

Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

P.O. Box 66760 St. Louis, Missouri 63166-6760 *Tel* 314-674-1000

July 22, 2010

VIA FEDEX

Mr. Kenneth Bardo - LU-9J U.S. EPA Region V Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507

Re: Route 3 Drum Site Groundwater Monitoring Program 2nd Quarter 2010 Data Report Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Mr. Bardo:

Enclosed please find the Route 3 Drum Site Groundwater Monitoring Program 2nd Quarter 2010 Data Report for Solutia Inc.'s W. G. Krummrich Plant, Sauget, IL.

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@solutia.com

A separate report evaluating all of the Drum Site monitoring data collected from 3rd quarter 2008 through 2nd quarter 2010, i.e., since the February 2008 Final Decision, and making recommendations for changes going forward will be submitted shortly.

Sincerely,

ald The filde

Gerald M. Rinaldi Manager, Remediation Services

Enclosure

cc: Distribution List

DISTRIBUTION LIST

Route 3 Drum Site Groundwater Monitoring Program 2nd Quarter 2010 Data Report Solutia Inc., W. G. Krummrich Plant, Sauget, IL

USEPA

Stephanie Linebaugh USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

<u>IEPA</u>

James Moore IEPA Bureau of Land, 1021 North Grand Avenue East, Springfield, IL 62706

Booz Allen Hamilton

Dan Briller Booz Allen Hamilton, 8283 Greensboro Drive, McLean, VA 22102

<u>Solutia</u>

Justin Prien 500 Monsanto Avenue, Sauget, IL 62206-1198

ILLINOIS ROUTE 3 DRUM SITE GROUNDWATER SAMPLING

SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared for Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

July 2010

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 **Project # 21562046.00004**

1.0	INTRODUCTION	1
2.0	FIELD PROCEDURES	1
3.0	LABORATORY PROCEDURES	3
4.0	QUALITY ASSURANCE	3
5.0	OBSERVATIONS	4
6.0	REFERENCES	4

List of Figures

Figure 1 Site Location Map	
Figure 2 Monitoring Well Location Map	
List of Tables	
Table 1 Monitoring Well Gauging Information	
Table 2 Groundwater Analytical Results	
Table 3 Monitored Natural Attenuation Results Summary	
List of Appendices	
Appendix A Groundwater Purging and Sampling Forms	
Appendix B Chain-of-Custody	
Appendix C Quality Assurance Report	

Appendix C	Quality Assurance Report
Appendix D	Groundwater Analytical Results (with Data Review Sheets)

1.0 INTRODUCTION

Solutia Inc. (Solutia) is conducting groundwater monitoring activities as outlined in the Revised Illinois Route 3 Drum Site Operation and Maintenance Plan (Solutia, 2008). The Illinois Route 3 Drum Site (Site) is an area associated with the Solutia W.G. Krummrich (WGK) Facility located in Sauget, Illinois that is subject to a RCRA Administrative Order on Consent (AOC) entered into by the U.S. EPA and Solutia on May 3, 2000. This report presents the results of the sampling event completed in 2nd Quarter 2010 (2Q10). The Site is located in the area identified as "Lot F" in **Figure 1**.

During the 2Q10 sampling event, groundwater samples were collected from two Shallow Hydrogeologic Unit (SHU) monitoring wells, designated GM-31A and GM-58A (**Figure 2**), located hydraulically downgradient of the Site. Samples from each well were analyzed for select semivolatile organic compounds (SVOCs) using EPA Method 8270C. In addition, samples were collected from both wells for evaluation of monitored natural attenuation (MNA). The types of natural attenuation processes active at the site will be determined by measurements of the following key geochemical parameters: alkalinity, carbon dioxide, chloride, dissolved oxygen (DO), ferrous iron, total and dissolved iron, total and dissolved manganese, methane, nitrate, sulfate, total and dissolved organic carbon, and oxidation-reduction potential (ORP).

2.0 FIELD PROCEDURES

URS Corporation (URS) personnel collected groundwater level measurements on May 14, 2010 and conducted the 2Q10 Illinois Route 3 Drum Site groundwater sampling on May 27, 2010¹. Groundwater samples were collected from two monitoring wells during the 2Q10 sampling event. This section summarizes the field investigative procedures.

Groundwater Level Measurements - An oil/water interface probe was used to measure depth to static groundwater levels and determine the presence of non-aqueous phase liquids (NAPL). Depth-to-groundwater measurements for the 2Q10 sampling event are presented in **Table 1**. NAPL was not detected in either of the monitoring wells.

Groundwater Sampling - Low-flow sampling techniques were used for groundwater sample collection. At each monitoring well, disposable, low-density polyethylene tubing was attached to a submersible pump, which was then lowered into the well to the middle of the screened interval. Monitoring wells were purged at a rate of 250 mL/minute to minimize drawdown. If significant drawdown occurred, flow rates were reduced.

¹ The May 14th gauging was part of a comprehensive event which included monitoring wells associated with other WGK programs. Groundwater levels in the subject wells were gauged again on May 27th prior to sampling.

Drawdown was measured periodically throughout purging to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen. Once the flow rate and drawdown were stable, field measurements were collected approximately every three to five minutes. Purging of a well was considered complete when the following water quality parameters remained stable over three consecutive flow-through cell volumes:

Parameter	Stabilization Guidelines
Dissolved Oxygen (DO)	+/- 10% or +/-0.2 mg/L, whichever is greatest
Oxidation-Reduction Potential (ORP)	+/- 20 mV
pH	+/- 0.2 units
Specific Conductivity	+/- 3%

Sampling commenced upon completion of purging. Prior to sample collection, the flow-through cell was bypassed to allow for collection of uncompromised groundwater. Samples were collected at a flow rate less than or equal to the rate at which stabilization was achieved. Sample containers were filled based on laboratory analysis to be performed. Bottles were filled in the following order:

- Gas Sensitive Parameters (e.g., carbon dioxide, methane)
- Semivolatile Organic Compounds (SVOCs)
- General Chemistry (i.e., alkalinity, chloride, total and dissolved iron, total and dissolved manganese, nitrate, sulfate, and total and dissolved organic carbon)
- Field Parameters (i.e., dissolved oxygen, ferrous iron, and oxidation reduction potential).

Samples for analysis of ferrous iron, dissolved iron, dissolved organic carbon, and dissolved manganese were filtered in the field using in-line 0.2 micron disposable filters.

Quality Assurance/Quality Control (QA/QC) samples consisting of analytical duplicates (AD) were collected at a rate of 10% and matrix spike/matrix spike duplicates (MS/MSD) were collected at a rate of 5%. One duplicate and one MS/MSD sample were collected.

Each sample was labeled immediately following collection. The groundwater sample identification system included the following nomenclature: "GM-31A-0510" which denotes Groundwater Monitoring well number 31A sampled in May 2010. QA/QC samples are identified by the suffix AD or MS/MSD. A notation of "F" in the sample nomenclature indicates a sample that was filtered in the field with a 0.2 micron filter.

Upon collection and labeling, sample containers were immediately placed inside an iced cooler, packed in such a way as to help prevent breakage and maintain inside temperature at or below approximately 4°C. Field personnel recorded the project identification and number, sample

description/location, required analysis, date and time of sample collection, type and matrix of sample, number of sample containers, analysis requested/comments, and sampler signature/date/time, with permanent ink on the chain-of-custody (COC). Prior to shipment, coolers were sealed between the lid and sides of the cooler with a custody seal, and then shipped to TestAmerica in Savannah, Georgia by means of overnight delivery service. Field sampling data sheets are included in **Appendix A**. COC forms are included in **Appendix B**.

3.0 LABORATORY PROCEDURES

Samples were analyzed by TestAmerica for the 40 CFR 264 Appendix IX SVOCs, and MNA parameters (per the Route 3 Drum Site O&M Plan), using the following methodologies:

- SVOCs, via USEPA SW-846 Method 8270C The constituents of concern (COCs) identified by the USEPA are biphenyl, 2,4-dichlorophenol, dinitrochlorobenzene, 3-nitrobenzene, 2-nitrobiphenyl, 3-nitrobiphenyl, 4-nitrobiphenyl, 2-nitrochlorobenzene, nitrochlorobenzene, 4-nitrochlorobenzene, pentachlorophenol, and 2,4,6-trichlorophenol.
- MNA parameters consisted of alkalinity (310.1), carbon dioxide (310.1), chloride (325.2), total and dissolved iron (6010B), total and dissolved manganese (6010B), dissolved organic carbon (415.1), nitrate (353.2), sulfate (375.4), dissolved gases (RSK-175), and total organic carbon (TOC) (415.1).

Laboratory results were provided in electronic and hard copy formats.

4.0 QUALITY ASSURANCE

Analytical data were reviewed for quality and completeness. Data qualifiers were added, as appropriate, and are included on the data tables and the laboratory result pages. The Quality Assurance report is included as **Appendix C**. The laboratory report and data review sheets are included in **Appendix D**.

A total of five groundwater samples (two investigative groundwater samples, one field duplicate pair, and one MS/MSD pair) were prepared and analyzed by TestAmerica for SVOCs and MNA parameters. The results for the various analyses were submitted as sample delivery group (SDG) KOM08 and contained results for GM-31A and GM-58A. Evaluation of the analytical data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008) and the USEPA Contract Laboratory Program National Functional Guidelines for the above mentioned criteria, results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on MS/MSD, LCS, surrogate and field duplicate data were achieved for this SDG to meet the project objectives. Completeness, which is defined to be the percentage of analytical results

which are judged to be valid, including estimated detect/non-detect (J/UJ) data, was 100 percent.

5.0 OBSERVATIONS

SVOCs were detected in the groundwater sample collected from monitoring well GM-58A during the 2Q10 sampling event. Laboratory analytical data for groundwater sample GM-58A-0510 indicate detections of 2,4,6-Trichlorophenol and 2-Chloronitrobenzene/4-Chloronitrobenzene at estimated concentrations of 12 μ g/L and 130 μ g/L, respectively. A summary of SVOC detections is provided in **Table 2**, with MNA results provided in **Table 3**.

The 2Q10 sampling event was the eigth event conducted in accordance with the Revised Illinois Route 3 Drum Site Operations and Maintenance Plan. Groundwater samples have been collected for eight quarters. Consequently, the results have been analyzed to determine if any statistically significant changes have occurred for any of the constituents of concern. In addition, MNA results have been reviewed/analyzed to determine the types and magnitude of active natural attenuation processes at the Site. A report documenting these analyses will be provided under separate cover.

6.0 REFERENCES

Solutia Inc., 2008. Revised Illinois Route 3 Drum Site Operation and Maintenance Plan, W.G. Krummrich Facility, Sauget, IL, May 2008.

U.S. Environmental Protection Agency (USEPA), 2004. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

U.S. Environmental Protection Agency (USEPA), 2008 National Functional Guidelines for Superfund Organic Methods Data Review.

Figures

July 2010

		SAUGET ARE	A #2
ROUTE 3 DRUM SITE	GROUNDWATER	O SCALE	1000 FEET PROJECT NO.
ARTER 2010 DATA RI UMMRICH FACILITY , ILLINOIS	PORT		21562046
dab July 2010 Y:wh Y: J., H.		Location Map	FIG. NO. 1

File: P:\ENVIRONMENTAL\SOLUTIA WOK\QUARTERLY MONTORING\ROUTE 3\2010\2010\REPORT\FIGURES\FIG=2 MONTORING WELL LOCATION MAP RTE 3.DWG Lost edited: 06/01/10 @ 12:53 p.m. WC-ST.LOUIS, M

US EPA ARCHIVE DOCUMENT

Tables

Table 1Monitoring Well Gauging Information

			Construct	ion Details			May 14, 2010				
Well ID	Ground Elevation* (feet)	Top of Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Top of Bottom of Screen Screen		Top of ScreenBottom of ScreenElevation* (feet)Elevation*		Depth to Bottom (feet btoc)	Water Elevation* (feet)		
Shallow Hydr	ogeologic Ur	nit (SHU 395 -	- 380 ft NAVE	D 88)							
GM-31A	416.63	418.63	19.00	39.00	397.63	377.63	16.30	40.26	402.33		
GM-58A	412.24	414.24	19.40	39.40	392.84	372.84	11.96	40.87	402.28		

Notes:

US EPA ARCHIVE DOCUMENT

* - Elevation based upon North American Vertical Datum (NAVD) 88 datum

bgs - below ground surface

btoc - below top of casing

Table 2Groundwater Analytical Results

Sample ID	Sample Date	1,1'-Biphenyl (ug/L)	1-Chloro-2,4-Dinitrobenzene (ug/L)	1-Chloro-3-Nitrobenzene (ug/L)	2,4,6-Trichlorophenol (ug/L)	2,4-Dichlorophenol (ug/L)	2-Chloronitrobenzene/ 4-Chloronitrobenzene (ug/L)	2-Nitrobiphenyl (ug/L)	3-Nitrobiphenyl (ug/L)	3,4-Dichloronitrobenzene (ug/L)	4-Nitrobiphenyl (ug/L)	Nitrobenzene (ug/L)	Pentachlorophenol (ug/L)
Shallow Hydrogeo	ologic Unit (Sl	HU 395 - 38	30 ft NAVD	88)									
GM-31A-0510	5/27/2010	<9.4	<9.4	<9.4	<9.4	<9.4	<19	<9.4*	<9.4	<9.4	<9.4*	<9.4	<47
GM-31A-0510-AD	5/27/2010	<9.7	<9.7	<9.7	<9.7	<9.7	<19	<9.7*	<9.7	<9.7	<9.7*	<9.7	<49
GM-58A-0510	5/27/2010	<10	<10	<10	12 J	<10	130 J	<10*	<10	<10	<10*	<10	<50

Notes:

DOCUMENT

EPA ARCHIVE

SN

µg/L = micrograms per liter

< = Result is non-detect, less than the reporting limit given - indicated as a U qualifier on lab data

* = LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits

J = Estimated value

BOLD indicates concentration greater than the reporting limit

 Table 3

 Monitored Natural Attenuation Results Summary

Sample ID	Sample Date	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Chloride (mg/L)	Dissolved Oxygen (mg/L)	Ethane (ug/L)	Ethylene (ug/L)	Ferrous Iron (mg/L)	Iron (mg/L)	Iron, Dissolved (mg/L)	Manganese (mg/L)	Manganese, Dissolved (mg/L)	Methane (µg/L)	Nitrogen, Nitrate (mg/L)	Sulfate as SO4 (mg/L)	Dissolved Organic Carbon (mg/L)	Total Organic Carbon (mg/L)	ORP (mV)
Shallow Hydrogeologic l	Jnit (SHU 39	5 - 380 ft	NAVD 88	3)														
GM-31A-0510	5/27/2010	450	28	88	0.03	0.48	7.7		0.058		0.86		0.95	3.1	290		3.9	222.2
GM-31A-F(0.2)-0510-AD	5/27/2010							0.05		<0.05		0.86				3.8		
GM-58A-0510	5/27/2010	490	39	94	0.1	<0.35	<0.33		0.81		1.9		2.6	<0.05	200		3.7	218.1
GM-58A-F(0.2)-0510	5/27/2010							0.52		0.74		1.8				3.5		

Notes:

DOCUMENT

EPA ARCHIVE

S

DO and ORP were measured in the field using a YSI 6920 equipped with a flow-through cell.

Ferrous Iron readings were measured in the field using a LaMotte Colorimeter after the groundwater passed through a 0.2 µm filter.

mg/L = milligrams per liter

µg/L = micrograms per liter

< = Result is non-detect, less than the reporting limit given - indicated as a U qualifier on lab data

A blank space indicates sample not analyzed for select analyte.

F(0.2) = Sample was filtered utilizing a 0.2 μm filter in the field.

mV = milivolts

Appendix A

Groundwater Purging and Sampling Forms

LOW FLOW GROUNDWATER SAMPLING DATA SHEET

PROJECT NAME: WG	K Route 3 Drum Lot	PROJECT NUMBER:	21562046.00000	FIELD PERSONNEL:	Mike Corbett, Susie Jansen
DATE: 5/27/1	0	WEATHER: 30	Mnv, 80s		
MONITORING WELL ID:	GM-31A		SAMPLE ID:	GM-31A-0510	1 GM-31A-0510-AD
					•

INITIAL DATA

Well Diameter: 2. in	Water Column Height (do not include LNAPL or DNAPL): 27.07 ft	Volume of Flow Through Cell):	750	mL
Measured Well Depth (btoc): 40.26 ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is (4 feet, Place Pump at: Total Well Depth = 0.5 (Screen Length + DNAPL Column Height) = 31.00 ft btoc	Minimum Purge Volume =	<u>,</u>	
Constructed Well Depth (btoc): 41.00 ft	Place Pump at: Total Well Depth – 0.5 (Screen Length + DNAPL Column Height) = 37.00 ft btoc	(3 x Flow Through Cell Volume)	2,250	mL
Constructed Well Depth (btoc): 41.00 ft Depth to Water (btoc): 13.19 ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are (4ft,	Ambient PID/FID Reading:	5.8	_ppm
Depth to LNAPL/DNAPL (btoc): ft	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL Column Height) =ft btoc	Wellbore PID/FID Reading:	5.8	_ppm
Depth to Top of Screen (btoc): 21.00 ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft =ft btoc			
Screen Length: 20 ft				

PURGE DATA

Pump Type: _____ Stainless Steel Monsoon

					±0.2 units		±3 %		±10 % or 0.2 mg/L	±20 mV
Purge Volume	1	Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pН	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
0	1042	13.20	colorless	none	6.57	17.83	1.70/	-3.6	0.12	198.7
750	1045				6.56	17.99	1.697	57.6	0.07	199.7
1.500	1048				6.55	18.06	1.699	48.7	0.06	200.3
750 1,500 2,250	1051				6.54	18.07	1.702	38.2	0.05	201,2
3.00C)	1054				6.53	18.13	1.701	34.6	0.05	201-8
31750	1057				6.53	18.24	1.700	29.3 26.7	0.05	202.9
1.500	1100				6.52	18.37	1.700	26.7	0.05	203.7
5,250	1103				6.57	18.50	1.700	23.6	0.06	205.6
G:n00	106			1	6.50	18.28	1.697	20.9	0.05	207.C
\$ 750	1109				6.50	18.31 18.67	1.693	20.6	0.05	208.2
, 500	1/12			ļ	6.49	18.67	1.692	18.8	0.07	209.7
\$350	1115				6.48	18.89 18.49 18.47	1.689	22.0	0.37	213.4
,000					6.47	18.49	1.692	21.2	0.37	214.9
1350 1000 1750	1121		······································	ļ/	6.47	18.47	1.694	18.5	0.43	215.9 216.9
500	1124	V	V V	V	6.45	/ 4 .]/	1.685	22.7	0.02	216.9
art Time:	1042		Flan	sed Time:	51 min	• -	Water Quali	ty Motor ID-	YSI 6920	
p Time:	1133			***************************************	······		_ Date Calibra			
p rinte:	11.2.2		Ave	age Purge Rate (mL	/mm):		_ Date Canora	ned: <u>3/4</u>	110	
MPLING DAT	A	n an			•					
mple Date:	c/a	01/10	Sam	ple Time:	1140		Analysis:	SVOCs, Metals, MN	۵	
mple Method:	Stainless Steel Monso			ple Flow Rate:	1110		QA/QC Sam			
	Statiliess Steel WOIISO	WH -	580	ipie riuw Hate:	250 -	al/min		ples: Analytical E	Jupicale	
OMMENTS:										
	CO₂. Chloride, Ferr	ous Iron Methan	e Nitrate Sulfate	DOC TOC			Ferrous Iron (Filtered 0.2 micro	n) = 0.050	an a
$\gamma = rational (\gamma, \chi)$		ous non, methal	o, minato, ounato,	000,100				Increa V.Z BBOID	<u>u</u> – <u>v</u> , – <u>v</u>	2/1/

5/27/10

PURGE DATA CONTINUED: GM-31A

Purge Volume (mL) 11,350 12,060 12,750		Depth to Water (ft)				Temp (°C) /9.24 /8.7/	Cond. (ms/cm) 1.689 1.697 1.683	Turbidity (NTUs) 20.2 21.1 20.5	DO (mg(l)	ORP (mv)
(mL)	Time (1&7 (130 (133)	Water (ft)	Color	Odor	рН 6.45 6.45 6.45 6.45	("0")	(ms/cm)	(NTOS)	(mg/l) 0.03 0.03 0.03	
11,250	1127	13.20	colorless	none	6.45	19.24	1.689	20.2	0.05	219.0 221.2 222.2
12:000	1130	1	1 1		6.45	18.71	1.691	21.1	0.03	221.2
2,750	1133	V	V	N	6.45	19.92	1.683	20.5	0.03	200.2
181100		*								
				1						
						1				
										-
			· · · · · · · · · · · · · · · · · · ·							
									1	1
							-			
			1							
						· · ·				
						+	1	1		
								-		1
		· · · · · ·						1		
					1					
					1					

COMMENTS:

LOW FLOW GROUNDWATER SAMPLING DATA SHEET

	WGK Route 3 Dru 5727/00 LL ID: <u>GM-58A</u>		JECT NUMBER:	21562046.00000 Sunny; 805 SAN		ELD PERSONNEL: GM-58A-		Corbetty Sus 8A-0570-MS		OSID-MSD
Constructed Well D Depth to Water (bto Depth to LNAPL/DM Depth to Top of Sc Screen Length:	in th (btoc): 40.37 ft epth (btoc): 41.40 ft c): 8.5 ft tAPL (btoc): <u>ft</u> reen (btoc): 21.40 ft t	If Depth to Top Place Pump at If Depth to Top Place Pump at	o of Screen is < Depth t: Total Well Depth - ((to Water AND Screen .5 (Screen Length + D to Water AND Water).5 X Water Column H	n Lenth is (4 feet, DNAPL Column Height	icreen Length are (4ft, in Height) =	ft btoc	olume of Flow Throug inimum Purge Volume (3 x Flow Through Cel mbient PID/FID Readir 'ellbore PID/FID Readir	e = I Volume) <u> </u>	
PURGE DATA Pump Type:	Peristallic									
Purge Volume (mL) 0 750 1,500 2,750 3,750 3,700	Time 0855 0855 0901 0904 0907	Depth to Water (ft) 8.82		Odor none	±0.2 units pH 6.58 6.58 6.58 6.58 6.57	Temp (°C) 16.08 16.09 16.06 16.06 16.04	±3% Cond. (ms/cm) /.483 /.481 /.484 /.493 /.493	Turbidity (NTUs) 7.8 7.6 8.7 [0.7 9.9	±10% or 0.2 mg/L DO (mg/l) 0.37 0.16 0.10 0.10	±20 mV ORP (mv) 222.3 22/.5 22/.5 22/.5 22/.5 2/.5 2/.5 2/.5
Start Time: Stop Time: SAMPLING DA [*] Sample Date: Sample Method:	0855 0907 TA 5/27/10 Peristallic		Ave	nple Time:	12 min. /min): 25 0915 250 mL		Water Qua Date Calib Analysis:	SVOCs, Metals, MN	YSI 6920 ∂7//0 A	
COMMENTS: MNA – MNA – Alka	linity. CO2, Chloride.	. Ferrous Iron, N	Methane, Nitrate, S	ulfate, DOC, TOC	•		Ferrous Iron (Filt	ered 0.2 micron) =	0.52	<u>ppm</u>

Appendix B

Chain-of-Custody

Savannah

5102 LaRoche Avenue

Chain of Custody Record

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

	Savannah, GA 31404																						T	estAmerica Laboratories, Inc.
	phone 912.354.7858 fax 912.352.0165	Proje	of Me	anager: Dav	e Palmer			Sit	e Co	ntac	t: Na	athan	Mcl	Nurle	ា	þ)ate:	.4	~h	2/1	0		С	COC No:
	Client Contact URS Corporation			314) 743-41								idya (······			Carrier	 :	The factor	ÏE	1			_1 of1 COCs
	1001 Highlands Plaza Drive West, Suite 300	1000			urnaround	Time		纖		T	Τ	Ť.	T	Γ	Π	Ť			T	T	ΤT		J	ob No.
	St. Louis, MO 63110	Ca			ork Days (W							Sulfate by 375.4 Ethene hv RSK 175												21562046.00000
	(314) 429-0100 Phone				from Below _S		1					375. RSH											L	
п	(314) 429-0462 FAX	1			weeks							e by	5	Į	8								S	DG No.
	Project Name: 2Q10 Route 3 Drum Lot GW Sampling	1			week		į	が読		8		ulfat			109								ļ	
2	Site: Solutia WG Krummrich Facility	ł			2 days		;	180 A	ų.	109	3	5.2/S			(d n									
	PO#				l day			<u>idu</u>	8270	h p	y 31(y 32: ?thai	353.	5.1	Fe/M	5.1							L	
								S	à	Per	02 b	deb	e by	¥1	red 1	by 4								·
Q	Sample Identification	1	nple ate	Sample Time	Sample Type	Matrix	# of Cont	Millio	svocs	Total Fe/Mn by 6010B	Alk/CO2 by 310.	Chloride by 325.2/Sulfate by 375.4 Methane Ethane Ethane by RSK	Nitrate by 353.2	TOC by 415.1	Dissolved Fe/Mn by 6010B	DOC by 415.1								Sample Specific Notes:
\mathbf{O}	Sumple wentited of	-1	I		G	Water	11	1929	2	1	1	1 3	3 2	1			-							I Coolers
\mathbf{H}	GM-31A-0510	5/2	7/10	1140				ļ		_		-+	<u> </u>	<u> </u>				┝──┝			+		-+	
	GM-31A-0510-AD			1140	G	Water	2	L	2									 						······································
	GM-31A-F(0.2)-0510			1140	G	Water	2 '	x			_				1	1				_			_	
ΙE	GM-58A-0510			0915	G	Water	11		2	1	1	1 3	3 2			_								
\sim	GM-58A-0510-MS			0915	G	Water	2		2				4		$\left \right $		-						_	
CHIV	GM-58A-0510-MSD			0915	G	Water	2	L	2				_	_							<u> </u>		_	
-	GM-58A-F(0.2)-0510		/	0915	G	Water	2	x							1	1								
Ο																								
\sim		1				1	÷	ſ	Γ				ŀ											
Ľ		1		<u> </u>				T	1		T													
4								T				T												
-		1				1	ì	T						Ī										
	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=Nat)H· 6:	= Oth	<u>i</u>			ļ		1	4	1	1)	1 3,	1 2	4	2								
	Possible Hazard Identification			_													asses: Disposi			ples	are r	retain Archi	ied I	longer than 1 month) ≂or Months
п	Non-Hazard Flammable Skin Irritant		oison		Unknown						Retur	m To	Clie	nt		<u> </u>	visposi	а Ву	Lao			AIGH	ver	
	Special Instructions/QC Requirements & Comments: Level 4 D	ata P	acka	ige														i Q		5 90	570	>		
S																		60	. <i></i> ر	50	07C 6	2.1	a.	0
											11							1000	mant	-			Īī	Date/Time:
_	Relinquished by: which lt	Com	pany:	URS		Date/Ti	me: 10 / 3	5.3		eive	d by:								ipany					
	Relinquished by:	Com	pany:			Date/Ti			Rec		d by:							Con	ipany	:			I	Date/Time:
	Relinquished by:	Соп	ipany:			Date/Ti	me:		Rec	eive	d by	Le		ic(~~~	~			pany				Ī	Date/Time:
		1				1			1			فتعهر	×Ψ	1 ×		•		1	n s	5+-				528/10 0918

Appendix C

Quality Assurance Report

Solutia Inc. W.G. Krummrich Facility Sauget, Illinois

Illinois Route 3 Drum Site 2nd Quarter 2010 Data Report

Prepared for

Solutia Inc. 575 Maryville Centre Drive St. Louis, MO 63141

July 2010

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 Project # 21562046

1.0	INTRODUCTION	1
2.0	RECEIPT CONDITION AND SAMPLE HOLDING TIMES	3
3.0	LABORATORY METHOD BLANKS	4
4.0	SURROGATE SPIKE RECOVERIES	4
5.0	LABORATORY CONTROL SAMPLE RECOVERIES	4
6.0	MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES	4
7.0	FIELD DUPLICATE RESULTS	5
8.0	INTERNAL STANDARD RESPONSES	5
9.0	RESULTS REPORTED FROM DILUTIONS	6

1.0 INTRODUCTION

This Quality Assurance Report presents the findings of a review of analytical data for groundwater samples collected in May 2010 at the Illinois Route 3 Drum Site on the Solutia W.G. Krummrich Facility as part of the 2nd Quarter 2010 sampling event. The samples were collected by URS Corporation personnel and analyzed by TestAmerica Laboratories located in Savannah, Georgia using USEPA methodologies. Samples were analyzed for site-specific semi-volatile organic compounds (SVOCs) and monitored natural attenuation (MNA) parameters.

One hundred percent of the data were subjected to a data quality review (Level III review). The Level III review was performed in order to confirm that the analytical data provided by TestAmerica were acceptable in quality for their intended use.

A total of five samples (two investigative groundwater samples, one field duplicate, and one matrix spike and matrix spike duplicate (MS/MSD) pair) were analyzed by TestAmerica. These samples were analyzed as Sample Delivery Group (SDG) KOM08, utilizing the following USEPA SW-846 Methods:

• USEPA SW-846 Method 8270C for SVOCs

Samples were also analyzed for MNA parameters by the following methods:

- Method RSK-175 for Dissolved Gases (Ethane, Ethylene, and Methane)
- USEPA Method 310.1 for Alkalinity and Carbon Dioxide
- USEPA Method 325.2 for Chloride
- USEPA Method 6010B for Total and Dissolved Iron and Manganese
- USEPA Method 415.1 for Total and Dissolved Organic Carbon
- USEPA Method 353.2 for Nitrogen, Nitrate
- USEPA Method 375.4 for Sulfate

Samples were reviewed following procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008 and USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004.

The above guidelines provided the criteria to review the data. Additional quantitative criteria are given in the analytical methods. Qualifiers assigned by the data reviewer have been applied to the laboratory reporting forms (Form-1s). The qualifiers indicate data that did not meet acceptance criteria.

The various qualifiers are explained in **Tables 1** and **2** below:

Lab Qualifier	Definition
U	Indicates the analyte was analyzed for but not detected.
*	LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits.
E	Result exceeded the calibration range, secondary dilution required.
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Ν	MS, MSD: Spike recovery exceeds upper or lower control limits.
Н	Sample was prepped or analyzed beyond the specified holding time.
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

TABLE 1 Laboratory Data Qualifiers

TABLE 2 URS Data Qualifiers

URS Qualifier	Definition
U	The analyte was analyzed for but was not detected.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Based on the criteria outlined, it is recommended that the results reported for these analyses are accepted for their intended use. Acceptable levels of accuracy, precision, and representativeness (based on MS/MSD, LCS, surrogate compounds and field duplicate results) were achieved for this data set. In addition, analytical completeness, defined to be the percentage of analytical results which are judged to be valid, including estimated detect/non-detect (J/UJ) values was 100 percent, which meets the completeness goal of 95 percent.

The data review included evaluation of the following criteria:

Organics

- Receipt condition and sample holding times
- Laboratory method blanks
- Surrogate spike recoveries
- Laboratory control sample (LCS) recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) sample recoveries and relative percent difference (RPD) values
- Field duplicate results
- Results reported from dilutions
- Internal standard responses

Inorganics/General chemistry

- Receipt condition and sample holding times
- Laboratory method blank
- LCS recoveries
- MS/MSD sample recoveries and matrix duplicate RPD values
- Field duplicate and laboratory duplicate results
- Results reported from dilutions

2.0 RECEIPT CONDITION AND SAMPLE HOLDING TIMES

Sample holding time requirements for the analyses performed are presented in the methods and/or in the data review guidelines. Review of the sample collection, extraction and analysis dates involved comparing the chain-of-custody and the laboratory data summary forms for accuracy, consistency, and holding time compliance.

Extractions and/or analyses were completed within the recommended holding time requirements.

The cooler receipt form did not indicate any problems, however the laboratory incorrectly transcribed COC designated sample ID, GM-31A-F(0.2)-0510 as GM-31A-F(0.2)-0510-AD. Samples were reported using the COC designated sample ID.

3.0 LABORATORY METHOD BLANK

Laboratory method blank samples evaluate the existence and magnitude of contamination problems resulting from laboratory activities. Laboratory method blank samples were analyzed at the method prescribed frequencies. No compounds were detected in the method blank; therefore, no qualification of data was required.

4.0 SURROGATE SPIKE RECOVERIES

Surrogate compounds are used to evaluate overall laboratory performance for sample preparation efficiency on a per sample basis. All samples analyzed for SVOCs were spiked with surrogate compounds during sample preparation. USEPA National Functional Guidelines for Organic Data Review state how data is qualified, if surrogate spike recoveries do not meet evaluation criteria.

Surrogate recoveries were within evaluation criteria with the exception of one surrogate recovery in quality control sample, GM-58A-0510-MS. Surrogates that were associated with quality control samples did not require qualification. In addition, no qualification of data was required if only one SVOC acid or base fraction surrogate was outside evaluation criteria. The USEPA National Functional Guidelines for Organic Data Review indicates to qualify data if two or more surrogates per SVOC fraction are outside criteria. No qualifications of data were required due to surrogate recoveries.

5.0 LABORATORY CONTROL SAMPLE RECOVERIES

Laboratory control samples (LCS) are analyzed with each analytical batch to assess the accuracy of the analytical process. Spiked LCS recoveries were within evaluation criteria with the exception of those discussed further in the data review. Analytical data reported as non-detect and associated with LCS recoveries above evaluation criteria indicated a possible high bias did not require qualification. No qualification of data was required.

6.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES

MS/MSD samples are analyzed to assess the accuracy and precision of the analytical process on an analytical sample in a particular matrix. MS/MSD samples were to be collected at a frequency of one per 20 investigative samples in accordance with the work plan. URS Corporation submitted one MS/MSD sample set for two investigative samples, meeting the work plan frequency requirement.

SVOC MS/MSD recoveries were within evaluation criteria with the exception of one MS recovery discussed further in the data review. USEPA National Functional Guidelines for Superfund Organic Methods Data Review indicates that organic data does not require

qualification based on MS/MSD data alone and LCS recoveries were within evaluation criteria; therefore, no qualification of data was required.

7.0 FIELD DUPLICATE RESULTS

Field duplicate results are used to evaluate precision of the entire data collection activity, including sampling, analysis and site heterogeneity. When results for both duplicate and sample values are greater than five times the practical quantitation limit (PQL), satisfactory precision is indicated by an RPD less than or equal to 25 percent for aqueous samples. Where one or both of the results of a field duplicate pair are reported at less than five times the PQL, satisfactory precision is indicated if the field duplicate results agree within 2 times (2X) the quantitation limit. Field duplicate results that do not meet these criteria may indicate unsatisfactory precision of the results.

One field duplicate sample was collected for the two investigative samples. This satisfies the requirement in the work plan (one per 10 investigative samples or 10 percent). All field duplicate RPDs were within evaluation criteria. No qualification of the data was required.

8.0 INTERNAL STANDARD RESPONSES

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. IS areas must be within -50 percent to +100 percent for SVOCs. Also, the IS retention times must be within 30 seconds of the preceding IS CV retention time.

The internal standards area responses for the SVOCs were verified for the data reviews. IS responses met the criteria with the exceptions of those discussed further in the data review. Analytical data that required qualification based on IS data are included in the table below.

Sample ID	Parameter	Analyte	Qualification
GM-58A-0510	SVOCs	1,1'-Biphenyl	UJ
GM-58A-0510	SVOCs	2,4-Dichlorophenol	UJ
GM-58A-0510	SVOCs	Nitrobenzene	UJ
GM-58A-0510	SVOCs	Pentachlorophenol	UJ
GM-58A-0510	SVOCs	2,4,6-Trichlorophenol	J
GM-58A-0510	SVOCs	1-Chloro-3-nitrobenzene	UJ
GM-58A-0510	SVOCs	2-Nitrobiphenyl	UJ
GM-58A-0510	SVOCs	3-Nitrobiphenyl	UJ
GM-58A-0510	SVOCs	3,4-Dichloronitrobenzene	UJ
GM-58A-0510	SVOCs	4-Nitrobiphenyl	UJ
GM-58A-0510	SVOCs	2-chloronitrobenzene/4-chloronitrobenzene	J
GM-58A-0510	SVOCs	1-chloro-2,4-dinitrobenzene	UJ

9.0 RESULTS REPORTED FROM DILUTIONS

Samples were diluted due to the high levels of sulfate, nitrate, and chloride. The diluted sample results were reported at the lowest possible reporting limit.

Appendix D

Groundwater Analytical Results (with Data Review Sheets)

Solutia Krummrich Data Review WGK Route 3 Drum Site O&M 2Q10

Laboratory SDG: KOM08

Reviewer: Elizabeth Kunkel

Date Reviewed: 6/17/2010

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008. USEPA National Functional Guidelines for Inorganic Data Review 2004

Applicable Work Plan: Revised Illinois Route 3 Drum Site Operation and Maintenance Plan (Solutia 2008)

Sample Identification							
GM-31A-0510	GM-58A-0510						
GM-31A-0510-AD	GM-58A-F(0.2)-0510						
GM-31A-F(0.2)-0510							

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that one SVOC surrogate was outside evaluation criteria in sample GM-58A-0510-MS. One SVOC MS recovery was outside evaluation criteria in sample GM-58A-0510. SVOC internal standard recoveries were outside evaluation criteria in sample GM-58A-0510. LCS recoveries for the compounds, 2-nitrobiphenyl and 4-nitrobiphenyl were outside evaluation criteria. Additionally, samples were diluted due to high levels of nitrate, sulfate, and chloride. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems, however the laboratory incorrectly transcribed COC designated sample ID, GM-31A-F(0.2)-0510 as GM-31A-F(0.2)-0510-AD. Samples were reported using the COC designated sample ID.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

No

LCS ID	Parameter	Analyte	LCS Recovery	RPD	LCS/RPD Criteria
680-170427/14-A	SVOCs	2-Nitrobiphenyl	138	NA	10-130/NA
680-170427/14-A	SVOCs	4-Nitrobiphenyl	138	NA	10-130/NA

Analytical data reported as non-detect and associated with LCS recoveries above evaluation criteria indicating a possible high bias did not require qualification. The compounds, 2-nitrobiphenyl and 4-nitrobiphenyl were not detected in SDG KOM08. No qualification of data was required.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Sample ID	Parameter	Surrogate	Recovery	Criteria
GM-58A-0510-MS	SVOCs	Terphenyl-d ₁₄	123	10-121

GM-58A-0510-MS is a quality control sample and does not require qualification.

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG?

Yes, sample GM-58A-0510 was spiked and analyzed for SVOCs and chloride.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD RPD Criteria
GM-58A-0510	SVOCs	3,4-Dichloronitrobenzene	133 /111	18	10-130/40

USEPA National Functional Guidelines for Superfund Organic Methods Data Review indicates that organic data does not require qualification based on MS/MSD data alone and LCS recoveries were within evaluation criteria; therefore, no qualification of data was required.

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

No

Sample ID	Parameter	Analyte	IS Area Recovery	IS Criteria
GM-58A-0510	SVOCs	1,4-Dichlorobenzene-d ₄	59229	61322-245286
GM-58A-0510	SVOCs	Naphthalene-d ₈	214610	235095-940378
GM-58A-0510	SVOCs	Acenaphthene-d ₁₀	139064	143816-575264

Sample ID	Parameter	Analyte	IS Area Recovery	IS Criteria
GM-58A-0510-MS	SVOCs	1,4-Dichlorobenzene-d ₄	58163	61322-245286
GM-58A-0510-MS	SVOCs	Naphthalene-d ₈	232321	235095-940378
GM-58A-0510-MSD	SVOCs	1,4-Dichlorobenzene-d ₄	59362	61322-245286
GM-58A-0510-MSD	SVOCs	Naphthalene-d ₈	229763	235095-940378

Analytical data that required qualification based on IS data are included in the table below. GM-58A-0510-MS and GM-58A-0510-MSD are quality control samples and do not require qualification.

Sample ID	Parameter	Analyte	Qualification
GM-58A-0510	SVOCs	1,1'-Biphenyl	UJ
GM-58A-0510	SVOCs	2,4-Dichlorophenol	UJ
GM-58A-0510	SVOCs	Nitrobenzene	UJ
GM-58A-0510	SVOCs	Pentachlorophenol	UJ
GM-58A-0510	SVOCs	2,4,6-Trichlorophenol	J
GM-58A-0510	SVOCs	1-Chloro-3-nitrobenzene	UJ
GM-58A-0510	SVOCs	2-Nitrobiphenyl	UJ
GM-58A-0510	SVOCs	3-Nitrobiphenyl	UJ
GM-58A-0510	SVOCs	3,4-Dichloronitrobenzene	UJ
GM-58A-0510	SVOCs	4-Nitrobiphenyl	UJ
GM-58A-0510	SVOCs	2-chloronitrobenzene/4-chloronitrobenzene	J
GM-58A-0510	SVOCs	1-chloro-2,4-dinitrobenzene	UJ

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

Yes, sample GM-58A-0510 was duplicated and analyzed for alkalinity and free carbon dioxide.

Were laboratory duplicate sample RPDs within criteria? Yes

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID	
GM-31A-0510	GM-31A-0510-AD	

Were field duplicates within evaluation criteria?

Yes

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

12.0 Additional Qualifications

Were additional qualifications applied? No

ANALYTICAL REPORT

Job Number: 680-58070-1

SDG Number: KOM08

Job Description: WGK Rt. 3 Drum Site O&M 2Q10-May 2010

For: Solutia Inc. 575 Maryville Centre Dr. Saint Louis, MO 63141 Attention: Mr. Jerry Rinaldi

Lidya galicia

Lidya Gulizia

Project Manager I lidya.gulizia@testamericainc.com 06/16/2010 Approved for release. Lidya Gulizia Project Manager I 6/16/2010 5:06 PM

Reviewed

JUN 17 2010 ETK

cc: Mr. Bob Billman Dave Palmer

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel (912) 354-7858 Fax (912) 352-0165 <u>www.testamericainc.com</u>

Receipt

All samples were received in good condition within temperature requirements.

GC/MS Semi VOA

Method(s) 8270C: The grand mean exception, as outlined in EPA Method 8000B, was applied to the initial calibration (ICAL). This rule states that when one or more compounds in the ICAL fail to meet acceptance criteria, the initial calibration (ICAL) may be used for quantitation if the average %RSD (the grand mean) of all the compounds in the ICAL is less than or equal to 15 %RSD.

Method(s) 8270C: The following sample(s) contained one acid and/or one base surrogate outside acceptance limits: GM-58A-0510-MS (680-58070-4 MS). The laboratory's SOP allows one acid surrogate and/or one base surrogate to be outside acceptance limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method(s) 8270C: A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for 4 analytes to recover outside criteria for this method when a full list spike is utilized. The MS/ associated with batch 170427 had 1 analytes outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method(s) 8270C: Internal standard responses were outside of acceptance limits for the following sample(s): GM-58A-0510-MS (680-58070-4 MSD), GM-58A-0510-MSD (680-58070-4 MSD). The sample(s) shows evidence of matrix interference.

Method(s) 8270C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 170427 exceeded control limits for the following analytes: 2-Nitrobiphenyl and 4-Nitrobiphenyl. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No other analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

Metals

Method(s) 6010B: Due to the high concentration of iron, the matrix spike / matrix spike duplicate (MS/MSD) for batch 680-170586 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

No other analytical or quality issues were noted.

General Chemistry No analytical or quality issues were noted.

Comments No additional comments.

METHOD SUMMARY

Client: Solutia Inc.

Job Number: 680-58070-1 Sdg Number: KOM08

Description	Lab Location	Method	Preparation Method
Matrix Water			
Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	TAL SAV	SW846 8270C	
Liquid-Liquid Extraction (Continuous)	TAL SAV		SW846 3520C
Dissolved Gases (GC)	TAL SAV	RSK RSK-175	
Metals (ICP)	TAL SAV	SW846 6010B	
Sample Filtration, Field	TAL SAV		FIELD_FLTRD
Preparation, Total Recoverable or Dissolved Metals	TAL SAV		SW846 3005A
Alkalinity	TAL SAV	MCAWW 310.1	
Chloride	TAL SAV	MCAWW 325.2	
Nitrogen, Nitrate-Nitrite	TAL SAV	MCAWW 353.2	
Sulfate	TAL SAV	MCAWW 375.4	
тос	TAL SAV	MCAWW 415.1	
DOC	TAL SAV	MCAWW 415.1	
Sample Filtration, Field	TAL SAV		FIELD_FLTRD

Lab References:

TAL SAV = TestAmerica Savannah

Method References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Solutia Inc.

Job Number: 680-58070-1 Sdg Number: KOM08

Method	Analyst	Analyst ID
SW846 8270C	Haynes, Carion	CRH
RSK RSK-175	Moncrief, Amy J	AJM
SW846 6010B	Robertson, Bryn	BR
MCAWW 310.1	Lanier, Jerry	JAL
MCAWW 325.2	Ross, Jon	JR
MCAWW 353.2	Ross, Jon	JR
MCAWW 375.4	Ross, Jon	JR
MCAWW 415.1	Blackshear, Kim	КВ

SAMPLE SUMMARY

Client: Solutia Inc.

Job Number: 680-58070-1 Sdg Number: KOM08

			Date/Time	Date/Time	
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received	
680-58070-1	GM-31A-0510 🖊	Water	05/27/2010 1140	05/28/2010 0918	
680-58070-2FD	GM-31A-0510-AD	Water	05/27/2010 1140	05/28/2010 0918	
680-58070-3FD	GM-31A-F(0.2)-0510-AD	Water	05/27/2010 1140	05/28/2010 0918	
680-58070-4	GM-58A-0510	Water	05/27/2010 0915	05/28/2010 0918	
680-58070-4MS	GM-58A-0510-MS	Water	05/27/2010 0915	05/28/2010 0918	
680-58070-4MSD	GM-58A-0510-MSD	Water	05/27/2010 0915	05/28/2010 0918	
680-58070-5	GM-58A-F(0.2)-0510	Water	05/27/2010 0915	05/28/2010 0918	

JUN 17 2010 EZIZ

SAMPLE RESULTS

Analytical Data

Job Number: 680-58070-1 Sdg Number: KOM08

Client Sample ID:	GM-31A-0510
Lab Sample ID:	680-58070-1
Client Matrix:	Water

Date Sampled: 05/27/2010 1140 Date Received: 05/28/2010 0918

	8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)							
Method:	8270C	Analysis Batch: 680-171313	Instr	ument ID:	MSG			
Preparation:	3520C	Prep Batch: 680-170427	Lab I	File ID:	g1660.d			
Dilution:	1.0	·	Initia	I Weight/Volume:	1060 mL			
Date Analyzed:	06/11/2010 1535			Weight/Volume:	1 mL			
Date Prepared:	06/03/2010 1534			tion Volume:	1 uL			
Analyte		Result (ug/L)	Qualifier		RL			
1,1'-Biphenyl		9.4	U		9.4			
2,4-Dichlorophenol		9.4	U		9.4			
Nitrobenzene		9.4	U		9.4			
Pentachlorophenol		47	U		47			
2,4,6-Trichlorophen	ol	9.4	U		9.4			
1-Chloro-3-nitroben	izene	9.4	U		9.4			
2-Nitrobiphenyl		9.4	U *		9.4			
3-Nitrobiphenyl		9.4	U		9.4			
3,4-Dichloronitrobe	nzene	9.4	U		9.4			
4-Nitrobiphenyl		9.4	U *		9.4			
2-chloronitrobenzer	ne / 4-chloronitrobenzene	19	U		19			
1-chloro-2,4-dinitrol	penzene	9.4	U		9.4			
Surrogate		%Rec	Qualifier	Acceptar	nce Limits			
2-Fluorobiphenyl		90		50 - 113	nin - ernegenetas se artista (paralese a antian da Billi ancane	attaliate statementar		
2-Fluorophenol		86		36 - 110				
Nitrobenzene-d5		91		45 - 112				
Phenol-d5		79		38 - 116				
Terphenyl-d14		45		10 - 121				
2,4,6-Tribromophen	ol	100		40 - 139				

,

JUN 17 2010 ZR

Analytical Data

Job Number: 680-58070-1 Sdg Number: KOM08

Date Sampled: 05/27/2010 1140

Date Received: 05/28/2010 0918

Client Sample ID: GM-31A-0510-AD Lab Sample ID: 680-58070-2FD Client Matrix: Water

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)							
Method:	8270C	Analysis Batch: 680-171302		Instrument ID:	MSG		
Preparation:	3520C	Prep Batch: 680-170427	I	Lab File ID:	g1637.d		
Dilution:	1.0			Initial Weight/Volume:	1030 mL		
Date Analyzed:	06/10/2010 1916		I	Final Weight/Volume:	1 mL		
Date Prepared:	06/03/2010 1534		I	Injection Volume:	1 uL		
Analyte		Result (ug/L)	Qualifier		RL		
1,1'-Biphenyl		9.7	U		9.7		
2,4-Dichlorophenol		9.7	U		9.7		
Nitrobenzene		9.7	U		9.7		
Pentachlorophenol		49	U		49		
2,4,6-Trichlorophenol		9.7	U		9.7		
1-Chloro-3-nitrobenze	ene	9.7	U		9.7		
2-Nitrobiphenyl		9.7	U *		9.7		
3-Nitrobiphenyl		9.7	U		9.7		
3,4-Dichloronitrobenz	ene	9.7	U		9.7		
4-Nitrobiphenyl		9.7	U *		9.7		
2-chloronitrobenzene	/ 4-chloronitrobenzene	19	U		19		
1-chloro-2,4-dinitrobe	nzene	9.7	U		9.7		
Surrogate		%Rec	Qualifier	Accepta	nce Limits		
2-Fluorobiphenyl		96		50 - 113			
2-Fluorophenol		90		36 - 110			
Nitrobenzene-d5		96		45 - 112			
Phenol-d5		85		38 - 116			
Terphenyl-d14		79		10 - 121			
2,4,6-Tribromopheno		100		40 - 139			

JUN 17 2010 ZZK

Analytical Data

Job Number: 680-58070-1 Sdg Number: KOM08

Client Sample ID:	GM-58A-0510
Lab Sample ID:	680-58070-4
Client Matrix:	Water

Date Sampled: 05/27/2010 0915 Date Received: 05/28/2010 0918

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)							
Method:	8270C	Analysis Batch: 680-17130	2	Instrument ID:	MSG		
Preparation:	3520C	Prep Batch: 680-170427		Lab File ID:	g1638.d		
Dilution:	1.0			Initial Weight/Volume:	500 mL.		
Date Analyzed:	06/10/2010 1940			Final Weight/Volume:	0.5 mL		
Date Prepared:	06/03/2010 1534			Injection Volume:	1 uL		
Analyte		Result (ug/L)	Qualifie	r	RL		
1,1'-Biphenyl		10	~ uJ"	ran men Nederland de Kransen ken Nederlanden in die eine seinen werden werden in die seine Andersen auf die Sch	10		
2,4-Dichlorophenol		10	* uJ"		10		
Nitrobenzene		10	~ u3"		10		
Pentachlorophenol		50	"uJ		50		
2,4,6-Trichlorophen	ol	12	J" +1)		10		
1-Chloro-3-nitroben	zene	10	"uJ"		10		
2-Nitrobiphenyl		10	<u>ຼັ ແຽ"</u>		10		
3-Nitrobiphenyl		10	ຼີ ບຈັງ		10		
3,4-Dichloronitrobe	nzene	10	~uJ"		10		
4-Nitrobiphenyl		10	<u>u</u> "		10		
2-chloronitrobenzer	ne / 4-chloronitrobenzene	130	- 2"		20		
1-chloro-2,4-dinitrol	benzene	10	"นัง"		10		
Surrogate		%Rec	Qualifie	Acceptance	ce Limits		
2-Fluorobiphenyl		100		50 - 113			
2-Fluorophenol		84		36 - 110			
Nitrobenzene-d5		103		45 - 112			
Phenol-d5		81		38 - 116			
Terphenyl-d14		89		10 - 121			
2,4,6-Tribromopher	ol	110		40 - 139			

JUN 17 2010 ER

Client: Solutia Inc. Job Number: 680-58070-1 Sdg Number: KOM08 **Client Sample ID:** GM-31A-0510 Lab Sample ID: 680-58070-1 Date Sampled: 05/27/2010 1140 **Client Matrix:** Water Date Received: 05/28/2010 0918 RSK-175 Dissolved Gases (GC) RSK-175 Analysis Batch: 680-170720 Method: Instrument ID: VGUFID2 Initial Weight/Volume: Preparation: N/A 17000 uL Dilution: 1.0 Final Weight/Volume: 17 mL Date Analyzed: 06/07/2010 1117 Injection Volume: 1 uL Date Prepared: Result Type: PRIMARY Analyte Result (ug/L) Qualifier RL Ethane 0.48 0.35 Ethylene 7.7 0.33 Methane 0.95 0.19

Analytical Data

Client: Solutia Inc. Sdg Number: KOM08 Client Sample ID: GM-58A-0510 Date Sampled: 05/27/2010 0915 Lab Sample ID: 680-58070-4 Date Received: 05/28/2010 0918 Client Matrix: Water **RSK-175 Dissolved Gases (GC)** Analysis Batch: 680-170720 Instrument ID: VGUFID2 Method: RSK-175 17000 uL Initial Weight/Volume: Preparation: N/A Final Weight/Volume: Dilution: 1.0 17 mL 06/07/2010 1130 Date Analyzed: Injection Volume: 1 uL Result Type: PRIMARY Date Prepared: Result (ug/L) Qualifier RL Analyte 0.35 Ethane 0.35 υ Ethylene 0.33 υ 0.33 Methane 2.6 0.19

Analytical Data

Job Number: 680-58070-1

Job Number: 680-58070-1 Client: Solutia Inc. Sdg Number: KOM08 Client Sample ID: GM-31A-0510 Lab Sample ID: 680-58070-1 Date Sampled: 05/27/2010 1140 Client Matrix: Water Date Received: 05/28/2010 0918 6010B Metals (ICP)-Total Recoverable Method: 6010B Analysis Batch: 680-170841 Instrument ID: ICPD 3005A Prep Batch: 680-170586 Lab File ID: Preparation: 060710.chr Dilution: 1.0 Initial Weight/Volume: 50 mL 06/08/2010 0505 Date Analyzed: Final Weight/Volume: 50 mL 06/04/2010 1143 Date Prepared: Analyte Result (mg/L) Qualifier RL Iron 0.058 0.050 Manganese 0.86 0.010

Analytical Data

0.010

Job Number: 680-58070-1 Client: Solutia Inc. Sdg Number: KOM08 **Client Sample ID:** GM-31A-F(0.2)-0510-AD Lab Sample ID: 680-58070-3FD Date Sampled: 05/27/2010 1140 Client Matrix: Water Date Received: 05/28/2010 0918 6010B Metals (ICP)-Dissolved Method: 6010B Analysis Batch: 680-170841 Instrument ID: ICPD Lab File ID: Preparation: 3005A Prep Batch: 680-170586 060710.chr Dilution: 1.0 Initial Weight/Volume: 50 mL 06/08/2010 0510 Date Analyzed: Final Weight/Volume: 50 mL 06/04/2010 1143 Date Prepared: Result (mg/L) Qualifier RL Analyte Iron, Dissolved 0.050 U 0.050

0.86

Manganese, Dissolved

TestAmerica Savannah

Page 13 of 38

JUN 17 2010 E2K

Job Number: 680-58070-1 Client: Solutia Inc. Sdg Number: KOM08 Client Sample ID: GM-58A-0510 Lab Sample ID: 680-58070-4 Date Sampled: 05/27/2010 0915 Water Date Received: 05/28/2010 0918 Client Matrix: 6010B Metals (ICP)-Total Recoverable 6010B Analysis Batch: 680-170841 Instrument ID: ICPD Method: Prep Batch: 680-170586 Lab File ID: 060710.chr 3005A Preparation: Dilution: 1.0 Initial Weight/Volume: 50 mL 06/08/2010 0515 Date Analyzed: Final Weight/Volume: 50 mL 06/04/2010 1143 Date Prepared: Result (mg/L) Qualifier RL Analyte Iron 0.81 0.050 Manganese 1.9 0.010

Analytical Data

Client: Solutia Inc. Job Number: 680-58070-1 Sdg Number: KOM08 Client Sample ID: GM-58A-F(0.2)-0510 Lab Sample ID: 680-58070-5 Date Sampled: 05/27/2010 0915 Client Matrix: Water Date Received: 05/28/2010 0918 6010B Metals (ICP)-Dissolved Method: 6010B Analysis Batch: 680-170841 Instrument ID: ICPD Preparation: 3005A Prep Batch: 680-170586 Lab File ID: 060710.chr Dilution: 1.0 Initial Weight/Volume: 50 mL Date Analyzed: 06/08/2010 0520 Final Weight/Volume: 50 mL Date Prepared: 06/04/2010 1143 Qualifier Analyte Result (mg/L) RL Iron, Dissolved 0.74 0.050 Manganese, Dissolved 1.8 0.010

JUN 17 2010 8ZK

Analytical Data

Client: Solutia Inc.

Job Number: 680-58070-1 Sdg Number: KOM08

General Chemistry

Client Sample ID:	GM-31A-0510					
Lab Sample ID: Client Matrix:	680-58070-1 Water				•	: 05/27/2010 1140 d: 05/28/2010 0918
Analyte	Result	Qual	Units	RL	Dil	Method
Chloride	88		mg/L	1.0	1.0	325.2
	Analysis Batch: 680-170400	Date Analyzed	: 06/02/2010 1658			
Nitrate as N	3.1		mg/L	0.25	5.0	353.2
	Analysis Batch: 680-170222	Date Analyzed	: 05/28/2010 1612			
Sulfate	290		mg/L	100	20	375.4
	Analysis Batch: 680-170294	Date Analyzed	: 06/01/2010 1558			
Total Organic Carl	oon 3.9		mg/L	1.0	1.0	415.1
	Analysis Batch: 680-170623	Date Analyzed	: 06/03/2010 1241			
Analyte	Result	Qual	Units	RL	Dil	Method
Alkalinity	450	_	mg/L	5.0	1.0	310.1
	Analysis Batch: 680-170401	Date Analyzed	: 06/02/2010 1356			
Carbon Dioxide, F	ree 28		mg/L	5.0	1.0	310.1
	Analysis Batch: 680-170401	Date Analyzed:	: 06/02/2010 1356			

Client: Solutia Inc							ber: 680-58070-1 Number: KOM08
			Gen	eral Chemistry			
Client Sample ID:	GM-31A-F(0.2)	-0510-AD					
Lab Sample ID:	680-58070-3FE)				Date Sample	d: 05/27/2010 1140
Client Matrix:	Water					Date Receive	d: 05/28/2010 0918
Analyte		Result	Qual	Units	RL	Dil	Method
Dissolved Organic Ca	arbon-Dissolved	3.8		mg/L	1.0	1.0	415.1
Α	nalvsis Batch: 680-	170737	Date Analyzed	: 06/04/2010 1027			

Client: Solutia Inc.

Job Number: 680-58070-1 Sdg Number: KOM08

Client Sample ID:	GM-58A-0510					
Lab Sample ID:	680-58070-4			Da	te Sampled	I: 05/27/2010 0915
Client Matrix:	Water			Da	te Receive	d: 05/28/2010 0918
Analyte	Result	Qual	Units	RL	Dil	Method
Chloride	94		mg/L	2.0	2.0	325.2
	Analysis Batch: 680-170400	Date Analyzed	: 06/02/2010 1708			
Nitrate as N	0.050	U	mg/L	0.050	1.0	353.2
	Analysis Batch: 680-170222	Date Analyzed	: 05/28/2010 1612			
Sulfate	200		mg/L	100	20	375.4
	Analysis Batch: 680-170294	Date Analyzed	: 06/01/2010 1600			
Total Organic Carl	oon 3.7		mg/L	1.0	1.0	415.1
	Analysis Batch: 680-170623	Date Analyzed	: 06/03/2010 1258			
Analyte	Result	Qual	Units	RL	Dil	Method
Alkalinity	490		mg/L	5.0	1.0	310.1
	Analysis Batch: 680-170401	Date Analyzed	: 06/02/2010 1404			
Carbon Dioxide, F	ree 39		mg/L	5.0	1.0	310.1
	Analysis Batch: 680-170401	Date Analyzed	: 06/02/2010 1404			

JUN 17 2010 EZIL

Client: Solutia Inc.						Job Numb Sdg	ber: 680-58070-1 Number: KOM08
			Gen	eral Chemistry			
Client Sample ID:	GM-58A-F(0.2)-	0510					
Lab Sample ID:	680-58070-5					Date Sampled	d: 05/27/2010 0915
Client Matrix:	Water					Date Receive	d: 05/28/2010 0918
Analyte		Result	Qual	Units	RL	Dil	Method
Dissolved Organic Ca	arbon-Dissolved	3.5		mg/L	1.0	1.0	415.1
A	nalysis Batch: 680-	170737	Date Analyzed	: 06/04/2010 1027			

JUN 17 2010 ELK

DATA REPORTING QUALIFIERS

Client: Solutia Inc.

Job Number: 680-58070-1 Sdg Number: KOM08

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	*	LCS or LCSD exceeds the control limits
	F	MS or MSD exceeds the control limits
	х	Surrogate is outside control limits
GC VOA	U	Indicates the analyte was analyzed for but not detected.
Metals		
	U	Indicates the analyte was analyzed for but not detected.
General Chemistry		
	U	Indicates the analyte was analyzed for but not detected.

QUALITY CONTROL RESULTS

TestAmerica Savannah

Job Number: 680-58070-1 Sdg Number: KOM08

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 680-170427					
LCS 680-170427/14-A	Lab Control Sample	т	Water	3520C	
MB 680-170427/13-A	Method Blank	Т	Water	3520C	
680-58070-1	GM-31A-0510	Т	Water	3520C	
680-58070-2FD	GM-31A-0510-AD	т	Water	3520C	
680-58070-4	GM-58A-0510	Т	Water	3520C	
680-58070-4MS	Matrix Spike	т	Water	3520C	
680-58070-4MSD	Matrix Spike Duplicate	Т	Water	3520C	
Analysis Batch:680-171302					
MB 680-170427/13-A	Method Blank	Т	Water	8270C	680-170427
680-58070-2FD	GM-31A-0510-AD	Т	Water	8270C	680-170427
680-58070-4	GM-58A-0510	Т	Water	8270C	680-170427
680-58070-4MS	Matrix Spike	т	Water	8270C	680-170427
680-58070-4MSD	Matrix Spike Duplicate	Т	Water	8270C	680-170427
Analysis Batch:680-171313					
680-58070-1	GM-31A-0510	Т	Water	8270C	680-170427
Analysis Batch:680-171541					
LCS 680-170427/14-A	Lab Control Sample	т	Water	8270C	680-170427

<u>Report Basis</u>

T = Total

GC VOA

Analysis Batch:680-170720				
LCS 680-170720/6	Lab Control Sample	т	Water	RSK-175
LCSD 680-170720/7	Lab Control Sample Duplicate	т	Water	RSK-175
MB 680-170720/8	Method Blank	т	Water	RSK-175
680-58070-1	GM-31A-0510	т	Water	RSK-175
680-58070-4	GM-58A-0510	Т	Water	RSK-175

<u>Report Basis</u>

T = Total

Client: Solutia Inc.

Job Number: 680-58070-1 Sdg Number: KOM08

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 680-170586					
LCS 680-170586/17-A	Lab Control Sample	R	Water	3005A	
MB 680-170586/16-A	Method Blank	R	Water	3005A	
680-58070-1	GM-31A-0510	R	Water	3005A	
680-58070-3FD	GM-31A-F(0.2)-0510-AD	D	Water	3005A	
680-58070-4	GM-58A-0510	R	Water	3005A	
680-58070-5	GM-58A-F(0.2)-0510	D	Water	3005A	
Analysis Batch:680-17084	41				
LCS 680-170586/17-A	Lab Control Sample	R	Water	6010B	680-170586
MB 680-170586/16-A	Method Blank	R	Water	6010B	680-170586
680-58070-1	GM-31A-0510	R	Water	6010B	680-170586
680-58070-3FD	GM-31A-F(0.2)-0510-AD	D	Water	6010B	680-170586
680-58070-4	GM-58A-0510	R	Water	6010B	680-170586
680-58070-5	GM-58A-F(0.2)-0510	D	Water	6010B	680-170586

<u>Report Basis</u>

D = Dissolved

R = Total Recoverable

Job Number: 680-58070-1 Sdg Number: KOM08

Client: Solutia Inc.

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:680-170	222				
CS 680-170222/2	Lab Control Sample	Т	Water	353.2	
/IB 680-170222/1	Method Blank	т	Water	353.2	
80-58070-1	GM-31A-0510	т	Water	353.2	
80-58070-4	GM-58A-0510	Т	Water	353.2	
Analysis Batch:680-170	294				
CS 680-170294/2	Lab Control Sample	Т	Water	375.4	
VB 680-170294/1	Method Blank	Т	Water	375.4	
580-58070-1	GM-31A-0510	Т	Water	375.4	
680-58070-4	GM-58A-0510	т	Water	375.4	
Analysis Batch:680-170	400				
_CS 680-170400/2	Lab Control Sample	Т	Water	325.2	
AB 680-170400/1	Method Blank	т	Water	325.2	
80-58070-1	GM-31A-0510	т	Water	325.2	
80-58070-4	GM-58A-0510	т	Water	325.2	
80-58070-4MS	Matrix Spike	т	Water	325.2	
80-58070-4MSD	Matrix Spike Duplicate	Т	Water	325.2	
Analysis Batch:680-170	401				
_CS 680-170401/2	Lab Control Sample	Т	Water	310.1	
AB 680-170401/1	Method Blank	Т	Water	310.1	
80-58070-1	GM-31A-0510	т	Water	310.1	
80-58070-4	GM-58A-0510	Т	Water	310.1	
80-58070-4DU	Duplicate	Т	Water	310.1	
Analysis Batch:680-170	623				
CS 680-170623/4	Lab Control Sample	Т	Water	415.1	
MB 680-170623/2	Method Blank	т	Water	415.1	
80-58070-1	GM-31A-0510	т	Water	415.1	
80-58070-4	GM-58A-0510	Т	Water	415.1	
Analysis Batch:680-170					
CS 680-170737/2	Lab Control Sample	D	Water	415.1	
MB 680-170737/1	Method Blank	D	Water	415.1	
580-58070-3FD	GM-31A-F(0.2)-0510-AD	D	Water	415.1	
380-58070-5	GM-58A-F(0.2)-0510	D	Water	415.1	

<u>Report Basis</u>

D = Dissolved T = Total

TestAmerica Savannah

Client: Solutia Inc.

Job Number: 680-58070-1 Sdg Number: KOM08

Surrogate Recovery Report

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Client Matrix: Water

		FBP	2FP	NBZ	PHL	TPH	TBP
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec	%Rec	%Rec
680-58070-1	GM-31A-0510	90	86	91	79	45	100
680-58070-2	GM-31A-0510-AD	96	90	96	85	79	100
680-58070-4	GM-58A-0510	100	84	103	81	89	110
MB 680-170427/13-A		92	87	97	83	115	104
LCS 680-170 4 27/14-A		75	66	80	66	100	95
680-58070-4 MS	GM-58A-0510 MS	81	93	106	98	123X	90
680-58070-4 MSD	GM-58A-0510 MSD	71	80	93	84	97	85

Surrogate	Acceptance Limits
FBP = 2-Fluorobiphenyl	50-113
2FP = 2-Fluorophenol	36-110
NBZ = Nitrobenzene-d5	45-112
PHL = Phenol-d5	38-116
TPH = Terphenyl-d14	10-121
TBP = 2,4,6-Tribromophenol	40-139

JUN 1.7 2010 EXC

Job Number: 680-58070-1 Sdg Number: KOM08

Method: 8270C Preparation: 3520C

Instrument ID: MSG	
Lab File ID: g1634.d	
Initial Weight/Volume:	1000 mL
Final Weight/Volume:	1 mL
Injection Volume:	1 uL

Analyte	Result	Qual	RL
1,1'-Biphenyl	10	U	10
2,4-Dichlorophenol	10	U	10
Nitrobenzene	10	U	10
Pentachlorophenol	50	υ	50
2,4,6-Trichlorophenol	10	U	10
1-Chloro-3-nitrobenzene	10	U	10
2-Nitrobiphenyl	10	U	10
3-Nitrobiphenyl	10	U	10
3,4-Dichloronitrobenzene	10	U	10
4-Nitrobiphenyl	10	U	10
2-chloronitrobenzene / 4-chloronitrobenzene	20	U	20
1-chloro-2,4-dinitrobenzene	10	U	10
Surrogate	% Rec		Acceptance Limits
2-Fluorobiphenyl	92		50 - 113
2-Fluorophenol	87		36 - 110
Nitrobenzene-d5	97		45 - 112
Phenol-d5	83		38 - 116
Terphenyl-d14	115		10 - 121
2,4,6-Tribromophenol	104		40 - 139

Analysis Batch: 680-171302

Prep Batch: 680-170427

Units: ug/L

Client: Solutia Inc.

Client Matrix:

Dilution:

Method Blank - Batch: 680-170427

Lab Sample ID: MB 680-170427/13-A

1.0

Date Analyzed: 06/10/2010 1803 Date Prepared: 06/03/2010 1534

Water

JUN 17 2010 EZN

Job Number: 680-58070-1 Sdg Number: KOM08

Lab Control Sample - Batch: 680-170427

Client: Solutia Inc.

Method: 8270C Preparation: 3520C

Lab Sample ID:	LCS 680-170427/14-A	Analysis Batch: 680-171541	Instrument ID: MS	G
Client Matrix:	Water	Prep Batch: 680-170427	Lab File ID: g17	'20.d
Dilution:	1.0	Units: ug/L	Initial Weight/Volum	e: 1000 mL
Date Analyzed:	06/14/2010 1824		Final Weight/Volume	e: 1 mL
Date Prepared:	06/03/2010 1534		Injection Volume:	1 uL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1'-Biphenyl	100	70.5	71	47 - 112	
2,4-Dichlorophenol	100	85.6	86	46 - 115	
Nitrobenzene	100	72.0	72	46 - 110	
Pentachlorophenol	100	96.6	97	37 - 132	
2,4,6-Trichlorophenol	100	75.3	75	46 - 120	
1-Chloro-3-nitrobenzene	100	89.7	90	10 - 130	~
2-Nitrobiphenyl	100	138	(138)	10 - 130	\odot
3-Nitrobiphenyl	100	90.8	91	10 - 130	
3,4-Dichloronitrobenzene	100	86.1	86	10 - 130	
4-Nitrobiphenyl	100	138	86 138	10 - 130	(
2-chloronitrobenzene / 4-chloronitrobenzene	200	202	101	10 - 130	
1-chloro-2,4-dinitrobenzene	100	98.3	98	10 - 130	
Surrogate	% R	ec	Acc	ceptance Limits	
2-Fluorobiphenyl	75			50 - 113	
2-Fluorophenol	66			36 - 110	
Nitrobenzene-d5	80		45 - 112		
Phenol-d5	66		38 - 116		
Terphenyl-d14	10	0		10 - 121	
2,4,6-Tribromophenol	95			40 - 139	

JUN 17 2010 22 R

Job Number: 680-58070-1 Sdg Number: KOM08

Client: Solutia Inc.

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 680-170427

Method: 8270C Preparation: 3520C

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-58070-4 Water 1.0 06/10/2010 2004 06/03/2010 1534	Analysis Batch: 680-171302 Prep Batch: 680-170427	Instrument ID: MSG Lab File ID: g1639.d Initial Weight/Volume: 500 mL Final Weight/Volume: 0.5 mL Injection Volume: 1 uL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-58070-4 Water 1.0 06/10/2010 2029 06/03/2010 1534	Analysis Batch: 680-171302 Prep Batch: 680-170427	Instrument ID: MSG Lab File ID: g1640.d Initial Weight/Volume: 500 mL Final Weight/Volume: 0.5 mL Injection Volume: 1 uL

					Rec.	<u>%</u>	
MSD Qual	MS Qual	RPD Limit	RPD	Limit	MSD	MS	Analyte
*****		40	12	47 - 112	70	79	1,1'-Biphenyl
		40	13	46 - 115	91	105	2,4-Dichlorophenol
		40	7	46 - 110	89	96	Nitrobenzene
		40	13	37 - 132	99	113	Pentachlorophenol
		40	11	46 - 120	72	81	2,4,6-Trichlorophenol
		40	9	10 - 130	97	106	1-Chloro-3-nitrobenzene
		40	2	10 - 130	96	98	2-Nitrobiphenyl
	_	40	22	10 - 130	105	130	3-Nitrobiphenyl
	F	40	18	10 - 130	111	133	3,4-Dichloronitrobenzene
		40	3	10 - 130	122	126	4-Nitrobiphenyl
		40	2	10 - 130	111	113	2-chloronitrobenzene / 4-chloronitrobenzene
		30	5	10 - 130	121	127	1-chloro-2,4-dinitrobenzene
	ance Limits	Accept	Rec	MSD %	MS % Rec		Surrogate
	113	50 ·		71	81		2-Fluorobiphenyl
	110			80	93		2-Fluorophenol
	112			93	106		Nitrobenzene-d5
				-			
						(
	112 116 121 139	38 - 10 -		93 84 97 85	$ \begin{array}{c} 106 \\ 98 \\ 123 \\ 90 \end{array} $	(Nitrobenzene-d5 Phenol-d5 Terphenyl-d14 2,4,6-Tribromophenol

Job Number: 680-58070-1 Sdg Number: KOM08

Method: RSK-175 Preparation: N/A

Final Weight/Volume:

RPD Limit

Injection Volume:

30

30

30

Column ID:

RPD

13

13

13

17 mL

1 uL

PRIMARY

LCS Qual

Client: Solutia Inc.

Method Blank - Batch: 680-170720

Client Matrix: N Dilution: Date Analyzed: 0	MB 680-170720/8 Water 1.0 06/07/2010 1000 N/A	Analysis Batch: 680-170720 Prep Batch: N/A Units: ug/L		Instrument ID: VGUFID2 Lab File ID: UQ497.D Initial Weight/Volume: 17000 uL Final Weight/Volume: 17 mL Injection Volume: 1 uL Column ID: PRIMARY
Analyte		Result	Qual	RL
Ethane		0.35	U	0.35
Ethylene		0.33	U	0.33
Methane		0.19	U	0.19
Lab Control San Lab Control San	nple/ nple Duplicate Recovery Rep	oort - Batch: 680-170720		Method: RSK-175 Preparation: N/A
LCS Lab Sample II	D: LCS 680-170720/6	Analysis Batch: 680-170720		Instrument ID: VGUFID2
Client Matrix:	Water	Prep Batch: N/A		Lab File ID: UQ494.D
Dilution:	1.0	Units: ug/L		Initial Weight/Volume: 17000 uL
Date Analyzed:	06/07/2010 0921			Final Weight/Volume: 17 mL
Date Prepared:	N/A			Injection Volume: 1 uL
				Column ID: PRIMARY
And a characteristic time and a	hiddaith muu Billiodhith	3.4 1.1 Consequences of the consequence of the consecutive of the c		anna ann an ann an ann an ann ann ann a
LCSD Lab Sample	ID: LCSD 680-170720/7	Analysis Batch: 680-170720		Instrument ID: VGUFID2
Client Matrix:	Water	Prep Batch: N/A		Lab File ID: UQ495.D
Dilution:	1.0	Units: ug/L		Initial Weight/Volume: 17000 uL

LCSD Qual

Date Analyzed:

Date Prepared:

Analyte

Ethane

Ethylene

Methane

06/07/2010 0934

N/A

<u>% Rec.</u>

LCSD

93

91

91

Limit

75 - 125

75 - 125

75 - 125

LCS

81

80

80

Job Number: 680-58070-1 Sdg Number: KOM08

Method: 6010B Preparation: 3005A Total Recoverable

Instrument ID: ICPD Lab File ID: 060710.chr Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL
Iron	0.050	U	0.050
Iron, Dissolved	0.050	U	0.050
Manganese	0.010	U	0.010
Manganese, Dissolved	0.010	U	0.010

Analysis Batch: 680-170841

Prep Batch: 680-170586

Units: mg/L

Lab Control Sample - Batch: 680-170586

Client: Solutia Inc.

Client Matrix:

Date Analyzed:

Date Prepared:

Dilution:

Method Blank - Batch: 680-170586

Lab Sample ID: MB 680-170586/16-A

1.0

Water

06/08/2010 0455

06/04/2010 1143

Lab Sample ID:	LCS 680-170586/17-A
Client Matrix:	Water
Dilution:	1.0
Date Analyzed:	06/08/2010 0500
Date Prepared:	06/04/2010 1143

Analysis Batch: 680-170841 Prep Batch: 680-170586 Units: mg/L

Method: 6010B Preparation: 3005A Total Recoverable

Instrument ID:	ICPD		
Lab File ID:	060710).chr	
Initial Weight/V	olume:	50	mL
Final Weight/Volume:		50	mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Iron	1.00	1.04	104	75 - 125	
Iron, Dissolved	1.00	1.04	104	75 - 125	
Manganese	0.500	0.518	104	75 - 125	
Manganese, Dissolved	0.500	0.518	104	75 - 125	

Job Number: 680-58070-1 Sdg Number: KOM08

Client: Solutia Inc.

Method Blank - Batch: 680-170401

Method: 310.1 Preparation: N/A

Lab Sample ID:	MB 680-170401/1	Analysis Batch: 680-170401	Instrument ID: MANTECH
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 060210alk.TXT
Dilution:	1.0	Units: mg/L	Initial Weight/Volume: 1.0 mL
Date Analyzed:	06/02/2010 1132		Final Weight/Volume: 1.0 mL
Date Prepared:	N/A		

Analyte	Result	Qual	RL
Alkalinity	5.0		5.0
Carbon Dioxide, Free	5.0	U	5.0

Lab Control Sample - Batch: 680-170401

Method: 310.1 Preparation: N/A

Lab Sample ID:	LCS 680-170401/2	Analysis Batch: 680-170401	Instrument ID: MANTECH
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 060210alk.TXT
Dilution:	1.0	Units: mg/L	Initial Weight/Volume: 1.0 mL
Date Analyzed:	06/02/2010 1142		Final Weight/Volume: 1.0 mL
Date Prepared:	N/A		

Analyte		Spike Amount	Result	% Rec.	Limit	Qual
Alkalinity	n ning an an an ann ann ann ann an ann an ann an a	576	565	98	80 - 120	anna an
Duplicate - Ba	tch: 680-170401				od: 310.1 ration: N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-58070-4 Water 1.0 06/02/2010 1414 N/A	Analysis Batch: 680 Prep Batch: N/A Units: mg/L	-170401	Lab Fil Initial V	nent ID: MANTECH e ID: 060210alk.TX Veight/Volume: 1.0 n Veight/Volume: 1.0 n	٦L

Analyte	Sample Result/Qual	Result	RPD	Limit	Qual
Alkalinity	490	491	0	30	
Carbon Dioxide, Free	39	35.3	9	30	

Job Number: 680-58070-1 Sdg Number: KOM08

Method Blank - Batch: 680-170400

Client: Solutia Inc.

Method: 325.2 Preparation: N/A

MB 680-170400/1 Water 1.0 06/02/2010 1623 N/A	Analysis Batch: 6 Prep Batch: N/A Units: mg/L	80-170400	La In	itial Weight/Volume: 2	02101CLA.xls mL mL
	Result		Qual		RL
	1.0		U		1.0
nple - Batch: 680-17040	0				
LCS 680-170400/2 Water 1.0 06/02/2010 1624 N/A	Analysis Batch: 6 Prep Batch: N/A Units: mg/L	80-170400	La In	ab File ID: KONE106 itial Weight/Volume: 2	81 102101CLA.xis mL mL
	Spike Amount	Result	% Rec.	Limit	Qual
	50.0	51.7	103	85 - 115	
plicate Recovery Report	:-Batch: 680-170400				
D: 680-58070-4 Water 2.0 06/02/2010 1659 N/A	Analysis Batch: 6 Prep Batch: N/A	80-170400	La In	ab File ID: KONE10 itial Weight/Volume:	AB1)602101CLA.xls 10 mL 10 mL
ID: 680-58070-4 Water 2.0 06/02/2010 1659 N/A	Analysis Batch: 6 Prep Batch: N/A	80-170400	La In	ab File ID: KONE106 itial Weight/Volume: 10	31 02101CLA.xls 0 mL 0 mL
	1.0 06/02/2010 1623 N/A mple - Batch: 680-170400 LCS 680-170400/2 Water 1.0 06/02/2010 1624 N/A plicate Recovery Report D: 680-58070-4 Water 2.0 06/02/2010 1659 N/A ID: 680-58070-4 Water 2.0 06/02/2010 1659	1.0 Units: mg/L 06/02/2010 1623 Result N/A Result 1.0 1.0 mple - Batch: 680-170400 Analysis Batch: 6 LCS 680-170400/2 Analysis Batch: 6 Water Prep Batch: N/A 1.0 Units: mg/L 06/02/2010 1624 Units: mg/L N/A Spike Amount 50.0 50.0 plicate Recovery Report - Batch: 680-170400 Spike Amount 50.0 680-58070-4 Analysis Batch: 6 Vater Prep Batch: N/A 2.0 06/02/2010 1659 N/A Analysis Batch: 6 ID: 680-58070-4 Analysis Batch: 6 Water Prep Batch: N/A 2.0 06/02/2010 1659 N/A Analysis Batch: 6 ID: 680-58070-4 Analysis Batch: 6 Water Prep Batch: N/A 2.0 06/02/2010 1659 06/02/2010 1659	1.0 Units: mg/L 06/02/2010 1623 Result 1.0 1.0 mple - Batch: 680-170400 Analysis Batch: 680-170400 LCS 680-170400/2 Analysis Batch: 680-170400 Water Prep Batch: N/A 1.0 Units: mg/L 06/02/2010 1624 N/A Spike Amount Result 50.0 51.7 plicate Recovery Report - Batch: 680-170400 Prep Batch: N/A 2.0 06/02/2010 1659 N/A Analysis Batch: 680-170400 Prep Batch: N/A 2.0 06/02/2010 1659 Analysis Batch: 680-170400 N/A Prep Batch: N/A ID: 680-58070-4 Analysis Batch: 680-170400 Water Prep Batch: N/A 2.0 06/02/2010 1659 Prep Batch: N/A 0.0 06/02/2010 1659	1.0 Units: mg/L In 06/02/2010 1623 Result Qual 1.0 U mple - Batch: 680-170400 mple - Batch: 680-170400 M P LCS 680-170400/2 Analysis Batch: 680-170400 In Water Prep Batch: N/A La 1.0 Units: mg/L In 06/02/2010 1624 Vits: mg/L In N/A Spike Amount Result % Rec. 50.0 51.7 103 M M pike Amount Result % Rec. 50.0 51.7 103 M Vater Prep Batch: N/A La 2.0 06/02/2010 1659 Fi In 06/02/2010 1659 Fi In In In 06/02/2010 1659 Fi Fi In In	1.0 Units: mg/L Initial Weight/Volume: 2 06/02/2010 1623 N/A Result Qual Final Weight/Volume: 2 N/A Result Qual Qual Method: 325.2 Preparation: N/A Method: 325.2 Preparation: N/A LCS 680-170400/2 Analysis Batch: 680-170400 Instrument ID: KONELAE Water Prep Batch: N/A Initial Weight/Volume: 2 06/02/2010 1624 Units: mg/L Initial Weight/Volume: 2 N/A Spike Amount Result % Rec. Limit 50.0 51.7 103 85 - 115 plicate Recovery Report - Batch: 680-170400 Instrument ID: KONEL/A 02.0 680-58070-4 Analysis Batch: 680-170400 Instrument ID: KONEL/A 02.0 06/02/2010 1659 Final Weight/Volume: Final Weight/Volume: Final Weight/Volume: 02.0 06/02/2010 1659 Analysis Batch: 680-170400 I

JUN 17 2010 Ell

Job Number: 680-58070-1 Sdg Number: KOM08

Method: 353.2 Preparation: N/A

Client: Solutia Inc.

Method Blank - Batch: 680-170222

Lab Sample ID:	MB 680-170222/1	Analysis Batch: 680-170222	Instrument ID: La	atchat 2	
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: N	I/A	
Dilution:	1.0	Units: mg/L	Initial Weight/Volu	me: 7	mL
Date Analyzed:	05/28/2010 1612		Final Weight/Volur	me: 7	mL
Date Prepared:	N/A				

Analyte	Result	Qual	RL
Nitrate as N	0.050	U	0.050
Nitrate Nitrite as N	0.050	U	0.050
Nitrite as N	0.050	U	0.050

Lab Control Sample - Batch: 680-170222

Method: 353.2 Preparation: N/A

Lab Sample ID:	LCS 680-170222/2	Analysis Batch: 680-170222	Instrument ID: Latchat 2
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: N/A
Dilution:	1.0	Units: mg/L	Initial Weight/Volume: 7 mL
Date Analyzed:	05/28/2010 1612		Final Weight/Volume: 7 mL
Date Prepared:	N/A		

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Nitrate as N	0.500	0.501	100	90 - 110	
Nitrate Nitrite as N	1.00	0.997	100	90 - 110	
Nitrite as N	0.500	0.495	99	90 - 110	

Job Number: 680-58070-1 Sdg Number: KOM08

Method: 375.4 Method Blank - Batch: 680-170294 Preparation: N/A Analysis Batch: 680-170294 Instrument ID: KONELAB1 Lab Sample ID: MB 680-170294/1 Prep Batch: N/A Lab File ID: KONE10601101SO4.xls Client Matrix: Water Dilution: 1.0 Units: mg/L Initial Weight/Volume: 2 mL 06/01/2010 1510 Final Weight/Volume: 2 mL Date Analyzed: Date Prepared: N/A Qual RL Analyte Result Sulfate 5.0 υ 5.0 Method: 375.4 Lab Control Sample - Batch: 680-170294 Preparation: N/A Analysis Batch: 680-170294 Instrument ID: KONELAB1 Lab Sample ID: LCS 680-170294/2 Client Matrix: Water Prep Batch: N/A Lab File ID: KONE10601101SO4.xls Dilution: 1.0 Units: mg/L Initial Weight/Volume: 2 mL 06/01/2010 1510 Date Analyzed: Final Weight/Volume: 2 mL Date Prepared: N/A Spike Amount Result % Rec. Limit Qual Analyte 20.0 98 75 - 125 Sulfate 19.6

Client: Solutia Inc.

JUN 17 2010 ZTK

Job Number: 680-58070-1 Sdg Number: KOM08

JUN 17 2010 521

Final Weight/Volume: 25 mL

Client: Solutia Inc.

Date Analyzed:

Date Prepared: N/A

06/03/2010 1043

Method Blank - Batch: 680-170623 Method: 415.1 Preparation: N/A Lab Sample ID: MB 680-170623/2 Analysis Batch: 680-170623 Instrument ID: TOC3 Client Matrix: Water Prep Batch: N/A Lab File ID: TOC060310.txt Dilution: 1.0 Units: mg/L Initial Weight/Volume: 25 mL

Analyte		Result		Qual	RI	L
Total Organic Ca	arbon	1.0	n an	U	1.0	
Lab Control Sa	ample - Batch: 680-170623				ethod: 415.1 reparation: N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 680-170623/4 Water 1.0 06/03/2010 1114 N/A	Analysis Batch: 6 Prep Batch: N/A Units: mg/L	80-170623	La	strument ID: TOC3 ab File ID: TOC060310.t itial Weight/Volume: 25 n nal Weight/Volume: 25 n	nL
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
Total Organic Ca	arbon	20.0	19.3	97	80 - 120	

Job Number: 680-58070-1 Sdg Number: KOM08

Method Blank - Batch: 680-170737 Method: 415.1 Preparation: N/A Lab Sample ID: MB 680-170737/1 Analysis Batch: 680-170737 Instrument ID: TOC3 Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Units: mg/L Initial Weight/Volume: Dilution: 1.0 06/04/2010 1027 Final Weight/Volume: 25 mL Date Analyzed: Date Prepared: N/A Analyte Result Qual RL Dissolved Organic Carbon-Dissolved 1.0 υ 1.0 Method: 415.1 Lab Control Sample - Batch: 680-170737 Preparation: N/A Lab Sample ID: LCS 680-170737/2 Analysis Batch: 680-170737 Instrument ID: TOC3 Prep Batch: N/A Lab File ID: N/A Client Matrix: Water Units: mg/L Initial Weight/Volume: Dilution: 1.0 06/04/2010 1027 Final Weight/Volume: 25 mL Date Analyzed: Date Prepared: N/A Spike Amount Result % Rec. Limit Qual Analyte Dissolved Organic Carbon-Dissolved 20.0 19.5 98 80 - 120

Client: Solutia Inc.

Savannah

5102 LaRoche Avenue

Chain of Custody Record

٠

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Savannah, GA 31404 nhone 912 354 7858 fax 912 352 0165

phone 912.354.7858 fax 912.352.0165																					TestAmerica Laboratories, Inc.
Client Contact	Project Ma					Site Contact: Nathan McNurlen Date:)		COC No:		
JRS Corporation	Tel/Fax: (3	14) 743-415	54			Lab Contact: Lidya Gulizia Ca					Carrier:		<u>'</u> Ę		FedEx			1 of1 COCs			
001 Highlands Plaza Drive West, Suite 300		Analysis To	urnaround	Time						2											Job No.
St. Louis, MO 63110	Calendar	(C) or Wo	ork Days (W)		靈			3	RSK 175											21562046.00000
314) 429-0100 Phone	T/	AT if different	from Below _S	landard_	ŕ		Í		y 37!	RS											
314) 429-0462 FAX		2	weeks			瀟			te b	de b		8									SDG No.
Project Name: 2Q10 Route 3 Drum Lot GW Sampling		1	week		l		g		Sulfs	Ethene by		8									
Site: Solutia WG Krummrich Facility		2	2 days		i	2	8 8	10	5.2/	1	4	4								1	
20#			day		}	5	827 An h) E	y 32	Ethane,	353	Rel 1	15.1								
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont	BILE CON	SVOCs by 8270C Total RefMin by 6010R	Alk/CO2 by 310.1	Chloride by 325.2/Sulfate by 375.4	Methane,	Nitrate by 353.2	Dissolved Fe/Mn by 6010B	DOC by 415.1								Sample Specific Notes:
GM-31A-0510 -	5/27/10	1140	G	Water	11 -		2 1	1	1	3	2	1									7 Coolers
GM-31A-0510-AD		1140	G	Water	2	Ц	2						Ĺ			_					
GM-31A-F(0.2)-0510		1140	G	Water	2 '	x						1	1								
GM-58A-0510 -		0915	G	Water	11	Ш	2 1	1	1	3	2	1									
GM-58A-0510-MS		0915	G	Water	2	Ш	2														
GM-58A-0510-MSD		0915	G	Water	2	\Box	2														
GM-58A-F(0.2)-0510	\mathbf{V}	0915	G	Water	2	x						1	1								
			•				_														······································
) i																
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=Na	OH; 6= Othe	r				Т	1 4	1	1	1	3,1	2 4	2								
Possible Hazard Identification Non-Hazard Gran Flammable Skin Irritani	Poison	_в 🗆	Unknown					le Di Retu				e ma			ssed			es a	re re ⊐_A	taine Irchive	e d longer than 1 month) e For Months
Special Instructions/QC Requirements & Comments: Level 4 D	Pata Packag	ge													68	80-	-51	80.	70 Q	.1)a	3.0
elinquished by: Which Clift	Company:	URS	5	Date/Tit	ne:		Receiv 2	ed by	/: 						Co	mpai	ny:				Date/Time:
Relinquished by:	Company:		7	Date/Tit			Receiv	red by	<i>r</i> :				_		Co	mpar	ny:				Date/Time:
elinquished by:	Company:			Date/Tit	ne:		Receiv	red by	L	cong	uk	Cour	~			mpan TLA	ny: دېک	1			Date/Time: 5 28 10 0918

JUN 17 2010 5210

Login Sample Receipt Check List

Client: URS Corporation

Job Number: 680-58070-1 SDG Number: KOM08

List Source: TestAmerica Savannah

Login Number: 58070 Creator: Conner, Keaton List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	2 coolers rec'd on ice
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.1 and 2.0 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	N/A	
Sample Preservation Verified	True	

JUN 17 2010 EZK