlorobiphenyl	0.20	U	0.20
Heptachlorobiphenyl	0.30	U	0.30
Octachlorobiphenyl	0.30	U	0.30
Nonachlorobiphenyl	0.50	U	0.50
DCB Decachlorobiphenyl	0.50	U	0.50
Surrogate	% Rec	Acceptance Limits	
Decachlorobiphenyl-13C12	17	X	25 - 113

Lab Control Sample - Batch: 680-146212

Method: 680 Preparation: 680

Lab Sample ID: LCS 680-146212/10-A

09/17/2009 2225

08/25/2009 1324

Client Matrix:

Date Analyzed:

Date Prepared:

Dilution:

Water

1.0

Analysis Batch: 680-148768 Prep Batch: 680-146212

Units: ug/L

Lab File ID:

Instrument ID: GC/MS SemiVolatiles - F

N/A

Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL

Injection Volume:

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Monochlorobiphenyl	2.00	1.09	54	10 - 125	
Dichlorobiphenyl	2.00	1.24	62	10 - 110	
Trichlorobiphenyl	2.00	1.30	65	17 - 110	
Tetrachlorobiphenyl	4.00	2.68	67	18 - 110	
Pentachlorobiphenyl	4.00	2.82	71	34 - 110	
Hexachlorobiphenyl	4.00	2.80	70	31 - 110	
Heptachlorobiphenyl	6.00	4.28	71	33 - 110	
Octachlorobiphenyl	6.00	4.38	73	33 - 110	
DCB Decachlorobiphenyl	10.0	7.71	77	26 - 115	
Surrogate	% R	ec	Acc	ceptance Limits	
Decachlorobiphenyl-13C12	83		25 - 113		

Calculations are performed before rounding to avoid round-off errors in calculated results.

SEP 29 2009 ZILL

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 680-146212

Method: 680

Preparation: 680

MS Lab Sample ID:

680-50142-1

Analysis Batch: 680-148768

Instrument ID:

GC/MS SemiVolatiles - F

Client Matrix:

Water

Lab File ID:

Prep Batch: 680-146212

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1060 mL 1 mL

Date Analyzed: Date Prepared: 09/18/2009 0314 08/25/2009 1324

Injection Volume:

MSD Lab Sample ID:

680-50142-1

Analysis Batch: 680-148768

Instrument ID: GC/MS SemiVolatiles - F

Client Matrix:

Water

Lab File ID:

N/A

Dilution:

1.0

Prep Batch: 680-146212

Initial Weight/Volume:

1060 mL 1 mL

Date Analyzed: Date Prepared: 09/18/2009 0346 08/25/2009 1324

Final Weight/Volume: Injection Volume:

	2	<u>% Rec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Quai	MSD Qual
Monochlorobiphenyl	42	28	10 - 125	40	40		
Dichlorobiphenyl	50	36	10 - 110	32	40		
Trichlorobiphenyl	52	40	17 - 110	25	40		
Tetrachlorobiphenyl	53	41	18 - 110	25	40		
Pentachlorobiphenyl	61	48	34 - 110	23	40		
Hexachlorobiphenyl	61	48	31 - 110	23	40		
Heptachlorobiphenyl	63	49	33 - 110	25	40		
Octachlorobiphenyl	62	50	33 - 110	23	40		
DCB Decachlorobiphenyl	62	52	26 - 1 1 5	18	40		
Surrogate		MS % Rec	tec MSD % Rec		Acce	ptance Limits	
Decachlorobiphenyl-13C12		67	58 25 - 113				

SEP 29 2009 ELL

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Method Blank - Batch: 680-146749

Method: 680 Preparation: 680

Lab Sample ID: MB 680-146749/4-A

Analysis Batch: 680-148768

Instrument ID: GC/MS SemiVolatiles - F

Client Matrix:

Water

Prep Batch: 680-146749

Lab File ID:

N/A

Dilution:

1.0

Initial Weight/Volume: 1000 mL

Date Analyzed: 09/17/2009 1558

Units: ug/L

Final Weight/Volume:

1 mL

Date Prepared: 08/31/2009 1350

Injection Volume:

Analyte	Result	Qual	RL		
Monochlorobiphenyl	0.10	U	0.10		
Dichlorobiphenyl	0.10	U	0.10		
Trichlorobiphenyl	0.10	U	0.10		
Tetrachlorobiphenyl	0.20	U	0.20		
Pentachlorobiphenyl	0.20	U	0.20		
Hexachlorobiphenyl	0.20	U	0.20		
Heptachlorobiphenyl	0.30	U	0.30		
Octachlorobiphenyl	0.30	U	0.30		
Nonachlorobiphenyl	0.50	U	0.50		
DCB Decachlorobiphenyl	0.50	U	0.50		
Surrogate	% Rec	Acc	eptance Limits		
Decachlorobiphenyl-13C12	77	25 - 113			

SEP 29 2009 32/C

Client: Solutia Inc.

Job Number: 680-50142-1

Sdg Number: KPM033

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 680-146749

Method: 680

Preparation: 680

LCS Lab Sample ID: LCS 680-146749/5-A

Analysis Batch: 680-148768

Instrument ID: GC/MS SemiVolatiles - F

Client Matrix:

Water

Lab File ID: N/A

Dilution:

1.0

Prep Batch: 680-146749 Units: ug/L

Date Analyzed:

09/17/2009 1703

Initial Weight/Volume: Final Weight/Volume:

1000 mL 1 mL

Date Prepared:

08/31/2009 1350

Injection Volume:

TestAmerica Savannah

LCSD Lab Sample ID: LCSD 680-146749/6-A

Analysis Batch: 680-148768

Instrument ID:

Client Matrix:

Water

GC/MS SemiVolatiles - F

Dilution:

Prep Batch: 680-146749

Lab File ID: N/A

1.0

Units: ug/L

Initial Weight/Volume:

1000 mL

1 mL

Date Analyzed: Date Prepared: 09/17/2009 1735 08/31/2009 1350

Final Weight/Volume: Injection Volume:

% Rec.

Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual	
Monochlorobiphenyl	44	230	10 - 125	136	40		*	
Dichlorobiphenyl	47	265	10 - 110	139	40		*	
Trichlorobiphenyl	49	285	17 - 110	141	40		*	
Tetrachlorobiphenyl	51	291	18 - 110	141	40		*	
Pentachlorobiphenyl	55	313	34 - 110	140	40		*	
Hexachlorobiphenyl	55	313	31 - 110	140	40		*	
Heptachlorobiphenyl	57	324	33 - 110	140	40		*	
Octachlorobiphenyl	59	329	33 - 110	139	40		*	
DCB Decachlorobiphenyl	61	344	26 - 115	139	40		*	
Surrogate	L	CS % Rec	LCSD %	Rec	Rec Acceptance Limits			
Decachlorobiphenyl-13C12	6	8	(386)	Х	2	25 - 113		

Savannah

5102 LaRoche Avenue

Chain of Custody Record

Savannah, GA 31404

phone 912.354.7858 Fax 912.352.0165 TestAmerica Laboratories, Inc. Project Manuger: Jeff Adams Site Contact: Mike Corbett COC No: Client Contact The bory Tel/Fax: (314) 743-4228 Lab Contact: Lidya Gulizia Carrier: Fed Ex of 1 COCs URS Corporation 1001 Highlands Plaza Drive West, Suite 300 Analysis Turnaround Time Job No. St. Louis, MO 63110 Calendar (C) or Work Days (W) 21562156.00003 TAT If different from Below Standard Phone (314) 429-0100 SDG No. FAX 2 weeks (314) 429-0462 Project Name: 3Q09 PCB GW Sampling 1 week Site: Solutia WG Krummrich Facility 2 days P 0# 1 day Sample Sample Sample Date Time Type (lont. Sample Identification Matrix Sample Specific Notes: 8/21/09 1010 G 2 2 Water PMAMW-1S-0809 2 Water 2 PMAMW-1S-0809-MS G Water 2 2 PMAMW-1S-0809-MSD 1010 Pag G 2 2 Water PMAMW-1M-0809 6 1100 2 2 1155 G Water PMAMW-2S-0809 > 2 G Water 2 PMAMW-2S-0809-EB V 1120 2 1225 G Water 2 PMAMW-2M-0809 # 1225 G Water 2 2 PMAMW-2M-0809-AD 2 2 Water PMAMW-6D-0809 2 2 1350 Water PMAMW-5M-0809 MAC Water Trip Blank Preservation Used: 1= lee, 2= HCl; J= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Archive For Return To Client Non-Hazard - Flammoble Skin Irrituni Disposal By Lab Special Instructions/QC Requirements & Comments: Level 4 Data Package 3,2/2.6/2.0 680-50142 Date/Time: Company: Received by: Company: URS 8/21/09 1630 Company: Received by: Date/Time: Relinquished by: Company: Company: Date/fime: Received by: Company: Date/Time: Relinquished by:

Savannah

5102 LaRoche Avenue

Chain of Custody Record

Savannah, GA 31404

TestAm	nerica
B	
THE LEADER IN ENVIR	DAITEST JATASMAD

phone 912.354.7858 fax 912.352.0165	_																				TestAmerica Laboratories, Inc.
Client Contact	Project Manager: Jeff Adams Site				Site (11*										: .		COC No:			
URS Corporation	TeVFax: (3	14) 743-42	28]	Lab	Cont	act: l	Lidya	Guli	zia		- (Carri	er: 🔾	25					1 of1 COCs
1001 Highlands Plaza Drive West, Suite 300	1		urnaround								T		T				7			Π	Job No.
St. Louis, MO 63110			ork Days (W																		21562156.00003
(314) 429-0100 Phone		T if different	from Below 🧘	tando	rd																
(314) 429-0462 FAX			weeks						1												SDG No.
Project Name: 3Q09 PCB GW Sampling		Į	week			뛿								- {							1
Site: Solutia WG Krummrich Facility			2 days			1 8	3														1
PO#			l day			ğ	I of all P.C. ES By 680														1
						3 8	2	1													
	Sample	Sample	Sample		Hof	THIERES.	3														
Sample Identification	Date	Time	Турс	Matrix	Cont.		-	<u></u>									_				Sample Specific Notes:
PMAMW-3S-0809	8/25/09	1010	G	Water	2]	2														
PMAMW-3M-0809	' '	1125	G	Water	2	:	2												1		
PMAMW-4D-0809 2	1	1235	G	Water	2		2												T		
a g	· Y	11 - 0				十	+	+-	\Box		+	\vdash	_	-	+	-	\dashv	+	+-		
<u> </u>						╀	-	╁	\vdash	_	-		\dashv	+			+	-	1-	₩	
N						1										ĺΙ					
												ľ		7				\top	Τ		
O Ph						╁	+-	+	+	+	-	+-	\dashv		+	\vdash	\dashv		+	┢	
<u>N</u>						ــــــــــــــــــــــــــــــــــــــ	4	4	11		_	\perp				Ш	_	4	_	ļ	
																			1		
										l				1							
						+	\top	\dagger	\Box		T-	1		+	+-		\neg	+	\top	1	680-50208
	+	 		 	-	+	+	+-	+	+	+	-	\rightarrow	+			+		+	-	000 DOSOO
Trip Blank				Water	-2-	1	2								"	45	-1 2	ī	1	gr - 1/4	MC
					- 1				1							1	3	ÿ	3		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=Na4	OH: 6= Oth	<u> </u>	L			+	1	1	†	-	+	\dagger	\dashv	+	+	 	_	+	+-	1	1.8
Possible Hazard Identification	013, 0 0120							le Di	ispos	al ()	4 fee	may	be s	sse	ssed	lf sai	mple	s are	reta	inec	d longer than 1 month)
Non-Hazard Flammable Skin Irritani	Poison	_B \square	Unknown						Jm To						sal By						For Months
Special Instructions/QC Requirements & Comments: Level 4 D			0.11.0					,							<u> </u>				7 11 0		
operations to some and the second	-•	6-																			
Relinquished by: Colt	Company:	URS	8/3	Date/Tit	ne: 1600		ecciv	°cd 65° 1- °a -†	y: רל־	\cap		(A)	Ja	ht.	Co1	npan		LYĆ	V		8-24-90 1000
Relinquished by:	Company:			Date/Tit		R	eceiv	ed by	y:				7	حله	Ç,	npan		-	7		Date/Time:
Relinquished by:	Company:			Date/Tir	ne:	R	cceiv	ed by	y:						Cor	npan	y:				Date/Fime:
<u></u>																					1

Login Sample Receipt Check List

Client: URS Corporation

Job Number: 680-50142-1

SDG Number: KPM033

Login Number: 50142

Creator: Conner, Keaton

List Source: TestAmerica Savannah

List	Number:	1
------	---------	---

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	3 coolers rec'd on ice
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.2, 2.6, 2.0 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	False	
Sample Preservation Verified	True	

Login Sample Receipt Check List

Client: URS Corporation

Job Number: 680-50142-1

SDG Number: KPM033

Login Number: 50208

List Source: TestAmerica Savannah

Creator: Daughtry, Beth List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	•
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.8 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	•
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	MS/MSD received in job 50142 for SDG
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

SDG KPM034

Results of Sample from Well:

PMAMW-4S

D.2 Solutia Krummrich Data Review

Laboratory SDG: KPM034

Reviewer: Elizabeth Kunkel

Date Reviewed: 10/9/2009

Guidance: USEPA National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Revised PCB Groundwater Quality Assessment (Solutia 2009)

Sample Identification
PMAMW-4S-0809-DNAPL

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that PCB surrogates were diluted out and not recovered. Internal standard recoveries for phenanthrene- d_{10} were outside evaluation criteria in sample PMAMW-4S-0809-DNAPL. Samples were diluted due to high levels of target analytes. Additionally, sample PMAMW-4S-0809-DNAPL was extracted outside of holding time criteria. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

No, sample PMAMW-4S-0809-DNAPL was extracted 5 days outside of hold time (hold time is 14 days for PCBs in wastes). Professional judgment was used to not reject data, since PCBs are very stable. Detected analytes were qualified as estimated (**J**) as summarized in the table below:

Field ID	Parameter	Analyte	Qualification
PMAMW-4S-0809-DNAPL	PCBs	Monochlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	Dichlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	Octachlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	Nonachlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	DCB Decachlorobiphenyl	J
PMAMW-4S-0809-DNAPL-DL	PCBs	Trichlorobiphenyl	J
PMAMW-4S-0809-DNAPL-DL	PCBs	Tetrachlorobiphenyl	J
PMAMW-4S-0809-DNAPL-DL	PCBs	Pentachlorobiphenyl	J
PMAMW-4S-0809-DNAPL-DL	PCBs	Hexachlorobiphenyl	J
PMAMW-4S-0809-DNAPL-DL	PCBs	Heptachlorobiphenyl	J

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Surrogates were diluted out and not recovered in the following samples: PMAMW-4S-0809-DNAPL and PMAMW-4S-0809-DNAPL-DL. No qualification of data is required.

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

No

Field ID	Parameter	Analyte	IS Area Recovery	IS Criteria
PMAMW-4S-0809-DNAPL	PCBs	Phenanthrene-d ₁₀	133051	17895-53683

Analytical results that required qualification based on IS data are included in the table below.

Field ID	Parameter	Analyte	Qualification
PMAMW-4S-0809-DNAPL	PCBs	Monochlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	Dichlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	Octachlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	Nonachlorobiphenyl	J
PMAMW-4S-0809-DNAPL	PCBs	DCB Decachlorobiphenyl	J

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples analyzed as part of this SDG?

No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Analytes were detected in samples that were diluted.

12.0 Additional Qualifications

Were additional qualifications applied?

No

ANALYTICAL REPORT

Job Number: 680-50207-1

SDG Number: KPM034

Job Description: WGK PCB GW DNAPL MW4S 3Q09 - AUG 2009

For:

Solutia Inc. 575 Maryville Centre Dr. Saint Louis, MO 63141

Attention: Mr. Jerry Rinaldi

Lidya gricia

Approved for release Lidya Gulizia Project Manager I 9/28/2009 5:03 PM

Lidya Gulizia
Project Manager I
lidya.gulizia@testamericainc.com
09/28/2009

Reviewed

cc: Mr. Jeff Adams Mr. Bob Billman Dave Palmer

OCT 9 2009 62K

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel (912) 354-7858 Fax (912) 352-0165 www.testamericainc.com

Job Narrative 680-J50207-1 / SDG KPM034

Receipt

All samples were received in good condition within temperature requirements.

GC/MS Semi VOA

Method(s) 680: Sample PMAMW-4S-0809-DNAPL (680-50207-1) was diluted due to abundance of target analytes. As such, surrogate recoveries are not reported, and elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Comments

No additional comments.

METHOD SUMMARY

Client: Solutia Inc.

Job Number: 680-50207-1

Sdg Number: KPM034

Description	Lab Location Me	ethod	Preparation Method
Matrix Waste			
Polychlorinated Biphenyls (PCBs) (GC/MS)	TAL SAV EP	PA 680	
Waste Preparation (PCBs)	TAL SAV		EPA 680

Lab References:

TAL SAV = TestAmerica Savannah

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Solutia Inc.

Job Number: 680-50207-1

Sdg Number: KPM034

 Method
 Analyst
 Analyst ID

 EPA 680
 Chamberlain, Kim
 KAC

SAMPLE SUMMARY

Client: Solutia Inc.

Job Number: 680-50207-1

Sdg Number: KPM034

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled_	Date/Time Received
680-50207-1	PMAMW-4S-0809-DNAPL	Waste	08/25/2009 1230	08/26/2009 1000

SAMPLE RESULTS

" Do not use this data. Use all other data."

Analytical Data

Client: Solutia Inc.

Job Number: 680-50207-1

Sdg Number: KPM034

Client Sample ID:

PMAMW-4S-0809-DNAPL

Lab Sample IO:

680-50207-1

Client Matrix:

Waste

Date Sampled: 08/25/2009 1230

Date Received: 08/26/2009 1000

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680

Analysis Batch: 680-148857

Instrument ID:

MSF

Preparation:

680

Prep Batch: 680-147714

Lab File ID:

N/A

Dilution:

100

Initial Weight/Volume:

1.37 g

Date Analyzed:

09/18/2009 1321

Final Weight/Volume:

10 mL

Date Prepared:

09/14/2009 1030

Injection Volume:

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Monochlorobiphenyl		320000	`J "	72000
Dichlorobiphenyl		4600000	~7"	72000
Trichlorobiphenyl		31000000 -	<u> </u>	72000
~Tetrachlorobiphenyl		63000000	E	
Pentachlorobiphenyl		49000000	<u> </u>	150000
- Hexachlorobiphenyl		91000000	 E	150000
- Heptachlorobiphenyl		82000000	E	
Octachlorobiphenyl		14000000	~J."	220000
Nonachlorobiphenyl		3600000	. 3	370000
DCB Decachlorobiphenyl		810000	`J "	370000
Surrogate		%Rec	Qualifier	Acceptance Limits
Decachlorobiphenyl-13C12		0	D	30 - 130

"Use these results only. All other data was reported from the 100x dilution analysis."

Analytical Data

Client: Solutia Inc.

Job Number: 680-50207-1

Sdg Number: KPM034

Client Sample ID:

PMAMW-4S-0809-DNAPL

Lab Sample ID:

680-50207-1

Client Matrix:

Waste

Date Sampled: 08/25/2009 1230

Date Received: 08/26/2009 1000

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Analysis Batch: 680-148857

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

Decachlorobiphenyl-13C12

680

09/14/2009 1030

Prep Batch: 680-147714

Run Type: DL

0

Instrument ID:

MSF

Lab File ID:

N/A

Initial Weight/Volume:

1.37 g

Final Weight/Volume:

30 - 130

10 mL

Injection Volume:

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Monochlorobiphenyl		720000	Ų	720000
- Dichlorobiphenyl		6600000	D	 720000
Trichlorobiphenyl		47000000	-B J"	720000
Tetrachlorobiphenyl		110000000	P.'J"	1500000
Pentachlorobiphenyl		77000000	8 22,	1500000
Hexachlorobiphenyl		140000000	D'I'	1500000
Heptachlorobiphenyl		120000000	D "J"	2200000
Octachlorobiphenyl		15000000	ρ	2200000
-Nonachlorobiphenyl -	_	3700000	U	
- DCB Decachlorobiphonyl		3700000	U	3700000
Surrogate		%Rec	Qualifier	Acceptance Limits

@ Analysis date for the DL run was confirmed as 9/24/2009 (11:14 Am) both through checking the raw data sample information summary and checking with the laboratory. ERR 10/16/2009

OCT 9 2009 97

DATA REPORTING QUALIFIERS

Client: Solutia Inc.

Job Number: 680-50207-1

Sdg Number: KPM034

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	E	Result exceeded calibration range.
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.

QUALITY CONTROL RESULTS

Client: Solutia Inc.

Job Number: 680-50207-1

Sdg Number: KPM034

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 680-147714					
CS 680-147714/3-A	Lab Control Sample	Т	Waste	680	
MB 680-147714/2-A	Method Blank	Т	Waste	680	
80-50207-1	PMAMW-4S-0809-DNAPL	Т	Waste	680	
680-50207-1DL	PMAMW-4S-0809-DNAPL	T	Waste	680	
Analysis Batch:680-1488	57				
CS 680-147714/3-A	Lab Control Sample	T	Waste	680	680-147714
/IB 680-147714/2-A	Method Blank	Т	Waste	680	680-147714
80-50207-1	PMAMW-4S-0809-DNAPL	T	Waste	680	680-147714
80-50207-1DL	PMAMW-4S-0809-DNAPL	T	Waste	680	680-147714

Report Basis

T = Total

Job Number: 680-50207-1

Sdg Number: KPM034

Surrogate Recovery Report

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Client Matrix: Waste

Client: Solutia Inc.

		13DCB
Lab Sample ID	Client Sample ID	%Rec
680-50207-1 DL	PMAMW-4S-0809-DN APL DL	(B)
680-50207-1	PMAMW-4S-0809-DN APL	OD
MB 680-147714/2-A		100
LCS 680-147714/3-A		96

Surrogate

Acceptance Limits

13DCB = Decachlorobiphenyl-13C12

30-130

OCT 9 2009 CK

Client: Solutia Inc.

Job Number: 680-50207-1

Sdg Number: KPM034

Method Blank - Batch: 680-147714

Method: 680 Preparation: 680

Lab Sample ID: MB 680-147714/2-A

Analysis Batch: 680-148857

Instrument ID: GC/MS SemiVolatiles - F

Client Matrix:

Waste

Prep Batch: 680-147714

Lab File ID: N/A

Dilution:

1.0

Units: ug/Kg

Initial Weight/Volume: Final Weight/Volume:

1.00 g

Date Analyzed: Date Prepared: 09/14/2009 1030

09/18/2009 1217

Injection Volume:

Analyte	Result	Qual	RL
Monochlorobiphenyl	990	U	990
Dichlorobiphenyl	990	U	990
Trichlorobiphenyl	990	U	990
Tetrachlorobiphenyl	2000	U	2000
Pentachlorobiphenyl	2000	U	2000
Hexachlorobiphenyl	2000	U	2000
Heptachlorobiphenyl	3000	U	3000
Octachlorobiphenyl	3000	U	3000
Nonachlorobiphenyl	5100	U	5100
DCB Decachlorobiphenyl	5100	U	5100
Surrogate	% Rec	Acc	ceptance Limits
Decachlorobiphenyl-13C12	100		30 - 130

Method: 680

Preparation: 680

Lab Sample ID: LCS 680-147714/3-A

Waste

Analysis Batch: 680-148857

Instrument ID: GC/MS SemiVolatiles - F

Client Matrix:

1.0

Lab Control Sample - Batch: 680-147714

Prep Batch: 680-147714

Lab File ID:

1.00 g

Dilution: Date Analyzed:

09/18/2009 1249

Initial Weight/Volume: Final Weight/Volume:

N/A

10 mL

Date Prepared: 09/14/2009 1030

Units: ug/Kg

Injection Volume:

Analyte	Spike Amount	Result	% Rec.	Limit	Qual			
Monochlorobiphenyl	20000	19300	96	30 - 130				
Dichlorobiphenyl	20000	19100	95	30 - 130				
Trichlorobiphenyl	20000	18500	93	30 - 130				
Tetrachlorobiphenyl	40000	38000	95	40 - 140				
Pentachlorobiphenyl	40000	38900	97	40 - 140				
Hexachlorobiphenyl	40000	37600	94	40 - 140				
Heptachlorobiphenyl	60000	54900	91	40 - 140				
Octachlorobiphenyl	60000	54500	91	40 - 140				
DCB Decachlorobiphenyl	100000	85900	86	30 - 130				
Surrogate	% R	% Rec		ceptance Limits				
Decachlorobiphenyl-13C12	96	96		30 - 130				

Calculations are performed before rounding to avoid round-off errors in calculated results.

TestAmerica Savannah Page 13 of 15

Savannah

5102 LaRoche Avenue

Chain of Custody Record

Savannah, GA 31404

phone 912.354.7858 fax 912.352.0165																				TestAmerica Laboratories, Inc.
Client Contact	Project Ma	ınager; Jefi	Adams			Site	Conta	et: N	Aike (Corbe	it			13 (·)		227		N. 1		COC No:
URS Corporation	Tel/Fax: (3	14) 743-42	28]	Lab	Conta	act: I	Lidya	Galiz	zia		Cal	rier:	V	PŚ				l oflCOCs
1001 Highlands Plaza Drive West, Suite 300		Analysis T	nrnaround	Time				Γ							Π					Job No.
St. Louis, MO 63110	Calendar	(C) or Wo	ork Days (W	")																21562156.00003
(314) 429-0100 Phone		T if different l	from Below 5	itanda	d	**	-	İ												21002100.0000
(314) 429-0462 FAX		2	weeks							-					ļ					SDG No.
Project Name: 3Q09 PCB GW Sampling] 🗆	ı	week												1				1	
Site: Solutia WG Krummrich Facility			2 days				8 €													1
PO#			l day				څ					-	- }	1	-					
,							Total PCBs by 680													
0 1 1 1 1 1 1	Sample	Sample	Sample	l	# of		<u>=</u>					-			- 1					
Sample Identification	Date	Time	Туре	Matrix	Cont.	3	<u>~</u>	<u> </u>		4	4	\dashv	_	\vdash		-		_	= -	Sample Specific Notes:
PMAMW-4S-0809-DNAPL	8/25/09	/230	G	NAPL	3.	1	3							11			H			
														П			П			
		-				\dagger	-	+-	H	+		+		\vdash	_		Н	\neg	\top	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-					$^{+}$	+	-	\vdash	+	┼┤		-		\dashv	-	Н	+	+	
u ————————————————————————————————————	 					+	+	+	\vdash	-	+	\dashv	+	╆╌┼		+	┤┤	+	+	
<u> </u>	<u> </u>			ļ		4		_			44	\dashv		\sqcup			Ц	_		
0									. 1											
rh .						T		\top	\Box								П			
<u>ப</u>				+		\dagger	\dashv	+		+	+	\dashv	+-	\vdash	+-	+	\vdash	\dashv	+	
				-		+		+-		+	+	+	+-	\vdash		+	H	-	╌┼╌	1 00 5000
		ļ				4	-	1-	Ш				-			-			\perp	680-50207
			100,000							⅃			_ L .	Ш	ير دون		~ 3	ند	2.0	Assa Basil 12
															, 152. A	,	7 7	J. ;	i i	THAT WE
						1								\Box						2,8
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaC	OH; 6= Oth	er				T	1	1												
Possible Hazard Identification						3	Samp	le Di	spos	al (A	fee	may l	e as	sesse	d if s	amp				d longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison	В	Unknown					Retu	ım Ta	Clie	nt		Dis	posal.	By La	ь		\Box_A	rchive	For Months
Special Instructions/QC Requirements & Comments: Level 4 D	ata Packa	ge	V V V																	
Relinquished by:	Company:	URS	- n l	Date/Ti		F	Receiv	ed by	/: , i.e.	$\overline{}$		\^			Compa		\	6.	·	Date/Time:
	Comment	UKS	8/2	Date/Ti		υĮ.	Receiv	<i>S</i> .	$\nabla \Gamma$	<u> </u>	_	<u> </u>	<u> </u>		ompa		H	Ž	- 1∨	8-24-9 c 1000
Relinquished by:	Company;			Date	m¢:		rece14	ea by	r.				_	ر ار	ompa	ny:				Date Hine:
Relinquished by:	Company:			Date/Tit	me:	R	Receiva	ed by	<i>/</i> :					C	ompa	ny:	_			Date/Time:

Login Sample Receipt Check List

Client: URS Corporation

Job Number: 680-50207-1 SDG Number: KPM034

List Source: TestAmerica Savannah

Login Number: 50207 Creator: Daughtry, Beth

List Number: 1

uestion	T / F/ NA	Comment
adioactivity either was not measured or, if measured, is at or below ackground	N/A	
ne cooler's custody seal, if present, is intact.	True	
ne cooler or samples do not appear to have been compromised or mpered with.	True	
amples were received on ice.	True	
ooler Temperature is acceptable.	True	
ooler Temperature is recorded.	True	2.8 C
OC is present.	True	
OC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
nere are no discrepancies between the sample IDs on the containers and e COC.	True	
amples are received within Holding Time.	True	
ample containers have legible labels.	True	
ontainers are not broken or leaking.	True	
ample collection date/times are provided.	True	
propriate sample containers are used.	True	
ample bottles are completely filled.	True	
nere is sufficient vol. for all requested analyses, incl. any requested S/MSDs	True	
OA sample vials do not have headspace or bubble is <6mm (1/4") in ameter.	True	
necessary, staff have been informed of any short hold time or quick TAT eds	True	
ultiphasic samples are not present.	N/A	
amples do not require splitting or compositing.	N/A	
the Field Sampler's name present on COC?	True	
ample Preservation Verified	True	