

Solutia Inc.

575 Maryville Centre Drive St. Louis, Missouri 63141

P.O. Box 66760 St. Louis, Missouri 63166-6760 *Tel* 314-674-1000

July 22, 2010

Mr. Kenneth Bardo - LU-9J U.S. EPA Region V Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507 VIA FEDEX

Re: PCB Groundwater Quality Assessment Program 2nd Quarter 2010 Data Report Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Mr. Bardo:

Enclosed please find the PCB Groundwater Quality Assessment Program 2nd Quarter 2010 Data Report for Solutia Inc.'s W. G. Krummrich Plant, Sauget, IL.

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@solutia.com

A separate report evaluating all of the PCB groundwater monitoring data collected from 3rd quarter 2008 through 2nd quarter 2010, i.e., since the February 2008 Final Decision, and making recommendations for changes going forward will be submitted shortly.

Sincerely,

Bul the filli

Gerald M. Rinaldi Manager, Remediation Services

Enclosure

cc: Distribution List

DISTRIBUTION LIST

PCB Groundwater Quality Assessment Program 2nd Quarter 2010 Data Report Solutia Inc., W. G. Krummrich Plant, Sauget, IL

<u>USEPA</u>

Stephanie Linebaugh USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

IEPA

James Moore IEPA Bureau of Land, 1021 North Grand Avenue East, Springfield, IL 62706

Booz Allen Hamilton

Dan Briller Booz Allen Hamilton, 8283 Greensboro Drive, McLean, VA 22102

<u>Solutia</u>

Justin Prien 500 Monsanto Avenue, Sauget, IL 62206-1198

PCB GROUNDWATER QUALITY ASSESSMENT PROGRAM

SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared for Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

July 2010

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 Project **# 21562401.00004**

1.0	INTRODUCTION1
2.0	FIELD PROCEDURES1
3.0	LABORATORY PROCEDURES
4.0	QUALITY ASSURANCE
5.0	OBSERVATIONS
6.0	REFERENCES

List of Figures

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5	Site Location Map Former PCB Manufacturing Area Monitoring Well Locations Potentiometric Surface Map – Middle / Deep Hydrogeologic Unit PCB Results - SHU Wells PCB Results – MHU / DHU Wells
List of Tables	
Table 1	Monitoring Well Gauging Information
Table 2	Groundwater & DNAPL Analytical Detections
Table 3	Monitoring Well PMA MW-1M Mann-Kendall Trend Analysis
Table 4	Monitoring Well PMA MW-2M Mann-Kendall Trend Analysis
Table 5	Monitoring Well PMA MW-3S Mann-Kendall Trend Analysis
Table 6	Monitoring Well PMA MW-3M Mann-Kendall Trend Analysis
Table 7	Menitoring Well DMA MW/ 4D Menn Kendell Trend Analysis

Table 7Monitoring Well PMA MW-4D Mann-Kendall Trend AnalysisTable 8Monitoring Well PMA MW-6D Mann-Kendall Trend Analysis

List of Appendices

Appendix A	Groundwater Purging and Sampling Forms
------------	--

- Appendix B Chains-of-Custody
- Appendix C Quality Assurance Report
- Appendix D Groundwater Analytical Results (with Data Review Sheets)

1.0 INTRODUCTION

This report presents the results of the 2nd Quarter 2010 (2Q10) sampling event performed at the Solutia Inc. (Solutia) W.G. Krummrich Facility located in Sauget, Illinois (Site). This sampling event was conducted in accordance with the Revised PCB Groundwater Quality Assessment Program Work Plan (Solutia 2009). The Site location map is presented in **Figure 1**.

The PCB Groundwater Quality Assessment Program well network consists of ten monitoring wells, as follows (**Figure 2**):

- Two source area wells, PMA-MW-4S and PMA-MW-4D, are screened in the Shallow Hydrogeologic Unit (SHU) (designated with an "S") and Deep Hydrogeologic Unit (DHU) (designated with a "D"), respectively.
- Three well clusters (PMA-MW-1S/M, PMA-MW-2S/M and PMA-MW-3S/M) are located down-gradient of the source area. These clusters include wells screened in the SHU and Middle Hydrogeologic Unit (MHU) (designated with an "M").
- Two individual wells designated PMA-MW-5M and PMA-MW-6D are located further down-gradient of the source area, with PMA-MW-5M screened in the MHU and PMA-MW-6D screened in the DHU.

Groundwater samples were collected from the ten monitoring wells during the 2Q10 sampling event.

Field sampling activities were conducted in accordance with the procedures outlined in the Revised PCB Groundwater Quality Assessment Program Work Plan, including the collection of appropriate quality assurance and quality control (QA/QC) samples. The following section summarizes the field investigative procedures.

2.0 FIELD PROCEDURES

URS Corporation (URS) conducted the 2Q10 PCB Groundwater Quality Assessment Program field activities between May 14 and 18, 2010.

Groundwater Level Measurements – An oil/water interface probe was used to measure depth to static groundwater levels and determine the presence of non-aqueous phase liquids (NAPL) in the PCB Groundwater Quality Assessment Program well network. Periodically, well PMA-MW-4S has contained measurable DNAPL, however none was observed in this well during the second quarter sampling event. Depth to groundwater measurements were collected from accessible existing wells (i.e., GM-, K- , PSMW- and PMA-series) and piezometers clusters (installed for the Sauget Area 2 RI/FS and WGK CA-750 Environmental Indicator projects) specified in the Revised PCB Groundwater Quality Assessment Program Work Plan.

Well gauging information for the 2Q10 event is presented in **Table 1**. As the middle and deep hydrogeologic units are the primary migration pathway for constituents present in groundwater at the WGK Facility, a groundwater potentiometric surface map based on water level data from wells screened in the MHU and DHU is presented as **Figure 3**.

Groundwater Sampling - Low-flow sampling techniques were used for groundwater sample collection. At each monitoring well, disposable, low-density polyethylene tubing was attached to a submersible pump, which was then lowered into the well to the middle of the screened interval. Monitoring wells were purged at a rate no more than 300 mL/minute to minimize drawdown. If significant drawdown occurred, flow rates were reduced.

Drawdown was measured periodically throughout purging to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen. Once the flow rate and drawdown were stable, field measurements were collected approximately every three to five minutes. Purging of a well was considered complete when the following water quality parameters remained stable over three consecutive flow-thru cell volumes:

Parameter	Stabilization Guidelines
Dissolved Oxygen (DO)	+/- 10% or +/-0.2 mg/L, whichever is greatest
Oxidation-Reduction Potential (ORP)	+/- 20 mV
рН	+/- 0.2 units
Specific Conductivity	+/- 3%

Sampling commenced upon completion of purging. Prior to sample collection, the flow-thru cell was bypassed to allow for collection of uncompromised groundwater. Consistent with the work plan, samples were collected at a flow rate less than or equal to the rate at which stabilization was achieved.

Quality Assurance/Quality Control (QA/QC) samples consisting of analytical duplicates (AD) and equipment blanks (EB) were collected at a rate of 10% and matrix spike/matrix spike duplicates (MS/MSD) were collected at a rate of 5%, complying with the work plan. All samples were submitted to TestAmerica for PCB analysis.

Each sample was labeled immediately following collection. The sample identification system used for each sample involved the following nomenclature "PMA-MW#-MMYY-QAC" where:

- **PMA-MW#** Monitoring Well Location (PCB Manufacturing Area (PMA)) and Number
- **MMYY** Month and year of sampling quarter, e.g.: May (second quarter), 2010 (0510)
- **QAC** denotes QA/QC samples (when applicable):
 - **EB** equipment blank
 - AD analytical duplicate
 - o MS or MSD Matrix Spike or Matrix Spike Duplicate

Upon collection and labeling, sample containers were immediately placed inside an iced cooler, packed in such a way as to help prevent breakage and maintain inside temperature at or below approximately 4°C. Field personnel recorded the project identification and number, sample description/location, required analysis, date and time of sample collection, type and matrix of sample, number of sample containers, analysis requested/comments, and sampler signature/date/time, with permanent ink on the chain-of-custody (COC). Prior to shipment, coolers were sealed between the lid and sides of the cooler with a custody seal, and then shipped to TestAmerica in Savannah, Georgia by means of overnight delivery service (FedEx). Field sampling data sheets are included in **Appendix A**, COC forms are included in **Appendix B**.

3.0 LABORATORY PROCEDURES

Samples were analyzed by TestAmerica for PCBs using Method 680.

4.0 QUALITY ASSURANCE

Analytical data were reviewed for quality and completeness, as described in the Revised PCB Groundwater Quality Assessment Work Plan (Solutia 2009). Data qualifiers were added, as appropriate, and are included on the data tables and the laboratory result pages. The Quality Assurance report is included as **Appendix C**. The laboratory report and data review sheets are included in **Appendix D**.

A total of 14 samples (ten investigative groundwater samples, one field duplicate pair, one MS/MSD, one equipment blank) were prepared and analyzed by TestAmerica for PCBs. Results for the various analyses were submitted as sample delivery group (SDG) KPM038.

The samples contained in SDG KPM038 are listed below:

<u>KPM038</u>

PMA-MW-05M-0510 PMA-MW-06D-0510 PMA-MW-03S-0510 PMA-MW-03M-0510 PMA-MW-01S-0510 PMA-04D-0510 PMA-04D-0510 PMA-04S-0510 PMA-MW-02M-0510-AD PMA-MW-02S-0510-EB PMA-MW-02S-0510

Evaluation of the analytical data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, (USEPA 2008) and the Revised PCB Groundwater Quality Assessment Work Plan (Solutia 2009). Based on the above mentioned criteria, results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on MS/MSD, LCS, surrogate and field duplicate data were achieved for this SDG to meet the project objectives. Completeness, which is defined to be the percentage of analytical results which are judged to be valid, including estimated detect (J) data was 100 percent.

5.0 OBSERVATIONS

This section presents a brief summary of the groundwater analytical results from the 2Q10 PCB Groundwater Quality Assessment sampling event. A summary of the laboratory results is provided in **Table 2** and the entire laboratory data package is provided in **Appendix D**.

Shallow Hydrogeologic Unit

Historically, measurable DNAPL has been periodically observed in the source area SHU monitoring well PMA-MW-4S during previous sampling events. As DNAPL was not detected in PMA-MW-4S by the oil/water interface probe during the 2Q10 event, a water sample was collected, and total PCBs were detected at an estimated concentration of 2,131 μ g/L. PCBs were detected in two of the three down-gradient PCB Groundwater Quality Assessment Program SHU monitoring wells at concentrations of 0.63 μ g/L (PMA-MW-3S) and 0.18 μ g/L (PMA-MW-2S). Such data indicate that PCBs in the SHU are attenuating over the 300 to 400 ft distance between PMA-MW-4S and the three downgradient monitoring wells. PCB sampling results for the SHU are presented on **Figure 4**.

Middle/Deep Hydrogeologic Unit

Laboratory analytical results for monitoring well PMA-MW-4D, located in the Former PCB Manufacturing Area, indicated a total PCB concentration of 0.72 μ g/L for the 2Q10 sampling event. PCBs were also detected in three of the five downgradient monitoring wells at concentrations of 3.9/4 μ g/L (PMA-MW-2M/duplicate), 0.82 μ g/L (PMA-MW-3M), and 0.33 μ g/L (PMA-MW-6D). PCBs were not detected in the groundwater samples collected from monitoring wells PMA-MW-1M and PMA-MW-5M. **Figure 5** displays the 2Q10 PCB sampling results for the MHU/DHU.

The 2Q10 sampling event was the eighth event conducted under the PCB Groundwater Quality Assessment Program. Mann-Kendall trend analyses of total PCBs in unfiltered samples of groundwater from monitoring wells within (PMA-MW-4D) or downgradient of (PMA-MW-1M, - 2M, -3S, -3M, and -6D) the former PCB Manufacturing Area are presented in **Tables 3** through **8**. The data appear to exhibit an upward trend in concentrations at monitoring wells PMA-MW-2M and PMA-MW-4D at this time, but no trends at any of the other wells.

After eight quarters of sampling under the PCB Groundwater Quality Assessment Program, the Mann-Whitney U Test will be performed to determine whether or not concentrations in the second four quarters were higher or lower than the first four quarters. Linear regression analysis will be done for the eight quarters of data provided the data distribution allows the use of parametric statistical analysis. A report documenting these analyses will be provided under separate cover.

6.0 REFERENCES

Solutia Inc, 2009. Revised PCB Groundwater Quality Assessment Program Work Plan, W.G. Krummrich Facility, Sauget, IL, Prepared by URS Corporation, May 2009.

U.S. Environmental Protection Agency (USEPA), 2008 Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review.

US EPA ARCHIVE DOCUMENT

Figures

		EGEND W.G. KRUMMR SAUGET AREA SAUGET AREA	× #1
OUNDWATER QUALITY	ASSESSMENT PRO	SCALE	FEET PROJECT NO.
ARTER 2010 DATA RI UMMRICH FACILITY , ILLINOIS	URS		21562401
chs July 2010			FIG. NO.
Y:dp Y: D. 21_	Site L	ocation Map	1

	2 3	S					
0 300							
	SCALE F	EET					
DUNDWATER QUALITY ASSESSMENT PROGRAM PROJECT NO. ARTER 2010 DATA REPORT 21562401 ILLINOIS							
URS							
chs July 2010 Y: dp Y: S., M.	Former PCB Manufacturing A Monitoring Well Locations		fig. no. 2				

LEGEND MONITORING WELL LOCATION

LONG-TERM MONITORING WELL USED FOR GROUNDWATER CONTOURING
 OTHER MONITORING WELL USED FOR GROUNDWATER CONTOURING
 PIEZOMETER CLUSTER USED FOR GROUNDWATER CONTOURING

-402 --- GROUNDWATER ELEVATION CONTOUR (FT NAVD)

1. GROUNDWATER LEVELS WERE MEASURED MAY 14, 2010.

 CONTOURS GENERATED PRIMARILY USING SURFER SOFTWARE VERSION 8. SOME INTERPRETATION WAS DONE USING PROFESSIONAL JUDGMENT AND CONTOUR LINES WERE MODIFIED BY

3. THE MISSISSIPPI RIVER STAGE ELEVATION PRESENTED ON THE FIGURE IS AN AVERAGE ELEVATION FOR THE TIME OF THE GAUGING EVENT. THE INFORMATION WAS OBTAINED FROM THE SITE

4. LOCATIONS WITH WELLS SCREENED IN BOTH THE MHU AND DHU UTILIZED THE DHU WELL FOR DEVELOPMENT OF THE POTENTIOMETRIC SURFACE MAP.

OUNDWATER QUALITY ASSESSMENT PROGRAM	
ARTER 2010 DATA REPORT	
JMMRICH FACILITY	
ILLINOIS	

PROJECT NO. 21562156

chs July 2010	Potentiometric Surface Map	FIG. NO.
άp		3
Are 2h	Middle/Deep Hydrogeologic Unit	5

Ш Ц CUM ш \geq CH AR ◄ Π ທ

<u>LEGEND</u>

-

MONITORING WELL LOCATION

NOTES: TOTAL PCB RESULTS INCLUDE THE SUM OF ALL METHOD 680 HOMOLOGS.

RESULTS ARE SHOWN IN ug/L.

ND = NOT DETECTED.

UNDWATER QUALITY ASSESSMENT PROGRAM PROJECT NO. RTER 2010 DATA REPORT 21562401 UNINCIP FACILITY 21562401						
ILLINOIS						
URS						
chs July 2010 ∵dp	PCB Results – SHU Wells		FIG. NO. 4			

<u>LEGEND</u>

MONITORING WELL LOCATION

- NOTES: 1. TOTAL PCB RESULTS INCLUDE THE SUM OF ALL METHOD 680 HOMOLOGS.
- 2. RESULTS ARE SHOWN IN ug/L.
- 3. ND = NOT DETECTED.
- 4. MULTIPLE SAMPLE RESULTS INDICATE A DUPLICATE SAMPLE

PCB GROUNDWATER QUALITY 2ND QUARTER 2010 DATA R	PROJECT NO.						
W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS	21562401						
URS							
DRN. BY:chs July 2010 DSGN. BY:dp CHKD BY:0 J/	PCB Results – MHU/DHU Wells		fig. no. 5				

US EPA ARCHIVE DOCUMENT

Tables

Table 1Monitoring Well Gauging Information

	Construction Details							May 14, 2010		
Well ID	Ground Elevation (feet)*	Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Depth to Bottom of Screen (feet bgs)	Top of Screen Elevation* (feet)	Bottom of Screen Elevation* (feet)	Depth to Water (feet btoc)	Depth to Bottom (feet btoc)	Water Elevation* (feet)	
Shallow Hydrogeologic U	Init (SHU 395-	380 feet NAV	D 88)							
PMA-MW-1S	410.30	410.06	20.18	25.18	390.12	385.12	8.61	NG	401.45	
PMA-MW-2S	412.27	411.66	22.94	27.94	389.33	384.33	10.41	NG	401.25	
PMA-MW-3S	412.37	412.06	22.71	27.71	389.66	384.66	10.84	NG	401.22	
PMA-MW-4S	411.09	410.43	20.99	25.99	390.10	385.10	9.08	25.37	401.35	
Middle Hydrogeologic Un	nit (MHU 380-3	350 feet NAVD	88)							
PMA-MW-1M	410.32	410.08	54.54	59.54	355.78	350.78	8.97	NG	401.11	
PMA-MW-2M	412.26	411.93	56.87	61.87	355.39	350.39	10.68	NG	401.25	
PMA-MW-3M	412.36	412.10	57.07	62.07	355.29	350.29	10.89	NG	401.21	
PMA-MW-5M	411.27	410.97	52.17	57.17	359.10	354.10	8.85	NG	402.12	
PS-MW-1	409.37	412.59	37.78	42.78	371.59	366.59	11.01	NG	401.58	
Deep Hydrogeologic Unit	: (DHU 350 fee	et NAVD 88 - E	Bedrock)							
BSA-MW-2D	412.00	415.13	68.92	73.92	343.08	338.08	14.00	NG	401.13	
BSA-MW-3D	412.91	415.74	107.02	112.02	305.89	300.89	14.28	NG	401.46	
BSA-MW-4D	425.00	424.69	118.54	123.54	306.46	301.46	NG	NG	NG	
BSA-MW-5D	420.80	420.49	115.85	120.85	304.95	299.95	15.13	NG	405.36	
CPA-MW-1D	408.62	408.32	66.12	71.12	342.50	337.50	6.99	NG	401.33	
CPA-MW-2D	408.51	408.20	99.96	104.96	308.55	303.55	7.13	NG	401.07	
CPA-MW-3D	410.87	410.67	108.20	113.20	302.67	297.67	8.35	NG	402.32	
CPA-MW-4D	421.57	421.20	116.44	121.44	305.13	300.13	19.49	NG	401.71	
CPA-MW-5D	411.03	413.15	107.63	112.63	303.40	298.40	8.54	NG	404.61	
DNAPL-K-1	413.07	415.56	108.20	123.20	304.87	289.87	13.94	NG	401.62	
DNAPL-K-2	407.94	407.72	97.63	112.63	310.31	295.31	6.25	NG	401.47	
DNAPL-K-3	412.13	411.91	104.80	119.80	307.33	292.33	10.31	NG	401.60	
DNAPL-K-4	409.48	409.15	102.55	117.55	306.93	291.93	7.98	NG	401.17	
DNAPL-K-5	412.27	411.91	102.15	117.15	310.12	295.12	10.31	NG	401.60	
DNAPL-K-6	410.43	410.09	102.47	117.47	307.96	292.96	8.67	NG	401.42	
DNAPL-K-7	408.32	407.72	100.40	115.40	307.92	292.92	6.37	NG	401.35	
DNAPL-K-8	408.56	411.38	102.65	117.65	305.91	290.91	10.06	NG	401.32	
DNAPL-K-9	406.45	405.97	97.42	112.42	309.03	294.03	3.09	NG	402.88	
DNAPL-K-10	413.50	413.25	105.43	120.43	308.07	293.07	11.70	NG	401.55	
DNAPL-K-11	412.20	411.78	105.46	120.46	306.74	291.74	10.38	NG	401.40	
GM-9C	409.54	411.21	88.00	108.00	321.54	301.54	9.82	NG	401.39	

Table 1Monitoring Well Gauging Information

	Construction Details						May 14, 2010		
Well ID	Ground Elevation (feet)*	Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Depth to Bottom of Screen (feet bgs)	Top of Screen Elevation* (feet)	Bottom of Screen Elevation* (feet)	Depth to Water (feet btoc)	Depth to Bottom (feet btoc)	Water Elevation* (feet)
Deep Hydrogeologic Unit	(DHU 350 fee	et NAVD 88 - E	Bedrock) (con	tinued)					
GWE-1D (PIEZ-1D)	412.80	415.60	117.00	127.00	295.80	285.80	11.35	NG	404.25
GWE-2D (PIEZ-2D)	417.45	417.14	127.00	137.00	290.45	280.45	14.75	NG	402.39
GWE-4D (TRA3-PZADHU)	406.05	405.74	74.00	80.00	332.05	326.05	5.54	NG	400.20
GWE-10D (PIEZ-6D)	410.15	412.87	102.50	112.50	307.65	297.65	12.05	NG	400.82
GWE-14D (TRA5-PZCDHU)	420.47	422.90	90.00	96.00	330.47	324.47	21.15	NG	401.75
PMA-MW-4D	411.22	410.88	68.84	73.84	342.38	337.38	9.61	NG	401.27
PMA-MW-6D	407.63	407.32	96.49	101.49	311.14	306.14	4.97	NG	402.35
PSMW-6	404.11	406.63	99.80	104.80	304.31	299.31	5.89	NG	400.74
PSMW-9	403.92	403.52	100.40	105.40	303.52	298.52	2.09	NG	401.43
PSMW-10	409.63	412.18	101.23	106.23	308.40	303.40	10.18	NG	402.00
PSMW-13	405.80	405.53	106.08	111.08	299.72	294.72	4.09	NG	401.44
PSMW-17	420.22	423.26	121.25	126.25	298.97	293.97	18.41	NG	404.85

Notes:

* - Elevation based upon North American Vertical Datum (NAVD) 88 datum

bgs - below ground surface

btoc - below top of casing

NG - not gauged

Table 2Groundwater Analytical Detections

Sample ID	Sample Date	Units	Monochlorobiphenyl	Dichlorobiphenyl	Trichlorobiphenyl	Tetrachlorobiphenyl	Pentachlorobiphenyl	Hexachlorobiphenyl	Heptachlorobiphenyl	Octachlorobiphenyl	Nonachlorobiphenyl	Decachlorobiphenyl
Shallow Hydrologic Unit												
PMA-MW-1S-0510	5/18/2010	µg/L	<0.095	<0.095	<0.095	<0.19	<0.19	<0.19	<0.29	<0.29	<0.48	<0.48
PMA-MW-2S-0510	5/18/2010	µg/L	<0.097	< 0.097	0.18	<0.19	<0.19	<0.19	<0.29	<0.29	<0.49	<0.49
PMA-MW-3S-0510	5/17/2010	µg/L	0.52	0.11	<0.095	<0.19	<0.19	<0.19	<0.29	<0.29	<0.48	<0.48
PMA-MW-4S-0510	5/18/2010	µg/L	<9.7	43	140	410	370	620	470	78	<49	<49
Middle / Deep Hydrologic U	Init											
PMA-MW-1M-0510	5/18/2010	µg/L	<0.95	<0.95	<0.95	<1.9	<1.9	<1.9	<2.9	<2.9	<4.8	<4.8
PMA-MW-2M-0510	5/18/2010	µg/L	3.9	<0.99	<0.99	<2	<2	<2	<3	<3	<5	<5
PMA-MW-2M-0510-AD	5/18/2010	µg/L	4	<0.97	<0.97	<1.9	<1.9	<1.9	<2.9	<2.9	<4.9	<4.9
PMA-MW-3M-0510	5/17/2010	µg/L	0.82	<0.095	<0.095	<0.19	<0.19	<0.19	<0.29	<0.29	<0.48	<0.48
PMA-MW-4D-0510	5/18/2010	µg/L	0.31	0.41	<0.097	<0.19	<0.19	<0.19	<0.29	<0.29	<0.49	<0.49
PMA-MW-5M-0510	5/17/2010	μg/L	<0.098	<0.098	<0.098	<0.2	<0.2	<0.2	<0.29	<0.29	<0.49	<0.49
PMA-MW-6D-0510	5/17/2010	µg/L	0.33	<0.097	<0.097	<0.19	<0.19	<0.19	<0.29	<0.29	<0.49	<0.49

EPA ARCHIVE DOCUMENT

SN

 $\mu g/L = micrograms per liter$

< = Result is non-detect, less than the reporting limit

AD = Analytical Duplicate

BOLD indicates concentration greater than the reporting limit

Table 3
Monitoring Well PMA MW-1M Mann-Kendall Trend Analysis

				W.G.Krun	nmrich Fa	cility PCB	Mfg. Area	a Monitori	ng Well M	W-1M Mai	nn-Kenda	I Trend A	nalysis					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10								Row
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	2Q09	3Q09	4Q09	1Q10	2Q10	Total
Total PCBs, µg/L	ND	0.24	0.21	0.17	0.26	0.29	48	ND	0.18	0.38	0.26	0.16	0.21	0.27	0.27	0.20	ND	
Compare to Event 1		1	1	1	1	1	1	NA	1	1	1	1	1	1	1	1	NA	14
Compare to Event 2			-1	-1	1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	-1
Compare to Event 3				-1	1	1	1	-1	-1	1	1	-1	0	1	1	-1	-1	1
Compare to Event 4					1	1	1	-1	1	1	1	-1	1	1	1	1	-1	7
Compare to Event 5						1	1	-1	-1	1	0	-1	-1	1	1	-1	-1	-1
Compare to Event 6							1	-1	-1	1	-1	-1	-1	-1	-1	-1	-1	-7
Compare to Event 7								-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-10
Compare to Event 8									1	1	1	1	1	1	1	1	NA	8
Compare to Event 9										1	1	-1	1	1	1	1	-1	4
Compare to Event 10											-1	-1	-1	-1	-1	-1	-1	-7
Compare to Event 11												-1	-1	1	1	-1	-1	-2
Compare to Event 12													1	1	1	1	-1	3
Compare to Event 13														1	1	-1	-1	0
Compare to Event 14															0	-1	-1	-2
Compare to Event 15																-1	-1	-2
Compare to Event 16																	-1	-1

Mann-Kendall Statistic (S) 4

90 % Confidence Mann-Kendall Statistic 34

Table 4
Monitoring Well PMA MW-2M Mann-Kendall Trend Analysis

				W.G.Krun	nmrich Fa	cility PCB	Mfg. Are	a Monitori	ng Well M	IW-2M Ma	nn-Kenda	II Trend A	nalysis					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8		Event 10		Event 12						Row
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	2Q09	3Q09	4Q09	1Q10	2Q10	Total
Total PCBs, µg/L	2.3	2.4	2.8	2.1	3.3	2.5	3.1	1.7	3.0	4.3	2.5	2.9	4.14	3.1	2.7	2.4	3.9	
Compare to Event 1		1	1	-1	1	1	1	-1	1	1	1	1	1	1	1	1	1	12
Compare to Event 2			1	-1	1	1	1	-1	1	1	1	1	1	1	1	0	1	10
Compare to Event 3				-1	1	-1	1	-1	1	1	-1	1	1	1	-1	-1	1	2
Compare to Event 4					1	1	1	-1	1	1	1	1	1	1	1	1	1	11
Compare to Event 5						-1	-1	-1	-1	1	-1	-1	1	-1	-1	-1	1	-6
Compare to Event 6							1	-1	1	1	0	1	1	1	1	-1	1	6
Compare to Event 7								-1	-1	1	-1	-1	1	0	-1	-1	1	-3
Compare to Event 8									1	1	1	1	1	1	1	1	1	9
Compare to Event 9										1	-1	-1	1	1	-1	-1	1	0
Compare to Event 10											-1	-1	-1	-1	-1	-1	-1	-7
Compare to Event 11												1	1	1	1	-1	1	4
Compare to Event 12													1	1	-1	-1	1	1
Compare to Event 13														-1	-1	-1	-1	-4
Compare to Event 14															-1	-1	1	-1
Compare to Event 15																-1	1	0
Compare to Event 16																	1	1
																< 1 11 A.		05

Mann-Kendall Statistic (S) 35

90 % Confidence Mann-Kendall Statistic 34

Table 5
Monitoring Well PMA MW-3S Mann-Kendall Trend Analysis

						•, • • • •	ing. Also		ng wen w	vv-55 iviai	nn-kendal	I Irend Ar	laiysis		W.G.Krummrich Facility PCB Mfg. Area Monitoring Well MW-3S Mann-Kendall Trend Analysis												
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6		Event 8	Event 9			Event 12						Row									
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	2Q09	3Q09	4Q09	1Q10	2Q10	Total									
Total PCBs, µg/L	0.66	0.32	0.2	0.35	0.8	0.3	0.21	0.25	0.64	0.26	0.24	0.79	ND	0.34	2.0	ND	0.63										
Compare to Event 1		-1	-1	-1	1	-1	-1	-1	-1	-1	-1	1	-1	-1	1	-1	-1	-10									
Compare to Event 2			-1	1	1	-1	-1	-1	1	-1	-1	1	-1	1	1	-1	1	-1									
Compare to Event 3				1	1	1	1	1	1	1	1	1	-1	1	1	-1	1	10									
Compare to Event 4					1	-1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	-3									
Compare to Event 5						-1	-1	-1	-1	-1	-1	-1	-1	-1	1	-1	-1	-10									
Compare to Event 6							-1	-1	1	-1	-1	1	-1	1	1	-1	1	-1									
Compare to Event 7								1	1	1	1	1	-1	1	1	-1	1	6									
Compare to Event 8									1	1	-1	1	-1	1	1	-1	1	3									
Compare to Event 9										-1	-1	1	-1	-1	1	-1	-1	-4									
Compare to Event 10											-1	1	-1	1	1	-1	1	1									
Compare to Event 11												1	-1	1	1	-1	1	2									
Compare to Event 12													-1	-1	1	-1	-1	-3									
Compare to Event 13												-		1	1	NA	1	3									
Compare to Event 14															1	-1	1	1									
Compare to Event 15																-1	-1	-2									
Compare to Event 16																	1	1									
														Ī	Mann-H	Cendall Sta	tistic (S)	-7									

90 % Confidence Mann-Kendall Statistic -34

Table 6
Monitoring Well PMA MW-3M Mann-Kendall Trend Analysis

				W.G.Krun	nmrich Fa	cility PCB	Mfg. Area	a Monitori	ng Well N	IW-3M Mai	n n-Kenda	I Trend A	nalysis					
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6		Event 8					Event 13					Row
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	2Q09	3Q09	4Q09	1Q10	2Q10	Total
Total PCBs, µg/L	5.18	1.9	ND	0.77	ND	0.86	0.76	0.39	0.92	1.3	0.71	1.4	1.3	0.85	0.85	0.87	0.82	
Compare to Event 1		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-16
Compare to Event 2			-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-15
Compare to Event 3				1	NA	1	1	1	1	1	1	1	1	1	1	-1	1	11
Compare to Event 4					-1	1	-1	-1	1	1	-1	1	1	1	1	1	1	5
Compare to Event 5						1	1	1	1	1	1	1	1	1	1	1	1	12
Compare to Event 6							-1	-1	1	1	-1	1	1	-1	-1	1	-1	-1
Compare to Event 7								-1	1	1	-1	1	1	1	1	1	1	6
Compare to Event 8									1	1	1	1	1	1	1	1	1	9
Compare to Event 9										1	-1	1	1	-1	-1	-1	-1	-2
Compare to Event 10											-1	1	1	-1	-1	-1	-1	-3
Compare to Event 11												1	1	1	1	1	1	6
Compare to Event 12													-1	-1	-1	-1	-1	-5
Compare to Event 13														-1	-1	-1	-1	-4
Compare to Event 14															0	1	-1	0
Compare to Event 15																1	-1	0
Compare to Event 16																	-1	-1

Mann-Kendall Statistic (S) 2

90 % Confidence Mann-Kendall Statistic 34

 Table 7

 Monitoring Well PMA MW-4D Mann-Kendall Trend Analysis

			W.G.	Krummric	h Facility	PCB Mfg	Area Moi	nitoring W	ell MW-40) Mann-Ke	endall Tre	nd Analys	is				
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13	Event 14	Event 15	Event 16	Row
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	4Q08	1Q09	2Q09	3Q09	4Q09	1Q10	2Q10	Total
Total PCBs, µg/L	0.34	0.10	2.07	0.33	0.50	0.35	0.23	0.27	0.44	0.27	2.73	0.59	0.37	0.61	0.54	0.72	
Compare to Event 1		-1	1	-1	1	1	-1	-1	1	-1	1	1	1	1	1	1	5
Compare to Event 2	_		1	1	1	1	1	1	1	1	1	1	1	1	1	1	14
Compare to Event 3				-1	-1	-1	-1	-1	-1	-1	1	-1	-1	-1	-1	-1	-11
Compare to Event 4			-		1	1	-1	-1	1	-1	1	1	1	1	1	1	6
Compare to Event 5						-1	-1	-1	-1	-1	1	1	-1	1	1	1	-1
Compare to Event 6					_		-1	-1	1	-1	1	1	1	1	1	1	4
Compare to Event 7								1	1	1	1	1	1	1	1	1	9
Compare to Event 8									1	1	1	1	1	1	1	1	8
Compare to Event 9										-1	1	1	-1	1	1	1	3
Compare to Event 10											1	1	1	1	1	1	6
Compare to Event 11												-1	-1	-1	-1	-1	-5
Compare to Event 12													-1	1	-1	1	0
Compare to Event 13														1	1	1	3
Compare to Event 14															-1	1	0
Compare to Event 15																1	1

Mann-Kendall Statistic (S) 42

90 % Confidence Mann-Kendall Statistic 30

 Table 8

 Monitoring Well PMA MW-6D Mann-Kendall Trend Analysis

	W.G.Krummrich Facility Well PMA MW-6D Mann-Kendall Trend Analysis												
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Row				
	3Q08	4Q08	1Q09	2Q09	3Q09	4Q09	1Q10	2Q10	Total				
Total PCBs, ug/L	0.21	0.43	0.32	0.29	0.20	0.30	0.19	0.33					
Compare to Event 1		1	1	1	-1	1	-1	1	3				
Compare to Event 2			-1	-1	-1	-1	-1	-1	-6				
Compare to Event 3				-1	-1	-1	-1	1	-3				
Compare to Event 4					-1	1	-1	1	0				
Compare to Event 5						1	-1	1	1				
Compare to Event 6							-1	1	0				
Compare to Event 7							-	1	1				

Mann-Kendall Statistic (S) -4

90 % Confidence Mann-Kendall Statistic -12

Appendix A

Groundwater Purging and Sampling Forms

PROJECT NAME:	PCB GW Quality Assessment	PROJECT NUMBER:	21562401.00003	FIELD PERSONNEL: A Mallisten	K. Dwins
DATE: $\sqrt{1/8}$	10	WEATHER: ()par			
MONITORING WELL	ID: PMAMW01M	,	SAMPLE ID:	PMAMW01M-0510	

INITIAL DATA

Well Diameter: 2 in	Water Column Height (do not include LNAPL or DNAPL):	ft	Volume of Flow Through Cell): 750	mL
Measured Weil Depth (btoc):ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is (4 feet,		Minimum Purge Volume =	
Constructed Well Depth (btoc): 59.30 ft	Place Pump at: Total Well Depth – 0.5 (Screen Length + DNAPL Column Height) =	_ft btoc	(3 x Flow Through Cell Volume) <u>くと いつ</u>	mL
Depth to Water (btoc): 7.79 ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are (4ft,		Ambient PID/FID Reading: 👔 🖉	ppm
Depth to LNAPL/DNAPL (btoc):ft	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL Column Height) =	ft btoc	Wellbore PID/FID Reading:	ppm
Depth to Top of Screen (btoc): 54.30 ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = 57.3	_ ft btoc	0	
Screen Length: 5 ft				

PURGE DATA

Pump Type: _____ Stainless Steel Monsoon

					±0.2 units		±3%		±10 % or 0.2 mg/L	±20 mV
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(ms/cm)	(NTUs)	(mg/i)	(mv)
Q	NA7-80-1017	in proto 7.8		125	6.82	17.02	2274	78.9	1.38	116.6
750	1020	7.40	LIBEN	415	6.83	16.52	1855	306	1.93	5.251
1502	10:3	7.80	Lt. Bin	Yes	6.83	16.76	2252	41.5	0.61	124,8
2250	1026	7.82	L.Brn	715	6.84	16.57	2555	19.0	0.58	124,8
3000		7.32	Lt. BEN	¥25	6.84	16.59	<u> 2503</u>	22.4	7.08	123.6
3750	1032	7 82		(2)	6.84	16.57	2193	30.6	1.18	122.4
4500	1035	7.83	clr	42S	6.35	16.62	2184	19.4	0.54	5,151
5250	1038	7.83	cle		6.35	16.69	2186	51.6	0,35	119,7
6000	1041	7.83		Ÿ 25	6.84	16.67	3165	29.4	0.81	118.)
6750	1044	7,83		Yês	6.85	16.55	2137	20.7	0.96	116.4
7500	1047	7,33		Yes	(n· 8)	16.61	2122	30.7	0.96	114.6
					_					
tart Time: top Time:	1017		·		 کی (min):	ر ا	Water Quali Date Calibra	ty Meter ID:		
SAMPLING DA	TA ن(/۶/۱۶ Stainless Steel Monso			ple Time:	1055			Total PCBs		
ample Method:	Stainless Steel Monso	DN	Sam	ple Flow Rate:	5:50	metmin	QA/QC Sam	ples: Nor-C		

PROJECT NAME: DATE: <u>5/18/</u> MONITORING WE		WEATHER:	UMBER: 	TO [°] F	Fie		: <u>M.M.N.den</u> , N015-0510			
INITIAL DATA										
Constructed Well D Depth to Water (bto Depth to LNAPL/DN	in h (btoc):ft epth (btoc):24.94 ft c):7.35 ft APL (btoc):ft reen (btoc):19.94 ft 5 ft	If Depth to Top o Place Pump at: T If Depth to Top o Place Pump at: T If Screen Length	f Screen is > Depth otal Well Depth – 0. f Screen is < Depth otal Well Depth – (0	to Water AND Water 5 X Water Column H		reen Length are 〈 4 h Height) =	ft btoc ft, // ft btoc //	/olume of Flow Throug Minimum Purge Volume (3 x Flow Through Cel Ambient PID/FID Readir Nellbore PID/FID Readi	s= Volume <u>) さく</u> ng: <u> </u>	
PURGE DATA	Stainless Steel Mons	oon								
					±0.2 units		±3 %		±10 % or 0.2 mg/L	±20 mV
Purge Volume		Depth to			10.2 units	Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	MS (ms/cm) < ~	· · · ·	(mg/l)	(mv)
0	0904	8.09	CIC	None	6.68	16.31	1332	5.7	3.15-	210.9
150	0907	8.09	CI	None	6.77	16.32	1352	3.7	2.34	209.1
1500	2910	801	<u></u>	Nore	6.78	16.22	1356		2.08	203.0
2250	<u> </u>	3.05		None	6.78	16 17	1352	2.2	1.00	208.3
3000	0 //6	0.0)	(_13	700:4		/601			4,00	102:00
									_	
				-			_			
					-		-			
							-			
Start Time: Stop Time:	0904 0916		·	sed Time: rage Purge Rate (m⊔	/ /min):こって)		Water Qu Date Cali	ality Meter ID: brated:5//.4	YSI 6920	
SAMPLING DAT	A									
Sample Date:	-1.11		Sam	ple Time:	193-		Analysis	: Total PCBs		
Sample Method:	5/18/10 Stainless Steel Monsoor	D		ple Flow Rate:	0925					
	Stanness Steer WOIISOO		odil	ipie riow rate.	250					
COMMENTS:										

	B GW Quality sessment	PROJECT NUMBER:	21562401.000)3	FIELD PERSONNEL: N. Matin Con K. Owin S	
DATE: 5/18/10	>	WEATHER: 2	AL clark	70'F		
MONITORING WELL ID:	: PMAMW02M		17	SAMPLE ID:	PMAMW02M-0510	

INITIAL DATA

Well Diameter: 2 in	Water Column Height (do not include LNAPL or DNAPL):	_ft	Volume of Flow Through Cell): 7.50	mL
Measured Well Depth (btoc): NM ft	If Depth to Top of Screen is > Depth to Water AND Screen Lenth is (4 feet,		Minimum Purge Volume =	
Constructed Well Depth (btoc): 61.54 ft	Place Pump at: Total Well Depth – 0.5 (Screen Length + DNAPL Column Height) =	_ft btoc	(3 x Flow Through Cell Volume) <u>くそいし</u>	mL
Depth to Water (btoc): 716 2 ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are (4ft,		Ambient PID/FID Reading: 0.5	ppm
Depth to LNAPL/DNAPL (btoc):ft	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL Column Height) =	ft btoc	Wellbore PID/FID Reading: 0.5	ppm
Depth to Top of Screen (btoc): 56.54 ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = 📉 🐰 🕱	_ ft btoc		
Screen Length: 5 ft				

PURGE DATA

Pump Type: Stainless Steel Monsoon

					±0.2 units		±3 %		±10 % or 0.2 mg/L	±20 mV
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°°)	ris (mislign) Cm	(NTUs)	(mg/l)	(mv)
0	1504	9.65	sic	None	6.5%	18.77	1816	J2.1	5.32	145.1
750	1507	9.65	CIT CIT	None	7.01	18.5-8	1977	41.3	1.67	6.6.2
1500	1510	5.65		Nore	<u> </u>	18.46	1972	28.1	1.14	60.6
2250	1513	4165		None	2.11	18.28	1972	36.9	0,92	17/8 53.7
<u> </u>	1516	9.65 9.65	<u> </u>	Nore	200	18.61	1985 <u>-</u> 1988	14.7		51.4
37,5°0	1519	7,6)			7.10		1130	1911	1.01) heard
	· · · · · · · · · · · · · · · · · · ·									
	1524				1					
Start Time:	1504			osed Time:	/		Water Quality	Meter ID:	<u>YSI 6920</u>	
Stop Time:	1210		Ave	rage Purge Rate (m∐	min): こうご		Date Calibrate	ed:	5/18/10	
SAMPLING DAT	`A									
Sample Date:	51:8/10)	San	nple Time:	1555	-	Analysis:	fotal PCBs		
Sample Method:	Stainless Steel Mons		San	nple Flow Rate:	310	.n.l.m.n	QA/QC Samp	es: Analytical	Duplicate	
-					<u> </u>	ML/M.I			·	
COMMENTS:										
COMMENTO.										

PROJECT NAME: DATE:// MONITORING WE	PCB GW Quality Assessment <u>&//()</u> LL ID:PMAMW02S	PROJECT NU WEATHER:	MBER: 215624 Perthy Char	101.00003 17 70°1- SAM	PLE ID:	LD PERSONNEL: <u>/</u> PMAMW02S	_	An, K. Owings		
Constructed Well D Depth to Water (bto Depth to LNAPL/DN	th (btoc):ft epth (btoc):ft c):ft IAPL (btoc):ft reen (btoc):ft	If Depth to Top of Place Pump at: To If Depth to Top of Place Pump at: To	Screen is > Depth to tal Well Depth – 0.5 Screen is < Depth 1 otal Well Depth – (0.5	o Water AND Water 5 X Water Column H	Lenth is (4 feet, NAPL Column Height) Column Height and Sc eight + DNAPL Column	reen Length are (4ft,	ft ft btoc ft btoc ft btoc	Volume of Flow Through Minimum Purge Volume (3 x Flow Through Cel Ambient PID/FID Readin Wellbore PID/FID Readir	= Volume <u>) </u>	mL ppm ppm
PURGE DATA Pump Type:	Stainless Steel Monsoc	n	_							
					±0.2 units		±3 %		±10 % or 0.2 mg/L	±20 mV
Purge Volume		Depth to			20.2 41165	Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
0	1622	9.42	CIV 12	Nora	6,88	18 61	955	6.7	2.67	210.2
756	1625	9.42	CIT	Nerve	6.89	18.51	959		2.03	8155
1500	1628	5.42	211	Noise	6.90	18.40	759	3,4	1,85	228.6
>350	163	9,42	516	Now	6.90	18,43	960	2.8	1,74	231.7
3060	1634	9.42	$\leq \mathcal{M}$	None	0.51	18 41	959	2,2	1.71	234,0
1000			<u></u>		6.11	10 41	121		<i>[+ / 1</i>	$(\mathbf{y})_{i}\mathbf{y}$
									+ +	
								-		
Start Time: Stop Time:	1622		·	ed Time: ge Purge Rate (mL/r	<u>کا</u> متد ج:(nin			Quality Meter ID: alibrated: <i>بد بار لار</i> ا	YSI 6920	
SAMPLING DAT	A									
Sample Date: Sample Method:	5 / 18 / 0 Stainless Steel Monsoon		•	le Time: le Flow Rate:	1640	1/min	-	is: Total PCBs Samples: EB (before t	his well)	
COMMENTS:					<u>, , , , , , , , , , , , , , , , , </u>	······································		.		

PROJECT NAME: WE	K PLB PROJEC	CT NUMBER: 2)562401	FIELD PERSONNEL:	NM. Nuten & aniks	
DATE: 51710	WEATH	ER:,, _,, _			
MONITORING WELL ID:	2004 MOU ZO NM	BARA-ANW-030-0-	m PMA-MW-3M	IMA-MW-OSM-OSIC	

INITIAL DATA

Well Diameter: 2in	Water Column Height (do not include LNAPL or DNAPL):	ft btoc	Volume of Flow Through Cell): 750	mL
Total Well Depth (btoc): 61,31 ft	If Depth to Top of Screen is > Depth to Water AND Screen Length is (4 feet,		Minimum Purge Volume =	
Depth to Water (btoc): j O. o식 ft	Place Pump at: Total Well Depth - 0.5 (Screen Length + DNAPL Column Height) =	ft btoc	(3 x Flow Through Cell Volume) <u> こここ</u>	mL
Depth to LNAPL/DNAPL (btoc):ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are (4ft,		Ambient PID/FID Reading: D.C.	ppm
Depth to Top of Screen (btoc): <u>56.91</u> ft	Place Pump at: Total Well Depth – (0.5 X Water Column Height + DNAPL Column Height) =	ft btoc	Wellbore PID/FID Reading:	ppm
Screen Length:ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = 60, 20	ft btoc		

PURGE DATA

Ритр Туре:					O,Z		5%		10% 0,2	20
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	MS (mS/cm) cm	(NTUs)	(mg/l)	(mv)
Û	1407	10.04	Bin	Yes	9.08	16.58	2479	15.2	0.37	40.5
750	1412	10.04	Ba	Yes	9,29	16.97	2503	12.4	0,47	-7.8
1500	1415	10.04	Bin	Yes Yes	9.32	17.06	5525	9, 1	0.28	-48 5-
2250	1418	10.08	Ben	Ý č Š	9.33	17.09	2527	7.6	0.32	-667
3000	1421	10.08	Sin	Yes	6.34	17.11	2527	7.0	0.41	-75.8
3750	1424	60.01	からへ	Yes	9.35	17.12	2528	6,4	0.69	-91.2
4500	1427	10.08	BEA	<u> </u>	9.35	17,13	2527	6.0	0.85-	-102.4 -111.4
5250	1430	10,07	Ban	Yes	9:35	17.14	2530	5.5	0.77	-111.4
6000	1433	10.07	Bin	¥ŕ,5	. 9.36	17.14	2533	5.2	0.73	-121.0
										1
						-				
			1	-						
,										

Start Time: 140 %	Elapsed Time: 24	Water Quality Meter ID: 152 6820
Stop Time: 1433	- Average Purge Rate (mL/min): くらく	Date Calibrated: 5/12/16

SAMPLING DATA

Sample Date: 5/17/10	Sample Time:	1440	Analysis:	JCR 680	
Sample Method: SS Mon See 1	Sample Flow Rate:	250	QAQC Samples:	None	
VOA Vials, No Headspace Initials:					

COMMENTS:

PROJECT NAME: DATE: MONITORING WELL INITIAL DATA Well Diameter: Total Well Depth (btoc): Depth to Water (btoc): Depth to LNAPL/DNAP Depth to Top of Scree Screen Length: PURGE DATA	ID: <u>2/11/-</u> <u>2</u> in :): <u>27,40</u> ft <i>10,06</i> ft L (btoc): <u> </u>	WEATHER	:	to Water AND Screen 5 (Screen Length + D to Water AND Water .5 X Water Column H	Length is (4 feet, NAPL Column Height Column Height and eight + DNAPL Colu	-/14) - 035 - 0 it) = Screen Length are (4 mn Height) =	ft błoc Voli Min ft btoc (3 4ft, Ami ft btoc Wei	ume of Flow Throug imum Purge Volum x Flow Through Ce bient PID/FID Readi lbore PID/FID Read	ih Cell):7 <u>5−7</u> e = il Volume)≷≷ 5 ng:0.0	
Pump Type:	Monsoen				\sim >		3%		1.01 1 0 -	20
Purge Volume	1	Depth to			5,0	Temp	Cond.	Turbidity	10%/0.2	
(mL)	Time	Water (ft)	Color	Odor	рН	(0°)	MS (mSterrit Cm	(NTUs)	(mg/l)	(mv)
0	1302	10.12	Vellow	None	6.80	17.22	3635	3.87.6	5112	523
750	1305	10,13	Vellen	None	6.81	17.18	2637	184.2	0.86	55.6
1500	1308	51.01	Hellow	None	0.82	17.19	2636	141.7	0.83	53.4
2250	1311	10.12	Yrllow	None	6.85	17.15	2640	105.4	0.92	51.9
3000	13/4	10.12	Vellow	None	1.182	17.31	2638	37.8	OAL	50.3
3750	1317	10,12	YEllow	None	6.83	17.21	2640	70.2	0,95-	48.8
4500	1320	10,12	Veilow	Nore	1.83	17.22	2640	653	0.96	46.2
5250	1323	51,01	Yellow / Bro	Nore	6.83	17.22	2639	61.0	0.92	45.3
(00)	1326	10.12	Lt. Ben	Nore	6.83	17:25	2640	49.4	10.88	43.0
6750	1324	10,17	Li. ôra	Nori	6.53	17.26	>639	45.4	0.10	41.2
0025	332	10,12	Cionta	None	4.83	17:27	2639	39.5	0.65	38.9
\$250	1335	10,12	cloud	None	6.83	17.27	2638	37 4	0.60	38.5-
9000	1338	10,12	Cloud	1/one	6.83	17.28	2638	29,3	0.62	37.0
97.00	1341	51.01	Claud	Abri	6.33	75,71	2634	26,4	0.60	36,7
Start Time: 302 Start Time: 302 Stop Time: 7341 Average Purge Rate (mL/min): 250 Bate Calibrated: 510 100 Sample Date: 510 52 Sample Method: 53 54 Sample Method: 55 1005000 Sample Flow Rate: 250 Analysis: 40005000 VOA Vials, No Headspace Initials: 11 12 12 134										

DATE: 5//	PCB GW Quality PROJECT NAME: Assessment PROJECT NUMBER: 21562401.00003 FIELD PERSONNEL: N.M. Nu Clan K. OWINGS DATE:									
INITIAL DATA Well Diameter: 2 in Measured Well Depth (btoc): $\sqrt{1-1}$ ft Constructed Well Depth (btoc): $\sqrt{1-1}$ ft Depth to Water (btoc): $\sqrt{1-1}$ ft Depth to UNAPL/DNAPL (btoc): $\sqrt{1-1}$ ft Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are (4ft, Place Pump at: Total Well Depth - 0.5 X Water Column Height + DNAPL Column Height) =										
PURGE DATA Pump Type:	Stainless Steel Mons	600N								
					±0.2 units		±3 %		±10 % or 0.2 mg/L	±20 mV
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	pH	Temp (°C)	Cond. (ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
ق	1233	8.36	()(125	6.64	18.36	1558	5.9	2.64	81. X
750	1236	836	C Ví	Ves	6.64	18.20	1510	11.6	1.71	112.7
1500	1239	3.36	C11	Yes	666	18,12	1492	13,3	1.55	1157
2250	1242	8.56	(1)	145	668	18 10	1491	11.7	1.57	17.2
3000	1245	8.34	();	Y25	6.69	18.18	i 487	<u>9,2</u>	1.82	116.6
										-
							-	-		
Start Time:	1233		Elaps	ed Time:	12		Water Q	uality Meter ID:	YSI 6920	

SAMPLING DATA

Stop Time:____

1245

Sample Date:	5/15/10	Sample Time:	1250	Analysis: Total PCBs
Sample Method:	Stainless Steel Monsoon	Sample Flow Rate:	250 melmin	QA/QC Samples: Alona

Average Purge Rate (mL/min): > 50

=118/10

Date Calibrated:_

COMMENTS:

PROJECT NAME: DATE: <u>5/</u> MONITORING WE	PCB GW Quality Assessment <u> \$j/o</u> LL'ID: <u>PMAMW04</u>	PROJECT I WEATHER: S		401.00003 SA	FF		: <u>N. М. М. Л</u> и. wo4s-0510	20, <u>K. Owig</u>	۶	
INITIAL DATAWell Diameter:2in Measured Well Depth (btoc):y=3.7ftMeasured Well Depth (btoc): $5.5.7.57$ ft Depth to Top of Screen is > Depth to Water AND Screen Length + DNAPL Column Height) =ftVolume of Flow Through Cell): 7.50 mLMinimum Purge Volume =If Depth to Top of Screen is < Depth to Water AND Water Column Height) =									<u> </u>	
PURGE DATA Pump Type:	Stainless Steel Mons	000								
					±0.2 units		±3 %		±10 % or 0.2 mg/L	±20 mV
Purge Volume		Depth to				Temp	. Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	Ins/cm)cm	(NTUs)	(mg/l)	(mv)
	1321	8.15	Lt. Yellow	Yes	6.74	19.6	2403	40.0	1.83	137.8
Xau	13.29	8.12	Lt. Yellow	425	675	19.95	2399	31,1	1.06	138 4
ILOU	1337	8.12	Lit. Yallow	YES	6.76	20.25	5395	24,5-	0.77	175-8
24000	1345	8.12	Lt. Yellow	Yés	6.76	19.58	2390	\$1.5	0.69	132.6
3200	1353	8.10	LI VILLON	م این نے	6.76	20.36	2393	18.5	068	128.3
			u						0.0	l
Start Time: 3 Water Quality Meter ID: YSI 6920 Stop Time: 1353 Average Purge Rate (mL/min): 1000										
	• •									
SAMPLING DAT	A									
	<u>-1</u>				1.			-		
Sample Date:	5 /18/10			ole Time:	140	76		Total PCBs		
Sample Method:	SS MAASJON		Samp	ble Flow Rate:	ioo		QA/QC Sam	iples: Nore		
_										
COMMENTS:										

PROJECT NAME: WEX RB	PROJECT NUMBER: 21562401	FIELD PERSONNEL: NM. N. Clank, O. W. S.
DATE: 5/17/10	WEATHER: OVERCEST boof	
MONITORING WELL ID: IMAMW-S	fM4-MW-OSM-OSUD	
/•,		

INITIAL DATA

Well Diameter:	Water Column Height (do not include LNAPL or DNAPL):	_ft btoc	Volume of Flow Through Cell): 750 mL
Total Well Depth (btoc): -56 x7 ft	If Depth to Top of Screen is > Depth to Water AND Screen Length is (4 feet,		Minimum Purge Volume =
Depth to Water (btoc): <u>フ. 3 ジ</u> ft	Place Pump at: Total Well Depth – 0.5 (Screen Length + DNAPL Column Height) = 54.0-	_ft btoc	(3 x Flow Through Cell Volume) <u> くく 5つ</u> mL
Depth to LNAPL/DNAPL (btoc):ft	If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are (4ft,		Ambient PID/FID Reading: <u>Ô. ()</u> ppm
Depth to Top of Screen (btoc): <u>51, 87</u> ft	Place Pump at: Total Well Depth - (0.5 X Water Column Height + DNAPL Column Height) =	ft btoc	Wellbore PID/FID Reading: <u>O C</u> ppm
Screen Length:ft	If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = 54.0	ft btoc	

PURGE DATA

55 Nonson	1			0.20		3%		10%/0.2	20 mV
Time	Depth to	Color	Odor	nH	Temp	Cond.	Turbidity (NTUs)	ĎО	ORP (mv)
				· · ·	- Annual		5.5		62.8
1012	7.93	CIE	Yes	7.05			3.0	0.94	37.4
-T101	7.53	Cit	Ves	7.05	17.21	2523	1.5	1 88	-76
1022	2.13	C14	Vas	7.02	17.23	2524	1.3	0,90	1-47.5
1027	1 1	(11	7.45	706		25-24	1.2		-63.9
		<u> </u>	415			> 5 2 8	1.1		-77.0
4031	2.93	<u> </u>	125	7.06	17.27		1:2	1.64	85.2
		1							
				-					
		1							
1									
	Time /σσ /δΙΣ /0/7 /δ2Σ	Time Water (ft) 1007 3.42 1012 7.93 1017 7.53 1022 3.43 1023 3.43 1023 3.43	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth to Water (ft) Color Odor 1007 1.43 CIC Yes 1012 7.43 CIC Yes 1017 7.53 CIC Yes 1022 7.13 CIC Yes 1022 7.13 CIC Yes 1022 7.13 CIC Yes 1022 7.13 CIC Yes 1022 7.53 CIC Yes	Depth to Water (ft)Out Colspan="2">Out Colspan="2"Out Colspan="2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Start Time: /つつ Stop Time: /03]	Elapsed Time: <u>うの</u> へ Average Purge Rate (mL/min): 25つ	Water Quality Meter ID: <u>/SJ (8) 0</u> Date Calibrated: <u>5/17/10</u>
SAMPLING DATA		
Sample Date: <u>5/17/10</u> Sample Method: <u>55</u> <i>Manseo</i> in	Sample Time: 1045 Analysis:Sample Flow Rate: 250 $nc/m, h$ QAQC Samples:	1CB 680
VOA Vials, No Headspace Thitials: N MM NA		

COMMENTS:
LOW FLOW GROUNDWATER SAMPLING DATA SHEET

PROJECT NAME: VGK 800 PROJECT NUMBER: 21562401 FIELD PERSONNEL: M.M.M.Jon, K. Owings DATE: 5/11/10 WEATHER: Overcast, 60° F MONITORING WELL ID: 8MA-MW-60 8MA-MW-060-0510														
$nn Tring: \leq M - \Delta s \rightarrow \Delta$														
PURGE DATA Pump Type: <u>\$\$ Monsorthan</u> 0.20 3% 10% 0.2	20m1/													
Purge Volume Depth to Temp Cond. Turbidity DO	ORP													
(mL) Time Water (ft) Color Odor pH (°C) 1/5 -(mSicm)-(m (NTUs) (mg/l)	(mv)													
0 1202 371 654 Yes 7.02 1696 1314 56.6 1.90 -	(mv) 76.4													
0 1202 371 65, 123 7.02 1696 1318 56.6 1.90 - 900 1205 3.71 600 45 7.02 16.95 1342 19.8 1.35 -														
0 1202 371 62, 103 7.02 1696 1318 56.6 1.90 - 900 1205 3.71 6.4 445 7.06 16.95 1342 19.8 1.35 - 1800 1208 3.71 6.4 445 7.06 16.95 1342 19.8 1.35 -	76.4													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.9 //4.1 120.7													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.9 114.1 178,7													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.9 //4.1 120.7													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.9 //4.1 120.7													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.9 //4.1 120.7													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.9 //4.1 120.7													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.9 //4.1 120.7													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.9 //4.1 120.7													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.9 //4.1 120.7													

Start Time: 1202 Stop Time: 1214	Elapsed Time: کوری Average Purge Rate (mL/min): کوری	Water Quality Meter ID: <u>157</u> Date Calibrated: <u>117/10</u>
SAMPLING DATA		
Sample Date: $5/17/10$	Sample Time: してくじ Analysis:	PCB 680
Sample Method: 55 Monson	Sample Flow Rate: 300 QAQC Samples:	Nove
VOA Vials, No Headspace Initials:		
COMMENTS:		

Appendix B

Chains-of-Custody

Savannah

5102 LaRoche Avenue

Chain of Custody Record

TestAmerica

Savannah, GA 31404

phone 912.354.7858 fax 912.352.0165																TestAmerica Laboratories, Inc
Client Contact	Project M	anager: Da	ve Palmer			Site	Contact	: Natha	n McN	ırlen	Date	ر :	-117	110		COC No:
URS Corporation	Tel/Fax: (314) 743-30	54			Lab	Contact	: Lidya	Gulizia	l	Car	rier:	/			of COCs
1001 Highlands Plaza Drive West, Suite 300		Analysis T	urnaround	Time												Job No.
St. Louis, MO 63110	Calenda	r (C) or Wo	ork Days (W	Ŋ												21562401.00003
(314) 429-0100 Phone	т	AT if different	from Below _	Standard												
(314) 429-0462 FAX		2	2 weeks													SDG No.
Project Name: 2Q10 PCB GW Sampling		1	l week													
Site: Solutia WG Krummrich Facility			2 days				020									
PO#			l day			122111	fa s									
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Tritered Sa	10131 74 5				-					Sample Specific Notes:
PMA-MW-05M0510	5/17/10	1045	G	Water	2		2									
PM4-MW-06D-0510	5/17/10	1220	6	water	ک	2								_	_	
PMA-MW-035-0510	5/17/10	1395	6	Water	۲		<									
PMA-MW-03M-0510	5/17/10		6	Water	S	ls										
V/V /1W -0.5/1-05/0				WALL								-				
1 <u>, ,</u>						H								_		
			<u> </u>													
	-					H										
······································			[┝─┟╌									++-	
						<u> </u>										
					;							1				
				1		П						-				
						┼╌┼╌		╉								
	1					Ц			\rightarrow					++		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=Na	OH; 6= Othe	er					- 1 - 1									1
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	. .	_в	Unknown				ample I			-	Dispo				a retaini J _{Archiv}	ed longer than 1 month) ve For Months
	Poison	<u>,,,,,</u>	Unknown		······		Re	turn To	Client		Dispo	ізаї Бу	Lap			
Special Instructions/QC Requirements & Comments: Level 4 [чна гаска	ge														mp 2 4/22
											·					
<u>A</u>	10			In		In						10-				680-57745
Relinquished by	Company:	URS		Date/Tin	0	k		. 2	Shie	ġ.	U	1	npany: H			Date/Time: 51710 1650
Relinquished by:	Company			Date/Tin S/171	ne:	R	eceived I		- 10	्रम्		1	npany:			Date/Time:
NUR DONCE 20	-11			ודיקטן	-17	Jet 1	5 01	hO	$ \cap $	MIN	h.	1 11	$1 \leq 1$	-)I/		15.18.100 A005
Relinquished by:	Company:	,		Date/Tin	17 ne:		BUt eceived 1			aug	htu		hpany:	-1V		5.18.10c 0905 Date/Time:

Savannah

EPA ARCHIVE DOCUMENT

ហ

5102 LaRoche Avenue

Chain of Custody Record

TestAmericc

1000-10075190100104801

AND REAL PROPERTY AND ADDRESS OF THE ADDRESS OF THE

ne 912.354.7858 fax 912.352.0165 Client Contact	Project Ma	Project Manager: Dave Palmer Site				Site (ite Contact: Nathan McNurlen					Date: 5/18/10						COC No: 2			
S Corporation	Tel/Fax: (3	14) 743-305	54			Lab (Cont	act: L	idya (Guliz	ia		Ca	rrier:	199	(E)	ļ		┯━╋	of	COCs
1 Highlands Plaza Drive West, Suite 300		Analysis Tu	urnaround	Time		1														Job No.	
Louis, MO 63110	Calendar	(C) or Wo	ork Days (W	')									1								21562401.000
4) 429-0100 Phone	T/	A T if different	from Below	Standard			1													SDG No.	
4) 429-0462 FAX		2	weeks																ľ	5DG N0.	
eet Name: 2Q10 PCB GW Sampling	一名	ł	week																		
: Solutia WG Krummrich Facility		:	2 days				8						1					1			
#			l day				S								1			1			
	Sample	Sample	Sample		#of	Ritered Sample - Total PCRe hv 680														S.	ample Specific No
Sample Identification	Date	Time	Туре	Matrix	Cont.	Щ р			_	+	+		_	╞═┿	_	-		-	╞═╇		
PMA-MW- 015 -0510	5/13/10	0925	G	Water	2	2	2				·		_						┢╍┤		
PM4-MW-015-0510-MS	5/18/10		6	heler	3		۷							╞╌╞					$\left \right $		
PMA-MW-015-0510 -MSD	5/18/10	0925	6	When	5	Ż	₹	4									 -		╞┈┤		
[MA-MW-0M-0510	5/18/10	1055	6	hele	٢	<u> </u> 2	<u>.</u>						1	┟─┤		_					100/01
PMA-MW-040-0510	5/18/10	1250	6	White	2	7	٤														3.7 3.6
PMA - MW-045-0510	5/18/10	1400	6	Wala	Z	2	2				<u> </u>									(80-57756
PMA -MW-02M-0510	5/18/10	1945	6	Water	ح	ļ	2						<u> </u>					-	_		
3MA - MW - OZM - 0510 - A	1 5/18/10	1535	6	Wester	5	∐>	<u>\</u>												┇		
8MA - MW - 025-0510 - EI		(6	water	ک	Lì	<u>\</u>							_			╞				
QMA-MW-025-0510	5/18/10	1	6	Wafe	2		২				.			_							
	_	<u> `-</u>	<u> </u>		4	七	1	╉┯┨	7	X	1	1	X				<u>i</u>				
				1	ta	R	N			41	P	4	Ł	H							
servation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=N	aOH: 6== Oth	er					1			Τ			T							1	han 1 month)

Special Instructions/QC Requirements & Comments: A grant Data Package

Relinquished by:	Company:		Received by: Levyek Comes	Company: TASN	Date/Time: 5/11/10 0923
Relinquished by:	Сопралу:	Date Time:	Received by:	Company:	Date/Time:
Relinquisted by	Company: URS	5/18/10 1800			Date/Time:

Appendix C

Quality Assurance Report

Solutia Inc. W.G. Krummrich Facility Sauget, Illinois

PCB Groundwater Quality Assessment Program 2nd Quarter 2010 Data Report

Prepared for

Solutia Inc. 575 Maryville Centre Drive St. Louis, MO 63141

July 2010

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 Project # 21562401

1.0	INTRODUCTION	. 1
2.0	RECEIPT CONDITION AND SAMPLE HOLDING TIMES	.2
3.0	LABORATORY METHOD AND EQUIPMENT BLANK SAMPLES	.3
4.0	SURROGATE SPIKE RECOVERIES	.3
5.0	LABORATORY CONTROL SAMPLE RECOVERIES	.4
6.0	MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES	.4
7.0	FIELD DUPLICATE RESULTS	.4
8.0	INTERNAL STANDARD RESPONSES	.5
9.0	RESULTS REPORTED FROM DILUTIONS	.5

1.0 INTRODUCTION

This Quality Assurance Report presents the findings of a review of analytical data for groundwater samples collected in May of 2010 at the Solutia W.G. Krummrich plant as part of the 2nd Quarter 2010 PCB Groundwater Quality Assessment Program. The samples were collected by URS Corporation personnel and analyzed by TestAmerica Laboratories located in Savannah, Georgia using USEPA methodologies. Samples were analyzed for polychlorinated biphenyls (PCBs).

One hundred percent of the data were subjected to a data quality review (Level III validation). The Level III review was performed in order to confirm that the analytical data provided by TestAmerica were acceptable in quality for their intended use.

A total of 14 samples (ten investigative groundwater samples, one field duplicate pair, one matrix spike and matrix spike duplicate (MS/MSD) pair, and one equipment blank) were analyzed by TestAmerica. These samples were analyzed as part of Sample Delivery Group (SDG) KPM038 utilizing the following USEPA Methods:

• Method 680 for PCBs

Samples were reviewed following procedures outlined in the USEPA National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008) and the Revised PCB Groundwater Quality Assessment Work Plan (Solutia 2009).

The above guidelines provided the criteria to review the data. Additional quantitative criteria are given in the analytical methods. Data was qualified based on the data quality review. Qualifiers assigned indicate data that did not meet acceptance criteria and for which corrective actions were not successful or not performed. The various qualifiers are explained in **Tables 1** and **2** below:

Lab Qualifier	Definition
U	Analyte was not detected at or above the reporting limit.
*	LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits.
E	Result exceeded the calibration range, secondary dilution required.
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
N	MS, MSD: Spike recovery exceeds upper or lower control limits.
Н	Sample was prepped or analyzed beyond the specified holding time.
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

TABLE 1 Laboratory Data Qualifiers

TABLE 2 URS Data Qualifiers

URS Qualifier	Definition
U	The analyte was analyzed for but was not detected.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Based on the criteria outlined, it is recommended that the results reported for this analysis are accepted for their intended use. Acceptable levels of accuracy, precision, and representativeness (based on MS/MSD, LCS, surrogate compounds and field duplicate results) were achieved for this data set, except where noted in this report. In addition, analytical completeness, defined to be the percentage of analytical results which are judged to be valid, including estimated detect (J) values was 100 percent, which meets the completeness goal of 95 percent.

The data review included evaluation of the following criteria:

Organics

- Receipt condition and sample holding times
- Laboratory method blanks, and field equipment blank samples
- Surrogate spike recoveries
- Laboratory control sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) sample recoveries and Relative Percent Difference (RPD) values
- Field duplicate results
- Results reported from dilutions
- Internal standard responses

2.0 RECEIPT CONDITION AND SAMPLE HOLDING TIMES

Sample holding time requirements for the analyses performed are presented in the methods and/or in the data review guidelines. Review of the sample collection, extraction and analysis dates involved comparing the chain-of-custody and the laboratory data summary forms for accuracy, consistency, and holding time compliance.

Extractions and/or analyses were completed within the recommended holding time requirements. The laboratory communicated that continuing calibration verification standards were run after the 12 hour sample sequences. The standards were run within approximately 30 minutes of the corresponding 12 hour sequences; therefore, professional judgment was used to not qualify the data. No qualification of data was required.

3.0 LABORATORY METHOD BLANK AND EQUIPMENT BLANK SAMPLES

Laboratory method blank samples evaluate the existence and magnitude of contamination problems resulting from laboratory activities. All laboratory method blank samples were analyzed at the method prescribed frequencies. No analytes were detected in the method blanks.

Equipment blank samples are used to assess the effectiveness of equipment decontamination procedures. Analytes detected in the equipment blank are included in the table below:

Blank ID	Parameter	Analyte	Concentration	Units
PMA-MW-2S-0510-EB	PCBs	Trichlorobiphenyl	0.34	µg/L
PMA-MW-2S-0510-EB	PCBs	Tetrachlorobiphenyl	0.46	µg/L
PMA-MW-2S-0510-EB	PCBs	Pentachlorobiphenyl	0.24	µg/L
PMA-MW-2S-0510-EB	PCBs	Hexachlorobiphenyl	0.30	µg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
PMA-MW-02S-0510	PCBs	Trichlorobiphenyl	0.18	U

4.0 SURROGATE SPIKE RECOVERIES

Surrogate compounds are used to evaluate overall laboratory performance for sample preparation efficiency on a per sample basis. All samples analyzed for PCBs were spiked with surrogate compounds during sample preparation. The laboratory case narrative indicated that surrogate spiking concentrations were prepared at 1.5 μ g/L; however, the method specifies surrogate spiking concentrations of 2.5 μ g/L. Professional judgment was used to not qualify data since, with the exceptions of those that were diluted out, surrogates were recovered within evaluation criteria. USEPA National Functional Guidelines for Superfund Organic Methods Data Review state how data is qualified, if surrogate spike recoveries do not meet evaluation criteria. Surrogate recoveries were within evaluation criteria with the exception of those surrogates in data reviews discussed further in Appendix D. No qualifications of data were required due to surrogate recoveries.

5.0 LABORATORY CONTROL SAMPLE RECOVERIES

Laboratory control samples (LCS) are analyzed with each analytical batch to assess the accuracy of the analytical process. All LCS recoveries were within evaluation criteria. No qualification of data was required.

6.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES

MS/MSD samples are analyzed to assess the accuracy and precision of the analytical process on an analytical sample in a particular matrix. MS/MSD samples were required to be collected at a frequency of one per 20 investigative samples in accordance with the work plan (one per 20 investigative samples or 5%). URS Corporation submitted one MS/MSD sample set for ten investigative samples, meeting the work plan frequency requirement.

No qualifications were made to the data if the MS/MSD percent recoveries were zero due to dilutions or if the Relative Percent Difference (RPD) was the only factor outside of criteria. Also, USEPA National Functional Guidelines for Superfund Organic Methods Data Review (2008) states that organic data does not need qualification based on MS/MSD criteria alone. Therefore, if recoveries were outside evaluation criteria due to matrix interference or abundance of analytes, no qualifiers were assigned unless these analytes had other quality control criteria outside evaluation criteria.

Sample PMA-MW-01S-0510 was spiked and analyzed for PCBs in SDG KPM038. All MS/MSD recoveries were within evaluation criteria. No qualification of data was required.

7.0 FIELD DUPLICATE RESULTS

Field duplicate results are used to evaluate precision of the entire data collection activity, including sampling, analysis and site heterogeneity. When results for both duplicate and sample values are greater than five times the practical quantitation limit (PQL), satisfactory precision is indicated by an RPD less than or equal to 25 percent for aqueous samples. Where one or both of the results of a field duplicate pair are reported at less than five times the PQL, satisfactory precision is indicated if the field duplicate results agree within 2 times the quantitation limit. Field duplicate results that do not meet these criteria may indicate unsatisfactory precision of the results.

One field duplicate sample was collected for the ten investigative samples. This satisfies the requirement in the work plan (one per 10 investigative samples or 10 percent). Field duplicate results were within evaluation criteria. No qualifications of data were required.

8.0 INTERNAL STANDARD RESPONSES

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. For the PCBs (Method 680), the IS areas must be within +/-30 percent of the preceding calibration verification (CV) IS value. Also, the IS retention times must be within 30 seconds of the preceding IS CV retention time. If the IS area count is outside criteria, Method 680 indicates the mean IS area obtained during the initial calibration (ICAL) (+/-50 percent) should be used.

The internal standards area responses for PCBs were verified for the data reviews. IS responses met the criteria as described above, with the exception of the IS responses in the data reviews discussed further in Appendix D.

Analytical data reported as non-detect and associated with internal standard recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. No qualification of data was required.

9.0 **RESULTS REPORTED FROM DILUTIONS**

Samples PMA-MW-01M-0510, PMA-MW-04S-0510, PMA-MW-02M-0510, and PMA-MW-02M-0510-AD were diluted due to abundance of target analytes. The diluted sample results for PCBs were reported at the lowest possible reporting limit.

Groundwater Analytical Results (with Data Review Sheets)

SDG KPM038

Results of Samples from Monitoring Wells:

PMA-MW-1M PMA-MW-1S PMA-MW-2M PMA-MW-2S PMA-MW-3M PMA-MW-3S PMA-MW-4D PMA-MW-4S PMA-MW-5M PMA-MW-6D

Solutia Krummrich Data Review WGK PCB GW Quality 2Q10

Laboratory SDG: KPM038

Reviewer: Elizabeth Kunkel

Date Reviewed: 6/15/2010

Guidance: USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008

Applicable Work Plan: Revised PCB Groundwater Quality Assessment (Solutia 2009)

Sample Identification								
PMA-MW-01M-0510	PMA-MW-03M-0510							
PMA-MW-01S-0510	PMA-MW-03S-0510							
PMA-MW-02M-0510	PMA-MW-04D-0510							
PMA-MW-02M-0510-AD	PMA-MW-04S-0510							
PMA-MW-02S-0510	PMA-MW-05M-0510							
PMA-MW-02S-0510-EB	PMA-MW-06D-0510							

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate? Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that surrogate spiking concentrations were not prepared at method specified spiking concentrations. Although not indicated in the laboratory case narrative, PCB surrogates were diluted out and not recovered in several samples. The laboratory communicated that continuing calibration verification standards were run after the 12 hour sample sequences. The standards were run within approximately 30 minutes of the corresponding 12 hour sequences; therefore, professional judgment was used to not qualify the data. Internal standard recoveries were outside evaluation criteria. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems however, the laboratory incorrectly transcribed COC designated equipment blank ID, PMA-MW-02S-0510-EB as PMA-MW-2S-0510-EB. Results were reported using the COC designated sample ID.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
PMA-MW-2S-0510-EB	PCBs	Trichlorobiphenyl	0.34	µg/L
PMA-MW-2S-0510-EB	PCBs	Tetrachlorobiphenyl	0.46	µg/L
PMA-MW-2S-0510-EB	PCBs	Pentachlorobiphenyl	0.24	µg/L
PMA-MW-2S-0510-EB	PCBs	Hexachlorobiphenyl	0.30	µg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported non-detect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Sample ID	Parameter	Analyte	New Reporting Limit (RL)	Qualification
PMA-MW-02S-0510	PCBs	Trichlorobiphenyl	0.18	U

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No, surrogates were diluted out and not recovered in samples PMA-MW-01M-0510, PMA-MW-04S-0510, PMA-MW-02M-0510, and PMA-MW-02M-0510-AD. No qualification of data was required.

Additionally, the laboratory case narrative indicated that surrogate spiking concentrations were prepared at 1.5 μ g/L; however, the method specifies surrogate spiking concentrations of 2.5 μ g/L. Professional judgment was used to not qualify data since with the exceptions of those that were diluted out, surrogates recovered within evaluation criteria.

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG?

Yes, sample PMA-MW-01S-0510 was spiked and analyzed for PCBs.

Were MS/MSD recoveries within evaluation criteria?

Yes

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

No

Sample ID	Parameter	Analyte	IS Area Recovery	IS Criteria
MB 680-169147	PCBs	Phenanthrene-d ₁₀ 46162		71754-133258
MB 680-169147	PCBs	Chrysene-d ₁₂	214739	387528-719694
PMA-MW-05M-0510	PCBs	Phenanthrene-d ₁₀	64152	71754-133258
PMA-MW-05M-0510	PCBs	Chrysene-d ₁₂	341205	387528-719694
PMA-MW-06D-0510	PCBs	Phenanthrene-d ₁₀	52964	71754-133258
PMA-MW-06D-0510	PCBs	Chrysene-d ₁₂	262915	387528-719694
PMA-MW-03S-0510	PCBs	Phenanthrene-d ₁₀	57972	71754-133258
PMA-MW-03S-0510	PCBs	Chrysene-d ₁₂	282281	387528-719694
LCS 680-169147/14-A	PCBs	Chrysene-d ₁₂	357860	387528-719694
PMA-MW-01S-0510-MS	PCBs	Phenanthrene-d ₁₀	69627	71754-133258
PMA-MW-01S-0510-MS	PCBs	Chrysene-d ₁₂	342968	387528-719694
PMA-MW-01S-0510-MSD	PCBs	Phenanthrene-d ₁₀	68605	71754-133258
PMA-MW-01S-0510-MSD	PCBs	Chrysene-d ₁₂	351297	387528-719694
PMA-MW-04S-0510	PCBs	Phenanthrene-d ₁₀	68605	15052-27954
PMA-MW-01M-0510	PCBs	Phenanthrene-d ₁₀	124228	38981-116943
PMA-MW-01M-0510	PCBs	Chrysene-d ₁₂	558620	181633-544901

Analytical data which were reported as non-detect and associated with internal standard recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. MB 680-169147 and LCS 680-169147/14-A are quality control samples and do not require qualification. Internal standard areas for phenanthrene-d₁₀ and chrysene-d₁₂ recovered within initial calibration average internal standard areas for PMA-MW-05M-0510, PMA-MW-06D-0510, PMA-03S-0510, PMA-MW-01S-0510-MS, PMA-MW-01S-0510-MSD, and PMA-MW-04S-0510 and therefore do not require qualification. Chrysene-d₁₂ recovered outside initial calibration average internal standard areas in sample PMA-MW-01M-0510, however target analytes were not detected in this sample. No qualification of data was required.

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID		
PMA-MW-02M-0510	PMA-MW-02M-0510-AD		

Were field duplicates within evaluation criteria?

Yes

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Not applicable; analytes were detected in samples that were diluted.

12.0 Additional Qualifications

Were additional qualifications applied? No

ANALYTICAL REPORT

Job Number: 680-57745-1 SDG Number: KPM038 Job Description: WGK PCB GW Quality - 2Q10

> For: Solutia Inc. 575 Maryville Centre Dr. Saint Louis, MO 63141 Attention: Mr. Jerry Rinaldi

Lidya galicia

Lidya Gulizia

Project Manager I

lidya.gulizia@testamericainc.com 06/11/2010 Approved for release. Lidya Gulizia Project Manager I 6/11/2010 2:57 PM

Reviewed on

JUN 15 2010 EZR

Mr. Bob Billman CC: Ms. Elizabeth Kunkel Dave Palmer

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel (912) 354-7858 Fax (912) 352-0165 <u>www.testamericainc.com</u>

Job Narrative 680-57745-1 / SDG KPM038

Receipt

All samples were received in good condition within temperature requirements.

GC/MS Semi VOA

Method(s) 680: Samples were spiked with a surrogate spiking mix that contained the surrogate at a concentration of 1.5ug/ml. The SOP references that the surrogate spiking mix is to be prepared at a concentration of 2.5ug/ml. All calculations have been adjusted and results reported.

Method(s) 680: The reference method requires a calibration verification to be analyzed every 12 hours. The calibration verification for clocks 1f052610 was analyzed 25 minutes outside this method-defined clock time: PMA-MW-01S-0510 (680-57756-1), PMA-MW-01S-0510-MS (680-57756-1 MS), PMA-MW-01S-0510-MSD (680-57756-1 MSD), PMA-MW-02M-0510 (680-57756-5), PMA-MW-02M-0510-AD (680-57756-6), PMA-MW-03M-0510 (680-57745-4), PMA-MW-03S-0510 (680-57745-3), PMA-MW-04D-0510 (680-57756-3), PMA-MW-05M-0510 (680-57745-1), PMA-MW-06D-0510 (680-57745-2). The calibration verification for clock 1f060510 was analyzed 9 minutes outside this method defined clock time.

No other analytical or quality issues were noted.

Comments No additional comments.

METHOD SUMMARY

Client: Solutia Inc.			Job Number: 680-57745-1 Sdg Number: KPM038
Description	Lab Location	Method	Preparation Method
Matrix: Water			
Polychlorinated Biphenyls (PCBs) (GC/MS)	TAL SAV	EPA 680	
Liquid-Liquid Extraction (Separatory Funnel)	TAL SAV		EPA 680
Lab References:			
TAL SAV = TestAmerica Savannah			
Method References:			

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Solutia Inc.

Job Number: 680-57745-1 Sdg Number: KPM038

Analyst

Davis, Nancy

Analyst ID ND

Method

EPA 680

Job Number: 680-57745-1 Sdg Number: KPM038

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
680-57745-1	PMA-MW-05M-0510 🖊	Water	05/17/2010 1045	05/18/2010 0905
680-57745-2	PMA-MW-06D-0510	Water	05/17/2010 1220	05/18/2010 0905
680-57745-3	PMA-MW-03S-0510	Water	05/17/2010 1345	05/18/2010 0905
680-57745-4	PMA-MW-03M-0510	Water	05/17/2010 1440	05/18/2010 0905
680-57756-1	PMA-MW-01S-0510 🖍	Water	05/18/2010 0925	05/19/2010 0923
680-57756-1MS	PMA-MW-01S-0510-MS	Water	05/18/2010 0925	05/19/2010 0923
680-57756-1MSD	PMA-MW-01S-0510-MSD	Water	05/18/2010 0925	05/19/2010 0923
680-57756-2	PMA-MW-01M-0510 🖊	Water	05/18/2010 1055	05/19/2010 0923
680-57756-3	PMA-MW-04D-0510	Water	05/18/2010 1250	05/19/2010 0923
680-57756-4	PMA-MW-04S-0510	Water	05/18/2010 1400	05/19/2010 0923
680-57756-5	PMA-MW-02M-0510	Water	05/18/2010 1525	05/19/2010 0923
680-57756-6FD	PMA-MW-02M-0510-AD	Water	05/18/2010 1525	05/19/2010 0923
680-57756-7EB	PMA-MW-2S-0510-EB	Water	05/18/2010 1545	05/19/2010 0923
680-57756-8	PMA-MW-02S-0510	Water	05/18/2010 1640	05/19/2010 0923

JUN 15 2010 22K

SAMPLE RESULTS

Analytical Data

Job Number: 680-57745-1 Sdg Number: KPM038

-					
Lab Sample ID:	680-57745-1			Date	e Sampled: 05/17/2010 104
Client Matrix:	Water			Dat	e Received: 05/18/2010 090
		680 Polychlorinated Biphenyls (P	CBs) (GC/I	MS)	
Method:	680	Analysis Batch: 680-170826		Instrument ID:	MSF
Preparation:	680	Prep Batch: 680-169147		Lab File ID:	N/A
Dilution:	1.0			Initial Weight/Volume:	1020 mL
Date Analyzed:	05/26/2010 1707			Final Weight/Volume:	1 mL
Date Prepared:	05/20/2010 1545			Injection Volume:	
Analyte		Result (ug/L)	Qualifie	r	RL
Monochlorobipheny	I	0.098	U		0.098
Dichlorobiphenyl		0.098	U		0.098
Trichlorobiphenyl		0.098	U		0.098
Fetrachlorobiphenyl		0.20	U		0.20
Pentachlorobipheny		0.20	U		0.20
Hexachlorobiphenyl		0.20	U		0.20
Heptachlorobipheny	4	0.29	U		0.29
Octachlorobiphenyl		0.29	U		0.29
Nonachlorobiphenyl		0.49	U		0.49
OCB Decachlorobip	henyl	0.49	U		0.49
Surrogate		%Rec	Qualifie	r Accepta	ince Limits
Decachlorobiphenyl	-13C12	73	889772988429943958299829928999 <u>9</u> 84429899	25 - 113	}

JUN 15 2010 ZNK

Lab Sample ID:

Client Matrix:

Analytical Data

Job Number: 680-57745-1 Sdg Number: KPM038

Client Sample ID: PMA-MW-06D-0510

680-57745-2

Water

Date Sampled:	05/17/2010 1220
Date Received:	05/18/2010 0905

		680 Polychlorinated Biphenyls (PCBs) (GC/MS))	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	680 680 1.0 05/26/2010 1740 05/20/2010 1545	Analysis Batch: 680-170826 Prep Batch: 680-169147	La Ini Fil	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume: jection Volume:	MSF N/A 1030 mL 1 mL
Analyte		Result (ug/L)	Qualifier		RL
Monochlorobipheny		0.33			0.097
Dichlorobiphenyl		0.097	U		0.097
Trichlorobiphenyl		0.097	U		0.097
Tetrachlorobiphenyl		0.19	υ		0.19
Pentachlorobipheny	1	0.19	U		0.19
Hexachlorobiphenyl		0.19	U		0.19
Heptachlorobipheny	1	0.29	U		0.29
Octachlorobiphenyl		0.29	U		0.29
Nonachlorobiphenyl		0.49	U		0.49
DCB Decachlorobip	henyl	0.49	U		0.49
Surrogate		%Rec	Qualifier	Acceptan	ce Limits
Decachlorobiphenyl	-13C12	96		25 - 113	

JUN 15 2010 32K

Analytical Data

Job Number: 680-57745-1 Sdg Number: KPM038

Client Sample ID:	PMA-MW-03S-0510	,			
Lab Sample ID:	680-57745-3			Da	te Sampled: 05/17/2010 1345
Client Matrix:	Water			Da	te Received: 05/18/2010 0905
		680 Polychlorinated Biphenyls (P	CBs) (GC/	MS)	
Method:	680	Analysis Batch: 680-170826		Instrument ID:	MSF
Preparation:	680	Prep Batch: 680-169147		Lab File ID:	N/A
Dilution:	1.0			Initial Weight/Volume:	1050 mL
Date Analyzed:	05/26/2010 1812			Final Weight/Volume:	
Date Prepared:	05/20/2010 1545			Injection Volume:	
Analyte		Result (ug/L)	Qualifie	r	RL
Monochlorobipheny		0.52			0.095
Dichlorobiphenyl		0.11			0.095
Trichlorobiphenyl		0.095	U		0.095
Tetrachlorobiphenyl		0.19	U		0.19
Pentachlorobipheny	1	0.19	U		0.19
Hexachlorobiphenyl		0.19	U		0.19
Heptachlorobipheny	1	0.29	U		0.29
Octachlorobiphenyl		0.29	U		0.29
Nonachlorobiphenyl		0.48	U		0.48
DCB Decachlorobip	henyl	0.48	U		0.48
Surrogate		%Rec	Qualifie	r Accept	ance Limits
Decachlorobiphenyl	-13C12	72		25 - 11	3

Job Number: 680-57745-1 Sdg Number: KPM038

Client Sample ID:	PMA-MW-03M-0510				
Lab Sample ID: Client Matrix:	680-57745-4 Water				Date Sampled: 05/17/2010 1440 Date Received: 05/18/2010 0905
		680 Polychlorinated Biphenyls (P	CBs) (GC/I	MS)	
Method:	680	Analysis Batch: 680-170826		Instrument ID:	MSF
Preparation:	680	Prep Batch: 680-169147		Lab File ID:	N/A
Dilution:	1.0			Initial Weight/Volum	ie: 1050 mL
Date Analyzed:	05/26/2010 1844			Final Weight/Volum	e: 1 mL
Date Prepared:	05/20/2010 1545			Injection Volume:	
Analyte		Result (ug/L)	Qualifie	r	RL
Monochlorobipheny	1	0.82			0.095
Dichlorobiphenyl		0.095	U		0.095
Trichlorobiphenyl		0.095	U		0.095
Tetrachlorobiphenyl	l	0.19	U		0.19
Pentachlorobipheny	/	0.19	U		0.19
Hexachlorobiphenyl	l i i i i i i i i i i i i i i i i i i i	0.19	U		0.19
Heptachlorobipheny	/I	0.29	U		0.29
Octachlorobiphenyl		0.29	U		0.29
Nonachlorobipheny	1	0.48	U		0.48
DCB Decachlorobip	henyl	0.48	U		0.48
Surrogate		%Rec	Qualifie	r Acce	eptance Limits
Decachlorobiphenyl	I-13C12	58		25 -	113

Job Numb

Client: Solutia Inc.

Analytical Data

Job Number: 680-57745-1 Sdg Number: KPM038

Client Sample ID:	PMA-MW-01S-0510				
Lab Sample ID: Client Matrix:	680-57756-1 Water				te Sampled: 05/18/2010 0925 te Received: 05/19/2010 0923
		680 Polychlorinated Biphenyls (P	CBs) (GC/M	IS)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	680 680 1.0 05/26/2010 1917 05/20/2010 1545	Analysis Batch: 680-170826 Prep Batch: 680-169147		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	
Analyte		Result (ug/L)	Qualifier		RL
Monochlorobipheny		0.095	U		0.095
Dichlorobiphenyl	·	0.095	U		0.095
Trichlorobiphenyl		0.095	U		0.095
Tetrachlorobipheny	l	0.19	U		0.19
Pentachlorobipheny	rl	0.19	U		0.19
Hexachlorobipheny	l	0.19	U		0.19
Heptachlorobipheny	/I	0.29	U		0.29
Octachlorobiphenyl		0.29	U		0.29
Nonachlorobipheny	I	0.48	U		0.48
DCB Decachlorobip	henyl	0.48	U		0.48
Surrogate		%Rec	Qualifier	Accept	ance Limits
Decachlorobiphenyl	l-13C12	62		25 - 11	3

JUN 15 2010 221

					Sdg Number: KPM038
Client Sample ID:	PMA-MW-01M-0510				
Lab Sample ID:	680-57756-2			Date	Sampled: 05/18/2010 1055
Client Matrix:	Water			Date	Received: 05/19/2010 0923
		680 Polychlorinated Biphenyls (PCBs) (GC/N	NS)	
Method:	680	Analysis Batch: 680-170868		Instrument ID:	MSY
Preparation:	680	Prep Batch: 680-169147		Lab File ID:	N/A
Dilution:	10			Initial Weight/Volume:	1050 mL
Date Analyzed:	06/08/2010 1058			Final Weight/Volume:	1 mL
Date Prepared:	05/20/2010 1545			Injection Volume:	
Analyte		Result (ug/L)	Qualifier		RL
Monochlorobipheny	yl	0.95	U		0.95
Dichlorobiphenyl		0.95	U		0.95
Trichlorobiphenyl		0.95	U		0.95
Tetrachlorobipheny	/	1.9	U		1.9
Pentachlorobiphen	yl	1.9	U		1.9
Hexachlorobipheny	/	1.9	U		1.9
Heptachlorobiphen	yi	2.9	U		2.9
Octachlorobiphenyl	1	2.9	U		2.9
Nonachlorobipheny	/	4.8	U		4.8
DCB Decachlorobip	phenyl	4.8	U		4.8
Surrogate		%Rec	Qualifier	Acceptar	nce Limits

0

D

25 - 113

Job Number: 680-57745-1

TestAmerica Savannah

Client: Solutia Inc.

Decachlorobiphenyl-13C12

JUN 15 2010 Gall

Analytical Data

Client: Solutia Inc.

Job Number: 680-57745-1 Sdg Number: KPM038

Client Sample ID: Pl

PMA-MW-04D-0510

680-57756-3 Water

Lab Sample ID: Client Matrix: Date Sampled: 05/18/2010 1250 Date Received: 05/19/2010 0923

680 Polychlorinated Biphenyls (PCBs) (GC/MS)										
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	680 680 1.0 06/05/2010 1457 05/20/2010 1545	Analysis Batch: 680-170838 Prep Batch: 680-169147		ID: eight/Volume: ight/Volume:	MSF N/A 1030 mL 1 mL					
Analyte		Result (ug/L)	Qualifier		RL					
Monochlorobipheny	/	0.31			0.097					
Dichlorobiphenyl		0.41			0.097					
Trichlorobiphenyl		0.097	U		0.097					
Tetrachlorobipheny	1	0.19	U		0.19					
Pentachlorobipheny	<i>y</i> l	0.19	U		0.19					
Hexachlorobipheny	1	0.19	U		0.19					
Heptachlorobiphen	yl	0.29	U		0.29					
Octachlorobiphenyl		0.29	U		0.29					
Nonachlorobipheny	4	0.49	U		0.49					
DCB Decachlorobip	bhenyl	0.49	U		0.49					
Surrogate		%Rec	Qualifier	Acceptan	ce Limits					
Decachlorobipheny	I-13C12	65		25 - 113						

JUN 15 2010 22-12

Client Sample ID: PMA-MW-04S-0510 Lab Sample ID: 680-57756-4 Date Sampled: 05/18/2010 1400 Date Received: 05/19/2010 0923 Water **Client Matrix:** 680 Polychlorinated Biphenyls (PCBs) (GC/MS) Instrument ID: MSF 680 Analysis Batch: 680-170859 Method: Prep Batch: 680-169147 Lab File ID: N/A Preparation: 680 Dilution: 100 Initial Weight/Volume: 1030 mL 06/07/2010 1040 Final Weight/Volume: Date Analyzed: 1 mL 05/20/2010 1545 Date Prepared: Injection Volume: Qualifier RL Analyte Result (ug/L) 9.7 υ 9.7 Monochlorobiphenyl 43 9.7 Dichlorobiphenyl Trichlorobiphenyl 140 9.7 Tetrachlorobiphenyl 410 19 Pentachlorobiphenyl 370 19 Hexachlorobiphenyl 620 19 Heptachlorobiphenyl 470 29 Octachlorobiphenyl 78 29 Nonachlorobiphenyl 49 U 49

 Nonactionobipitenyi
 49
 0
 49

 DCB Decachlorobiphenyi
 49
 U
 49

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 Decachlorobiphenyi-13C12
 0
 D
 25 - 113

Analytical Data

Job Number: 680-57745-1 Sdg Number: KPM038

Client: Solutia Inc.

Analytical Data

Job Number: 680-57745-1 Sdg Number: KPM038

Client: Solutia Inc.

Client Sample ID: PMA-MW-02M-0510 Lab Sample ID: 680-57756-5 Date Sampled: 05/18/2010 1525 **Client Matrix:** Water Date Received: 05/19/2010 0923 680 Polychlorinated Biphenyls (PCBs) (GC/MS) 680 Analysis Batch: 680-170838 Instrument ID: MSF Method: 680 Prep Batch: 680-169147 Lab File ID: N/A Preparation: Initial Weight/Volume: 1010 mL Dilution: 10 06/05/2010 1740 Final Weight/Volume: 1 mL Date Analyzed: 05/20/2010 1545 Injection Volume: Date Prepared: RL Result (ug/L) Qualifier Analyte Monochlorobiphenyl 3.9 0.99 υ Dichlorobiphenyl 0.99 0.99 υ Trichlorobiphenyl 0.99 0.99 Tetrachlorobiphenyl 2.0 U 2.0 2.0 U Pentachlorobiphenyl 2.0 2.0 U 2.0 Hexachlorobiphenyl U 3.0 3.0 Heptachlorobiphenyl Octachlorobiphenyl 3.0 U 3.0 Nonachlorobiphenyl 5.0 υ 5.0 υ DCB Decachlorobiphenyl 5.0 5.0 Acceptance Limits Surrogate %Rec Qualifier Decachlorobiphenyl-13C12 0 D 25 - 113

JUN 15 2010 52K

					Sdg Number: KPM038
Client Sample ID:	PMA-MW-02M-0510-AD				
Lab Sample ID:	680-57756-6FD			Date	Sampled: 05/18/2010 1525
Client Matrix:	Water			Date	Received: 05/19/2010 0923
		680 Polychlorinated Biphenyls (PCBs) (GC/M	S)	
Method:	680	Analysis Batch: 680-170838	l.	nstrument ID:	MSF
Preparation:	680	Prep Batch: 680-169147	L	ab File ID:	N/A
Dilution:	10		l.	nitial Weight/Volume:	1030 mL
Date Analyzed:	06/05/2010 1812		F	Final Weight/Volume:	1 mL
Date Prepared:	05/20/2010 1545		l	njection Volume:	
Analyte		Result (ug/L)	Qualifier		RL
Monochlorobipheny	1	4.0			0.97
Dichlorobiphenyl		0.97	U		0.97
Trichlorobiphenyl		0.97	U		0.97
Tetrachlorobipheny	l	1.9	U		1.9
Pentachlorobipheny	/1	1.9	U		1.9
Hexachlorobiphenyl	l	1.9	U		1.9
Heptachlorobipheny	/I	2.9	U		2.9
Octachlorobiphenyl		2.9	U		2.9
Nonachlorobipheny	l	4.9	U		4.9
DCB Decachlorobip	henyl	4.9	U		4.9
Surrogate		%Rec	Qualifier	Acceptan	ice Limits

D

25 - 113

JUN 15 2010 42/2

0

Analytical Data

Job Number: 680-57745-1

Client: Solutia Inc.

Decachlorobiphenyl-13C12

Analytical Data

Client: Solutia Inc.

Job Number: 680-57745-1 Sdg Number: KPM038

Client Sample ID:	PMA-MW-2S-0510-EB				
Lab Sample ID: Client Matrix:	680-57756-7EB Water				Date Sampled: 05/18/2010 1548 Date Received: 05/19/2010 0923
		680 Polychlorinated Biphenyls (P	CBs) (GC/	MS)	
Method:	680	Analysis Batch: 680-170838		Instrument ID:	MSF
Preparation:	680	Prep Batch: 680-169147		Lab File ID:	N/A
Dilution:	1.0			Initial Weight/Volum	e: 1030 mL
Date Analyzed:	06/05/2010 1530			Final Weight/Volume	e: 1 mL
Date Prepared:	05/20/2010 1545			Injection Volume:	
Analyte		Result (ug/L)	Qualifie	r	RL
Monochlorobipheny	/	0.097	U		0.097
Dichlorobiphenyl		0.097	U		0.097
Trichlorobiphenyl		0.34			0.097
Tetrachlorobipheny	1	0.46			0.19
Pentachlorobipheny	/	0.24			0.19
Hexachlorobipheny	1	0.30			0.19
Heptachlorobipheny	<i>y</i> i	0.29	U		0.29
Octachlorobiphenyl		0.29	U		0.29
Nonachlorobipheny	1	0.49	U		0.49
DCB Decachlorobip	henyl	0.49	U		0.49
Surrogate		%Rec	Qualifie	r Acce	ptance Limits
Decachlorobipheny	I-13C12	65		25 - 1	113

JUN 15 2010 22K

Client: Solutia Inc. Job Number: 680-57745-1 Sdg Number: KPM038 **Client Sample ID:** PMA-MW-02S-0510 680-57756-8 Lab Sample ID: Date Sampled: 05/18/2010 1640 Client Matrix: Water Date Received: 05/19/2010 0923 680 Polychlorinated Biphenyls (PCBs) (GC/MS) Method: 680 Analysis Batch: 680-170838 Instrument ID: MSF 680 Preparation: Prep Batch: 680-169147 Lab File ID: N/A Dilution: 1.0 Initial Weight/Volume: 1030 mL 06/05/2010 1602 Date Analyzed: Final Weight/Volume: 1 mL 05/20/2010 1545 Date Prepared: Injection Volume: Analyte Result (ug/L) Qualifier RL Monochlorobiphenyl 0.097 U 0.097 Dichlorobiphenyl 0.097 U 0.097 > " 0.18 O.18 Trichlorobiphenyl -0.18 0.0 ND υ Tetrachlorobiphenyl 0.19 υ 0.19 Pentachlorobiphenyl 0.19 U 0.19 U Hexachlorobiphenyl 0.19 0.19 U Heptachlorobiphenyl 0.29 0.29 υ Octachlorobiphenyl 0.29 0.29 Nonachlorobiphenyl 0.49 U 0.49 DCB Decachlorobiphenyl 0.49 U 0.49 Surrogate %Rec Qualifier Acceptance Limits Decachlorobiphenyl-13C12 72 25 - 113

Analytical Data

TestAmerica Savannah

JUN 15 2010 ZZK

DATA REPORTING QUALIFIERS

Client: Solutia Inc.

Job Number: 680-57745-1 Sdg Number: KPM038

:

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.

QUALITY CONTROL RESULTS

Job Number: 680-57745-1

Sdg Number: KPM038

Client: Solutia Inc.

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 680-169147					
LCS 680-169147/14-A	Lab Control Sample	т	Water	680	
MB 680-169147/13-A	Method Blank	Т	Water	680	
680-57745-1	PMA-MW-05M-0510	Т	Water	680	
680-57745-2	PMA-MW-06D-0510	т	Water	680	
680-57745-3	PMA-MW-03S-0510	Т	Water	680	
80-57745-4	PMA-MW-03M-0510	Т	Water	680	
680-57756-1	PMA-MW-01S-0510	Т	Water	680	
80-57756-1MS	Matrix Spike	Т	Water	680	
80-57756-1MSD	Matrix Spike Duplicate	Т	Water	680	
80-57756-2	PMA-MW-01M-0510	Ť	Water	680	
680-57756-3	PMA-MW-04D-0510	т	Water	680	
80-57756-4	PMA-MW-04S-0510	Т	Water	680	
80-57756-5	PMA-MW-02M-0510	Т	Water	680	
80-57756-6FD	PMA-MW-02M-0510-AD	Т	Water	680	
680-57756-7EB	PMA-MW-2S-0510-EB	т	Water	680	
80-57756-8	PMA-MW-02S-0510	Т	Water	680	
Analysis Batch:680-17082	6				
CS 680-169147/14-A	Lab Control Sample	т	Water	680	680-169147
/B 680-169147/13-A	Method Blank	т	Water	680	680-169147
80-57745-1	PMA-MW-05M-0510	т	Water	680	680-169147
80-57745-2	PMA-MW-06D-0510	т	Water	680	680-169147
80-57745-3	PMA-MW-03S-0510	т	Water	680	680-169147
80-57745-4	PMA-MW-03M-0510	т	Water	680	680-169147
80-57756-1	PMA-MW-01S-0510	т	Water	680	680-169147
80-57756-1MS	Matrix Spike	т	Water	680	680-169147
680-57756-1MSD	Matrix Spike Duplicate	т	Water	680	680-169147
Analysis Batch:680-17083	8				
80-57756-3	PMA-MW-04D-0510	т	Water	680	680-169147
80-57756-5	PMA-MW-02M-0510	т	Water	680	680-169147
80-57756-6FD	PMA-MW-02M-0510-AD	т	Water	680	680-169147
80-57756-7EB	PMA-MW-2S-0510-EB	т	Water	680	680-169147
80-57756-8	PMA-MW-02S-0510	т	Water	680	680-169147
Analysis Batch:680-17085	9				
80-57756-4	PMA-MW-04S-0510	Т	Water	680	680-169147
Analysis Batch:680-17086	8				
680-57756-2	PMA-MW-01M-0510	т	Water	680	680-169147

- Report Basis
- T ≃ Total

Quality Control Results

Job Number: 680-57745-1 Sdg Number: KPM038

Surrogate Recovery Report

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Client Matrix: Water

		13DCB
Lab Sample ID	Client Sample ID	%Rec
680-57745-1	PMA-MW-05M-0510	73
680-57745-2	PMA-MW-06D-0510	96
680-57745-3	PMA-MW-03S-0510	72
680-57745-4	PMA-MW-03M-0510	58
680-57756-1	PMA-MW-01S-0510	62
680-57756-2	PMA-MW-01M-0510	OD
680-57756-3	PMA-MW-04D-0510	65
680-57756-4	PMA-MW-04S-0510	
680-57756-5	PMA-MW-02M-0510	OD
680-57756-6	PMA-MW-02M-0510- AD	
680-57756-7	РМА-МW-2S-0510-Е В	65
680-57756-8	PMA-MW-02S-0510	72
MB 680-169147/13-A		91
LCS 680-169147/14-A		84
680-57756-1 MS	PMA-MW-01S-0510 MS	95
680-57756-1 MSD	PMA-MW-01S-0510 MSD	92

Surrogate 13DCB = Decachlorobiphenyl-13C12 Acceptance Limits 25-113

JUN 15 2010 ELK

Quality Control Results

Job Number: 680-57745-1 Sdg Number: KPM038

1000 mL

1 mL

Method Blank - Batch: 680-169147

Client: Solutia Inc.

MB 680-169147/13-A Analysis Batch: 680-170826 Lab Sample ID: Instrument ID: MSF Client Matrix: Water Prep Batch: 680-169147 Lab File ID: N/A Dilution: 1.0 Units: ug/L Initial Weight/Volume: 05/26/2010 1458 Date Analyzed: Final Weight/Volume: 05/20/2010 1545 Date Prepared: Injection Volume:

Analyte	Result	Result Qual			
Monochlorobiphenyl	0.10	U	0.10		
Dichlorobiphenyl	0.10	U	0.10		
Trichlorobiphenyl	0.10	U	0.10		
Tetrachlorobiphenyl	0.20	U	0.20		
Pentachlorobiphenyl	0.20	U	0.20		
Hexachlorobiphenyl	0.20	U	0.20		
Heptachlorobiphenyl	0.30	U	0.30		
Octachlorobiphenyl	0.30	U	0.30		
Nonachlorobiphenyl	0.50	U	0.50		
DCB Decachlorobiphenyl	0.50	U	0.50		
Surrogate	% Rec	Ad	cceptance Limits		

Decachlorobiphenyl-13C12

Lab Control Sample - Batch: 680-169147

Method: 680 Preparation: 680

25 - 113

Method: 680 Preparation: 680

Lab Sample ID:	LCS 680-169147/14-A	Analysis Batch: 680-170826	Instrument ID: MSF
Client Matrix:	Water	Prep Batch: 680-169147	Lab File ID: N/A
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL
Date Analyzed:	05/26/2010 2021		Final Weight/Volume: 1 mL
Date Prepared:	05/20/2010 1545		Injection Volume:

91

Analyte	Spike Amount	Result	% Rec.	Limit	Qual			
Monochlorobiphenyl	2.00	1.43	71	10 - 125	n kon kana kana kana kana kana kana kana			
Dichlorobiphenyl	2.00	1.48	74	10 - 110				
Trichlorobiphenyl	2.00	1.48	74	17 - 110				
Tetrachlorobiphenyl	4.00	2.94	74	18 - 110				
Pentachlorobiphenyl	4.00 3.08 77		77	34 - 110				
Hexachlorobiphenyl	4.00	3.08	77	31 - 110				
Heptachlorobiphenyl	6.00	4.64	77	33 - 110				
Octachlorobiphenyl	6.00	4.55	76	33 - 110				
DCB Decachlorobiphenyl	10.0	7.05	71	26 - 115				
Surrogate	% R	ec	Acc	ceptance Limits				
Decachlorobiphenyl-13C12	84							

Quality Control Results

Job Number: 680-57745-1 Sdg Number: KPM038

Client: Solutia Inc.

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 680-169147

Method: 680 Preparation: 680

MS Lab Sample ID:	680-57756-1	Analysis Batch: 680-170826	Instrument ID: MSF
Client Matrix:	Water	Prep Batch: 680-169147	Lab File ID: N/A
Dilution:	1.0		Initial Weight/Volume: 1050 m
Date Analyzed:	05/26/2010 2054		Final Weight/Volume: 1 mL
Date Prepared:	05/20/2010 1545		Injection Volume:
MSD Lab Sample ID:	680-57756-1	Analysis Batch: 680-170826	Instrument ID: MSF
Client Matrix:	Water	Prep Batch: 680-169147	Lab File ID: N/A
Dilution:	1.0		Initial Weight/Volume: 1050 mL
Date Analyzed:	05/26/2010 2126		Final Weight/Volume: 1 mL
Date Prepared:	05/20/2010 1545		Injection Volume:

Analyte	MS MSD Limit F				RPD Limit	MS Qual	MSD Qua
Monochlorobiphenyl	72	63	10 - 125	13	40	nige on any services and agone & face participations	54 TH MARIN MASSACRA 1997 STOLEN ST
Dichlorobiphenyl	79	70	10 - 110	13	40		
Trichlorobiphenyl	81	79	17 - 110	3	40		
Tetrachlorobiphenyl	81	71	18 - 110	13	40		
Pentachlorobiphenyl	84	76	34 - 110	10	40		
Hexachlorobiphenyl	85	76	31 - 110	10	40		
Heptachlorobiphenyl	86	79	33 - 110	8	40		
Octachlorobiphenyl	84	77	33 - 110	8	40		
DCB Decachlorobiphenyl	82	79	26 - 115	4	40		
Surrogate		MS % Rec	MSD %	6 Rec	Acce	ptance Limits	
Decachlorobiphenyl-13C12		95	92		2	5 - 113	

JUN 15 2010 ETAL

Savannah

5102 LaRoche Avenue

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Savannah, GA 31404

	phone 912.354.7858 fax 912.352.0165																				TestAmerica Laboratories, Inc.
	Client Contact	Project Manager: Dave Palmer					Site Contact: Nathan McNurien Date:					Date: 5/17/10						COC No:			
	URS Corporation	Tel/Fax: (3			Lab Contact: Lidya Gulizia				Carrier:							of COCs					
	1001 Highlands Plaza Drive West, Suite 300		Analysis T	urnaround	Time																Job No.
	St. Louis, MO 63110	Calendar	Calendar (C) or Work Days (W)				羉														21562401.00003
	(314) 429-0100 Phone	TAT if different from Below _Star																			
	(314) 429-0462 FAX																		SDG No.		
	Project Name: 2Q10 PCB GW Sampling	Ŕ																			
	Site: Solutia WG Krummrich Facility		:	2 days				680													
	PO#		1	day	·····			ka si													
	Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	ETTER FOR	Total PCBs													Sample Specific Notes:
	PMA-MW-05M -0510	5/17/10	1045	G	Water	2		2													
	PM4-MW-06D-0510-	5/17/10	1220	6	water	ک		2											_		
Pa	PM4-MW-035-0510 -	5/17/10	1395	6	Water	ζ		2													
Page	8MA-MW-03M-0510-	57/17/10	1440	6	Water	2		2													
25		- pape					Н	-			1-		+				-			+	
	······································						H	+				┼╌┼	+	+ +					-+		
of				<u> </u>			μ.	_				╞╌┞					+		+	_	
28				A																	
			•		-																
							Π	Τ											1		
							\square	╧			-	+	+	++		+			+	+	
	· · · · · · · · · · · · · · · · · · ·	· · ·					\mathbb{H}	+			-	++		+-+			+		+	+	
							Ц	+	+			┝╌┝	_				-		+	_	· · · · · · · · · · · · · · · · · · ·
	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaO Possible Hazard Identification	H; 6= Othe	r					1	10 01				ay h			d 15 c				tain	d longer than 1 month)
	Non-Hazard Flammable Skin Irritant	Poison	,	Unknown			ľ		Retu					Disp			•				e For Months
	Special Instructions/QC Requirements & Comments: Level 4 Da			Chanoma					1,6101		Chen			Disp	0307	<i>., .</i> ,	~				
																			I	C	np 2.4/2.2
	1																			ı	680-57745
	Relinquished by	Company: URS				me:	R	ecei	ved by:	0	1.2	<u>.</u>			C	ompa	ay:				Date/Time: 5/17/10 1650
	Relinquished by:	Company	010		5/17/1 Date/Tit	0 rei	R	eceiv	ved by:	6						ompa					Date/Time:
	a shellar	-11			Date/Til S/17			B	ett	1 01	Ĵ	Sa	ugł	Ĥ			541	<u>/</u>			5.18.100 0905
	Relinquished by:	Company: '			Date/Tir	ne:	R	eceiv.	ved by:				,			опра	ny;				Date/Time:

JUN 15 2010 E-K

Savannah

5102 LaRoche Avenue

Chain of Custody Record

Savannah, GA 31404

Client Contact Project Manager: Dave Palmer			Site Contact: Nathan McNurlen					Date: 5/18/10						COC No: 2							
RS Corporation	Tel/Fax: (314) 743-3054			Lab Contact: Lidya Gulizia							Carrier: Fed Ex							of COCs			
001 Highlands Plaza Drive West, Suite 300	Analysis Turnaround Time									T		T		Τ		Τ		Т	Job No.		
t. Louis, MO 63110	Calendar (C) or Work Days (W)																		21562401.00	0003	
314) 429-0100 Phone	т	AT if different	from Below	Standard																	
314) 429-0462 FAX		2	weeks													11				SDG No.	
roject Name: 2Q10 PCB GW Sampling	呂	1	week																		
ite: Solutia WG Krummrich Facility		:	2 days			680															
0#			l day			s by															
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filtered S Total PCB													,	Sampla SamiSa I	N -1-1-1
				-				-+-	-	+	┿		┝─┤	=+-	┿	╪╡	+	+	+	Sample Specific M	NOICES
PMA-MW-015-0510	5/13/10	0925	G	Water	2	2				11	_				-		_				
PM4-MW-015-0510-MS	SASAO	0925	6	Weber	2	2															
PMA MW-015-0510 -MSD	5/18/10	0925	6	What	2	2															
	5/18/10		6	Whyter	ζ	Z													-		
PM4-MW-040-0510-	5/18/10		1.	Wahr	2	2														3.8/3.7/3.6	
PMA - MW -045-0510 -	5/18/10		6	wate		2			-			-				\square			T	680-57756	>
PM4 MW-02M-0510-	5/18/10	1535	6	Water	γ	2								-	T				-		
9MA MW-02M-0510-AD	Shelin	1222	6	Weifer	2	2			T	1		1			\top			+			
8MA - MW - 025 - 0510 - EB.			6	water	Ś	h												1	1-	1	
A	5/18/10		12	Wafe	5	٦	\square	-			-	1							T		
		16.19			À					1	-	17	1			$\downarrow \downarrow \downarrow$	-	_	-		
					TA	Ħ,	$\not\vdash$		4	H	A	Ă	H	+	+		_		-		
reservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaO	H. 6- ()+h				000	4	╀┥	4	+	14	+	-	F	7	=	┿┽	+				
ossible Hazard Identification						Isa	mple	Disc	osa	I (Af	ee m	av be	ass	essed	d if si	ampie	es ai	re ret	aine	d longer than 1 month)	
Non-Hazard Flammable Skin Irritant	Poison	e 🗆	Unknown				· · · · ·	•		Client		_		osal E		•				e For Months	

Relinquisted by	Company: URS	Date/Time: 5/18/10 1900	Received by:	Company:	Date/Time:
Relinquished by:	Company:		Received by:	Company:	Date/Time:
Relinquished by:	Company:		Received by: Leorget Comes	Company: TH SN	Date/Time: 5/11/10 0923

JUN 15 2010 ETK

Client: URS Corporation

Login Number: 57745 Creator: Daughtry, Beth List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	2 coolers rec'd on ice
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.4 and 2.2 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	MS/MSD not requested in receipt for SDG.
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

Job Number: 680-57745-1 SDG Number: KPM038

List Source: TestAmerica Savannah

JUN 15 2010 EZK

Login Sample Receipt Check List

Client: URS Corporation

Login Number: 57756

Creator: Conner, Keaton List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	3 coolers rec'd on ice
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.8, 3.7, 3.6 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	N/A	
Sample Preservation Verified	True	

Job Number: 680-57745-1 SDG Number: KPM038

List Source: TestAmerica Savannah

JUN 15 2010 G24